
Western Scale Co. Limited

Programmer’s Manual
SMART1 Programmer, Version 1.10

Western Scale Co. Limited
1670 Kingsway Avenue

Port Coquitlam, B.C.
V3C 3Y9, CANADA

Phone (604) 941-3474 Fax (604) 941-4020 http://www.wescale.com

Foreword

The SMART1(1) is a freely programmable multi purpose device manufactured by Western Scale.
It was designed to perform a number of duties not only in the weighing industry but also in many
other areas of process control, data management and serial communication.

Aside from an introduction to the device’s components and an overview of their respective
functions, this handbook provides us with all the necessary information for installation and
operation of the SMART1 Programmer, the software used to create programs for the SMART1.
It also describes to us the structure of the PLAIN(2) programming language which was developed
for the SMART1, and it gives us detailed facts for each of the individual program instructions.

Like the programming language itself, the manual was not written with only the seasoned
programmer in mind. Also the people among us who are technical personnel with little or no
programming background but possess a solid knowledge of (scale)technical principles along
with a good understanding of logical processes, will find this brochure a useful guide to making
sophisticated programs for an unlimited variety of applications.

The SMART1 Programmer features a graphical user interface. It allows us to build complex
programs in a relatively simple manner by placing and connecting images that represent
commands or functions. Using the SMART1 Programmer’s basic instructions set in addition to
an assortment of pre-made program modules from Western Scale, we will be able to accomplish
almost any task.

One of the main objectives in developing the SMART1 Programmer was to attain universal
functionality. After the reading of this manual and a little bit of practice we will be able to solve
most problems in a straight forward approach. Under specific circumstances, though, we might
find ourselves in a situation where a round-about way seems to be the only solution to achieve
what we want the SMART1 to do. That’s okay, not everything in life is simple and we will be so
much more proud of ourselves for making it work anyway.

The SMART1 Programmer is by no means an absolutely perfect tool. Despite of the
extensive error checking capabilities built into the software, the user will still be able to make
misteaks. The program might also lack one or the other slick and trendy “bell” or “whistle”, but
for all of us who are equipped with the proper motivation and are not easily discouraged by a
little less convenience, there are virtually no limits to what we can do with the SMART1.

(1) SMART1 Scale Microprocessor And Remote Terminal, version 1
(2) PLAIN Programmable Logically Aligned Interconnected Nodes

5 Serial Communication Ports

Power Jack

I/O Expansion Connector

Liquid Crystal Display

16 Buttons
Membrane Keypad

Programming Switch

60$57�60$57�

��

UHDUUHDU

YLHZYLHZ

60$57����VLGH�YLHZ

60$57����IURQW�YLHZ

Table of Contents

CHAPTER 1 - GETTING STARTED

The SMART1’s Components
Components Overview... 8
Keypad.. 9
Display.. 9
Clock .. 9
Communication .. 9
Output Relays ... 9
Remote Inputs... 10
4-20mA Outputs... 10
Memory .. 10

The Software Shell, first part
Installing the SMART1 Programmer Software.. 12
The Layout of the User Interface ... 13
Projects and Modules ... 14
Button Bars... 15

The Programming Language
PLAIN - Programmable Logically Aligned Interconnected Nodes............................ 17
Node Variations.. 18

Making a program module
Placing and Moving of Nodes .. 20
Programming of Nodes .. 21
Connecting of Nodes .. 22
Erasing of Nodes ... 23
Erasing of Ties ... 23

CHAPTER 2 - SMART1 INSTRUCTION TYPES

Memory Setup Declarations
Variables... 25

Number Variables .. 26
Character Variables ... 27
Values of Characters .. 28
The Table of Characters .. 29
String Variables ... 30

File Definitions .. 31
The Structure of a File ... 32

Instructions for Program Flow Management
Module Start ... 34
Call a Module ... 34
Module Stop ... 34
Re-Entry Point .. 35
Jump ... 35

Instructions for I/O Components
The Display .. 37

Text Display ... 37
Variable Display... 38
Detect Cursor Location... 38

The Keypad .. 39
Character Input .. 39
Line Input ... 40
Keypress ... 40
Moving Cursor ... 41

Serial Port Setup... 42
Serial Communication ... 43

Receive Mode .. 43
Transmit Mode .. 44

The Clock .. 45
Set Clock .. 45
Read Clock ... 46
Start Timer.. 46
Check Timer... 46

The Output Relays.. 47
The 4-20 mA Outputs... 48

Offset Calibration .. 48
Span Calibration... 48
Changing the Current ... 48

The Remote Inputs ... 49
Storing the Status of Remote Inputs .. 50

Instructions for System Functions
Assigning a Value ... 52
Comparing Values.. 53
Converting Variable Types... 54
Mathematics ... 55
Extracting Sub-Strings ... 56
Concatenating Strings... 57

Instructions for System Functions (continued)
Bit Manipulation ... 58

INC, DEC, LSH, RSH ... 58
AND, OR, XOR, ADD, SUB .. 59

Access to Files ... 60
Initializing a File ... 60
Adding a Record .. 60
Deleting a Record .. 61
Obtaining the Current Size of a File .. 61
Writing to a Field .. 61
Reading from a Field ... 62
Searching for Data in a File ... 62

Program Comments.. 63

CHAPTER 3 - TO ROUND IT ALL UP

The Software Shell, second part
Compiling a Project ... 65

Compile Error Messages ... 66
More Compile Error Messages... 67

Program Options .. 68
Print Code Listing when Compiling .. 68
Update Operating System .. 68
Immediate Execution ... 68
Realign Modules when Loading .. 69
Always Send after Compiling ... 69
Clear All Variables before Sending Code ... 69

Saving and Loading a Project .. 70
Loading an existing Program Module ... 71
Saving a Program Module ... 71
Making and Saving a Code File .. 72
Loading a Code File .. 73
Sending Code to the SMART1 .. 74

Tips and Tricks, Dos and Don’ts
Moving Instructions to a New Module .. 76
Retaining Data during Re-Programming .. 76
Recursive Calls .. 77
Detecting a Number Overflow .. 77
Transmitting to a Printer .. 77

APPENDIX
Serial Port Pins ... 79
I/O Expansion Cable .. 79

The SMART1’s Components

CHAPTER 1- GETTING STARTED

(8)

Components Overview

Before we begin to find out how to install the SMART1 Programmer and how to use it, we will
stop to take a look at the SMART1’s logical structure. A general overview of the device’s
components, capabilities and limits will give us a rough idea of the kind of tasks for which we
could program it.

From a program point of view, the SMART1 consists of Memory for data storage and a
number of different Input/Output components. All the things conveying information from the
outside world into the program, we consider to be inputs. Everything which can be controlled or
manipulated by the program, we call an output. The graphic below shows us what the particular
inputs and outputs are. The elements pointing towards the program in the center are inputs. The
ones with the outward pointing arrows denote the outputs. There are also objects with arrows in
both directions. They can be used for input as well as output functions. We call them
bi-directional. To our surprise we find the display among them. This seems like a mistake and is,
indeed, only half right. So, without getting ahead of ourselves let’s just say that under special
circumstances the display works in conjunction with the keypad as an input device.

Examining the physical structure of the SMART1 we must distinguish the above components
also by their location and availability. The elements shown in a dark gray with white lettering are
built right into the SMART1’s enclosure. They are available at all times. The communication,
however, will work only when there is something to communicate with. The unit is equipped
with five serial (RS232 compatible) connectors for the transmission and reception of data. The
third group in the picture, shown in white with black writing, is a collection of components
made available through the use of additional hardware. To access any of them, we will have to
hook up one or the other of Western Scale’s option boards to the big connector in the back of the
SMART1. The following pages hold a brief description for each of the SMART1’s components.

PROGRAM

Display

Clock

Remote
Inputs

Keyboard

4-20mA
Outputs

Output
Relays

Communi-
cation

Memory

(9)

Keypad

Via the keypad we can input all single digit numbers from 0 to 9, multi digit numbers with or
without a decimal point, all of the capitals and small letters provided by the English alphabet,
words composed of such letters or even whole sentences.

Display

The display is divided into 80 individual spaces,
neatly arranged in 4 rows by 20 columns. Each of
these spaces may contain exactly one character,
being either a letter, a (single digit) number, a blank
space or any one of the signs from this picture.

Clock

Whether the SMART1 is powered up or not, the clock inside it is relentlessly ticking. We can
read precise values from it ranging from year to month, day, weekday, hour, minutes and seconds
all the way down to tenths and hundredths of a second. This gives us not only the potential to use
the time and date in our applications, but also the chance to build some slick timer routines (a
feature that might come in handy if we ever decide to create a relay control program). Since time
and date could vary from one place to another, we can not only read the clock but also set it.

Communication

The SMART1’s five communication channels are suitable to connect the unit to other serial
communication devices for the purpose of information exchange. Some examples for such
devices are: personal computers, “dumb” terminals, printers, score boards, other SMART1s and
most importantly, scale indicators! All five channels can be used to both send and receive data
and can be configured for various speeds and communication protocols.

Output Relays

If we are planning to do a job that requires controlling of electrical appliances such as lamps,
solenoids, motors etc., we will need to extend the built in capabilities of the SMART1. A box,
connected via cable to the unit’s I/O expansion port will do the trick, provided it contains the
appropriate equipment. One or two of Western Scale’s Setpoint Output Module Racks, each of
which outfitted with up to six output modules, will take over the task of translating the
SMART1’s tiny electronic signals into heavy duty currents and voltages.

(10)

Remote Inputs

For some applications the SMART1 may have to evaluate direct inputs from outside sources. We
call them remote inputs. An example of a remote input could be a limit switch that is mounted to
a mechanism to be monitored, let’s say a gate on a hopper scale. This switch would tell the
SMART1 whether the gate is open or closed. Another use for remote inputs might be a set of
push buttons, pressed by the operator to start or to stop a process. Like output relays, remote
inputs are connected to the I/O expansion port through additional circuitry. One SMART1 can
process a maximum of twelve remote inputs.

4-20mA Outputs

The third group of hardware that we can connect to the SMART1’s I/O expansion port are
4-20mA outputs. These special outputs deliver a constant current to meters, electrical gauges,
PLCs and the like. Properly programmed, the value of this current can be used to represent the
value of a number in the SMART1’s memory, for instance a weight. Whenever the weight
changes, the current at the output follows that change in a proportional characteristic. It is
possible to attach two 4-20mA outputs to one SMART1.

Memory

Memory is employed to store things we want to remember. That goes for the SMART1 as well
as for us. Comparable to how we humans memorize what we obtain through our senses, the
SMART1 can store information it receives from its input channels and retrieve them at a later
time. And there is another similarity. We think about facts we learned, link them to previous
experiences, merge or change them and then memorize the result of our pondering processes.
The SMART1, on the other hand, commands an assortment of system functions, allowing it to
manipulate and blend the data in its memory cells and to save it in the modified form. In spite of
all the parallels, there remains one fundamental difference between the SMART1 and us. We
forget. The SMART1 retains the content of its entire memory throughout power-ups and -downs
until the moment when it is overwritten by a program instruction.

The amount of information a SMART1 can store depends on several factors including the size
of files, type of data, the complexity of the program and so on. Its overall memory capacity set
aside for this purpose is approximately 28 kilobytes, allowing it to store about 7000 numbers.

We can extend the maximum numbers for all external components as well as the amount of memory to
virtually any total by ‘daisy chaining’. That means using two or more SMART1s for the same job and
programming them in a way that they would divide the tasks among themselves.

Let’s assume we needed 15 output relays. We’d take two SMART1s. The first one we would program
to handle 12 relays. Whenever relays 13 to 15 need to be switched we would send a suitable command to
a serial port. The second SMART1, connected to the said serial port of the first one receives the
command, figures it out and switches the relays. Voilà!

The Software Shell, first part

(12)

Installing the SMART1 Programmer Software

Reading the previous pages has given us a pretty good idea about the kind of operations the
SMART1 could be utilized for. At this point we are ready to load the software that came with
this manual. As a last step before we start the actual installation process, we will check whether
our computer meets the minimum requirements to run the SMART1 Programmer.

First and foremost, it must be an IBM compatible PC.
Its CPU chip should be at least a 486 running at a speed of 66 MHz or faster.
A minimum amount of 12 Megabytes RAM is needed.
Approximately 2 Megabytes of free hard drive space are necessary for the installation.
To accept the installation diskette, it must have a 31/2” floppy disk drive .
To program a SMART1, our PC needs to have a free serial port. (COM1 or COM2).
The PC’s operating system must be Windows (3.11 or 95 or 98 or NT).

If all conditions are met, we can begin the procedure. To install the SMART1 Programmer
software on our computer we will have to:

After restarting the computer we can run the SMART1 programmer. Again, there are slightly
varying methods to do this, depending on the operating system we are using.

Windows 3.11 will most likely have put a new group named Smart1 onto the program
manager screen. After a typical installation it will contain two icons. Running the Uninstall
program would remove all the software we just installed, so let’s leave it alone. The icon named
Smart1 Programmer is the one we double click to start the SMART1 programmer.

All of us running Windows 95/98/NT are facing a different scenario. First we have to click
the Start button, then go to the Program menu and after that to the Smart1 menu. Now we can
see the two icons labeled Smart1 Programmer and Uninstall.

To make the procedure of starting the SMART1 programmer under Windows 95/98/NT a
little easier, we can put a shortcut on the desktop. To do this we use the right button of our mouse
and click on a free spot on the screen. A menu appears. Going to New and clicking on Shortcut
brings up a window in which we enter the specifications for the new shortcut. The command line
must read: \Smart1\Smart1.exe, so that Windows can find the file. The shortcut’s name is up to
us. We choose to call it SMART1 Programmer. Using the new icon that pops up on our
computer screen, we can now start our software in a very simple way. All it takes is to move the
mouse cursor over it and to click the left mouse button twice. Let’s do it!

1. insert the installation diskette into the floppy drive
2. click the Start button (Windows 95/98/NT) or
 click the File menu (Windows 3.11)
3. click Run
4. type A:Setup (or B:Setup, if our drive is called B)
5. press ENTER or click the Ok button
6. watch the screen and respond to the prompts in
 the Setup program

(13)

The Layout of the User Interface

We have now started the SMART1 programmer. If our computer is running Windows 95/98/NT,
then what pops up on the screen resembles the picture below. Under Windows 3.11 the program
will look somewhat different but its general appearance will be the same.

The title bar on the top tells us the name of the SMART1 Programmer. It is “SMART1
Programmer”. Later on there will be more (valuable) information in this spot.
The control buttons fulfill the exact same functions as they do in any other Windows application
and will therefore not be explained any further in this manual.

Situated on the bottom edge is a space called the comment line. It is used to display helpful
remarks about certain objects on the screen. When we move the mouse cursor over the two menu
shortcut buttons, for instance, a brief description of what they do when they are pressed is shown
on the comment line. But we won’t press these buttons just yet. Not before we have discussed
some more important things.

The most important area currently on the screen is the menu bar. It gives us a variety of items
to choose from. To start off, let’s pick the one on the left which reads File. To do this there are
basically two different ways. The first way is to move our mouse cursor anywhere over the word
File and click the left mouse button. The other way is to hold down the key labeled Alt and then
press the letter F. This procedure is referred to as ‘using the Hot
Key’. It will be available as an alternative to using the mouse at
many occasions throughout the SMART1 Programmer. Whenever
a letter in a menu or on a button is underlined then we can use it in
conjunction with Alt as the Hot Key to invoke the menu’s or
button’s function.

Now that we have decided on how to open the File menu, we
are presented with even more choices. For all of us who have
already seen enough, and for those who would like to practice
what they have learned so far, the next step will be clicking on the
word Exit and thereby leaving the SMART1 programmer. Every-
one else may go on to the next page where the manual continues.

TITLE BAR

MENU BAR

CONTROL BUTTONS

COMMENT LINE

MENU SHORTCUT
 BUTTONS

(14)

Projects and Modules

The first item in the File menu is Project. That’s what
we call the entirety of all the things that make up a
particular program for the SMART1.

As we click on the word Project, yet another menu
flies out to the side. It reveals four items, two of which
are black and the other two are sort of hazy. The hazy
ones are currently “disabled” and might become avail-
able at a later time. The black items, however, tell us
which project functions we could use right now. The
second one of them, named Load project, somehow

looks familiar. Yes, we have read the words ‘Load a project from disk’ on the comment line
when we moved the mouse over one of the menu shortcut buttons. Now we know how the term
‘shortcut’ fits in. We could have gotten away with just one mouse-click, where it took us two
menu steps to get here and still one more click to load a project. But, since we’ve never made a
project, we can’t load one anyway. Well, let’s choose New project instead and carry on.

The menu vanishes and a new window appears
in the center of the screen, asking us to enter a
name for the new Program Module. Even though
we have no idea what a program module is, we
boldly try to give it a name. After some failed
attempts to enter names like JOHN DOE,
ME&YOU or TERMINATOR, we realize that we
can only put in a maximum of eight letters or numbers and that spaces and things like !&#$%
are not accepted. So we settle for the name TEST and push the Ok button.

The layout changes rapidly. Along with two more buttons on the shortcut bar a whole new
row of them materializes as well as a big white window that takes up almost all the space on the
screen. It bears the word Test as title and we conclude that this must be the program module we
just named. This is absolutely right, but what exactly is a program module?

A program module is a container for the commands that make up a project. Like a sheet of
paper we would use to jot down directions for someone who has to get from point A to point B,
the program module is used for instructions telling the SMART1 what to do. If the way from A
to B was very complicated or we were also giving directions on how to get from point B to point
C, we would perhaps describe it on two or more pieces of paper. Much the same principle is
applicable to program modules. If we have to design a project for a complex application we will
create several individual procedures and place each of them in its separate program module. We

can create a new module either by following the path from
File menu via Program module menu to New program
module or by simply clicking on the proper shortcut
button. Every time we open a new module, we must give
it a name which has to be different from all the other
modules’ names in the project.

Shortcut button
“New program module”

(15)

Button Bars

Let’s have a look at the other things that appeared when we opened the new program module.
Well, there are two more buttons on the shortcut bar. One of them looks like another Load
Project button except that the arrow points towards the disk. It is the Save Project button. Its
function is to save the project that is presently
in the SMART1 programmer. The other new
button is called the Compile Button. Pressing
it will compile all instructions of a project,
meaning it will translate them into “machine
code”, a strange language consisting exclusively of 0s and 1s. Nevertheless, the SMART1
understands it perfectly. Since we haven’t made any projects yet, we have no need for this
button at the present time.

The section beneath the shortcut bar holds a sheer multitude of buttons. We can push each of
them to pre-select the type of the next instruction we want to put into a program module.
According to their purpose these buttons are called Instruction selector buttons. Every one of
them stands for a different type of instructions. There are some that correspond to system
functions, others that manage the program flow or the memory setup. One group of buttons is
directly related to the SMART1’s I/O components which we discussed at the beginning of the
manual and, finally, there is a button for putting comments into our programs.

The graphic below points out the button groups and lists the corresponding component for
each button in the I/O components group.

Once we click on one of the instruction selector buttons, it will stay depressed. The example
shows the Keypad selector as being pushed, so we too click on the keypad button. This doesn’t
accomplish much yet, because to actually place an instruction we must tell the SMART1
programmer exactly where in the program module we want it. But before we can do this
efficiently we will need a little background information about the method that is used to program
the SMART1. We must learn about its structure, the internal workings of the language and the
rules it is governed by.

 Fortunately, it just so happens that the chapter containing the definitions for exactly these
things is starting on the very next page, so let’s read on.

Shortcut button
“Save Project”

Shortcut button
“Compile”

I/O Component Instructions

 Communication Ports Output Relays Remote Inputs 4-20mA Outputs
 Keypad Clock
 Display Memory

System Function Instructions Memory Setup Instructions

Comment
Instruction

Program Flow Instructions

 The Programming Language

(17)

PLAIN - Programmable Logically Aligned Interconnected Nodes

The general idea behind the PLAIN programming language, developed for the
SMART1, is to use programmable graphical symbols rather than words to
represent individual instructions. We call these symbols nodes. Like nodes in a
plant, from where the stalks and leaves grow, our program nodes are the junction
points for the “growth” of the program. Contrary to plants, however, our pro-
grams expand from the top down. The nodes are aligned by their centers and are
interconnected by lines called ties showing the path of the program logic. The tie
leading from one instruction to the next following instruction is attached to the
bottom of the node. This is the node’s exit. The node’s entry, located at the top, is
the connection point for the tie coming from the previous instruction. In our
example the first instruction to be executed is A. After completion of A the
program flows down to instruction B. When B is done the flow continues to C and
so on. For a better understanding of this example, here is a possible application
for it: - Instruction A displays a prompt for the operator to enter a number.

- Instruction B is reading the operator’s input from the keypad.
- In C the number is sent to a printer.
- Finally instruction D writes ‘number printed’ on the display.

This is a valid program and it will work just fine. But, unless the printer is ready
to receive data, our little program will never get to instruction D. Instead it will sit

at instruction C and wait for the printer’s ready signal. Well, sometimes this may be exactly what
we want the SMART1 to do. On other occasions, usually after a certain length of time has
expired, we want to let the operator know that there’s something wrong with the printer. If this is
the case, we can not have the program stop and do nothing. It would have to choose an
alternative path instead and perform steps to make the operator aware of the problem. This
generates the need for an exit that would link the node to the alternative path, in case its function
fails. For this very reason our node is equipped with an additional exit on its right hand side. To
distinguish between the two exits we give them different names. The one used if the node passes
its task we call the pass exit, the new one, going into action whenever the function fails is the fail
exit. Having an exit on the right of a node suggests to also have an entry on the following node’s
left hand side, so that we can put a straight tie between the two. The entries of a node can be
treated equally. Whichever one can be connected to conveniently, is the
one that gets used. It is even possible to approach a node from two
different paths, utilizing both entries. With this knowledge about
entries and exits, we can now easily understand the general
scheme of a PLAIN program. Let’s summarize it in a few
words:

The instructions in a program are executed one
by one. They are shown as nodes, tied together in
straight lines. As long as nodes pass their assign-
ments the program flow continues down to the next
node below. If a node fails its task, the program branches
through the node’s fail exit on its right hand side.

The figure shows a normal program node with its two entries and
two exits. It is the standard building block of all PLAIN programs.

PROGRAM
NODE FAIL

 exit

PASS
 exit

entry

entry

instruction

A

instruction

B

instruction

C

instruction

D

(18)

Node Variations

Not all program nodes have two entries and two exits like the normal node we have seen on the
previous page. They actually come in quite a variety. Some have no fail exit, others lose or
acquire their fail exit when they get programmed. There are some nodes without entries and
some without exits. We even have nodes that feature a remote exit or remote entries. How many
entries or exits a node possesses depends on its instruction type and its internal program. Here
are the symbols that are used in this manual to describe the different node types:

If a node has entries, then all of them including the remote kind are equally useable, but at least
one of them must be used in order for the node to be valid. Exits, on the other hand, can never be
left open. Every exit must be tied to another node’s entry.

node
symbol

description

2 entries, pass exit, fail exit

2 entries, pass exit,
the presence of a fail exit depends on the instruc-
tion’s internal program

2 entries, pass exit, no fail exit

2 entries, pass exit, no fail exit
in addition to its two standard entries this node has an
unlimited number of remote entries

2 entries, no fail exit
this node has no standard pass exit, it has a remote
pass exit instead

2 entries, no pass exit, no fail exit

no entries, pass exit, no fail exit

no entries, no exits

Making a Program Module

(20)

Placing and Moving of Nodes

Now that we know the basic facts about the PLAIN language, we are ready to start working on
our first module. Assuming that we had pressed a button on the instruction selector bar we can

place a node for the selected instruction type by double
clicking on a free spot in
the module. An image,
more or less resembling
the picture on the pushed
button, appears at that
very location. In our ex-
ample the image looks
like a miniature version of
the SMART1’s keypad.

 We can now put as many keypad instructions as we need into our program module,
the keypad button will stay depressed until a different one gets selected.

To move a node from one place to another we have to utilize the click-and-drag procedure.
How does this work? We move the mouse cursor over the node we want to move. We then push
the left mouse button and hold it down. A blue frame, the marker for a selected node, appears
around it. Now we move the mouse to the desired location, dragging a gray frame the size of the
node with it. As soon as we release the mouse button, the node framed in blue jumps to the spot

where we left the gray frame.

It is also possible to move several nodes simultaneously. To mark two or more nodes
at the same time we have to apply a method known as marquee-select. Pressing the left mouse

button in the module background and then moving the mouse with the
button held down, we are drawing a dashed line box. Once we let go of the
button, all the nodes that were completely enclosed by the marquee box
will now have a blue selection frame. When we click-and-drag any one of
them, all the other marked nodes will follow.

Nodes can not be moved from one program module to a different one.
An attempt to move a single node or a block of them to an area outside
the module will fail and the nodes will remain in their original places.

double click

before

after

after

during
before

press + hold
drag release

marquee-select

(21)

Programming of Nodes

The nodes we placed in our module so far are merely pictures telling us what instruction types
they belong to. To become complete instructions we must individually program most of them for

their specific tasks.
By clicking the right mouse button on a node, we start

the programming process. This usually means that a
programming window is opened which contains an as-
sortment of check boxes, input fields, buttons or other
controls. The most widely used controls are check boxes
and input fields. Check boxes are little white squares
with a describing text beside them. They are used to
select one or more items from a list of options. When we
click on a check box, then we activate or deactivate the
option associated with it. An activated check box is

marked by a cross. Input fields are rectangular areas into which we can write text or the
name of a variable. On some occasions the controls in the programming window are functionally
interconnected. In these cases typing into an input field or activating a check box might have an
effect on one or more of the other controls.

Naturally the programming window will look different from one instruction type to the next
and will feature different controls. The controls in the individual instruction types’ programming
window are explained in the manual’s CHAPTER 2 - SMART1 INSTRUCTION TYPES.

The only controls common to every programming win-
dow are two buttons labeled Ok and Cancel. The Ok
button is meant to be pressed when we are finished
entering all necessary data and have clicked all the appro-
priate check boxes. If everything we did is making sense,
then clicking this button will close the programming
window and our instruction is ready to be executed. If we
failed to provide information that the instruction needs,
then the Ok button will simply refuse to work for us. The
Cancel button, on the other hand, gets us out of the
programming window at any rate, though the instruction
will remain in the same state as it was before we opened the programming window. As an
alternative to clicking the Cancel button we can press the Escape key on our computer’s
keyboard whereas the Enter key does the same as clicking Ok.

A few instructions can be programmed without employing a programming window. For those
instructions the programming window is substituted with a simple text input field that appears on
top of the node and the programming process consists solely of entering a text, a name or a
number.

Finally some of the SMART1’s instruction types do not require any programming at all and
will therefore stubbornly resist our bravest attempts to force a programming procedure upon
them.

right click

(22)

Connecting of Nodes

Arriving at this section of the manual we presumably have placed some nodes into our module
and maybe even programmed them already. Now we are wondering how we can tie the nodes
together to make them form a program path.

The keyword here is alignment! The keen ones among us will have noticed by now that our
nodes can’t be moved to just any spot and that they rather seem to be snapping to an invisible
grid. This is indeed the case and it’s done for a reason. Because, before we can put a tie between
two nodes their centers must be aligned at either the same horizontal or the same vertical level.
The snapping is supposed to assist us a little in lining them up. After we managed to arrange our
images in straight lines we are ready to connect them.

In the figure below we placed five instruction nodes in the “Test” module. Why don’t we try
to connect them! When we press the Shift key the mouse cursor changes from an
arrow into a pair of cross hairs. Let’s hold the key down and click on the first of

our nodes, the start
flag. Nothing happens yet. Now,
without releasing the shift key, let’s
click on the node immediately below.
There we go, we’ve made our first
tie! The next ones are going to be just
as easy. Tie number two is supposed
to connect the display instruction
with the 1 in the circle. Still pressing
the shift key, we are drawing the tie
by first clicking on the display and
then on the circle. Another click on
the circle followed by one on the
keypad symbol gives us our third tie.
The fourth tie starts where the third

one ended, at the keypad. We click on it, then move the mouse cursor over the stop sign and click
again. Finally, tie number five. Again, we click on the keypad and for the last time on the circle
with the arrows around it and the 1 inside. We can now let go of the shift key. Actually, if we had
released it during the process it would have been okay, as long as we had pressed it in time
before the start of each new tie.

The sketch on the left shows us the steps we followed to tie our nodes together.
They are labeled A to E in the order in which we executed them. As a matter of fact,
we could have reached the same result by interchanging any of these steps in any
possible order, for instance BDACE or EACDB. The only

important issue here is, that we must always connect a
node to the next one immediately below or immedi-
ately to the right. We can never make a tie going from

a node upward or to the left. And even though a tie would
appear if we were to skip a few nodes, they will be detected

as unconnected nodes and we won’t be able to compile our program.

left click

Shift

(23)

Erasing of Nodes

If we need to remove one or more nodes from our program module, then we have to select them
first. For a single one we just click on it to do this. To select two or more nodes we perform a
marquee selection as described on the page on which we discussed the placing and moving of
nodes. The selected nodes will be marked by that nice blue frame. To get rid of them we must
now find the Delete key (sometimes it’s labeled “Del”) on the PC’s keyboard and press it.

Erasing of Ties

There are a number of different methods we can choose from to eliminate the ties that connect
our nodes. Some of them work directly, others are results of procedures that we apply to nodes.

If, for example, we delete a node that has ties attached to it, then these ties will be erased
automatically along with the node.

The process of programming a node might also have an effect on a tie. As we already know,
some nodes acquire or lose their fail exit depending on the particular instruction they are being
programmed with. If we are programming one of these nodes and it happens to have a fail exit
with a tie, then it would lose that tie in case the new instruction causes it to drop the fail exit.

Another indirect method for getting rid of ties can be the moving of nodes. No matter
whether we drag a single node or a whole bunch of them across our program module, as long as
they stay aligned with the ones they are connected to and don’t change their top to bottom or left
to right order, then the only thing happening to the ties will be some stretching or compressing.
A sure way of breaking ties, though, is to move a node out of alignment.

If we want to remove ties directly without having to modify a node, then we can do so as
well. Unfortunately, we can’t select a tie by clicking on it, but we can select the node which it is
attached to. Just like the dragging and the erasing of nodes, the direct removing of ties allows us
to select either a single node by clicking on it or a group of them utilizing the marquee-select
process. After we are done selecting our nodes we can use the Arrow keys
or the Space bar on the computer’s keyboard to erase the ties.

Pressing the space bar will result in all ties of all selected nodes being erased. The arrow keys,
however, let us point into the direction of the tie we want to wipe out. If, for instance, the up
arrow is pressed, then the tie at the top entry of all selected nodes will disappear, whereas
pushing the left arrow is going to delete only the tie at the left entry of all blue framed nodes. We
can probably all guess by now, what the right arrow’s and the down arrow’s function is. Exactly,
the down arrow removes the pass exit’s tie and the right arrow does the same to the tie at the fail
exit of all selected nodes.

Del

Memory Setup Declarations

CHAPTER 2 - SMART1 INSTRUCTION TYPES

(25)

Variables

No serious programming scheme gets away without
using variables. They lend flexibility to a program by
enabling it to react to inputs or other changing condi-
tions. Most of the instructions that deal with the SMART1’s I/O components and system
functions either have the option for a variable or absolutely require the use of one to do their
task. Let’s find out what variables are in a SMART1 setting and how we are supposed to use
them.

We all remember the word variables with mixed feelings when we think back to our elementary
school math classes. They were usually called X or Y, appeared mostly in formulas and could
represent varying numbers, depending on other values in the formula and on our calculating
skills.

Variables for the SMART1 are not much different from those, except that this time around, we
leave the calculations to the electronics. Just like in math formulas, SMART1 variables are used
to hold operands and results of calculations. In addition to numbers the SMART1 also allows us
to store letters, whole words and similar things in variables. We use variables for all numbers,
words, etc. that might or will change during the execution of the program, as well as for data of
which we don’t know the value or content at the time we create the project.

When we create a variable for the SMART1 we have to know what kind of data we want to
store in it. Depending on this we must declare the variable to be either a Character, a String or a
Number. These are the three variable types the SMART1 knows how to handle. A variable can
only be used for the type of data it is designated for. The main reason for this is, that the precise
amount of space each variable needs gets reserved in the SMART1’s memory chip. Now we
know what a variable essentially is. It is a pre-defined space in memory, set aside to hold a
certain type of data.

Like program instructions, variables are represented in our program modules by nodes. A node
that stands for a variable can be created, moved, erased and programmed just like any program
instruction node. However, since a variable declaration is not an executable instruction and
therefore not a part of the program flow, its node has neither entries nor exits. We can not attach
any ties to it.

To program, or rather declare a variable, we use the
Memory Variable window. It pops up when we right-
click on a variable declaration node. Here we can give
our variable a name and specify its type. For choosing the
name we have to obey the same rules that apply to the
naming of program modules. Depending on the type we
assign to our variable, we may also have to enter values
in the fields labeled Max. Length and Decimal Places. To
find out what the purpose of those two parameters is, we
will have to read the in-depth explanations for the three
individual variable types on the following pages.

node
image

node
type

selector
button

(26)

Number Variables

We declare a variable to be of the number type when we need it to hold numerical data for
calculation purposes. In other words, whenever we want to add, subtract, multiply or divide, only
a number variable will do.

Numbers are stored in the SMART1’s memory in a way that makes it easy for the electronics
to work with them. Every number, regardless of its actual value occupies four bytes of memory.
Unfortunately, these numbers bear very little resemblance to the type of numbers we are used to
dealing with. Therefore, if we want to look at a number, we have to tell the SMART1 in which
shape we expect it to appear. To accomplish this, we use the settings for maximum length and
decimal places. They are used to “format” the number when it is displayed on the SMART1’s
LCD screen or when it is sent out a serial port. In these cases the number gets translated back into
the human-readable form so we can easily recognize it. When the number is shown, it will take
up the amount of spaces specified for its maximum length and it will always be shown with the
designated number of decimal places. The value for maximum length includes the places for
decimal point and minus sign. If the number has more decimal places than are supposed to be
displayed, then it will be rounded. If it has less decimal places, then zeroes (0) are appended to
the number. In case the number has a value too big to be displayed in the desired format, an
overflow error occurs and a star (*) will be shown in every place. The number will be displayed

“right aligned” and “left padded with blanks”. Assuming
we have declared the variable NUM to be a Number with
a Maximum Length of 6 and 2 Decimal Places, it will
always appear in this format:

The meaning of the individual symbols is:
 ? can be a blank space, a minus sign or a number (0..9)
 . the decimal point will always be in this location
 N will always a be number (0..9)

This sounds a little complicated, so let’s look at a few examples to get a better understanding.

Due to the format in which numbers are stored in memory, the biggest possible absolute value
for any number without decimal point is 16777215, provided the setting for maximum length
allows it to be that long in the first place. To figure out the maximum for numbers with decimal
point we simply ignore the decimal point. The absolute maximum for a number with 2 decimal
places for instance would be 167772.15, for 3 decimal places 16777.215 and so on.

? ? N . N N

2 . 8 8NUM = 2.876

- 3 . 1 0NUM = -3.1

* * * * * *NUM = -222.08* * * * * *NUM = 1234

1 0 0 . 0 0NUM = 100

1 . 2 5NUM = 1.25

(27)

Character Variables

Character Variables are the simplest of the SMART1’s
Variable Types. A variable of this type always occupies
exactly one byte of memory. Because a character never
takes up more than one space when it is displayed or
printed, the parameters for maximum length and decimal
places are irrelevant.

 Of course, we all probably knew what numbers were
before we heard about the SMART1’s Number Vari-
ables. Characters, however, are not as common an occur-
rence in our everyday lives and maybe not all of us are
familiar with them. Let’s shed some light onto them.

For starters, a character is a letter. It can be either the capital or the small version of any letter
of the alphabet. A character can also take the shape of any number from 0 to 9. Furthermore we
can use Character Variables to store punctuation marks or a variety of signs like @ # $ % ^ & *
and so on. Even a blank space qualifies as a character. Generally, we can say that each of the
symbols, that show up on our PC-screen when we press a letter or number button on the
keyboard, is a character. With a few exceptions, all those characters can also be shown on the
SMART1’s display. But that’s not all there is to characters.

In addition to the so called Printable Characters or Displayable Characters there is a number
of Non-Printable Characters. We can divide them into two categories. First there are the ones
generally known as Control Characters. Sent to a display, these characters do not normally
produce any symbols, but perform a function instead. Most of us have probably heard the
expressions Back Space, Carriage Return or Line Feed before. These are the names of three
typical control characters. They date back to the days of the type writer, but are still used
wherever something is printed. Their function is to position the cursor. This is the little pointer
which determines where the next character is displayed. The Back Space Character, for
example, moves the cursor one step back, so that whatever happens to be in this particular
location will be overwritten by the next character. When a Carriage Return is issued, then the
cursor moves to the very first character in its present line. To move the cursor to the next line
below, a Line Feed Character must be sent to the display. Beside those three, there is one other
Control Character that has a special meaning for the SMART1. It’s named the Null Character.
We will learn about it in the paragraph that explains the type of the String Variable. Then there
are 28 more Control Characters which are all insignificant for the SMART1 itself, but usually
assume a special role when they are sent to a printer or another serial communications device.

Members of the second group of Non-Printable Characters are often named Extended
Characters. To classify them as Non-Printable Characters is not entirely correct, but we do it
anyhow because they yield nothing on the SMART1’s display. Sent to a printer, on the other
hand, they may or may not produce a symbol on the paper. It all depends on the kind of printer
and its internal settings. If it is equipped to handle Extended Characters, then it is most likely
going to print things such as À, œ, Ê, í, õ, Ü, µ or something similar.

All in all there are 256 different characters. On the next page we’ll learn how to handle them.

(28)

Values of Characters

When we are going to create program modules for our SMART1 projects we will probably be
employing Character Variables for many things. Perhaps the first task we’re going to need a
Character Variable for, is to store the value of a key that got pressed. Let’s assume, for the sake
of argument, that there was a message on the SMART1’s display which prompted the operator to
press the key labeled 1. Let’s further assume that the input from the keypad is being captured in
a Character Variable. Now, curious as we are, we want to know whether the operator had really
pushed the right button. In order to accomplish this, we will check if the content of our variable
is equal to the character 1. There is an instruction that lets us do
exactly that. When we program it, we have to enter the name
of our variable and put the character we are comparing it with
in the Fixed Value field. Since 1 is a Printable Character we
simply type it here. We are allowed to enclose the Fixed Value
in single quotation marks ’ , a method that is particularly useful
for entering a blank space. We would proceed in the same manner, if we were comparing the
variable to any other Printable Character. When it comes to entering a non-printable Character,
however, we won’t be able to just type it. We will have to use a different approach. As we
already know, there are 256 characters. If we keep on reading, at least as far as to the next page,
then we will also find out that these characters are arranged in a particular order and that they are
numbered from 0 to 255. This being the case, we now have an easy way for specifying any
character as a Fixed Value. We just enter its number! Actually, the proper term is “decimal
character value” and we must always put the number sign # immediately in front of it. But there
are other ways to define a character. We can type a dollar symbol $ followed by the hexadecimal
character value or use a percent sign % with the binary character value. If we choose to enter a
character’s decimal, hexadecimal, or binary value, then we may omit potential leading zeroes.
The characters we call Control Characters offer us even more choices. A combination of the
caret sign ̂ and one other symbol represents a control code, whereas a control character’s name
can consist of two or three letters and always must be enclosed by triangular brackets < >. The
table on the next page is a summary of all SMART1 characters, their values, codes and names .

Any one of the discussed methods to specify a character will produce the same result,
provided that it’s applicable for that particular character. All methods are equally useable in
every program instruction that supports entering a Fixed Value for a character.

The above example displays all possible ways for referring to a Carriage Return or the capital
letter A, respectively.

printable/
displayable
character

decimal
character

value

hexadecimal
character

value

binary
character

value

control
character

 code name

#013 or #13 $0D or $D %00001101 or %0001101 or %001101 or %01101 or %1101 ^M <CR>

A or ’A’ #065 or #65 $41 %01000001 or %1000001

(29)

The Table of Characters

A character can also take on any value from to . These
Extended Characters have neither a control code, nor a displayed symbol with the SMART1.

#128 $80 %10000000 #255 $FF %11111111

#000 $00 %0000000 0 ^@ <NUL>

#001 $01 %0000000 1 ^A <SOH>

#002 $02 %000000 10 ^B <STX>

#003 $03 %000000 11 ^C <ETX>

#004 $04 %00000 100 ^D <EOT>

#005 $05 %00000 101 ^E <ENQ>

#006 $06 %00000 110 ^F <ACK>

#007 $07 %00000 111 ^G <BEL>

#008 $08 %0000 1000 ^H <BS>

#009 $09 %0000 1001 ^I <HT>

#010 $0A %0000 1010 ^J <LF>

#011 $0B %0000 1011 ^K <VT>

#012 $0C %0000 1100 ^L <FF>

#013 $0D %0000 1101 ^M <CR>

#014 $0E %0000 1110 ^N <SO>

#015 $0F %0000 1111 ^O <SI>

#016 $10 %00010000 ^P <DLE>

#017 $11 %00010001 ^Q <DC1>

#018 $12 %00010010 ^R <DC2>

#019 $13 %00010011 ^S <DC3>

#020 $14 %00010100 ^T <DC4>

#021 $15 %00010101 ^U <NAK>

#022 $16 %00010110 ^V <SYN>

#023 $17 %00010111 ^W <ETB>

#024 $18 %00011000 ^X <CAN>

#025 $19 %00011001 ^Y

#026 $1A %00011010 ^Z <EOF>

#027 $1B %00011011 ^[<ESC>

#028 $1C %00011100 ^\ <FS>

#029 $1D %00011101 ^] <GS>

#030 $1E %00011110 ^^ <RS>

#031 $1F %00011111 ^_ <US>

de
ci

m
al

 v
al

ue

he
xa

de
ci

m
al

 v
al

ue

co
nt

ro
l c

od
e

co
nt

ro
l c

od
e

na
m

e

bi
na

ry
 v

al
ue

2

3

#032 $20 %00100000

#033 $21 %00100001 �

#034 $22 %00100010 ²

#035 $23 %00100011 �

#036 $24 %00100100 �

#037 $25 %00100101 �

#038 $26 %00100110 �

#039 $27 %00100111 µ

#040 $28 %00101000 �

#041 $29 %00101001 �

#042 $2A %00101010 �

#043 $2B %00101011 �

#044 $2C %00101100 �

#045 $2D %00101101 �

#046 $2E %00101110 �

#047 $2F %00101111 �

#048 $30 %00110000

#049 $31 %00110001 !

#050 $32 %00110010 "

#051 $33 %00110011 #

#052 $34 %00110100 $

#053 $35 %00110101 %

#054 $36 %00110110 &

#055 $37 %00110111 '

#056 $38 %00111000 (

#057 $39 %00111001)

#058 $3A %00111010 *

#059 $3B %00111011 +

#060 $3C %00111100 ,

#061 $3D %00111101 -

#062 $3E %00111110 .

#063 $3F %00111111 /

de
ci

m
al

 v
al

ue

he
xa

de
ci

m
al

 v
al

ue

bi
na

ry
 v

al
ue

S
M

A
R

T
1

di
sp

la
y

#064 $40 %01000000 0

#065 $41 %01000001 1

#066 $42 %01000010 2

#067 $43 %01000011 3

#068 $44 %01000100 4

#069 $45 %01000101 5

#070 $46 %01000110 6

#071 $47 %01000111 7

#072 $48 %01001000 8

#073 $49 %01001001 9

#074 $4A %01001010 :

#075 $4B %01001011 ;

#076 $4C %01001100 <

#077 $4D %01001101 =

#078 $4E %01001110 >

#079 $4F %01001111 ?

#080 $50 %01010000 @

#081 $51 %01010001 A

#082 $52 %01010010 B

#083 $53 %01010011 C

#084 $54 %01010100 D

#085 $55 %01010101 E

#086 $56 %01010110 F

#087 $57 %01010111 G

#088 $58 %01011000 H

#089 $59 %01011001 I

#090 $5A %01011010 J

#091 $5B %01011011 K

#092 $5C %01011100 �

#093 $5D %01011101 M

#094 $5E %01011110 N

#095 $5F %01011111 O

de
ci

m
al

 v
al

ue

he
xa

de
ci

m
al

 v
al

ue

bi
na

ry
 v

al
ue

S
M

A
R

T
1

di
sp

la
y

#096 $60 %01100000 P

#097 $61 %01100001 Q

#098 $62 %01100010 R

#099 $63 %01100011 S

#100 $64 %01100100 T

#101 $65 %01100101 U

#102 $66 %01100110 V

#103 $67 %01100111 W

#104 $68 %01101000 X

#105 $69 %01101001 Y

#106 $6A %01101010 Z

#107 $6B %01101011 [

#108 $6C %01101100 \

#109 $6D %01101101]

#110 $6E %01101110 ^

#111 $6F %01101111 _

#112 $70 %01110000 `

#113 $71 %01110001 a

#114 $72 %01110010 b

#115 $73 %01110011 c

#116 $74 %01110100 d

#117 $75 %01110101 e

#118 $76 %01110110 f

#119 $77 %01110111 g

#120 $78 %01111000 h

#121 $79 %01111001 i

#122 $7A %01111010 j

#123 $7B %01111011 k

#124 $7C %01111100 l

#125 $7D %01111101 m

#126 $7E %01111110

#127 $7F %01111111

de
ci

m
al

 v
al

ue

he
xa

de
ci

m
al

 v
al

ue

bi
na

ry
 v

al
ue

S
M

A
R

T
1

di
sp

la
y

5

4

6

7

1

 Back Space - This character is returned from the SMART1’s keypad if the left arrow is
pressed in a character input instruction. Line Feed - If this character is sent to the SMART1’s
display, then the cursor will move one line down. If it was already on the last line, then it will go
to the top. It will stay in its column. Carriage Return - Coming back from a character input
instruction, if ENTER was pressed. Sent to the display, it will move the cursor to the first column
of its current row. Space - A blank space will be displayed. Yen - The PC equivalent for
this character is \ . Right arrow - PC equivalent: ~. Left arrow - Has no PC equivalent.

2

3

4 5

6

1

7

(30)

String Variables

The last one in the SMART1’s assortment of Variable Types is called String Variable. The word
string generally denotes a row or series of connected things. In our case the things that are being
connected are none other than characters. Well, don’t we already have Character Variables to

store characters? Yes indeed, we do, but each of them
can only hold one character at a time. A String Variable,
however, is meant to keep many of them. This kind of
variable makes it very easy for us to store words, names,
sentences and the like. It can even accept sequences of
Control Characters. Theoretically we could take every
possible combination of characters from our table on the
previous page and put it in a String Variable. In actual-
ity, though, we are bound by two restrictions. The first
one is, that a String Variable can only hold as many
characters as it has space for. When we declare a String
Variable we must specify a value for its Maximum

Length. It is the largest number of characters the variable is supposed to hold at one time. The
absolute limit for this value is 80. The minimum is 1. This doesn’t mean that our string always
has to be as long as we set the Maximum Length to. A string is only as long as the number of
characters it contains at any given time. It can even be completely empty. This brings us to the
second restriction. It stipulates that we can never make a Null Character <NUL> a part of a
string. This particular character is reserved for the purpose of marking the end of a string. Any
characters following a Null are going to be ignored. Given this fact, we have an easy way to
empty a String Variable. We simply assign a Null as its first character. The actual number of
bytes a String Variable occupies in the SMART1’s memory is its Maximum Length plus 1,
regardless of its content.

When it comes to assigning Fixed Values to String Variables, we must apply the same
conventions as with Character Variables. We can type Printable Characters, use decimal,
hexadecimal or binary character values or utilize the names and codes of Control Characters.
We are also allowed to mix them in one and the same string; a detail that will undoubtedly come
in handy if we ever have to interface to a printer and want to do such things as changing the size
or the shape of the print font.

A single quotation mark ’ as first or as last character of any Fixed Value specification will
be ignored. Thus: ’ABCDE’ = ABCDE , ’’ = <NUL>.

The following example has little practical but an immense historical value. This string has been used to
demonstrate diverse print commands in probably every programming language there ever was. So, once
we have learned how to do it, let’s come back to this page and keep up the tradition by assigning this
string to a String Variable with a Maximum Length of at least 14 and then send it to a printer or to the
SMART1’s display.

$48#101$6C%1101100#111 w%1101111$72l#100!<CR>^J

(31)

File Definitions

We have read about the different Variable Types the
SMART1 can handle. Files are nothing but variables
being taken one step further. We can think of a file as a list which holds recurring arrangements
of variables.

To understand this a little better, let’s imagine a situation where we want the SMART1 to
keep track of a company’s 250 customers. It’s supposed to store the customers’ names, the
category of goods they are buying and the amount of money the company has received from each
of them so far.

We could just go ahead and declare a whole bunch of variables called something like
NAME1 to NAME250, GOODS1 to GOODS250 and MONEY1 to MONEY250. Aside from
the fact that doing this would probably take us longer than to read the rest of this manual, it
would be a very impractical approach to this problem, because to access the variables we would
also have to construct the same program sequences over and over again, each time with a

different variable name.
A much better way is to
build a file. Clicking on
the node image of a File
Definition instruction will
open up the window
shown on the left. The
data inside a file is not
stored in variables. The
term we use in a file is
Field. Fields are very
much like variables. When

we add a field to our file, a Field Declaration window pops up. We declare fields almost exactly
the same way as we declare variables. We have to give each of them a name according to the
same rules that apply to naming variables and program modules. And, we have to specify
whether the field is going to be of the Number Type, the String Type or the Character Type.
There is, however, one difference between declaring a field and declaring a variable. If a field is
of the Number Type then we can not enter a value for its maximum length or its decimal places.
The reason for this is, that fields are never displayed directly. But, let’s not get into this right
now, it will be explained in the section about the File Access instruction.

Once a field has been declared, the information about it is shown in the file definition
window. By clicking the Add New Field button we can add another field. The maximum number
of fields that we can declare for one file is 16. Each of the fields must have a name that is
different from all other fields in that file. Nevertheless, we are allowed to re-use the same field
names in another file. It is also possible to name a field the same as a variable.

Clicking the mouse on a field description will highlight it. If we need to, we can now change
the field information by pressing the Edit button. Pressing the Delete button will remove the field
from our file.

Selector
Button

Node
Image Node Type

(32)

The Structure of a File

We have learned that the Field is the smallest element of a file. The entirety of fields that we
declare in a file definition makes up the next greater component, the so-called Record. A file can
consist of many records. They all have the same structure. All fields are repeated in the same
order for every single record throughout a file. The file definition window permits us to type the

number of records we want our file to keep into the input
box labeled max # of Records. In our example on the
previous page, we entered the number 250, since the file
was supposed to handle 250 customers. At compile-time
the SMART1 programmer does the necessary steps to
reserve the memory needed for the file. However, entering
the number alone does not guarantee that we are really
going to get as many records. The device has a finite
amount of memory, and therefore, we will probably have
to make a compromise in one or the other of our projects.
 Whether or not the SMART1 can actually supply
enough space for all the records we want, depends on
several factors. First of all we have to regard the lengths
of our fields. Just like a variable, a field takes up a certain
number of bytes. Character Fields are perfectly content
using only one byte, Number Fields will always occupy
four bytes each and a String Field requires the equivalent
of its declared maximum length plus 1 byte. If we add up
the bytes of all fields in a record, then we know how much
space we need to store this one record. If we then multiply
the sum by the desired number of records, we get the
space that is required for all the data in our file. In
addition to this, every file needs some overhead space. It’s
called the File Prefix and it always absorbs eight more
bytes. But, there is more. Files share the same memory
pool with all variables we employ in a project. If we take
all that into account and hold it against the 28000 bytes of
total available (RAM) memory, we can figure out if there
is enough room for our file or if we have to compromise.

Luckily, we don’t really have to do all these calcula-
tions when we are building a file. We can get away, using
the trial and error method. The SMART1 Programmer
will let us know through a message, if our wishes tend to
be a little on the greedy side. For the 250 customers in our
example, however, we should have plenty of space:

File

1st Record

last Field

1st Field

2nd Field

..
.

3rd Field

File Prefix

2nd Record

last Field

1st Field

2nd Field

..
.

3rd Field

3rd Record

last Field

1st Field

2nd Field

..
.

3rd Field

last Record

last Field

1st Field

2nd Field

..
.

3rd Field

..
.

(20+1 + 1 + 4) * 250 + 8 = 6508
 String Character Number Records File Prefix total bytes

 Instructions for Program Flow Management

(34)

Module Start

Every executable program module must begin at
some point. To define this start point, we have to
place a Module Start instruction in our module. This
instruction can and must be used only once in each executable module. Its node has no entries
and only a pass exit. The Module Start instruction has no actual code assigned to it and therefore
we don‘t need to program it. It merely acts as a pointer to the first instruction we want the
SMART1 to execute every time this program module is called from anywhere in the project.

Call a Module

The best modular program structure wouldn’t be any
good without a command to actually call a module.
That’s why we have the Call a Module instruction.
It causes the current program module to be sus-
pended and the program flow to continue in the module specified by the instruction. As soon as
the called module has finished its task the program resumes with the instruction that is tied to the
node’s pass exit. The node of a Call a Module instruction has no fail exit. We program this type
of instruction, like all other programmable instructions, by selecting the node and pressing
ENTER or by clicking on it using the right mouse button. The only programming required for
this instruction is to type the module’s name. It will appear in the node image.

Module Stop

The Module Stop instruction is used to end the
execution of a program module. Whenever this
instruction is encountered, the current module is
abandoned and the program returns to the point
after the instruction that invoked the module in the first place. In most cases this would have
been a Call a Module instruction in another module. If, however, the Module Stop instruction is
used in the project’s start up module, then the application will quit and the SMART1’s power up
screen is displayed, unless the project was compiled for immediate execution, in which case it
would start right up again.

The node of a Module Stop instruction has neither a pass nor a fail exit and since its purpose
never changes, we don’t have to program it either. There is no maximum number of Module Stop
instructions we can have in a program module. And if we don't want to exit a particular module
at all, for example the main menu of an application, then there is no need to even have a single
Module Stop instruction.

Selector
Button

Node
Image Node Type

Selector
Button

Node
Image Node Type

Selector
Button

Node
Image Node Type

(35)

Sometimes we will find it necessary to repeat a set of instructions inside a module until a certain
condition is met. At other times specific circumstances may require to skip a part of the program
in a module. It could also be the case that we simply want to place a set of instructions in a
particular area of a program module, be it out of either practical or esthetical motivations. To
accommodate all those instances we can resort to the following two instructions which go hand
in hand.

Re-Entry Point

This is the instruction we would put at the place in a
module which we want to go back or forward to.
The Re-Entry Point is not a programmable instruc-
tion. It has a pass exit but no fail exit. The number it bears gets assigned to it automatically in
sequential order starting with 1. Its value is of no relevance for the order in which Re-Entry
Points are executed. It merely serves as a distinctive label. Each new Re-Entry Point receives the
next available number. In case we decide to erase a Re-Entry Point instruction from our module
then all the ones labeled with a higher number, as well as their associated Jump instructions, will
decrement their value by 1 to close the gap in the sequence. We can tie a Re-Entry Point
instruction into the program flow just the same way as other instructions by connecting to one or
both of the node’s entries. However, for this instruction the usage of the ordinary entries is not
mandatory. A Re-Entry Point instruction will be invisibly connected to the program flow by its
remote entries as long as at least one Jump instruction points to it.

Jump

The counter part to the Re-Entry Point instruction is
the Jump instruction. We use it to tell the program at
which Re-Entry Point in the module to continue.
This instruction’s node has the two entries but nei-
ther a pass exit nor a fail exit. To program it, we have to click the right mouse button and enter
the number of the Re-Entry Point we want to jump to. There is no maximum number of Jump
instructions to direct the program flow to the same Re-Entry Point. We can have as many as we
need.

Both the Re-Entry Point instruction and the Jump Instruction are local to their module. It is not
possible to jump from one program module to another. To invoke another module, the Call a
Module instruction must be used.

Selector
Button

Node
Image Node Type

Selector
Button

Node
Image Node Type

 Instructions for I/O Components

(37)

The Display

The display supports a total of seven different in-
structions. Each of them can be used either alone or
cooperatively with one or more of the others. We
mainly use the display to give information or commands to the SMART1’s operator. For this
purpose we use the Text display instruction and the Variable display instruction. With the Detect
cursor location instruction which is the only display instruction that results in a node with a fail
exit, we can also get input from the display. The remaining four instructions are of an auxiliary
nature. Let’s look at the main ones and bind in the other instructions when appropriate.

Text Display

A node programmed with the text
display instruction has no fail exit.

To display a text we simply click
anywhere on the green grid that
looks like the SMART1’s display
and start typing. In our example we
write @bUcc 5>D5B� `\UQcU�

The text appears beginning in the
top left corner. This does not neces-
sarily mean that it will appear in
this location on the real display.
The starting point is solely deter-
mined by the location of the cursor,
even if we cannot see it. Unless we
know where the previous display
instruction left the cursor, we will
not be able to tell where our text is
going to show. To be sure about the positioning of the text we must use the instruction labeled
Set cursor location. If we right-click anywhere on the display now, the start of the text will
move to that place. When there is not enough room on one line the text will wrap around to the
next line or even to the top of the display. Let’s click on the first box in the second row to make
our display look like the illustration. Well, we still can’t be entirely sure that this is what we are
going to see when the program is running. Only the spaces which are highlighted are actually
being written to. The remaining area of the screen will keep displaying the same characters that
were there before. This can easily be fixed by invoking the Clear screen instruction to erase
everything prior to displaying the text. The last thing for us to take care of is the cursor mode.
We don’t need to display a cursor with this particular message, so we put a check mark in the
box for the Cursor off instruction.

The SMART1 can display almost every character available on the PC keyboard. There are
only two exceptions. The backslash \ will be shown as the sign for Yen ¥ and where we enter the
wavy line called tilde ~ , a right pointing arrow is going to appear on the display.

Selector
Button

Node
Image Node Type

(38)

Variable Display

This is the display’s second main
function. Its purpose is to display
the content of a variable. We can
use this instruction for each of the
three Variable Types. Like the text
display, the variable display can be
supplemented with one or more of
the auxiliary instructions. We can
Clear the screen, Set the cursor
location and define the Cursor
mode. As shown in our example
picture, we can also move the cur-
sor to the Next line after displaying
the variable. A node programmed
as variable display instruction
does not have a fail exit.

Detect Cursor Location

The last one of the display’s main instructions is rather unique. It is an input function and
produces a node with a fail exit. We can employ this instruction to find out whether the cursor is
situated inside or outside a specific area of the screen. Out of all the options, the only thing we
can do in conjunction with this instruction, is to specify the Cursor mode. The instruction’s
primary application is the cursor menu. How it works is explained in the chapter about the
keypad’s Moving cursor instruction. To define the area in which we want to scan for the cursor,

we use the mouse. Clicking with the
left button on the display grid marks
one corner of the array. The opposite
corner is selected by clicking the
right mouse button. The size of the
zone can range from a single charac-
ter space to the entire display, but it
can only be rectangular. Light green
blocks show its extents. At run time
the area will not be highlighted or
otherwise indicated on the screen.
If the cursor is located inside the
search area when the instruction is
executed, the pass exit is used, oth-
erwise the fail exit is used.

(39)

The Keypad

The SMART1’s keypad can be programmed for
one of four input instructions.

Character Input

The most basic one of the Keypad instructions is Character Input. A node programmed with a
character input instruction has no fail exit. Execution is halted until a character is recognized.
We use this instruction whenever we want the program to suspend further operation and wait for
the operator to press a key. To specify the character input instruction we must click on the
character input check box. If the Send to Display box is checked then the character will be shown
at the present cursor location on the display. We also have the opportunity to save it to a variable
for evaluation later in the program. Naturally this variable must be of the Character type. The
most common use for the character input instruction is perhaps in a menu structure. Let’s say we

have programmed the display to show a list of choices for
the operator; each of them with an associated character. In
our keypad instruction we have specified to save the
character to a variable. Now the program can use the
value of the variable, i.e. the character that the operator
has chosen, to decide what to do next. All capital letters,
all small letters, all single digit numbers, the dot, enter,
space and backspace are recognized by the character input
instruction. But, since there are two letters and a number
on most of the buttons, how do we tell the SMART1
which character we want to enter? Well, it is not compli-
cated at all. Whenever we press a button by itself, its main

character, which is the big one in the center, is selected. This way we get the numbers, the dot
and the enter key. Trying to display the enter key would result in the cursor being sent to the
beginning of the current row. The right arrow gives us a space and the left arrow a backspace
character. The latter is not going to appear at all if we were to send it to the display from a
character input instruction. The up and down arrows do not return a character. They are used to
switch the keypad into letter mode. To get a capital letter we have to visually locate it first. If it
sits in the upper part of the button we would press the up arrow and then the button with the
letter. For a letter in a button’s lower area we would use the down arrow instead. To enter a small
letter we simply press the corresponding arrow key twice. Here are some examples:

If more than two seconds have elapsed between pushing the up arrow or the down arrow and
pressing a letter key then the letter mode has expired and the button’s main character is returned.

Selector
Button

Node
Image Node Type

;5I

= 1 = d= A

(40)

Line Input

The Line Input is based on the character input. A node programmed with this instruction has no
fail exit. The program continues through the node’s pass exit after the Line Input is completed.
We can employ Line Inputs to enter words, multi digit numbers or any combination of
characters. A line input instruction is indicated by a mark in the Line Input check box. The Send
to Display option is automatically checked when Line Input is used and we can’t turn it off.
Again, as with the Character Input, we have the possibility to store what we enter in a Variable.
In this case our variable may be either of the String Type or the Number Type. When a Line Input
is executed the procedure is as follows: The SMART1 waits for the operator to type in a
character. As soon as he does that the character is dis-
played at the current cursor location and the cursor ad-
vances to the next place. In case the character was a
backspace and the line was not empty, then the cursor
moves to the left and wipes out any character that was
there before. This gets repeated until the ENTER key is
pressed. If we are saving the line input to a variable of the
Number Type then the SMART1 checks if the operator
has actually entered something that qualifies to be called
a number. If, for example, he mixed in a letter or entered
two decimal points, then the Line Input is rejected. The
cursor jumps back to the first character and the operator can try again. The maximum number of
characters a Line Input instruction can process, depends on the variable we are saving to. We
can only enter as many characters as the length of the variable allows. However, there is never a
minimum number of characters. We can always hit the ENTER button by itself. An empty Line
Input results in an empty string or, if we are saving to a Number Variable, the number will be 0.

Keypress

The Keypress instruction is the only one of the four keypad instructions that produces a node
with a fail exit. We can use it to detect if a key was pressed, while the SMART1 was busy doing
something else. The Keypress instruction does not cause the program to halt. It merely directs the
flow to different paths depending on whether the operator had pushed a button or not. If a key
was pressed then the pass exit is used. Otherwise the program continues through the fail exit.

The Send to Display check box is not available with this
instruction. Unlike the Character Input, the Keypress
instruction can not handle letters. It returns only the “raw
key code” for the pressed button. The number buttons give
us the number and the dot is shown as dot. The raw code
for enter is a capital E. The arrow buttons return the
starting letter of the word that represents the direction the
respective arrow points to: Up, Left, Right and Down. We
can save the raw key code in a Character Type variable.

<9>5

;5I

(41)

Moving Cursor

A special type of input is the Moving Cursor instruction.
If a node is programmed as Moving Cursor then it has no
fail exit. The program halts until the function is com-
pleted. Neither the Send to Display option nor the Save to
Variable possibility are relevant with the moving cursor
instruction. The only functioning keys in a moving cursor
instruction are the arrow keys and ENTER. Pressing an
arrow key causes the cursor to move one step in the
indicated direction unless it has already reached the end of
the display. The instruction is ended when the operator
presses the ENTER key. The moving cursor is mostly used in conjunction with the dis-
play’s Detect cursor location instruction to accomplish a cursor menu input. What is a cursor
menu? Due to the restricted space on the SMART1’s liquid crystal display we will not always be
able to put all menu items we would like on the screen and still have enough room left to tell the
operator which button to press for each of them. The solution is to list only the choices and let
the operator “go” to the one he wants by moving the cursor there and pressing ENTER.

We can see an example for a cursor menu when we run the Set-date module, which is included in the
SMART1 Programmer module library.

The cursor is moved to the desired menu item using the four arrow keys. Pressing ENTER invokes the
programmed action for the particular menu item.

There are seven menu items in this example (END and SET are different items), each of which is
being scanned in a separate Detect cursor location instruction after the Moving Cursor instruction is
finished.
 Naturally, the real display won’t have dark and light areas to show the active menu items.

EcU Qbb_gc�5>D5B [Ui

 !�"%�!))' !"*"(5>4

==�44�IIII XX*]] C5D

(42)

Setting up a Serial Port

Before we can use the SMART1’s serial ports to
receive from or send to serial communications de-
vices, the ports’ parameters must be configured to
match the settings of the connected equipment.

Each of the ports we want to use in a project must be configured separately. By right clicking
on the image we open the Serial Port Setup window. We can specify the Serial Port Number

and the values of the parameters for the serial
communication. These are Baud rate, Parity and
the number of Data Bits. The values for all param-
eters depend solely on the settings of the device we
will be connecting to. They are usually shown
either on the device itself or in its operator’s
manual. The Baud rate is sometimes referred to as
BPS or Bits per second. It is the value for the speed
at which the communications runs.

From the moment when a serial port’s settings
are configured, it is ready to receive and transmit

data. Each port has a memory buffer associated with it, capable of storing up to 256 incoming
bytes (characters). If we want to disable an already configured serial port, then we must click the
check box labeled Close Port. This will keep it from receiving any more data until we apply the
setup function again.

The five serial ports of the SMART1 are not identical. Ports 0, 3 and 4 are equipped with a
signal line (RTS) which tells the connected device whether the port is ready to receive data.
Ports 1 and 2 do not have this feature.

As far as the parameter setup goes, ports 1 through 4 share essentially the same characteristics,
but port 0 is very different. When we enter the Serial Port Number, the parameter menus change,
allowing us to access only the values that are available for the particular port. To specify a
parameter we have to click first on the appropriate menu and then choose one of the items in the
fly-out list by clicking on it. The supported parameter values for the individual ports of the
SMART1 are as follows:

Selector
Button

Node
Image Node Type

Baud (bits per second)

 Port 0 1200 2400 4800 9600 19200 38400

 Port 1,2,3,4 300 1200 2400 9600

Parity

 Port 0 none

 Port 1,2,3,4 none odd even

Data Bits

 Port 0 8

 Port 1,2,3,4 8 7

A Serial Port Setup node has no fail exit. The program will always continue with the
instruction tied to the pass exit of the Serial Port Setup node.

(43)

Serial Communication

Once we have configured a serial port with the help
of the Serial Port Setup instruction, we can send or
receive data using the Serial Communication in-
struction. We must specify the port to be used in the input box labeled Serial Port Number. This
instruction demands caution from us. Attempting a communication through a port that
hasn’t been set up will produce an unpredictable result and most likely “hang” further
execution of our project.

We can apply this instruction type to accomplish one of two different tasks. We are either
expecting data from an outside source, in which case we would click the Receive check box, or
we are going to send information to another serial device. The latter operation we must indicate
by checking the box labeled Transmit.

Receive Mode

If we are using the Receive mode, we are required to name a variable in which the incoming data
is going to be stored. Only Character Variables or String Variables are allowed in this situation.
Number Variables can not be used as a target for a Receive function. The Timeout slider bar in
the lower third of the programming window lets us set the time that we want the SMART1 to
wait for the data to arrive. Either by clicking the buttons on the sides or by moving the slider
itself using our mouse cursor, we can adjust the timeout value from immediately to 0.03 sec. -
0.06 sec. - 0.13 sec. - 0.25 sec. - 0.50 sec. - 1.00 sec. - 2.00 sec. to never.

If the variable we specified happens to be a
character, then the SMART1 will wait until one
character comes in the serial port or until the
time expires. In case a character was received it
will be stored in the variable and the program
will continue at the node’s pass exit. If, how-
ever, a timeout occurred before a character was
received, then the node’s fail exit will be used
and the content of the variable will remain un-
changed.

The situation is somewhat different when we
specify a String Variable as target. Its contents
are always cleared at the beginning of a Receive
instruction. Then the SMART1 takes each char-
acter it receives from the serial port and appends
it to the end of the string. This goes on until
either one of the following three conditions be-
comes true. When the string’s capacity is
reached, meaning as many characters as the
Maximum Length of the String Variable were received, the receiving function is fulfilled and the
program resumes at the node’s pass exit. The second condition under which the function is
considered to be complete, is when a Null Character was received. This special character is

Selector
Button

Node
Image Node Type

“Timeout” Slider

(44)

always deemed the end of a string. The only circumstance leading to a failed instruction, while
receiving into a String Variable, will be a timeout. It is going to occur when the time in between
receiving of two characters was longer than we allowed for in the timeout setting. In such a case
the instruction tied to the node’s fail exit will be executed. The String Variable will contain all
characters that were received up until the timeout.

Transmit Mode

The Transmit mode provides us with a lot more choices. First of all, there is no restriction on the
type of variable we can use with it. The contents of Character Variables or String Variables are
transmitted as they are. A Number Variable, on the other hand, is automatically converted into a
string before being sent out. For the formatting of this string the SMART1 applies the number’s
Length and Decimal Places settings.

Another option we can take advantage of with the Transmit procedure is, that we don’t even
have to use a variable at all. We can simply type the data we wish to send into the input field
titled String to transmit. For this we may use and mix all the different methods of entering
character values.

A feature that is also available only in conjunction with the Transmit function is the Hardware
handshaking (CTS). What this option does, is to first test a signal line coming from the device
we’re sending to. The transmission of data will commence only after this line says “clear to
send”. Well, at least for serial port 0 this is true. Ports 1 through 4 will report a missing
handshake signal to the Serial Communication instruction only after the first character has been
sent. This is due to the fact that the chip in charge of those four ports has a built in 1 byte transmit
buffer for each channel in which it keeps the character until such time as it can be transmitted.

At any rate, if the time we’ve set on the Timeout bar has expired before the SMART1 was able
to send the next character, then the instruction is going to fail and the program will choose the
path connected to the node’s fail exit.

When we are programming a Transmit func-
tion, then the Timeout slider bar will be avail-
able only if the Hardware handshaking (CTS)
box is checked. The timeout values are in this
case slightly different from what we’ve read
about the Receive mode timeouts. They range
from immediately to 0.02 sec. - 0.03 sec. - 0.06
sec. - 0.13 sec. - 0.25 sec. - 0.50 sec. - 1.00 sec.
to never.

The node of a Serial Communication instruc-
tion will develop a fail exit only in those cases
where the Timeout slider is enabled and set to a
value other than never. This applies for the
Transmit mode as well as for the Receive mode.

(45)

The Clock

The SMART1’s time keeping circuit can be looked
at in one of two ways. To set or read the current date
and time values we can treat it like a Clock. If we
need to measure time durations, then we can handle it as a Timer. Among the two different
modes we are being offered four instructions to choose from. All of them require the use of a
String Variable which must have a length of at least 16 characters. The style in which data is
transmitted to and received from the clock chip is somewhat similar to the string that gets sent
out by a scale indicator. Of course, instead of weight, units and other scale related information
the clock’s string has fields that hold information about date and time. They range from year to
month to day and so on all the way to hundredths of a second. This is the string’s structure:

Set Clock

This is one of the clock mode instructions. We
can use the Set Clock instruction to change the
unit’s date and time. When we call this instruc-
tion we have to supply a string that contains
characters according to the structure mentioned
above. This means, we must always submit
data for each of the fields even when if we only
want to change one of them and leave the
others as they are.

The clock will not be ticking in a SMART1
that is being programmed for the very first
time. It has to perform the Set Clock instruction at least once to get started. From then on it keeps
going and going and

When we program a node with a Set Clock instruction it will have a fail exit. It is going to use
this fail exit, if the string we told it to send is making no sense to the clock chip.

The collection of modules in the SMART1 library folder (directory) includes one called “Set-date.mod”.
It’s Western Scale’s suggestion on how to set the date and the time. It goes hand in hand with either one
of the many modules that have names like “Ddmmmyy.mod”, “Mmddyy.mod” or something similar.
They read the clock and format the information in different ways to accommodate the various
preferences that people have for displaying date and time.

Selector
Button

Node
Image Node Type

 iUQb]_^dX TQi gUU[TQi X_eb]Y^edU cUS_^T �

 I�I�=�=�4�4�G�G�X�X�]�]�c�c� �
example:)�'� �'�"�)� �#�!�(�$�!�"�#�%�(
valid range: 00..99 01..12 01..31 01..07 00..23 00..59 00..59 00..99

(46)

Read Clock

This instruction receives data about time and date from the SMART1’s internal clock. Again, we
have to supply a string with a capacity to hold at least 16 characters. The content of the string
doesn’t matter in this case. The Read Clock instruction will overwrite it anyhow. After
completion of the instruction the string will be formatted as described on the previous page.
Since a node programmed with a this instruction has no fail exit, the program will continue via
the pass exit.

The Read Clock instruction returns the time in 24 hours. The two characters that stand for
the hour can range from ‘00’ to ‘23’. For everybody who is more familiar with 12 hours a.m and
12 hours p.m., the tables below list the hours of the day in 12 hour mode and in 24 hour mode.

Within our assortment of library modules there is one that does a pretty good job performing these
translations of hours. It’s called “Am-pm.mod”. It works best in conjunction with “Mmddyy.mod” or
any other one of the program modules that read the clock.

Start Timer

Let’s look at the clock in timer mode. Similar to the one in our microwave oven that keeps the
heat on for a preset number of seconds, we can also have a timer in our SMART1 program.
Actually, we can have many timers, and they will be working independently from one another. In
contrast to the oven timer, here we don’t specify the length when we start a timer. The Start
Timer instruction saves information about the current time in the specified variable. If we need
another timer while the first one is still running we would create the new timer simply by using
the instruction with a different variable. Like the Read Clock instruction, a node programmed
with a Start Timer instruction has no fail exit.

Check Timer

For this instruction we need to specify the duration we want to check for. We do this by entering
numbers in the input fields for h, min, sec and .00 (hundredths of a second). At the moment the
Check Timer instruction is executed the current
time is tested against the supplied variable. This
variable must have been set before using a Start
Timer instruction. If since then a time longer
than the specified duration has expired, the pass
exit is used. Otherwise the program continues
through the node’s fail exit.

The module “Delay.mod” in the library folder
demonstrates one way to achieve a flexible timer.

a.m. p.m.

12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

(47)

Due to the fact that there’s no decision being made in a Change Output Relays instruction, its
node does not have a fail exit.

The Output Relays

This instruction type enables the SMART1 to con-
trol the relays on one or two of Western Scale’s
Setpoint Module Output Rack Boards. Each of the
boards can hold 1 to 6 relays capable of switching either AC or DC currents of up to 3.5 Amps.
The Boards must be connected to the SMART1’s I/O expansion port through a suitable cable.

(We can find a sketch in the appendix.)
The instruction’s programming window

lets us decide between two different ways to
switch the relays. First, there is the direct
method. If we want to turn a particular relay
on or off, we simply click its On check box
or its Off check box. This technique was
applied to the relays on the left side of our
example. This row represents the relays lo-
cated on output board A, whereas relays
numbered 7 through 12 are associated with
output board B. The example shows relays 1
and 3 to be turned on, and relay 6 to be
turned off. A red light is shown on every
relay that’s going to be switched on. On
relays being switched off, the light is black.
The ones with no light at all will remain in
whatever state they are, if we are using the
direct method.

The other alternative we can apply to
change our relays involves the use of a
Character Variable. At run time the pattern
of the variable’s lower 6 bits will be im-

posed onto the relays. Using this method, we don’t know at programming time what the status of
a relay is going to be. Therefore no lights are displayed on the relays. Depending on the check
marks in the boxes labeled turn on and off, one of the three procedures shown in the table below
will determine how the content of the specified variable is going to affect the relays. The content

Selector
Button

Node
Image Node Type

turn on off - - ON ON - ON 1 bit = on, 0 bit = no change

turn on off - - OFF OFF - OFF 1 bit = off, 0 bit = no change

turn on off OFF OFF ON ON OFF ON 1 bit = on, 0 bit = off

0 irrelevant 1 irrelevant 0 0 1 1 0 1 bits

relay number 6 5 4 3 2 1 board A

relay number 12 11 10 9 8 7 board B

(48)

The 4-20 mA Outputs

We have three instructions for the 4-20 mA Out-
puts. Each of them requires a variable of the Num-
ber Type and they all produce a node with no fail
exit. To select the channel we want the SMART1 to manipulate, we must click either on the
check box labeled Channel 1 or on the one labeled Channel 2. The receiving device(s) must be
connected to the SMART1’s I/O expansion port via Western Scale’s 4-20 mA Boards.

Offset Calibration

Before we can successfully use a 4-20 mA device with
the SMART1 we have to conduct a calibration. This is
the process in which we adapt the SMART1’s respective
4-20 mA channel to the receiving device. In case of the
Offset Calibration instruction the variable we’re supply-
ing must contain the value at which we want to generate
an output current of 4 mA. For a project that utilizes the
current to reflect a weight, this value will probably be 0.
Watching the readout of the device connected to the
4-20 mA Output channel, we now must adjust the cur-
rent to a value of 4 mA. To do this we can use the four arrow keys on the SMART1’s keypad.
Once we are happy with the output current, we can press the ENTER key to save the offset value
and leave the Offset Calibration instruction. Here is how the arrow keys alter the output current:

Span Calibration

We must apply the same procedure as for setting the offset also to adjust the span. This time,
though, our variable must contain a value that will be the equivalent for 20 mA (in a scale
application most likely the maximum weight). Again, we are pressing our arrow buttons, only
this time until we get an output current of 20 mA. The ENTER key concludes the instruction.

Changing the Current

If neither Offset nor Span are checked, then the SMART1 will simply change the current of the
specified channel to represent the number that was submitted as variable content. The instruction
uses the previously stored settings for offset and span to calculate the output current. The current
will then be held at a constant level until another instruction of the 4-20 mA type is executed.

Selector
Button

Node
Image Node Type

arrow key

pressed once tiny increase big increase tiny decrease big decrease

held down modest increase giant increase modest decrease giant decrease

(49)

The Remote Inputs

This is the instruction type that gives our programs
the capability to make decisions based upon the
status of remote switches. The switches’ contacts must be connected to the SMART1’s I/O
expansion port using one or two of Western Scale’s Remote Input Boards.

A node programmed with a Remote Inputs instruction always has a pass exit and a fail exit.
The decision about which one of the exits gets used is made at the time of execution by
comparing the remote switches’ actual status to a pattern that we set in the instruction’s
programming window. The pattern tells the SMART1 which ones of the switches we expect to
be On (contact closed) and which ones we expect to be Off (contact open).

When we click on a check
box a lever either pointing up
or down is displayed. Only
switches that are marked one
or the other way are taken into
the pattern and will be
checked at run-time. All other
switches have no influence on
the outcome of the instruc-
tion. To remove a switch
from the pattern we simply
click on the one of its check
boxes that is activated.

Let’s assume for a mo-
ment that the only switch we
had marked was switch 1 and
that we expect it to be in the on position. If at time of execution the contact that is connected to
remote input 1 is closed, then the program will continue through the pass exit of our instruction,
otherwise it will follow the path at the fail exit. Checking only one switch and finding out
whether it is on or off is the simplest application for the Remote Inputs instruction and quite
possibly the one we will be using the most. But there is much more that we can do with it.

The programming window in the above example shows switches 1,2 and 12 in various states
as well as an activated check box labeled And. It got activated automatically when we clicked on
the second switch. This check box determines the logical operation that will be applied to
evaluate the inputs if more than one switch is to be checked. And-logic means that every one of
the switches in our pattern must be matched exactly by its associated remote input. Only if this is
the case, then the program will proceed via the pass exit. If any of the remote inputs doesn’t
match its counterpart in our pattern, then the instruction’s fail exit is employed. In our example
switch 1 must be on and switch 2 must be off and switch 12 must be on.

As an alternative to using and-logic we can click on the check box labeled Or and select
Or-logic. Then our instruction will pass as long as at least one of the switches in our pattern is
matched by its respective remote input. The instruction will fail only if none of them match.

Selector
Button

Node
Image Node Type

(50)

Storing the Status of Remote Inputs

In addition to comparing the
remote switches to a pattern
we can also save their status in
character type variables for fu-
ture operations. Actually, we
don’t even have to specify any
switch patterns if all we want
to do is to capture the actual
status of the Remote Inputs in
variables. We must use one
variable to store the informa-
tion of inputs 1 through 6 and
another variable for inputs 7
through 12.

When we save the status of a
Remote Inputs board to a vari-

able, then all six inputs of that particular board are scanned and saved. The information is stored
in form of a bit-map. The following paragraph explains the details. This will perhaps make sense
only to the people among us who have had their share of exposure to low level programming.
Everyone else may just skip those lines and the table. Remember, though, that there was
something written about this topic and if an application really needs this kind of stuff, then come
back, read it and try to figure it out.

Given that a character variable is nothing else but a byte, we have 8 bits to deal with. Each of
the six remote inputs gets one bit assigned to it and the remaining two bits are held in a fixed
state. If the particular input is on (closed contact) then its bit will be 1, if the input is off (open
contact) then the associated bit will be 0. If a remote input has no switch hooked up to it, then it
is treated like an open contact and its bit will be 0. The bits are mapped as shown in this table:

An attempt to save the status of a not connected Remote Inputs board into a variable, will
cause the instruction to fail. Under such circumstances the content of the variable is not going to
change and the program will continue via the node’s fail exit.

The instruction will also fail every time we try to compare a switch pattern to an input on a
not connected Remote Inputs board.

If we write a program that takes a variable containing the remote inputs’ status and applies it to an
Output Relays instruction, then we have direct manual control over the outputs. We turn a switch on -
the relay goes on, we turn the switch off - the relay goes off!

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

board A 0 1 input 6 input 5 input 4 input 3 input 2 input 1

board B 0 1 input 12 input 11 input 10 input 9 input 8 input 7

Instructions for System Functions

(52)

Assigning a Value

We’ve been talking quite a bit about variables and
their contents in the previous parts of the manual.
Now, how exactly do we get a certain value into a variable? Nothing easier than that, we use the
Assign a Value instruction.

In the field named Target Variable we have to type the name of the variable that we want to
assign the value to. The value itself we can get in one of two ways. We can enter it in the input
field that is labeled Fixed Value or we can tell the SMART1 to take the content of another
variable at run-time and assign it to our target. The latter case requires us to specify the name of
the variable we want to take the value from in the Source Variable input field. The Source
Variable will not lose its content. It will merely be copied to the Target Variable.

There are some important things that we have to pay attention to when we are using the
Assign a Value instruction.

If we copy from a Source Variable, then we have to
make sure that both variables are of the same type. This
means that we can only assign a character to a character, a
string to a string or a number to a number. For cases in which
we would like to copy the content of a variable to another one
of a different type, we must use the Converting Variable
Types instruction.

If we enter the value manually, then it must represent
valid data for the type of our Target Variable.

A Character Variable, for instance, can only accept a
single character. We are, however, allowed to enter it using any of the different methods we have
read about in the section that defines Character Variables.

The same applies to String Variables. When we enter a Fixed Value for a String Variable we
can use displayable characters mixed with decimal expressions, hexadecimal values, binary
values, control codes or control code names in any possible way. To make an empty string, for
example, any one of the following Fixed Values will work: ’’ #0 $0 %0 ^@ <NUL>. While
we are speaking about this particular character, let’s memorize the one very important fact about
it in connection with strings. Wherever the Null Character (this is its name) appears, that’s
where the string ends, no matter which or how many characters follow after it. Still, nothing will
keep us from putting it into a string. The only restriction that applies for assigning a Fixed Value
to a string is that the Target Variable must be long enough to accept the Fixed Value. If we have
specified to copy the value from a Source Variable instead, then the Target Variable must have
been declared to be at least as long as the Source Variable.

For a variable of the Number Type, on the other hand, we don’t have to consider its length or
the number of decimal places it was declared to hold. These settings are relevant only for those
occasions when a number is translated into a string, formatted for display purposes or sent to a
serial communications port. As far as the content of the Fixed Value is concerned, a Number
Variable can recognize number digits, a decimal point and a minus sign only.

A node that is programmed with an Assign a Value instruction does not have a fail exit.

Selector
Button

Node
Image Node Type

(53)

Comparing Values

This particular instruction is used to analyze the
content of a variable. It does it by comparing one
variable either to a another variable or to a Fixed
Value. We have six different comparison functions available for this purpose. They are:

We can select a comparison function by clicking on it. It’s symbol gets displayed in the center of
the programming window. The variable names or the Fixed Value are entered in the appropriate
input fields. For this instruction we have to follow the same conventions that also apply to the

Assign a Value instruction. If two variables are compared,
then they must be of the same type. If a Fixed Value is
used, then it has to be valid for the type of the variable.

The data we enter in the programming window builds an
expression that is going to be evaluated when the instruction
is executed. If the expression is TRUE, then the node’s pass
exit is used, if it’s FALSE, then the program will follow the
path out of the fail exit.

The expression we made in our example is X < 9.
Assuming that X is a Number Variable, the evaluation of this
instruction will return a TRUE for all instances where the
content of X is a number smaller than 9. Only if X is equal to
9 or greater, then the expression will be FALSE. Now, if we

had used > instead of <, then we’d be looking at a whole different picture. The instruction would
return TRUE for X values greater than 9 but FALSE for 9 or less.

Comparing numbers and deciding which of them is greater or smaller is pretty familiar
territory for all of us, because we know the order in which numbers are arranged. If, however, we
want to compare characters or strings, then we first have to find out how the elements of these
Variable Types are organized.

Characters are lined up in the order of their binary values, which also happens to be the order
of their decimal and hexadecimal values. The smallest one is the Null character. Its value is %0
or #0 or $0. The biggest character has no particular name but a value of %11111111 or #255 or
$FF. All other characters are somewhere between those two, in exactly the same order as they are
listed in the Table of Characters on page 29. The letter A, for example, is smaller than the letter
B and a small letter z is greater than a capital letter Z.

The order of strings is determined primarily by their length. Regardless of their contents, the
SMART1 considers the longer string also the bigger one. Only if two strings have the same
length, and we’re talking actual length here, not declared maximum, then a character by
character comparison is performed. The string that wins the battle between the first unequal pair
of characters is going to be the greater one. Following these rules, “BIG” is smaller than “little”.

Selector
Button

Node
Image Node Type

> greater than >= greater than or equal to

= equal to /= not equal to

<= less than or equal to < less than

(54)

Converting Variable Types

This instruction lets us convert the content from any
one of the SMART1’s three Variable Types to a
value for any other type. Similar to the Assign a
Value instruction, this instruction also utilizes a Source Variable and a Target Variable. The
name of the variable we are copying the value from must be entered in the input field labeled

Source Variable. In the Target Variable field we type the
name of the variable that is supposed to receive the con-
verted value. Unlike the Assign a Value instruction, where
both variables have to be of the same type, the Converting
Variable Types instruction will only work with variables of
different types. A node programmed with this kind of
instruction will always have a fail exit. Depending on the
Variable Types involved in the conversion, the instruction
follows different rules.

If we want to convert the content of a Number into a String value, then we must specify a
String Variable with a maximum length equal to the declared length of the Number Variable or
greater than that. If, at run-time, the number is within the allowed range for its declared length
and decimal places, then the conversion will be successful. The content of the String Variable is
going to be formatted following the rules for displaying of Number Variables. The program will
continue through the node’s pass exit. In a case where the conversion fails, the fail exit is going
to be used and the String Variable will remain unchanged.

Converting the content of a String into a Number puts no restrictions on the declared
lengths of the involved variables. For a successful conversion the string can either be empty, in
which case the result will be 0, or it must contain blank spaces and numeric characters only. It
may also have one decimal point and one minus sign which can be preceded only by spaces.
Ignoring all non numeric characters in the string, the value of the lined up digits must not be
greater than 16777215. The instruction will pass if all those conditions are met. Otherwise the
conversion will fail and the number is not going to change.

The procedure of translating a Number into a Character only works if the number is
positive and smaller than 10. If this is the case, then the Character Variable will receive the
integer portion of the number. Again, a failed conversion won’t alter the Target Variable.

If we are trying to convert any non numerical Character into a Number, then all we get is a
failed instruction. The conversion can be done only to characters 0 1 2 3 4 5 6 7 8 and 9.

We can convert almost every single Character into a String. The only exception is the Null
character (<NUL>). It will cause the instruction to fail.

The final variation of the Converting Variable Types instruction is the one that converts a
String into a Character. It takes the very first character of the String Variable and puts it into
the Character Variable. Only a completely empty string can make it fail.

Selector
Button

Node
Image Node Type

conversion examples N=number (len 6, dec 2) S=string (len 80) C=character (_ =blank space)

variable N S N C N S C S N
content "�('& OO"�(("�((" " OO"� O O

(55)

Mathematics

With this instruction we can turn the SMART1 into
a simple calculator. It goes without saying that we
can only use variables of the Number Type with it. The Math Operation instruction gives us the
possibility to apply either one of the four basic arithmetic operations.

To define a particular operation we must click the sign in the upper part of the programming
window that corresponds to the operation. The symbol will then be displayed in the area between
the two operands. The instruction lets us do calculations involving either two Operand Variables

or one Operand Variable and one Fixed
Value. We can’t do a calculation with two
Fixed Values. If we want to do that, then
we’ll have to first use our “gray matter” and
then the Assign a Value instruction.

The result of the calculation is always
saved in a variable. We have to type its name
in the input field labeled Result Variable.
There is no requirement that says we have to
specify different variables. The Result Vari-
able can be the same as either one or both
Operand Variables.

A node of a Math Operation instruction has no fail exit. The program will always continue
with the instruction tied to the pass exit.

The settings specifying the Maximum Length and number of Decimal Places for the
concerned variables are completely irrelevant for any calculations. After execution of the
instruction the Result Variable will always contain a number, no matter what values the
operands had or which operation was executed. However, being able to display that number is an
entirely different story. This can only be done if the number’s value lies within the range allowed
by its settings. For a number that is too big or too small for its declared settings, a string of stars
as long as the variable’s Maximum Length will be shown. The same goes for transmitting the
number out of a serial port.

At first look we might think that the four basic operations are not nearly enough to cover all the
high-tech applications we are planning to attack with the SMART1. But, let’s think again. Since
everything else in arithmetic is supposed to be based on those four operations, why shouldn’t we be able
to make the thing do a more complicated calculation. It’s only a matter of applying a suitable algorithm.
The library module named “Sq_root.Mod”, for example, shows one possible approach to calculating a
number’s square root.

Selector
Button

Node
Image Node Type

+ Addition x Multiplication

- Subtraction / Division

(56)

Extracting Sub-Strings

This is the first of two instructions which enable the
SMART1 to manipulate the contents of String Variables. This particular instruction’s purpose is
to isolate a part of a string.

 It does that by finding the Sub-String in the Source Variable, and storing it in the Target
Variable. Both these variables must be of the String Type. The parameters that we have to
specify for Start and Length determine where in the Source Variable the Sub-String begins, and
how long it’s supposed to be.

To demonstrate exactly how the instruction works, let’s have a look at an example which was
taken from a module that reads the serial output string from a DF1500 scale indicator, and then

splits it into its individual components.
We are assuming that the string we’ll get from the

indicator is going to have an overall length of 18 charac-
ters, and that the two characters in the 10th and the 11th
position will represent the units of measure. We are
further assuming that when the Sub-String instruction is
executed, a variable named SCL-STR will contain that
string. It will be our Source Variable. The variable called
UNITS is to be used for storing the information about the
units of measure. We have to type its name in the input
field labeled Target Variable. Knowing that the data

we’re interested in begins with character number 10, we enter a 10 as parameter for Start. And,
because the units of measure are symbolized by two characters, we specify 2 as the Length of the
Sub-String. Naturally, the Target String in our example can’t have been declared with a
Maximum Length less than 2.

Presuming that everything went okay, the UNITS variable in our example will contain ’KG’
when the instruction has finished its task. But, there’s also the possibility that something goes
wrong. Here is what would happen:

If during execution of a program a situation arises in which the Source Variable does not
contain as many characters as are necessary to fill the projected Length, then the Sub-String will
be truncated. In case the string in the Source Variable is not even as long as specified in Start, the
Target Variable will be empty. However, since a node programmed with the Sub-String
instruction does not posses a fail exit, the program will regardless of the result in the Target
Variable always continue at the pass exit.

There is one more rule for this instruction: We are allowed to use the same variable for both
source and target.

Selector
Button

Node
Image Node Type

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

8 8 8 8 8 8 8 K G G R O <CR><LF>

Start Length

(57)

Concatenating Strings

The second one of the SMART1’s string manipula-
tion instructions is called Concatenate Strings.

According to the dictionary, “concatenate” means to join or link together. And that’s
basically what the instruction does, it links two strings together. It also saves the newly created
string in a variable, so that later on we will be able to do something with it. For obvious reasons,
this variable must be of the String Type. We have to enter its name in the field labeled Target
Variable. The strings to be concatenated may be either the contents of two String Variables or
one variable’s content and one Fixed String. The Concatenate Strings instruction doesn’t permit
us to join two Fixed Strings. If we absolutely need to do that, then we must resort to the same
procedure which is applied for calculations with two Fixed Values. It was described in the
section about the Math Operation instruction, a few pages before this one.

To concatenate more than two strings,
we have to execute the instruction several
times, always using the same Target Vari-
able. From the second time on, the vari-
able used as target must also be one of the
sources. If, for example, we wish to build
up a string to show the time in the format
‘hh:mm’, then we would probably apply a
method similar to the one shown in the
pictures on the left:
 The first step will link the string in the

variable HOURS with the colon in the
Fixed String, and then save the result in
the variable TIME.
The second instruction is going to take

the content of the TIME variable, and
append the content of the variable named
MINUTES to the end of it. Again, the
result will be saved in the variable TIME.
This example revealed that like the Sub-

String instruction, the Concatenate
Strings instruction does not require us to
specify different variables for source(s)
and target.
The instruction does not generate an er-

ror if the result of the concatenation is
longer than the Maximum Length of the Target Variable. If this should be the case, then all
characters that don’t fit into the Target Variable will simply be lost. Consequently, a node
programmed with this instruction has no fail exit.

Selector
Button

Node
Image Node Type

(58)

Bit Manipulation

We can program the Bit Manipulation instruction to
perform one of nine different operations. These are
divided into two groups. The first group, represented by the four commands in the upper part of
the programming window, requires a Source Variable and a Target Variable only. For the
operations of the block in the window’s lower half, we must also specify the name of an
Operand Variable or enter a Fixed Value instead. All variables used in this instruction must be
of the Character Type. It is possi-
ble to use the same variable for the
source, for the operand and also
for the target. We can select the
operation to be executed simply
by clicking on the command
which corresponds to it. The com-
mand will then appear in the cen-
tral area between Source Variable
and Target Variable.
In particular, the commands of the
first group and their associated
functions are:

Selector
Button

Node
Image Node Type

Source Target

%01000001 %01000010 binary

$041 $042 hexadecimal

#065 #066 decimal

’A’ ’B’ printable

INC - increment

The Source Variable’s value is read, incremented by 1 and
stored in the Target Variable.

DEC - decrement

The Source Variable’s value is read, decremented by 1 and
stored in the Target Variable.

LSH - Left Shifting

The Source Variable’s value is read, the leftmost bit is
dropped and all other bits are moved one position to the left. A 0
bit is put in the rightmost position.

RSH - Right Shifting

The Source Variable’s value is read, the rightmost bit is
dropped and all other bits are moved one position to the right. A 0
bit is put in the leftmost position.

Source Target

%01000001 %01000000 binary

$041 $040 hexadecimal

#065 #064 decimal

’A’ ’@’ printable

Source Target

%01000001 %10000010 binary

$041 $082 hexadecimal

#065 #130 decimal

’A’ printable

Source Target

%01000001 %00100000 binary

$041 $020 hexadecimal

#065 #032 decimal

’A’ ’ ’ (space) printable

(59)

AND - logical and

The Source Variable’s value is read, each of its bits is
paired with the corresponding bit of the operand. If both
bits in the pair have a value of 1, the corresponding bit of
the Target Variable will also be 1. All pairs with one or
two 0 bits will result in a 0 bit in the associated location of the Target Variable.

OR - logical or

The Source Variable’s value is read, each of its bits is
paired with the corresponding bit of the operand. If one
or both bits in the pair have a value of 1, the correspond-
ing bit of the Target Variable will also be 1. All pairs
with two 0 bits will result in a 0 bit in the associated location of the Target Variable.

XOR - logical exclusive or

The Source Variable’s value is read, each of its bits is
paired with the corresponding bit of the operand. If one
bit in the pair has a value of 1, the corresponding bit of
the Target Variable will also be 1. All pairs with two 0
bits or two 1 bits will result in a 0 bit in the associated location of the Target Variable.

ADD - add an operand

The Source Variable’s value is read, the operand is
added to it. The result is saved in the Target Variable.

SUB - subtract an operand

The Source Variable’s value is read, the operand is
subtracted from it. The result is saved in the Target
Variable.

All commands in the second
group of the Bit Manipulation
instruction require an Operand
Variable of the Character Type
or a Fixed Value instead. To type
the latter, we may choose any of
the methods describing a charac-
ter value.
 The particular commands
and their functions are:

Source Operand Target

%01000001 %01000010 %01000000 binary

$41 $42 $40 hexadecimal

#065 #066 #064 decimal

’A’ ’B’ ’@’ printable

Source Operand Target

%01000001 %01000010 %01000011 binary

$41 $42 $43 hexadecimal

#065 #066 #067 decimal

’A’ ’B’ ’C’ printable

Source Operand Target

%01000001 %01000010 %00000011 binary

$41 $42 $03 hexadecimal

#065 #066 #003 decimal

’A’ ’B’ printable

Source Operand Target

%01000001 %01000010 %10000011 binary

$41 $42 $83 hexadecimal

#065 #066 #131 decimal

’A’ ’B’ printable

Source Operand Target

%01000001 %01000010 %11111111 binary

$41 $42 $FF hexadecimal

#065 #066 #255 decimal

’A’ ’B’ printable

(60)

Access to Files

This instruction type is probably the most complicated
one of all. It includes the seven different instructions
necessary for handling data organized in a file structure.

Initializing a File

The basic file management instruction is the Initialize File instruction. A node that is pro-
grammed with this instruction does not have a fail exit. All we must do to specify it, is to click
on the check box labeled Initialize File and to type the name of the file in the File Name input
field. Naturally, for any instruction of the File Access type to work, the stated file must have been
defined in one of our project’s program modules.

Before we can make use of any file, it is absolutely necessary to first apply this instruction to
it. It will do two things. One is to initialize the file by setting the maximum number of records in
the file prefix. Its other function is to reset the internal pointer that keeps the number of used
records. Since this instruction essentially wipes the file clean, it would be unwise to put it in a
startup sequence that is getting executed every time the SMART1 is powered up. The way we
would probably do it, is to place the instruction in a module that must be explicitly called by the
operator.

Adding a Record

Prior to writing new data to a file we must open up some space for it. We do this with the Add
Record instruction by checking the Add Record box. The instruction frees up just enough
memory bytes to take exactly one new record. Like with all other instructions of the File Access
type, we also have to enter the file’s name. An additional requirement for this instruction is to
enter the name of a so called Record Pointer. This is a
Number Variable that we must have declared somewhere
in the project. The value of this variable tells the
SMART1 where in the file to insert the space for the new
record. For a previously untouched file we have to assign
the value 1 to this pointer before we call the Add Record
instruction. If the file already has existing records, then
the new record is added at the location which the Record
Pointer “points” to and all data above it is moved one
record upwards. To add a record to the end of a file we
always have to load the Record Pointer with 1 more than
the number of existing records.

A Record Pointer value which exceeds the number of
actual records by more than 1 will cause the instruction to
fail. The node’s fail exit will also be used, if the file had
already reached its maximum number of records.

Selector
Button

Node
Image Node Type

(61)

Deleting a Record

An instruction that is handled like the Add Record instruction but has the exact opposite purpose,
is the Delete Record instruction. For this one too, we need to specify the File Name and a Record
Pointer variable. But this time, we have to click the Delete Record check box.

Given the fact that we can only delete an existing record from a file, the value of the Record
Pointer must be somewhere in between 1 and the number of the file’s last current record. If this
is the case, then the record which is pointed to will be erased and all the ones above it will slip
down to fill the gap. If, for whatever reason, the Record Pointer should have a value less than 1
or bigger than the number of the last record, then the instruction will fail.

Obtaining the Current Size of a File

The third instruction of this group produces a node without a fail exit. We choose it by clicking
on the checkbox with the title “Set Pointer to Last Record in File”. The instruction’s purpose is
to first look how many records there are in the file and then to store that number in the Record
Pointer variable. For an empty file it will return 0.

Now it’s getting interesting. For the final three instructions of the File Access type we have to
employ another additional variable. It’s called the Dialog Variable and its purpose is to “talk” to
a field inside our file. All data transfers in and out of a file are handled through Dialog Variables,
no field can be manipulated directly. The Type of the Dialog Variable must always be the same
as the type of the field it is dealing with.

Writing to a Field

The Write instruction is defined by a check mark in the
box labeled Write and indicated by a symbol showing the
data flow going from the Dialog Variable to the Field.

The instruction will copy the variable’s content into the
field to which the Record Pointer points. If the data to be
transferred happens to be a string then the maximum
length of the Dialog Variable must not exceed the Field’s
maximum length. The settings for maximum length and
decimal places for variables of the Number Type are
completely irrelevant in a file context.
 Again, an out of bounds Record Pointer value will
result in a failed instruction. The Field’s contents will
remain unchanged in such a case.

(62)

FAIL EXIT

Reading from a Field

The Read instruction does the opposite operation of the Write instruction, it copies data from a
field to the Dialog Variable. We have to check the box labeled Read to specify it. The data flow
symbol will point from the Field towards the Dialog Variable, which, if the data to be read from
the file is of the String Type, must have been declared with a maximum length of at least the
Field’s maximum length. As with the Write instruction, the maximum length and decimal places
of Number Variables are of no consequence when we read data from a Number Field.

Finding Data in a File

The final instruction of the File Access type is the Find
instruction. We can use it when we want to look for the
occurrence of particular data in a file.

In order to invoke this instruction we must - most of us
guessed it - click on the check box that is titled Find.
Other than that, we have to supply all the same informa-
tion as we do for the Read and Write instructions. It needs
to know the File Name and it requires a Record Pointer as
well as a Dialog Variable. A question mark between the
Field and the Dialog Variable is the symbol for this
instruction.

No Field is being written or read, the only thing the
instruction does, is to search the file for the data we told it
to find. It works somewhat like this:

YES

YES

An internal counter is loaded with the content of the Record Pointer.

The specified Field’s content in the record indicated by the counter is
compared to the content of the Dialog Variable.

The Record Pointer is loaded with the value of the counter.

Are both contents entirely the same?

Does the counter’s value lie within the number of existing records?

The internal counter is increased by 1.
NO

NO

PASS EXIT

(63)

Program Comments

Since the images of nodes in a module only reveal
the type of the particular instruction, but say nothing
about their internal program, it’s probably a good
idea for us to develop the habit of putting comments into our program modules. For exactly this
purpose we can use the Comment Tag instruction. Well, technically speaking it’s not really an
instruction. It neither gets executed nor does it have any other effect on the project. The
SMART1 ignores Comment Tags completely. They are, however, a very valuable tool for
somebody who wants to change a project. They can tell him what we had in mind when we first
created the program.

The programming of a Comment Tag instruction is not done in a programming window. The
same method that is used for Jump instructions and Call a Module instructions is applied here
too. When we click the right mouse button, a text input field appears on top of the instruction. In
it we can type our comments. A unique property of the Comment Tag is, that its size is adjusted
automatically to fit its contents. To add a new line to a comment we have to press and hold the
Ctrl key and press the Enter key. Pressing the Enter key by itself will close the input field and
update the Comment Tag with the new text. If we changed our minds while entering a comment,
we can press the Escape key and thereby discard the changes we just made to the comment.

A tool that might come in handy in conjunction with the Comment Tag is the so called
clipboard. This is a temporary storage location for information we cut or copy. The clipboard is
always present in Windows, hence, it’s present in the SMART1 Programmer. Whenever we use
a cut or copy function, information is placed on the clipboard. When we apply a paste function,
on the other hand, the information from the clipboard is placed in the currently active
(text)object. Information on the clipboard remains there until we cut or copy another piece of
information onto it, or until we quit Windows. Most of us have most likely already discovered
that the comment line at the bottom of the screen displays some sort of instruction summary
whenever we move the mouse cursor over a programmed instruction. Here’s where the clipboard
comes into the picture. Every time we press the key combination Ctrl Insert in such a moment,
the text shown in the comment line is taken over onto the clipboard. If we now click the right
mouse button on a Comment Tag and press the key combination Shift Insert, the text from the
comment line is going to appear in our Comment Tag.

Selector
Button

Node
Image Node Type

InsCtrl

Shift Ins

This key combination copies text from the comment line at the bottom of the screen onto the clipboard.

That key combination can be used to place the clipboard contents into a Comment Tag.

The Software Shell, second part

CHAPTER 3 - TO ROUND IT ALL UP

(65)

Compiling a Project

We have read all there is to read about the particular instructions the SMART1 Programmer has
to offer and, hopefully, even understood some of it. We have placed and moved instructions, we
have programmed them and we have tied them together. Now, we want to make nails with heads
and compile our first little project. There are two ways to start the compiling process. We can
either select the Compile function from the Process menu or click the Compile Button
on the shortcut button bar, if it is visible.

For practical purposes, let’s assume that our project contains two program modules.
That being the case, the window shown on the left will pop up. It
lists all program modules in the project and asks us to select a
startup module. This will be the first one to be executed, every time
the SMART1 is powered up. To specify which of the project’s
program modules is going to be the startup module, we move the
mouse cursor over its name and click the left button. The module’s
name will now be highlighted. Pressing the Cancel button leaves the
window without a specified startup module. Therefore no compiling
will be done. If we push the Ok button, however, the window closes
and the compiling process is on its way.

There are many steps on the way to a successfully compiled
project. For example, the SMART1 Programmer must check all
nodes to find out if they are programmed and properly tied together.

It must also check if all variables were declared and are used in accordance with their types. It
has to calculate the amount of memory required for all variables and files, and determine if
everything is going to fit into the SMART1’s memory chip. Then it must translate every single
instruction into machine code and, finally, link all the code together in the proper sequence. All
these things will take their time. During the compilation the mouse cursor is going to take the
shape of an hourglass.

If everything went well, another window is going to
appear. It is conveying a cheerful message to us that says:
“We did it!”

After we click the Ok button, the window will vanish
and we can go ahead to send the compiled code to the
SMART1. How that is accomplished is described on the
page titled Sending Code to the SMART1.

So much for the theoretical case. The compile process’
outcome which is much more likely, at least during our our first few humble attempts, won’t
include the above window.

That is mainly due to the fact that in each of the before mentioned tasks, which the
SMART1 Programmer has to perform, lies the danger, that we either made a mistake or asked
something of the SMART1 that it can’t quite accommodate. If this should happen, our project
can’t be compiled. Instead, the SMART1 Programmer’s built in error checking functions are
going to kick in, and we will be confronted with an assortment of less cheerful Error Messages.

The following pages contain a list of all possible error messages and explanations for them.

(66)

Compile Error Messages

While compiling, the SMART1 Programmer will try to “catch” all the things which, if
downloaded, would make no sense to the SMART1. We call these things errors. There is quite a
variety of them. Some can occur in conjunction with only one specific instruction, others could
be caused by a number of different instructions. And, there are errors that can’t be blamed on
any particular instruction, but on the sum of the circumstances in a project. Each of the
individual errors comes with it’s own error message. Here are the errors which are not directly
caused by an instruction:

Out of RAM
This error is going to occur as the result of
file declarations that exceed the amount
of available space in the SMART1’s Ran-
dom Access Memory chip, used for data
storage.

The solution to this problem is to reduce
either the number of records or the size of the individual fields. Since files and variables share
the same chip, we might also be able to fix the situation by cutting down the number of variables
or, in case of string variables, reducing their length.

Not executable
If the designated startup module contains no executable
instructions, the error message shown on the right will be
displayed. It will happen when the Module Start instruc-
tion is missing.

To correct the error we can either select a different
program module as startup module, or we can place
executable instructions in the module.

Out of Program Space
This is probably the most severe error we can encounter. When
this message is displayed, the code in our project has become too
big for the SMART1. We can try to solve the problem by reducing
the sizes of constants used in the project. These are all the fixed
values in the individual instructions. The largest ones of them are
probably the fixed texts in display instructions. If this approach doesn’t do the trick, then we
will have to “weed out” all the less important program sequences in our modules or try to come
up with a leaner programming style.

If any of the above errors was encountered, the compile process will be
aborted and the Error(s) found message will be shown. It will also be
displayed if an an error originated in an instruction.

A list of all errors that can be caused by instructions is printed on
the next page.

(67)

Entry tie missing

Exit tie missing

Not programmed

Invalid jump address

Unreferenced entry point

Duplicate variable declaration

Duplicate file definition

Subprogram not found

Undeclared variable

... Call module . No start instruction in specified module.Referenced subprogram is not executable

Undeclared file

Type mismatch

Invalid record pointer

Undeclared field

Insufficient space in target

Invalid variable type

Parameter(s) out of range

Conversion to same type

Variable must be String with Length 16

Invalid fixed value

More Compile Error Messages

If an error was caused by an instruction, then that instruction will be
covered by a red mask. When we move the mouse cursor over such a
masked instruction, a message will pop up telling us what the particular
error is. Here’s a summary of all possible errors.

... Convert type The variables used must be of different types.

... File definition A file with the same name already exists.

... Variable declaration A variable by that name already exists.

... Any node with entries None of the node’s entries are being used.

... Any node with exits At least one of the node’s exits is not used.

... Assign/Compare ... The fixed value is not valid for the type of the variable.

... Jump There is no re-entry point with this number in the module.

... File access The specified record pointer is not a number variable.

... Key/Math/Sub-String/Concatenate . Impossible with this type of variable.

... Assign/Concatenate/Convert type ... The target variable is too short.

... Any programmable node The node has yet to be programmed.

... Sub-String Start and/or length are outside the source variable.

... Call module The specified module is not part of the current project.

... Assign/Compare/File access The variable (field) types must be the same.

... File access No field with the specified name was declared.

... File access A file with the specified name does not exist.

... Any instruction using variables . The specified variable was not declared.

... Re-entry point No jumps or ties referring to this re-entry point.

... Clock The variable must have this specific format.

(68)

Program Options

The SMART1 Programmer includes an
assortment of optional features which can
be accessed via the Options menu.

 At program start none of these options
are operative. To activate one we must
click on it using the left mouse button.
When an option is in effect, it will have a
check mark displayed next to it.

Print Code Listing when Compiling

If the compile process is being executed while this option is checked, the SMART1 Programmer
will send a list to the printer showing the names, sizes and locations of all variables and files
used in the project. It will also print a code listing for every program module. This listing
consists of addresses and function summaries for each of the instructions in the particular
program module.

Update Operating System

If we have activated this option, the SMART1 Programmer will incorporate the operating system
in the compile process and send it to the SMART1 along with the compiled user code.

We must use this option if we are sending a project to a SMART1 that is being programmed
for the very first time, or when we are going to re-program a unit in the future and want to use an
updated version of the operating system.

This option will be checked automatically whenever we activate the Immediate Execution
option.

Immediate Execution

Using this option, we can make the SMART1 bypass the startup screen and immediately execute
the project’s startup module.

If the SMART1 was already programmed utilizing this option, then it is not necessary to use
it again. The Update Operating System option will be checked automatically, whenever this
option is in effect.

In a situation where we need to re-program a SMART1 which was previously programmed
using this option, but which is not supposed to bypass the startup screen in the new project, we
will have to activate the Update Operating System option by itself.

(69)

Realign Modules when Loading

At rare occasions it might be possible that a pro-
gram module we just loaded looks a little odd. It
could happen, as the example to the right is show-
ing, that the ties in the module do not quite reach
all the way to the nodes.
 This kind of distortion could occur when the
particular module had been created on another
computer, either under a different version of Win-
dows (Win 3.11/Win 95) or with a different screen
ratio or resolution.

If this should be the case, then we can engage
the Realign Modules when Loading option and
reload the program module or the entire project.
After doing this, our program module should look
normal and we may turn the option off again.

Always Send after Compiling

If this option is checked, it will cause the SMART1 Programmer to automatically pop up the
Send Code window every time a project was successfully compiled.

This eliminates both the need to click the Ok button in the compiler message as well as the
process of opening the Send Code window.

Clear all Variables before Sending Code

If this option is checked, then the array of the SMART1's memory which holds variables and
files will be flushed. When the SMART1 starts a project that was downloaded with this option in
effect, all variables will be cleared. The same is true for files. All of their fields are going to be
empty, and the files will not be accessible until the necessary Initialize File instructions are
applied to them.

After the clearing process the particular values for the variables of the three individual types
will be as follows:

All Number Variables are going to have a value of 0 (zero). Every single Character
Variable will hold a Null Character, and all String Variables are going to contain empty strings.

(70)

Saving and Loading a Project

We have created our first little project and even successfully compiled it. Now, the time has
come to save it onto disk. Again, there are different methods to do this. For once, we can click
our way through the File menu and the Project menu to the Save Project function. The same task
can also be accomplished by holding down the Alt key and pressing the keys FPS in
sequence. If the Save Project button is visible, then we may simply click on it to save
the project.

If we are saving this particular project for the first time, or if we have selected the Save
Project As function from the project menu, then a file dialog window is going to open up. It
shows us the cur-
rent disk drive as
well as the folder
that is currently
open. It also allows
us to enter a name
for our project. The
name we specify
must conform to
the same regula-
tions that apply to
names for program
modules. The file
extension assigned
to SMART1 project files is “.smt”. The project with all its program modules will be saved in the
current folder. If we want to save a project in a different folder, then we can either select it from
the list of folders, or enter its name along with the name of the project. The latter was done in the
example above. In cases where the specified folder does not exist on the current disk drive,

another window appears, asking
us if we wish to create the folder.
Clicking the Yes button will cre-
ate the folder and save the project
in it. If we click the No button,
the project will not be saved.

Whenever we use the Save Pro-
ject function with a project that

had already been saved before, no file dialog window will appear. The project will be saved
under the same name and in the same folder that was used before.

The steps for loading a previously saved project are similar to the steps to save it. The
quickest way is to click on the Load Project button. We can also go through the menus,
either by clicking the mouse or by typing the hot keys sequence Alt FPL. If a project is
presently loaded and had been changed, then we will be asked, whether we wish to save it or not.
Again, a file dialog window will open up. This time it’s titled “Load Project”. As soon as we
have selected a project from it and click Ok, the project will be loaded into the SMART1
Programmer.

current disk drive

 project name open folder

(71)

Loading an existing Program Module

Let’s assume we are currently working on a project that requires the printout of a weight. We are
just about to open a new program module to specify the instructions necessary for reading the
scale indicator, when we remember that we made a project once before, that included a scale
reading procedure. So, instead of creating a new module we choose the item Load program
module from the program module menu. A file dialog window allows us to locate the module.
After finding it on the
computer’s hard disk
we select it and click
the OK button. An
icon for the module
takes its place beside
the other modules on
the project screen.
The module is now
part of our project
and we are able to
call the scale reading
procedure from any
place in our project
simply by putting a Call a Module instruction in that place, and programming it with the name of
our scale reading module.

Saving a Program Module

If we need to save a program module by itself, then we have to select it first. This is simply done
by clicking anywhere on the module. We can recognize the selected program module by its
highlighted title bar. Once this is done we can save it in almost the same way as we save a
project. The hot keys sequence Alt FMS will get us through the menus and save the module in
the project’s folder (directory). Of course, we can also use the mouse and click our way to the
Save Module function.

In cases where we want to save a module in a different folder, we can do this by using the
Save Module As function. We can even create a new folder to save the module in. For this we
can apply a procedure equivalent to the one for saving a project, which was described on the
previous page. However, if after saving the program module in another folder either the Save
Module function or the Save Project function is used, the module will again be saved in the
project folder.

The Save Module As function is also the one we have to use, if we want to rename a program
module.

(72)

was saved in the Code File format. For that we will still have to load it in the ordinary way.
Browsing through the menus, one or the other among us may have already noticed that the

functions named Save Code File and Save Code File As are hardly ever available. This is indeed
the case. The only time these functions are not grayed out, is when we have just compiled a
project with the Update Operating System option in effect. The reason for this is, that the
SMART1 which we are going to program with this project may have never been programmed
before, and therefore won’t have an operating system.

The steps we have to perform in order to make a code file are as follows. First the project
must be loaded in the SMART1 programmer. Then we have to activate the Update Operating
System option. We may select it either by itself or together with the Immediate Execution
option. As a final step we have to compile the project. If everything went smoothly, we can now
save the code file. Using the Save Code File function will always place the file into the project’s
directory. To save it somewhere else, we can employ the Save Code File As function. A file
dialog window, similar to the ones we already know from saving projects and program modules
will open up. We are allowed to select the folder (directory) and disk drive of our choice from the
respective lists in the
window.

The file exten-
sion assigned to
SMART1 Code
Files is “.s19”.

The option en-
abling us to create a
new folder for stor-
ing of a program
module or a project,
is not available with
the saving of code
files.

Hey, there’s got to be something to be upgraded in the SMART1 Programmer’s next version.

Making and Saving a Code File

If we want to, we can choose to store the
project for a SMART1 in its compiled format

on disk.
We refer to files that are saved in this special

format as Code Files. They give us the advantage of
being able to quickly reload a project without having
to compile it again. A feature that will come in
handy if we need to program another SMART1
with the exact same project at a later time. It is,
however, not possible for us to change a project that

(73)

Loading a Code File

For all the people who either haven’t read the previous page or have already forgotten all about
it, let’s recapitulate what Code Files are. Each Code File is an entire project, complete with every
single one of its instructions, plus the SMART1’s operating system, altogether translated into
machine code and saved in a file, ready to be downloaded. Code Files are particularly useful
when it comes to making duplicates of the same application to run on several SMART1s.
Another scenario might be that we need to ship an updated program to a customer to enhance the
SMART1’s performance. In this case we would send him a Code File instead of the project in
form of individual program modules. This way we won’t have to reveal our programming secrets

to the customer and it also makes it very easy for
him to get the new program into the SMART1.
Here is what he or we would do:
To load a Code File we simply mouse-click our
way through the File Menu via Compiled Code to
Load code file. A file dialog box appears, showing
us the current disk drive, a list of Folders (in
Windows 3.11 called Directories) and all the files
in the currently open folder that have names ending
with .s19 . These are our Code Files. We select the
one we want to load by clicking on it and then press
the OK button. If the file we are looking for is not

in the list, then this can be due to several reasons. There might be too many files to fit in the
window. In this case the slider bar becomes active and by clicking its up or down arrow we can
scroll through the list until our file name appears. It could also be that the Code File was saved
in a different folder or even on another disk. Then we have to select the proper drive and/or
folder from the “Drives” or “Folders” list. Let’s assume we had received a Code File on a floppy
disk and it’s sitting in drive A of our computer. Clicking the tab on the “Drives” box will give us
a listing of all disk and network drives we can access. Here again, if the space does not allow for
showing everything at once, we can use a slider bar to move through the list. We scroll up until
drive a: is displayed
and then click on it.
The folders and file
lists get updated and
now we can load the
Code File. The sec-
ond part of the up-
dating process, the
actual downloading
of the code is de-
scribed in the chap-
ter Sending Code
to the SMART1.

Slider Bars

(74)

If the serial port number we plugged the SMART1 into is different from the number shown in
this window, then we have to click on the number and change it. We are prompted to start the
SMART1 in programming mode. This is accomplished by applying power to the unit while
pressing its programming button. From
here everything should be going by itself.
The project’s individual components are
downloaded and as soon as this is done,
the Send Window will disappear and the
word DONE will be shown on the
SMART1’s display. The final step is to
pull the power connector from the unit
and to plug it back in. Our program has
been updated and is now ready to run.

Once the cable is in place we get back to the SMART1 Programmer. Either by pushing the
shortcut button or by clicking Send in the Process menu, we bring up the Send Window.

Sending Code to the SMART1

We now have a compiled project sitting in our computer’s memory. What next? We have to get
the code into the SMART1. Do do this we need to run a cable from it’s serial port 0 (that’s the
one farthest away from the power jack) to a free serial port on our computer. Most computers are
equipped with two serial ports. They are usually located on the back and are laid out as either a
male connector with 25 pins or a male connec-
tor with 9 pins. The example on the right
shows them sitting next to one another, but
this is not always the case. One of the ports is
typically used for the mouse. The other one we will connect the SMART1 to. The cable we need
is called a ”Null Modem Cable”. It must have a 9 pin female connector on the end that plugs into
the SMART1. The connector on the other end has to fit the computer’s serial port. We can either
buy the cable in a computer store or make our own simplified null modem cable with the three
wires we need for this job. Here are the pin-out versions for the different connector types:

Shortcut button “Send”

serial port
number

9p 25p

2 - 2
3 - 3
5 - 7

9p 9p

2 - 3
3 - 2
5 - 5

(75)

Tips and Tricks, Dos and Don’ts

(76)

Moving Instructions to a New Module

Since the features for copying and pasting of instructions didn’t make their way into version 1.00
of the SMART1 Programmer, we can’t move instructions from one module to another. There is,
however, a Trick we can use, if the current module is getting too crowded and we want to place
parts of it in a new module. The procedure is like this: First, we save the module. Then we save
it under a different name, thereby renaming it. The third step is to load the module with the old
name back into our project. Now we have two identical program modules with different names.
All that’s left to do, is to get rid of the instructions we don’t need in the individual modules.

Retaining Data during Re-Programming

Every time a project is compiled, the SMART1 Programmer calculates the space required for all
variables and files. According to these calculations it will assign memory addresses in such a
way that the next item is always placed onto the next available memory location.

Let’s imagine what will happen, if we are re-programming a SMART1 because our customer
wanted us to change a certain part of the project. As long as we are neither changing any
variables nor modifying any files, we’ll be fine. The trouble starts when we start to add, remove
or change the sizes of variables or files. All of a sudden some of our variables might have weird
contents and our files might not work at all. Because we changed one or more variables,
everything located above these variables will have moved to different spots in memory and
therefore have different contents.

Now that we know about the danger, let’s get some Tips on what to do against it. First we
must know that memory is distributed in the same order in which the program modules are
loaded into the project. This means, that the files and variables in the module that is processed
first will always be placed at the start of the memory. So, we simply place all the files and
variables that will contain vital data into this module. Everything processed after that will now
have no influence on this data. We are not required to include any executable instructions in this
module. To find out which module is the first one to process, we can look at the list of modules
in the Windows menu. It’s the one on the top. It does not neccessarily have to be the project’s
Startup Module, so let’s not get them confused! We can designate another module as the first
one to process, if we don’t want to use the current one. To do this we must activate the module
of our choice by clicking on it. Then we have to press and hold the Ctrl key and
push the F1 key at the same time. The project will be reloaded in the new order.

A scenario that can’t be taken care of quite that easily, will arise if we have
to change the structure of a file itself. If we can foresee that a situation like this could emerge,
then it’s good advice to include some functions in the project that are capable of uploading/
downloading file data to and from a PC. This way we can upload the existing data, modify it for
the new structure and then download it to the re-programmed SMART1. The SMART1
Programmer installation disk includes a little example project, demonstrating download and
upload functions. The disk also includes a utility program for the PC called SMART1 Data
Loader. It can be used to receive file data from a SMART1, modify it and send it back. We can
install both these items by selecting the Custom Install option in the installation program.

F1Ctrl

(77)

Recursive Calls

A definite Don’t is to use the Call a Module instruc-
tion to go back to a higher ranking program module.
The people among us who entered the realms of
programming only recently, could be easily trapped
by this possibility. The only proper way to return to
the calling module is to apply the Module Exit
instruction. Whenever a call to a module is executed,
the address of the calling instruction is stored in the
so called stack. This is an area in the SMART1’s
memory chip located adjacent to the variables and
files. When the module has finished its task the
address is pulled from the stack and the program continues where it left off. If, however, the
program flow in the called module never gets to a Module Exit instruction, but instead calls the
module which called it in the first place, the stack is sooner or later going to flow over. This
means, it will expand into the memory used for files and variables. The moment at which this
will happen depends on how often the calling loop is being executed and how much space is
occupied by the project’s variables and files. If the SMART1 is frequently turned off, it might
never happen. If it does, though, the program will be stopped before any data is lost and an error
message will be shown on the screen. Turning the SMART1 on and off will restart the program.
It is going to work until the stack runs over again.

Detecting a Number Overflow

We have read in the chapters about Number Variables and the Math Instruction, that numbers
can only be displayed as long as they are not bigger than what their maximum length allows, and
only if their numeric resolution doesn’t exceed the value 16777215. Well, sometimes we might
get into a situation, where adding up numbers could lead to such an overflow. One thing we can
Do to keep the display from putting a row of stars in place of our number, is to Compare the
number to the largest displayable value before it’s shown. If it is greater than that value, we have
to use a number that was declared with a larger capacity. In case our number already had a length
of 8 or more and wasn’t using decimal places, then we could divide it by 10, convert it into a
String and append a “dead” zero to its end. Doing this, we will only lose the value of the
number’s last digit as compared to the whole number.

Transmitting to a Printer

As we probably remember from reading the chapter about serial transmissions, serial ports 1
through 4 will “swallow” the first character without reporting a possible “printer busy” status
back to the SMART1. What we can Do in order to not be fooled by this behaviour, is simply to
send two Carriage Return characters whenever we need to test the printer’s status. They won’t
cause any actual printing, but still give us the result we’re aiming for.

One final Tip regarding printers: Let’s not forget that most of them will only print the
received data if it is followed by Carriage Return and/or Line Feed.

(78)

APPENDIX

(79)

Serial Port Pins

Pin 2:

Receive Data
listens to what’s coming

through the cable.

Pin 5:

Signal Ground
functions as a reference
level for the other lines.

Pin 3:

Transmit Data
talks to the device that’s hooked up here.

Pin 8:

Clear To Send
is used during transmissions

in handshaking mode to
check if the device the

SMART1 wants to send to, is
available for communication.

Pin 7:

Request To Send
signals the device on the

other end of the cable that
the SMART1 is ready to

receive data.
(not used on ports 1 & 2)

Pins 1,4,6 and 9 have no particular purpose in any of the SMART1’s serial communication ports.

I/O Expansion Cable

The instruction types for Output Relays, 4-20 mA Outputs and Remote Inputs will function only
if their respective hardware components are connected to the SMART1’s I/O expansion port. A
cable assembly for this intention is available from Western Scale.

For trouble shooting purposes, here’s how the wires should connect the SMART1 to the
expansion board sets A and B:

board set

A

board set

B

