

JagBASICJagBASICJagBASICJagBASIC
for JAGXTREME
Terminals

Programmer’s Guid

e

16384600A
(10/01)

©Mettler-Toledo, Inc. 2001

No part of this manual may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying and recording, for any purpose without the express written permission
of Mettler-Toledo, Inc.

U.S. Government Restricted Rights: This documentation is furnished with Restricted Rights.

 CUSTOMER FEEDBACK

Your feedback is important to us! If you have a problem with this product or its documentation, or a suggestion on how we can
serve you better, please fill out and send this form to us. Or, send your feedback via email to: quality_feedback.mtwt@mt.com. If
you are in the United States, you can mail this postpaid form to the address on the reverse side or fax it to (614) 438-4355. If you
are outside the United States, please apply the appropriate amount of postage before mailing.

Your Name: Date:
Organization Name: Mettler Toledo Order Number
Address: Part / Product Name:
 Part / Model Number:
 Serial Number:
Phone Number: () Fax Number: () Company Name of Installation:
E-mail Address: Contact Name:
 Phone Number:

How well did this product meet your
expectations in its intended use?

Comments:

 Met and exceeded my needs
 Met all needs
 Met most needs
 Met some needs
 Did not meet my needs

PROBLEM:
UNACCEPTABLE DELIVERY: OUT OF BOX ERROR:
 Shipped late Wrong item Wrong documentation
 Shipped early Wrong part Missing documentation
 Shipped to incorrect location Missing equipment Incorrectly calibrated
 Other (Please Specify) Equipment failure Other (Please specify)

Comments:

DO NOT WRITE IN SPACE BELOW; FOR METTLER TOLEDO USE ONLY

 Retail Light Industrial Heavy Industrial Systems

RESPONSE: Include Root Cause Analysis and Corrective Action Taken.

mailto:quality_feedback.mtwt@mt.com

FOLD THIS FLAP FIRST

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 414 COLUMBUS, OH

POSTAGE WILL BE PAID BY ADDRESSEE

Mettler-Toledo, Inc.
Quality Manager - MTWI
P.O. Box 1705
Columbus, OH 43216
USA

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

Please seal with tape.

INTRODUCTION
This publication is provided solely as a guide for individuals who have received Technical Training in
servicing the METTLER TOLEDO product.

Information regarding METTLER TOLEDO Technical Training may be obtained by writing to:

METTLER TOLEDO
1900 Polaris Parkway

Columbus, Ohio 43240
 (US and Canada) 614- 438-4511

(All Others) 614-438-4888

FCC Notice

This device complies with Part 15 of the FCC Rules and the Radio Interference Requirements of the
Canadian Department of Communications. Operation is subject to the following conditions: (1) this device
may not cause harmful interference, and (2) this device must accept any interference received, including
interference that may cause undesired operation.

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant
to Part 15 of FCC Rules. These limits are designed to provide reasonable protection against harmful
interference when the equipment is operated in a commercial environment. This equipment generates,
uses, and can radiate radio frequency energy and, if not installed and used in accordance with the
instruction manual, may cause harmful interference to radio communications. Operation of this equipment
in a residential area is likely to cause harmful interference in which case the user will be required to correct
the interference at his or her own expense.

METTLER TOLEDO RESERVES THE RIGHT TO MAKE REFINEMENTS OR
CHANGES WITHOUT NOTICE.

PRECAUTIONS

 WARNING
DISCONNECT ALL POWER TO THIS UNIT BEFORE
INSTALLING, SERVICING, CLEANING, OR REMOVING THE
FUSE. FAILURE TO DO SO COULD RESULT IN BODILY
HARM AND/OR PROPERTY DAMAGE.

 CAUTION
OBSERVE PRECAUTIONS FOR HANDLING
ELECTROSTATIC SENSITIVE DEVICES.

 WARNING
PERMIT ONLY QUALIFIED PERSONNEL TO SERVICE THIS
EQUIPMENT. EXERCISE CARE WHEN MAKING CHECKS,
TESTS AND ADJUSTMENTS THAT MUST BE MADE WITH
POWER ON. FAILING TO OBSERVE THESE PRECAUTIONS
CAN RESULT IN BODILY HARM OR EQUIPMENT DAMAGE.

 WARNING
FOR CONTINUED PROTECTION AGAINST SHOCK
HAZARD, CONNECT TO PROPERLY GROUNDED OUTLET
ONLY. DO NOT REMOVE THE GROUND PRONG.

 CAUTION
BEFORE CONNECTING OR DISCONNECTING ANY INTERNAL ELECTRONIC
COMPONENTS OR INTERCONNECTING WIRING BETWEEN ELECTRONIC
EQUIPMENT, ALWAYS REMOVE POWER AND WAIT AT LEAST THIRTY (30)
SECONDS BEFORE ANY CONNECTIONS OR DISCONNECTION’S ARE MADE.
FAILURE TO OBSERVE THESE PRECAUTIONS COULD RESULT IN DAMAGE TO OR
DESTRUCTION OF THE EQUIPMENT, OR BODILY HARM.

READ this manual BEFORE
operating or servicing this
equipment.

FOLLOW these instructions
carefully.

SAVE this manual for future
reference.

DO NOT allow untrained
personnel to operate, clean,
inspect, maintain, service, or
tamper with this equipment.

ALWAYS DISCONNECT this
equipment from the power
source before cleaning or
performing maintenance.

CALL METTLER TOLEDO for parts,
information, and service.

CONTENTS

1 Introduction .. 1-1
Overview .. 1-1
File Specifications ... 1-3
Standards Compliance... 1-3
PC Program Development.. 1-3

2 Shared Data ... 2-1
JAGXTREME Terminal Operating Environment and Shared Data.. 2-1
Shared Data Types .. 2-2

3 Setup ... 3-1
Configuring JagBASIC in the JAGXTREME Terminal .. 3-1
Connecting the Terminal to a PC .. 3-3

4 Programming Fundamentals... 4-1
JagBASIC Files ... 4-1
Data Files ... 4-2
Operator and Program Controls .. 4-2
Using the Terminal BASIC Interpreter .. 4-3
Creating and Editing JagBASIC Program Files .. 4-4
Using the JagBASIC Preprocessor... 4-5
Serial Terminal Support .. 4-8

5 JagBASIC Commands ... 5-1
Interpreter Commands... 5-2
Variable Commands .. 5-10
Flow Control and Operator Commands .. 5-19
Math Commands... 5-30
String Commands.. 5-35
Simple I/O Commands... 5-44
Serial I/O Commands... 5-52
File Commands... 5-65
Real-time Process Control Commands .. 5-79
Timing Commands .. 5-92
Error Trapping Commands.. 5-95
TCP/IP Commands .. 5-97

6 Shared Data Variables ... 6-1
Shared Data Heap Elements... 6-1
Shared Data Static RAM Elements... 6-6
Shared Data EEPROM Elements.. 6-17

7 Global Discrete I/O Data .. 7-1
Level-Sensitive, Logical Discrete I/O Data .. 7-1
Edge-Sensitive, Logical Discrete I/O Data .. 7-7
Physical Discrete I/O Data.. 7-11

8 Sample Application Programs... 8-1
Display Scale A Weight .. 8-1
Display/Toggle Scale A and Scale B .. 8-2
Random Access Files... 8-3
Continuous Output .. 8-3
Setpoint Display .. 8-4
Filling... 8-5
Simple Truck In-Out ... 8-7
Truck Inbound-Outbound.. 8-10
Multiple Ingredient Formulation (Manual Batching)... 8-19
Parts Counting .. 8-32
Printer Templates .. 8-34
JOG Example.. 8-36
JagBASIC SMTP Client Program ... 8-40

9 Error Codes and Messages... 9-1
Common Errors ... 9-1
Error Codes .. 9-1

10 ASCII/HEX Code Chart ... 10-1

11 Appendix 1... 11-1
JagBASIC Commands ... 11-1

Chapter 1: Introduction
Overview

(10/01) 1-1

1 Introduction

Overview
JagBASIC is a tool for customizing the JAGXTREME industrial scale terminal. It provides
the means for creating custom operator interaction for data input using the JAGXTREME
terminal’s 16-character lower display and keypad. An external keyboard, serially
connected display devices, as well as the terminal display, may be used to
communicate messages to the operator.

Programming Language
The JagBASIC language is a standard BASIC programming language with more than
120 standard BASIC statements and functions, plus extensions for special JAGXTREME
terminal operations. The language provides functionality to perform many tasks
including operator interaction, serial input and output, discrete input and output, scale
data exchange, string manipulation, arithmetical and relational operations, and open,
close, read (get) and write (put) file operations.

Editors
JagBASIC includes a simple line editor that uses the JAGXTREME terminal’s lower
display. When the “BasTerminal” is selected in the serial port setup menu, a remote PC
with a terminal emulator program interfaces with the line editor. These editors permit
creation and modification of JagBASIC programs.

Entering, Editing and
Managing Programs

When using JagBASIC file names of file1.bas through file9.bas, the operator may start
any of nine programs by pressing the FUNCTION key followed by the program number.
This provides a simple way to manage multiple programs as separate modes of
operation and allows larger applications to be divided into smaller, more manageable
programs. The file1.bas program may be designated to automatically start on power-up.
Other file names can be used but must be called up using the JagBASIC LOAD
command, or chained from the main JagBASIC program.

Small JagBASIC programs may be entered and edited on the terminal with an external
keyboard using the lower display. This allows simple programs to be quickly entered or
modifications to larger programs to be made in the field without additional equipment. A
personal computer (PC) is recommended when creating larger programs. A PC can be
directly connected to the terminal through a serial port. The PC, running a terminal
emulator, acts as a monitor and keyboard for the terminal. Using Zmodem protocol over
a serial port or FTP on a JAGXTREME terminal through Ethernet, files can be transferred
between the PC and the terminal.

NOTE: The information in this manual is
specifically for use with JAGXTREME
terminals. For information on using
JagBASIC with JAGUAR terminals, please
refer to the JagBASIC manuals with part
numbers C14839600A or earlier (non-
revision, A revision, or B revision).

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 1-2

JagBASIC Integration and
Security in the JAGXTREME
Terminal

JagBASIC is integrated into the operating environment of the JAGXTREME terminal.
JagBASIC programs reside with the standard terminal program. The JagBASIC interpreter
runs as a separate task using the terminal’s multi-tasking operating system. This allows
the custom JagBASIC program to interact with other terminal tasks and resources using
the terminal’s exclusive shared memory design. All shared memory in the JAGXTREME
terminal may be accessed by the JagBASIC program using this simple construction.

JagBASIC programs are stored as source files then interpreted in the terminal. Source file
storage allows you to edit the program on the terminal and provides the security of
having the source available even if a PC stored copy is not available. The source files
may be retrieved from the terminal for archiving, modification, or duplication. The
JagBASIC interpreter was designed to provide a more secure operating environment
where the program is restricted from accessing and possibly corrupting the standard
functions of the terminal. Access to JagBASIC can be password-protected to limit access
to the source code, or the operator may be given access to all of the standard terminal
functions as well as the custom functions provided by the JagBASIC program.

JagBASIC Encryption
Feature

The JagBASIC program encryption feature prevents unauthorized users from modifying
or copying a JagBASIC program. The program developer can encrypt the JagBASIC
program using the either JagBASIC preprocessor or the new PC JagBASIC programming
utility. The encrypted program file has the “.cpt” name qualifier. When the program is
loaded, the JagBASIC interpreter automatically decrypts the encrypted program before
running it. You cannot save or list the encrypted program using the JagBASIC
interpreter. Also, you cannot extract an encrypted program from the JAGXTREME
terminal using ZMODEM or FTP. Using the JagBasic Preprocessor, place a “-e” on the
command line to encrypt the program. For example,

jbpp filetest.bas file1.cpt -N1 -I1 –e

Using PCJagBASIC Editor, run the preprocessor with the option for output code with
encryption selected.

Compatibility with Scales
and PLCs

JagBASIC will operate in JAGXTREME terminals configured for any type of scale,
including METTLER TOLEDO’s DigiTOL bench/portable scales, high precision scales,
floor scales, truck scales, or industry standard analog load cell scales such as tank or
hopper weighing systems. JagBASIC can also co-exist and communicate through
shared memory with PLC interfaces.

File Transfer
JagBASIC programs and data files are stored in the terminal in a DOS file-compatible
RAMDISK. An FTP communications utility permits these files to be sent between a
JAGXTREME terminal and a PC, using FTP utility software sent over Ethernet. The
optional PCJagBASIC Editor's built-in file transfer utility enables files to be sent serially
between a JAGXTREME terminal and a PC.

Chapter 1: Introduction
File Specifications

(10/01) 1-3

File Specifications
The JAGXTREME terminal file system has a capacity of 1900 KB for program and data
files. The maximum number of files is 96. Individual programs have a limit of 600 lines
of code or 30 KB. The maximum line length and string size is 160 characters. The
maximum number of variables is 200.

If the JAGXTREME terminal's alibi memory is enabled, the RAMDISK space available to
JagBASIC is reduced to 900K bytes. Before configuring alibi memory, it is recommended
that all files be backed up since you will likely lose files in the RAMDISK.

Standards Compliance
JagBASIC is based on the American National Standards Institute (ANSI) standard for
minimal BASIC (ANSI X3.60-1978) with extensions and integration into the JAGXTREME
terminal operating environment by METTLER TOLEDO. Programmers familiar with BASIC
can quickly become proficient in using JagBASIC.

PC Program
Development

METTLER TOLEDO’s PCJagBASIC Editor (P/N 09170301) is recommended for program
development. PCJagBASIC is a tool for programming, debugging, and archiving
JagBASIC programs. PCJagBASIC Editor features:

• Multiple code windows

• Code development without line numbers – label and procedure name support
Document access

• Data access

• Preprocessor with setup selection for JAGXTREME or custom versions

• Alias filename support

• Built-in file upload/download

• JagBASIC command, shared data, and macro help

• Total project archival

• Reference code windows

• New macros: table, I/O, timer, If/Then/EndIf, While, Close

• Built-in debug window

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 1-4

NOTES

Chapter 2: Shared Data
JAGXTREME Terminal Operating Environment and Shared Data

(10/01) 2-1

2 Shared Data

JAGXTREME Terminal
Operating Environment
and Shared Data

Three concepts are fundamental to the way the JAGXTREME terminal handles data within
the terminal’s operating system: Shared Data Database, Shared Data Callbacks, and an
Event Driven Ladder Logic Engine. They enable the terminal to:

• Handle a multitude of actions virtually concurrently,

• Provide fast reaction to internal and external instructions, and

• Provide users with maximum flexibility to meet their application demands.

Shared Data Database
Central to the JAGXTREME terminal’s open architecture is the implementation of a Shared
Data Database. This central table of variables tracks virtually every data value used
within the terminal. Variables containing values corresponding to weight information,
setup and calibration parameters, user input literals, prompts and responses, printer
templates and setpoint information are all stored in this table. The status of physical and
logical discrete inputs and outputs as well as the “mappings” of serial and discrete I/O
connections are also stored. The terminal accesses and uses this database as a central
depository for information used in all functions related to:

• Weighing and process control
• Communication with external printers, bar code readers, and other devices
• Personal computer hosts
• PLCs
• Applications written in the JagBASIC programming language

Shared Data Callbacks

The JAGXTREME terminal couples this database concept with Shared Data Callbacks.
Each operating system task has the shared data variables it uses mapped directly to it.
Whenever a task requires a specific variable or group of variables, their values can be
found in the Shared Data Table. Every time a shared data variable is changed, all
operating system tasks, which use the variable, are identified and notified that a change
has occurred using the Shared Data Callback. When a particular task is notified of a
change, the task is executed, updating all other affected variables and related tasks.

For example, if a logical 1 is written to the discrete logical variable associated with the
pushbutton tare command, the scale task is notified and the process of initiating a tare
undertaken. This affects the shared data variables associated with the displayed weight,
tare weight, and net weight, among others. Changes in these variables initiate other
tasks and affect other variables (e.g. the variable associated with whether or not a net
weight is being displayed). This automatic processing of tasks simplifies interfacing the
terminal to external controls such as a PLC, or to an internal JagBASIC program.

Refer to Chapter 6 of this manual
for information on Shared Data
Variables.

METTLER TOLEDO JagBasic Programmer’s Guide for JAGXTREME Terminals

(10/01) 2-2

Event Driven Ladder Logic
Engine

In traditional ladder logic circuits, an engine continually cycles through the rungs of the
ladder, allowing any changes in the coils to cause a change in the contacts. Wherever
an input is changed, the corresponding output is potentially changed to reflect the
change in input. The JAGXTREME terminal uses the Event Driven Ladder Logic Engine
concept to scan for changes in shared data variables (“coils” or inputs) and to make
resulting changes in other shared data variables, the terminal outputs or displays
(contacts or outputs).

The terminal’s ladder logic creates a smart ladder logic engine. The terminal’s engine
only runs when an event occurs. The event or triggering mechanism could be a change
in a shared data variable, a JAGXTREME terminal message, or the result of some type of
physical input. Once the ladder logic engine is run, the changes cause an “output
engine” to run and make changes in shared data variables, physical outputs, and/or
terminal messages. These may, in turn, cause further “cycling” of the ladder logic
engine and result in further changes.

Shared Data Types
There are four types of Shared Data Variables.

• The first holds the values associated with different scale parameters such as
displayed weight and tare weight. These variables function like fields in a database.
The fields stored include setpoint values, time and date information, and user
programmed literals and prompts. The actual values stored in these variables may
be strings, integers, or double precision floating point numbers. Besides these
values, status or source information may be stored.

• The second type of variable is a level-sensitive logical variable. These values store
a logical 1 or 0 as an integer in a bit field within shared data. These particular
variables are known as “level-sensitive” because they generate a callback when
either a 0 or a 1 is written to the field. These variables indicate the status of a
particular scale condition, such as whether a particular scale is in motion or over
capacity, or whether or not a particular setpoint is feeding or a weight is within a
setpoint tolerance. By reading the values of these variables, the programmer can
determine the status of a particular trait of the terminal without having to use an
actual terminal discrete output.

• The third variable type is an edge-sensitive logical variable. A logical 1 or 0 is
stored as an integer in a shared data bit field. These variables differ from those
above in that they trigger a callback when a 1 is written to the field. When the
“triggered” task is complete, a 0 is automatically written (by the terminal) back to
the field. In terms of some of the operations of the terminal, a 1 written to one of
these variables would be like pressing a button on the terminal front panel. By
using these variables, the programmer could initiate a scale task in the same way
as if a pushbutton was pressed or a discrete input were used.

• The last variable type indicates the status of the physical discrete inputs and outputs
found on the Controller and multi-function boards. The stored logical 1s or 0s
correspond to whether a physical discrete input or output is true or false, on or off. It
may be useful to use these variables to initiate further actions within a program in
conjunction with an external event tied to a physical input or output.

Chapter 3: Setup
Configuring JagBASIC in the JAGXTREME Terminal

(10/01) 3-1

3 Setup

Configuring JagBASIC in
the JAGXTREME
Terminal

The JAGXTREME terminal setup contains a special program block and sub-blocks for
configuring JagBASIC, as shown here.

To access the program block, you must first enter setup by pressing the FUNCTION key
and then SELECT until [Enter Setup?] is displayed. Press ENTER.

Press the SELECT key until [Config JagBASIC] is displayed. Press ENTER.

SW2-2 must be OFF for normal
JagBASIC operation.

Note: Use an anti-static strap when
touching the controller PCB.

Keyboard Select Data Entry Method

Display Select Display
Functionally

Auto Start Enable/Disable JagBASIC on
Power-up

Manual Start Enable/Disable JagBASIC
from FUNCTION key

Initialize
RAMDISK

Delete All Data in RAM Disk?
(Y/N)

Password
Maintenance

Change or enable
 Password

Reset to Factory Are You Sure?

Configure
JagBASIC

Send RAM Files Files to PC? Files from PC?

Password If Password is enabled, enter
the password or press ENTER.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 3-2

At the [Passwd?] prompt, enter a password. Password security allows the JagBASIC
programs to be protected from unauthorized changes. Press ENTER. Or, just press
ENTER if no password has been previously configured. Entry of an incorrect password
will cause the terminal to display the message [Access Denied.]

At the [Keyboard] prompt (which permits designation of the keyboard input device that
will pass characters to a JagBASIC program when an INPUT or INKEY statement is
executed and of the device that will be used for the BASIC command line mode) press
ENTER to access the sub-block and then press SELECT to choose:

• [None]—No keyboard input is required. This would be used with programs that
monitor other I/O then act in the background without operator intervention.

• [Keypad]—The terminal keypad is used only for operator input to JagBASIC. The
normal JAGXTREME keypad functions are not available.

• [Kboard]—External QWERTY keyboard or remote PC with terminal emulator attached
to the terminal will be used for operator input to JagBASIC.

• [Both]—Both the terminal keypad and an external keyboard will input to JagBASIC.

At the [Display] prompt (which permits designation of the display output device that will
be used by a JagBASIC program when a PRINT statement is executed), press ENTER to
access the sub-block and then press SELECT to choose:

• [None]—No display output device is to be used.

• [JAGUAR]*—The terminal's lower display is to be used. This display will also be
used for standard terminal functions.

At the [Autostart?] prompt (which enables or disables the automatic start up of the
file1.bas JagBASIC program on power up) press ENTER to access the sub-block and
then press SELECT to choose Y(es) to use the automatic program start feature or N(o) to
disable it. If you select Y(es), JagBASIC will automatically start file1.bas program on
power up and when you exit setup.

If you selected N(o) the [Manual Start] prompt appears, which allows you enable or
disable the manual mode startup of JagBASIC programs by pressing the FUNCTION key.
Select keys 1 to 9 to represent file1.bas through file9.bas.

At the [Send RAM Files] prompt, press ENTER to access the sub-block.

At the [Files to PC? N] prompt, press ENTER to select N(o) or press SELECT and then
ENTER to select Y(es).

• If you choose Y(es), the terminal prompts you with [Are You Sure?]. Choose Y(es)
to place the terminal in the mode to transmit its RAMDISK files to a PC.

• If you choose N(o), you will be prompted with [Files From PC?].

• If you select N(o), you will go the next prompt.

• If you select Y(es), you will see the prompt [Are You Sure?]

• If you select Y(es), you will place the terminal in a mode to receive files from a
PC. The terminal will display [Recving from PC.] The file transfer is initiated
from the PC. Refer to the chapter on programming fundamentals for details of
this operation. If communication with the PC is not established, the terminal will
time out and return to the sub-block.

At the [Init RAM Disk?] prompt, you can delete all files in the terminal’s RAMDISK. Press
ENTER to access the sub-block. The terminal will then prompt with [Are You Sure?] You
must then choose Y(es) to delete the RAMDISK files. The display will read [Please
Standby] and then the system will reboot before displaying [BASIC]. You must re-enter
setup and scroll through the sub-blocks until you reach the [Password Maint] prompt.

Make sure the password is written
down in a secure place. If the
password is lost, the only way to re-
enter the JagBASIC Configuration menu
is by performing a Master Reset which
will erase all configuration data in the
terminal and set all values to factory
defaults!

You will also lose JagBASIC files stored
on the ramdisk when a Master Reset is
performed. Do not perform a Master
Reset unless you can reload the
JagBASIC files!

*At the [Display] prompt, the
choices are None or JAGUAR,
with JAGUAR representing the
JAGXTREME terminal.

NOTE: Use caution when
selecting this option since the
files cannot be recovered once
they are deleted!

Once you enter a password, be sure
to record it in a secure place and
provide it to all persons who will
need to access the JagBASIC
program block.

Chapter 3: Setup
Connecting the Terminal to a PC

(10/01) 3-3

At this prompt, you can configure a security password to be configured for the JagBASIC
programs. Press ENTER to access the sub-block. The terminal will then prompt with
[Passwd?] Enter a password of up to eight characters and then press ENTER. After
exiting the program block this time, you will need this password to re-enter the block.

Reset to Factory?—This sub-block allows you to reset the Config JagBASIC program
block parameters to their factory settings.

Connecting the Terminal
to a PC

Refer to the following diagram for proper cable connections to the terminal’s serial ports
COM1 and COM2. COM1 and COM2 are located on the Controller board, which is
positioned in the top slot.

Figure 3-1: Controller PCB Rear View

The COM1 and COM2 terminal strips will accommodate wire sizes ranging from 23 to
16 AWG. The terminal strips may be removed to facilitate wiring. Removal of the
terminal strips also permits easier viewing of the terminal designations printed on the
board back plate.

L N K

T / R

METTLER TOLEDO

A

K E Y B O A R D P A R 2 P A R 1 C O M 1 C O M 2

CONTROLLER

4 2 2 / 4 8 5
2 3 2C L2 3 2

+
5V

O
UT

1
O

UT
2

O
UT

3
O

UT
4

IN
1

IN
2

IN
3

IN
4

G
N

D

T R T+ R+ R- T R T+ T- R+ R-G
N

D

+
20

V

G
N

D
/C

LT
-

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 3-4

The following diagram and table describe COM1 (or COM2) pin-to-pin cable
connections using an RS-232 cable to a PC serial port. The maximum recommended
cable length for RS-232 communications is 50 feet (15.24 meters.)

JAGXTREME
COM 1

 PC Serial
Port DB-9

PC Serial
Port DB-25

TXDA 2 REC 3 REC

RXDA 3 TR 2 TR

GND 5 SGnd 7 SGnd

CLTX+ 7 RTS 4 RTS

CLRX+ 8 CTS 5 CTS

CLRX- 4 DTR 6DSR

 1 DCD 8 DCD

 6 DSR 20 DTR

Figure 3-2: RS232 Connections to Terminal and PC Serial Port

The PC cable can be used for five different applications:

• Flashing new software into the terminal through COM2.

• JagBASIC file transfer through COM1.

• LPRINT device output to a terminal emulation program or communications program
to receive data sent using LPRINT, L|ST, VARS, etc. Output from the terminal will be
sent to the first port configured for demand output.

• PCJagBASIC Editor allows a PC terminal emulator to act as a program development
interface for JagBASIC.

• JagBASIC program interface directly to serial ports for input and output.

You can connect the JAGXTREME terminal to a personal computer (PC) using either of
these methods:

• A 10 BASE-T Category 5 Cross-over cable.

• An Ethernet Hub and standard patch cables.

JAGXTREME
Terminal -

Ethernet Port

Personal
Computer -
Ethernet Port

Chapter 4: Programming Fundamentals
JagBASIC Files

(10/01) 4-1

4 Programming Fundamentals

JagBASIC Files
JagBASIC program files are stored in the JAGXTREME terminal’s battery backed
RAMDISK file system. This file system is equivalent to the file system on a PC.

Naming Conventions
JagBASIC enables you to run nine program files using the function key followed by a
digit. The files are named as follows:

• file1.bas

• file2.bas

• file3.bas

• file4.bas

• file5.bas

• file6.bas

• file7.bas

• file8.bas

• file9.bas

Throughout the documentation, these files are referred to as filex.bas files. When using
other names, the names must follow the MS-DOS file name conventions -- an 8-
character prefix and 3-character suffix (normally .bas). Characters A-Z and 0-9 can be
used. Some characters are reserved and cannot be used in file names, such as #, ^,
%, *, (,), {, }, [,]. These files can only be called up and run using the BASIC
interpreter commands RUN or LOAD, or called from within another program using the
CHAIN command. See Chapter 5, JagBASIC Commands, for more information.

Program Size
The maximum size for a program is 600 lines and 30 KB. The maximum number of
variables is 200. The maximum string size and line size is 160 bytes.

Line Numbers
JagBASIC requires the use of line numbers for every line of the BASIC program.
Programs that start line numbering at 1 and are numbered sequentially (1, 2, 3, 4, etc.)
execute most efficiently on the JAGXTREME terminal. The largest line number permitted is
30,000. The JagBASIC preprocessor supports symbolic labels and automatically
numbers the program lines.

Line Length
Line lengths are limited to 160 characters per line, therefore string sizes are limited 160
characters also.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 4-2

Multiple Statements on a
Line

Unless noted, you can put multiple statements on a line if they are separated by a colon
(:). The program will be more legible if only single statements are placed on a line.

Data Files
You can use data file numbers from 0 to 7 with JagBASIC. The JAGXTREME terminal’s
RAMDISK has 1900 KB of file space available. Using the JAGXTREME terminal's alibi
memory feature reduces the amount of RAM disk space to 900 KB and a maximum of
96 RAM disk files.

Operator and Program
Controls

Automatic Startup
Selecting Automatic Startup in the JagBASIC configuration allows a hands-off, power-on
startup of the JAGXTREME terminal. When Automatic Startup is selected, the file1.bas
program runs at startup and on exit from setup mode. The JAGXTREME terminal does
not auto-start the JagBASIC program when existing setup. JagBASIC must be manually
restarted by an operation.

Starting JagBASIC
Programs

The nine JagBASIC programs file1.bas through file9.bas may be started by pressing the
FUNCTION key followed by the program number. For example, to run file3.bas, press the
FUNCTION key then the number 3. This provides a simple way of managing multiple
programs as separate modes of operation and allows larger applications to be divided
into more manageable programs.

Stopping JagBASIC
Programs

Every program written in JagBASIC should include an END statement to cause
termination. A program may be stopped at any time by pressing the ESC key twice, as
long as the EXC key has not been disabled by the JagBASIC code. A program will
automatically terminate any time the JAGXTREME terminal is placed into setup from the
terminal's front panel.

Note: A JagBASIC program will not automatically terminate if remote access is attempted
through the embedded web server. The JagBASIC program will have to be stopped
before remote access to setup is permitted.

Chapter 4: Programming Fundamentals
Using the Terminal BASIC Interpreter

(10/01) 4-3

Interaction of JagBASIC
Program with JAGXTREME
Web Browser

The JAGXTREME web browser will not permit a user to enter setup when there is a
JagBASIC program running. The JAGXTREME shared data variable t_61e is set to "1"
to indicate to the JagBASIC program that the web browser operator is attempting to enter
setup. The JagBASIC program may optionally monitor this variable and terminate itself.
Once the program terminates, the web browser operator can then instruct the
JAGXTREME to enter setup. An operator at the JAGXTREME can also manually start
JagBASIC through the function keys or by cycling power at the JAGXTREME terminal.

Switching the Display
between JagBASIC and the
Terminal

While a JagBASIC program is running, press the ESC key once to assign the lower
JagBASIC display back to the JAGXTREME terminal. JagBASIC will continue to run. Only
the display is changed. To return to the JagBASIC display, press SELECT.

Securing a JagBASIC
Program

Unencrypted JagBASIC programs can be secured so that a user cannot alter or illegally
procure a program. To secure a program:

1. Set the password in the JagBASIC Setup menus.

2. Set AutoStart=Y in the Setup menus.

3. Within the JagBASIC program, set Manual Stop Enable(bas89)=0. This prevents a
user from stopping the program.

4. Name your startup program file1.bas.

Refer to page 1-2 for information on the JagBASIC program encryption option.

Using the Terminal
BASIC Interpreter

You may use a PC terminal emulator or the terminal’s display and an external keyboard
to create and edit JagBASIC programs. Programs are entered at the JagBASIC interpreter
prompt. With JagBASIC enabled and no programs running, press the ESC key to display
the interpreter “BASIC:” prompt. From this prompt you may start typing lines of BASIC or
type in a BASIC command. Entering a line of code to the interpreter without a line
number will cause the interpreter to execute the line immediately.

To disable the stop program (press ESC
twice) and switch display (press SELECT)
functionalities, write to the shared data
variables /bas86, /bas89, and /bas87,
respectively, in the program file.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 4-4

Creating and Editing
JagBASIC Program Files

Using PCJagBASIC
PCJagBASIC is a self-contained development environment that handles the editing,
debugging, and file management of JagBASIC programs. The software is Windows-
compliant and contains application help files.

Using a PC
You may use a personal computer (PC) to create and edit the JagBASIC program file
using either a DOS or Windows text editor. Files must use standard DOS attributes, such
as date, time, length, and reserved characters.

When you have completed writing the program in the text editor, send the text file to the
terminal's COM1 serial port using one of the following:

• A communications program such as RIPterm©

• HyperTerminal if using Windows 95 or higher.

• Procomm Plus for Windows

The text file will be stored in the RAMDISK. The file transfer uses standard Zmodem file
transfer protocol. The JagBASIC RZ command initiates receiving files at the terminal from
the PC using the ZMODEM protocol over the BasTerminal serial communication line. The
JagBASIC SZ command initiates sending files from the terminal to the PC. If you want to
use the RZ and SZ commands from the BasTerminal, you need to set up the serial
communications to use the 8-bit, No Parity data format

File Transfers
For file transfers, setup the PC for 8-bit, No Parity, 1 Stop Bit. These settings are
independent of the serial port settings in the terminal. The file names will be displayed
on the terminal's lower display as they are transferred. Always start the file transfer
process on the PC, then on the terminal.

Sending Files to the
Terminal

The JAGXTREME terminal is capable of receiving files using standard Zmodem file
transfer protocol.

To send files to the terminal from your PC:

1. Set the password in the JagBASIC Setup menus (optional).

2. Select Zmodem protocol at the PC communications utility.

3. Type in or select the file, but do not start the transfer.

4. Set up the terminal for receiving files.

• If you have a PC console for JagBASIC, type “RZ” at the JagBASIC interpreter
prompt and then press ENTER. Proceed to step 8. You do not need to complete
step 9.

• If you do not have a PC console for JagBASIC, press the FUNCITON key. Press
SELECT until [Enter Setup?] is displayed and then press ENTER. Proceed to
step 5.

Set the serial port to 9600,8,N,1 to
match the file transfer fixed settings of
9600,8,N,1. This enables you to
upload and download files, plus
receive output into your
communications program without
requiring any parameter changes.

The terminal will always use
9600,8,N,1 for file transfer, overriding
the serial port defaults.

Chapter 4: Programming Fundamentals
Using the JagBASIC Preprocessor

(10/01) 4-5

5. Press SELECT until [Config JagBASIC] is displayed, then press ENTER.

6. When [Passwd?] is displayed, enter the password. If no password has been
programmed, press ENTER.

7. Press SELECT until [Send RAM Files] displays, then press ENTER. Press ENTER
again when [Files To PC? N] displays. When [Files From PC? N] is displayed,
press SELECT to change the prompt to Y(es), and then press ENTER again.

8. Start the communications program file transfer.

• If using RIPterm, press the Page Up key, select Zmodem then type in the file
name.

• If using HyperTerminal, click Transfer, Send File, then type in the file name, or
use browse to locate the file. When the file has been selected, click OK.

9. When the PC file transfer has been started, press ENTER on the terminal keyboard to
start the transfer. As the files are sent to the terminal, the file names will display on
the lower terminal display.

Receiving Files from the
Terminal

The PC receives all unencrypted files currently residing in the terminal RAMDISK,
including BASIC files and any data files that exist. Any encrypted file (extension of .cpt)
cannot be sent to the PC.

To set up the terminal to send files to the PC:

1. If you have a PC console for JagBASIC, type “SZ” at the JagBASIC interpreter prompt
and then press ENTER. Proceed to step 5; however, you do not need to press
ENTER in step 5.

Or, if you do not have a PC console for JagBASIC, press the FUNCTION key, then
SELECT until [Enter Setup?] displays. Then press ENTER.

2. Press SELECT until [Config JagBASIC] is displayed, then press ENTER.

3. When [Passwd?] is displayed, enter the password, or if no password has been
programmed, just press ENTER.

4. Press SELECT until [Send RAM Files] is displayed, then press ENTER. When [Files
To PC? N] is displayed, press SELECT to change the prompt to Y, then press ENTER
again to display [Are You Sure? N]. Press SELECT to change the N to Y.

5. If the autodownload function is not enabled in your communications software, start
the download in the PC software program, then press ENTER on the terminal
keyboard to start the transfer.

Using the JagBASIC
Preprocessor

The JagBASIC preprocessor can translate from the free line format permitted in PC BASIC
to the strict line numbering format required by JagBASIC, strip out memory consuming
comments (REM statements), and warn of JagBASIC constraint violations. The
JagBASIC preprocessor is available as part of the JagBASIC programmers kit.

Set the serial port to 9600, 8N1 to
match the file transfer fixed settings
of 9600,8,N,1. This enables you to
upload and download files, plus
receive output into your
communications program without
requiring any parameter changes.
The terminal will always use
9600,8,N,1 for file transfer,
overriding the serial port defaults.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 4-6

User Environment
The JagBASIC preprocessor is a DOS-based, command line oriented utility. It is invoked
with command line arguments as follows: jbpp infile outfile (option)

infile Input text file, with free format statement labels.

outfile Output text file, with JagBASIC line numbering, and error messages.

option Any of a combination of command line options, including the following:

-R Pass through all REM statements from the infile to the outfile. Default is
eliminating REM statements from the output file.

-NXXX Start statement numbering with XXX. Default starting number is 100.

-IYYY Increment statement numbering by YYY. Default increment step is 10.

-W Do not compress white space within a statement. Default is to compress
multiple consecutive space (or tab) characters to a single space (or tab)
character.

The output file is suitable to be downloaded to a JagBASIC enabled terminal.

Example: jbpp bulkway.bas filel.bas -N1 -I1.

Run Time Operation
The primary purpose of the preprocessor is to add line numbers to all statements and to
replace symbolic labels with numeric labels. Two passes through the input file are
required. The first creates a list of symbolic labels. The second adds line numbers and
performs error checking on the resulting output file. Symbolic labels are typically
identified as the first single word on a line that is followed by a colon. In the following
example, the “begin” is a symbolic label.

Example 1: IF x = 1 THEN GOTO BEGIN
y = 1
begin:

Example 2: GOSUB CheckMotion
.
.
CheckMotion:
RETURN

The JagBASIC preprocessor identifies symbols that are preceded by an “xx” as symbolic
labels, allowing the JagBASIC program to build state tables within the program. The
symbols in the following statement are interpreted as symbolic labels.

Example: FillCycle:
.
.
CloseGates:
.
.
CaptureGross:
.
.
RecordGross:
.
.
DATA xx FillCycle, xx CloseGates, xx CatureGross, xx RecordGross

Chapter 4: Programming Fundamentals
Using the JagBASIC Preprocessor

(10/01) 4-7

Line Number Substitution
Label numbering normally uses 100 as the first statement in the JagBASIC program and
increments statement numbers by 10. Both defaults can be overridden using optional
command line arguments. One or more blank lines encountered in the source file
causes the next line number to be adjusted upward to the next nearest module 100.
Line numbers encountered in the input file are treated just like other symbolic labels and
are substituted accordingly.

Programs execute most efficiently if 1 is set as the first line number and subsequent line
numbers are incremented by 1.

White Space, Blank Line, and Comment Handling
Multiple consecutive space (or tab) characters encountered within an input file statement
are compressed to a single space (or tab) character unless the user specified otherwise
via optional command line argument. One or more consecutive blank lines encountered
in the input file are output as a single blank line in the output file. Remarks (REM
statements) are eliminated unless instructed otherwise by the user via an optional
command line switch.

Error Checking
Several JagBASIC specific error conditions are checked in the preprocessor. In each
case, an error message is added to the output file on a new line following the line
containing the error. The error message is also output to the console. A count of total
errors is provided on the console and at the end of the output file at the completion of the
preprocessor. No error count message is added to the output file if no errors are
detected.

Exceeding the maximum number of lines or maximum program size are fatal errors.
Preprocessor operation stops at the first occurrence of a fatal error condition.

General Error Messages
The preprocessor can return the following general error messages:

"**Error** Label Not Found! Input File Line #"

—When a GOTO or GOSUB is followed by a label, the label should appear in the
JagBASIC file.

"**Error** Maximum Char. Per Line(80) Reached! Input File Line #"

—The maximum characters per line are 80 characters.

"**Error** Duplicate Label Found! Input File Line #"

—A label was previously found in the document. The second label is ignored.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 4-8

Fatal Error Messages
The preprocessor can return the following fatal errors. The preprocessor terminates when
the first fatal error is encountered.

"**Error** No Label! Input File Line #"

—When a GOTO or GOSUB is present a label must follow the GOTO or GOSUB.

"**Error** Maximum Line #(30000) Reached! Input File Line #"

—The maximum line number is 30,000.

"**Error** Maximum Number Of Output Lines Reached(600)! Input File Line #"

—The maximum number of lines allowed in the output file is 600.

"**Error** Maximum Output File Size Reached(30000 Bytes)!"

—The maximum byte size of the output file is 30,000 bytes.

Serial Terminal Support
JagBASIC supports a serial terminal, such as a dumb terminal or a PC running a
terminal emulator, as a console for JagBASIC program development and debugging.
You can type commands at the keyboard and view the typed commands on the serial
terminal display. The serial terminal must be attached to a serial port on the local
terminal. BasTerminal must be assigned to the serial port in the Serial Config menus.
BasTerminal is also used for the debug window in PCJagBASIC Editor.

Configuring BasTerminal
The Configure Serial menus allow you to setup the JagBASIC keyboard input from a
serial port. Select the appropriate port and assign the BasTerminal connection. Input
characters from the serial port are routed to JagBASIC. This connection is for keyboard
input to the JagBASIC interpreter. The BASIC interpreter displays the “BASIC:” prompt and
input keystrokes to the BasTerminal. You must assign the keyboard to JagBASIC in the
JagBASIC setup menus. To transfer files from the PC to JagBASIC, use 8 bits, no parity.

TPRINT Command
You can output messages to the BasTerminal from a BASIC application using the
TPRINT command. It has the same syntax as the PRINT and LPRINT commands. This is
a simple program for entering data and echoing it to BasTerminal using the INKEY$
function and TPRINT.

10 PRINT "enter line"
30 c$=INKEY$
40 IF C$="" THEN GOTO 30
50 IF C$=CHR$(08) THEN GOTO 90
60 TPRINT c$;
70 x$=x$+c$
80 GOTO 30
90 TPRINT ""
100 TPRINT "input line= ";x$
110 GOTO 10

Configuring LPRINT Device
The LPRINT device is the first demand print port assigned to Scale A in the serial setup
menus. In a typical development setup, both BasTerminal and LPRINT device would be
assigned to Com Port 1. Com Port 1 is also the default Zmodem file transfer port.

Chapter 4: Programming Fundamentals
Serial Terminal Support

(10/01) 4-9

Special Keys
BasTerminal translates the following standard serial input keys to these terminal internal
key values. You can use the following keys on a standard serial keyboard to simulate
the function keys on JAGXTREME keypad.

Serial Input Character JAGXTREME Character (Hex Value)

Back Space (0x08) is translated to Delete (0x7f)

Tab (0x09) is translated to Select (0x05)

Escape (0x1b) is translated to Escape (0x02)

Enter (0x0d) is translated to Enter (0x08)

Ctrl+A (0x01) is translated to Function (0x01)

Ctrl+B (0x02) is translated to Escape (0x02)

Ctrl+C (0x03) is translated to Memory (0x03)

Ctrl+D (0x04) is translated to Tare (0x04)

Ctrl+E (0x05) is translated to Select (0x05)

Ctrl+F (0x06) is translated to Clear (0x06)

Ctrl+G (0x07) is translated to Zero (0x07)

Ctrl+H (0x08) is translated to Enter (0x08)

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 4-10

NOTES

Chapter 5: JagBASIC Commands
Interpreter Commands

(10/01) 5-1

3/99

5 JagBASIC Commands
The JagBASIC commands are broken into 12 groups:

Interpreter Commands—perform file and program maintenance functions, transfer files,
and aid in debugging.

Variable Commands—assign values to variables, define global variables, exchange
variable values, access the terminal’s shared database, declare arrays, read values from a
DATA statement and assign them to variables, and allow DATA statements to be reread
from a specified line.

Flow Control and Operator Commands—repeat a section of the program; branch to a
specified line number; execute a sub-statement depending on specified conditions; provide
logical operators for use in decision statements; clear the JagBASIC execution stacks; send
program control to the first line of the current program, and branch to a location specified
by a variable’s value.

Math Commands—execute trigonometric, logarithmic and exponential, conversion,
rounding and truncation, random number generating, and other arithmetic operations.

String Commands—extract part of a string, convert decimal numbers to hexadecimal or
octal numbers, convert a character to ASCII code and the reverse, create "filler" strings,
count the number of characters in a string or the number of bytes required to store a
variable, display the string representation of a number, locate one string within another
string, and interpret the string entered by the user as though it were a number.

Simple I/O Commands—sound the terminal beeper on a specified input or output,
generate prompts, accept user input from the keyboard, check for key presses, and format
output with tabs and spaces.

Serial I/O Commands—access files; open or close a serial port; flush received data in the
BIOS serial input buffer; read input from the keyboard or serial port; output data to a
terminal serial COMx port; print formatted output on the LPRINT device; output data to the
specified serial port; and assign an output line width to the LPRINT device or a file.

File Commands—open and close a file; convert strings to numbers and the reverse; read,
write, and delete records from the indexed sequential file; test for the end of a file; allocate
space for variables in a random-access file buffer; identify files as indexed sequential files;
identify which field in a record is the index key; read and write to a sequential file; get
records from and put records in an indexed file; read all characters of an entire line; return
the current position within a file; and move data into a random-access file buffer.

Real-Time Process Control Commands—allocate and de-allocate events; suspend
program execution until an event trigger causes program execution to resume; clear
outstanding event triggers; disable asynchronous event triggers; re-enable asynchronous
event triggers after a critical section of code; return the state of an event; enable
asynchronously monitoring of an event; enable ladder logic rungs.

Timing Commands—set or return the terminal system date and time; suspend program
execution for the of specified number of milliseconds; start and stop the timer; and return a
double precision floating point number that contains the elapsed time in seconds.

Error Trapping Commands—return the runtime error code for the most recent error; return
the line number where the error occurred, or the closest line number before the line where
the error occurred; simulate an occurrence of an error; and enable error handling and,
when an error occurs, directs your program to an error handling routine.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-2

TCP/IP Commands – allow JagBASIC application programs to use TCP/IP
communications. (Only available in JAGXTREME terminals.)

Each group contains examples and information on the command's usage and syntax.
Some commands are discussed in two places in the chapter since they apply to more than
one area. JagBASIC syntax and program examples use the following conventions:

Commands are not case-sensitive.

Square brackets [] signify optional information.

Divider bars | signify the available choices.

Interpreter Commands
JagBASIC programs can be entered in the JagBASIC interpreter. The interpreter provides a
secure operating environment where programs are restricted from accessing and corrupting
the terminal’s standard functions. Interpreter commands are typed at the "BASIC:" prompt to
perform a function. With JagBASIC enabled and no programs running, press ESC to get the
BASIC: prompt. Start typing lines of JagBASIC or a JagBASIC command. The interpreter’s
program and file maintenance commands enable you to:

• Close all files, release file buffers, clear all common variables, set numeric variables
and arrays to zero, and set string variables to null.

• End a program and close all files.

• Delete a specific program line or a range of lines.

• Display the RAMDISK directory on the LPRINT device.

• Free the memory used by an array.

• Load and delete files from the RAMDISK.

• Save the current BASIC program to the RAMDISK with the specified file name.

• List all variables, or all or part of the program, to the LPRINT device.

• Clear the current program and all variables from memory.

• Execute the current file in memory.

• Terminate program execution and return to command level.

• Add comments or reference remarks to the code listing.

• Trace program execution for debugging purposes.

• Initiate a Zmodem file receive or transfer between serial port 1 and the RAMDISK.

• Insert/clear breakpoints

• Insert/clear watchpoints

• Resume execution after break

• Step execution after break

• Show variable’s name and current value

Chapter 5: JagBASIC Commands
Interpreter Commands

(10/01) 5-3

This section discusses the following JagBASIC interpreter commands:

Command Usage
BREAK Stops execution of program at line number
CLEAR Closes files, releases file buffers, clears common variables, sets numeric

variables and arrays to 0, sets string variables to null. Can also be used
to clear BREAK or WATCH.

DELETE Deletes a specific program line or a range of lines.
DIR Prints the RAMDISK directory on the LPRINT device.
END Ends a program and closes all files.
ERASE Frees the memory used by an array.
KILL Deletes the specified file from the terminal RAMDISK.
LIST Lists all or part of a program to the LPRINT device.
LOAD Loads a file (filename.bas) from the RAMDISK into memory.
NEXTLINE Displays next line number to execute or sets a “new” next line
NEW Clears the current program and all variables from memory.
REM Enables you to add any comments or reference remarks to the code

listing.
RESET
KEYS

Recovers control of the keypad and keyboard for program editing or
accessing setup.

RUN Executes the current file in memory or resumes execution after a BREAK.
RZ Initiates a Zmodem file receive over serial port 1 into the RAMDISK file

system.
SAVE Saves the current BASIC program in memory to the RAMDISK with the

specified file name.
SHOW Displays last line executed, the variable name and current value
STEP Executes next line number after BREAK
STOP Terminates program execution; returns to command level or executes

temporary break.
SZ Initiates a Zmodem file transfer over serial port 1 from the RAMDISK.
TRON
TROFF

Enables and disables tracing of program statements.

VARS Prints a list of all variables to the LPRINT device.
WATCH Monitors variable during execution

BREAK
Usage
A breakpoint is 1 of up to 20 line numbers. JagBASIC compares the breakpoints with the
next line number to execute. If JagBASIC finds a match, it stops execution and displays the
next line number to execute in square brackets. You can remove a breakpoint from the list
with the BREAK OFF option or by clearing all breakpoints with the CLEAR or CLEAR BREAK
statements.

The BREAK command without any parameters displays the current list of all breakpoints.

Syntax
BREAK linenumber [OFF]

Example
BREAK 100

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-4

CLEAR
Usage
Closes all files, releases file buffers, clears all common variables, sets numeric variables
and arrays to zero, and sets string variables to null. Used to reinitialize all variables to zero
or to null. Clears all break and watch points.

Syntax
CLEAR [BREAK l WATCH]

Example
CLEAR (Clears both break points and watch points)

CLEAR BREAK (Clears break points only)

CLEAR WATCH (Clears watch points only)

DELETE
Usage
Deletes a specific program line or a range of lines.

Syntax
DELETE line[-line]

line The number of the line in the program that you want to delete. If a range of
lines is deleted, the first, the last, and all lines inclusive in the range are
deleted.

Example 1
DELETE 40

Example 2
DELETE 40-100

DIR
Usage
Prints the RAMDISK directory on the LPRINT device.

Syntax
DIR

Example
DIR

END
Usage
Ends a program and closes all files. If a program contains subroutines, an END statement
should be placed between the main program and the first subroutine to prevent you from
inadvertently running the subroutine. An END statement is executed implicitly at the end of
every program.

Syntax
END

Chapter 5: JagBASIC Commands
Interpreter Commands

(10/01) 5-5

Example 1
10 PRINT "Program Over."
20 END

Example 2
520 IF K>1000 THEN END ELSE GOTO 20

ERASE
Usage
Frees the memory used by an array. Arrays may be redimensioned after they are erased so
the memory space allocated may be used for other purposes.

Syntax
ERASE array name [,array name]...

array name The name of the array that you want to erase from memory.

Example
200 DIM B(250)

.

.

.

450 ERASE B

KILL
Usage
Deletes the specified file from the terminal RAMDISK and frees the space it occupied.

Syntax
KILL "filename.bas"

filename.bas The name of the file that you want to delete.

Example 1
KILL “file4.bas”

Example 2
10 KILL “data2.bas”

LIST
Usage
Lists all or part of a program to the LPRINT device.

Syntax
LIST [startline-endline]

Startline Range of line numbers that you want to list to the LPRINT device.

endline Startline is the first line to print and endline is the last line to print. If startline
and endline are not specified, the entire program will be listed.

Example 1
LIST

Example 2
LIST 10-20

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-6

LOAD
Usage
Loads a file from the RAMDISK into memory. LOAD closes all open files and deletes all
variables residing in memory before loading the new file.

Syntax
LOAD “filename.bas”

filename.bas The name of the file that you want to load into memory. If the extension
and end quotes are omitted, .bas is assumed.

Example 1
LOAD “file1.bas”

Example 2
LOAD “TEST

NEW
Usage
Clears the current program and all variables from memory.

Syntax
NEW

Example
NEW

NEXTLINE
Usage
NEXTLINE displays the next line number to execute or send a new next line when you set
the optional line number. JagBASIC displays the new line number to confirm the selection.
If you enter a nonexistent line number, JagBASIC retains the current next line. Square
brackets surround the displayed line number. You use RUN to resume execution. If you use
NEXTLINE to reposition the program into or out of an execution block, you will likely get a
program execution error after execution resumes. If there is no program currently executing,
NEXTLINE displays a [0] line number.

Syntax
NEXTLINE [linenumber]

Example
NEXTLINE

NEXTLINE 100

RESETKEYS
Usage
The RESETKEYS command sets the JagBASIC keyboard parameters back to a known state.
(Autostart to "N" and Manual Start to ""N".) It is used primarily when debugging a program
that takes control of the keyboard parameters. If the program crashes, you can use the
RESETKEYS command to recover control of the keyboard for program editing and of the
keypad for accessing setup.

Syntax
RESETKEYS

Example
RESETKEYS

Chapter 5: JagBASIC Commands
Interpreter Commands

(10/01) 5-7

REM
Usage
Enables you to add comments or reference remarks to the program code. This information
is non-executable and is typically used to describe or explain the program operation. The
JagBASIC preprocessor deletes all REM statements in building the executable JagBASIC
program.

Syntax
REM comment

comment Text in any combination of characters.

Example
10 REM This is a comment.

RUN
Usage
Executes the current file in memory. If no program is resident in memory when RUN is
executed, JagBASIC returns to the command prompt. Resumes execution at next line
number after BREAK (JAGXTREME only).

Syntax
RUN [“filename.bas”]

filename.bas The name of the file that you want to execute. All open files will be
closed and the new program loaded into memory and executed. If a
filename is not specified, the current open program is executed.

Example
RUN “test.bas”

RZ
Usage
Initiates receiving files into the terminal's RAMDISK file system from the PC using ZMODEM
protocol over serial port 1.

Syntax
RZ

Example
RZ

SAVE
Usage
Saves the current BASIC program in memory to the RAMDISK with the specified file name.

Syntax
SAVE “filename.bas”

filename.bas Name under which you want to save the current BASIC program.

Example
SAVE “file1.bas”

SHOW
Usage
SHOW displays the last line number executed in square brackets, the variable name, and
its current value. SHOW is a program debug command.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-8

Syntax
SHOW variable

Example
SHOW a$

STEP
Usage
Executing the STEP command at a breakpoint executes the next line number and stops.
Pressing the ENTER key at a breakpoint performs the STEP function. STEP is a program
debug command.

Syntax
STEP

Example
STEP

STOP
Usage
Terminates program execution and returns to the command level. STOP may be used
anywhere in a program to terminate execution. When STOP is encountered, the terminal
displays the message: "end pgm." A STOP command with optional line number inserts a
temporary breakpoint at the line number (JAGXTREME only). JagBASIC removes the
temporary breakpoint after the line executes and the execution stops at this BREAK. Only
one temporary breakpoint can be used at a time.

Syntax
STOP [line number]

Example
10 INPUT A, B, C

20 PRINT A, B, C

30 STOP

STOP 200

Chapter 5: JagBASIC Commands
Interpreter Commands

(10/01) 5-9

SZ
Usage
Initiates sending files from the terminal's RAMDISK to the PC using a Zmodem file transfer
over serial port 1.

Syntax
SZ ["filename"]

filename The name of the file to be transmitted. If you do not specify a file name,
Zmodem transmits all files in the RAMDISK.

Example
SZ "file1.bas"

TRON, TROFF
Usage
Enables and disables tracing of program statements. TRON and TROFF can be used to help
debug the program.

TRON (Trace On) enables a trace flag that prints each line number of the program as it
executes. The numbers appear enclosed in brackets. The output will use the LPRINT device.

TROFF (Trace Off) disables the trace flag.

Syntax
TRON
TROFF

Example
10 B=10
20 FOR C=1 to 2
30 D=B +10
40 PRINT B;C;D
50 B=B + 10
60 NEXT
70 END
TRON
RUN
[10] [20] [30] [40] 1 10 20
[50] [60] [30] [40] 2 20 30
[50] [60] [70]
TROFF

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-10

VARS
Usage
Prints a list of all variables to the LPRINT device.

Syntax
VARS

Example
variable <sb> INTEGER val: <0>

variable <sa> INTEGER val: <0>

variable <w2> STRING val: < 100.00>

variable <w1> STRING val: < 200.2>

4 variables 90 max

WATCH
Usage
WATCH is a program debug command. A watchpoint is a variable that JagBASIC monitors
during execution. When the program writes a value to the variable, WATCH displays the
line number of the statement in square brackets, the variable name, and its new value. If
you use the optional BREAK parameter, the program stops after the current line executes.
Multiple statements within a line that affect the variable value will result in multiple display
lines before execution stops. You can remove a watchpoint from the list with the WATCH
OFF option or by clearing all watchpoints with the CLEAR or CLEAR WATCH statements. The
WATCH command without any parameters displays the current list of all watchpoints.

Syntax
WATCH variable [BREAK l OFF]

Example
WATCH a$

Variable Commands
JagBASIC enables you to represent two fundamental kinds of data: strings and numbers.
Number data is further divided into “types.” JagBASIC has three numeric data types and
one string type.

Integer (A%)—a numeric variable representing a whole number between
-32768 and +32767.

Single precision (A!)—a numeric variable in 32-bit floating point notation between 3.4E-
38 to 3.4E+38.

Double precision (A#)—a numeric variable in 64-bit floating point notation between 1.7E-
308 to 1.7E+308.

Variable length string (A$)—a list of characters terminated by a 0. The maximum length
string is 160 bytes in the JAGXTREME terminal.

JagBASIC enables you to assign descriptive names to data values, called variables.
Variable names can contain up to 16 characters and must begin with a letter. Valid
characters are A-Z and 0-9. Variables are case sensitive, for example A$ and a$ are
different variables. The last character of the variable name specifies the data type (%, !, #,
or $). The maximum number of variables is 200.

Data variables defined in the program
are saved in the JagBASIC interpreter
until the terminal is powered down, the
NEW command is issued, or a new
program is loaded using the LOAD
command.

Variable names of 8 characters or less
make the most efficient use of memory.

Chapter 5: JagBASIC Commands
Variable Commands

(10/01) 5-11

JAGXTREME terminals use a mechanism called shared data for the various program
threads to share variable data. The link to shared data from JagBASIC is implemented with
a unique JagBASIC function.

DEFSHR ABC,fieldname

ABC The internal reference (variable) in BASIC for a variable in shared data with a
specified fieldname.

fieldname Any terminal shared data variable name as listed in Chapter 6 or 7.

Assignments to shared data appear the same as standard variables, i.e.,

 ABC = SQR(XYZ!)

Shared data inputs to expressions or functions also appear the same, i.e.,

 XYZ! = ATAN(ABC)

Shared data long integers are converted to double precision type in JagBASIC when
reading or writing to shared data. A long integer is a four-byte (32-bit) signed number. Bit
fields in shared data are converted to integers.

JagBASIC provides a simple structure called the array to manipulate lists of data. An array
is a collection of values stored in elements that are accessed by indexing into an array. It
can hold only one type of variable. Arrays function as data storage and retrieval tools in
memory, just as files function as data storage and retrieval tools on disk. Arrays are used
as tools for organizing and processing data. An array enables you to create a set of
variables with a common name. Declaring the name and type of an array and setting the
number of elements and their arrangement in the array is referred to as defining, or
dimensioning, the array. Arrays may have up to three dimensions.

JagBASIC provides several data commands.

Command Usage
COMMON Defines global variables that can be shared between chained

programs.
DATA Specifies values to be read by READ statements.
DEFSHR Allows a program to access the terminal shared database.
DIM Declares an array, where subscripts are the dimensions of the

array.
LET Assigns the value of an expression to a variable.
OPTION BASE Declares the minimum value for array subscripts.
READ Reads values from a DATA statement and assigns them to

variables.
RESTORE Allows DATA statements to be reread from a specified line.
SWAP Exchanges the values of two variables that are variables of the

same data type.

TIPS
The LET command is optional and its use is not recommended. The following two
statements are equivalent: LET X=1 and X=1.

JagBASIC does not support using
array variables as an index into
an array.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-12

COMMON
Usage
Defines global variables that can be shared between chained programs.

By default variable names in a program module are available only in that program
module. COMMON extends the scope of listed variables to other chained programs.

Syntax
COMMON variablelist

variablelist One or more variables to be shared.

Example
COMMON a$,pi#

DATA
Usage
Specifies values to be read by READ statements. DATA statements contain lists of values
separated by commas. The first READ statement in a program reads the first value in the
DATA list. The second READ statement reads the second value in the DATA list, and so on.
JagBASIC tracks the next value to be read.

Syntax
DATA constant[,constant]...

constant One or more numeric or string constants specifying the data to be read. String
constants containing commas, colons, or leading or trailing spaces are
enclosed in quotation marks ("").

Example
10 DIM item$(5), number(5,3)

20 FOR k% = 1 to 5

30 READ item$(k%)

33 FOR j% = 1 to 3

35 READ number(k%,j%)

36 NEXT j%

40 NEXT k%

45 FOR j% = 1 to 3

60 FOR k% = 1 to 5

70 LPRINT item$(k%), number(k%,j%)

80 NEXT k%

85 NEXT j%

90 DATA hammers,4,5,6,umbrellas,2,3,4,wood_stoves,1,2

100 DATA bags_of_salt,4,5,6,needle_nose_pliers,2,3,4

110 END

Chapter 5: JagBASIC Commands
Variable Commands

(10/01) 5-13

Output: hammers 4
umbrellas 2
wood_stoves 1
bags_of_salt 4
needle_nose_pliers 2
hammers 5
umbrellas 3
wood_stoves 2
bags_of_salt 5
needle_nose_pliers 3
hammers 6
umbrellas 4
wood_stoves 3
bags_of_salt 6
needle_nose_pliers 4

DEFSHR
Usage
Allows a program to access the terminal shared database. Any read or write to the variable
name automatically refers to the associated field within the shared database. JagBASIC
automatically determines the variable type from the shared file name. The shared file name
overrides the variable name suffix.

Once the DEFSHR command is executed for a variable, the shared data variable may be
read or written using JagBASIC’s variable name for it. The variable type (string, float,
integer) must match the shared data type; otherwise a syntax error is indicated. No type
conversion is performed.

Syntax

DEFSHR variablename,sharedfilename

variablename The name of the variable.

sharedfilename The name of the shared data file.

Example
This program displays the gross weight of the scale not selected in the lower terminal
display using the “print” command. The “a” and “b” keys on the terminal keyboard enable
you to switch between Scale A and Scale B.

1 REM w1=gross weight Scale A, w2=gross weight scale B.

2 REM sa is the discrete event to select scale A.

3 REM sb is the discrete event to select scale B.

4 REM Display the gross weight of the scale not selected in

5 REM the lower terminal display using the "print" command.

6 REM Switch between Scale A and Scale B using the

SYNTAX
DEFSHR var, SDname

Shared Data

wt101

JagBASIC

gross$

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-14

7 REM "a" and "b" keys on the terminal keyboard.

10 DEFSHR w1,wt101

20 DEFSHR w2,wt201

30 DEFSHR sa,t_6c0

40 DEFSHR sb,t_6c1

50 sa=1

60 PRINT " wa= ";w2

70 IF INKEY$ = "b" THEN GOTO 100

80 GOTO 60

100 sb=1

110 PRINT " wb= ";w1

120 IF INKEY$ = "a" THEN GOTO 50

130 GOTO 110

140 END

DEFSHR Arrays
You may use single dimension or multidimensional arrays of DEFSHRs. JagBASIC allows
you to setup an array of DEFSHRs so that you can index into an array of shared data
variables. This feature reduces the amount of JagBASIC code needed for accessing multiple
scales, setpoints, discrete input variables, discrete output variables, and literals. You must
use the dimension statement to define the array type and array size. Then, you use the
DEFSHR statement to assign a shared data variable to each element of the array. The type
of each shared data variable must be the same type as the array.

Example 1
5 REM ARRAY OF SHARED DATA LITERALS

10 DIM a$(5)

20 DEFSHR a$(1),lit01

30 DEFSHR a$(2),lit02

40 DEFSHR a$(3),lit03

50 DEFSHR a$(4),lit04

60 DEFSHR a$(5),lit05

70 FOR i% = 1 to 5

80 LPRINT "literal";i%;" = ";a$(i%)

90 NEXT i%

100 END

Example 2
5 REM ARRAY OF SETPOINT COINCIDENCE VALUES

10 DIM setpoint#(4)

20 DEFSHR setpoint#(1),sp105

30 DEFSHR setpoint#(2),sp305

40 DEFSHR setpoint#(3),sp505

Chapter 5: JagBASIC Commands
Variable Commands

(10/01) 5-15

50 DEFSHR setpoint#(4),sp705

60 FOR i% = 1 to 4

70 setpoint#(i%)=2.0*i%

80 NEXT i%

90 END

Example 3
5 REM ARRAY OF DISCRETE OUTPUTS

10 DIM do%(12)

20 DEFSHR do%(1),p_500

30 DEFSHR do%(2),p_501

40 DEFSHR do%(3),p_502

50 DEFSHR do%(4),p_503

60 DEFSHR do%(5),p_508

70 DEFSHR do%(6),p_509

80 DEFSHR do%(7),p_50a

90 DEFSHR do%(8),p_50b

100 DEFSHR do%(9),p_50c

110 DEFSHR do%(10),p_50d

120 DEFSHR do%(11),p_50e

130 DEFSHR do%(12),p_50f

140 FOR j% = 1 to 10

150 FOR i% = 1 to 12

160 DO%(i%)=1

170 SLEEP 1000

180 DO%(i%)=0

190 NEXT i%

200 NEXT j%

DEFSHR Links to Remote Shared Data
JagBASIC programs can access shared data variables located in remote JAGXTREME
terminals in a cluster. The node location and name of the remote data variable is specified
in a DEFSHR statement. When there is no node specified in the DEFSHR command,
JagBASIC assumes that the request is for the local node.

DEFSHR a$,j2/wt101 creates a remote link to gross weight shared data variable wt101 in
terminal node j2.

DEFSHR b$,wt101 creates a local link to gross weight shared data variable wt101.

Once the link has been established, use the normal JagBASIC syntax to access the remote
variable. The program should take into account that the remote terminal may not be online
when you attempt to access it. Use an ON ERROR GOTO or ON ERROR GOSUB statement to
handle these offline errors.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-16

The program should also take into account that there is a short time delay when it
accesses the remote shared data variable. When the BASIC application uses the same
remote variable more than once in a series of calculations, it should access it only once
and store the value in a local BASIC variable. Then, the BASIC application can use the local
BASIC variable in the subsequent calculations. This procedure will streamline the execution
speed of the program.

Example
10 REM SUM GROSS WEIGHT IN A CLUSTER

20 ON ERROR GOSUB 1000

30 DIM w#(4,2)

40 DEFSHR w#(1,1),j1/wt110

50 DEFSHR w#(1,2),j1/wt210

60 DEFSHR w#(2,1),j2/wt110

70 DEFSHR w#(2,2),j2/wt210

80 DEFSHR w#(3,1),j3/wt110

90 DEFSHR w#(3,2),j3/wt210

100 DEFSHR w#(4,1),j4/wt110

110 DEFSHR w#(4,2),j4/wt210

120 SUM#=0

130 FOR i% = 1 to 4

140 FOR i% = 1 to 2

150 sum#=sum#+w#(i%,j%)

160 NEXT j%

170 NEXT i%

180 PRINT using "total_+#####.##";sum#

190 TPRINT using "total_+#####.##";sum#

200 GOTO 120

1000 IF err()<>32 or erl()<>150 then end

1010 PRINT "JAGXTREME ";i%;" offline"

1020 IF INKEY$ = "" then GOTO 1020

1030 RETURN

DIM
Usage
Declares the name, size and type of an array and allocates storage for it. An array is a
variable containing a series of values that are referred to with one name. The number in
parentheses following the array name defines the number of individual variables in the
array. A JagBASIC array can have up to three dimensions.

Syntax
DIM variable[(subscripts)] [,variable[(subscripts)]]

variable Name of an array.

subscript Used in conjunction with variable; defines dimensions of array.

Array variables “can not” be used as
part of any serial input statement,.

Example of illegal operation:

10 open “com1:xpr len10 trm13
 tmo100” for input as #1
20 Input #1, data$(x)

Chapter 5: JagBASIC Commands
Variable Commands

(10/01) 5-17

Example
10 DIM item$(5), number(5,3)

20 FOR k% = 1 to 5

30 READ item$(k%)

33 FOR j% = 1 to 3

35 READ number(k%,j%)

36 NEXT j%

40 NEXT k%

45 FOR j% = 1 to 3

50 PRINT "You have these items:"

60 FOR k% = 1 to 5

70 PRINT item$(k%), number(k%,j%)

80 NEXT k%

85 NEXT j%

90 DATA hammers,4,5,6,umbrellas,2,3,4

95 DATA wood_stoves,1,2,3

100 DATA bags_of_salt,4,5,6,pliers,2,3,4

110 END

LET
Usage
Assigns the value of an expression to a variable. Use of the keyword LET is optional. This
command is used to initialize variables or to change their current value. The command
word LET is optional and its use is not recommended.

Syntax
[LET] variable=expression

variable The variable name.

expression The value that you want to assign to the variable name.

Example 1
10 LET A$ = “JAGXTREME”

Example 2
20 B$ = “JagBASIC”

OPTION BASE
Usage
Declares the minimum value for array subscripts. Subscripts are the numbers which can be
used to access the elements of an array. OPTION BASE gives an error if the base value is
changed. The default subscript base is 1.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-18

Syntax
OPTION BASE {0 | 1}

0 Sets the lowest value any array subscript can have to 0.

1 Sets the lowest value any array subscript can have to 1. This is the default setting.

Example 1
OPTION BASE 1

Example 2
OPTION BASE 0

READ
Usage
Reads values from a DATA statement and assigns them to variables. Values are always
read in the order in which they appear in the DATA statements.

Syntax
READ variablelist

variablelist One or more variables, separated by commas.

Example
70 DIM A(10)

80 FOR I=1 TO 10

90 READ A(I)

100 NEXT I

110 DATA 3.10,5.20,6.10,7.20,8.10

120 DATA 5.30,6.30,7.30,8.30,9.30

RESTORE
Usage
Allows DATA statements to be reread from a specified line. Enables a program to read data
selectively based on a particular condition.

Syntax
RESTORE [line]

line The line number of a DATA statement. If line is omitted, the next READ accesses
the first item in the first DATA statement.

Example
10 READ A,B,C

20 RESTORE

30 READ D,E,F

40 DATA 57,58,59

Chapter 5: JagBASIC Commands
Flow Control and Operator Commands

(10/01) 5-19

SWAP
Usage
Exchanges the values of two variables, if the variables are the same data type.

Syntax
SWAP variable1, variable2

variable1 One of the variables whose value you want to exchange.

variable2 One of the variables whose value you want to exchange.

Example
10 a% = 1: b% = 2

20 PRINT "Before: "; a%, b%

30 SWAP a%, b%

40 PRINT "After: "; a%, b%

Output: Before 1,2

After 2,1

Flow Control and Operator
Commands

Few programs run straight through the program code from the first statement to the last in
sequence. Usually, you need to branch to a different piece of code or repeat a section
multiple times. Identical tasks that are used in several places can also be made into a
subroutine to save code space. This section details how JagBASIC allows you to control
the sequence of program execution.

Branching directs control of the code away from the next sequential step. JagBASIC has
two commands that can be used to perform branching: GOTO and GOSUB RETURN.

GOTO causes the program to jump to a different execution point and continue sequencing
from the line number indicated until the program ends or encounters another “branching”
command.

GOSUB RETURN causes the program to jump to a different execution point and then
return to the statement following the original branching point once the RETURN statement is
reached.

IF condition THEN line executes an implied GOSUB call to the appropriate line depending
on the specified condition. The program jumps to a different execution point and then
returns to the statement following the original branching point once the RETURN statement
is reached.

Looping executes the same sequence of statements more than one time. JagBASIC has two
loop commands: FOR NEXT and WHILE WEND.

The FOR NEXT loop is repeated a fixed number of times as determined in the
statement’s first line.

The WHILE WEND loop is repeated until a condition has been met.

Decision and operator commands enable programs to change processing based on
certain criteria. JagBASIC’s fundamental criteria determining statement is the IF THEN
command.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-20

IF THEN, used in conjunction with the logical operators, AND, OR, and XOR, enables
you to establish specific conditions which must be met in order for a resulting action to
occur.

This section discusses the following flow control and operator commands:

Command Usage
AND A logical operator in a decision statement which establishes two sets

of criteria to be met.
CHAIN Dynamically loads another program file for execution and begins

executing the program.
CHAINCALL Operates same as CHAIN command except it remembers the current

program name and line number of the program initiating chaining.
CHAINRET Operates same as CHAIN command except it returns control from the

chained program to the chaining program of next line after the
CHAINCALL.

FOR…NEXT Repeats a section of the program the specified number of times.
GOSUB Branches to a specified line number with intent to return to the next

line.
GOTO Branches unconditionally to the specified line number.
IF…THEN Executes the sub-statement depending on specified conditions.
OR Used as a logical operator in a decision statement to establish two

possible conditions, of which only one needs to be met.
RESETJAG Resets the terminal by forcing its execution through power-up.
RESTART Clears the JagBASIC execution stacks and sends program control to

the first line of the current program.
RETURN Used in conjunction with GOSUB, indicates that the subroutine is

complete.
SWITCHSUB Branches to a line number specified by the value of a variable with

intent to return to the next line.
SWITCHTO Branches unconditionally to the line number specified by the value of

a variable.
WHILE…WEND Repeats a section of the program until a specified logical condition is

true.
XOR Used as a logical operator in a decision statement to establish two

possible conditions, only one of which can be met.

TIPS
JagBASIC does not support commands for breaking out of loops other than their normal
exit point. For this reason programmers may try to branch out of loops. Do not jump from
inside a loop to outside the range of the loop. Always take the normal return from a GOSUB
command. JagBASIC supports nine levels of nesting for GOSUB, FOR-NEXT, and WHILE-
WEND. If you branch out of these structures, the nesting level does not get reset.
Eventually, an overflow error will occur.

AND
Usage
Used as a logical operator in a decision statement to establish two sets of criteria, both of
which must be met. AND can also be used as a bitwise operator between two integer
expressions.

The AND operator has a lower
precedence than assignment
operators. Use parentheses around
the operation to assign its value to a
variable.

Chapter 5: JagBASIC Commands
Flow Control and Operator Commands

(10/01) 5-21

Syntax
IF condition1 AND condition2 THEN result.

condition1 First condition for decision.

condition2 Second condition for decision.

result Result that will occur if both conditions are met.

Example 1
30 IF A>75 AND B<20 THEN 5000

Example 2
50 A% = (B% AND 1)

CHAIN
Usage
Allows you to program a large application by enabling you to split the application into
smaller program modules. CHAIN loads another program and transfers control from the
current program to another BASIC program. Variables identified as common variables are
accessible by the chained JagBASIC program. CHAIN commands must be placed in the top
level of the JagBASIC program, not within a GOSUB, IF-THEN-ELSE, WHILE-WEND, or
FOR-NEXT loop.

Syntax
CHAIN “filename.bas”

filename.bas The name of the program in the terminal RAMDISK directory to which
you want to transfer the current program's controls and variables.

Example
CHAIN "test.bas"

CHAINCALL
Usage
The CHAINCALL command as operates the same as a CHAIN command except that it
remembers the current program name and line number of the program that is initiating the
chaining. After issuing a CHAINCALL, you must execute a CHAINRET before issuing another
CHAINCALL.

Syntax
CHAINCALL "filename.bas"
Filename.bas The name of the program in the RAMDISK directory you want to

transfer to the current program's controls and variable with the intent
to return.

Example
5 REM Program CHAIN_X.BAS

10 LPRINT "The square root of "; 9; " is "; sqr(9)

20 LPRINT "The square root of "; 6; " is "; sqr(6)

30 LPRINT "The difference is "; sqr(9) - sqr(6)

40 LET num = 5.0 / 3

50 LPRINT "5 divided by 3 is "; num

60 LPRINT "5 divided by 2 is "; 5.0 / 2

70 PRINT "hello"

For the most efficient memory
utilization, start execution with
the largest program and chain
the smaller programs.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-22

80 CHAINCALL "chain_y.bas"

90 PRINT "bye bye"

100 SLEEP 300

120 GOTO 10

REM Program CHAIN_Y.BAS

LPRINT "This is Y"

LPRINT "Time to return"

30 CHAINRET

CHAINRET
Usage

The CHAINRET command operates the same as a CHAIN command except that it returns
control from the chained program to the chaining program at next line after the CHAINCALL.

Syntax

CHAINRET

Example

5 REM Program CHAIN_Y.BAS

10 DIM item$(5), number(5,3)

20 FOR k% = 1 to 5

30 READ item$(k%)

33 FOR j% = 1 to 3

35 READ number(k%,j%)

36 NEXT j%

40 NEXT k%

45 FOR j% = 1 to 3

50 LPRINT "You have these items:"

60 FOR k% = 1 to 5

70 LPRINT item$(k%), number(k%,j%)

80 NEXT k%

85 NEXT j%

90 DATA hammers,4,5,6,umbrellas,2,3,4,wood_stoves,1,2,3

100 DATA bags_of_salt,4,5,6,pliers,2,3,4

110 LPRINT "I am here"

120 SLEEP 300

140 CHAINRET

Chapter 5: JagBASIC Commands
Flow Control and Operator Commands

(10/01) 5-23

FOR NEXT
Usage
Repeats the block of statements between the keywords FOR and NEXT the specified number
of times.

Syntax
FOR counter = start TO end [STEP increment]

*

*

*

*

NEXT counter

counter A numeric variable used as the loop counter.

start The initial value of the counter.

end The final value of the counter.

increment The amount the counter changes each time through the loop. A fractional value
is not allowed. If STEP is not specified, JagBASIC assumes a value of 1.

Example 1

100 FOR j% = 1 TO 15

110 PRINT j%

120 SLEEP 1000

130 NEXT j%

Example 2
100 FOR a% = 1 TO 100 STEP 10

110 PRINT a%

120 NEXT a%

GOSUB
Usage
Branches to a subroutine. Used in conjunction with RETURN.

Syntax
GOSUB line

*

*

line *

*

RETURN

line The line number of the subroutine to branch to in the program.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-24

Example
10 FOR b% = 1 TO 20

20 GOSUB 50

30 NEXT b%

40 END

50 REM Print Subroutine

60 PRINT “b%= “,b%

70 RETURN

GOTO
Usage
Branches unconditionally to a specified line.

Syntax
GOTO line

*

*

*

line *

line The line number to branch to in the program.

Example
10 IF INKEY$="E" then GOTO 50

20 GOTO 10

50 END

IF THEN
Usage
Executes the sub-statement depending on specified conditions. The entire IF statement
must be contained on one line. The condition is any expression that can be evaluated as
true or false. You can have multiple statements in a THEN or ELSE clause as long as the
entire statement is contained on one line. The IF condition THEN line statement executes an
implied GOSUB call to the appropriate line depending on the specified conditions. Be sure
to execute a RETURN from this implied GOSUB.

Syntax
IF condition THEN statement [ELSE statement]

IF condition THEN GOTO linenumber [ELSE statement]

IF condition THEN line [ELSE line]

Example 1
10 INPUT "SELECTION ? ", i%

20 IF i% = 1 THEN PRINT "OK" ELSE GOTO 50

30 GOTO 10

50 END

Chapter 5: JagBASIC Commands
Flow Control and Operator Commands

(10/01) 5-25

Example 2
10 FOR i% = 1 to 10

20 IF i% < 7 THEN 100 ELSE 120

30 NEXT i%

40 END

100 PRINT " You lose."

115 RETURN

120 PRINT " You win."

130 RETURN

Example 3
NextKey:

m$=inkey$

IF m$=chr$(2) THEN x%=2: GOTO Escape

IF m$=chr$(3) THEN x%=3: GOTO Memory ELSE x%=0: GOTO NextKey

Escape:

PRINT “Escape”; x%: GOTO NextKey

Memory:

PRINT “Memory”; x%: GOTO NextKey

OR
Usage
Used as a logical operator in a decision statement to establish two possible conditions, of
which only one needs to be met. OR can also be used as a bitwise operator between two
integer expressions.

Syntax
IF condition1 OR condition2 THEN result

condition1 First condition for decision.

condition2 Second condition for decision.

result Result that will occur if either condition is met.

Example 1
30 IF A>75 OR B<20 THEN 5000

Example 2

30 IF A>75 OR B<20 THEN GOTO 5000

Example 3

10 B% = (A% ORC%)

The OR operator has a lower
precedence than assignment
operators. Use parentheses around
the operation to assign its value to a
variable.

The first example is an implied GOSUB
and requires a RETURN statement later
in the program.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-26

RESETJAG
Usage
The RESETJAG command re-initializes the terminal by forcing execution through the power-
up cycle.

Syntax
RESETJAG

Example
RESETJAG

RESTART
Usage
Clears the JagBASIC execution stacks and sends program control to the first line of the
current program. This command does not affect the BASIC variables.

Syntax
RESTART

Example
RESTART

RETURN
Usage
Branches back to the line following a GOSUB statement.

Syntax
RETURN

Example
10 GOSUB 1000

*

1000 LPRINT "Hello"

1010 RETURN

SWITCHSUB
Usage
Performs a GOSUB call to the line specified in the variable.

Syntax
SWITCHSUB lineNumber%

lineNumber% is a variable containing the line number to which control is transferred.

Example 1
110 IF a%=1 THEN j%=1000 ELSE j%=2000

120 switchsub j%

130 REM Main Loop

140 a%=0

150 END

1000 LPRINT "Test complete"

1010 RETURN

Chapter 5: JagBASIC Commands
Flow Control and Operator Commands

(10/01) 5-27

2000 LPRINT “Select Test”

2010 RETURN

Example 2
Code before running through JagBASIC preprocessor. The JagBASIC preprocessor resolves
labels that are identified by xx to line numbers.

REM table initialization

DIM cmd% (18)

j%=1

NextCmd:

Read cmd%(j%)

if j%<18 then j%=j%+1; GOTO NextCmd

*

*

REM call subroutine to process command

ProcessCommand:

Input “^command”; j%

If j%<0 or j%>18 then GOTO ProcessCommand

switchsub j%

*

SetDischargeCycle:

*

CaptureTare:

*

*

REM command state table

DATA xx SetDichargeCycle, xx CloseGates, xx CloseGate

DATA xx WaitForWHGateClose, xx CloseGate, xx WaitUGClose

DATA xx WaitSettlingTimer, xx WaitNoMotion, xx NoMotion

DATA xx CaptureTare, xx RecordDraftComplete, xx CheckUpstreamPreact

DATA xx SetFill cycle, 0,0,0,0,0

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-28

SWITCHTO
Usage
Performs a GOTO operation to the line specified in the variable.

Syntax
Switchto lineNumber%

lineNumber% is a variable value that specifies the location to GOTO.

Example
100 IF a%=1 THEN j%=1000

110 IF a%=2 THEN j%=1100

120 IF a%=3 THEN j%=1200

500 SWITCHTO j%

1000 LPRINT"Test 1"

1010 a%=0

1020 GOTO 2000

1100 a%=1

1120 GOTO 2000

1200 LPRINT "Test 3"

1210 a%=2

2000 *

WHILE…WEND
Usage
Executes a series of statements as long as a specified condition is true. If the condition is
false when the WHILE statement is first encountered, the loop is bypassed and not
executed.

Syntax
WHILE condition

.

.
WEND

Example
10 years=0

20 money=10000

30 start=money

40 interest=8.5/100

50 WHILE money <= 2*start

60 PRINT years,money

70 years = years+1

80 money = money+(interest*money)

90 WEND

Chapter 5: JagBASIC Commands
Flow Control and Operator Commands

(10/01) 5-29

100 PRINT "In "; years ; " years, you'll have $"; money

110 END

XOR
Usage
Used as a logical operator in a decision statement to establish two possible conditions,
only one of which can be met. Used to guarantee that only one variable is true, preventing
conflicting options from being true. XOR can be used as a bitwise operator between two
integer expressions. The XOR operator has a lower precedence than assignment operators.
Use parentheses around the operation to assign its value to a variable.

Syntax
IF condition1 XOR condition2 THEN result

condition1 First condition for decision.

condition2 Second condition for decision.

result Result that will occur if only one conditions is met.

Example 1
30 IF A>75 XOR B<20 THEN 5000

Example 2

100 x%=(4 XOR A%)

Precedence of Operators
JagBASIC’s order of operations has a predefined precedence when evaluating expressions.
The following numeric and conditional operators are in precedence order.

^ Exponent
* Multiply
/ Divide
\ Integer Divide
MOD Modulus
+ Add
- Subtract
= Equals
= Assign
<> Not Equal
< Less Than
> Greater Than
<= Less Than Or Equal
>= Less Than Or Equal
=> Greater Than Or Equal
NOT Not
AND And
OR Or
XOR Exclusive Or

The XOR operator has a lower
precedence than assignment operators.
Use parentheses around the operation
to assign its value to a variable.

This example is an implied GOSUB
statement.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-30

For example,

60 B=3+4*5

70 PRINT B

Output: 23

AND, OR, and XOR have lower precedence than an assignment operator. Therefore, if you
need to assign the results of an AND, OR, and XOR operation to a variable, you must put
parentheses around the operation.

Math Commands
JagBASIC provides numerous advanced mathematical commands. Using the commands
listed in this section, you can perform the following types of mathematical functions:

Trigonometric commands ATN, COS, SIN, and TAN return the arctangent, sine, cosine, and
tangent. The angle values are expressed in radians. To convert to degrees, multiply the
number of radians by (180/π) or approximately 57.3°.

Logarithmic and Exponential commands return the natural logarithm and its complement.
Natural logarithms are based on e (approximately 2.718282.)

Conversion commands convert numbers from one type to another. These commands
enable you to convert a number from its existing format to the format expected by the
function or subroutine. Conversion is implied by the variable’s data type. For example,
a#=1 automatically converts the integer 1 to a double precision floating point number.

Rounding and Truncating commands round and truncate numbers.

Random Number commands generate random numbers.

Arithmetic Operations commands perform operations such as finding a number’s absolute
value, determining its sign, and finding its square root.

This section discusses the following JagBASIC mathematical commands:

Command Usage
ABS() Returns the absolute value of a number.
ATN() Returns the arctangent of specified numeric expression in radians.
CINT Rounds a numeric expression to the closest integer.
COS() Returns the cosine of a specified angle expressed in radians.
CSNG() Converts a numeric expression to a single-precision value.
EXP() Returns e raised to a specified power, where e is the base of natural

logarithms.
INT() Returns the largest integer less than or equal to a numeric expression.
LOG () Returns the natural logarithm of a numeric expression.
RANDOMIZE Initializes the random-number generator.
RND () Returns a single-precision random number between 0 and 1.
SGN () Returns a value indicating the sign of a numeric expression.
SIN() Returns the sine of a specified angle expressed in radians.
SQR() Returns the square root of a numeric expression.
TAN() Returns the tangent of a specified angle expressed in radians.

TIPS
If you specify nonnumeric values with any of the mathematical commands, you will receive
a type mismatch error message.

Chapter 5: JagBASIC Commands
Math Commands

(10/01) 5-31

ABS()
Usage
Returns the absolute value of a number. The absolute value of a number is the magnitude
of the number without regard to sign. Absolute values are always positive numbers.

Syntax
ABS(numeric-expression)

numeric-expression Any numeric expression.

Example
10 PRINT ABS(45.5-100)

Output: 54.5

ATN()
Usage
Returns the arctangent of a specified numeric expression in radians. The arctangent is the
angle whose tangent is equal to the specified value.

Syntax
ATN(numeric-expression)

numeric-expression Any numeric expression expressed in radians.

Example
10 LPRINT ATN(.75), ATN(.9)

Output (in radians): 0.6435011 0.7328151

CINT()
Usage
Rounds a numeric expression to the closest integer. The numeric expression can be any
number in the range -32,768 through 32,767.

For positive numbers

If the numeric expression contains a fractional part that is less than 0.5, CINT rounds to the
next lower integer.

If the numeric expression contains a fractional part that is greater than or equal to 0.5,
CINT rounds to the next higher integer.

For negative numbers

If the numeric expression contains a fractional part that is less than 0.5, CINT rounds to the
next higher integer.

If the numeric expression contains a fractional part that is greater than or equal to 0.5,
CINT rounds to the next lower integer.

Syntax
CINT(numeric-expression)

numeric-expression Any numeric expression.

Example
10 PRINT CINT(12.49), CINT(12.51), CINT(12.50), CINT(-12.49)

Output: 12 13 12 -12

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-32

COS()
Usage
Returns the cosine of a specified angle expressed in radians.

Syntax
COS(angle)

angle Angle expressed in radians.

Example
40 pi#=3.141592654
50 LPRINT COS(180*pi#/180)

Output: -1

CSNG()
Usage
Converts a numeric expression to a single-precision value.

numeric-expression Any numeric expression.

Syntax
CSNG(numeric-expression)

Example
PRINT CSNG(975.342151523497)

Output: 975.342152

EXP()
Usage
Returns e raised to a specified power. The natural logarithm base, e, has a value of
approximately 2.71828. The natural logarithm of a number is the power to which the base
e must be raised to obtain the number. EXP is the inverse function of the natural log
function.

Syntax
EXP(numeric-expression)

numeric-expression Any numeric expression.

Example
PRINT EXP(0), EXP(1)

Output: 1 2.718282

A single precision numeric variable
represents a number of seven or
fewer digits plus an exponent.

A double precision numeric variable
represents a number of eight or more
digits plus an exponent.

Single-precision and double-
precision are also referred to as
floating point variables.

Chapter 5: JagBASIC Commands
Math Commands

(10/01) 5-33

INT()
Usage
Returns the integer portion of a specified numeric expression.

For positive numbers, the fractional part of the numeric expression is truncated, that is cut-
off.

For negative numbers, the next lower integer is returned.

Rounding does not occur with this command.

Syntax
INT(numeric-expression)

numeric-expression Any numeric expression.

Example
10 PRINT INT(12.54), INT(-99.4)

Output: 12 -100

LOG()
Usage
Returns the natural logarithm of a numeric expression. Natural logarithms are based on e,
which is approximately 2.718282. The natural logarithm of a number is the power to
which the base e must be raised to obtain the number.

Syntax
LOG(numeric-expression)

numeric-expression Any positive numeric expression.

Example
10 PRINT LOG(5), LOG(EXP(1))

Output: 0.69897 1

RANDOMIZE, RND ()
Usage
RANDOMIZE specifies a particular initial value or seed value for the random number
generator. This seed value is used in specifying the random-number series to be used
when the program calls the RND function.

RND returns a single-precision random number between 0 and 1. The same sequence of
random numbers is generated each time the program runs unless the RANDOMIZE
statement was used to specify a different sequence.

RND returns a pseudorandom number which is generated from the seed value using a
formula designed to produce numbers that have no pattern or order and appear to be
random. Each seed actually creates a fixed sequence of numbers. RANDOMIZE enables
you to change the seed value and the sequence generated.

Syntax
RANDOMIZE [seed%]

RND[(n#)]

seed% A number used to initialize the random-number generator.

n# A value that sets how RND generates the next random number.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-34

Example
10 RANDOMIZE

20 FOR game% = 1 to 10

30 die1 = INT(6*RND + 1)

40 die2 = INT(6*RND + 1)

50 dice = die1 + die2

60 PRINT dice;

70 IF dice < 7 THEN GOSUB 100 ELSE GOSUB 120

80 NEXT game%

90 GOTO 150

100 PRINT " You lose."

115 RETURN

120 PRINT " You win."

130 RETURN

150 END

SGN ()
Usage
Returns a value indicating the sign of a numeric expression. Used to test whether a value is
negative, positive, or zero.

Syntax
SGN(numeric expression returns)

1 The expression is positive.

0 The expression is zero.

-1 The expression is negative.

Example
10 PRINT SGN(12), SGN(-15), SGN(0)

Output: 1 -1 0

SIN()
Usage
Returns the sine of a specified angle expressed in radians.

Syntax
SIN(angle)

angle Angle expressed in radians.

Example
10 pi#=3.141592654
20 LPRINT SIN(90*pi#/180)

Output: 1

Chapter 5: JagBASIC Commands
String Commands

(10/01) 5-35

SQR()
Usage
Returns the square root of a positive numeric expression.

Syntax
SQR(numeric-expression)

numeric-expression Any numeric expression.

Example
10 PRINT SQR(25), SQR(2)

Output: 5 1.414214

TAN()
Usage
Returns the tangent of a specified angle expressed in radians.

Syntax
TAN(angle)

angle Angle expressed in radians.

Example
10 pi#=3.141592654

20 LPRINT TAN(45*pi#/180)

Output: 1

String Commands
JagBASIC enables you to form many string expressions. A string is simply a variable length
series of character values. Each byte in a string expression is treated in one of two ways:

As an ASCII character with a value in the range 1 to 127. The ASCII character set includes
uppercase and lowercase letters, numbers, punctuation marks, mathematical symbols,
and printer control characters.

As an extended character in the range 128 through 255.

Strings are terminated by a 0 (null). The maximum length of a string is 80 characters.

To define a string variable, select a name that describes the string's contents, such as
name$ for the name on a mailing label. The dollar sign ($) suffix means that the variable
holds string data. Use an equal sign (=) followed by a string expression to assign a value
to the string. A string expression can be as simple as a single variable name or as
complex as a combination of string literals, variables, functions, and the plus sign.

Expression Comment
"Tom and Harry" Single literal
Name$ Single variable
RIGHT$(Name$,5) String function
"Smith" + LastName$ Combination expression

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-36

JagBASIC's string commands enable you to:

• Extract part of a string.

• Convert decimal numbers (base 10) to hexadecimal (base 16) or octal (base 8)
strings.

• Convert a character to ASCII code and the reverse.

• Create "field" strings, which are used to format and arrange output.

• Count characters in a string or the number of bytes required to store a variable.

• Display the string representation of a number.

• Locate one string within another string.

• Interpret the string entered by the user as though it were a number.

• Insert a string into another string.

• Convert a string to upper case or lower case

• Trim spaces from the beginning or end of a string

This section discusses the following string commands.

Command Usage
ASC() Returns the ASCII or extended code value for the first character in a string

expression.
CHR$() Returns the single-character string corresponding to the specified ASCII

code.
HEX$() Returns a string containing the hexadecimal value of a number.
INSTR () Returns the position of the first occurrence of a string in another string.
LCASE$ Converts a string to a lower case.
LEFT$() Returns a specified number of leftmost characters in a string.
LEN() Returns the number of characters in a string or the number of bytes

required to store a variable.
LTRIM$ () Removes spaces from the beginning of a string.
MID$() Returns part of a string.
MSET$() Inserts one string into another string, overwriting the existing characters.
PADC$ () Add pad characters to beginning and end of a string.
PADL$ () Adds pad characters to the beginning of a string.
PADR$ () Adds pad characters to end of a string
OCT$() Returns an octal string representation of a number.
RIGHT$() Returns a specified number of rightmost characters in a string.
RTRIM$ () Removes spaces from the end of a string.
SPACE() Returns a string of spaces.
STR$ () Returns a string representation of a number.
STRING$() Returns a string of a specified length made up of a repeating character.
UCASE$ () Converts a string to upper case.
VAL() Converts a string representation of a number to a number.

Chapter 5: JagBASIC Commands
String Commands

(10/01) 5-37

ASC()
Usage
Returns the ASCII or extended code value of the first character in the specified string
expression.

Syntax
ASC(stringexpression$)

stringexpression$ Any string expression.

Example
10 PRINT ASC("Quiet")

Output: 81

The ASCII value of a capital Q is 81.

CHR$()
Usage
Returns the single-character string corresponding to the specified ASCII code. Used for
characters not easily entered on the keyboard and placed in a string, such as most control
characters and graphic characters. The CHR$ commands can generate all 255 characters
of the ASCII and extended character sets.

Syntax
CHR$(ascii-code%)

ascii-code% ASCII or extended code of the desired character in the range of 1-255.

Example
20 PRINT CHR$(65)

Output: A

HEX$()
Usage
Converts a decimal number (base 10) to a hexadecimal number (base 16).

Syntax
HEX$(numeric-expression)

numeric expression Any numeric expression.

Example
10 INPUT x

20 a$ = HEX$(x)

30 PRINT x; "decimal is "; a$; “ hexadecimal”

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-38

INSTR ()
Usage
Returns the position of the first occurrence of a string in another string. Used for searching
text in database fields or for validating user input.

Syntax
INSTR(string1$,string2$)

string1$ String expression being searched.

string2$ String expression that you want to locate.

Example
10 DIM prglst$(5)

20 prglst$(1)="abcdefgh"

30 prg$="bcd"

40 PRINT INSTR(prglst$(1),prg$)

Output: 2

LEFT$()

Usage
Returns the specified number of leftmost characters in a string. If you specify a number of
characters greater than or equal to the string's length, the entire string is returned.

Syntax
LEFT$(stringexpression$,n%)

stringexpression$ Any string expression.

n% Number of characters to return. Range is 0 to 80.

Example
10 a$ = "JAGXTREME BASIC"

20 PRINT LEFT$(a$, 9)

Output: JAGXTREME

Chapter 5: JagBASIC Commands
String Commands

(10/01) 5-39

LEN()
Usage
Returns the number of characters in a string or the number of bytes required to store a
variable. Used to obtain the length of a string. If a zero is returned, the string is empty.

Syntax
LEN(stringexpression$)

stringexpression$ Any string expression.

Example
10 A$ = "ABC"

20 WHILE LEN(A$) < 8

50 A$ = A$ + "C"

60 LPRINT A$;" HAS LENGTH "; LEN(A$)

70 WEND

80 END

Output: ABCCCCCC has length 8

LTRIM$ ()
Usage
Removes the spaces from the beginning of a string.

Syntax
LTRIM$ (stringexpression$)

stringexpression$ Any string expression.

Example
10 a$ = " 12345"

20 b$ = LTRIM$(a$)

Result: b$="12345"

MID$()
Usage
Returns part of a string. The part of the string returned begins at the specified position and
contains the given number of characters. If the starting position is greater than the length of
the string, a null string is returned. If the number of characters to return is greater than the
length of the string, the entire string is returned.

Syntax
MID$(stringexpr$,start%[,length%])

stringexpr$ Any string expression.

start% The starting character position to read.

length% The number of characters to read.

Example
10 a$ = "Where is Cambridge?"
20 PRINT MID$(a$, 10, 10)

Output: Cambridge?

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-40

MSET$()
Usage
Inserts one string into another string at a specified position. Overwrites the existing
characters so that the length of the string remains the same.

Syntax
MSET$() (string1$, string2$, position%)

string1$ string to be changed

string2$ string to insert

position% Number of character to insert string after

Example
5 a$="123456789"

10 b$="abc"

15 a$=MSET$(a$,b$,3)

20 LPRINT "a$"=";a$

Output: a$=123abc789

OCT$()
Usage
Converts a number to an octal string.

Syntax
OCT$(numeric-expression)

numeric expression Any numeric expression.

Example
10 x=8

20 b$ = OCT$(x)

30 PRINT x; " decimal is "; a$; “ octal”

Output: 8 decimal is 10 octal

Chapter 5: JagBASIC Commands
String Commands

(10/01) 5-41

PADC$ ()
Usage
Pad the right side and left side of a string, to a specified string length, with a specified
string character. The input string is centered in the returned string.

Syntax
PADC$(string$, length, padChar$)

string$ The input string to be padded.

length Length of the output string.

padchar$ Character used as the pad character.

PADC$ returns an input string centered in the output string.

Example
a$ = “abc”

b$ = PADC$(a$, 5,”0”)

Result: b$ = “OabcO”

PADL$ ()
Usage
Pad the left side of a string, to a specified string length, with a specified string character.

Syntax
PADL$(string$, length, padChar$)

string$ The input string to be padded.

length Length of the output string.

padchar$ Character used as the pad character.

PADL$ returns an input string right-justified in the output string.

Example

a$ = “aBc”

b$ = PADL $(a$, 5,”0”)

Result: b$ = “00aBc”

b$ = PADL $(a$, 7,”C”)

Result: b$ = “CCCCaBc”

b$ = PADL $(a$, 3,”C”)

Result: b$ = “aBc”

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-42

PADR$ ()
Usage
Pad the right side of a string, to a specified string length, with a specified string character.

Syntax
PADR$ (string$, length, padchar$)

string$ The input string to be padded.

length Length of the output string.

padchar$ Character used as the pad character.

PADR$ returns an input string left-justified in the output string.

Example
a$ = “aBc”

b$ = PADR$(a$, 5,”0”)

Result: b$ = “aBc00”

b$ = PADR$(a$, 7,”C”)

Result: b$ = “aBcCCCC”

RIGHT$()
Usage
Returns the specified number of rightmost characters in a string. If you specify a number of
characters greater than or equal to the string's length, the entire string is returned.

Syntax
RIGHT$(stringexpression$,n%)

stringexpression$ Any string expression.

n% Number of characters to return. The range is 0 to 80.

Example
10 a$ = "JAGXTREME BASIC"
20 PRINT RIGHT$(a$, 5)

Output: BASIC

RTRIM$ ()
Usage
Removes spaces from the end of the string.

Syntax
RTRIM$ (stringexpression$)

stringexpression$ Any string expression.

Example
10 a$ = "Hello Cambridge ”

20 b$ = RTRIM$ (a$).

Result: b$ = "Hello Cambridge"

Chapter 5: JagBASIC Commands
String Commands

(10/01) 5-43

SPACE$()
Usage
Returns a string of spaces. Used to indent text.

Syntax
SPACE$(n%)

n% The number of spaces you want in the string. The range is 0 to 80.

Example
10 FOR i% = 1 TO 5

20 x$ = SPACE$ (i%)

30 PRINT x$; i%

40 NEXT i%

STRING$()
Usage
Returns a string of a specified length made up of a repeating character. Used to create
underlines, rows of asterisks, etc.

Syntax
STRING$(length%,{ascii-code% | stringexpression$})

length% The length of the string.

ascii-code% The ASCII code of the repeating character.

stringexpression$ The character you want to repeat.

Example
10 PRINT STRING$(5, "-");

Output: -----

STR$ ()
Usage
Returns a string representation of a number. Used to manipulate a number as a string and
to apply string functions to the number for validation and formatting.

Syntax
STR$(numeric-expression)

numeric expression Any numeric expression.

Example
10 NUMBER! = 2.5

20 NUM$ = STR$(NUMBER!)

30 PRINT "XXXXX"

40 PRINT NUM$

50 PRINT LEN (NUM$)

Output: XXXXX, 2.5, 3

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-44

UCASE$ ()
Usage
Converts a string to upper case.

Syntax
UCASE$(stringexpression$)

stringexpression$ Any string expression.

Example
10 A$ = "good morning, sunshine"

20 A$ = ucase$ (a$)

Result: A$=”GOOD MORNING, SUNSHINE”

VAL()
Usage
Converts a numeric string to a number. Enables a program to accept numeric input as a
string, use various string functions to validate the input, and then convert the input back to
a number for use in calculations.

Syntax
VAL(stringexpression$)

stringexpression$ Any numeric string expression.

Example
10 PRINT VAL("76")

Output: 76

Simple I/O Commands
One of the most important parts of your program is its ability to interface with the terminal
operator. JagBASIC supports several simple input/output commands. These commands
provide an interface between JagBASIC programs and users. These commands enable
your program to:

• Sound the terminal beeper on a specified input or output

• Generate prompts

• Accept user input from the keyboard

• Check for key presses

The beeper tone can be used to signify a warning to a user or to provide positive
reinforcement. This simple command enables your program to interactively interface with
the user through the use of sound.

The INKEY$, INPUT and LINE INPUT commands enable the program to accept keyboard
input.

INKEY$—command checks to see if a key has been pressed. Program execution is not
interrupted.

Chapter 5: JagBASIC Commands
Simple I/O Commands

(10/01) 5-45

INPUT—command pauses the program's execution while the user enters numeric or
character data. Data is assigned to one or more variables of the appropriate type. Program
execution resumes when the user presses ENTER.

Character display on the terminal's lower display is accomplished through the PRINT
command.

This section discusses the following simple input/output commands.

Command Usage
BEEP Sounds the terminal beeper tone for the specified milliseconds.
INKEYS Returns a single keystroke from either the keyboard or keypad as a

string.
INPUT Reads input from the keyboard, serial port, or a file.
KEYSRC Reports the source of the latest keystroke read by the JagBASIC

application through an INPUT or INKEY$.
PRINT Writes data to the lower display or to a sequential file.
PRINT USING Writes formatted output to the terminal display or to a file.

TIPS
In order for JagBASIC to use the numeric keypad, either the operator must assign the
keypad to JagBASIC using the setup menus or the JagBASIC program must assign the
keypad to itself by setting an appropriate value in bas10.

The JagBASIC keyboard input statement supports inputting alphabetic characters using the
numeric keypad and the SELECT key. Before issuing the input statement, the JagBASIC
program must disable the control panel using the SELECT key by setting bas87 = 0.

A JagBASIC program may read the function keypad using the keyboard input statement.
The function keys operate as follows:

FUNCTION (01), MEMORY (03), TARE (04), and ZERO (07) keys— Terminate the input
statement. The input statement returns the key value for the terminating key at the end of the
input string.

ESCAPE (02) key—Terminates the input. To use the ESCAPE key, the JagBASIC program
must disable the control panel using the ESCAPE key setting bas86 = 0. The input
statement appends the ESCAPE key value to the end of the input string.

SELECT (05) key—Facilitates the entry of alphabetic characters through the keypad. To use
the SELECT key, the JagBASIC program must set bas87 = 0. The SELECT key selects the
alphabetic characters as shown on the keypad overlay. It does not terminate the input. The
input statement does not return a key value for the SELECT key in the input string.

CLEAR (06) key—Performs a backspace-erase on the input string. It does not terminate
the input. The input statement does not place the CLEAR key value in the input string.

ENTER (08) key—Terminates the input statement. The input statement does not return the
ENTER key value in the input string.

To get key input data from the keypad, you could use the following program:

10 DEFSHR escape,bas86

20 DEFSHR select,bas87

30 DEFSHR keyboard,bas10

40 escape=0:REM this enables entry of escape key to JagBASIC

50 select=0:REM this enables entry of alphabetic data to JagBASIC

60 keyboard=1:REM this assigns keypad to JagBASIC

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-46

70 INPUT "enter";a$

80 IF a$="" then GOTO 70

90 termchar%=ASC(right$(a$,1))

100 IF termchar% < 8 THEN LPRINT "function key = ";termchar%

110 LPRINT "input string = ";a$

120 GOTO 70

JagBASIC has these special function key values for the QWERTY keyboard keys. These
special keys terminate the input.

LEFT_ARROW = 0×09
RIGHT_ARROW = 0×0A
INSERT_KEY = 0×0B
HOME_KEY = 0×0C
END_KEY = 0×0D
DELETE_KEY = 0×0E
UP_ARROW = 0×0F
DOWN_ARROW = 0×10
PAGE_UP = 0×11
PAGE_DOWN = 0×12
F1_KEY = 0×13
F2_KEY = 0×14
F3_KEY = 0×15
F4_KEY = 0×16
F5_KEY = ZERO_KEY = 0×07
F6_KEY = FUNCTION_KEY = 0×01
F7_KEY = SELECT_KEY = 0×05
F8_KEY = CLEAR_KEY = 0×06
F9_KEY = TARE_KEY = 0×04
F10_KEY = MEMORY_KEY = 0×03
F11_KEY = 0×17
F12_KEY = 0×18

BEEP
Usage
Sounds the terminal beeper tone for the specified milliseconds. Used to signal an error or
warn the user of the consequences of an action.

Syntax
BEEP milliseconds

milliseconds The number of milliseconds that you want the tone to sound.

Example
10 FOR I% = 1 TO 20

20 BEEP 30

30 SLEEP 100

40 NEXT I%

Note: Setting Shared Data
trigger s_60b=1 disables the
QWERTY positioning keys in the
JagBASIC INPUT statement.
Positioning key are key values
0x09 to 0x12.

Chapter 5: JagBASIC Commands
Simple I/O Commands

(10/01) 5-47

INKEY$
Usage
Reads a character from the keyboard or keypad. This commands enables your program to
respond to special keys without interrupting program execution. INKEY$ returns a single
keystroke from either the keyboard or keypad as a string. As many as 10 keystrokes can
be stored in the buffer. If the keystroke was an ASCII character or an extended character, the
string is 1-byte.

If there is no keystroke available in the buffer, INKEY$ returns a null string. If you want to
retrieve a key and determine if it has one of several values, you must save the keystroke in
a JagBASIC variable, as follows:

10 c$=INKEY$

20 IF c$=CHR$(1) THEN PRINT "function key": GOTO 10

30 IF c$=CHR$(2) THEN PRINT "escape key": GOTO 10

40 IF c$="1" THEN PRINT "1 key": GOTO 10

50 IF c$="A" THEN PRINT "A key": GOTO 10

60 IF c$="" THEN PRINT "no keystroke"

70 GOTO 10

Syntax
INKEY$

Example 1
10 PRINT "Press A to exit..."

20 IF INKEY$ = “A” THEN GOTO 50

30 GOTO 20

50 END

Example 2
20 A$=INKEY$

30 IF A$=“A” THEN GOTO 60

40 IF A$ = “B” THEN GOSUB 1000

50 GOTO 20

60 END

1000 PRINT A$

1010 RETURN

INPUT
Usage
Reads data input from the keyboard. The program accepts character input from the
keyboard until the user presses a termination character, such as Enter. The prompt can tell
the user what type of information to enter. There are several prompting options with the
prompt string. The prompt can specify menu selections, default values, and its appearance
on the lower display.

Input reads data from the terminal keyboard, the keypad, or both. The JagBASIC keyboard
device must be selected through the setup menus.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-48

Syntax
INPUT [;] ["prompt"{; | ,}] variablelist

prompt An optional literal string that is displayed on the lower terminal display
before the user enters data.

variablelist Comma delimited list of variables to which the input is assigned.

semicolon {;} Causes the question mark to be displayed at the end of the prompt.

comma {,} Suppresses the question mark at the end of the prompt.

caret {^} When used in the prompt, the prompt will be displayed during input and
identifies menu selections. Individual selections within a menu selection
list may be separated by a comma, colon, semicolon, or space.

Keyboard Input Example #1

110 LPRINT "(^) keeps prompt on display during key input, (;) generates ?"

120 DIM a$(5)

130 a$(3)="^enter"

140 INPUT a$(3);b$

150 LPRINT "input = ";b$

Keyboard Input Example #2

210 LPRINT "Does not keep prompt on display during key input, (,) supresses ?"

220 c$="hello "

230 INPUT c$,b$

240 LPRINT "input = ";b$

Keyboard Input Example #3

310 LPRINT "(^) keeps prompt on display during input, (;) generates ?"

320 INPUT "^hello";b$

330 LPRINT "input = ";b$

Keyboard Input Example #4

410 LPRINT "(,) keeps print message on display only until key input begins"

420 b$="hello"

430 PRINT "enter? ";b$

440 INPUT ,c$

450 LPRINT "input = ";c$

Keyboard Input Example #5

510 LPRINT "Setup an input default, keep prompt on display"

520 LPRINT "Enter key accepts the default, or key in new data"

530 a$(4)="^type ^ default"

Chapter 5: JagBASIC Commands
Simple I/O Commands

(10/01) 5-49

540 INPUT a$(4),b$

550 LPRINT "input = ";b$

Keyboard Input Example #6

610 LPRINT "Setup an input default, keep prompt on display"

620 LPRINT "Enter key accepts the default, or key in new data"

630 b$="default"

640 INPUT "^type^"+b$;b$

650 LPRINT "input = ";b$

Keyboard Input Example #7

710 LPRINT "Select from a list of inputs, keep prompt on display"

720 LPRINT "Enter key accepts the selection"

30 LPRINT "Any other key advances to next selection"

40 LPRINT "Input variable contains the default value"

50 b$="no"

60 INPUT "^type^ yes,no,maybe";b$

70 LPRINT "input = ";b$

Keyboard Input Example #8

810 LPRINT "Select from a list of inputs, keep prompt on display"

820 LPRINT "Enter key accepts the selection"

830 LPRINT "Any other key advances to next selection"

840 LPRINT "Input variable contains the default value"

850 b%=4

860 a$(5)="^Number^1,2,3,4,5,6,7,8,9,10"

870 INPUT a$(5);b%

880 LPRINT "input = ";b%

Keyboard Input Example #9

910 LPRINT "Set integer default value with a template"

920 b%=100

930 INPUT "^type^####" ; b%

940 LPRINT "input = ";b%

Keyboard Input Example #10

1010 LPRINT "Set double float value with a template"

1020 b#=100.55

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-50

1030 INPUT "^type^ ####.###" ; b#

1040 LPRINT "input = ";b#

Keyboard Input Example #11

1110 LPRINT "Set string value with a template"

1120 a$(1)="happy trails"

1130 INPUT "^enter^ !!!!!!!!!" ; a$(1)

1140 LPRINT "input = ";a$(1)

KEYSRC
Usage
Reports the source of the latest keystroke that has been read by the JagBASIC application
through an INPUT or INKEY$ command.

Syntax
KEYSRC()

Returns:

 0 = None so far
 1 = Keypad
 2 = QWERTY Keyboard
 3 = Serial Keyboard Input

Example
10 C$=inkey$
20 IF c$<>”” AND KEYSRC()=1 THEN PRINT “Keypad Input”
30 GOTO 10

PRINT, PRINT USING
Usage
PRINT writes data to the lower terminal display, to a sequential file, or outputs data to the
specified serial port.

PRINT USING writes formatted output to the terminal display or to a file. A template is
defined that specifies the length and format of each item to be displayed.

Syntax
PRINT [#filenumber%,] expressionlist [{;}]

PRINT [#filenumber%,] USING formatstring$; expressionlist [{;}]

PRINT “expression”

PRINT USING “####.##”, formatstring$

PRINT [#filenumber%], string$

#filenumber% The number of an open sequential file. If the file number is omitted,
PRINT writes to the lower terminal display. If the filenumber is a Com
Port, then PRINT command outputs data to the specified serial port.

Chapter 5: JagBASIC Commands
Simple I/O Commands

(10/01) 5-51

expressionlist List of one or more numeric or string expressions to print.

semicolon {;} Means print immediately after the last value. The absence of a
semicolon {;} means to insert a new line.

formatstring$ A string expression containing characters that format a numeric
expression.

Digit position.

. Decimal point position.

^ Prints in exponential format.

- Space.

+ Sign.

Other characters are printed as literal data in the output.

Use these characters to format string expressions

! Prints corresponding characters of string.

\ \ Prints first n characters of string, where n is the number of blanks
between the slashes.

expression Any character or numeric expression.

string$ Any string expression.

Example
10 netto=10.0

20 brutto=20.0

30 PRINT USING "netto_#####.## ___brutto_#####.##";netto;brutto

40 a#=123.456789:b#=87.54321:c#=5.555

50 PRINT USING "$###.## __$###.## __$###.##";a#;b#;c#

70 PRINT USING "+###.## __$###.## __+###.##";a#;b#;c#

80 a#= -123.456789

90 PRINT USING "$###.##";a#

100 PRINT USING "+###.##";a#

110 a%=4567:b%=12:c%=1:d%=123

120 PRINT USING "_###";a%

121 PRINT USING "_###";b%

122 PRINT USING "_###";c%

123 PRINT USING "_###";d%

130 PRINT USING "+###.##";a%

140 a%= -4567

150 PRINT USING "#######";a%

151 PRINT USING "######";a%

152 PRINT USING "#####";a%

160 PRINT USING "+###.##";a%

170 a$="abcdefghijklmnopqrstuvwxyz"

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-52

180 PRINT USING "!!!!";a$

190 PRINT USING "\ \ __\ \";a$;a$

200 PRINT USING "_^^^^ ___^^^^^";a#;b#

Serial I/O Commands
JagBASIC has an enhanced serial I/O capability, including file-type I/O statements and
remote terminal support.

JagBASIC can read and write to local serial ports. In addition, JagBASIC program may read
and write to serial ports on remote JAGXTREME terminals within a cluster. The terminal
routes the serial I/O messages across Ethernet to the remote terminal containing the serial
port. Remote serial I/O allows sharing of devices, such as printers or host connections,
among all terminals in a cluster.

A JagBASIC application using the remote serial I/O must be prepared to handle "offline"
error situations that do not occur in local serial I/O. You cannot use asynchronous events
with remote serial. All operations are performed synchronously.

JagBASIC's serial input and output commands enable you to:

• Access files or serial ports.

• Close a file or serial port.

• Flush received data in the BIOS serial input buffer.

• Read input from the serial port.

• Output data to a terminal serial COMx port.

• Print formatted output on the LPRINT device.

• Output data to the specified serial port.

• Specify the width of a printed line.

• Format lines of text by inserting specified amounts of space between values.

In order for JagBASIC to access a
remote serial port, you must set up
the terminal with either a demand
print or custom print connection. Use
the setup menus at the remote
terminal to set these options.

Chapter 5: JagBASIC Commands
Serial I/O Commands

(10/01) 5-53

This section discusses the following serial input/output commands

Command Usage
CKSUM$ () Generates the checksum of a string and returns the checksum

in string format.
CLOSE Closes a file or serial port.
COMBITS () Reads the Modem input status of Com 3
CRC$ Generates the CRC of a string and returns the CRC in string

format.
FLUSH Discards received data in the BIOS serial input buffer.
INPUT Reads input from the serial port.
LPRINT Outputs data to a terminal serial LPRINT device.
LPRINT USING Prints formatted output on the LPRINT device.
OPEN Accesses a file or serial port.
PRINT Writes data to the lower terminal display, to a sequential file, or

to a serial port.
PRINT USING Writes formatted output to the terminal display or to a file.
PRINT # Outputs data to the specified file or serial port.
SPC() Skips a specified number of spaces in a PRINT or LPRINT

statement.
TAB Advances to the specified position
WIDTH Assigns an output line width to the LPRINT device, serial port,

or a file.
WIDTHIN Dynamically assigns input length for serial I/O device.

TIPS
JagBASIC serial file I/O commands cannot be used to access a serial port for which there is
an input or continuous output connection assigned in CONFIG SERIAL setup.

The LPRINT device is serial port configured as the first demand print port for Scale A.

CKSUM$ ()
This function generates the checksum of a string and returns the checksum in string format.
It calculates the checksum by adding the lower 7 bits of each byte in the string and taking
the 2’s complement. It is used for validating sent and received messages.

Syntax
CKSUM$(string1$, [string2$,][string3$,]start%)

string1$ Input string with a maximum length of 80 characters.

string2$ Optional input string with a maximum length of 80 characters.

string3$ Optional input string with a maximum length of 80 characters.

start% Character in the string where checksum starts.

Example
OPEN "com2:xpr null trm13 len40" FOR OUTPUT AS as #1

message$= chr$(2)+"hello world"+chr$(3)

message$= message$+cksum$(message$,1)

PRINT#1,message$;

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-54

CLOSE
Usage
Closes an open file or serial port. Use CLOSE after all input and output operations for a file
or device are concluded. CLOSE releases the memory space reserved in the buffer for the
open file or serial port.

Syntax

CLOSE #filenumber%

filenumber% The number of an open file.

Example

10 OPEN “com4:cr” FOR OUTPUT AS #2

20 PRINT #2, "HELLO"

30 CLOSE #2

COMBITS ()
Usage
The COMBITS command allows you to read the status of the four modem input signals on
the COM3 serial port. You must first open the COM3 serial port using the OPEN command.

Syntax
COMBITS(filenumber)

filenumber File number used in the OPEN command for the COM3 serial port.

COMBITS returns an integer with the following bit values OR”ed together. The bit value is
set to one.

Example
OPENn "com2:” FOR OUTPUT AS #1

a%=combits(1)

CRC$
Usage
CRC$ computes a 16 bit CRC on the message text and returns a 4-character string that
contains the CRC in ASCII format. The CRC is used primarily with serial communications to
ensure that a message is transmitted without errors. The CRC calculation is a CCITT method
that uses an “exclusive OR” hashing method with a lookup table. The CRC calculation
starts with the first byte and proceeds sequentially to the last byte of the message text.
CRC$ uses the following procedure to calculate and return CRC:

• “Exclusive OR” the high-order byte of the current CRC with the next byte of the message
text.

• Use resulting 8-bit value as an index into the lookup table to get 16-bit table value.

• Shift the low-order byte of current CRC to the high-order byte and “exclusive OR” the
result with the 16-bit value from step 2. This becomes the new current CRC.

• Go to step 1 and repeat the calculation for each byte of the message.

• “OR” each 4-bit nibble of the 16-bit CRC with a hex 30 to convert the CRC to four
printable ASCII characters. Start with low-order byte then convert high order byte last.

When a program executes a CLEAR,
END, or RUN statement or its last
statement, JagBASIC closes all open files
and serial ports. Each open file must be
closed by its own CLOSE command.

Chapter 5: JagBASIC Commands
Serial I/O Commands

(10/01) 5-55

The following table is used for the calculating the CRC.

0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7,
0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF,
0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6,
0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE,
0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485,
0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D,
0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4,
0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC,
0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823,
0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B,
0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12,
0xBDFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A,
0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41,
0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B, 0x8D68, 0x9D49,
0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70,
0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A, 0x9F59, 0x8F78,
0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D, 0xF14E, 0xE16F,
0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C, 0xE37F, 0xF35E,
0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256,
0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F, 0xD52C, 0xC50D,
0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E, 0xC71D, 0xD73C,
0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634,
0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB,
0x 5844 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3,
0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8, 0xABBB, 0xBB9A,
0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92,
0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B, 0x9DE8, 0x8DC9,
0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1,
0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8,
0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0

Syntax
CRC$(string$)

string$ Input string with a maximum length of 160 characters in the JAGXTREME
terminal.

Example 1
OPEN "com2:xpr null" FOR OUTPUT AS #1

message$= CHR$(2)+"hello world"+CHR$(3)

message$= message$+CRC$(message$)

PRINT #1,message$;

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-56

Example 2
message$= chr$(2)+"hello world"+chr$(3)

x$=CRC$(message$)

message2$=”happy trails to you”

y$=CRC$(message2$)

z$=CRC$(“a”)

LPRINT “x$: “;x$

LPRINT “y$: “;y$

LPRINT “z$: “;z$

Output
X$: 9==9

Y$: 060?

Z$: 877<

FLUSH
Usage
Discards received data in the BIOS serial input buffer.

Syntax
FLUSH #1

Example
20 FLUSH #1

INPUT
Usage
Synchronously reads data bytes from the specified serial communication port into variables
until one of the terminating conditions occurs. The terminating conditions are specified in
the OPEN statement. Using the EVENT option, the INPUT statement can also be used to
asynchronously input data from a serial port.

Syntax
INPUT #filenumber, string variable

#filenumber% Open serial I/O device from which you want to read data.

string variable The input data.

Example 1
10 OPEN "com1: tmo5000 len40 trm13 event" FOR INOUT AS #1

30 ON EVENT #1 GOSUB 1000

40 INPUT #1,a$

.

. MAIN PROGRAM

.

50 IF INKEY$<>"x" THEN GOTO 50

The serial port input can occur
asynchronously with the normal program
operation. The program execution does
not necessarily have to suspend itself
while the serial input operation completes
using the EVENT option.

Chapter 5: JagBASIC Commands
Serial I/O Commands

(10/01) 5-57

60 CLOSE #1

70 END

.

.

1000 LPRINT "serial message";a$

1010 INPUT #1,a$:REM start next input

1020 RETURN

Example 2
10 OPEN "com2: tmo1000 len20 trm13" FOR INPUT AS #1

20 INPUT #1,a$

30 LPRINT "msg="; a$

40 GOTO 20

LPRINT
Usage
Outputs the contents of numeric or string variables to a terminal serial port. The first serial
port configured as the first demand print connection is used as the output device. The
LPRINT statement is most useful for software debugging and for use as an application
report printer. When used as an aid in debugging software, error messages are outputted
to the LPRINT device.

LPRINT for general serial output is limited by the special handling of three ASCII character
codes as listed below:

Name Hex Code JagBASIC LPRINT Action
repeat 7F Used as an escape character in the "tab to column x" feature.

The character following the repeat character specifies how
many space characters are needed to get to the desired
column.

tab 09 Translates into 1 to14 spaces, as required to reach the next
"tab stop".

newline 0A Translates into a <cr><lf> combination.

LPRINT sends output directly to an output device. LPRINT enables you to print strings,
numbers, and so on the printer, just as PRINT enables you to display these items on the
lower terminal display.

Syntax
LPRINT expressionlist [{;}]

expressionlist List of one or more numeric or string expressions to print. Items must
be separated by commas or semicolons.

; When used in a list of expressions, the semicolon deter- mines that the next output is
printed immediately after the previous one. When used at the end of the LPRINT statement
the semicolon determines that the print head does not move to the next line after printing.

The Configure Serial menu allows
you to setup the LPRINT device for
JagBASIC. The LPRINT device is the
first demand print port for Scale A.
When you assign the LPRINT device
and the BasTerminal connection to
the same serial port, then that serial
port operates as an interactive serial
port for JagBASIC.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-58

Example
10 LPRINT CHR$(10);"Sample Line Print"

Output: Sample Line Print

LPRINT USING
Usage
Prints formatted output on the LPRINT device and specifies the length and format of each
item printed. LPRINT USING creates a template string that filters and formats your output.
LPRINT USING functions similarly to PRINT USING. PRINT USING is discussed in the Simple
I/O Commands section of this chapter.

Syntax
LPRINT USING formatstring$; expressionlist [{;}]

formatstring$ A string expression containing characters that format a numeric
expression.

Digit position.

. Decimal point position.

^ Exponential format.

+ Sign.

Or a string expression

! Print corresponding characters of string.

\ Print first n characters of string, where n is the number of
blanks between the slashes.

expressionlist List of one or more numeric or string expressions to print.

; When used in a list of expressions, the semicolon determines the next output is printed
immediately after the previous one. When used at the end of the LPRINT USING statement,
the semicolon determines that the print head does not move to the next line after printing.

Example
10 netto=10.0

20 brutto=20.0

30 LPRINT USING "netto_#####.## ___brutto_#####.##";netto;brutto

40 a#=123.456789:b#=87.54321:c#=5.555

50 LPRINT USING "$###.## __$###.## __$###.##";a#;b#;c#

70 LPRINT USING "+###.## __$###.## __+###.##";a#;b#;c#

80 a#= -123.456789

90 LPRINT USING "$###.##";a#

100 LPRINT USING "+###.##";a#

110 a%=4567:b%=12:c%=1:d%=123

120 LPRINT USING "_###";a%

121 LPRINT USING "_###";b%

122 LPRINT USING "_###";c%

123 LPRINT USING "_###";d%

130 LPRINT USING "+###.##";a%

Chapter 5: JagBASIC Commands
Serial I/O Commands

(10/01) 5-59

140 a%= -4567

150 LPRINT USING "#######";a%

151 LPRINT USING "######";a%

152 LPRINT USING "#####";a%

160 LPRINT USING "+###.##";a%

170 a$="abcdefghijklmnopqrstuvwxyz"

180 LPRINT USING "!!!!";a$

190 LPRINT USING "\ \ __\ \";a$;a$

200 LPRINT USING "_^^^^ ___^^^^^";a#;b#

OPEN
Usage
Prepares a serial port for use as a file device. You can access a serial port that you have
set up as a demand print serial connection or a custom print serial connection. You cannot
access a serial port from JagBASIC if it has been set up as a continuous output connection
or as an input connection. If the serial port is on the local terminal, you can access the
serial port even if it is not set up in a connection.

The OPEN command allows you to specify the remote terminal address and the serial port
address on the remote terminal. When it issues the OPEN command, the JagBASIC
program is establishing exclusive access to the remote serial port as long as it has the
serial port open. If another terminal has already opened the serial port, the JagBASIC
program will get an error status back indicating there is a file-sharing error. In order to
effectively share a serial port among several terminals, you should open the serial port,
quickly perform the I/O, and then close the serial port to make it available to another
terminal.

Syntax
OPEN "com1: tmo5000 len40 trm13 cr event" FOR INPUT AS #1

OPEN "j2/com1: tmo5000 len40 trm13 cr" FOR INPUT AS #1

OPEN "com2: null xpr tmo100" FOR INPUT AS #1

com1, com2, com3, and com4 File names which specify the serial port to be used
for communications.

tmo Specifies the time-out value to wait for a serial input message in decimal
milliseconds. The default value is zero milliseconds, or no time-out value. The
maximum time-out value is 30,000 milliseconds.

len Specifies the maximum input length for a serial input message.
The maximum length is 80 bytes, which is the maximum string
size in JagBASIC. The default length is 80 bytes.

trm Specifies an optional terminating character for the serial input message. Its
value is specified in decimal. When the input command encounters the
terminating character, it returns the characters up to and including the
terminating character in the serial message as a string variable.

cr Specifies that a carriage return character is to be inserted at the end of any
serial output message.

event Allocates an event which may trigger an event processing routine when a serial
input operation completes.

You must set up the serial
connections used by the terminal
operating system with the
Configure Serial in the terminal
setup menus. Demand print and
custom print ports can be shared
by JagBASIC and the terminal
operating system. If you attempt
to open a serial port that is in the
middle of a demand print, for
example, you will get a “No
Remote Access” error. You must
handle this error with an ON
ERROR GOTO statement. Once
the demand print is complete,
you will be able to open the
serial port. Similarly, you will not
be able to do a demand print
while JagBASIC has the port
open.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-60

xpr Selects the "express print" option. Normally, JagBASIC sends PRINT data to a
serial port when either it encounters a "new line" character in the print data or
the print data length exceeds the WIDTH value. This option causes JagBASIC to
send the PRINT data to the serial port immediately at completion of the PRINT
statement, even when there is no terminating "new line" character.

null Enables the inputting and outputting of NULL (0) characters through JagBASIC
serial I/O. Since the NULL character is a terminator for JagBASIC strings, you
must send and receive a special sequence of characters for the NULL character.
The sequence "DLE 0xff" represents the NULL character in the JagBASIC
application. The sequence "DLE DLE" represents a single DLE character. The
following statements transmit a NULL character embedded in each print
statement.

open "com2:null xpr tmo100" for output as #1
print #1,chr$(16)+chr$(255)+"hello"

The following statements transmit a single DLE character embedded in the print statement.

open "com2:null xpr tmo100" for input as #1
print #1, "hello"+chr$(16)+chr$(16)+"dolly"

The following statements can receive a single NULL character in the input string.

10 OPEN "com2:null xpr tmo1000" FOR INPUT AS #1
20 INPUT #1,a$
30 IF len(a$)=0 THEN LPRINT "timeout":GOTO 20
40 IF len(a$)<>2 THEN GOTO 20
50 IF asc(mid$(a$,1,1))=16 and asc(mid$(a$,2,1))=-1 THEN LPRINT "NULL"
60 GOTO 20

input, output The mode can be either input or output. No matter which is

chosen, you can do input or output to the specified serial device.

#n The internal device number with a value between 0 and 7,
inclusive.

 Terminal addresses which specify remote terminal containing the
remote serial port.

Example 1
10 ON ERROR GOTO 1000

20 OPEN "COM1: TMO3000 TRM13" FOR INPUT AS #1

30 OPEN "COM4: CR" FOR OUTPUT AS #2

40 FLUSH #1

50 INPUT #1,A$

60 PRINT #2,A$

70 IF INKEY$<>"C" THEN GOTO 50

80 CLOSE #1

90 CLOSE #2

100 END

1000 SLEEP 500

1010 IF ERR()=32 AND ERL()=20 THEN GOTO 20

1020 IF ERR()=32 AND ERL()=30 THEN GOTO 30

j1, j2, j3, j4, j5,
and J6

Chapter 5: JagBASIC Commands
Serial I/O Commands

(10/01) 5-61

1030 PRINT "FATAL ERROR"

1040 SLEEP 2000

1050 END

Example 2
10 OPEN "COM2: TMO5000 TRM13 LEN10 CR" FOR INPUT AS #1

20 FLUSH #1

30 PRINT #1,"SEND SERIAL INPUT"

40 INPUT #1,A$

50 PRINT #1,"SERIAL OUTPUT DATA ";A$

60 GOTO 40

PRINT, PRINT USING
Usage
PRINT writes data to the lower terminal display, to a sequential file, or outputs data to the
specified serial port.

PRINT USING writes formatted output to the terminal display or to a file. A template is
defined that specifies the length and format of each item to be displayed.

Syntax
PRINT [#filenumber%,] expressionlist [{;}]

PRINT [#filenumber%,] USING formatstring$; expressionlist [{;}]

PRINT expression

PRINT USING “####.##”, formatstring$

PRINT [#filenumber%], string$

#filenumber% The number of an open sequential file. If the file number is

omitted, PRINT writes to the lower terminal display. If
the filenumber is a Com Port, then PRINT command outputs
data to the specified serial port.

expressionlist List of one or more numeric or string expressions to print.

semicolon {;} The absence of a semicolon {;} at the end of the line means to
insert a new line.

formatstring$ A string expression containing characters that format a numeric
expression.

Digit position.

. Decimal point position.

^ Prints in exponential format.

- Space.

+ Sign.

Other characters are printed as literal data in the output.

Use these characters to format string expressions

! Prints corresponding characters of string.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-62

\ \ Prints first n characters of string, where n is the number of
blanks between the slashes.

expression Any character or numeric expression.

string$ Any string expression.

Example
10 netto=10.0

20 brutto=20.0

30 PRINT USING #1, "netto_#####.## ___brutto_#####.##";netto;brutto

40 a#=123.456789:b#=87.54321:c#=5.555

50 PRINT USING #1,"$###.## __$###.## __$###.##";a#;b#;c#

70 PRINT USING #1, "+###.## __$###.## __+###.##";a#;b#;c#

80 a#= -123.456789

90 PRINT USING #1, "$###.##";a#

100 PRINT USING #1, "+###.##";a#

110 a%=4567:b%=12:c%=1:d%=123

120 PRINT USING #1, "_###";a%

121 PRINT USING #1,"_###";b%

122 PRINT USING #1, "_###";c%

123 PRINT USING #1, "_###";d%

130 PRINT USING #1,"+###.##";a%

140 a%= -4567

150 PRINT USING #1, "#######";a%

151 PRINT USING #1,"######";a%

152 PRINT USING #1,"#####";a%

160 PRINT USING #1,"+###.##";a%

170 a$="abcdefghijklmnopqrstuvwxyz"

180 PRINT USING #1,"!!!!";a$

190 PRINT USING #1,"\ \ __\ \";a$;a$

200 PRINT USING #1,"_^^^^ ___^^^^^";a#;b#

210 CLOSE #1

Chapter 5: JagBASIC Commands
Serial I/O Commands

(10/01) 5-63

PRINT #
Usage
Outputs unformatted data to the specified serial port.

Syntax
PRINT comport#1,string$

comport# Number of the serial port.

string$ Any string expression.

Example
10 OPEN "COM2: TMO5000 TRM13 LEN10 CR" FOR INPUT AS #1

20 FLUSH #1

30 PRINT #1,"SEND SERIAL INPUT"

40 INPUT #1,A$

50 PRINT #1,"SERIAL OUTPUT DATA ";A$

60 GOTO 40

SPC()
Usage
Displays the specified number of spaces in a PRINT or LPRINT statement. Use SPC to
format output for readability.

Syntax
SPC(n%)

n% The number of spaces to display. The range is 1 to 80.

Example
10 PRINT "Text1"; SPC(10); "Text2"

Output: Text1 Text2

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-64

TAB ()
Usage
Advances the cursor to the specified position in a PRINT or LPRINT statement. Use a
semicolon (;) to stay on the same line.

Syntax
TAB(n)

n Position to advance to the right.

Example
10 LPRINT "COMPANY" TAB(25) "PRODUCT" : PRINT

20 READ A$, B$

30 PRINT A$; TAB(25); B$

40 DATA "METTLER TOLEDO", "JAGBASIC"

RUN

Output:

COMPANY PRODUCT
METTLER TOLEDO JAGBASIC

WIDTH
Usage
Assigns an output line width to the LPRINT device, serial port, or a file. Used to limit the line
lengths in a file containing a report. Line lengths beyond the established width are wrapped
to the next line. The default width is 80 characters.

Syntax
WIDTH [#filenumber%], columns%

#filenumber% The number of an open file. If #filenumber% is not specified, WIDTH
applies to the LPRINT device.

columns% The desired width in columns.

Example
10 OPEN “COM2:CR” FOR OUTPUT AS #1

20 WIDTH #1, 75

WIDTHIN
Usage
Allows you to dynamically reassign the maximum serial input length, as it is defined in
OPEN.

Syntax
WIDTHIN #filenumber, length%

#filenumber Open serial I/O device.

length% The desired length. The length can be 0 to 80.

Chapter 5: JagBASIC Commands
File Commands

(10/01) 5-65

Example
10 OPEN "com2: TMO5000 TRM13 LEN10 CR" FOR INPUT AS #1

20 WIDTHIN #1,5

30 INPUT #1, A$

40 LPRINT A$

50 CLOSE #1

File Commands
JagBASIC commands perform simple operations such as open and close, as well as
complex operations. JagBASIC supports sequential, random, and indexed sequential files.
Sequential files are read and written sequentially. Sequential files can have variable length
records. You can dynamically change the length of a sequential file by appending records
to the end of the file. When you are writing a sequential file, you should frequently close the
file so that the file pointers are permanently updated in the RAM disk. Otherwise, you can
lose data in the event of a power failure.

Random access files are fixed in length. Records are accessed randomly by number or can
be accessed sequentially. Record sizes are fixed in length. You create a random access
file by writing it sequentially when you first create the file.

A JagBASIC program can create and access indexed sequential files. Indexed sequential
files contain records stored sequentially based on a logical key within a random access
file. The records have a fixed length. Indexed sequential files provide keyed access to
records within the file. JagBASIC can read, insert, update, or delete records from the file
based on the logical key that is stored as part of the record. The JagBASIC interpreter
performs a binary search of the records in the file to locate a particular record, providing
faster logical access to the records in the file.

This section discusses the following JagBASIC file commands:

Command Usage
CLOSE Closes an open file or serial port.
CVI, CVS, CVD Convert strings to numbers.
DELREC Deletes a record from the indexed sequential file.
EOF() Tests for the end of a file.
FIELD Defines the structure of records to be used in indexed-sequential

and random-access file buffers.
GET Reads a record from the random-access or indexed-sequential

file.
INDEXED Identifies a file as an indexed-sequential file and which field in

the record is the index key.
INPUT Reads input from the keyboard, serial port, or a sequential file.
LINE INPUT# Reads sequentially all characters of an entire line (up to 80

characters) without delimiters from a sequential file up to the
next carriage return into a string variable.

LOC() Returns the current position within a file.
LOF() Returns the length of the file.
LSET Moves data into a random-access file buffer (in preparation for a

PUT statement) and left-justifies the value of a string variable.
MKI$, MKS$,
MKD$

Convert numbers to numeric strings that can be stored in FIELD
statement string variables.

OPEN Accesses a file.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-66

Command Usage
PRINT Writes data to the lower terminal display or to a sequential file.
PRINT USING Writes formatted output to the terminal display or to a file.
PRINT# Outputs data to the specified serial port or sequential file.
PUT Writes a record to the indexed sequential file.
RSET Moves data into a random-access file buffer (in preparation for a

PUT statement) and right-justifies the value of a string variable.
SORTREC Identifies the file as an indexed sequential file and automatically

sorts the records.
WRITE# Writes data to the LPRINT device or to a sequential file.

TIPS
To perform quick file look-ups based on a logical key, use indexed sequential files.

CLOSE
Usage
Closes an open file or serial port. Only one CLOSE command is permitted per program line.

Syntax
CLOSE #filenumber%

#filenumber% The number of an open file.

Example
10 OPEN “LOG” FOR OUTPUT AS #1

20 WRITE #1, "This is saved to the file."

30 CLOSE #1

40 OPEN “LOG” FOR INPUT AS #1

50 INPUT #1, a$

60 PRINT "Read from file: "; a$

70 CLOSE #1

Each open file must have its own
CLOSE command.

When you are writing a indexed-
sequential or sequential file, you
should frequently close the file to
avoid losing data in the event of a
power failure.

Chapter 5: JagBASIC Commands
File Commands

(10/01) 5-67

CVI, CVS, CVD
Usage
Convert string variable types, created by either the MKD$, MKI$, or MKS$ commands, to
numeric variable types. These commands are used after reading the string representation of
a double-precision number in a random-access file that contains records defined by the
FIELD statement. Because you cannot store numeric values in random-access files, you
must convert numbers to strings before storing them and convert them back to numbers
when you read the file.

Command Returns

CVI Integer

CVS Single-precision number

CVD Double-precision number

Syntax
CVI(2-byte-numeric-string)

CVS(4-byte-numeric-string)

CVD(8-byte-numeric-string)

2-byte-numeric string 2-byte string variable created by the MKI$ command

4-byte numeric string 4-byte string variable created by the MKS$ command

8-byte-numeric string 8-byte string variable created by the MKD$ command

Example
70 FIELD #4, 4 AS N$, 12 AS B$

80 GET #1

DELREC
Usage
Deletes a record from the indexed sequential file. The JagBASIC program must set the
logical index into the key field of FIELD variables. DELREC searches the file for a record
containing the logical key. If it finds the record, DELREC deletes the record in the FIELD
variables. Otherwise, DELREC generates a "RECORD NOT FOUND" error.

Syntax
DELREC #file number

#file number The number of the indexed sequential file.

Example
6000 LPRINT "delete some records"

6001 ON ERROR GOSUB 6200

6010 OPEN "testfile" FOR RANDOM AS #1 len=26

6020 field #1,16 AS a$,8 AS b$, 2 AS c$

6030 INDEXED #1,a$

6050 LSET a$=STRING$(16,"A")

6080 DELREC #1

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-68

6090 LSET a$=STRING$(16,"Z")

6120 DELREC #1

6130 END

6200 IF ERR()<>6 THEN END

6210 LPRINT "error line ";ERL()

6220 RETURN

EOF()
Usage
Tests for the end of a file. Returns true (nonzero) if the end of a file has been reached. Used
to decide whether to continue processing a file.

Syntax
EOF(filenumber%)

filenumber% Number of the file to test.

Example
10 OPEN "TEST.DAT" FOR OUTPUT AS #1

20 FOR i% = 1 TO 10

30 WRITE #1, i%, 2 * i%, 5 * i%

40 NEXT i%

50 CLOSE #1

60 OPEN "TEST.DAT" FOR INPUT AS #1

70 WHILE EOF(1) = 0

80 LINE INPUT #1, a$

90 PRINT a$

100 WEND

FIELD
Usage
Defines the structure of records to be used in indexed-sequential and random-access file
buffers. Records contain various fields. Each field is a location in a record that can be
accessed by a field name.

Syntax
FIELD #filenumber%, fieldwidth% AS stringvariable$ [,fieldwidth% AS stringvariable$]

#filenumber% The number of an open file.

fieldwidth% The number of characters in field.

stringvariable$ A variable that identifies the field and contains field data.

Example
40 OPEN "FILE" FOR RANDOM AS #1 LEN = 80

50 FIELD #1, 30 AS Name$, 50 AS address$

The maximum record length for a
random access or indexed-sequential
file is 200 characters.

Chapter 5: JagBASIC Commands
File Commands

(10/01) 5-69

GET
Usage
Reads a record from a random access file by record number into fields defined by the field
statement.

Reads a record from the indexed sequential file into the fields defined by a FIELD statement.
The program must first set a logical index into the key field of the FIELD variables. GET
executes a binary search of the file for a record containing the logical key. If it finds the
record, GET returns the record in the FIELD variables. Otherwise, GET generates a "RECORD
NOT FOUND" error. You must use an ON ERROR statement to handle these errors.

Syntax
GET #file number[,record number]

#file number Number of the open or sequential file.

record number For random access files, the number of the record to read. If record
number is not specified, GET returns the next sequential record.

For indexed-sequential files, the number is typically not specified. When it is not specified,
GET returns the record specified in the keyword field of the FIELD statement. The INDEXED
or SORTREC command specifies which field is the keyword field. When the record number
is specified, the GET statement returns the specified record number. The record number can
be variable or a constant.

Example 1
Reading a Random Access File Sequentially

10 OPEN "M" FOR RANDOM AS #1 LEN=21

20 FIELD#1, 5 AS ID$, 16 AS MATNAME$

30 WHILE EOF (1)=0

40 GET #1

50 PRINT ID$; TAB (10); MATNAME$;

60 WEND

70 CLOSE #1

80 END

Example 2
Indexed Sequential File

8000 LPRINT "get some records"

8001 ON ERROR GOSUB 8200

8010 OPEN "testfile" FOR RANDOM AS #1 len=26

8020 field #1,16 as a$,8 as b$, 2 as c$

8030 INDEXED #1,a$

8040 LSET a$=STRING$(15,"A")+"1"

8050 GET #1

8060 LPRINT b$

8070 LSET a$=STRING$(15,"J")+"1"

8080 GET #1

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-70

8090 LPRINT b$

8100 END

8200 IF ERR()<>6 THEN END

8210 LPRINT "error line ";ERL()

8220 RETURN

Example 3
Reading Indexed Sequential File sequentially

1000 OPEN "testfile" FOR RANDOM AS #2 len=27

1010 FIELD #2, 5 AS a$, 10 AS b$, 12 AS c$

1020 INDEXED #2, b$

1030 r%=0

1040 WHILE NOT EOF(2)

1050 r%=r%+1

1060 GET #2, r%

1070 LPRINT c$

1080 WEND

INDEXED
Usage
Identifies which field in the record is the index key. JagBASIC must first OPEN the file as a
random access file and define the record format using the FIELD command. The INDEXED
command identifies the file as an indexed sequential file.

Syntax
INDEXED #file number,variable name

#file number The opened random access file.

variable name Name of the FIELD variable that is the index key.

Example
1000 LPRINT "create indexed file"

1010 OPEN "testfile" FOR RANDOM AS #1 len=26

1020 FIELD #1,16 AS a$,8 AS b$, 2 AS c$

1030 INDEXED #1,a$

1040 FOR i% = 10 to 1 step -1

1050 LSET a$=STRING$(16,chr$(64+i%))

1055 LSET b$="00000000"

1060 LSET c$=CHR$(13)+CHR$(10): REM LF/CR

1070 PUT #1

1080 NEXT i%

1090 CLOSE #1

2000 LPRINT "print file"

Chapter 5: JagBASIC Commands
File Commands

(10/01) 5-71

2010 OPEN "testfile" FOR INPUT AS #1

2020 WHILE NOT EOF(1)

2030 LINE INPUT #1,x$

2040 LPRINT x$

2050 WEND

INPUT #
Usage
Reads input from the keyboard, serial port, or a sequential file. When reading a sequential
file, the file must be “comma-delimited”. That is, commas between items and quotation
marks around strings in the file are required.

Syntax
INPUT #filenumber%, variablelist

#filenumber% Open sequential file from which you want to read data. When no
filename is specified, INPUT reads data from the keyboard.

variablelist List of variables to which input is assigned.

Example
100 OPEN "LOG" for output as #1

200 WRITE #1, "Write this to the file."

300 CLOSE #1

400 OPEN "LOG" for input as #1

500 INPUT #1, a$

600 PRINT "Read from file:"; a$

700 CLOSE #1

LINE INPUT #
Usage
Reads sequentially all characters of an entire line (up to 160 characters) without delimiters
from a sequential file up to the next carriage return into string variable.

Syntax
LINE INPUT #filenumber%,string$

#filenumber% File.

stringvariable String variable.

string$ String expression.

Example
10 OPEN "log" for input a$ #1

20 WHILE eof(1)=0

30 LINE INPUT #1, a$

40 WEND

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-72

LOC()
Usage
Returns the current pointer position within a file that shows where the next read or write
operation will take place.

For random access files, LOC returns the next record number after the last record read from
or written to the file.

For sequential input or output, LOC returns the current byte position.

Syntax
LOC(filenumber%) #number

filenumber% The number of an open file.

#number The number of records.

Example
200 IF LOC(1)=50 THEN STOP

LOF
Usage
Returns the length of a file.

Syntax
LOF (filenumber%)

Filenumber The number of an open file.

Example
100 OPEN "TEST" FOR INPUT AS #1
200 size# = LOF(1)

LSET
Usage
Moves the value of an expression or variable into a field in a random-access file buffer in
preparation for a PUT statement. LSET left-justifies the value of a string variable in the field.

Syntax
LSET stringvariable$ = stringexpression$

stringvariable$ Any string variable or a random-access file field defined in a
FIELD statement.

stringexpression$ The left-justified version of string variable$.

Example
1 OPEN "F" FOR RANDOM AS #1 LEN = 10

2 FIELD #1, 5 AS Ls1$, 5 AS Rs1$

3 LSET Ls1$ = "LSET"

4 RSET Rs1$ = "RSET"

5 PUT #1, 1

6 CLOSE #1

Chapter 5: JagBASIC Commands
File Commands

(10/01) 5-73

MKI$, MKS$, MKD$
Usage
Convert numbers to numeric strings that can be stored in FIELD statement string variables.
You cannot store numeric values in random-access files. You must convert numbers to
strings before storing them. These commands complement the CVI, CVD, and CVS
commands which convert the strings back to numbers when you read the file.

Function Returns

MKI$ 2-byte string

MKS$ 4-byte string

MKD$ 8-byte string

Syntax
MKI$(integer-expression%)

MKS$(single-precision-expression!)

MKD$(double-precision-expression#)

integer-expression% Any integer number in the range of -32768 to 32767.

single-precision-expression! Single-precision number in the range of 3.4E-38 to
3.4E+38.

double-precision-expression# Double-precision number in the range of 7E-308 to
 7E+308.

OPEN
Usage
Accesses a file. Files can be sequential, random, or indexed-sequential files stored on the
terminal RAMDISK.

Syntax
OPEN file$ [FOR mode] AS #filenumber% [LEN=reclen%]
OPEN file$ [FOR mode] AS #filenumber% [LEN=reclen%]

file$ The name of the file on the RAMDISK.

mode INPUT, OUTPUT, APPEND, or RANDOM.

Sequential files are opened as INPUT, OUTPUT, or APPEND. Opening a sequential file for
OUTPUT creates a new file. Opening a sequential file for APPEND adds new records to the
end of an existing file. Random access and indexed sequential files must be opened as
RANDOM.

filenumber% A number in the range 0 through 7 that identifies the file while it
Is open.

reclen% For random access files and indexed-sequential files, this is the record
length.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-74

Example
100 OPEN "LOG" FOR OUTPUT AS #1

200 WRITE #1, "write this to the file."

300 CLOSE #1

400 OPEN “LOG” FOR INPUT AS #1

500 INPUT #1, a$

600 PRINT "Read from file: "; a$

700 CLOSE #1

PRINT, PRINT USING #
Usage
PRINT writes data to the lower terminal display, to a sequential file, or outputs data to the
specified serial port.

PRINT USING writes formatted output to the terminal display or to a file. A template is
defined that specifies the length and format of each item to be displayed.

Syntax
PRINT [#filenumber%,] expressionlist [{;}]

PRINT [#filenumber%,] USING formatstring$; expressionlist [{;}]

PRINT “expression”

PRINT USING “####.##”, formatstring$

PRINT [#filenumber%], string$

#filenumber% The number of an open sequential file. If the file number is omitted,
PRINT writes to the lower terminal display. If the filenumber is a Com
Port, then PRINT command outputs data to the specified serial port.

expressionlist List of one or more numeric or string expressions to print.

; The absence of a semicolon {;} at the end of a line means to insert a
new line.

formatstring$ A string expression containing characters that format a numeric
expression.

Digit position.

. Decimal point position.

^ Prints in exponential format.

- Space.

+ Sign.

Other characters are printed as literal data in the output.

Use these characters to format string expressions

! Print corresponding characters of string.

\ \ Print first n characters of string, where n is the number of blanks
between the slashes.

expression Any character or numeric expression.

string$ Any string expression.

Chapter 5: JagBASIC Commands
File Commands

(10/01) 5-75

Example
10 netto=10.0

20 brutto=20.0

30 PRINT #1, USING"netto_#####.## ___brutto_#####.##";netto;brutto

40 a#=123.456789:b#=87.54321:c#=5.555

50 PRINT #1, USING"$###.## __$###.## __$###.##";a#;b#;c#

70 PRINT #1, USING"+###.## __$###.## __+###.##";a#;b#;c#

80 a#= -123.456789

90 PRINT #1, USING "$###.##";a#

100 PRINT #1, USING "+###.##";a#

110 a%=4567:b%=12:c%=1:d%=123

120 PRINT USING #1, "_###";a%

121 PRINT USING #1, "_###";b%

122 PRINT USING #1, "_###";c%

123 PRINT USING #1, "_###";d%

130 PRINT USING #1, "+###.##";a%

140 a%= -4567

150 PRINT USING #1, "#######";a%

151 PRINT USING #1, "######";a%

152 PRINT USING #1, "#####";a%

160 PRINT USING #1, "+###.##";a%

170 a$="abcdefghijklmnopqrstuvwxyz"

180 LPRINT USING #1, "!!!!";a$

190 PRINT, USING #1"\ \ __\ \";a$;a$

200 PRINT, USING #1"_^^^^ ___^^^^^";a#;b#

210 CLOSE #1

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-76

PRINT #
Usage
Outputs data to the specified serial port or sequential file.

Syntax
PRINT#1,string$

#1 Serial port or file number.

string$ String expression.

Example
10 OPEN "LOG" FOR APPEND a$ #1

20 PRINT #1, "hello"

30 CLOSE #1

PUT
Usage
Writes records to a random access file.

Writes a record to the indexed sequential file. The JagBASIC program must first set values
into the FIELD variables, including the logical key variable. PUT searches the file for a
record containing the logical key. If it finds the record, PUT overwrites the existing record
with the new data. If there is no existing record with the same key, PUT inserts a new
record into file in its proper sequential position.

Field variables are cleared after the PUT statement is run.

Syntax
PUT #file number[,record number]

#file number Number of the open, random, or indexed sequential file.

record number Number of the record to write. When a record number is not specified
for random access files, JagBASIC writes to the record specified by the
indexed field of the field variables. Record number is not used for
indexed-sequential files.

Example 1
Random File

10 OPEN "IDFILE" FOR RANDOM AS #1 LEN = 19

15 REM added line feed, carriage return for

16 REM printing out file with standard editors,

20 FIELD #1,9 AS FID$, 8 AS FWEIGHT$, 2 AS LFCR$

30 FOR X% = 1 TO 10

35 REM re-initialize record image before each "PUT"

40 LSET FID$ = "000000000" : LSET FWEIGHT$ = "00000000"

50 LSET LFCR$=chr$(13)+chr$(10)

60 PUT #1, X%

70 NEXT X%

80 CLOSE #1

Field variables are cleared after
the PUT statement.

Chapter 5: JagBASIC Commands
File Commands

(10/01) 5-77

230 USEREC%=0

240 FOR REC% = 1 TO 10

250 GET #1, REC%

270 IF FID$ = "000000000" THEN USEREC% = REC% : REC%=10

280 IF EOF(1) = 1 THEN REC% = 10

290 NEXT REC%

300 LSET FWEIGHT$ = "12345.6"

310 LSET FID$="JOE TRUCK"

320 LSET LFCR$=chr$(13)+chr$(10)

330 IF USEREC%<>0 THEN PUT #1, USEREC%

340 CLOSE #1

Example 2
Indexed-Sequential File

3000 LPRINT "write some records"

3010 OPEN "testfile" FOR RANDOM AS #1 len=26

3020 FIELD #1,16 as a$,8 as b$, 2 as c$

3030 INDEXED #1,a$

3050 LSET a$=STRING$(16,"Z")

3060 LSET b$="11111111"

3070 LSET c$=CHR$(13)+CHR$(10)

3080 PUT #1

3090 LSET a$=STRING$(16,"Y")

3100 LSET b$="11111111"

3110 LSET c$=CHR$(13)+CHR$(10)

3120 PUT #1

3170 CLOSE #1

RSET
Usage
Moves the value of an expression or variable into a specified field in a random-access file
buffer in preparation for a PUT statement. RSET also right-justifies the value of a string
variable in the field variable.

Syntax
RSET stringvariable$ = stringexpression$

stringvariable$ Any string variable or a random-access file field
defined in a FIELD statement.

stringexpression$ The right-justified version of string variable$.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-78

Example
10 OPEN "F" FOR RANDOM AS #1 LEN = 10

20 FIELD #1, 5 AS Ls1$, 5 AS Rs1$

30 LSET Ls1$ = "LSET"

40 RSET Rs1$ = "RSET"

50 PUT #1, 1

60 CLOSE #1

SORTREC
Usage
Identifies the file as an indexed sequential file. Identifies which field is the index field. Sorts
the file records in sequential order by key if necessary.

Syntax
SORTREC #file number,variable name

file number Opened random access file.

variable name The FIELD variable used as the index key.

Example
1000 LPRINT "create indexed file"

1010 OPEN "testfile" FOR RANDOM AS #1 len=26

1020 FIELD #1,16 as a$,8 as b$, 2 as c$

1040 FOR i% = 10 to 1 step -1

1050 LSET a$=STRING$(16,chr$(64+i%))

1055 LSET b$="00000000"

1060 LSET c$=CHR$(13)+CHR$(10): REM LF/CR

1070 PUT #1

1080 NEXT i%

1100 SORTREC #1,a$

1110 LSET a$=STRING$(16,"J")

1120 GET #1

1130 LPRINT b$

1140 CLOSE #1

2000 LPRINT "print file"

2010 OPEN "testfile" FOR INPUT AS #1

2020 WHILE NOT EOF(1)

2030 LINE INPUT #1,x$

2040 LPRINT x$

2050 WEND

2060 CLOSE #1

Output: SORTREC sorted the records into sequential order to make the file an indexed
sequential file.

Chapter 5: JagBASIC Commands
Real-time Process Control Commands

(10/01) 5-79

WRITE #
Usage
Outputs delimited data to the sequential file. WRITE inserts commas between items and
quotation marks around strings as they are written. WRITE writes values in a form that can
be read into separate variables by the INPUT statement.

Syntax
WRITE [#filenumber%,] expressionlist

filenumber% The number of an open sequential file. If the file number is
omitted, WRITE writes to the LPRINT device.

expressionlist One or more variables or expressions.

Example
5 ON ERROR GOSUB 80

10 OPEN "log" FOR APPEND AS #1

20 WRITE #1,"write this to log"; "write some more"

30 CLOSE #1

40 OPEN "log" FOR INPUT AS #1

45 WHILE EOF(1) = 0

50 INPUT #1,a$,b$

60 LPRINT "read from log: ";a$,b$

65 WEND

70 CLOSE #1

75 END

80 a$ = "done"

90 RETURN

Real-time Process Control
Commands

A JagBASIC program can implement "event-driven" processing. A program can execute a
particular command or subroutine based on the occurrence of a specified event. A
JagBASIC program can also build ladder logic rungs. The terminal’s O/S can then use its
ladder logic processor to rapidly evaluate the discrete inputs, the discrete outputs, and the
associated shared data triggers. The maximum number of rung elements that may be
active is 70.

JagBASIC’s real-time process control commands enable you to:

• Allocate and de-allocate events.
• Allocate a keyboard event or timer event.
• Suspend program execution until an event trigger causes program execution to

resume.
• Clear outstanding event triggers.
• Disable asynchronous event triggers.

You cannot define an event associated
with a remote shared data field.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-80

• Re-enable asynchronous event triggers after a critical section of code.
• Return the state of the event.
• Add a rung to the ladder.
• Clear the ladder.

The JagBASIC program allocates events with event names. A maximum of 16 events may
be active at any one time. The event name is one of the following:

• a shared data variable name

• the keyword, KEY

• the file number of an open serial communications file, COM1, COM2, COM3, or COM4

• the keyword, TIME

The JagBASIC program can synchronously monitor an event state or wait for the
"triggering" of any event in the main line of the program. Changes to local shared data
elements, keystrokes, or serial port inputs can trigger events.

Level-sensitive and edge-sensitive discrete shared data fields can trigger events.

Level-sensitive state bit fields trigger events when the terminal O/S writes either 0 or 1 to the
field. Applications can use events to monitor when these fields change values.

Edge-sensitive bit fields only trigger events when a 1 is written to the field. The terminal
O/S, a PLC host, or a PC host can write these bit fields. Applications can set these discrete
shared data bits to issue commands to the terminal O/S. Once the terminal O/S has
processed the command, it sets the discrete bit to 0 to rearm the bit for another command.
Applications do not typically use events to monitor the state of these bits.

The JagBASIC program can "trap" events asynchronously by designating a specific routine
to be executed when the event occurs. The event trapping routines must be short routines
that execute quickly then return execution control to the main line of executable code. When
you CHAIN from one program to another, the JagBASIC Interpreter automatically clears all
events.

This section discusses the following JagBASIC event commands:

Command Usage

CLREVENT Clears outstanding event triggers.
DEFSHR EVENT Allocates a shared data event.
DELEVENT De-allocates an event.
DISABLE Disables asynchronous event triggers.
ENABLE Re-enables asynchronous event triggers after a critical

section of code.
EVENT Allocates a keyboard event or timer event.
EVENTON Returns the state of the event.
INPUT Used in conjunction with event commands to implement

asynchronous serial input.
NEWLADDER Clears ladder used by ladder logic processor in JAG UAR

terminal O/S
RUNGAND Adds a rung which represents the AND value of two

inputs.
RUNGANDNT Adds a rung which represents the inverse of the AND

value at the inputs.

Chapter 5: JagBASIC Commands
Real-time Process Control Commands

(10/01) 5-81

Command Usage

RUNGMOV Adds a rung to the ladder which moves the value of
SharedData1 to SharedData2.

RUNGMVNOT Adds a rung to the ladder which moves the "NOT" value
of SharedData1 to SharedData2.

RUNGOR Adds a rung which represents the OR value of two inputs.
RUNGORNOT Adds a rung which represents the inverse of the OR value

of two inputs.
ON EVENT GOSUB Enables you to asynchronously monitor an event.
STARTIME Starts the timer, which specifies the length of the timer in

milliseconds.
STOPTIME Stops a running timer.
WAITEVENT Suspends program execution until an event trigger

causes program execution to resume.

TIPS
An application can monitor discrete edge-sensitive fields to start processing when the scale
has read a new weight from the scale base. Trigger t_688 is for Scale A and t_689 is for
Scale B. Once it has processed the event, the scale application must set the field back to
zero in order to re-enable the trigger for the next event.

Physical discrete input fields are level-sensitive shared data fields that reflect the state of the
physical outputs from the terminal. JagBASIC applications can use events to monitor the
changing state of the physical inputs.

Physical discrete output fields are level-sensitive shared data fields that reflect the state of
the physical outputs from the terminal. JagBASIC applications interface to shared data to
set the discrete outputs and would not typically use events to monitor the state of physical
discrete outputs.

An application can monitor the rising or falling edge of physical discrete inputs. An event
may be processed on either the rising edge when a physical discrete input transitions from
a 0 to 1 state, or on the falling edge when the physical discrete input transitions from a 1
to 0 state.

The terminal ladder logic processor continually monitors the state of the physical inputs. It
samples the physical discrete inputs once every 55 milliseconds. The ladder logic
processor sets the rising or falling edge trigger when it sees a state transition in the discrete
input.

The following discrete edge-sensitive triggers can alert an event on either the rising edge or
falling edge of a discrete input. Once the application processes the event, it must reset the
shared data trigger to 0 to re-enable the next occurrence of the trigger.

DiscreteInputRisingEdge_1 /p_6e0

DiscreteInputRisingEdge_2 /p_6e1

.

.

.

DiscreteInputRisingEdge_12 /p_6ef

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-82

DiscreteInputFallingEdge_1 /p_6f0

DiscreteInputFallingEdge_2 /p_6f1

.

.

.

DiscreteInputFallingEdge_12 /p_6ff

The following sample program uses events to monitor the rising edge and falling edge of
discrete input 1. Note that the program resets the triggers to 0 so that they will trigger
again.

10 DEFSHR event re_1,p_6e0

20 DEFSHR event fe_1,p_6f0

30 re_1=0

40 fe_1=0

50 ON EVENT re_1 GOSUB 1000

60 ON EVENT fe_1 SOSUB 2000

70 IF INKEY$="" then GOTO 70

80 END

1000 TPRINT "rising edge"

1010 re_1=0

1020 RETURN

2000 TPRINT "falling edge"

2010 fe_1=0

2020 RETURN

CLREVENT
Usage
Clears outstanding event triggers. The JagBASIC interpreter automatically clears an event
trigger upon completion of an event trapping routine for that trigger.

Syntax
CLREVENT [event name]

event name Name of the specific event that you want to clear. If no
event name is specified, all event triggers are cleared.

Example
10 CLREVENT SPFEED%

20 CLREVENT TIME

30 CLREVENT KEY

100 CLREVENT

Chapter 5: JagBASIC Commands
Real-time Process Control Commands

(10/01) 5-83

DEFSHR EVENT
Usage
Allocates an event associated with a shared data field. Writing a value to the shared data
field triggers a JagBASIC event.

Syntax
DEFSHR EVENT variable name, shared data field name

variable name The variable name. You cannot define an event for a remote shared
data field.

shared data field name Local shared data field name.

Example
10 DEFSHR EVENT SPFEED%,s_210

DELEVENT
Usage
De-allocates an event.

Syntax
DELEVENT event name

event name Name of the specific event you want to delete. If no name is
 specified, all events are deleted.

Example
500 DELEVENT SPFEED%

510 DELEVENT KEY

530 DELEVENT #1

600 DELEVENT

DISABLE
Usage
Disables asynchronous event triggers. This command is used to protect critical sections of
code.

Syntax
DISABLE

Example
30 DISABLE

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-84

ENABLE
Usage
Re-enables asynchronous event triggers after a critical section of code.

Syntax
ENABLE

Example
50 ENABLE

EVENT
Usage
Allocates a keyboard event or timer event. An event occurs asynchronously from the
normal execution of the JagBASIC program.

The keyboard event triggers an event when there is a key available. Use the INKEY$
function to read the key.

The timer event triggers at the expiration of the timer. Use the STARTIME command to start
the timer.

Syntax
EVENT [KEY] | [TIME]

key Keyboard event.

Time Timer event.

Example 1
10 EVENT key

20 WAITEVENT

30 CLREVENT

40 c$=INKEY$

50 WHILE c$<>""

60 TPRINT c$;

70 c$=INKEY$

80 WEND

90 GOTO 20

Example 2
10 event time
20 ON EVENT time GOSUB 200
30 startime 1000
.
.
200 PRINT “timer expired”
210 RETURN

Chapter 5: JagBASIC Commands
Real-time Process Control Commands

(10/01) 5-85

EVENTON
Usage
Returns the state of the event. A zero value indicates the event is in a "non-triggered" state.
A nonzero value is the "triggered" state. You must put quotation marks around the event
name.

Syntax
EVENTON("event name")

event name Name of the event.

Example
100 IF EVENTON("SPFEED%") THEN PRINT "setpoint event"

110 CLREVENT SPFEED%

120 GOTO 100

INPUT
Usage
Used in conjunction with the event commands to implement asynchronous serial input, the
INPUT command initiates an input operation from a serial port. This can occur
asynchronously with the normal application operation. Program execution does not have
to be suspended while the serial input operation completes. Upon completion of the serial
input, an event trigger alerts the application that the input is complete. The application
defines the serial input termination conditions on the OPEN statement (a time-out, reaching
a specified input length, or encountering the terminating character in the input stream). The
application can use either synchronous or asynchronous event processing routines to
complete serial input processing.

After receiving an INPUT message and transferring control to the Event Service Routine, the
JagBASIC program must re-prime the input by issuing another INPUT command.

Syntax
INPUT #filenumber, string variable

#filenumber Open sequential file or serial port from which you want to read data.
When no filename is specified, INPUT reads data from the terminal keyboard, the terminal
keypad, or both. The JagBASIC keyboard device must be selected through the terminal
operator setup menus. Commas between items and quotation marks around strings in the
file are required.

string variable The input data.

Example
10 OPEN "com1:tmo5000 len40 trm13 event" for input as #1

30 ON EVENT #1 GOSBU 1000

40 INPUT #1,a$

.

. MAIN PROGRAM

.

50 IF inkey$ <>"x" then GOTO 50

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-86

60 CLOSE #1

70 END

.

.

1000 LPRINT "serial message";a$

1010 INPUT #1, a$: REM start next input

1020 RETURN

NEWLADDER
Usage
Clears the ladder that is used by the ladder logic processor in the terminal Operating
System.

Syntax
NEWLADDER

Example
210 REM Ladder based on setpoint

220 NEWLADDER

230 REM Setpoint1 to Out2

240 RUNGMOV 5_210, p_501

ON EVENT GOSUB
Usage
Enables you to asynchronously monitor an event and define the Event Service Routine.
Upon the occurrence of an asynchronous event, the program execution branches to an
event trapping subroutine.

Event trapping routines must be short routines that execute quickly and then return
execution control to the main line of program code. The execution of an event trapping
subroutine completes without interruption by another asynchronous event. The event
trapping routines can occur between any two lines in the main program. Be careful of the
variables used in these routines. Temporary variables, such as loop counters, should be
unique to the event-trapping routine. Upon exit of the event-trapping routine, the JagBASIC
interpreter automatically clears the event that triggered the execution of the routine.

Syntax
ON EVENT event name GOSUB line number

Example 1
Monitoring One Setpoint

10 DEFSHR EVENT SPFEED%,s_210
20 ON EVENT SPFEED% GOSUB 1000

.

1000 IF SPFEED%=0 THEN PRINT "SETPOINT REACHED"

1010 RETURN

Chapter 5: JagBASIC Commands
Real-time Process Control Commands

(10/01) 5-87

Example 2
Monitoring Multiple Setpoints

5 REM Turn discrete outputs on or off as setpoint coincidence values change.
10 DIM SPFEED%(4)

20 DEFSHR EVENT SPFEED%(1),s_210

30 DEFSHR EVENT SPFEED%(2),s_214

40 DEFSHR EVENT SPFEED%(3),s_218

50 DEFSHR EVENT SPFEED%(4),s_21c

60 DIM DOUT(4)

70 DEFSHR DOUT(1),p_500

80 DEFSHR DOUT(2),p_501

90 DEFSHR DOUT(3),p_502

100 DEFSHR DOUT(4),p_503

110 FOR i%= 1 to 4

120 ON EVENT SPFEED%(i%) GOSUB 1000

130 NEXT i%

.

.MAIN PROGRAM

.

1000 CLREVENT

1010 FOR j%=1 to 4

1020 IF SPFEED%(j%)=0 THEN DOUT(j%)= 0 ELSE DOUT(j%)= 1

1030 NEXT j%

1040 RETURN

RUNGAND
Usage
RUNGAND adds a ladder rung to the terminal’s Ladder Logic. The ladder is run every 55
milliseconds in the terminal’s O/S whenever there is a change in the ladder inputs. The
rung inputs are physical discrete inputs or global discrete data from Shared Data. The
outputs are physical discrete outputs or global discrete data in Shared Data. This rung
takes two inputs, AND’s them together, and outputs the value.

Syntax
RUNGAND input1,input2,output

Example
A physical discrete input with "Setpoint1 feeding" to generate a physical discrete output.

RUNGAND p_101,s_210,p_501

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-88

RUNGANDNT
Usage
RUNGANDNT adds a ladder rung to the Ladder Logic. The ladder is run every 55
milliseconds in the terminal's O/S whenever there is a change in the ladder inputs. The
rung inputs are physical discrete inputs or global discrete data from Shared Data. The
outputs are physical discrete outputs or global discrete data in Shared Data. This rung
takes two inputs, AND’s them together, and outputs the inverse value.

Syntax
RUNGANDNT input1,input2,output

Example
Take two physical inputs and generate a physical discrete output.

RUNGANDNT p_101,p_102,p_501

RUNGMOV
Usage
RUNGMOV adds a ladder rung to the Ladder Logic. The ladder is run every 55
milliseconds in the O/S whenever there is a change in the ladder inputs. The rung inputs
are physical discrete inputs or global discrete data from Shared Data. The outputs are
physical discrete outputs or global discrete data in Shared Data. This rung takes an input
and generates an output with the same value.

Syntax
RUNGMOV input,output

Example
Take a tare on Scale B when a physical discrete input is turned on.

RUNGMOV p_103,t_6a0

RUNGMVNOT
Usage
RUNGMVNOT adds a ladder rung to the Ladder Logic. The ladder is run every 55
milliseconds in the O/S whenever there is a change in the ladder inputs. The rung inputs
are physical discrete inputs or global discrete data from Shared Data. The outputs are
physical discrete outputs or global discrete data in Shared Data. This rung moves the
inverse of the input to the output.

Syntax
RUNGMVNOT input,output

Example
Turn on a physical discrete output when the data from Scale A is invalid.

RUNGMVNOT s_261,p_508

Chapter 5: JagBASIC Commands
Real-time Process Control Commands

(10/01) 5-89

RUNGOR
Usage
RUNGOR adds a ladder rung to the Ladder Logic. The ladder is run every 55 milliseconds
in the O/S whenever there is a change in the ladder inputs. The rung inputs are physical
discrete inputs or global discrete data from Shared Data. The outputs are physical discrete
outputs or global discrete data in Shared Data. This rung takes two inputs, OR’s them
together, and outputs the value.

Syntax
RUNGOR input1,input2,output

Example
Turn on a physical discrete output if Scale A or Scale B is in motion.

RUNGOR s_200,s_208,p_508

RUNGORNOT
Usage
RUNGORNOT adds a ladder rung to the Ladder Logic. The ladder is run every 55
milliseconds in the O/S whenever there is a change in the ladder inputs. The rung inputs
are physical discrete inputs or global discrete data from Shared Data. The outputs are
physical discrete outputs or global discrete data in Shared Data. This rung takes two
inputs, OR’s them together, and outputs the inverse value.

Syntax
RUNGORNOT input1,input2,output

Example
Turn on a physical discrete output when either the JagBASIC application turns off a
temporary output or a physical discrete input is turned off. The JagBASIC application must
DEFSHR the s_250 global discrete data and then can toggle its value on or off.

RUNGORNOT s_250,p_103,p_502

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-90

STARTIME
Usage
Starts the internal timer. The maximum timer value is 65 seconds.

Syntax
STARTIME milliseconds

milliseconds The time in milliseconds to start the internal timer.

Example 1
10 EVENT TIME

20 STARTIME 2000

30 WAITEVENT

40 IF EVENT("time") THEN PRINT "TIMER EXPIRED"

50 CLREVENT

60 GOTO 30

Example 2
10 EVENT TIME

20 ON EVENT TIME GOSUB 1000

30 STARTIME 3000

.

. MAIN PROGRAM

.

1000 PRINT "TIMER EXPIRED"

1010 CLREVENT TIME

1020 RETURN

STOPTIME
Usage
Stops a running timer.

Syntax
STOPTIME

Example
10 EVENT TIME
20 STARTIME 2000
200 STOPTIME

Chapter 5: JagBASIC Commands
Real-time Process Control Commands

(10/01) 5-91

WAITEVENT
Usage
Suspends program execution until an event trigger causes program execution to resume.

Syntax
WAITEVENT

Example 1
10 DEFSHR EVENT SP%,s_210

20 CLREVENT

30 WAITEVENT

40 IF EVENTON("SP%")=0 THEN GOTO 20

50 IF SP%=0 THEN PRINT "ABOVE SETPOINT" ELSE PRINT "BELOW SETPOINT"

60 GOTO 20

Example 2
10 DIM SPFEED%(4)

20 DEFSHR EVENT SPFEED%(1),s_210

30 DEFSHR EVENT SPFEED%(2),s_214

40 DEFSHR EVENT SPFEED%(3),s_218

50 DEFSHR EVENT SPFEED%(4),s_21c

60 EVENT key

100 DIM DOUT(4)

110 DEFSHR DOUT(1),p_500

120 DEFSHR DOUT(2),p_501

130 DEFSHR DOUT(3),p_502

140 DEFSHR DOUT(4),p_503

200 CLREVENT

210 WAITEVENT

220 FOR i%=1 to 4

230 IF EVENTON("SPFEED%(i%)")=0 THEN GOTO 250

240 IF SPFEED%(i%)=0 THEN DOUT(i%)= 0 ELSE DOUT(i%)= 1

250 NEXT I%

260 c$=INKEY$

270 IF c$<>"" THEN GOSUB 500

280 GOTO 200

500 REM process keystroke

510 PRINT c$

520 RETURN

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-92

Timing Commands
JagBASIC offers several commands that work with date and time. The most fundamental
timing commands, DATE$ and TIME$, simply display the current system date and time.
You can also change the terminal system date and time with these commands.

Timing commands also enable your program to provide information about when or how
long a certain event took place. These commands can be used to tell when a file was
opened or how long it took to execute a section of code.

The SLEEP command lets you pause the program for a specified number of milliseconds.
This command can be used to provide time for the user to read the screen. The program
will resume execution after the time has elapsed or whenever the user presses a key.

This section discusses the following JagBASIC timing commands:

Command Usage

CLKTICK Allows more precise tming loops and timing of events
DATE$ Sets or returns the terminal system date.
JULDAT Converts a date-time string: "mm-dd-yyyyHH:MM:SS" to a double

precision Julian Date number.
SLEEP Suspends program execution for the of specified number of

milliseconds.
TIMDAT$ TIMDAT$ converts a double precision floating point Julian Date number

to a string: "mm-dd-yyyyHH:MM:SS".
TIMER Returns a double precision floating point number that contains the

elapsed time in seconds since 00:00:00 GMT, January 1, 1970.
TIME$ Sets or returns the terminal system date and time.

TIPS
Time and Date
The Shared data variables Jag19 and Jag20 have the date and time formatted as specified
in the terminal setup. These shared data variables are NOT updated automatically.
However, executing either a date$ or time$ command will cause both to be updated.
Here’s a sample clock program:

5 DEFSHR CurTime, Jag20

10 DEFSHR CurDate, Jag19

15 a$=TIME$

20 PRINT left$(CurDate,6)+" "+CurTime

25 SLEEP 100

30 GOTO 15

Chapter 5: JagBASIC Commands
Timing Commands

(10/01) 5-93

CLKTICK
CLKTCK allows more precise timing loops and timing of events. CLKTICK returns a double
float number that is the number of clock ticks that have occurred since the last power up of
the terminal. The JAGXTREME terminal's clock ticks 36 times per second or approximately
once every 27.5 seconds. When CLKTICK reaches the number 4,294,967,295, it wraps to
zero. This occurs in about 3.7 years.

Ly once every 27.5

DATE$
Usage
Sets or returns the terminal system date.

Syntax
DATE$
DATE$="mm-dd-yyyy"

mm-dd-yyyy Month, day, and year. You do not need to enter a leading zero in
front of single-digit month or day values.

Example
10 a$="10-16-1997"

20 DATE$=a$

30 PRINT DATE$

50 TIME$="10:05:00"

60 PRINT TIME$

JULDAT ()
Usage

JULDATE converts a date-time string: "mm-dd-yyyyHH:MM:SS" to a double precision Julian
Date number.

The Julian Date format is a compact, numerical representation of the date and time. It is
the number of seconds since 00:00:00 GMT, January 1, 1970. Since the Julian Date is
numerical, it is convenient for doing mathematical computations on the date and time.

Syntax

JULDATE ("mm-dd-yyyyHH:MM:SS")

Example

10 a$ = "11-21-200010:37:00"

20 b# = JULDATE(a$)

30 PRINT "Julian Date = ",b#

Output: Julian Date = 974820420

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-94

TIMDAT$ ()
Usage

TIMDAT$ converts a double precision floating point Julian Date number to a string:

"mm-dd-yyyyHH:MM:SS".

Syntax

TIMEDAT$(Julian date)

Example

10 b# = 974820420

20 a$ = TIMDAT$(b#)

30 PRINT "Date and Time:":a$

Output: Date and Time: 11-21-200010:27:00

SLEEP
Usage
Suspends program execution for the specified number of milliseconds. The terminal timer
interrupts every 27.5 milliseconds, so SLEEP can be set up to this accuracy. This
command is frequently used to pause a program so the user has time to read the output
screen.

Syntax
SLEEP [milliseconds]

milliseconds The number of milliseconds that you want to suspend program
execution.

Example
10 PRINT "Taking a 10 second nap..."
20 SLEEP 10000
30 PRINT "Wake up!"

TIMER
Usage
Returns a double precision floating point number that contains the elapsed time in seconds
since 00:00:00 GMT, January 1, 1970. Used to time the length of specific operations.

Syntax
TIMER()

Example
10 time#=TIMER();
20 SLEEP 1000
30 LPRINT TIMER()-time#

Chapter 5: JagBASIC Commands
Error Trapping Commands

(10/01) 5-95

TIME$
Usage
Sets or returns the terminal system time.

Syntax
TIME$
TIME$="hh:mm:ss"

hh:mm:ss Hours, minutes and seconds.

Example
10 a$="10-16-1997"

20 DATE$=a$

30 PRINT DATE$

50 TIME$="10:05:00"

60 PRINT TIME$

Error Trapping Commands
Despite all of your efforts, errors can occur in your program. JagBASIC offers both error
trapping and error handling commands for runtime errors. Runtime errors can be difficult to
locate because they may occur only when a certain combination of circumstances occur.
Runtime errors can also be caused by circumstances outside of your programming control,
such as looking up nonexistent records in a file or accessing a remote shared data item
when the Ethernet connection is down.

JagBASIC’s debug commands assist you in finding runtime errors.

JagBASIC’s error handling commands tell the program what to do if an error occurs. Only
certain errors can be handled at run time.

JagBASIC's error commands can return an error code for the error, return the line number
where the error occurred, or provide error handling instructions. Chapter 9 contains a list of
JagBASIC error codes.

This section discusses the following JagBASIC error trapping commands:

Command Usage

ERL() Returns the line number where the error occurred, or the closest line
number before the line where the error occurred

ERR() Returns the runtime error code for the most recent error
ERROR Simulates an occurrence of an error.
ON ERROR
GOSUB

Enables error handling and, when a run time error occurs, directs
your program to an error handling routine.

ON ERROR
GOTO

Enables error handling and, when an error occurs, directs your
program to an error handling routine.

ERL(), ERR(), ERROR
Usage
ERL returns the line number where the error occurred, or the closest line number before the
line where the error occurred. Used as a debugging aid to fix runtime errors in your
program.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-96

ERR returns the runtime error code for the most recent error. Used in error handling routines
to help identify the program and determine whether the program can recover from the error.

ERROR simulates an occurrence of an error. Used to debug error handling routines.

Syntax
ERL()
ERR()
ERROR number%

number% Error code.

Example
10 ON ERROR GOSUB 1000

20 ERROR 22

30 END

40 IF ERR()=error_code THEN GOSUB 4000

.

1000 LPRINT ERR()

1010 LPRINT ERL()

ON ERROR GOSUB
Usage
Enables error handling and when a run time error occurs the command directs the program
to an error handling routine. If ON ERROR GOSUB is not used, any run time error ends the
program.

Syntax
ON ERROR GOSUB line

line The first line of the error handling routine.

Example
10 ON ERROR GOSUB 1000

20 OPEN “X.DAT” FOR INPUT AS #1

.

.

.

1000 IF ERR()=0 THEN PRINT “FILE ERROR”

1010 PRINT “ERROR ON LINE “; ERL()

1020 RETURN : REM returns to the next line after error

The following errors can be trapped with
the “on error” command.

File open failed 0
Resource In Use 3
Record not found 6
Device Error 13
Command Error 14
Invalid Shared Data Name 28
Shared Data String Too Long 31
No Remote Access 32

Chapter 5: JagBASIC Commands
TCP/IP Commands

(10/01) 5-97

ON ERROR GOTO
Usage
Enables error handling and when an error occurs directs the program to an error handling
routine. If ON ERROR GOTO is not used, any run time error ends the program.

Syntax
ON ERROR GOTO line

line The first line of the error handling routine.

Example
10 ON ERROR GOTO 100
20 DEFSHR w#, j1/wt110
30 DEFSHR x#, j2/wt110
40 DEFSHR y#, j3/wt110
50 sum# = w# + x# + y#
60 PRINT sum#
70 GOTO 50
100 IF err() <> 32 then end
110 PRINT “JAGXTREME offline”
120 GOTO 50

TCP/IP Commands
JagBASIC TCP/IP “sockets” commands allow JagBASIC application programs to utilize the
TCP/IP communications. A JagBASIC application can communicate to a TCP/IP
application running on a PC host or to a JagBASIC application in another JAGXTREME
terminal. The JagBASIC socket commands have functionality similar to the BSD socket
commands. A JagBASIC application may have up to eight open sockets at once.
JagBASIC closes all open sockets when the JagBASIC application terminates.

Commands Usage
ACCEPT$ Allows new connection request to be accepted
CONNECT Initiates TCP/IP connection to a remote host
IPD Converts a double float representation of an IP address to a

dotted string representation of an IP address
IPS Converts the dotted string representation of an IP address to a

double for storage in Shared Data.
LISTEN Initiates TCP/IP to begin queuing connection requests
RECV$ Allows data to be received over an established connection
SEND Allows data to be sent over an established connection
SOCKET Creates socket for CONNECT command
SOCKCLS Closes an established connection
SOCKOPT Sets socket to blocking or non-blocking

The ON ERROR GOTO error handling
routine differs from the ON ERROR
GOSUB routine in that control does not
return to the next line of the program. The
ON ERROR GOTO error routine must
explicitly jump to the next line of the
execution.

You must be particularly careful of
processing errors that occur in the middle
of WHILE-WEND loops, FOR-NEXT loops,
and GOSUB routines. These structures
create processing stacks and, if you do
not clear these stacks by properly exiting
these processing structures, you will
eventually get an OVERFLOW error.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-98

TIPS
JagBASIC prints the specific socket error codes to the BAS_TERMINAL port, when you have
configured this port.

TCP/IP Socket Errors

ENOBUFS No buffers

ETIMEDOUT Timed Out

EISCONN Is connected

EOPNOTSUPP Operation not supported

ECONNABORTED Connection aborted

EWOULDBLOCK Operation would block

ECONNREFUSED Connection refused

ECONNRESET Connection reset

ENOTCONN Not connected

EALREADY Already in error state

EINVAL Invalid

EMSGSIZE Bad message size

EPIPE Socket not connected

EDESTADDRREQ Destination address request

ESHUTDOWN Shutdown

ENOPROTOOPT No protocol option

EHAVEOOB Has out of band data

ENOMEM No memory

EADDRNOTAVAIL Address not available

EADDRINUSE Address in use

EAFNOSUPPORT No support

EINPROGRESS Operation in progress

ELOWER Lower (IP) layer error

27. EIEIO Bad input/output on Old McDonald’s farm

TCP/IP Examples

These two sample programs illustrate how two JAGXTREME terminals to talk back-to-back
using JagBASIC TCP/IP communications

5 REM Client Example

10 SOCK%=SOCKET()

20 stat%=SOCKOPT(SOCK%,-1)

30 stat%=CONNECT(SOCK %,"146.207.105.244",1920)

40 IF stat%=-1 THEN PRINT "connecting":SLEEP 200:GOTO 20

50 IF stat%=0 THEN PRINT "failed":stat%=SOCKCLS(sock%):SLEEP 2000:end

Chapter 5: JagBASIC Commands
TCP/IP Commands

(10/01) 5-99

60 PRINT "connect success":SLEEP 2000

70 a$="Hello Dolly":len%=len(a$)

80 FOR i% = 1 TO 20

90 stat%=SEND(sock%,"Hello Dolly")

100 IF stat%<>len% THEN PRINT "send failed":SLEEP 2000:end

110 PRINT "sending ";i%:LPRINT "sending ";i%:sleep 100

120 NEXT i%

130 PRINT "closing SOCKET":sleep 2000

140 stat%=SOCKCLS (SOCK%)

150 END

10 REM Server Example

20 lsocket%=listen(1920)

30 asocket%=accept$(lsocket%)

40 IF INKEY$=chr$(2) THEN GOTO 200

50 IF asocket%=0 THEN GOTO 200

60 IF asocket%=-1 THEN PRINT "awaiting connect":SLEEP 100:GOTO 30

70 PRINT "ip";IP$:LPRINT "ip=";IP$:SLEEP 2000

80 i%=0

90 a$=RECV$(asocket%,11)

100 IF INKEY$=chr$(2) then GOTO 200

110 IF a$="" then sleep 100:GOTO 90

120 i%=i%+1:PRINT "receiving ";i%:LPRINT i%;" ";a$

130 IF i% < 20 THEN GOTO 90

200 PRINT "closing socket":SLEEP 2000

210 stat%=SOCKCLS(lsocket%):stat%=SOCKCLS(asocket%)

220 END

ACCEPT$
Usage
ACCEPT$ allows the JagBASIC application to accept new connection requests that remote
clients are initiating. The JagBASIC application must supply an integer number that is the
socket number of the LISTEN connection. If ACCEPT$ finds a new connection, it creates a
new socket for the new connection.

The ACCEPT$ command may be either blocking or non-blocking. The default is non-
blocking. When in non-blocking mode, the ACCEPT$ command returns a status indicating
whether it has accepted a new connection request. If there is no new connection, the
JagBASIC application must periodically issue the ACCEPT$ command to know when a new
connection occurs.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-100

If the socket is in blocking mode, ACCEPT$ suspends execution until it has accepted a
connection from a remote host. The JagBASIC application uses the SOCKOPT command to
put the socket in blocking or non-blocking mode.

The return value is an integer variable. If it is successful, the ACCEPT$ returns the socket
number of the new connection. If there is no new connection, ACCEPT$ returns a (–1). If
there is a fatal error, ACCEPT$ returns a (0).

When there is a successful new connection, ACCEPT$ also sets the IP address of the
remote node that initiated the connection in the variable IP$.

Syntax
newSocket% = ACCEPT$(socket%)

Example
10 REM Server Example

20 lsocket%=listen(1920)

30 asocket%=accept$(lsocket%)

CONNECT

Usage
The CONNECT function initiates a TCP/IP connection to a remote host. The JagBASIC
application must supply the socket number, the host IP address string, and the host port
integer.

The connection attempt may be a blocking or a non-blocking attempt. The default is non-
blocking. When it is a non-blocking, CONNECT returns an “in progress” status when the
connection is in progress but has not yet completed. Then, the JagBASIC application must
periodically re-issue the CONNECT to know when the connection is complete. If it is a
blocking attempt, JagBASIC suspends execution until a successful connection is made.
The JagBASIC application uses the SOCKOPT command to put the socket in blocking or
non-blocking mode.

The return value is an integer variable. If the connection attempt is successful, CONNECT
returns a (1). If the connection is still “in progress” but not completed, it returns a (-1). If
the connection attempt fails, CONNECT returns a (0).

Syntax
status% = CONNECT(socket%, IPAddress$, hostport%)

Example
5 REM Client Example

10 sock%=SOCKET()

20 stat%=SOCKOPT(sock%,-1)

30 stat%=CONNECT(sock%,"146.207.105.244",1920)

Chapter 5: JagBASIC Commands
TCP/IP Commands

(10/01) 5-101

IPD
Usage

The IPD function converts the dotted string representation of an IP address to a double for
storage in Shared Data. If successful, "ipd" returns the IP address. If not successful, ipd
returns a 0.

Syntax

Ipadr# = ipd(ipstring$)

Example

5 DEFSHR subnetmask#,net03

10 subnetmask# = IPD ("255.255.255.0")

IPS
Usage

The IPS$ function converts a double float representation of an IP address to a dotted string
representation of an IP address, e.g., “111.111.111.123”. Use it for converting an IP
address that is retrieved from Shared Data to its string representation.

Syntax

A$ = IPS$(ipdouble#)

Example

5 defshr ipaddress#,net02

10 ipaddress$ = ips$(ipaddress#)

LISTEN
Usage
LISTEN function initializes TCP/IP to begin queuing the connection requests for the host
port. The JagBASIC application must supply an integer host port number. Subsequently,
the ACCEPT$ command allows the JagBASIC application to begin accepting the connection
requests from a remote node. Remote clients initiate the connection requests with the
CONNECT command.

The return value is an integer variable. If it is successful, LISTEN returns the socket number.
If LISTEN fails, it returns a (0).

Syntax
socket% = LISTEN(hostport%)

Example
10 REM Server Example

20 lsocket%=LISTEN(1920)

30 asocket%=ACCEPT$(lsocket%)

RECV$
Usage
RECV$ command allows the JagBASIC to receive data over an established connection. The
JagBASIC application must supply an integer socket number and length for the received

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-102

string. The maximum received data length on each call is the JagBASIC maximum string
size (160 bytes).

The RECV$ command may be blocking or non-blocking. The default is non-blocking.
When it is in non-blocking mode, RECV$ returns data immediately or returns a status
indicating there is no data available. In this mode, the JagBASIC application must
periodically re-issue the RECV$ command to see if there is more data. If the socket is in
blocking mode, RECV$ suspends execution until the socket receives data. The JagBASIC
application uses the SOCKOPT command to put the socket in blocking or non-blocking
mode.

The return value is a string variable. If it is successful, RECV$ returns the data string. If
there is no data available on the connection, RECV$ returns the null string. If there is a fatal
error on receiving, RECV$ sets the JagBASIC “device error”. The JagBASIC application
must use the ON ERROR GOTO or ON ERROR GOSUB statements to trap this error.

Syntax
inputString$ = RECV$(socket%, length%)

Example
10 REM Server Example

20 lsocket%=LISTEN(1920)

30 asocket%=ACCEPT$(lsocket%)

40 IF INKEY$=chr$(2) THEN GOTO 200

50 IF asocket%=0 then GOTO 200

60 IF asocket%=-1 then print "awaiting connect":sleep 100:GOTO 30

70 PRINT "ip";IP$:LPRINT "ip=";IP$:sleep 2000

80 i%=0

90 a$=RECV$(asocket%,11)

SEND
Usage
The "send" command allows the JagBASIC to send data over an established connection.
The JagBASIC application must supply an integer socket number and the string to be sent.

The return value is an integer variable. If SEND is successful, it returns a positive number
that is the number of characters sent. If it fails, SEND returns a (0).

If there is a fatal error on sending, SEND sets the JagBASIC “device error”. The JagBASIC
application must use the ON ERROR GOTO or ON ERROR GOSUB statements to trap this
error.

Syntax
numChars% = SEND(socket%, stringToSend$)

Example
5 REM Client Example

10 sock%=SOCKET()

20 stat%=SOCKOPT(sock%,-1)

30 stat%=CONNECT(sock%,"146.207.105.244",1920)

Chapter 5: JagBASIC Commands
TCP/IP Commands

(10/01) 5-103

40 IF stat%=-1 THEN PRINT "connecting":SLEEP 200:GOTO 20

50 IF stat%=0 THEN PRINT "failed":stat%=sockcls(sock%):SLEEP 2000:END

60 PRINT "connect success":SLEEP 2000

70 a$="Hello Dolly":len%=LEN(a$)

80 FOR i% = 1 to 20

90 stat%=SEND(sock%,"Hello Dolly")

SOCKET
Usage
The SOCKET function creates a socket for a subsequent CONNECT command, which
initiates a connection to a remote host using this socket.

The return value is an integer variable. If it is successful, SOCKET returns the socket
number. If it fails, SOCKET returns a (0).

Syntax
socket% = SOCKET()

Example
5 REM Client Example

10 sock%=SOCKET()

20 stat%=SOCKOPT(sock%,-1)

SOCKCLS

Usage
SOCKCLS command allows the JagBASIC application to close an established TCP/IP
connection. The JagBASIC application must supply an integer number. SOCKCLS returns
an integer 1.

Syntax
stat% = SOCKCLS(socket#)

Example
130 PRINT "closing socket":SLEEP 2000

140 stat%=SOCKCLS(sock%)

150 END

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 5-104

SOCKOPT
Usage
The SOCKOPT function makes a TCP/IP socket blocking or non-blocking. The default is
non-blocking. The JagBASIC application must supply an integer socket number and an
integer option number. If the option is 1, SOCKOPT makes the socket a blocking socket. If
the option is –1, it makes the socket a non-blocking socket. The blocking/non-blocking
functionality applies only to the ACCEPT$, LISTEN, and RECV$ commands.

The return value is an integer variable. If the command is successful, it returns a (1). If the
command fails, it returns a (0).

Syntax
status% = SOCKOPT(socket%, option%)

Example
5 REM Client Example

10 sock%=SOCKET()

20 stat%=SOCKOPT(sock%,-1)

Chapter 6: Shared Data Variables
Shared Data Heap Elements

(10/01) 6-1

6 Shared Data Variables
The shared data database is the main data storage area for JAGXTREME information.
This central variable table keeps track of virtually every data value used by the
JAGXTREME terminal. All operating system tasks can directly use these shared values.

The Scale threads or Setup is the main shared data source. Other "external" agencies
such as JagBASIC, the Windows API, Save/Restore/Setup Utility, Allen-Bradley interface,
MODBUS Plus interface, or PROFIBUS interface can also read or write to shared data.

External write access to shared data variables is sometimes restricted. The Scale threads
and Setup maintain write access to any variable, but access to Setup itself may be
restricted by the Legal-for-Trade jumper. If the Legal-for-Trade jumper is installed, any
shared data variables listed, as "External Read Only" cannot be written to by external
agencies. If the Legal For Trade jumper is removed, there are no external write access
restrictions. Access restrictions are enforced on a whole block basis only. Note:
Dipswitch 1 must be on for setup to be entered.

See the JAGXTREME Operating Environment and Shared Data and the Shared Data
Types sections in Chapter 1 for more information.

This chapter lists the various shared data variables. The following abbreviations are
used throughout the chapter.

• UC—Unsigned Character

• C—String Character variables are any ASCII characters with values in the range 1 to
127 or extended characters in the range 128 through 255, terminated by a 0.

• D—Double Float variables are numeric variables in 64-bit double-precision format.

• L—Long variables are numeric integers representing a number of eight or more
digits.

• US bit—Unsigned bit variables have a value of 0 or 1.

Shared Data Heap
Elements

This section lists the shared data heap elements. These variables hold the values
associated with different scale weights and with board configurations.

METTLER TOLEDO JagBASIC Programmer's Guide for JAGXTREME Terminals

(10/01) 6-2

Scale Weight Shared Data
These variables hold the shared data values associated with scale weight. The fields are
external read only. The 'n' listed below in Local Field ID will be replaced with the internal
scale number. The scale number can be from 1 to 5.

Local Method Local
File Id

Internal
Format

External Format

DisplayedGrossWeight /wtn01 12C 12 alphanumeric, right-justified
DisplayedNetWeight /wtn02 2C 12 alphanumeric, right-justified
DisplayedWeightUnits /wtn03 2C 2 alphanumeric (lbpounds, kgkilograms, grams,

tmetrictons)

DisplayedAuxGrossWeight /wtn04 12C 12 alphanumeric, right-justified
DisplayedAuxNetWeight /wtn05 12C 12 alphanumeric, right-justified
DisplayedAuxWeightUnits /wtn06 6C 6 alphanumeric (lbpounds, kgkilograms, ozounces, lb-

ozpounds & ounces, oztroy ounces, dwtpenny weights,
metric tons, ton, or custom units name)

DisplayedAuxRatePeriod /wtn07 C 1 alphanumeric (No, Sec, Min, Hour)

DisplayedRate /wtn08 12C 12 alphanumeric, right-justified
DisplayedDiagnosticWeight /wtn09 12C 12 alphanumeric, right-justified
LegalGrossWeight /wtn10 D double float weight
LegalNetWeight /wtn11 D double float weight
AuxiliaryGrossWeight /wtn12 D double float weight
AuxiliaryNetWeight /wtn13 D double float weight
AuxiliaryRate /wtn14 D double float weight
ScaleState /wtn15 UC 0=disabled, 1=normal weight processing, 2=diagnostic,

3=calibration, 4=shift adjust.
ContinuousOutputStatusA /wtn16 UC 1 byte, any value.
FineGrossWeight /wtn17 D double float weight
FineNetWeight /wtn18 D double float weight
Weighing Range /wtn19 UC 0= single weighing range, 1=multi-range 1, 2=multi-

range 2, 3=multi-range 3
WIM Time Counts /wtn20 D Double float WIM time counts
WIM Weight Units /wtn21 3C 3 alphanumeric (lbpounds, kgkilograms, grams, tmetric

tons)

Chapter 6: Shared Data Variables
Shared Data Heap Elements

(10/01) 6-3

Board Configuration Shared
Data

These variables hold the shared data values associated with board configuration. Board
configuration shared data variables are initialized at power up. The fields are external
read only.

Local Method Local
File Id

Internal
Format

External format

Read the JAGXTREME display /bd001 50C Read contents of JAGXTREME display.
The first 8 bytes have the contents of the
numeric display. The next 16 bytes have
the contents of the alphanumeric dislay.
The next 8 bytes have the contents of
thenumeric cursors. The next 16 bytes
have the contents of the alphanumeric
cursors. For each cursor, its corresonding
byte has an ASCII "O" if the cursor is off
and an ASCII '1' if the cursor is on.

Board configuration string /bd002 60C Contains a 15-byte entry for each of four
board slots. Each entry contains a two-
character board identifier and a 13-
character board software serial number
where applicable.

Latest keystroke/key source /bd003 2C 2 alphanumeric; read/write

EEPROMAutorizationByte /bd004 10C 10 alphanumeric; read only
ConsoleSoftwarePartNo /bd005 13C 12 alphanumeric; read only
Scale1SoftwarePartNo /bd006 13C 12 alphanumeric; read only
Scale2SoftwarePartNo /bd007 13C 12 alphanumeric; read only
Scale3SoftwarePartNo /bd008 13C 12 alphanumeric; read only
Scale4SoftwarePartNo /bd009 13C 12 alphanumeric; read only
Scale5SoftwarePartNo /bd0010 13C 12 alphanumeric; read only
MultiFunctionIOSoftwarePartNo /bd011 13C 12 alphanumeric; read only

POWERCELL SoftwarePartNo /bd012 13C 12 alphanumeric; read only
DisplayContents /bd013 17C Reserved for JAGXTREME O/S Use Only

METTLER TOLEDO JagBASIC Programmer's Guide for JAGXTREME Terminals

(10/01) 6-4

HMI Weight Stream /bd014 105C Contains HMI weight streams for up to
five scales. The HMI subscribes to which
fields the JAGXTREME will send by
sending the subscribe message. Its
format is:
<STX>S<ABCDESJL<ETX><chk> where
ABCDE represents the scales, S represents
the selected scale, L reprsents the lower
JAGXTREME display, and J is the
JagBASIC message filed. "S" is mutually
exclusive from ABCDE. Jag60 stores
subscription. The HMI weight stream is
formatted as follows:
Stream1><US><stream2><US><stream
n>
Each weight stream has the following
contents:
<JagX ID> 1N Range: 1 to 6
<Scale ID> 1A Range: A to E
If selected scale, range is in lowercase <a
to e>.
<Status> 1C
Bit 7 Always 0
Bit 6 Always 1
Bit 5 1=Scale in Motion
Bit 4 1 = Center of Zero
Bit 3-2 00=single range
01=weight range 1
02 = weight range 2
03 = weight range 3
Bit 1 1 = Net Mode
Bit 0 1 = Present Tare
<Units> 1 N 0=None, 1=lb, 2=kg, 3=g,
4=oz. 5=ozt, 6=dwt. 7=t. 8=ton,
9=custom
<Net Wt> 8N 6 digits plus ossible "_"
and "."
<Tare Wt> 8N 6 digits plus possible "_"
and "."

PowerCellScale-CellErrors /bd016 25C 25 Bytes. There is an error number for up
to 24 POWERCELLS. This field has cell
errors for both Scale A, Scale B, Scale C,
and Scale D.

Chapter 6: Shared Data Variables
Shared Data Heap Elements

(10/01) 6-5

PowerCellScale_CellCounts /bd017 24D 192 Bytes. Each double float contains the
current shift-adjusted counts for consecutive
power cells in a scale. An external agency can
request the current count for a scale by setting
trigger /t_69d for Scale A, /t_6ad for Scale B to
1, /t_62d for Scale C, and /t_63d for Scale D.

ScanTable /bd018 25C Scan Table contains ordered list of current
power cell addresses.

PowerCellScale-CellCounts /bd019 24L 96 bytes. Each long contains the current shift-
adjusted coutns for consecutive POWERCELLs in
a scale. An appliation can request the current
counts for a scale by setting trigger t_69d for
Scale A, t_6ad for Scale B to1, t_62d for Scale
C, and t_63d for Scale D. Read only.

PowerCellOverloadState /bd020 25C 25 Bytes. There is one entry each for up to 24 power
cells. 0 = Cell not assigned, 1 = Cell OK, 2 = Cell in
Overload condition.

PowerCellZeroDriftState /bd021 25C 25 bytes. There is one entry each for up to 24
POWERCELLs. 0=Cell not assigned, 1=Cell OK, 2=
Cell in Overload condition.

Read Discrete Inputs /bd030 US Retrieves the status of all discrete inputs p_100
through p_10f

Read Discrete Outputs /bd031 US Retrieves the status of all discrete outputs p_500
through p_50f

Read Status Flags for Scale A /bd032 US Retrieves scale A status bits s_200 through s_207
and s_260 through s_264

Read Status Flags for Scale B /bd033 US Retrieves scale B status bits s_208 through s_20f
and s_268 through s_26c

Read Status Flags for Scale C /bd034 US Retrieves scale C status bits s_270 through s_27c

Read Status Flags for Scale D /bd035 US Retrieves scale D status bits s_280 through s_28c

Read Status Flags for Scale E /bd036 US Retrieves scale E status bits s_2f0 through s_2fc

Read JagBASIC Custom Flags /bd037 US Retrieves custom status bits s_250 through s_25f

Display Board /bd085 US bit 1=Yes, 0=No; Read only.

AnalogBoard1 /bd086 US bit 1=Yes, 0=No; Read only.

AnalogBoard2 /bd087 US bit 1=Yes, 0=No; Read only.

AllenBradleyPLC /bd088 US bit 1=Yes, 0=No; Read only.

PROFIBUS /bd089 US bit 1=Yes, 0=No; Read only.

Ethernet /bd090 US bit 1=Yes, 0=No; Read only.

MultiFunctionIO1 /bd091 US bit 1=Yes, 0=No; Read only.

PowerCell /bd092 US bit 1=Yes, 0=No; Read only.

ModBus Plus /bd093 US bit 1=Yes, 0=No; Read only.

AnalogOut /bd094 US bit 1=Yes, 0=No; Read only.

HighPrec1 /bd095 US bit 1=Yes, 0=No; Read only.

HighPrec2 /bd096 US bit 1=Yes, 0=No; Read only.

Multi-FunctionIO2 /bd097 US bit 1=Yes, 0=No; Read only.

METTLER TOLEDO JagBASIC Programmer's Guide for JAGXTREME Terminals

(10/01) 6-6

Shared Data Static RAM
Elements

This section lists the shared data static random access memory elements. These
elements include variables for scale weight, scale calibration parameters, scale tare
weight, setpoints, system values, user literals, user prompts, user variables, cluster
variables, PLC configuration, templates, security, serial port setup, network interface,
network remote nodes, network host workstation nodes, analog output, connections,
ladder logic, and BASIC applications. These fields are preserved when the terminal is
powered down.

Scale Weight Stored in
Static RAM Shared Data

These shared data variables hold the values associated with scale weight stored in
static RAM. The fields are external read only. The 'n' will be replaced with the
Internal Scale number. The scale number can be from 1 to 5.

Local Method Local
File Id

Internal
Format

External Format

ScaleModeOut /wsn01 C 1 alphanumeric (GROSS or NET)

DisplayedTareWeight /wsn02 12C 12 alphanumeric, right-justified
DisplayedAuxTareWeight /wsn03 12C 12 alphanumeric, right-justified
FineTareWeight /wsn04 D double float weight
AuxiliaryTareWeight /wsn05 D double float weight
CurrentUnits /wsn06 UC 1=Primary, 2=Secondary
TareSource /wsn07 UC 1=Pushbutton, 2=Keyboard, 3=Autotare
CurrentZeroCounts /wsn08 D Double PB&AZM current zero counts
TareSourceString /wsn09 2C "PT"=keyboard tare, else "T"
DisplayedStoredWeight /wsn10 12C 12 A/N, right justified
Stored Weight /wsn11 D double float weight
LegalTareWeight /wsn12 D double float weight
LastScaleError /wsn13 41C Date – time - error message
NumberScaleErrors /wsn14 F Errors since calibration or reset

Chapter 6: Shared Data Variables
Shared Data Static RAM Elements

(10/01) 6-7

Scale Calibration
Parameters Stored in Static
RAM

These shared data variables hold the values associated with scale calibration
parameters stored in static RAM. The fields are external read only. The 'n' will be
replaced with the Internal Scale number.

Local Method Local
File Id

Internal
Format

External Format

AuxiliaryDisplayUnits /csn01 UC 1=pounds, 2=kilograms, 3=grams, 4=ounces, 5=pounds
& ounces, 6=troy ounces, 7=penny weights, 8=metric tons,
9=tons, 10=custom units

CustomUnitsName /csn02 6C 6 alphanumeric
CustomUnitsConversionFactor /csn03 D double float
RateIntegrationPeriod /csn04 C 1 alphanumeric (No, Sec, Min, Hour)
RateSampleTime /csn05 UC seconds
RateDisplayFrequency /csn06 UC 0=every second,1=every five seconds,2=every half second
IDNET Higher Precision /csn08 UC 0=Normal 1=Higher
PowerUpTimer /csn09 UC 2 alphanumeric, right-justified (in minutes)
LowPassFilterCornerFrequency /csn10 D double float (0.1 Hz to 9.9 Hz in steps of 0.1 Hz)
NotchFilterFrequency /csn11 D double float (0.1 Hz to 9.9 Hz in steps of 0.1 Hz)
CombFilterFrequency /csn12 D double float (0.1 Hz to 9.9 Hz in steps of 0.1 Hz)
PrintThreshold /csn13 D double float weight
PrintResetThreshold /csn14 D double float weight
DisplayUpdateFrequency /csn15 D double float hertz
CustomContinuousOutUpdateFreq /csn16 D double float hertz
LowPassFilterPoles /csn17 US bit unsigned integer.
ScaleID /csn18 8C 8 bytes text string.
AveragingFilterOrder /csn19 US bit unsigned integer.
CombFilterOrder /csn20 US bit unsigned integer.
ScaleType /csn21 C 1 alphanumeric (Analog Load Cells, Power Digital Load

Cells, IHigh Precision, Single cell DigiTOL, Power Module
DigiTOL, UltraResHigh, or UltraResLow)

ScaleLocation /csn22 UC 0=first unit, 1=second unit (board or COM: port)
IDNetVibrationAdaptor /csn23 C '0' - '9' (specific to Precision Base)
IDNetWeighingProcessAdaptor /csn24 C '0' - '9' (specific to Precision Base)
IDNetAutomaticStabilityDetection /csn25 C '0' - '9' (specific to Precision Base)
IDNetAutoZeroSetting /csn26 C '0'="Off", '1'="On"
IDNetSoftwarePartNum /csn27 11C xxxx-x-xxxx string from Precision Base
IDNetIdentcode /csn28 2C '' to '99' calibration count from Precision Base
ScalesInSummingScale /csn29 UC Add Scale to Summing Scale, 0=No, 1=Yes
CalibrationDate /csn30 11C 11 alphanumeric
FillnoiseFilterEnable /csn85 US bit 1=True, 0=False
AutoPrint /csn86 US bit 1=True, 0=False
NoMotionBeforePrint /csn87 US bit 1=True, 0=False
DisplayRate /csn88 US bit 1=True, 0=False
DisplayAuxiliaryUnits /csn89 US bit 1=True, 0=False
UnitsSwitchEnable /csn90 US bit 1=True, 0=False
PrintInterlockEnable /csn91 US bit 1=True, 0=False
Do_IDNET_TareInJag /csn92 US bit 1=True, 0=False
ProcessApplication /csn93 US bit 1=True, 0=False

METTLER TOLEDO JagBASIC Programmer's Guide for JAGXTREME Terminals

(10/01) 6-8

Scale Tare Shared Data
These shared data variables hold the values associated with scale tare weight. The fields
are external read only. The 'n' will be replaced with the Internal Scale number. The scale
number can be from 1 to 5.

Local Method Local
File Id

Internal
Format

External Format

AutoTareThreshold /trn01 double double float weight
AutoTareResetThreshold /trn02 double double float weight
AutoClearTareThreshold /trn03 double double float weight
TareEnabled /trn85 US bit 1=True, 0=False
PushbuttonTare /trn86 US bit 1=True, 0=False
KeyboardTare /trn87 US bit 1=True, 0=False
AutoTare /trn88 US bit 1=True, 0=False
AutoTareCheckMotion /trn89 US bit 1=True, 0=False
AutoClearTare /trn90 US bit 1=True, 0=False
AutoClearTareAfterPrint /trn91 US bit 1=True, 0=False
AutoClearTareMotion /trn92 US bit 1=True, 0=False
TareInterlock /trn93 US bit 1=True, 0=False
DisplayTare /trn94 US bit 1=True, 0=False
NetSignCorrection /trn96 US bit 1=True, 0=False

Setpoint Shared Data
These shared data variables hold the values associated with setpoints. Although the
terminal's setpoints are numbered 1-12, they are referenced with an internal setpoint
number 1-C, where A=10, B=11, and C=12. The fields are external read/write. The "n"
will be replaced with the Internal Setpoint number (1-C).

The Setpoint Target Variable (spn03) can be used to select the type of setpoint operation
required:

Gross = gross setpoint without auto preact adj

H = gross setpoint with auto preact adj

Jog = Jog Setpoint

Learn = Learn Jog Setpoint

Net = net setpoint without auto preact adj

M = net setpoint with auto preact adj

Displayed = displayed setpoint

Rate = rate setpoint

The operation of Setpoint Preact Value (spn06) will vary depending on the selection of
the Setpoint Target Variable (spn03). If G, N, or D is selected, the Setpoint Preact Value
(spn06) is a double float weight value, and there is no auto preact adjustment. If H or M
is selected, the Setpoint Preact Value (spn06) is a double float seconds value, and auto
preact adjust is enabled. As the scale is used for weighments, the terminal's operating
system will adjust the time value stored in this field. When R is selected, there is no
associated preact value.

The following four fields are secondary inputs to a single setpoint that has auto-
adjusting preacts based on flow rates. When the flow rate is greater than threshold 3,
preact 3 is used. When the flow rate is greater than threshold 2, preact 2 is used.

Chapter 6: Shared Data Variables
Shared Data Static RAM Elements

(10/01) 6-9

Threshold 3 is the higher threshold rate. Threshold 2 is the lower threshold rate. If the
flow rate is below both thresholds, the standard preact is used.

Local Method Local
File Id

Internal
Format

External Format

AutoAdjustSetpointThreshold2 /spc08 D double float weight
AutoAdjustSetpointPreact2 /spc06 D double float weight
AutoAdjustSetpointThreshold3 /spb08 D double float weight
AutoAdjustSetpointPreact3 /spb06 D double float weight

Latching of the setpoint is controlled by Setpoint Latching (spn87). When an external
agency enables "Feed Latching", the terminal's O/S sets the Setpoint Latched=1 and the
Setpoint Feeding=0 condition again until the external agency resets the Setpoint
Latched=0. The external agency must reset Setpoint Latched=0 before starting a new
setpoint. Any time you wish to change a setpoint value, setting, or latch, Restart
Setpoints A (t_698) or Restart Setpoints B (t_6a8) must be triggered by setting its value
equal to 1 in order to instruct the terminal's O/S to use the new setpoint settings.

Jog Tables for the Jog setpoints are contained in the Cluster Variable fields. The fields
contain numbers in string format. Cluster variables 1-10 are the weight values. Cluster
Variables 11-20 are the timer values associated with each of the weight values. The
weight and timer values must be ordered in ascending order. A weight value of 0
indicates the termination of the table values.

Local Method Local
File Id

Internal
Format

External Format

SetpointName /spn01 8C 8 alphanumeric
SetpointEnbleButton /spn02 UC alphanumeric (0=disabled; Scale A=1, Scale B= 2,

Scale C= 3, Scale D= 4, Scale E= 5)
SetpointTargetVariable /spn03 C 1 alphanumeric (G,H,N,M,D,R,L or J)
SetpointCoincidenceValue /spn05 D double float weight; For learn Jog setpoints, this field

contains a time value in seconds
SetpointPreactValue /spn06 D double float weight or double float seconds
SetpointDribbleValue /spn08 D double float weight
SetpointToleranceValue /spn10 D double float weight
SetpointFillOrDischarge /spn86 US bit 1=Discharge, 0=Fill
SetpointLatching /spn87 US bit 1=Feed Latching Enabled, 0=Feed Latching Disabled
SetpointLatched /spn88 US bit 1=Latched, 0=Unlatched

METTLER TOLEDO JagBASIC Programmer's Guide for JAGXTREME Terminals

(10/01) 6-10

System Shared Data
These shared data variables hold the values associated with system data, such as the
system date and time. The fields are external read only.

Local Method Local
File Id

Internal
Format

External Format

Current Selected Scale /jag01 2C First Char= L or n, 2nd=A or B
ETHERNET Node Address /jag02 UC 8 bit address
Market /jag04 C 1 alphanumeric (USA, European Community,

Australia, Canada)
DateFormat /jag05 UC 1 byte integer
TimeFormat /jag06 UC 1 byte integer
JulianDate /jag07 8C 8 alphanumeric
JulianTime /jag08 8C 8 alphanumeric
Consecutive Number /jag09 L long integer counter
Error Message /jag10 41C Date – time – error message
SoftwareID /jag11 12C 12 alphanumeric
SoftwareSerialNumber /jag12 12C 12 alphanumeric
BRAMVersionNumber /jag14 L 4 byte integer
NumberOfInternalScales /jag15 UC 1 byte unsigned integer
DateSeparator /jag16 C 1 byte character
TimeSeparator /jag17 C 1 byte character
ConsecutiveNumberDest /jag18 10C Size of J_FNAME + 1
CurrentDate /jag19 11C 11 alphanumeric
TimeOfDay /jag20 11C 11 alphanumeric
WeekDay /jag21 10C 10 alphanumeric
ConsecutiveNumberPreset /jag22 L CN Preset value
CharacterSet /jag23 UC 0=USA, 1=France, 2=England, 3=Germany, 4=Den

mark-I, 5=Sweden, 6=Italy, 7=Spain-I, 8=Japan,
9=Nor way, 10=Denbmark-II, 11=Spain-II, 12=Latin
America

Language /jag24 UC 0=English, 1=French, 2=German, 4=Spanish
Keyboard /jag25 UC 0=English, 1=French, 2=German, 4=Spanish
Disable Memory Key /jag91 US bit 1=True, 0=False
Error Log Reset Time /jag26 24C Date-Time
KeyBeeperEnable /jag85 US bit 1=On, 0=Off
AlarmBeeperEnable /jag86 US bit 1=On, 0=Off
LegalForTrade /jag88 US bit 1=True, 0=False
ConsecutiveNumberEnable /jag89 US bit 1=True, 0=False
ConsecutiveNumberPresetEnable /jag90 US bit 1=True, 0=False
Disable Memory Key /jag91 US bit 1=True, 0=False

User Literals Shared Data
These shared data variables hold the values associated with user literal data. The fields
are external read/write.

Local Method Local
File Id

Internal
Format

External Format

User Literal 1 /lit01 40C 40 alphanumeric
User Literal 2 /lit02 40C 40 alphanumeric
User Literal 20 /lit20 40C 40 alphanumeric

Chapter 6: Shared Data Variables
Shared Data Static RAM Elements

(10/01) 6-11

User Prompts Shared Data

These shared data variables hold the values associated with user prompts. The fields
are external read/write.

Local Method Local
File Id

Internal
Format

External Format

User Prompt 1 /pmt01 16C 16 alphanumeric
User Prompt 2 /pmt02 16C 16 alphanumeric
User Prompt 20 /pmt20 16C 16 alphanumeric

User Variables Shared Data
These shared data variables hold the values associated with user variable data. The
fields are external read/write.

Local Method Local
File Id

Internal
Format

External Format

User Variable 1 /var01 47C USER_VARIABLE structure
User Variable 2 /var02 47C USER_VARIABLE structure
User Variable 20 /var20 47C USER_VARIABLE structure
VariablesInUse /var81 UC Number 0-20
PromptLoopingMode /var82 UC 0=No Loop, 1=Loop

Cluster Variable Shared
Data

These shared data variables hold the values associated with cluster variable data. The
fields are external read/write. Cluster Variable fields may contain Jog Tables for the Jog
Setpoints. The fields have numbers in string format. Cluster variables 1-10 are the
weight values. Cluster variables 11-20 are the associated timer values.

Local Method Local
File Id

Internal
Format

External Format

Cluster Variable 1 /clv01 40C 40 alphanumeric
Cluster Variable 2 /clv02 40C 40 alphanumeric
Cluster Variable 20 /clv20 40C 40 alphanumeric

Template Shared Data
These variables hold the values associated with template shared data. The fields are
external read only.

Local Method Local
File Id

Internal
Format

External Format

Printer Template 1 /ptp01 409C 400 a/n grammar + 8 a/n template name + null
Printer Template 2 /ptp02 409C 400 a/n grammar + 8 a/n template name + null
Printer Template 3 /ptp03 409C 400 a/n grammar + 8 a/n template name + null
Printer Template 4 /ptp04 409C 400 a/n grammar + 8 a/n template name + null
Printer Template 5 /ptp05 409C 400 a/n grammar + 8 a/n template name + null

METTLER TOLEDO JagBASIC Programmer's Guide for JAGXTREME Terminals

(10/01) 6-12

Serial Port Setup Shared
Data

These variables hold the values associated with serial port setup shared data, such as
the transmit and receive baud rates. The fields are external read only. The 'n' will be
replaced with the Internal Scale number.

Local Method Local
File Id

Internal
Format

External Format

InterfaceType: /srn01 UC 0=RS232, 1=RS422, 2=RS485
XmitBaudRate /srn02 UC 0=300, 1=600, 2=1200, 3=2400, 4=4800, 5=9600,

6=19200, 7=38400, 8=57600, 9=76800, 10=115200.
Parity /srn04 UC Same as BIOS values. 0=even, 16=odd, 64=none
FlowControl /srn05 UC Same as BIOS values. 0=none, 1=Xon/Xoff, 2=RS232.
Data Bits /srn07 UC Same as BIOS values. 8=7 bits, 12=8 bits
Stop Bits /srn08 UC Same as BIOS values. 1=1, 2=1.5, 3=2
Checksum /srn85 US bit 1=On, 0=Off

Network Interface Shared
Data

These variables hold the values associated with network interface shared data.

Local Method Local
File Id

Internal For
mat

External Format

NetworkConsole /net91 US bit 1=True, 0=False

Network Remote Node
Shared Data

These variables hold the values associated with network shared data. The fields are
external read only. The 'n' will be replaced with a remote node index number (1-6).

Local Method Local
Field

Internal
For mat

External Format

RemoteConnectionEnabled /rmn87 US bit 1=True, 0=False

Network Host Workstation
Node Shared Data

These variables hold the values associated with network host workstation node shared
data. The fields are external read only. The 'n' will be replaced with a remote node index
number (1-3).

Local Method Local
File Id

Internal
Format

External Format

RemoteConnectionEnabled /rwn87 US bit 1=True, 0=False

Chapter 6: Shared Data Variables
Shared Data Static RAM Elements

(10/01) 6-13

PLC Configuration on
Shared Data

These variables hold the values associated with PLC configuration shared data, such as
the number of scales. The fields are external read only.

Local Method Local
File Id

Internal
Format

External Format

RackAddress /abc01 UC Allen-Bradley 0-59, PROFIBUS station ID 1-127,
MODBUS Plus 1-63.

AllenBradleyStartingQuarter /abc02 UC 1-4
AllenBradleyDataRate /abc03 UC 0=57.6k, 1=115.2k, 2=230.4k
NbrOfScales /abc05 UC 1-4
DiscreteDataFormat /abc06 UC 0=Integer Weight, 1=Increments, 2=Extended Weight,

4=Floating Point
InputRotation /abc07 10C 10 character string
AllenBradleyLastRack /abc85 US bit 1=Yes, 0=No
BlockTransferEnable /abc86 US bit 1=Yes, 0=No
ModbusPlusGlobalsEnable /abc87 US bit 1=Yes, 0=No
PLC_ControlsScaleASetpoints /abc88 US bit 1=Yes, 0=No
PLC_ControlsScaleBSetpoints /abc89 US bit 1=Yes, 0=No

PLC Scale Configuration
Shared Data

These variables hold the values associated with PLC configuration shared data, such as
the scale location. The fields are external read only. The 'n' will be replaced with a scale
index number.

Local Method Local
File Id

Internal
Format

External Format

TerminalNodeName /abn01 2C 2 alphanumeric (J1, J2, J3, J4, J5, J6)
ScaleSelection /abn02 UC 1 byte unsigned integer
ScaleLocation /abn85 US bit 0=Local, 1=Remote

METTLER TOLEDO JagBASIC Programmer's Guide for JAGXTREME Terminals

(10/01) 6-14

Analog Output Shared Data
These variables hold the values associated with analog output shared data. The fields
are external read only. The 'n' will be replaced with a channel index number.

Local Method Local
File Id

Internal
Format

External Format

AnalogOutSourceData /aon01 C G=Gross Weight Scale 1, H=Gross Weight Scale 2,
I=Gross Weight Scale 3, J=Gross Weight Scale 4,
K=Gross Weight Scale 5, L=Net Weight Scale 1,
M=Net Weight Scale 2, N=Net Weight Scale 3,
O=Net Weight Scale 4, P=Net Weight Scale 5,
Q=Rate Scale 1, R=Rate Scale 2, S=Rate Scale 3,
T=Rate Scale 4, U=Rate Scale 5, B=JagBASIC
Scale 1, C=JagBASIC Scale 2, D=JagBASIC Scale
3, E=JagBASIC Scale 4, F=JagBASIC Scale 5.

AnalogOutZeroTrim /aon02 D Zero Adjustment Offset
AnalogOutSpanTrim /aon03 D Full Scale Adjustment Offset
AnalogOutZeroPreset /aon04 D Zero Adjustment Preset Value
AnalogOutSpanPreset /aon04 D Full Scale Adjustment Present Value

Ladder Logic Data
These variables hold the values associated with ladder logic shared data. The fields are
external read only.

Local Method Local
File Id

Internal
Format

External Format

LadderRungCounter /lad01 US Number 'n' of rungs in ladder
LadderRungs /lad02 600C Ladder, containing 'n' rungs

BASIC Application Shared
Data

These variables hold the values associated with BASIC application shared data. The
fields are external read/write.

Local Method Local
File ID

Internal
Format

External Format

Program 1 /bas01 20C 19 Alphanumeric characters + 0
Program 2 /bas02 20C 19 Alphanumeric characters + 0
Program 3 /bas03 20C 19 Alphanumeric characters + 0
Program 4 /bas04 20C 19 Alphanumeric characters + 0
Program 5 /bas05 20C 19 Alphanumeric characters + 0
Program 6 /bas06 20C 19 Alphanumeric characters + 0
Program 7 /bas07 20C 19 Alphanumeric characters + 0
Program 8 /bas08 20C 19 Alphanumeric characters + 0
Program 9 /bas09 20C 19 Alphanumeric characters + 0
KeyboardSource /bas10 UC 0=None, 1=Keypad, 2=Keyboard, 3=Both
DisplayDestination /bas11 UC 0=None, 1=Lower Display, 2=Serial Port

Chapter 6: Shared Data Variables
Shared Data Static RAM Elements

(10/01) 6-15

Local Method Local
File ID

Internal
Format

External Format

ProgrammableTareWeightScaleA /bas12 D double float weight
ProgrammableTareWeightScaleB /bas13 D double float weight
JagBASIC applications use these fields to communicate custom fields with a PLC. Scale A and Scale B have unique shared
data field names. The floating point and string fields are each four bytes long. The PLC and the JagBASIC application
define the meaning of the fields. The terminal sends the PLC input fields designated as "Real-Time" to the PLC at every
weight update. It sends or receives the other fields only when the PLC specifically requests them.
You can also use these shared data variables as sources for Analog Output channel 1, channel 2, or both channels. The
JagBASIC source variable for channel 1 is floating point variable /bas18. The JagBASIC source variable for channel 2 is
floating point variable /bas20. You can use a JagBASIC source for one channel and scale source for the other channel.
CustomOutput_A1_FromPLC /bas14 F Float. Defined by user. Scale A. Custom Output 1 to

Scale A from PLC.
CustomOutput_A2_FromPLC /bas15 4C String. Defined by user. Scale A. Custom Output 2 to

Scale A from PLC.
CustomOutput_A3_FromPLC /bas16 F Float. Defined by user. Scale A. Custom Output 3 to

Scale A from PLC.
CustomOutput_A4_FromPLC /bas17 4C String. Defined by user. Scale A. Custom Output 4 to

Scale A from PLC.
CustomInput_A1_ToPLC /bas18 F Float. Defined by user. Scale A. Real-Time. Custom

Input 1 from Scale A to PLC.
CustomInput_A2_ToPLC /bas19 4C String. Defined by user. Scale A. Real-Time. Custom

Input 2 from Scale A to PLC.
CustomInput_A3_ToPLC /bas20 F Float. Defined by user. Scale A. Custom Input 3

from Scale A to PLC.
CustomInput_A4_ToPLC /bas21 4C String. Defined by user. Scale A. Custom Input 4

from Scale A to PLC.
CustomOutput_B1_FromPLC /bas22 F Float. Defined by user. Scale B. Custom Output 1 to

Scale B from PLC.
CustomOutput_B2_FromPLC /bas23 4C String. Defined by user. Scale B. Custom Output 2 to

Scale B from PLC.
CustomOutput_B3_FromPLC /bas24 F Float. Defined by user. Scale B. Custom Output 3 to

Scale B from PLC.
CustomOutput_B4_FromPLC /bas25 4C String. Defined by user. Scale B. Custom Output 4 to

Scale B from PLC.
CustomInput_B1_ToPLC /bas26 F Float. Defined by user. Scale B. Real-Time. Custom

Input 1 from Scale B to PLC.
CustomInput_B2_ToPLC /bas27 4C String. Defined by user. Scale B. Real-Time. Custom

Input 2 from Scale B to PLC.
CustomInput_B3_ToPLC /bas28 F Float. Defined by user. Scale B. Custom Input 3

from Scale B to PLC.
CustomInput_B4_ToPLC /bas29 4C String. Defined by user. Scale B. Custom Input 4

from Scale B to PLC.
CustomOutput_C1_FromPLC /bas30 F Float. Defined by user. Scale C.
CustomOutput_C2_FromPLC /bas31 4C String. Defined by user. Scale C.
CustomOutput_C3_FromPLC /bas32 F Float. Defined by user. Scale C.
CustomOutput_C4_FromPLC /bas33 4C String. Defined by user. Scale C.

METTLER TOLEDO JagBASIC Programmer's Guide for JAGXTREME Terminals

(10/01) 6-16

Local Method Local
File ID

Internal
Format

External Format

CustomInput_C1_ToPLC /bas34 F Float. Defined by user. Scale C. High Speed.
CustomInput_C2_ToPLC /bas35 4C String. Defined by user. Scale C. High Speed.
CustomInput_C3_ToPLC /bas36 F Float. Defined by user. Scale C.
CustomInput_C4_ToPLC /bas37 4C String. Defined by user. Scale C.
CustomOutput_D1_FromPLC /bas38 F Float. Defined by user. Scale D.
CustomOutput_D2_FromPLC /bas39 4C String. Defined by user. Scale D.
CustomOutput_D3_FromPLC /bas40 F Float. Defined by user. Scale D.
CustomOutput_D4_FromPLC /bas41 4C String. Defined by user. Scale D.
CustomInput_D1_ToPLC /bas42 F Float. Defined by user. Scale D. High Speed.
CustomInput_D2_ToPLC /bas42 4C String. Defined by user. Scale D. High Speed.
CustomInput_D3_ToPLC /bas44 F Float. Defined by user. Scale D.
CustomInput_D4_ToPLC /bas45 4C String. Defined by user. Scale D.
CustomOutput_E1_FromPLC /bas46 F Float. Defined by user. Scale E.
CustomOutput_E2_FromPLC /bas47 4C String. Defined by user. Scale E.
CustomOutput_E3_FromPLC /bas48 F Float. Defined by user. Scale E.
CustomOutput_E4_FromPLC /bas49 4C String. Defined by user. Scale E.
CustomInput_E1_ToPLC /bas50 F Float. Defined by user. Scale E. High Speed.
CustomInput_E2_ToPLC /bas51 4C String. Defined by user. Scale E. High Speed.
CustomInput_E3_ToPLC /bas52 F Float. Defined by user. Scale E.
CustomInput_E4_ToPLC /bas53 4C String. Defined by user. Scale E.
ProgrammableTareWeightScaleC /bas54 D double float weight
ProgrammableTareWeightScaleD /bas55 D double float weight
ProgrammableTareWeightScaleE /bas56 D double float weight
AutoStartEnabled /bas85 US bit 1=True, 0=False
EscapeEnabled /bas86 US bit 1=True, 0=False
SelectEnabled /bas87 US bit 1=True, 0=False
ManualStartEnabled /bas88 US bit 1=True, 0=False
ManualStopEnabled /bas89 US bit 1=True, 0=False

Power Cell Log
The fields are external read only.

Local Method Local
File ID

Internal
Format

External Format

NumberErrors_Cell 1-24 /pce01 24D 192 bytes. One double float entry for each cell.
Calibrated Zero Count-Cell 1-24 /pce02 24D 192 bytes. One double float entry for each cell.
Current Zero Counts_Cell 1-24 /pce03 20C 192 bytes. One double float entry for each cell.

Chapter 6: Shared Data Variables
Shared Data EEPROM Elements

(10/01) 6-17

Shared Data EEPROM
Elements

This section lists the shared data EEPROM elements. These variables hold the values
associated with different erasable programmable read-only memory elements.

Scale Calibration
Parameters Stored in
EEPROM

These shared data variables hold the values associated with scale calibration
parameters stored in the EEPROM. The fields are external read only. The 'n' will be
replaced with the Internal Scale number. The scale number can be from 1 to 5. The
Scale 5 parameters, or summing scale parameters are stored in BRAM rather than
EEPROM.

Local Method Local
File ID

Internal
Format

External Format

AddressOfFirstLoadCell /cen01 UC POWERCELL starting address
NumberLoadCells /cen02 UC unsigned 0-255
PrimaryUnits /cen03 UC 1 alphanumeric (1=pounds, 2=kilograms, 3=grams, or 4= metric tons)

PrimaryNumberRanges /cen04 UC 1 alphanumeric
PrimaryLowIncrementSize /cen05 D double float weight
PrimaryMidIncrementSize /cen06 D double float weight
PrimaryHighIncrementSize /cen07 D double float weight
PrimaryLowMidThreshold /cen08 D double float weight
PrimaryMidHighThreshold /cen09 D double float weight
PrimaryScaleCapacity /cen10 D double float weight
SecondaryUnits /cen11 UC 1 alphanumeric (1=pounds, 2=kilograms, 3=grams, or 4=metric tons)

SecondaryNumberRanges /cen12 UC 1 alphanumeric
SecondaryLowIncrementSize /cen13 D double float weight
SecondaryMidIncrementSize /cen14 D double float weight
SecondaryHighIncrementSize /cen15 D double float weight
SecondaryLowMidThreshold /cen16 D double float weight
SecondaryMidHighThreshold /cen17 D double float weight
SecondaryScaleCapacity /cen18 D double float weight
CalibrationUnits /cen19 UC 1 alphanumeric (1=primary or 2=secondary)

ZeroCalibrationCounts /cen20 L integer
HighCalibrationCounts /cen21 L integer
HighCalibrationWeight /cen22 D double float weight
MidCalibrationCounts /cen23 L integer
MidCalibrationWeight /cen24 D double float weight
GravityAdjust /cen25 D double float
MotionStabilitySensitivityinD /cen26 F float divisions
MotionStabilityTimePeriod /cen27 UC (1=3 sec, ..., 7=10sec)
ScaleSerialNumber /cen28 12C 12 alphanumeric

METTLER TOLEDO JagBASIC Programmer's Guide for JAGXTREME Terminals

(10/01) 6-18

CalibrationCounter1 /cen29 UC 1 byte unsigned binary
CalibrationCounter2 /cen30 UC 1 byte unsigned binary
AtoD Update Rate /cen31 UC Conversions / Second (1-255)
OverCapacityDivisions /cen32 UC number of divisions (1-255)
LinearityCorrectionEnable /cen85 US bit 1=True, 0=False
OverCapacityBlanking /cen86 US bit 1=True, 0=False
MultirangeMode /cen87 US bit 1=Auto, 0=Manual
Shift Adjust Mode /cen88 US bit 0=Cell, 1=Pair

EEPROM Version
Identification

These shared data variables hold the values associated with EEPROM version
identification. The fields are external read only.

Local Method Local
File ID

Internal
Format

External Format

EEPROMVersionId (Scale A) /ee101 L Long Integer (32 bits)
EEPROMVersionId (Scale B) /ee201 L Long Integer (32 bits)

Shift Adjust Variables
These variables hold the values associated with shift adjust shared data. The fields are
external read only. The 'n' will be replaced with the Internal Scale number.

Local Method Local
File ID

Internal
Format

External Format

Cell #1 Shift Constants /san01 L Long Integer (32 bits) Normalized
Cell #16 Shift Constants /san16 L Long Integer (32 bits) Normalized

Expanded Shift Adjust
Variables

These variables hold the values associated with expanded shift adjust shared data. The
fields are external read only. The 'n' will be replaced with the Internal Scale number.

Local Method Local File ID Internal
For mat

External Format

Cell #17 Shift Constants /sxn17 L Long Integer (32 bits) Normalized
Cell #24 Shift Constants /sxn24 L Long Integer (32 bits) Normalized

Chapter 6: Shared Data Variables
Shared Data EEPROM Elements

(10/01) 6-19

Scale Zero Shared Data
These variables hold the values associated with scale zero shared data. The fields
are external read only. The 'n' will be replaced with the Internal Scale number.

Local Method Local
File ID

Internal
Format

External Format

PowerUpZeroCapturePosRange /zrn01 UC percent capacity (0-99)
PowerUpZeroCaptureNegRange /zrn02 UC percent capacity (0-99)
PushbuttonZeroPosRange /zrn03 UC percent capacity (0-99)
PushbuttonZeroNegRange /zrn04 UC percent capacity (0-99)
AutoZeroMaintWindow /zrn05 F floatnumber of divisions
BehindZeroDivisions /zrn06 UC 0-99 divisions
PushbuttonZero /zrn85 US bit 1=True, 0=False
AutoZeroGross /zrn86 US bit 1=True, 0=False
AutoZeroGross_Net /zrn87 US bit 1=True, 0=False
ZeroIndicationGross /zrn88 US bit 1=True, 0=False
ZeroIndicationGross_Net /zrn89 US bit 1=True, 0=False

METTLER TOLEDO JagBASIC Programmer's Guide for JAGXTREME Terminals

(10/01) 6-20

NOTES

Chapter 7: Global Discrete I/O Data
Level-Sensitive, Logical Discrete I/O Data

(10/01) 7-1

7 Global Discrete I/O Data
Global Discrete I/O data has bit fields representing physical discrete I/O and logical I/O
bits. The logical I/O may be either level-sensitive states or edge- sensitive events. Global
Discrete I/O is transitory data in that it is not saved during a power-down. It is initialized
to zero and then regenerated on power-up. These bit fields are the "contacts" and "coils"
for the ladder logic processor.

Level-Sensitive, Logical
Discrete I/O Data

Level-sensitive fields can generate callbacks when either a 0 or a 1 is written to the field.
Field names starting with s_2 are input contacts to the ladder processor. Field names
starting with s_6 are coils for the ladder processor.

For all level-sensitive logical I/O data the following apply:

Internal Format External Format Condition
G US Bit 1 = True, 0 = False

 Description Local Field Comments
The terminal O/S sets the following fields to reflect the status of Scale A and ScaleB.
MotionOut_A /s_200 Read only
CenterOfZero_A /s_201 Read only
OverCapacity_A /s_202 Read only
UnderZero_A /s_203 Read only
NetMode_A /s_204 Read only
ScaleCriticalError_A /s_205 Read only
StoredWeightMode_A /s_206 Read only
ScaleSelected_A /s_207 Read only
IDNET_In_Motion_Error_A /s_260 Reserved for terminal

O/S use only.
WeightDataOK_A /s_261 Read only
RateSetpointOK_A /s_262 Read only
The O/S sets the following fields to report on the status of Scale B
MotionOut_B /s_208 Read only
CenterOfZero_B /s_209 Read only
OverCapacity_B /s_20a Read only
UnderZero_B /s_20b Read only
NetMode_B /s_20c Read only
ScaleCriticalError_B /s_20d Read only
StoredWeightMode_B /s_20e Read only
ScaleSelected_B /s_20f Read only
IDNET_In_Motion_Error_B /s_268 Reserved for terminal O/S

use only.
WeightDataOK_B /s_269 Read only
RateSetpointOK_B /s_26a Read only
The terminal O/S sets the following fields to report status of Scale C.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 7-2

 Description Local Field Comments
MotionOut_C /s_270 Read only
CenterOfZero_C /s_271 Read only
OverCapacity_C /s_272 Read only
UnderZero_C /s_273 Read only
NetMode_C /s_274 Read only
ScaleCriticalError_C /s_275 Read only
StoredWeightMode_C /s_276 Read only
ScaleSelected_C /s_277 Read only
IDNET_In_Motion_Error_C /s_278 Reserved for terminal

O/S use only.
WeightDataOK_C /s_279 Read only
RateSetpointOK_C /s_27a Read only
The terminal O/S sets the following fields to report status of Scale D.
MotionOut_D /s_280 Read only
CenterOfZero_D /s_281 Read only
OverCapacity_D /s_282 Read only
UnderZero_D /s_283 Read only
NetMode_D /s_284 Read only
ScaleCriticalError_D /s_285 Read only
StoredWeightMode_D /s_286 Read only
ScaleSelected_D /s_287 Read only
IDNET_In_Motion_Error_D /s_288 Reserved for terminal

O/S use only.
WeightDataOK_D /s_289 Read only
RateSetpointOK_D /s_28a Read only
The Terminal O/S sets the following fields to report status of Scale E.
(Summing Scale)
MotionOut_E /s_2f0 Read only
CenterOfZero_E /s_2f1 Read only
OverCapacity_E /s_2f2 Read only
UnderZero_E /s_2f3 Read only
NetMode_E /s_2f4 Read only
ScaleCriticalError_E /s_2f5 Read only
StoredWeightMode_E /s_2f6 Read only
ScaleSelected_E /s_2f7 Read only
IDNET_In_Motion_Error_E /s_2f8 Reserved for terminal

O/S use only.
WeightDataOK_E /s_2f9 Read only
RateSetpointOK_E /s_2fa Read only
Terminal O/S sets the following fields to reflect the status of Setpoints 1-12.

SetpointFeeding_1 /s_210 Read only
SetpointFastFeeding_1 /s_211 Read only
SetpointWithinTolerance_1 /s_212 Read only
SetpointFeeding_2 /s_214 Read only
SetpointFastFeeding_2 /s_215 Read only
SetpointWithinTolerance_2 /s_216 Read only
SetpointFeeding_3 /s_218 Read only
SetpointFastFeeding_3 /s_219 Read only
SetpointWithinTolerance_3 /s_21a Read only
SetpointFeeding_4 /s_21c Read only
SetpointFastFeeding_4 /s_21d Read only

Chapter 7: Global Discrete I/O Data
Level-Sensitive, Logical Discrete I/O Data

(10/01) 7-3

 Description Local Field Comments
SetpointWithinTolerance_4 /s_21e Read only
SetpointFeeding_5 /s_220 Read only
SetpointFastFeeding_5 /s_221 Read only
SetpointWithinTolerance_5 /s_222 Read only
SetpointFeeding_6 /s_224 Read only
SetpointFastFeeding_6 /s_225 Read only
SetpointWithinTolerance_6 /s_226 Read only
SetpointFeeding_7 /s_228 Read only
SetpointFastFeeding_7 /s_229 Read only
SetpointWithinTolerance_7 /s_22a Read only
SetpointFeeding_8 /s_22c Read only
SetpointFastFeeding_8 /s_22d Read only
SetpointWithinTolerance_8 /s_22e Read only
SetpointFeeding_9 /s_230 Read only
SetpointFastFeeding_9 /s_231 Read only
SetpointWithinTolerance_9 /s_232 Read only
SetpointFeeding_10 /s_234 Read only
SetpointFastFeeding_10 /s_235 Read only
SetpointWithinTolerance_10 /s_236 Read only
SetpointFeeding_11 /s_238 Default is ZERO TOL A.

Read only
SetpointFastFeeding_11 /s_239 Read only
SetpointWithinTolerance_11 /s_23a Read only
SetpointFeeding_12 /s_23c Default is ZERO TOL B.

Read only
SetpointFastFeeding_12 /s_23d Read only
SetpointWithinTolerance_12 /s_23e Read only

Terminal O/S sets the following fields to give the status of the Ethernet connections.

NodeOnLine_1 /s_241 Read only
NodeOnLine_2 /s_242 Read only
NodeOnLine_3 /s_243 Read only
NodeOnLine_4 /s_244 Read only
NodeOnLine_5 /s_245 Read only
NodeOnLine_6 /s_246 Read only
HostOnLine_3 /s_24d Read only
HostOnLine_2 /s_24e Read only
HostOnLine_1 /s_24f Read only

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 7-4

Description Local
Field

Comments

JagBASIC applications can set the following four discrete bit fields to send real-time
status data to a PLC.

PLC_CustomStatus1_Scale_A /s_250 Read/Write. Custom Real-
Time Status 1 from Scale A to
PLC.

PLC_CustomStatus2_Scale_A /s_251 Read/Write. Custom Real-
Time Status 2 from Scale A to
PLC.

PLC_CustomStatus1_Scale_B /s_252 Read/Write. Custom Real-
Time Status 1 from Scale B to
PLC.

PLC_CustomStatus2_Scale_B /s_253 Read/Write. Custom Real-
Time Status 2 from Scale B to
PLC.

PLC_CustomStatus1_Scale_C /s_254 Read/Write. Custom Real-
Time Status 1 from Scale C to
PLC.

PLC_CustomStatus2_Scale_C /s_255 Read/Write. Custom Real-
Time Status 2 from Scale C to
PLC.

PLC_CustomStatus1_Scale_D /s_256 Read/Write. Custom Real-
Time Status 1 from Scale D to
PLC.

PLC_CustomStatus2_Scale_D /s_257 Read/Write. Custom Real-
Time Status 2 from Scale D to
PLC.

PLC_CustomStatus1_Scale_E /s_258 Read/Write. Custom Real-
Time Status 1 from Scale E to
PLC.

PLC_CustomStatus2_Scale_E /s_259 Read/Write. Custom Real-
Time Status 2 from Scale E to
PLC.

Terminal O/S sets the following fields to report success (=0) or error (=1) when an
external agency uses a corresponding discrete field to trigger a command in the
terminal O/S.

Command Staus Bits for Scale A
TareScaleError_A /s_290 Read only
ClearTareScaleError_A /s_291 Read only
PrintScaleError_A /s_292 Read only
ZeroScaleError_A /s_293 Read only
SwitchToPrimUnitsError_A /s_294 Read only
SwitchToSecondUnitsError_A /s_295 Read only
SwitchToOtherUnitsError_A /s_296 Read only
ApplySetupError_A /s_297 Read only

Chapter 7: Global Discrete I/O Data
Level-Sensitive, Logical Discrete I/O Data

(10/01) 7-5

Description Local
Field

Comments

RestartSetpointsError_A /s_298 Read only
RestartRateCalculationError_A /s_299 Read only
RestartFilterError_A /s_29a Read only
RestartSetpointCoincidenceError_A /s_29b Read only
DisableScaleError_A /s_29c Read only
CapturePowerCellCountError_A /t_29d Read Only
WriteCal.ToEEPromErrorA /t_29e Read Only

Command Staus Bits for Scale B
TareScaleError_B /s_2a0 Read only
ClearTareScaleError_B /s_2a1 Read only
PrintScaleError_B /s_2a2 Read only
ZeroScaleError_B /s_2a3 Read only
SwitchToPrimUnitsError_B /s_2a4 Read only
SwitchToSecondUnitsError_B /s_2a5 Read only
SwitchToOtherUnitsError_B /s_2a6 Read only
ApplySetupError_B /s_2a7 Read only
RestartSetpointsError_B /s_2a8 Read only
RestartRateCalculationError_B /s_2a9 Read only
RestartFilterError_B /s_2aa Read only
RestartSetpointCoincidenceError_B /s_2ab Read only
DisableScaleError_B /s_2ac Read only

CapturePowerCellCountError_B /t_2ad Read Only
WriteCal.ToEEPromErrorB /t_2ae Read Only

Command Staus Bits for Selected Scale
TareScaleError_SelectedScale /s_2b0 Read only
ClearTareScaleError_SelectedScale /s_2b1 Read only
PrintScaleError_SelectedScale /s_2b2 Read only
ZeroScaleError_SelectedScale /s_2b3 Read only
SwitchToPrimUnitsError_SelScl /s_2b4 Read only
SwitchToSecondUnitsError_SelScl /s_2b5 Read only
SwitchToOtherUnitsError_SelScl /s_2b6 Read only

Command Staus Bits for Custom Print
CustomPrintError_1 /s_2b7 Read only
CustomPrintError_2 /s_2b8 Read only
CustomPrintError_3 /s_2b9 Read only
CustomPrintError_4 /s_2ba Read only
CustomPrintError_5 /s_2bb Read only

Command Status Bits for Scale C
JagBasicEnabled /2_sbf Read only
TareScaleError_C /s_2c0 Read only
ClearTareScaleError_C /s_2c1 Read only
PrintScaleError_C /s_2c2 Read only
ZeroScaleError_C /s_2c3 Read only

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 7-6

Description Local
Field

Comments

SwitchToPrimUnitsError_C /s_2c4 Read only
SwitchToSecondUnitsError_C /s_2c5 Read only
SwitchToOtherUnitsError_C /s_2c6 Read only
ApplySetupError_C /s_2c7 Read only
RestartSetpointsError_C /s_2c8 Read only
RestartRateCalculationError_C /s_2c9 Read only
RestartFilterError_C /s_2ca Read only
RestartSetpointCoincidenceError_C /s_2cb Read only
DisableScaleError_C /s_2cc Read only
CapturePowerCellCountError_C /t_2cd Read Only
WriteCal.ToEEPromErrorC /t_2ce Read Only

Command Status Bits for Scale D
TareScaleError_D /s_2d0 Read only
ClearTareScaleError_D /s_2d1 Read only
PrintScaleError_D /s_2d2 Read only
ZeroScaleError_D /s_2d3 Read only
SwitchToPrimUnitsError_D /s_2d4 Read only
SwitchToSecondUnitsError_D /s_2d5 Read only
SwitchToOtherUnitsError_D /s_2d6 Read only
ApplySetupError_D /s_2d7 Read only
RestartSetpointsError_D /s_2d8 Read only
RestartRateCalculationError_D /s_2d9 Read only
RestartFilterError_D /s_2da Read only
RestartSetpointCoincidenceError_D /s_2db Read only
DisableScaleError_D /s_2dc Read only
CapturePowerCellCountError_D /t_2dd Read Only
WriteCal.ToEEPromErrorD /t_2de Read Only

Command Status Bits for Scale E
TareScaleError_E /s_2e0 Read only
ClearTareScaleError_E /s_2e1 Read only
PrintScaleError_E /s_2e2 Read only
ZeroScaleError_E /s_2e3 Read only
SwitchToPrimUnitsError_E /s_2e4 Read only
SwitchToSecondUnitsError_E /s_2e5 Read only
SwitchToOtherUnitsError_E /s_2e6 Read only
ApplySetupError_E /s_2e7 Read only
RestartSetpointsError_E /s_2e8 Read only
RestartRateCalculationError_E /s_2e9 Read only
RestartFilterError_E /s_2ea Read only
RestartSetpointCoincidenceError_E /s_2eb Read only
DisableScaleError_E /s_2ec Read only
CapturePowerCellCountError_E /t_2ed Read Only
WriteCal.ToEEPromErrorE /t_2ee Read Only

Chapter 7: Global Discrete I/O Data
Edge-Sensitive, Logical Discrete I/O Data

(10/01) 7-7

Miscellaneous Status Bits
SelectScaleError_A /s_2c0 Read only Rel. M
SelectScaleError_B /s_2c1 Read only Rel. M
SelectOtherScaleError /s_2c2 Read only Rel. M
DemandCustomPrintError_1 /s_2c3 Read only Rel. M
DemandCustomPrintError_2 /s_2c4 Read only Rel. M
DemandCustomPrintError_3 /s_2c5 Read only Rel. M
DemandCustomPrintError_4 /s_2c6 Read only Rel. M
DemandCustomPrintError_5 /s_2c7 Read only Rel. M
JagBASICEnabled /s_2d0 Read only Rel. M

Miscellaneous Triggers
MasterControlRelay /s_600 Shuts down all I/O.

Read/Write
DisableErrorDisplay /s_603 Read/Write
DisableNumericDisplay /s_604 Read/Write
Disable Setup /s_609 Read/Write
Disable Keypag /s_60a Read/Write
Disable Qwerty PG keys postioning,
(home, end, etc…)

/s_60b Read/Write

Edge-Sensitive, Logical
Discrete I/O Data

Edge-sensitive bit fields only trigger events when a 1 is written to the field. They are
ladder logic coils. If an error occurs in the event, the task writes a 1 into the
corresponding error bit. If the event is successful, it writes a 0 on completion.

For all edge-sensitive logical discrete I/O data the following apply:

Internal Format External Format Condition

G US bit 1 = Trigger, 0 = Complete

Fields are external read/write.

Description Local Field

Terminal O/S sets the following fields to indicate when the terminal has
calculated a new weight value. A JagBASIC application can use events to
monitor these fields. It must set the field to 0 before the same event will trigger
again.

WeightUpdated_A /t_688
WeightUpdated_B /t_689
WeightUpdated_C /t_613
WeightUpdated_D /t_614
WeightUpdated_E /t_615

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 7-8

Description Local Field

Terminal O/S sets these discrete fields =1 whenever it installs a new setpoint. A
JagBASIC application can use events to monitor these fields. It must set the field
to 0 before the same event will trigger again.

SetpointInstalled_A /t_68c
SetpointInstalled_B /t_68d
SetpointInstalled_C /t_616
SetpointInstalled_D /t_617
SetpointInstalled_E /t_618
CalibrationComplete_A /t_68e
CalibrationComplete_B /t_68f
CalibrationComplete_C /t_619
CalibrationComplete_D /t_61a
CalibrationComplete_E /t_61b

External agencies can set the following fields to trigger a command within the
terminal O/S. The terminal O/S sets the field to 0 when it is done processing the
command. It will also set a corresponding error bit to indicate when there is an
error in processing the command.

Triggers for Scale A
TareScale_A /t_690
ClearTareScale_A /t_691
PrintScale_A /t_692
ZeroScale_A /t_693
SwitchToPrimaryUnits_A /t_694
SwitchToSecondUnits_A /t_695
SwitchToOtherUnits_A /t_696
ApplySetup_A /t_697
RestartSetpoints_A /t_698
RestartRateCalculation_A /t_699
RestartFilter_A /t_69a
ResetSetpointCoincidence_A /t_69b
DisableScale_A /t_69c
CapturePowerCellCounts_A /t_69d
WriteCalibrationToEEProm_A /t_69e

Triggers for Scale B
TareScale_B /t_6a0
ClearTareScale_B /t_6a1
PrintScale_B /t_6a2
ZeroScale_B /t_6a3
SwitchToPrimaryUnits_B /t_6a4
SwitchToSecondUnits_B /t_6a5
SwitchToOtherUnits_B /t_6a6
ApplySetup_B /t_6a7
RestartSetpoints_B /t_6a8
RestartRateCalculation_B /t_6a9
RestartFilter_B /t_6aa

Chapter 7: Global Discrete I/O Data
Edge-Sensitive, Logical Discrete I/O Data

(10/01) 7-9

Description Local Field

ResetSetpointCoincidence_B /t_6ab
DisableScale_B /t_6ac
CapturePowerCellCounts_B /t_6ad
WriteCalibrationToEEProm_B /t_6ae

Triggers for Scale C
TareScale_C /t_620
ClearTareScale_ C /t_621
PrintScale_C /t_622
ZeroScale_C /t_623
SwitchToPrimaryUnits_C /t_624
SwitchToSecondUnits_C /t_625
SwitchToOtherUnits_C /t_626
ApplySetup_C /t_627
RestartSetpoints_C /t_628
RestartRateCalculation_C /t_629
RestartFilter_C /t_62a
ResetSetpointCoincidence_C /t_62b
DisableScale_C /t_62c
CapturePowerCellCounts_C /t_62d
WriteCalibrationToEEProm_C /t_62e

Triggers for Scale D
TareScale_D /t_630
ClearTareScale_D /t_631
PrintScale_D /t_632
ZeroScale_D /t_633
SwitchToPrimaryUnits_D /t_634
SwitchToSecondUnits_D /t_635
SwitchToOtherUnits_D /t_636
ApplySetup_D /t_637
RestartSetpoints_D /t_638
RestartRateCalculation_D /t_639
RestartFilter_D /t_63a
ResetSetpointCoincidence_D /t_63b
DisableScale_D /t_63c
CapturePowerCellCounts_D /t_63d
WriteCalibrationToEEProm_D /t_63e

Triggers for Scale E
TareScale_E /t_640
ClearTareScale_E /t_641
PrintScale_E /t_642
ZeroScale_E /t_643
SwitchToPrimaryUnits_E /t_644
SwitchToSecondUnits_E /t_645
SwitchToOtherUnits_E /t_646

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 7-10

Description Local Field

ApplySetup_E /t_647
RestartSetpoints_E /t_648
RestartRateCalculation_E /t_649
RestartFilter_E /t_64a
ResetSetpointCoincidence_E /t_64b
DisableScale_E /t_64c
CapturePowerCellCounts_E /t_64d
WriteCalibrationToEEProm_E /t_64e

Triggers for Selected Scale
TareScale_SelectedScale /t_6b0
ClearTareScale_SelectedScale /t_6b1
PrintScale_SelectedScale /t_6b2
ZeroScale_SelectedScale /t_6b3
SwitchToPrimaryUnits_SelScl /t_6b4
SwitchToSecondUnits_SelScl /t_6b5
SwitchToOtherUnits_SelScl /t_6b6
SelectScale_A /t_6c0
SelectScale_B /t_6c1
SelectScale_C /t_650
SelectScale_D /t_651
SelectScale_E /t_652
SelectOtherScale /t_6c2

Custom Print Triggers
DemandCustomPrint_1* /t_6c3
DemandCustomPrint_2* /t_6c4
DemandCustomPrint_3* /t_6c5
DemandCustomPrint_4* /t_6c6
DemandCustomPrint_5* /t_6c7

A PC Host sets the following four discrete bit fields to send real-time commands to
a JagBASIC application.

CustomCommand1 /t_6cc
CustomCommand2 /t_6cd
CustomCommand3 /t_6ce
CustomCommand4 /t_6cf

Terminal O/S sets these fields =1 whenever it detects a rising or falling edge in the
discrete inputs. A JagBASIC application can use events to monitor these fields. It
must set the field to 0 before the same event will trigger again.

DiscreteInputRisingEdge_1 /p_6e0
DiscreteInputRisingEdge_2 /p_6e1
DiscreteInputRisingEdge_3 /p_6e2
DiscreteInputRisingEdge_4 /p_6e3
DiscreteInputRisingEdge_5 /p_6e8
DiscreteInputRisingEdge_6 /p_6e9
DiscreteInputRisingEdge_7 /p_6ea
DiscreteInputRisingEdge_8 /p_6eb

*Enable Custom Print in Serial Setup to
enable JagBASIC to print using Demand
Custom Print.

Chapter 7: Global Discrete I/O Data
Physical Discrete I/O Data

(10/01) 7-11

Description Local Field

DiscreteInputRisingEdge_9 /p_6ec
DiscreteInputRisingEdge_10 /p_6ed
DiscreteInputRisingEdge_11 /p_6ee
DiscreteInputRisingEdge_12 /p_6ef
DiscreteInputFallingEdge_1 /p_6f0
DiscreteInputFallingEdge_2 /p_6f1
DiscreteInputFallingEdge_3 /p_6f2
DiscreteInputFallingEdge_4 /p_6f3
DiscreteInputFallingEdge_5 /p_6f8
DiscreteInputFallingEdge_6 /p_6f9
DiscreteInputFallingEdge_7 /p_6fa
DiscreteInputFallingEdge_8 /p_6fb
DiscreteInputFallingEdge_9 /p_6fc
DiscreteInputFallingEdge_10 /p_6fd
DiscreteInputFallingEdge_11 /p_6fe
DiscreteInputFallingEdge_12 /p_6ff

Physical Discrete I/O
Data

Physical discrete input and output data is stored on the Controller and Multi-Function
Boards. The stored logical 1s or 0s correspond to whether a physical discrete input or
output is true or false and on or off.

For all physical discrete I/O data the following apply:

Internal Format External Format Condition

G US bit 1 = Trigger, 0 = Complete

Description Local Field Comment

PhysicalDiscreteInput_1 /p_100 Read only
PhysicalDiscreteInput_2 /p_101 Read only
PhysicalDiscreteInput_3 /p_102 Read only
PhysicalDiscreteInput_4 /p_103 Read only
PhysicalDiscreteInput_5 /p_108 Read only
PhysicalDiscreteInput_6 /p_109 Read only
PhysicalDiscreteInput_7 /p_10a Read only
PhysicalDiscreteInput_8 /p_10b Read only
PhysicalDiscreteInput_9 /p_10c Read only
PhysicalDiscreteInput_10 /p_10d Read only
PhysicalDiscreteInput_11 /p_10e Read only
PhysicalDiscreteInput_12 /p_10f Read only
PhysicalDiscreteOutput_1 /p_500 Read/Write
PhysicalDiscreteOutput_2 /p_501 Read/Write

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 7-12

Description Local Field Comment

PhysicalDiscreteOutput_3 /p_502 Read/Write
PhysicalDiscreteOutput_4 /p_503 Read/Write
PhysicalDiscreteOutput_5 /p_508 Read/Write
PhysicalDiscreteOutput_6 /p_509 Read/Write
PhysicalDiscreteOutput_7 /p_50a Read/Write
PhysicalDiscreteOutput_8 /p_50b Read/Write
PhysicalDiscreteOutput_9 /p_50c Read/Write
PhysicalDiscreteOutput_10 /p_50d Read/Write
PhysicalDiscreteOutput_11 /p_50e Read/Write
PhysicalDiscreteOutput_12 /p_50f Read/Write

Chapter 8 Sample Application Programs
Display Scale A Weight

(10/01) 8-1

8 Sample Application Programs

 WARNING
PERMIT ONLY QUALIFIED PERSONNEL TO SERVICE THIS
EQUIPMENT. EXERCISE CARE WHEN MAKING CHECKS,
TESTS AND ADJUSTMENTS THAT MUST BE MADE WITH
POWER ON. FAILING TO OBSERVE THESE PRECAUTIONS
CAN RESULT IN BODILY HARM OR PROPERTY DAMAGE.

 CAUTION

THESE PROGRAMS ARE ONLY INTENDED TO DEMONSTRATE THE PROGRAMMING
FLEXIBILITY OF JAGBASIC. THEY MAY NOT APPLY TO YOUR SPECIFIC
APPLICATION! ONLY PERMIT QUALIFIED PERSONNEL TO CREATE JAGBASIC
PROGRAMS.

This section contains examples of application programs that can be used as starting
points in creating your own JagBASIC programs. They include examples which:

• Display the weight of Scale A.

• Display/toggle Scale A and Scale B.

• Clear random access files.

• Generate continuous output.

• Display the setpoint value.

• Weigh inbound/outbound trucks.

• Perform manual batching.

• Count parts.

Display Scale A Weight
Only a few lines of code are required to create a JagBASIC program. For example, this
short program displays Scale A on the lower terminal display.

10 DEFSHR gross$,wt101
20 PRINT " W =";gross$
30 GOTO 20
40 END
This program can be created in one of the following ways:

• Typed in on the terminal.

• Created in a text editor on a PC and downloaded to the terminal using the program
download command SZ.

• Created in a text editor on a PC and downloaded with a communication program
supporting Zmodem.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 8-2

You can then perform the following operations on the program:

• To execute the program, assuming the program was typed in on the JAGXTREME
terminal, type RUN at the BASIC: prompt. The weight from Scale A should display on
the lower JAGXTREME terminal display.

• To end the program, press the ESC key on either the keyboard or keypad.

• To save the program, type: save "filex.bas", where x is a number from 1 to 9. For
this example, we will save the program as "file1.bas".

• To call up the program file, type load "file1.bas".To run this program (or any
program named file1.bas) automatically on power-up, set Autostart to Yes in the
JagBASIC setup. When this feature is set to Yes, each time the terminal is powered
up, the file named file1.bas (if resident in the RAMDISK) will be automatically
loaded and run.

• To manually load and run finished programs, set the Manual Start feature to Yes in
the JagBASIC setup. When this feature is enabled, pressing the FUNCTION key on
the JAGXTREME keypad displays the prompt: [Run Program #?] To execute the
desired program, press key 1 for file1.bas, press key 2 for file2.bas, press key 3 for
file3.bas, and so on up to key 9 for file9.bas.

Display/Toggle Scale A
and Scale B

This example displays and toggles the weight from Scale A or B on the upper and lower
JAGXTREME displays. The programming keyboard is used to toggle the weight display.

When A is pressed, the upper display shows the weight from Scale A and the lower
display shows the weight from Scale B.

When B is pressed, the upper display shows the weight from Scale B and the lower
shows Scale A.

The weight is obtained from pulling the rightmost 8 characters from the standard 12
character strings wt101 and wt102.

10 DEFSHR w1$,wt101
20 DEFSHR w2$,wt201
30 DEFSHR sa,t_6c0
40 DEFSHR sb,t_6c1
50 sa=1
60 PRINT "Scale B=";RIGHT$(w2$,8)
70 IF INKEY$ = "b" THEN GOTO 100
80 GOTO 60
100 sb=1
110 PRINT "Scale A=";RIGHT$(w1$,8)
120 IF INKEY$ = "a" THEN GOTO 50
130 GOTO 110
140 END

Chapter 8
Random Access Files

(10/01) 8-3

Random Access Files
The following code segment clears a random access file to standard default ID values.
Note that the JagBASIC code must re-initialize the entire output record before each "PUT"
command.

10 OPEN "IDFILE" FOR RANDOM AS #1 LEN = 19
15 REM added line feed, carriage return for
16 REM printing out file with standard editors,
20 FIELD #1,9 AS FID$, 8 AS FWEIGHT$, 2 AS LFCR$
30 FOR X% = 1 TO 10
35 REM re-initialize record image before each "PUT"
40 LSET FID$ = "000000000" : LSET FWEIGHT$ = "00000000"
50 LSET LFCR$=CHR$(13)+CHR$(10)
60 PUT #1, X%
70 NEXT X%
80 CLOSE #1
The following code segment sequentially searches the random access file for an empty
record in which it writes a new ID-WEIGHT record.

210 OPEN "IDFILE" FOR RANDOM AS #1 LEN = 19
220 FIELD #1, 9 AS FID$, 8 AS FWEIGHT$, 2 AS LFCR$
230 USEREC%=0
240 FOR REC% = 1 TO 10
250 GET #1, REC%
270 IF FID$ = "000000000" THEN USEREC% = REC% : REC%=10
280 IF EOF(1) = 1 THEN REC% = 10
290 NEXT REC%
300 LSET FWEIGHT$ = "12345.6"
310 LSET FID$="JOE TRUCK"
320 LSET LFCR$=CHR$(13)+CHR$(10)
330 IF USEREC%<>0 THEN PUT #1, USEREC%
340 CLOSE #1

Continuous Output
This JagBASIC program generates the standard METTLER TOLEDO continuous output for
the currently selected scale, either Scale A or Scale B.

15 REM Preformatted Status Word A:
20 DEFSHR sw1a,wt116
30 DEFSHR sw2a,wt216
35 REM Weight units "lb", "kg" or " g":
40 DEFSHR unitA$,wt103
50 DEFSHR unitB$,wt203
55 REM Motion status
60 DEFSHR motionA,s_200
70 DEFSHR motionB,s_208
75 REM Net mode (1 = net, 0 = gross):
80 DEFSHR netA,s_204
90 DEFSHR netB,s_20c
95 REM Overcapacity status (1 = Overcapacity, 0 = not Overcapacity):
100 DEFSHR overA,s_202
110 DEFSHR overB,s_20a
115 REM Under zero status (1 = Underzero, 0 = not Underzero):
120 DEFSHR underA,s_203

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 8-4

130 DEFSHR underB,s_20b
135 REM Displayable net weight (with embedded decimal point)
140 DEFSHR netwtA$,wt102
150 DEFSHR netwtB$,wt202
155 REM Displayable tare weight (with embedded decimal point)
160 DEFSHR tarewtA$,ws102
170 DEFSHR tarewtB$,ws202
175 REM Selected scale
180 DEFSHR selectedScale,jag01
190 REM "width -1" suppresses LF/CR being appended LPRINT line
191 WIDTH -1
192 REM Define ASCII STX:
193 START$ = CHR$(02)
194 REM Define ASCII CR:
195 END$ = CHR$(13)
196 REM Check for selected scale here:
197 REM (Program loops back to here)
198 REM Clear status word B bits:
200 b% = 0
210 IFselectedScale = "LB" THEN GOTO 2000
1000 IFnetA=1 THEN b%=1
1020 IFnegA=1 THEN b%=b%+2
1030 IF overA=1 or underA = 1 THEN b%=b%+4
1040 IF motionA=1 THEN b%=b%+8
1050 IF unitA$="kg" THEN b%=b%+16
1070 statusBytes$=STRING$(1,sw1a)+CHR$(32+b%)+ CHR$(32)
1080 IPRINT start$+statusBytes$+RIGHT$(netwtA$,6)+RIGHT$(tarewtA$,6)+end$
1100 GOTO 200
2000 IF netB=1 THEN b%=1
2030 IF negB=1 THEN b%=b%+2
2040 IF overB=1 or underB=1 THEN b%=b%+4
2050 IF motionB=1 THEN b%=b%+8
2060 IF unitB$="kg" THEN b%=b%+16
3070 statusBytes$=string$(1,sw2a)+CHR$(32+b%)+CHR$(32)
3090 LPRINT start$+statusBytes$+RIGHT$(netwtB$,6)+RIGHT$(tarewtB$,6)+end$
3100 GOTO 200
9999 END

Setpoint Display
This JagBASIC program displays the setpoint value for the selected scale on the terminal
lower display. Scale A uses Setpoint 1 and Scale B uses Setpoint 3. This program
allows an operator on the factory floor to monitor the setpoint values for doing "hand-
adds" where a remote PLC changes the setpoint values.

10 DEFSHR stopEnable%,bas89
20 stopEnable%=0
30 DEFSHR numScales%,jag15
40 REM INITIALIZE ONE SCALE
50 DEFSHR sp1#,sp105
60 DEFSHR units1%,ce103
70 DIM units$(3)
80 UNITS$(1)=" lb":units$(2)=" kg":units$(3)=" g"
90 U1$=units$(units1%)
100 IF numScales%=2 THEN GOTO 300
200 REM LOOP FOR ONE SCALE

Chapter 8
Filling

(10/01) 8-5

210 SLEEP 900
220 PRINT "A ";sp1#;u1$
230 GOTO 210
300 REM INITIALIZE TWO SCALES
310 DEFSHR scaleID$,jag01
320 DEFSHR sp3#,sp305
330 DEFSHR units2%,ce203
340 U2$=units$(units2%)
400 REM LOOP FOR TWO SCALES
410 SLEEP 900
420 IF scaleID$="LB" THEN GOTO 450
430 PRINT "A ";sp1#;u1$
440 GOTO 410
450 PRINT "B ";sp3#;u2$
460 GOTO 410

Rate Calculation without
the Rate Display

This is a sample JagBASIC program for setting up the rate without the rate display. This
JagBASIC setup uses less of the JAGXTREME terminal’s processing power than the
standard control panel setup which always enables the rate display. The lower display is
not constantly updated with new rate information, so it can be used for displaying more
critical information.

5 DEFSHR ratedisp,cs188:DEFSHR auxdisp,cs189:ratedisp=0:auxdisp=0
10 DEFSHR auxunit,cs101:DEFSHR period,cs104
20 DEFSHR sample,cs105:DEFSHR freq,cs106:DEFSHR setup,t_697
30 auxunit=1:REM pounds
40 period="S":REM per second
50 sample=3:REM sample time
60 freq=1:REM interval every one second
70 setup=1:REM apply setup
80 END

Filling
This JagBASIC program is used for filling applications.

1 REM Example Filling Application
7 DEFSHR StopEnabled,bas89
8 DEFSHR SPfeeding,s_210
9 DEFSHR SPtolerance,s_212
12 DEFSHR DiscreteIn,p_100
13 DEFSHR TareA,t_690
14 DEFSHR TareAerr,s_290
15 DEFSHR DiscreteOut,p_503
16 DEFSHR NetWt,wt111
17 DEFSHR ClearTareA,t_691
18 DEFSHR MotionA,s_200
20 StopEnabled=0
60 PRINT "Place Container"
70 IF DiscreteIn=0 THEN GOTO 70
75 PRINT "Taring Container"
77 SLEEP 3000
90 TareA=1

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 8-6

100 IF TareA=1 THEN GOTO 100
120 IF TareAerr=0 THEN GOTO 155
125 PRINT "Tare Failed"
130 SLEEP 1000
150 GOTO 90
155 PRINT "Fill Container"
160 IF MotionA=0 THEN GOTO 160
170 SLEEP 3000
180 SLEEP 200
190 IF SPfeeding=0 and SPtolerance=0 THEN PRINT "Too Much Fill"
192 IF SPfeeding=1 and SPtolerance=0 THEN PRINT "More Fill"
193 IF SPtolerance=1 THEN PRINT "Fill In Tolerance"
194 IF SPtolerance=1 and MotionA=0 THEN GOTO 200
195 GOTO 180
200 Print "Filling Complete"
220 SLEEP 3000
230 PRINT "Remove Container"
240 DiscreteOut=1
260 IF NetWt > 0.0 THEN GOTO 260
270 DiscreteOut=0
280 PRINT "Completed"
290 SLEEP 3000
293 ClearTareA=1
294 IF ClearTareA=1 GOTO 294
300 GOTO 60

Rate-based Setpoint
Auto-Preact

JagBASIC application can set up an Auto-Preact setpoint. In an auto-preact setpoint, the
preact weight is automatically adjusted based on the rate that material is being filled or
discharged from a hopper and an auto-preact time value. Whenever the JAGXTREME
terminal calculates a new rate value, it adjusts the preact weight for the setpoint based
on the rate and the auto-preact time value.

Auto-preact time value is the number of seconds it takes for the gate to close and the
filling to complete once the JAGXTREME terminal detects that coincidence weight - preact
weight has been reached. The auto-preact time is stored in shared data variable
"spn06", where "n" is the number of the setpoint. The JAGXTREME terminal
automatically learns the best auto-preact time by adjusting the value based on the error
weight in each trial. Once a setpoint reaches coincidence value, the JAGXTREME
calculates the difference between the setpoint coincidence value and the actual weight in
the weigh hopper once the hopper reaches a "no motion" state. This difference is the
error for the last trial. The JAGXTREME adjusts the auto-preact time by a value
proportional to the error in the last trial and the sum of the errors over all trials.

To setup the auto-preact, the JagBASIC application must set the setpoint target to either
"H" for a gross weight setpoint or "M" for net weight setpoint. You should initialize the
auto-preact time value to your best guess of the preact time to minimize the number of
trials it takes for the JAGXTREME terminal to learn and adjust to the best preact time. The
other fields of the auto-preact setpoint are the same as in a standard setpoint.

With the JagBASIC ladder commands, you can use the setpoint feeding output to
generate a discrete output for opening and closing a feed gate.

Chapter 8
Simple Truck In-Out

(10/01) 8-7

Example
REM // ***
REM // Setup Rate
REM // ***
DEFSHR unit$,wt103
DEFSHR rateDisplay%,cs188
DEFSHR auxDisplay%,cs189
DEFSHR rateUnit%,cs101
DEFSHR period$,cs104
DEFSHR sample%,cs105
DEFSHR freq%,cs106
DEFSHR setup%,t_697
IF unit$="lb" THEN rateUnit%=1 ELSE rateUnit%=2
period$="S":rate = weight units per second
sample%=2:REM rate averaged over last two seconds
freq%=2:REM rate calculation frequency 1=1 sec;2=5 sec;2=half-second
rateDisplay%=0:auxDisplay%=0:REM turn-off rate display
setup%=1

REM ***
REM Setpoint #1
REM Filling Setpoint using Auto preact
REM ***
DEFSHR coincidence#,sp105
DEFSHR autopreact#,sp106
DEFSHR target,sp103
DEFSHR filling%,sp186
DEFSHR enable%,sp102
DEFSHR latching%,sp187
DEFSHR latched%,sp188
enable%=1
latching%=1
filling%=0
target$="H"
latched%=0
coincidence#=1000.0:REM weight
autopreact#=1.2:REM seconds
NEWLADDER
RUNGMOV s_210,p_500
DEFSHR setpoint%,t_698
setpoint%=1

Simple Truck In-Out
This JagBASIC program is used for a simple truck inbound/outbound application.

10 DEFSHR gross#,wt110:REM gross weight
20 DEFSHR unit$,wt103:REM weight units
30 DEFSHR stopEnable%,bas89
40 DEFSHR keyboards%,bas10
50 DEFSHR motion%,s_200
60 stopEnable%=0
70 keyboards%=3
80 password$="555555"
100 REM main menu
110 PRINT "IN = 1 OUT = 4"

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 8-8

120 GOSUB 3000
130 IF k$="1" THEN GOTO 1000
140 IF k$="4" THEN GOTO 2000
150 IF k$="7" THEN GOTO 5000
160 IF k$="8" THEN GOTO 6000
170 IF k$="9" THEN GOTO 7000
180 GOTO 120
1000 PRINT "Inbound?"
1005 GOSUB 3000
1006 IF k$<>CHR$(8) THEN GOTO 100
1010 IF gross#<10.0 THEN PRINT "SCALE EMPTY":GOTO 1180
1020 PRINT "Register #"
1030 OPEN "inbound.dat" for random as #1 len=10
1040 FIELD #1,8 as inwght$,2 as lfcr$
1050 reg%=999
1060 FOR x% = 1 to 50
1070 GET #1,x%
1080 IF inwght$="00000000" THEN reg%=x%: x%=50
1090 NEXTx%
1100 IF reg%=999 THEN PRINT "Memory Full":GOTO 1170
1105 IF motion%=1 THEN PRINT "Scale In Motion"
1106 IF motion%=1 THEN GOTO 1106
1110 LSET lfcr$=CHR$(13)+CHR$(10)
1120 RSET inwght$=mkd$(gross#)
1130 LPRINT "Register # ";reg%
1140 LPRINT date$;" ";time$;" ";gross#;" ";units$;" IN"
1150 PRINT "Register # ";reg%
1160 PUT #1,reg%
1170 CLOSE #1
1180 GOSUB 3000
1190 GOTO 100
2000 PRINT "Outbound?"
2005 GOSUB 3000
2006 IF k$<>CHR$(8) THEN GOTO 100
2010 INPUT "Enter Register",reg%
2030 IF reg%<1 or reg%>50 THEN GOTO 2010
2040 PRINT "Register # ";reg%
2045 SLEEP 1000
2050 OPEN "inbound.dat" for random as #1 len=10
2060 FIELD #1,8 as inwght$,2 as lfcr$
2070 GET #1,reg%
2080 IF inwght$="00000000" THEN PRINT "Register Empty":close #1:GOTO 2220
2090 IN#=cvd(inwght$)
2100 LSETlfcr$=CHR$(13)+CHR$(10)
2110 RSETt inwght$="00000000"
2120 PUT #1,reg%
2130 CLOSE #1
2135 IF motion%=1 THEN PRINT "Scale In Motion"
2136 IF motion%=1 THEN GOTO 2136
2140 IF in#>gross# THEN finalGross#=in#:tare#=gross#:GOTO 2160
2150 tare#=in#:finalGross#=gross#
2160 net#=finalGross#-tare#
2170 PRINT using "NET__######.#_!!";net#;unit$
2180 LPRINT DATE$+" "+TIME$
2190 LPRINT using "NET____######.#_!!";net#;unit$
2200 LPRINT using "GROSS__######.#_!!";finalGross#;unit$
2210 LPRINT using "TARE___######.#_!!";tare#;unit$

Chapter 8
Simple Truck In-Out

(10/01) 8-9

2220 GOSUB 3000
2230 GOTO 100
3000 REM get key
3010 k$=inkey$
3020 IF k$="" THEN GOTO 3010
3030 RETURN
5000 PRINT "View Regs?"
5005 GOSUB 3000
5010 IF k$<>CHR$(8) THEN GOTO 100
5020 INPUT "Enter Password";pw$
5030 IF password$<>pw$ THEN GOTO 100
5040 OPEN "inbound.dat" for random as #1 len=10
5050 field #1,8 as inwght$,2 as lfcr$
5060 PRINT "Printout? Y=3"
5065 GOSUB 3000
5080 IF k$="3" THEN LPRINT "Reg Stored Weight"
5090 FOR x%=1 to 50
5100 GET #1,x%
5110 IF inwght$="00000000" THEN GOTO 5150
5120 PRINT using "##__######.#";x%;cvd(inwght$)
5130 IF k$="3" THEN LPRINT using "##__######.#";x%;cvd(inwght$)
5140 SLEEP 1000
5150 NEXT x%
5160 CLOSE #1
5170 GOTO 100
6000 PRINT "Reset Regs?"
6005 GOSUB 3000
6010 IF k$<>CHR$(8) THEN GOTO 100
6020 INPUT "Enter Password"; pw$
6030 IF password$<>pw$ THEN GOTO 100
6040 open "inbound.dat" FOR OUTPUT AS#1
6050 for x%=1 to 50
6060 PRINT #1,"00000000"
6070 NEXT x%
6080 CLOSE #1
6090 PRINT "Reset Complete"
6100 SLEEP 2000
6110 GOTO 100
7000 PRINT "Exit?"
7005 GOSUB 3000
7010 IF k$<>CHR$(8) THEN GOTO 100
7020 INPUT "Enter Password";pw$
7030 IF password$<>pw$ THEN GOTO 100
7040 keyboards%=0
7050 END

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 8-10

Truck Inbound-Outbound
This application records the weight of a truck when it arrives at a plant, calculates the
net weight of the truck when it leaves the plant, and updates tallies as directed by the
operator. It uses up to two scales connected to a JAGXTREME terminal. Typical uses of
this application are to record and tally the amount of:

• Asphalt loaded at an asphalt plant.

• Grain delivered to a grain elevator.

• Trash delivered to a trash dump.

This application uses the JagBASIC preprocessor, which uses the program source code
listed here as input and generates the output file which runs on the JAGXTREME
terminal.

Printing Tickets
This application prints a ticket after each truck inbound or outbound processing
operation using the Demand Custom Print #3 connection. The operator must assign a
serial port to this connection using the "CONFIG SERIAL" menu in the JAGXTREME
terminal setup menus. The operator must also use the "CONFIG TEMPLATE" menu to
setup the ticket format. This application sets the print literals as follows:

Literal 1 Header 1. Set up using Memory Key.
Literal 2 Header 2. Set up using Memory Key.
Literal 3 Net Weight.
Literal 4 Tare Weight.
Literal 5 Gross Weight.
Literal 6 Truck ID.
Literal 7 Tally 1 ID.
Literal 8 Tally 1 Weight Value.
Literal 9 Tally 2 ID.
Literal 10 Tally 2 Weight Value.
Literal 11 Tally 3 ID.
Literal 12 Tally 3 Weight Value.
Literal 13 Tally 4 ID.
Literal 14 Tally 4 Weight Value.
Literal 15 Tally 5 ID.
Literal 16 Tally 5 Weight Value.
Literal 17 Tally 6 ID.
Literal 18 Tally 6 Weight Value.

Processing Modes
This application has two processing modes: File Maintenance and Truck
Inbound/Outbound. The operator presses the Esc key to switch between them.

File Maintenance Processing
The application maintains two files: the Truck File and the Tally File. The number of
records stored in each file is limited to 1000 records since the JAGXTREME RAMDISK is
64K bytes. These files are random-access files with the records stored alphabetically by
ID. The application quickly retrieves records from the files through a binary search. In
File Maintenance processing, the operator can perform the following operations:

Chapter 8
Truck Inbound-Outbound

(10/01) 8-11

• Edit the Truck File

• Print the Contents of the Truck File

• List the Truck IDs

• Edit the Tally File

• Print the contents of the Tally File

Truck File
The Truck File has one record for each truck. The application weight units are the same
as the scale's primary calibration units. The application does not support unit switching.
Each record in the Truck File is 26 bytes long and has the following format:

Truck ID 8 characters
Tare Weight in ASCII 6 characters
Total Weight in ASCII 8 characters
Tare Type P/T 1 character
Truck In Plant Y/N 1 character
Line Feed/Carriage Return 2 characters
 26 characters

The Total Weight is the sum of the truck's net weights in all its trips to the plant. The
truck's Tare Type is either "P" or "T".

"P" indicates that the operator entered the tare through the keyboard.

"T" indicates that the operator entered the tare by weighing the truck on the scale.

Tally File
The Tally File has one record for each tally that the operator records. Each record in the
Tally File is 20 bytes long and has the following format:

Tally ID 8 characters

Tally Weight in ASCII 10 characters

Line Feed/Carriage Return 2 characters

 20 characters

Truck Inbound/Outbound Processing
In truck inbound processing, the application prompts the operator to enter the truck ID. If
the truck ID does not exist in the Truck File, the application creates a new record in the
file. The application records the inbound weight of the truck in the Truck File. The
application sets the values in Literals 5 and 6; and blanks Literals 3, 4 and 7 through
18. The application issues the command to print a ticket through the Demand Custom
Print #3 connection.

In truck outbound processing, the application prompts the operator to enter the truck ID.
The application retrieves the inbound weight of the truck from the Truck File and
calculates the net weight of the truck. The application prompts the user to enter up to six
tally IDs and adds the net weight to each tally. The application sets the print literals and
issues the command to print the ticket.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 8-12

Operations Program
This program code executes the steps needed to carry out the inbound/outbound
application.

REM **
REM TRUCK IN/OUT PROGRAM
REM **
IF OP%=0 THEN GOTO Initialize
IF OP%=2 THEN GOTO TruckInOutStart ELSE GOTO MaintenanceStart
Initialize:
DIM Gross#(2):DEFSHR Gross#(1),wt110:DEFSHR Gross#(2),wt210
DIM Motion%(2):DEFSHR Motion%(1),s_200:DEFSHR Motion%(2),s_208
DIM Select%(2):DEFSHR Select%(1),t_6c0:DEFSHR Select%(2),t_6c1
DIM Zero%(2):DEFSHR Zero%(1),t_693:DEFSHR Zero%(2),t_6a3
DEFSHR Unit$,wt103
DEFSHR stopEnable%,bas89:stopEnable%=1
DEFSHR selKey,bas87:selKey=0:DEFSHR escKey,bas86:escKey=0
DEFSHR numScales,jag15:DEFSHR CustomPrint3%,t_6c5

DIM L$(18):DEFSHR L$(1),lit01:DEFSHR L$(2),lit02:DEFSHR L$(3),lit03
DEFSHR L$(4),lit04:DEFSHR L$(5),lit05:DEFSHR L$(6),lit06
DEFSHR L$(7),lit07:DEFSHR L$(8),lit08:DEFSHR L$(9),lit09
DEFSHR L$(10),lit10:DEFSHR L$(11),lit11:DEFSHR L$(12),lit12
DEFSHR L$(13),lit13:DEFSHR L$(14),lit14:DEFSHR L$(15),lit15
DEFSHR L$(16),lit16:DEFSHR L$(17),lit17:DEFSHR L$(18),lit18

REM **
REM **
REM TRUCK INBOUND/OUTBOUND OPERATIONS
REM **
REM **
TruckInOutStart:
OP%=1:Scl%=1:Select%(1)=1
NextTruck:
REM troff
FOR i%=3 to 18
L$(i%)=" "
NEXT i%
REM tron
CustomPrint3%=0

INPUT "Truck";M$
REM ***** ZERO SCALE *****
IF M$=CHR$(7) THEN Zero%(Scl%)=1:GOTO NextTruck
REM ***** PROCESS TRUCK *****
IF M$<>CHR$(1) THEN GOSUB ProcessTruck:GOTO NextTruck
REM ***** SELECT SCALE *****
IF numScales=1 THEN GOTO NextTruck
IF Scl%=1 THEN Scl%=2 ELSE Scl%=1
Select%(Scl%)=1:GOTO NextTruck

Chapter 8
Truck Inbound-Outbound

(10/01) 8-13

REM **
REM PROCESS TRUCK
REM **
ProcessTruck:
IF M$="" THEN RETURN
GOSUB CheckIDString:truckID$=M$:L$(6)=M$
GOSUB GetWgt:M$=STR$(Weight#):GOSUB SetToWidth8:L$(5)=M$

GOSUB OpenTruck:LSET TrkID$=truckID$:ON ERROR GOTO NewInboundTruck:GET #2
IF TIP$="Y" THEN GOTO OutboundTruck

REM **
REM PROCESS INBOUND TRUCK
REM **
InboundTruck:
PRINT "InBound ";truckID$:SLEEP 1000
IF TTyp$="P" THEN L$(5)=TW$ ELSE RSET TW$=RIGHT$(L$(5),8)
GOTO DoneInbound

REM **
REM NEW INBOUND TRUCK ID
REM **
NewInboundTruck:
IF ERR()<>6 THEN LPRINT ERR();" ";ERL():END
PRINT "New ID ";truckID$;"?":GOSUB GetKey
IF C$<>CHR$(8) THEN CLOSE #2:RETURN
RSET TW$=RIGHT$(L$(5),8)
LSET TTyp$="T":LSET TrkID$=truckID$:RSET TTot$=" 0"

DoneInbound:
RSET TIP$="Y":LSET cr$=CHR$(13)+CHR$(10):PUT #2
GOSUB PrintHeader:LPRINT "Inbound Truck ";truckID$
LPRINT USING "GROSS_WT____##########._!!";VAL(L$(5));Unit$:LPRINT ""
CustomPrint3%=1:CLOSE #2:RETURN

REM **
REM PROCESS OUTBOUND TRUCK
REM **
OutboundTruck:
NetWt#=Weight#-VAL(TW$):M$=STR$(NetWt#):Width%=8:GOSUB
SetToWidth:L$(3)=M$
M$=TW$:GOSUB SetToWidth8:L$(4)=M$
Weight#=NetWt#+VAL(TTot$)
M$=STR$(Weight#):Width%=10:GOSUB SetToWidth:RSET TTot$=M$
RSET TIP$="N":LSET cr$=CHR$(13)+CHR$(10):PUT #2:CLOSE #2

REM **
REM HEY, MR. TALLY MAN, TALLY ME BANANAS.
REM **
t%=0:GOSUB OpenTally

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 8-14

MoreTallies:
INPUT "Enter Tally ID",M$:IF M$=" " OR M$="" THEN GOTO DoneTallies
GOSUB CheckIDString:talID$=M$
ON ERROR GOTO NewTally
LSET TallyID$=talID$:GET #1

REM *** FOUND EXISTING TALLY
M$=STR$(VAL(Tally$)+NetWt#):Width%=10:GOSUB SetToWidth:RSET Tally$=M$
GOTO PutTally

NewTally:
IF ERR()<>6 THEN LPRINT ERR();" ";ERL():END
PRINT "AddNew ";talID$;"?":GOSUB GetKey:IF C$<>CHR$(8) THEN GOTO MoreTallies
M$=STR$(NetWt#):Width%=10:GOSUB SetToWidth:RSET Tally$=M$

PutTally:
L$(t%*2+7)=talID$:L$(t%*2+8)=Tally$:REM *** SET LITERALS FOR CUSTOM PRINT
LSET TallyID$=talID$:LSET cr$=CHR$(13)+CHR$(10):PUT #1

NextTally:
t%=t%+1:IF t%<6 THEN GOTO MoreTallies

DoneTallies:
GOSUB PrintHeader:LPRINT "Outbound Truck ";truckID$;CHR$(10)
LPRINT USING "GROSS_WT____##########._!!";VAL(L$(5));Unit$
LPRINT USING "TARE_WT_____##########._!!";VAL(L$(4));Unit$
LPRINT USING "NET_WT______##########._!!";VAL(L$(3));Unit$
LPRINT "":i%=0
MoreTallyPrint:
IF i%>=t%*2 THEN LPRINT CHR$(10):CLOSE #1:CustomPrint3%=1:RETURN
LPRINT USING "!!!!!!!!__############._!!";L$(i%+7);VAL(L$(i%+8));Unit$
i%=i%+2:GOTO MoreTallyPrint

REM **
REM **
REM TRUCK FILES MAINTENANCE MAIN MENU
REM **
REM **
MaintenanceStart:
IF OP%=4 THEN GOTO MenuPrintTruck
IF OP%=5 THEN GOTO MenuListTruck
IF OP%=6 THEN GOTO EditTallyMenu
IF OP%=7 THEN GOTO MenuPrintTally
IF OP%=8 THEN GOTO MenuSendFiles

Maintenance:
OP%=2:PRINT "Edit Truck File":GOSUB GetKey
IF C$=CHR$(8) THEN GOSUB EditTruckFile:GOTO Maintenance

MenuPrintTruck:
OP%=2:PRINT "Print Truck File":GOSUB GetKey
IF C$=CHR$(8) THEN GOSUB PrintTrucks

MenuListTruck:
OP%=2:PRINT "List Truck IDs":GOSUB GetKey
IF C$=CHR$(8) THEN GOSUB ListTruckID

Chapter 8
Truck Inbound-Outbound

(10/01) 8-15

EditTallyMenu:
OP%=2:PRINT "Edit Tally File":GOSUB GetKey
IF C$=CHR$(8) THEN GOSUB EditTallyFile:GOTO EditTallyMenu

MenuPrintTally:
OP%=2:PRINT "Print Tally File":GOSUB GetKey
IF C$=CHR$(8) THEN GOSUB PrintTallyList

MenuSendFiles:
OP%=2:PRINT "Send Data Files":GOSUB GetKey
IF C$=CHR$(8) THEN GOSUB SendFiles
GOTO Maintenance

REM **
REM EDIT THE TRUCK FILE
REM **
EditTruckFile:
OP%=3:INPUT "Enter Truck ID",M$
GOSUB OpenTruck:ON ERROR GOTO NewTruck:r%=0
IF M$<>" " AND M$<>"" THEN GOTO SearchTruckID

LookNextID:
IF EOF(2) THEN CLOSE #2:PRINT "End Of File":SLEEP 2000:RETURN
r%=r%+1:GET #2,r%:PRINT "Truck ";TrkID$;"?":GOSUB GetKey
IF C$=CHR$(8) THEN truckID$=TrkID$:GOTO EditRecord ELSE GOTO LookNextID

SearchTruckID:
GOSUB CheckIDString:truckID$=M$:PRINT "Search ";truckID$:SLEEP 1000
LSET TrkID$=truckID$:GET #2

EditRecord:
PRINT "Edit ";truckID$;"?":GOSUB GetKey:IF C$=" " THEN GOTO DeleteTruck
IF C$<>CHR$(8) THEN GOTO EndTruckEdit
PRINT "Outbound? Y/N",C$:GOSUB GetKey
IF C$="Y" THEN RSET TIP$="Y" ELSE RSET TIP$="N"
GOTO SetTare

DeleteTruck:
PRINT "Delete ";truckID$;"?":GOSUB GetKey:IF C$=" " THEN GOTO EditRecord
IF C$=CHR$(8) THEN PRINT "Deleting ";truckID$:SLEEP 1000:DELREC #2
GOTO EndTruckEdit

NewTruck:
IF ERR()<>6 THEN LPRINT ERR();" ";ERL():END
PRINT "Add ";truckID$;"?":GOSUB GetKey:IF C$<>CHR$(8) THEN GOTO EndTruckEdit
PRINT "Adding ";truckID$:LSET TrkID$=truckID$
RSET TW$=" ":RSET TTot$=" ":LSET TTyp$=" ":RSET TIP$="N"

SetTare:
PRINT "Tare Type? P/T":GOSUB GetKey
IF C$=CHR$(4) OR C$="T" THEN RSET TTyp$="T":GOSUB GetWgt:GOTO SetTot
IF C$="P" THEN RSET TTyp$="P":INPUT "Tare Wt:",Weight#:GOTO SetTot
PRINT "Invalid Type":SLEEP 2000:GOTO SetTare

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 8-16

SetTot:REM ***** SET TOTAL WEIGHT ******
M$=STR$(Weight#):GOSUB SetToWidth8:RSET TW$=M$
INPUT "Total:",Weight#
M$=STR$(Weight#):Width%=10:GOSUB SetToWidth:RSET TTot$=M$
LSET TrkID$=truckID$:LSET cr$=CHR$(13)+CHR$(10):PUT #2

EndTruckEdit:
CLOSE #2:RETURN

REM **
REM EDIT THE Tally ID FILE
REM **
EditTallyFile:
OP%=6:INPUT "Enter Tally ID",M$
GOSUB OpenTally:ON ERROR GOTO MakeNewTally:r%=0
IF M$<>" " AND M$<>"" THEN GOTO SearchTallyID

LookTally:
IF EOF(1) THEN CLOSE #1:PRINT "End Of File":SLEEP 2000:RETURN
r%=r%+1:GET #1,r%:PRINT "Tally ";TallyID$;"?":GOSUB GetKey
IF C$=CHR$(8) THEN talID$=TallyID$:GOTO EditTallyRecord ELSE GOTO LookTally

SearchTallyID:
GOSUB CheckIDString:talID$=M$:PRINT "Search ";talID$:SLEEP 1000
LSET TallyID$=talID$:GET #1

EditTallyRecord:
PRINT "Edit ";talID$;"?":GOSUB GetKey
IF C$=CHR$(8) THEN GOTO WriteTallyTotal
IF C$<>" " THEN GOTO EndTallyEdit

DeleteTally:
PRINT "Delete ";talID$;"?":GOSUB GetKey
IF C$=" " THEN GOTO EditTallyRecord
IF C$=CHR$(8) THEN PRINT "Deleting ";talID$:SLEEP 1000:DELREC #1
GOTO EndTallyEdit

MakeNewTally:
IF ERR()<>6 THEN LPRINT ERR();" ";ERL():END
PRINT "Add ";talID$;"?":GOSUB GetKey:IF C$<>CHR$(8) THEN GOTO EndTallyEdit
PRINT "Adding ";talID$:SLEEP 1000:GOTO WriteTallyTotal

WriteTallyTotal:
LSET TallyID$=talID$:Input "Total:",Weight#
M$=STR$(Weight#):Width%=10:GOSUB SetToWidth:RSET Tally$=M$
LSET cr$=CHR$(13)+CHR$(10):PUT #1

EndTallyEdit:
CLOSE #1:RETURN

Chapter 8
Truck Inbound-Outbound

(10/01) 8-17

REM **
REM PRINT THE TRUCK FILE
REM **
PrintTrucks:
OP%=4:PRINT "Clear Total? N/Y":GOSUB GetKey:PRINT "Printing..."
GOSUB PrintHeader:LPRINT "Truck Report"
LPRINT "Truck ID";TAB(18);"Tare Weight";TAB(38);"Total";TAB(47);"Outbound"
LPRINT STRING$(54,"="):GOSUB OpenTruck:r%=0
WHILE NOT EOF(2)
r%=r%+1:GET #2,r%:LPRINT TrkID$;TAB(15);
IF C$="Y" OR C$=CHR$(6) THEN RSET TTot$=" 0"
LPRINT USING "########._!!_!";VAL(TW$);Unit$;TTyp$;
LPRINT USING "__##########._!!____!";VAL(TTot$);Unit$;TIP$
IF C$="Y" OR C$=CHR$(6) THEN PUT #2,r%
WEND
LPRINT r%;" Trucks":PRINT r%;" Trucks":SLEEP 2000:CLOSE #2:RETURN

REM **
REM PRINT LIST OF TRUCKS
REM **
ListTruckID:
OP%=5:GOSUB PrintHeader
LPRINT "Truck ID List":LPRINT STRING$(25,"="):GOSUB OpenTruck:r%=0
PrintNextTruck:
IF NOT EOF(2) THEN r%=r%+1:GET #2,r%:LPRINT TrkID$:GOTO PrintNextTruck
LPRINT r%;" Trucks":PRINT r%;" Trucks":SLEEP 2000:CLOSE #2:RETURN

REM **
REM PRINT LIST OF TALLIES
REM **
PrintTallyList:
OP%=7:GOSUB PrintHeader
LPRINT "Tally";TAB(18);"Total":LPRINT STRING$(25,"="):GOSUB OpenTally:r%=0
PrintNextTally:
IF EOF(1) THEN GOTO PrintTallyDone
r%=r%+1:GET #1,r%:LPRINT TallyID$;
LPRINT USING "___##########._!!";VAL(Tally$);Unit$:GOTO PrintNextTally
PrintTallyDone:
LPRINT r%;" Tallies":PRINT r%;" Tallies":SLEEP 2000:CLOSE #1:RETURN

REM **
REM SEND FILES TO HOST USING ZMODEM
REM **
SendFiles:
OP%=8:PRINT "Files To Host":GOSUB GetKey:IF C$<>CHR$(8) THEN GOTO
ReceiveFiles
PRINT "Are You Sure?":GOSUB GetKey:IF C$<>CHR$(8) THEN RETURN
PRINT "":SZ "TRUCK":SZ "TALLY":RETURN
ReceiveFiles:
PRINT "Files From Host":GOSUB GetKey:IF C$<>CHR$(8) THEN RETURN
PRINT "Are You Sure?":GOSUB GetKey:IF C$=CHR$(8) THEN RZ ELSE RETURN
PRINT "SORTING FILES":GOSUB OpenTruck:SORTREC #2,TrkID$:CLOSE #2
GOSUB OpenTally:SORTREC #1,TallyID$:CLOSE #1:RETURN

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 8-18

REM **
REM GET WEIGHT OF TRUCK
REM **
GetWgt:
Scl%=1:C$="A":If numScales=1 THEN GOTO CheckMotion
PRINT "Scale? A/B":GOSUB GetKey
IF C$="B" OR C$=CHR$(5) THEN Scl%=2:C$="B" ELSE C$="A"
Select%(Scl%)=1
CheckMotion:
PRINT "Weighing Scale ";C$:SLEEP 1000
IF Motion%(Scl%)=1 THEN PRINT "Scale In Motion":SLEEP 250:GOTO CheckMotion
Weight#=Gross#(Scl%):RETURN

REM **
REM OPEN TRUCK FILE
REM **
OpenTruck:
OPEN "TRUCK" FOR RANDOM AS #2 LEN=30
FIELD #2,8 AS TrkID$,8 AS TW$,1 AS TTyp$,10 AS TTot$,1 AS TIP$,2 AS cr$
INDEXED #2,TrkID$:RETURN

REM **
REM OPEN TALLY FILE
REM **
OpenTally:
OPEN "TALLY" FOR RANDOM AS #1 LEN=20
FIELD #1,8 AS TallyID$,10 AS Tally$,2 AS cr$
INDEXED #1,TallyID$:RETURN

REM **
REM Print Report Header
REM **
PrintHeader:
LPRINT CHR$(10)+CHR$(10):LPRINT L$(1):LPRINT L$(2)+CHR$(10)
LPRINT DATE$;TAB(19);TIME$+CHR$(10):RETURN

REM **
REM GET A KEY
REM **
GetKey:
REM troff
C$=INKEY$:IF C$<>"" THEN GOTO GetKey
GetKey1:
C$=INKEY$:IF C$="" THEN GOTO GetKey1
REM tron
IF C$>="a" AND C$<="z" THEN C$=CHR$(ASC(C$)-32)
IF C$=CHR$(2) THEN RESTART ELSE RETURN

REM **
REM CHECK TERMINATING CHARACTERS ON STRING
REM BLANK FILL ID TO WIDTH 8
REM CAPITALIZE ID
REM **
CheckIDString:
C$=RIGHT$(M$,1):IF C$=CHR$(2) THEN RESTART
IF C$<CHR$(8) THEN M$=LEFT$(M$,LEN(M$)-1)
AddBlank:

Chapter 8
Multiple Ingredient Formulation (Manual Batching)

(10/01) 8-19

IF LEN(M$)<8 THEN M$=M$+" ":GOTO AddBlank
A$=M$:M$=""
FOR i%=1 TO 8
C$=MID$(A$,i%,1)
IF C$>="a" AND C$<="z" THEN M$=M$+CHR$(ASC(C$)-32) ELSE M$=M$+C$
NEXT i%
RETURN

REM **
REM RIGHT SHIFT NUMERIC STRING TO SPECIFIED WIDTH
REM **
SetToWidth8:
Width%=8
SetToWidth:
IF LEN(M$)<Width% THEN M$=" "+M$:GOTO SetToWidth
IF LEN(M$)>Width% THEN M$=LEFT$(M$,Width%)
RETURN

Multiple Ingredient
Formulation (Manual
Batching)

JagBASIC can be applied to a Multiple Ingredient Formulation application (Manual
batching). This example uses various JagBASIC programming techniques for
operations such as maintaining data files, acquiring weight data, and controlling output
to the terminal lower display. PCJagBASIC must process this program before it can be
downloaded and run on a JAGXTREME terminal. PCJagBASIC is a development tool,
which simplifies the development and maintenance of JagBASIC programs. This
program was designed to work with a two-scale system.

File Maintenance
The Multiple Ingredient Formulation Application uses 2 files for data storage, Material.dat
and Recipe.dat. File maintenance enables the operator to add, delete, and edit records
of recipes and materials. These files are random-access files with records stored
alphabetically by ID.

The material file has 2 fields, MaterialID and Inventory. The application updates the
inventory as a material is used. The operator may update inventory by using the
program to edit the material file.

The recipe file has 5 fields, RecipeID, MaterialID, ScaleID, Amount, and Tolerance. The
Recipe ID is composed of a user assigned name, and a generated index number. The
index number is assigned by the JagBASIC program and is used to determine the order
in which to add the ingredients. The first ingredient has a Recipe ID of "RecipeName00";
the second ingredient has an ID of "RecipeName01", and so on.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 8-20

In the Recipe file, the MaterialID identifies which material to add to the batch, and the
ScaleID indicates which scale to add the material to. The Amount indicates how much
material to add, and Tolerance is the acceptable amount of error in the delivery.

Material File Recipe File
MaterialID 10 characters RecipeID 12 characters
Inventory 8 characters MaterialID 10 characters

 ScaleID 1 characters
 Amount 8 characters
 Tolerance 8 characters

In order to create a recipe and run a batch, the operator must first create a list of
materials. The operator must use the select and enter keys on the terminal to choose
"File_Maint" and then "Material_File" from the menus. The operator may then follow the
prompts to edit, add, or delete a material from the file. After several materials are
created, the operator may create a recipe. The select and enter keys should be used to
choose "File_Maint" and then "Recipe_File" from the menus. The operator may then
follow the prompts to edit, add, or delete a recipe from the file.

The application also allows the operator to print reports detailing the amount of materials
available or the components of the recipes. Samples of each report follow.

==============================
| Materials Report |
| 07-21-2000 08:24:17 |
==============================
| ID Inventory |
==============================
 Chocolate 98.04
 Eggs 20
 Nutmeg 32.5
 Flour 167.78
 Water 50.23
==============================

==
| Recipe Report 07-21-2000 08:31:56 |
==
| Recipe Material ID Scale Amount Tol.|
==
 Cake:
 Flour A 5 1
 Milk B 2 1
 Chocolate B 3.5 1
 Eggs A 1 .5
 Paste:
 Flour B 6 .25
 Water B 3.5 .5
==

OPERATIONS

To begin a batch, the operator should choose "Run_Recipe" from the main menu. Once
a recipe is selected, a confirmation prompt will appear. The operator should choose "Y"
to run the batch. If the required materials are not present in sufficient quantity, as
determined by examining the inventory in the material file, an error message will appear
on the lower display of the terminal and the patch will terminate. A material’s inventory
can be modified by selecting "Edit_Material" under the "File_Maint" and "Material_File"
menus.

Chapter 8
Multiple Ingredient Formulation (Manual Batching)

(10/01) 8-21

Once the batch begins, the ID of the first ingredient, along with the quantity remaining to
be added, will appear on the lower display of the terminal. This message will begin to
blink once that material is within tolerance. The terminal’s discrete outputs are also an
indication that the material is within tolerance. Discrete output 1 is on while the material
is out of tolerance and discrete output 2 is on while the material is within tolerance. To
move on to the next ingredient, the operator must push the enter key on the terminal.
The materials inventory file is updated after each ingredient is added. After the batch is
complete, an audit trail report is printed.

================================
| Recipe Audit Trail |
| 07-21-2000 09:12:56 |
================================
 Recipe: Cake
 Material Target Actual
================================
 Flour 5 5.13
 Milk 4 4.14
 Water 3.5 3.52
================================
 12.5 12.79

SOURCE FILE FOR PCJagBASIC

DefIn
DefOut
TableErrorOn

DEFSHR KeySrc#,bas10 : DEFSHR SelectEnable#,bas87
DEFSHR ManualStop#,bas89 : DEFSHR EscapeEnable#,bas86

DIM GWt#(2) : DEFSHR GWt#(1),wt110 : DEFSHR GWt#(2),wt211

DIM NWt#(2) : DEFSHR NWt#(1),wt111 : DEFSHR NWt#(2),wt211

DIM OnScale%(2) : DEFSHR OnScale%(1),t_6c0 : DEFSHR OnScale%(2),t_6c1
DIM MotionScale%(2) : DEFSHR MotionScale%(1),s_200 :DEFSHR
MotionScale%(2),s_208

DEFSHR TareScale%,t_6b0
DEFSHR ClearTareScale%,t_6b1

MATERIALFILE$ = "Material.dat"
RECIPEFILE$ = "Recipe.dat"
AUDITFILE$ = "Audit.txt"

' The Material file will have 2 fields.
' One for the Material ID, and another for Inventory.
DefTable Materials, "Material.dat"
 DefKey MaterialID$,10
 DefFld Inventory#
DefEnd

' The Recipe file will have 5 fields. A recipe can be made up
' of 1-99 ingredients. The user will enter in a recipe name,
' followed by the details (material name, scale, amount, tol.)
' of the first ingredient. This information is saved under the
' RecipeID of "Name00". The next ingredient is saved under the
' Recipe ID of "Name01", and the process continues.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 8-22

DefTable Recipes, "Recipe.dat"
 DefKey RecipeID$,12
 DefFld MaterialID$,10
 DefFld ScaleID$,1
 DefFld Amount#
 DefFld Tolerance#
DefEnd

DISPLAY_ON# = 0.5 : DISPLAY_OFF# = 0.05
KeySrc# = 3 : SelectEnable# = 0 : ManualStop# = 0 : EscapeEnable# = 0

RUN% = 1

Main_Menu:
 MENUSEL$ = "File_Maint"
 WHILE RUN% = 1
 INPUT "^^File_Maint,Run_Recipe,Reports,Exit_Program";MENUSEL$
 IF MENUSEL$ = "File_Maint" Then Gosub File_Maint
 IF MENUSEL$ = "Run_Recipe" Then Gosub Run_Recipe
 IF MENUSEL$ = "Reports" Then Gosub Reports
 IF MENUSEL$ = "Exit_Program" THEN RUN% = 0
 WEND
 KeySrc# = 2 : SelectEnable# = 1 : ManualStop# = 1 : EscaleEnable# = 1
END

File_Maint:
 MENUSEL$ = "Material_File"
 WHILE RUN% = 1
 INPUT "^^Material_File,Recipe_File,Exit_File_Maint";MENUSEL$
 IF MENUSEL$ = "Material_File" Then Gosub Mat_File_Menu
 IF MENUSEL$ = "Recipe_File" Then Gosub Recipe_File_Menu
 IF MENUSEL$ = "Exit_File_Maint" THEN RUN% = 0
 WEND
 RUN% = 1
 MENUSEL$ = "File_Maint"
RETURN

Mat_File_Menu:
 MENUSEL$ = "Edit_Material"
 WHILE RUN% = 1
 INPUT "^^Edit_Material,Add_Material,Delete_Material,Exit_Mat_File";MENUSEL$
 IF MENUSEL$ = "Edit_Material" Then Gosub Edit_Material
 IF MENUSEL$ = "Add_Material" Then Gosub Add_Material
 IF MENUSEL$ = "Delete_Material" Then Gosub Delete_Material
 IF MENUSEL$ = "Exit_Mat_File" THEN RUN% = 0
 WEND
 MENUSEL$ = "Material_File"
 RUN% = 1
RETURN

Edit_Material:
 GOSUB Fill_Material_Array
 IF MaterialString$ = "-EMPTY-" THEN
 PRINT "--No Materials--" : SLEEP 1000
 RETURN
 ENDIF
 IF MaterialCount% > 1 THEN
 Menu$ = "^Edit ^"+MaterialString$
 MaterialID$ = ""
 INPUT Menu$;MaterialID$

Chapter 8
Multiple Ingredient Formulation (Manual Batching)

(10/01) 8-23

 ELSE
 MaterialID$ = MaterialString$
 ENDIF
 PRINT "-Edit ";MaterialID$: SLEEP 1000
 REM ' retrieve material and save in temp record
 REM ' then delete material. If edit fails, restore material.
 FetchFrom Materials
 Temp$ = RTRIM$(MaterialID$)
 Temp# = Inventory#
 DeleteFrom Materials

 INPUT "^ID: ^ !!!!!!!!!!",MaterialID$
 If MaterialID$ = "" Then
 PRINT "Mat. Not Changed" : SLEEP 2000
 MaterialID$ = Temp$: Inventory# = Temp#
 StoreTo Materials
 RETURN
 EndIf

 FetchFrom Materials

 IfTableError 6 Then
 REM ' record does not exist
 INPUT "^Invntry:^######.##",Inventory#
 StoreTo Materials
 PRINT "Material Edited" : SLEEP 2000
 ELSE
 PRINT "--Mat. Exists--" : SLEEP 1000
 PRINT "-Edit Canceled-" : SLEEP 1000
 MaterialID$ = Temp$: Inventory# = Temp#
 StoreTo Materials
 Endif
RETURN

Add_Material:
 MaterialID$ = ""
 INPUT "^ID: ^ !!!!!!!!!!",MaterialID$
 If MaterialID$ = "" Then
 PRINT "-Mat. Not Added-" : SLEEP 2000
 RETURN
 EndIf

 If INSTR(MaterialID$," ") <> 0 THEN
 REM ' do not allow spaces in Material name
 Print "-Illegal Spaces-" : SLEEP 1000
 GOTO Add_Material
 ENDIF

 PRINT "Searching..."
 FetchFrom Materials

 IfTableError 6 Then
 REM ' Record does not exist
 Inventory# = 0
 INPUT "^Invntry:^######.##",Inventory#
 StoreTo Materials
 PRINT "-Material Added-" : SLEEP 2000
 ELSE
 REM 'can't add a record that already exists
 PRINT "--Mat. Exists--" : SLEEP 2000

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 8-24

 ENDIF
RETURN

Delete_Material:
 GOSUB Fill_Material_Array
 IF MaterialString$ = "-EMPTY-" THEN
 PRINT "--No Materials--" : SLEEP 1000
 RETURN
 ENDIF
 IF MaterialCount% > 1 THEN
 Menu$ = "^Del. ^"+MaterialString$
 INPUT Menu$;MaterialID$
 ELSE
 MaterialID$ = MaterialString$
 ENDIF

 Menu$ = "^Del."+MaterialID$+"^Y,N"
 ANS$ = "N"
 INPUT Menu$;ANS$

 IF ANS$ = "N" THEN RETURN

 DeleteFrom Materials
 PRINT "--Mat. Deleted--" : Sleep 2000
RETURN

Recipe_File_Menu:
 MENUSEL$ = "Edit_Recipe"
 WHILE RUN% = 1
 INPUT "^^Edit_Recipe,Add_Recipe,Delete_Recipe,Exit_Recipe_File";MENUSEL$
 IF MENUSEL$ = "Edit_Recipe" Then Gosub Edit_Recipe
 IF MENUSEL$ = "Add_Recipe" Then Gosub Add_Recipe
 IF MENUSEL$ = "Delete_Recipe" Then Gosub Delete_Recipe
 IF MENUSEL$ = "Exit_Recipe_File" THEN RUN% = 0
 WEND
 MENUSEL$ = "Recipe_File" : RUN% = 1
RETURN

Edit_Recipe:
 GOSUB Fill_Recipe_Array
 GOSUB Fill_Material_Array
 If RecipeString$ = "-EMPTY-" THEN
 Print "-- No Recipes --" : SLEEP 1000
 RETURN
 ENDIF
 IF RecipeCount% > 1 THEN
 Menu$ = "^Edit ^"+RecipeString$
 RecipeHead$ = ""
 INPUT Menu$;RecipeHead$
 ELSE
 RecipeHead$ = RecipeString$
 Print "Edit ";RecipeHead$:SLEEP 1000
 ENDIF

 RecipeID$ = RecipeHead$ + "00"
 Tracker% = 0 : Done% = 0
 While Done%=0
 FetchFrom Recipes
 MaterialID$ = RTRIM$(MaterialID$)
 IfTableError 6 Then
 REM ' Record does not exist

Chapter 8
Multiple Ingredient Formulation (Manual Batching)

(10/01) 8-25

 REM ' set defaults for Get_Material_Info
 MaterialID$ = "" : ScaleID$ = ""
 Amount# = 0 : Tolerance# = 0
 ENDIF
 GOSUB Get_Material_Info
 StoreTo Recipes

 ANS$ = "N"
 INPUT "^More ^Y,N";ANS$
 IF ANS$ = "N" THEN Done%=1
 GOSUB Get_Next_Ing
 Wend

 Done%=0
 While Done%=0
 FetchFrom Recipes
 IfTableError 6 Then
 REM ' record does not exist
 Done%=1
 Else
 DeleteFrom Recipes
 GOSUB Get_Next_Ing
 Endif
 Wend
RETURN

Add_Recipe:
 RecipeHead$ = ""
 INPUT "^ID: ^ !!!!!!!!!!",RecipeHead$
 If RecipeHead$ = "" Then
 PRINT "Recip. Not Added" : SLEEP 2000
 RETURN
 EndIf

 If INSTR(RecipeHead$," ") <> 0 THEN
 REM ' don't allow spaces in recipe name
 Print "-Illegal Spaces-" : SLEEP 1000
 GOTO Add_Recipe
 ENDIF

 Tracker% = 0
 RecipeID$ = RecipeHead$ + "00"
 PRINT "Searching..."
 FetchFrom Recipes
 IfTableError 6 Then
 GOSUB Fill_Material_Array
 Done%=0
 While Done%=0
 ScaleID$ = "A"
 Amount# = 0 : Tolerance# = 0
 GOSUB Get_Material_Info
 StoreTo Recipes
 ANS$ = "N"
 INPUT "^More ^Y,N";ANS$
 MaterialID$ = ""
 IF ANS$ = "N" THEN
 Done%=1
 ELSE
 GOSUB Get_Next_Ing
 ENDIF
 Wend

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 8-26

 ELSE
 PRINT "-Recipe Exists-" : SLEEP 2000
 ENDIF

RETURN

Delete_Recipe:
 GOSUB Fill_Recipe_Array
 If RecipeString$ = "-EMPTY-" THEN
 Print "-- No Recipes --" : SLEEP 1000
 RETURN
 ENDIF
 IF RecipeCount% > 1 THEN
 Menu$ = "^Del. ^"+RecipeString$
 RecipeHead$ = ""
 INPUT Menu$;RecipeHead$
 ELSE
 RecipeHead$ = RecipeString$
 ENDIF

 Menu$ = "^Del."+RecipeHead$+"^Y,N"
 ANS$ = "N"
 INPUT Menu$;ANS$

 IF ANS$ = "N" THEN RETURN

 Done% = 0 : Tracker% = 0
 RecipeID$ = RecipeHead$ + "00"
 DeleteFrom Recipes
 While Done%=0
 GOSUB Get_Next_Ing
 FetchFrom Recipes
 IfTableError 6 Then
 REM ' file not found, set flag to exit loop
 Done% = 1
 ELSE
 REM ' delete record
 DeleteFrom Recipes
 EndIf
 Wend
 PRINT "-Recipe Deleted-" : Sleep 2000
RETURN

Run_Recipe:
 GOSUB Fill_Recipe_Array
 If RecipeString$ = "-EMPTY-" THEN
 Print "-- No Recipes --" : SLEEP 1000
 RETURN
 ENDIF
 IF RecipeCount% > 1 THEN
 Menu$ = "^Run ^"+RecipeString$
 RecipeHead$ = ""
 INPUT Menu$;RecipeHead$
 ELSE
 RecipeHead$ = RecipeString$
 ENDIF

 Menu$ = "^Run "+RecipeHead$+"^Y,N"
 ANS$ = "N"
 INPUT Menu$;ANS$

Chapter 8
Multiple Ingredient Formulation (Manual Batching)

(10/01) 8-27

 IF ANS$ = "N" THEN
 PRINT " --Aborted-- " : Sleep 1000
 RETURN
 ENDIF

 GOSUB Check_Inventory REM 'Set AbortRecipe%=1 if Inventory low
 IF AbortRecipe% = 1 Then
 RETURN
 ENDIF

 REM 'Create file for new audit trail
 OPEN AUDITFILE$ FOR OUTPUT AS #3
 CLOSE #3

 RecipeID$ = RecipeHead$ + "00"
 ACC_TOTAL# = 0.0 : EXP_TOTAL# = 0.0
 AuditRecord$ = "" : Tracker% = 0
 FetchFrom Recipes

 RUN% = 1
 While RUN% = 1
 Temp$= STR$(Amount#)
 AuditRecord$ = MaterialID$ + " " + PADL$(Temp$,8," ")

 REM ' select scale to set focus on A or B
 Index% = 2
 If ScaleID$ = "A" Then Index% = 1
 OnScale%(Index%) = 1
 While OnScale%(Index%) = 1
 Wend

 TareScale% = 1
 While TareScale% = 1
 Wend

 Done% = 0
 OldTime# = TIMER()
 TimeIndex# = DISPLAY_ON#

 While Done% = 0
 REM ' code to blink the display
 If TimeIndex# = DISPLAY_OFF# THEN
 Message$ = ""
 ELSE
 Message$ = MaterialID$ + " " + STR$(Amount# - NWt#(Index%))
 ENDIF
 Print Message$

 Target# = ABS(NWt#(Index%) - Amount#)
 IF Target# < Tolerance# OR Target# = Tolerance# THEN
 REM ' code to set timer for display blink
 NewTime# = TIMER()
 If NewTime# - OldTime# > TimeIndex# THEN

 If TimeIndex# = DISPLAY_ON# THEN TimeIndex# = DISPLAY_OFF# ELSE
TimeIndex# = DISPLAY_ON#

 OldTime# = TIMER()
 ENDIF
 SwitchON 2
 SwitchOFF 1
 ELSE
 TimeIndex# = DISPLAY_ON#

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 8-28

 SwitchON 1
 SwitchOFF 2
 ENDIF

 Key$ = INKEY$
 If Key$ = CHR$(8) THEN
 Done% = 1
 While MotionScale%(Index%) = 1
 Wend
 ENDIF

 Wend

 Delivered# = NWt#(Index%)
 Delivered$ = STR$(Delivered#)
 Delivered$ = PADL$(Delivered$,8," ")

 AuditRecord$ = AuditRecord$ + Delivered$
 OPEN AUDITFILE$ FOR APPEND AS #3
 WRITE #3,AuditRecord$
 CLOSE #3

 ACC_TOTAL# = ACC_TOTAL# + Delivered#
 EXP_TOTAL# = EXP_TOTAL# + Amount#

 REM ' adjust the inventory of the material
 GOSUB Adjust_Inventory
 GOSUB Get_Next_Ing
 FetchFrom Recipes
 IfTableError 6 Then
 RUN%=0
 Endif

 Wend
 SwitchOFF 1
 SwitchOFF 2

 REM ' print audit trail
 PRINT "Printing..."
 LPRINT "================================"
 LPRINT "|";TAB(6);"Recipe Audit Trail";TAB(32);"|"
 LPRINT "|";TAB(4);DATE$;TAB(18);TIME$;TAB(32);"|"
 LPRINT "================================"
 LPRINT TAB(4);"Recipe:";TAB(12);RecipeHead$
 LPRINT TAB(4);"Material";TAB(18);"Target";TAB(26);"Actual"
 LPRINT "================================"
 OPEN AUDITFILE$ FOR INPUT AS #3
 While EOF(3) = 0
 INPUT #3,AuditRecord$
 LPRINT TAB(4);AuditRecord$
 Wend
 CLOSE #3
 LPRINT "================================"
 LPRINT TAB(18);EXP_TOTAL#;TAB(26);ACC_TOTAL#
 RUN% = 1
 KILL "AUDIT.TXT"
RETURN

Check_Inventory:
 AbortRecipe% = 0 : Tracker% = 0
 RecipeID$ = RecipeHead$ + "00"

Chapter 8
Multiple Ingredient Formulation (Manual Batching)

(10/01) 8-29

 InLoop% = 1
 While InLoop% = 1
 FetchFrom Recipes
 IfTableError 6 Then
 REM ' End of Recipe. Stop checking inventory and Materials
 InLoop% = 0
 ELSE

 FetchFrom Materials
 IfTableError 6 Then
 REM ' Material doesn't exist. Abort Recipe.
 Message$ = "-- "+MaterialID$+" --"
 Print "--No Such Mat.--" : Sleep 1000
 Print Message$: Sleep 1000
 InLoop% = 0 : AbortRecipe% = 1
 ElseIf Inventory# < Amount# Then
 REM ' Not enough material. Abort Recipe.
 Message$ = "-- "+MaterialID$+" --"
 Print "-Low Inventory-" : Sleep 1000
 Print Message$: Sleep 1000
 InLoop% = 0 : AbortRecipe% = 1
 ENDIF
 GOSUB Get_Next_Ing
 ENDIF
 Wend
RETURN

Adjust_Inventory:
 FetchFrom Materials
 Inventory# = Inventory# - Delivered#
 StoreTo Materials
RETURN

Reports:
 MENUSEL$ = "Material_Report"
 WHILE RUN% = 1
 INPUT "^^Material_Report,Recipe_Report,Exit_Reports";MENUSEL$
 IF MENUSEL$ = "Material_Report" Then Gosub Material_Report
 IF MENUSEL$ = "Recipe_Report" Then Gosub Recipe_Report
 IF MENUSEL$ = "Exit_Reports" THEN RUN% = 0
 WEND
 RUN% = 1
 MENUSEL$ = "Reports"
RETURN

Material_Report:
 REM ' Prints the names and inventories of all materials in material file
 Print "Printing..."
 LPRINT "=============================="
 LPRINT "|";TAB(6);"Materials Report";TAB(30);"|"
 LPRINT "|";TAB(4);DATE$;TAB(18);TIME$;TAB(30);"|"
 LPRINT "=============================="
 LPRINT "|";TAB(5);"ID";TAB(15);"Inventory";TAB(30);"|"
 LPRINT "=============================="
 OPEN MATERIALFILE$ FOR RANDOM AS #1 LEN = 18
 FIELD #1,10 as MaterialIDz$,8 as Inventory$
 INDEXED #1,MaterialIDz$
 i%=1

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 8-30

While EOF(1) = 0
 GET #1,i%
 i%=i%+1
 Inventory#=cvd(Inventory$)
 LPRINT TAB(5);MaterialIDz$;TAB(16);Inventory#
 Wend
 LPRINT "=============================="
 CLOSE #1
RETURN

Recipe_Report:
 REM ' Prints the composition of all recipes in the recipe file
 Print "Printing..."
 LPRINT "=="
 LPRINT "|";TAB(6);"Recipe Report";TAB(22);DATE$;TAB(33);TIME$;TAB(50);"|"
 LPRINT "=="
 LPRINT "|";TAB(3);"Recipe";TAB(14);"Material
ID";TAB(28);"Scale";TAB(35);"Amount";TAB(46);"Tol.|"
 LPRINT "=="
 OPEN RECIPEFILE$ FOR RANDOM AS #2 LEN = 39
 FIELD #2,12 as RecipeIDz$,10 as MaterialIDz$,1 as ScaleIDz$,8 as Amount$,8 as
Tolerance$
 INDEXED #2,RecipeIDz$
 i%=1
 While EOF(2) = 0
 Get #2,i%
 KeyL% = INSTR(RecipeIDz$,"00") - 1
 CurrHead$ = LEFT$(RecipeIDz$,KeyL%)
 LPrint " ";CurrHead$;":"
 ThisRecipe% = 1
 While EOF(2) = 0 AND ThisRecipe% = 1
 Get #2,i%
 Amount#=cvd(Amount$):Tolerance#=cvd(Tolerance$)
 ThisHead$ = LEFT$(RecipeIDz$,KeyL%)
 IF ThisHead$ = CurrHead$ Then
 LPRINT
TAB(14);MaterialIDz$;TAB(30);ScaleIDz$;TAB(36);Amount#;TAB(47);Tolerance#
 i%=i%+1
 ELSE
 ThisRecipe%=0
 ENDIF
 Wend
 Wend
 LPRINT "=="
 Close #2
RETURN

Get_Next_Ing:
 REM ' Determines value of RecipeID$, the next ingredient in a recipe
 Tracker% = Tracker% + 1
 Temp$ = STR$(Tracker%)
 Temp$ = LTRIM$(Temp$)
 IF LEN(Temp$)<2 THEN Temp$ = "0"+Temp$
 RecipeID$ = RecipeHead$+Temp$
Return

Get_Material_Info:
 REM ' This routine collects information about an ingredient in a recipe.
 REM ' This information includes Name, Scale, Amount and Tolerance.
 Temp% = Done%
 Menu$ = "^Mat.= ^"+MaterialString$

Chapter 8
Multiple Ingredient Formulation (Manual Batching)

(10/01) 8-31

 INPUT Menu$;MaterialID$
 INPUT "^Scale ^A,B";ScaleID$
 Done% = 0
 While Done%=0
 INPUT "^Amount:^######.##",Amount#
 If Amount# = 0 Then
 Print "-Invalid Amount-" : Sleep 1000
 ELSE
 Done%=1
 Endif
 Wend
 Done%=0
 While Done%=0
 INPUT "^Tolerance:^####.##",Tolerance#
 If Tolerance# = 0 Then
 Print "--Invalid Tol.--" : Sleep 1000
 ELSE
 Done%=1
 Endif
 Wend
 Done% = Temp%
RETURN

Fill_Material_Array:
 REM ' Creates a list of materials seperated by commas in MaterialString$
 REM ' This list is used to provide users with a list to choose from
 OPEN MATERIALFILE$ FOR RANDOM AS #1 LEN = 18
 FIELD #1,10 as MaterialIDz$,8 as Inventory$
 i%=1
 MaterialCount% = 0 : MaterialString$ =""
 WHILE EOF(1)=0
 GET #1
 TempString$ = RTRIM$(MaterialIDz$)
 IF TempString$ <> "" Then
 MaterialString$ = MaterialString$ + TempString$ +","
 i% = i%+1
 MaterialCount% = MaterialCount% + 1
 EndIf
 WEND
 CLOSE #1
 IF MaterialString$ = "" THEN
 MaterialString$ = "-EMPTY-"
 ELSE
 REM 'remove extra comma
 i% = LEN(MaterialString$) - 1
 MaterialString$ = Left$(MaterialString$,i%)
 ENDIF
RETURN

Fill_Recipe_Array:
 REM ' Creates a list of recipes seperated by commas in RecipeString$
 REM ' This list is used to provide users with a list to choose from
 OPEN RECIPEFILE$ FOR RANDOM AS #2 LEN = 39
 field #2,12 as RecipeIDz$,10 as MaterialIDz$,1 as ScaleIDz$,8 as Amount$,8 as

Tolerance$
 RecipeCount% = 0 : RecipeString$ =""
 WHILE EOF(2) = 0
 GET #2
 TempString$ = RTRIM$(RecipeIDz$)
 IF TempString$ <> "" Then
 IF RIGHT$(TempString$,2) = "00" THEN

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 8-32

 size% = LEN(TempString$) - 2
 TempString$ = LEFT$(TempString$,size%)
 RecipeString$ = RecipeString$ + TempString$ +","
 RecipeCount% = RecipeCount% + 1
 Endif
 EndIf
 WEND
 CLOSE #2

 i% = LEN(RecipeString$)
 If i% = 0 THEN
 RecipeString$ = "-EMPTY-"
 ELSE
 i% = i%-1
 RecipeString$ = Left$(RecipeString$,i%) 'remove extra comma
 ENDIF

RETURN

Parts Counting
This example demonstrates how you can access the fine gross, net, and tare weights in
shared data. This application is particularly useful for parts counting. It gives the highest
internal resolution of the weights in double floating point format. The applicable fields
are:

• Fine Gross Weight /wt117
• Fine Net Weight /wt118
• Fine Tare Weight /ws104

The following code executes the parts counting application.

5 DEFSHR DiscreteIn,p_100
10 DEFSHR TareA,t_690
20 DEFSHR TareAerr,s_290
30 DEFSHR DiscreteOut,p_503
40 DEFSHR ClearTareA,t_691
50 DEFSHR MotionA,s_200
55 DEFSHR NetWt,wt118
56 DEFSHR GrossWt,wt117
57 DEFSHR TareWt,ws104
60 PRINT "Place Container"
70 IF DiscreteIn=0 THEN GOTO 70
75 PRINT "Taring Container"
80 SLEEP 3000
90 TareA=1
100 IF TareA=1 THEN GOTO 100
110 IF TareAerr=0 THEN GOTO 160
120 PRINT "Tare Failed"
130 SLEEP 1000
150 GOTO 90
160 PRINT "Place 10 Parts"
170 IF DiscreteIn=0 THEN GOTO 170
180 PRINT "Weighing Sample"
190 IF MotionA=1 THEN GOTO 190
200 sampleWt#=NetWt/10.0
205 LPRINT "gross weight=";GrossWt;" tare weight=";TareWt
206 LPRINT "net weight=";NetWt;" piece weight=";sampleWt#

Chapter 8
Parts Counting

(10/01) 8-33

210 SLEEP 1000
220 PRINT "Place All Parts"
230 IF DiscreteIn=0 THEN GOTO 230
240 PRINT "Weighing Parts"
250 IF MotionA=1 THEN GOTO 250
260 parts%=cint(NetWt/sampleWt#)
265 LPRINT "total parts weight=";NetWt;" number parts=";parts%
266 LPRINT ""
270 SLEEP 1000
280 PRINT "Num Parts=";parts%
290 SLEEP 3000
300 IF NetWt > 0.0 THEN GOTO 300
310 PRINT "Completed"
320 SLEEP 3000
330 ClearTareA=1
340 IF ClearTareA=1 GOTO 340
350 GOTO 60

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 8-34

Printer Templates
You can read and write printer templates from JagBASIC. This sample program
demonstrates reading templates from JAGXTREME Shared Data and saving them in a
sequential file.

1 REM This is a sample program for reading templates from JagBASIC
2 REM and saving it in a files called templat1.dat thru templat5.dat.
3 REM Dimension an array of strings large enough to hold the template,
4 REM and "DEFSHR" the first element of the array to the template.
5 REM The maximum string size in JagBASIC is 80 bytes.
6 REM The maximum template size is 400 bytes.
7 REM Reading of shared data is done when you access the first
8 REM element, so read the first element first.
100 DIM go%(5),T$(6)
120 go%(1)=300:go%(2)=400:go%(3)=500:go%(4)=600:go%(5)=700
130 INPUT "^Save Template? ^1,2,3,4,5",c$
140 i%=asc(c$)-48
150 switchsub go%(i%)
160 FOR i%=1 to 6
170 IF len(T$(i%))<>0 THEN write #1,T$(i%)
180 NEXT i%
190 CLOSE #1
200 END
300 OPEN "TEMPLAT1.DAT" FOR OUTPUT AS#1
310 DEFSHR T$(1),PTP01
320 RETURN
400 OPEN "TEMPLAT2.DAT" FOR OUTPUT AS#1
410 DEFSHR T$(1),PTP02
420 RETURN
500 OPEN "TEMPLAT3.DAT" FOR OUTPUT AS#1
510 DEFSHR T$(1),PTP03
520 RETURN
600 OPEN "TEMPLAT4.DAT" FOR OUTPUT AS#1
610 DEFSHR T$(1),PTP04
620 RETURN
700 open "TEMPLAT5.DAT" FOR OUTPUT AS#1
710 DEFSHR T$(1),PTP05
720 return

In the JAGXTREME terminal, you can read and write printer templates from JagBASIC.
This sample program demonstrates loading printer templates from a sequential file and
writing them into JAGXTREME Shared Data.
1 REM This is a sample program for writing printer templates
2 REM that are saved a files called templat1.dat thru tempat6.dat.
3 REM Dimension an array of strings large enough to hold the template,
4 REM and "DEFSHR" the first element of the array to the template.
5 REM The maximum string size in JagBASIC is 80 bytes.
6 REM The maximum template size is 400 bytes.
7 REM Writing of shared data templates is done when you access the first
8 REM element, so write the first element last.
100 DIM go%(5),T$(6),buf$(6)
120 go%(1)=300:go%(2)=400:go%(3)=500:go%(4)=600:go%(5)=700
130 INPUT "^Load Template? ^1,2,3,4,5",c$
140 i%=ASCc(c$)-48
150 SWITCHSUB go%(i%)

Chapter 8
Printer Templates

(10/01) 8-35

160 FOR i%=1 to 6
170 IF NOT EOF(1) THEN INPUT#1,BUF$(i%):last%=i%
180 NEXT i%
190 FOR i%=last% to 1 step -1
200 T$(i%)=buf$(i%)
210 NEXT i%
220 CLOSE #1
230 END
300 OPEN "TEMPLAT1.DAT" FOR INPUT AS #1
310 DEFSHR T$(1),PTP01
320 RETURN
400 open "TEMPLAT2.DAT" FOR INPUT AS #1
410 DEFSHR T$(1),PTP02
420 RETURN
500 OPEN "TEMPLAT3.DAT" FOR INPUT AS #1
510 DEFSHR T$(1),PTP03
520 RETURN
600 OPEN "TEMPLAT4.DAT" FOR INPUT AS #1
610 DEFSHR T$(1),PTP04
620 RETURN
700 OPEN "TEMPLAT5.DAT" FOR INPUT AS #1
710 DEFSHR T$(1),PTP05
720 RETURN

You can read and write printer templates from JagBASIC. This sample program
demonstrates creating a printer templates in JagBASIC and writing it to JAGXTREME
Shared Data.

1 REM This is a sample program for creating a printer template.
2 REM
10 REM These are some template format samples:
11 REM
12 REM /D=40
13 REM | |
14 REM | +--> Repeat Occurrences
15 REM +-----> Character Value
16 REM
17 REM will print... ==
18 REM
19 REM /n3 will print... three LF/CR characters.
20 REM
21 REM /E0 signifies the end of the template.
20 REM
22 REM /jag19!/L15/!
23 REM _____/ | |
24 REM | | |
25 REM | | +-> Max Length
26 REM | |
27 REM | +--> Justify (R)ight
28 REM | (L)eft or (C)enter
29 REM |
30 REM +---------> Field Path Name
31 REM
32 REM /wt101 will print...
33 REM /wt101 field in default format, left justified, default length.
34 REM

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 8-36

35 REM /wt201/R will print...
36 REM /wt201 field right justified, default length.
37 REM
38 REM /wt202/C040 will print...
39 REM /wt202 field centered in a 40 byte area.
40 REM

100 DIM y$(5)
120 DEFSHR y$(1),ptp04
130 y$(3)="/wt103 !/ws109!/n1/Net Weight: !/wt102 !/wt103!/n3/!/E0"
140 y$(2)="Gross Weight: !/wt101 !/wt103!/n1/Tare Weight: !/ws102 !"
150 y$(1)="!/jag19!/L15/!/jag20!/L15/!/cs118!/R10/!/n1/!/D=40/!/n1/"
160 LPRINT "done"

JOG Example
This is a program for using Jog Setpoints. Jog setpoints are based on time rather than
weight. They are typically used when the flow of material is very fast compared to the
amount of material that needs to be weighed. For example, they can be used at the end
of an order to add a small amount of material to bring an order into its weight tolerance.

REM ************************************
REM DEFSHR's
REM ************************************
REM Define the jog table.
REM You can have up to 10 jog weights and corresponding
REM jog times in the Jog table. The jog setpoint
REM interpolates between the next higher and next lower
REM jog weight to determine a specific jog time.
REM The Jog Table is in Shared Data Variables clv01-clv20.
REM The values are floating point, stored in string format.
REM The Jog Weights are in clv01-clv10 in ascending order.
REM You can prematurely end the table with a "0" entry.
REM The corresponding jog times are in clv11-clv20.
DIM jogWt$(10)
DIM jogTm$(10)
DEFSHR jogWt$(1),clv01
DEFSHR jogWt$(2),clv02
DEFSHR jogWt$(3),clv03
DEFSHR jogWt$(4),clv04
DEFSHR jogWt$(5),clv05
DEFSHR jogWt$(6),clv06
DEFSHR jogWt$(7),clv07
DEFSHR jogWt$(8),clv08
DEFSHR jogWt$(9),clv09
DEFSHR jogWt$(10),clv10
DEFSHR jogTm$(1),clv11
DEFSHR jogTm$(2),clv12
DEFSHR jogTm$(3),clv13
DEFSHR jogTm$(4),clv14
DEFSHR jogTm$(5),clv15
DEFSHR jogTm$(6),clv16
DEFSHR jogTm$(7),clv17
DEFSHR jogTm$(8),clv18
DEFSHR jogTm$(9),clv19
DEFSHR jogTm$(10),clv20

Chapter 8
JOG Example

(10/01) 8-37

REM gate discrete inputs
DEFSHR FillGateOpened%,p_100
DEFSHR DischargeOpened%,p_103

REM discrete outputs to gates
DEFSHR OpenFill%,p_501
DEFSHR OpenDischarge%,p_503

REM scale DEFSHR's
DEFSHR ScaleWeight#,wt110
DEFSHR ScaleMotion%,s_200

REM jog setpoint DEFSHR's
DEFSHR spen%,sp102
DEFSHR sptar%,sp103
DEFSHR coin#,sp105
DEFSHR latch%,sp188
DEFSHR setsp%,t_698

REM ************************************
REM Initialization Logic
REM ************************************
REM close the gates
spen%=0:setsp%=1
OpenFill%=0:OpenDischarge%=0

REM initialize ladder logic
REM "t_61c" starts the setpoint jog timer.
REM Move the "fill gate opened" input to "t_61c".
REM Move the "setpoint feeding output" to "open fill gate".
NEWLADDER
RUNGMOV p_100,t_61c
RUNGMOV s_210,p_500

REM ************************************
REM Main Menu
REM ************************************
MainMenu:
m$="Learn"
input "^Menu^ Learn,Jog,Exit",m$
IF m$="Learn" THEN GOSUB LearnMode
IF m$="Jog" THEN GOSUB JogMode
IF m$="Exit" THEN End
GOTO MainMenu

REM ************************************
REM Setting up a Learn Setpoint
REM ************************************
REM Set the jog time in the coincidence value for the setpoint.
REM You can determine the weight associated with the jog weight
REM by reading the gross weight before and after the setpoint.
REM The Learn setpoint is latched so you need to
REM reset the latch before starting the setpoint.
LearnSetpoint:
spen%=1

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 8-38

sptar%="L"
coin#=JogTime#
latch%=0
setsp%=1
RETRUN

REM ************************************
REM Setting up a Jog Setpoint
REM ************************************
REM Set the jog weight in the coincidence value for the setpoint.
REM The jog setpoint logic uses the Jog Tables to determine
REM the amount of time to hold its feeding output open.
REM The Jog setpoint is latched so you need to
REM reset the latch before starting the setpoint.
JogSetpoint:
spen%=1
sptar%="J"
coin#=JogWeight#
latch%=0
setsp%=1
return

REM ************************************
REM Learn Mode Logic
REM ************************************
LearnMode:
MinJogTime%=100
input "^Min Jog ms.^####";MinJogTime%
MaxJogTime%=3000
input "^Max Jog ms.^####";MaxJogTime%

REM set jog table times
TimeIncrement%=(MaxJogTime%-MinJogTime%)/9
jogTm$(1)="100":jogTm$(10)=str$(MaxJogTime%)
for TablePos%=2 to 9
jogTm$(TablePos%)=str$(val(jogTm$(TablePos%-1))+TimeIncrement%)
next TablePos%

REM build jog table weights
for TablePos%=1 to 10
CheckReady:
m$="Yes"
n$="^Jog "+str$(TablePos%)+"^ Yes,No,Exit"
input n$;m$
IF m$="No" THEN GOTO CheckReady
IF m$="Exit" THEN End
GOSUB WaitFillGateClosed:GOSUB WaitDischargeClosed:GOSUB WaitMotion
TareWeight#=ScaleWeight#
JogTime#=val(jogTm$(TablePos%))
GOSUB LearnSetpoint

REM wait until setpoint logic opens then closes fill gate
GOSUB WaitFillGateOpened:GOSUB WaitFillGateClosed
REM wait for scale motion to settle
print "settling"
SLEEP 5000:GOSUB WaitMotion

Chapter 8
JOG Example

(10/01) 8-39

REM set jog table weights
LearnedWt#=ScaleWeight#-TareWeight#
GOSUB CheckDischargeScale
jogWt$(TablePos%)=str$(LearnedWt#)
next TablePos%

REM print jog table
FOR TablePos%% = 1 to 10
LPRINT jogTm$(TablePos%),jogWt$(TablePos%)
NEXTTablePos%%

GOTO MainMenu

REM ************************************
REM Jog Mode Logic
REM ************************************
JogMode:
JogWeight#=0
input "^Weight^#####";JogWeight#
GOSUB WaitFillGateClosed:GOSUB WaitDischargeClosed:GOSUB WaitMotion
TareWeight#=ScaleWeight#
GOSUB JogSetpoint

REM wait until setpoint logic opens then closes fill gate
GOSUB WaitFillGateOpened:GOSUB WaitFillGateClosed
REM wait for scale motion to settle
print "settling"
SLEEP 5000:GOSUB WaitMotion

print "Wt =" + str$(ScaleWeight#-TareWeight#)
WaitJogModeKey:
m$=inkey$:IF m$="" THEN GOTO WaitJogModeKey
GOSUB CheckDischargeScale
return

REM ************************************
REM Gate Open/Close Routines
REM ************************************
WaitFillGateOpened:
IF FillGateOpened%=0 THEN GOTO WaitFillGateOpened
return

WaitFillGateClosed:
IF FillGateOpened%=1 THEN print "Jogging":GOTO WaitFillGateClosed
return

CheckDischargeScale:
m$="Yes"
input "^Discharge^ Yes,No";m$
IF m$="No" THEN return
OpenDischarge%=1
print "Discharging"
WaitScaleEmpty:
IF ScaleWeight#>20.0 THEN GOTO WaitScaleEmpty
OpenDischarge%=0

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 8-40

WaitDischargeClosed:
IF DischargeOpened%=1 THEN print "Closing Discharge":GOTO WaitDischargeClosed
return

REM ************************************
REM Motion Routine
REM ************************************
WaitMotion:
IF ScaleMotion%=1 THEN print "Motion":GOTO WaitMotion
RETURN

JagBASIC SMTP Client
Program

The example program below illustrates how a JAGXTREME terminal can send email
using Simple Mail Transfer Protocol (SMTP). In this example, the terminal acts as the
client. It establishes a connection with the SMTP server, sends an email message,
terminates the connection with the server, and then loops back to the beginning of the
program. A server utilizing SMTP must be present on the network for email to be sent
and received. The IP address on the third line below "CONN1:" must be replaced with
the IP address of the machine on which the SMTP server resides. The JagBASIC
preprocessor must be used to prepare the program to run on the terminal.

REM Send Email using SMTP
crlf$ = CHR$(13) + CHR$(10)
lf$ = CHR$(10)
cr$ = CHR$(13)

REM Establish Connection
CONN2:
 sock%=socket()
 IF sock%=0 THEN print "No Socket Free":SLEEP 2000: GOTO CONN2
CONN1:
 stat% = sockopt(sock%,-1)
 REM connect must be called with server's IP address
 stat% = connect(sock%,"146.207.104.023",25)
 IF stat% = -1 THEN print "connecting":sleep200:GOTO CONN1
 IF stat% = 0 THEN print "trying connect":stat%=sockcls(sock%):SLEEP

2000:GOTO CONN2
 PRINT "connect success":SLEEP 200

REM Wait for Service Ready (220)
 begin_time# = TIMER()
 cmd%=0
 WHILE cmd% <> 1 and TIMER()-begin_time# < 2.0
 rcvstr$=RECV$(sock%,160)
 GOSUB INTERP_CMD
 WEND
 IF cmd% <> 1 THEN GOTO TIME_EXP
 PRINT "Service Ready"

REM Send HELO

Chapter 8
JagBASIC SMTP Client Program

(10/01) 8-41

 sndstr$ = "HELO terminal"+crlf$:len%=len(sndstr$)
 stat%=send(sock%,sndstr$)
 IF stat%<>len% THEN PRINT "send failed": SLEEP 2000: GOTO ENDPRG

REM Wait for OK
 GOSUB WAIT_FOR_OK

REM Send MAIL From:.......
 sndstr$ = "MAIL From:<jaguar@mt.com>"+crlf$:len%=len(sndstr$)
 stat%=send(sock%,sndstr$)

REM Wait for OK
 GOSUB WAIT_FOR_OK

REM Send RCPT To:.............
 sndstr$ = "RCPT To:<ScaleAdmin@mt.com>"+crlf$:len%=len(sndstr$)
 stat%=send(sock%,sndstr$)

REM Wait for OK
 GOSUB WAIT_FOR_OK

REM Send DATA
 sndstr$ = "DATA"+crlf$:len%=len(sndstr$)
 stat%=send(sock%,sndstr$)

REM Wait for Start Mail Input (354)
 cmd%=0
 WHILE cmd% <> 3
 rcvstr$=RECV$(sock%,160)
 GOSUB INTERP_CMD
 WEND
 PRINT "Begin Mail trans"

REM Send Message Body
 sndstr$ = "Subject: Automated Email Alert!"+crlf$
 sndstr$ = sndstr$ + "Mettler Toledo JAGXTREME"+crlf$
 len%=len(sndstr$)
 stat%=send(sock%,sndstr$)

 sndstr$ = "This is a test."+crlf$+"Hello World!"+crlf$
 len%=len(sndstr$)
 stat%=send(sock%,sndstr$)

REM Send <crlf>.<crlf> to terminate message.
 sndstr$ = crlf$+"."+crlf$
 len%=len(sndstr$)
 stat%=send(sock%,sndstr$)

REM Wait for OK
 GOSUB WAIT_FOR_OK

REM Send QUIT to terminate connection
 sndstr$ = "QUIT"+crlf$:len%=len(sndstr$)
 stat%=send(sock%,sndstr$)

REM Wait for Goodbye (221)

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 8-42

 cmd%=0
 WHILE cmd% <> 4
 rcvstr$=RECV$(sock%,160)
 GOSUB INTERP_CMD
 WEND
 PRINT "Goodbye received":SLEEP 500
 GOTO ENDPRG

INTERP_CMD:
 cmd%=0
 a$ = LEFT$(rcvstr$,3)
 IF a$="220" THEN cmd% = 1 : REM Service Ready
 IF a$="250" THEN cmd% = 2 : REM OK
 IF a$="354" THEN cmd% = 3 : REM Start Mail Input
 IF a$="221" THEN cmd% = 4 : REM Closing Connection
 IF a$ = CHR$(13) THEN cmd% = 8
 IF a$ = CHR$(10) THEN cmd% = 9
 return

WAIT_FOR_OK:
 RETRY:
 rcvstr$=RECV$(sock%,160)
 IF rcvstr$="" THEN GOTO RETRY
 GOSUB INTERP_CMD
 IF cmd%<>2 THEN PRINT "No OK received";cmd%:SLEEP 2000:print rcvstr$
 IF cmd%<>2 THEN SLEEP 2000:GOTO ENDPRG
 return

TIME_EXP:
 print "connect. expired"
 SLEEP 500

ENDPRG:
 print "closing socket"
 SLEEP 500
 stat%=sockcls(sock%)
 SLEEP 10000 : REM wait 10 seconds before looping back
 GOTO CONN2 : REM loop back and send message again

END

VISUAL BASIC SMTP Server
Program

An SMTP server program can be written if one does not exist. The sample program
below is written in Microsoft Visual Basic 6.0 and illustrates a simple server program.
This server program can receive email messages from devices using SMTP and store
them as text files in the subdirectory "\mail" off the installation directory. The messages
are stored with the default name "MAIL###.TXT", where the #’s are replaced with
numbers. The contents of a message can be viewed by clicking its name in the file list
box. The selected message can be printed to the default printer or deleted from the
directory by clicking the "Print" or "Delete" buttons respectively. Following is a listing of
the source code and a property table that can be used to generate the sample SMTP
server application.

Chapter 8
JagBASIC SMTP Client Program

(10/01) 8-43

Private intMax As Long
Dim PATH As String
Const MAXMSG = 150
Dim PathandName As String
Dim messageTxt(500) As String
Dim CRLF As String

Function FileExists(p As String) As Long
 If Dir(p) <> "" Then
 FileExists = 1 ' Return 1 indicating file exists.
 Else
 FileExists = 0 ' Return 0 indicating file does not exist.
 End If
End Function

Private Sub cmdDelete_Click()
 Dim Message As String
 Dim ButtonsAndIcons As Integer
 Dim Title As String
 Dim Response As Integer

 'Delete message if one has been selected
 If PathandName <> "" Then
 Message = "Delete EMail Message?"
 ButtonsAndIcons = vbYesNo + vbQuestion
 Title = "Delete Message?"

 Response = MsgBox(Message, ButtonsAndIcons, Title)

 If Response = vbYes Then
 FileThere = FileExists(PathandName) 'Check that file exists
 If FileThere Then
 Kill PathandName 'Delete the file
 txtMailText.Text = "" 'clear text in message box
 PathandName = ""
 End If
 flstFileBox.Refresh 'update the file list box
 End If

 End If
End Sub

Private Sub cmdExit_Click()
 Beep
 End
End Sub

Private Sub cmdPrint_Click()
 'Print the text box's contents to the default printer.
 Printer.Font.Name = "Courier"
 Printer.Font.Size = 12
 Printer.Print txtMailText.Text
 Printer.EndDoc
End Sub

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 8-44

Private Sub flstFileBox_Click()
' When the user clicks on a message displayed in the file list box,
' display the text of that message on the screen.
 If flstFileBox.FileName <> "" Then
 PathandName = PATH + flstFileBox.FileName
 FileThere = FileExists(PathandName) 'Check if file exists

 If FileThere Then
 FileNum = FreeFile

'get date and time file was received/modified
 FileLastModified = CStr(FileDateTime(PathandName))
 Open PathandName For Input As FileNum
 txtMailText.Text = " --" + flstFileBox.FileName + " "
 txtMailText.Text =txtMailText.Text + FileLastModified + "--" + CRLF
 txtMailText.Text = txtMailText.Text + Input(LOF(FileNum), FileNum)
 Close FileNum
 Else
 'The file did not exist.
 'Update the list of files and clear the text box.
 flstFileBox.Refresh
 txtMailText.Text = ""
 End If
 End If
End Sub

Private Sub Form_Load()
 On Error Resume Next
 MkDir "MAIL"
 PATH = CurDir + "\MAIL\"

 flstFileBox.PATH = PATH
 PathandName = ""
 intMax = 0
 tcpServer(0).LocalPort = 25
 tcpServer(0).Listen
 CRLF = Chr(13) + Chr(10)
End Sub

Private Sub tcpServer_Close(Index As Integer)
 tcpServer(Index).Close
End Sub

Private Sub tcpServer_ConnectionRequest _
(Index As Integer, ByVal requestID As Long)
 If Index = 0 And flstFileBox.ListCount < MAXMSG Then
 intMax = intMax + 1
 Load tcpServer(intMax)
 tcpServer(intMax).LocalPort = 25
 tcpServer(intMax).Accept requestID
 tcpServer(intMax).SendData "220 s-jcr1.sjcr1.com" + CRLF
 End If
End Sub

Private Sub tcpServer_DataArrival(Index As Integer, ByVal bytesTotal As Long)
'Look for SMTP commands. If one is present, begin dialog and save
'received information.

Chapter 8
JagBASIC SMTP Client Program

(10/01) 8-45

Dim strData As String
 tcpServer(Index).GetData strData
 tmpstr = Left(strData, 4)
 Length = Len(strData)

 Select Case tmpstr
 Case "HELO"
 messageTxt(Index)="SENDER DOMAIN: "+ Mid(strData,6,Length - 5)
 tcpServer(Index).SendData "250 s-jcr1.sjcr1.com" + CRLF
 Case "MAIL"
 messageTxt(Index) = messageTxt(Index) + "FROM: " + Mid(strData, 11,
Length - 12) + " " + tcpServer(Index).RemoteHostIP + CRLF

 strSend = "250 OK" + CRLF
 tcpServer(Index).SendData (strSend)
 Case "RCPT"
 messageTxt(Index)=messageTxt(Index)+"TO: "+Mid(strData,9,Length-8)
 strSend = "250 OK" + CRLF
 tcpServer(Index).SendData (strSend)
 Case "DATA"
 strSend = "354 Start mail input" + CRLF
 tcpServer(Index).SendData (strSend)
 Case "QUIT"
 strSend = "221 Closing Connection" + CRLF
 tcpServer(Index).SendData (strSend)
 If flstFileBox.ListCount = MAXMSG Then
 WMessage ="Mailbox full. Delete old messages to make room."
 ButtonsAndIcons = vbOKOnly
 Beep
 junk = MsgBox(WMessage, ButtonsAndIcons, "Mailbox Full!")
 End If
 Case Else
 position = InStr(strData, CRLF + "." + CRLF)
 If position <> 0 Then
 messageTxt(Index)=messageTxt(Index)+Mid(strData,1,position-1)
 strSend = "250 OK" + CRLF
 tcpServer(Index).SendData (strSend)
 strSmall = Mid(strData, 1, position - 1)

 'Received complete message, search for next available
 'file name and save message.
 msgcounter = 0: foundname = 0
 Do While msgcounter < MAXMSG
 msgcounter = msgcounter + 1
 numstr = CStr(msgcounter)
 numstr = Format(numstr, "000")
 mailname = "MAIL" + numstr + ".TXT"
 inlist = 0: countit = 0
 Do While countit < flstFileBox.ListCount
 If mailname = flstFileBox.List(countit) Then
 inlist = 1
 Exit Do
 End If
 countit = countit + 1
 Loop
 If inlist = 0 Then
 foundname = 1

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 8-46

 Exit Do
 End If
 Loop
 If foundname = 1 Then
 mailname = PATH + mailname
 FileNum = FreeFile
 Open mailname For Output As FileNum
 Write #FileNum, messageTxt(Index)
 Close FileNum
 End If
 flstFileBox.Refresh
 Else
 messageTxt(Index) = messageTxt(Index) + strData
 End If
 End Select
End Sub

Object Property Setting
Form Name frmSample
 Caption Sample SMTP Server
Command Button Name cmdDelete
 Caption D&elete
Command Button Name cmdPrint
 Caption &Print
Command Button Name cmdExit
 Caption E&xit
File List Box Name flstFileBox
 Pattern *.txt
Winsock Name tcpServer
 Protocol sckTCPProt
 Index 0
Text Box Name txtMailText
 ScrollBars Both
 Text (empty)
 MultiLine True

Chapter 9: Error Codes and Messages
Common Errors

(10/01) 9-1

9 Error Codes and Messages

This section discusses error messages that may be output to the LPRINT device during
debugging or program execution. The JAGXTREME terminal lower display will show the
Error Number Code and Line Number, with the error message being output to the LPRINT
device (a printer or a PC running a communication or terminal emulation program). For
example, the error Unknown Command would show up on the JAGXTREME terminal
display as: E26 L 1010. The message output to the LPRINT device should show as:

ERROR in line 0: Unknown command.

Common Errors
Some common errors and troubleshooting tips are as follows:

• For Upload/Download problems, set the JAGXTREME terminal in Diagnostic Test
mode. This tests the transmit and receive lines from the PC to the JAGXTREME
terminal.

• If a file downloads OK to the JAGXTREME terminal, but will not load (E2L0 error),
check for blank lines and no line numbers.

Error Codes
The following is a listing of possible error codes and messages in JagBASIC

Error Code Error Message Description Problem Cause Remedy

0 File open failed JagBASIC
programming error.

JagBASIC attempted to open
a nonexistent RAMDISK file
or serial communications
device.

Correct the JagBASIC program.

1 Memory find fail JagBASIC
programming error.

JagBASIC exceeded the
memory limits of the system.

Reduce lines. Eliminate
unnecessary spaces in program.
Reduce variables. Reduce size of
arrays. When chaining JagBASIC
programs, chain in the largest
program first to reduce memory
fragmentation.

2 Line # invalid JagBASIC
programming error.

JagBASIC contains a line
number greater than 30000
or is a duplicate of an
existing line number.

Correct the JagBASIC program.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 9-2

Error Code Error Message Description Problem Cause Remedy

3 Resource in use JagBASIC
programming error.

JagBASIC tried to access a
system resource in use by
another JAGXTREME terminal
task. JagBASIC cannot open
a serial port that has been
assigned to a serial port
connection in setup. When
two or more JagBASIC
applications share a remote
serial port, only one can have
the port open at a time.

Correct JagBASIC application. To
share remote serial ports
between multiple JagBASIC
applications, develop sharing
logic that checks for this specific
error code.

4 LOAD:no
filename

Operator error. The LOAD command does
not contain a file name.

Correct the command.

5 No line number JagBASIC
programming error.

The program line does not
have a line number.

Correct the JagBASIC program.

6 Record not found JagBASIC
programming error.

A record specified in a GET
statement for an indexed
sequential file could not be
found in the file.

There should be an ON ERROR
statement in the JagBASIC
program to handle these
potential situations.

7 RETURN no
GOSUB

JagBASIC
programming error.

RETURN statement is present
without required GOSUB.

Correct the JagBASIC program.

8 Incomplete line JagBASIC
programming error.

JagBASIC program contains
a line that does not have the
full syntax required for a line.

Correct the JagBASIC program.

9 ON no GOSUB JagBASIC
programming error.

ON statement is present
without required GOSUB.

Correct the JagBASIC program.

10 Value out range JagBASIC
programming error.

The JagBASIC statement is
referring to a value out of the
range of acceptable values.

Correct the JagBASIC program.

11 Syntax error JagBASIC
programming error.

The JagBASIC program has a
syntax error.

Correct the JagBASIC program.

12 Invalid device # JagBASIC
programming error.

The JagBASIC program is
referencing a device # that is
not open.

Correct the JagBASIC program.

13 Device error JagBASIC
programming error.

The JagBASIC program has
referred to an illegal device
or a device that is not open.

Correct JagBASIC program.

14 Command error An error occurred in
trying to access a
file from the
RAMDISK.

You tried to access a file that
does not exist or the file
system has been corrupted.

Use the DIR command from the
JagBASIC Interpreter to verify the
directory of the RAMDISK. If the
file system has been corrupted,
re-initialize it from the JagBASIC
setup menus and rebuild it from
the backup files you are
maintaining on a PC.

Chapter 9: Error Codes and Messages
Error Codes

(10/01) 9-3

Error Code Error Message Description Problem Cause Remedy

14 Command error An error occurred in
trying to access a
file from the
RAMDISK.

You tried to access a file that
does not exist or the file
system has been corrupted.

Use the DIR command from the
JagBASIC Interpreter to verify the
directory of the RAMDISK. If the
file system has been corrupted,
re-initialize it from the JagBASIC
setup menus and rebuild it from
the backup files you are
maintaining on a PC.

15 Chain Context JagBASIC
programming error.

A chain statement inside a
subroutine, for-next, while
loop, or if statement.

Chain only from top level of
JagBASIC program.

16 Event def error JagBASIC
programming error.

Programming error in
defining an event.

Correct the JagBASIC program.

17 Type mismatch JagBASIC
programming error.

JagBASIC statement is using
an invalid data type or is
relating two incompatible
data types.

Correct the JagBASIC program.

18 DIM not array JagBASIC
programming error.

JagBASIC program has
attempted to dimension a
variable that is not an array.

Correct the JagBASIC program.

19 Out of data JagBASIC
programming error.

JagBASIC program has
issued more READ
commands to initialize
system variables than data
specified in DATA
statements.

Correct the JagBASIC program.

20 Overflow JagBASIC
programming error.

A JagBASIC program causes
an overflow error by
exceeding certain system
limits. The maximum size of
the GOSUB stack, the FOR-
NEXT stack, and the WHILE-
WEND stack is 9 entries
each. If you try to nest
subroutines more than 9
entries deep, you get an
overflow error. Overflow
errors can also be caused by
syntax errors.

Correct the JagBASIC program.

21 NEXT without FOR JagBASIC
programming error.

There is a NEXT statement
without the required FOR
statement.

Correct the JagBASIC program.

22 Undefined funct. JagBASIC
programming error.

The JagBASIC statement is
referring to an undefined
function.

Correct the JagBASIC program.

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 9-4

Error Code Error Message Description Problem Cause Remedy

23 Divide by zero JagBASIC
programming error.

JagBASIC program
attempted to divide a number
by zero.

Correct the JagBASIC program.

24 Can’t redim. var JagBASIC
programming error.

Once a JagBASIC application
has declared a variable or an
array, it cannot later be
redimensioned to a different
size array.

Correct JagBASIC program.

25 OPTION BASE-
>DIM

JagBASIC
programming error.

The JagBASIC program must
define the OPTION BASE
before dimensioning an
array.

Correct the JagBASIC program.

26 Illegal Command JagBASIC
programming error.

The JagBASIC program has
issued a command that is
not a legal command.

Correct the JagBASIC program.

27 Too many
dimens.

JagBASIC
programming error.

JagBASIC arrays can have at
most three dimensions.

Correct the JagBASIC program.

28 Invalid SD name JagBASIC
programming error.

The JagBASIC program is
referencing an invalid Shared
Data name.

Correct the JagBASIC program.

29 Program too big JagBASIC
programming error.

The program exceeds 300
text lines or 15 KB.

You are typing in a JagBASIC
program at the JAGXTREME
terminal when the temporary
program buffer becomes full.

For the first problem, separate
the program into smaller files
that can be run independently or
be chained together. When
chaining, always start execution
with the largest program to avoid
memory fragmentation.

For the second problem, save the
current program and re-load it.
This will cause a larger temporary
program buffer to be allocated.

30 Line too big JagBASIC
programming error.

A JagBASIC line is greater
than 80 characters.

Correct the JagBASIC program.

31 SD string > max. JagBASIC
programming error.

JagBASIC can only access
shared data fields whose
length is less than the
maximum JagBASIC string
size of 80 bytes.

Correct the JagBASIC program.

32 No Remote
Access

JagBASIC
programming error.

The program is attempting to
access a device that is
already in use by a serial
connection or by another
JagBASIC program in the
JAGXTREME terminal cluster.

To access a serial device, you
must remove all continuous
output or input connections to
the serial device in setup. To
share a device among JagBASIC
programs, you must setup a
scheme where only one program
has the device open at a time.

Chapter 10: ASCII/HEX Code Chart

(10-01) 10-1

10 ASCII/HEX Code Chart

Char. Dec. Hex. Char. Dec. Hex. Char. Dec. Hex. Char. Dec. Hex.
NUL 0 00 SP 32 20 @ 64 40 ` 96 60
SOH 1 01 ! 33 21 A 65 41 a 97 61
STX 2 02 " 34 22 B 66 42 b 98 62
ETX 3 03 # 35 23 C 67 43 c 99 63
EOT 4 04 $ 36 24 D 68 44 d 100 64
ENQ 5 05 % 37 25 E 69 45 e 101 65
ACK 6 06 & 38 26 F 70 46 f 102 66
BEL 7 07 ' 39 27 G 71 47 g 103 67
BS 8 08 (40 28 H 72 48 h 104 68
HT 9 09) 41 29 I 73 49 i 105 69
LF 10 0A * 42 2A J 74 4A j 106 6A
VT 11 0B + 43 2B K 75 4B k 107 6B
FF 12 0C , 44 2C L 76 4C l 108 6C
CR 13 0D - 45 2D M 77 4D m 109 6D
SO 14 0E . 46 2E N 78 4E n 110 6E
SI 15 0F / 47 2F O 79 4F o 111 6F

DLE 16 10 0 48 30 P 80 50 p 112 70
DC1 17 11 1 49 31 Q 81 51 q 113 71
DC2 18 12 2 50 32 R 82 52 r 114 72
DC3 19 13 3 51 33 S 83 53 s 115 73
DC4 20 14 4 52 34 T 84 54 t 116 74
NAK 21 15 5 53 35 U 85 55 u 117 75
SYN 22 16 6 54 36 V 86 56 v 118 76
ETB 23 17 7 55 37 W 87 57 w 119 77
CAN 24 18 8 56 38 X 88 58 x 120 78
EM 25 19 9 57 39 Y 89 59 y 121 79
SUB 26 1A : 58 3A Z 90 5A z 122 7A
ESC 27 1B ; 59 3B [91 5B { 123 7B
FS 28 1C < 60 3C \ 92 5C | 124 7C
GS 29 1D = 61 3D] 93 5D } 125 7D
RS 30 1E > 62 3E ^ 94 5E ~ 126 7E
US 31 1F ? 63 3F _ 95 5F DEL 127 7F

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10-01) 10-2

NOTES

Chapter 11: Appendix 1

(10/01) 11-1

11 Appendix 1

JagBASIC Commands
This appendix provides a quick alphabetic reference to all JagBASIC commands.

Command Usage Page

ABS() Returns the absolute value of a number. 5-30, 5-31

ACCEPT Allows JagBASIC application to accept new connection requests that
remote clients are initiating.

5-97, 5-99

AND A logical operator in a decision statement which establishes two sets
of criteria to be met.

5-20

ASC() Returns the ASCII or extended code value for the first character in a
string expression.

5-36, 5-37

ATN() Returns the arctangent of a specified numeric expression in radians. 5-30, 5-31

BEEP Sounds the beeper tone for the specified milliseconds. 5-45, 5-46

BREAK Stops execution of program at line number 5-3

CHAIN Dynamically loads another program file for execution and begins
executing the program.

5-20, 5-21

CHAINCALL Operates the same as a CHAIN command except that it remembers
the current program name and line number of the program that is
initiating the chaining.

5-20, 5-21

CHAINRET Operates the same as a CHAIN command except that is returns
control from the chained program to the chaining program at the next
line after the CHAINCALL.

5-20, 5-22

CHR$() Returns the single-character string corresponding to the specified
ASCII code.

5-36, 5-37

CINT Rounds a numeric expression to the closest integer. 5-30, 5-31

CKSUM$ Generates a checksum and returns as a string. 5-53

CLEAR Closes all files, releases file buffers, clears all common variables, sets
numeric variables and arrays to zero and sets string variables to null.

5-3, 5-4

CLKTICK Returns a double float number that is the number of clock ticks that
have occurred since the last power up of the terminal.

5-92

CLOSE Closes a file or serial port. 5-53, 5-54,
5-65, 5-66

CLREVENT Clears outstanding event triggers. 5-80, 5-82

COMBITS Returns the state of the input modem signals on the COM3 serial port. 5-53, 5-54,
5-82, 5-86

COMMON Defines global variables that can be shared between chained
programs.

5-11, 5-12

CONNECT Initiates a TCP/IP connection to a remote host. 5-97, 5-99

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 11-2

Command Usage Page

COS() Returns the cosine of a specified angle expressed in radians. 5-30, 5-32

CRC$ Generates CRC and returns as a string. 5-53, 5-54

CSNG() Converts a numeric expression to a single-precision value. 5-30, 5-32

CVI, CVS,
CVD

Convert string variable types to numeric variable types. 5-65, 5-67

DATA Specifies values to be read by READ statements. 5-11, 5-12

DATE$ Sets or returns the JAGXTREME system date. 5-92, 5-93

DEFSHR
EVENT

Allocates a shared data event. 5-80, 5-83

DEFSHR Allows a program to access the JAGXTREME terminal shared
database.

5-11, 5-13

DELETE Deletes a specific program line or a range of lines. 5-3, 5-4

DELEVENT Deallocates an event. 5-80, 5-83

DELREC Deletes a record from the indexed sequential file. 5-65, 5-67

DIM Declares an array, where subscripts are the dimensions of the array. 5-11, 5-16

DIR Displays the RAMDISK directory on the LPRINT device. 5-3, 5-4

DISABLE Disables asynchronous event triggers. 5-80, 5-83

ENABLE Re-enables asynchronous event triggers after a critical section of
code.

5-80, 5-83

END Ends a program and closes all files. 5-3, 5-4

EOF() Tests for the end of a file. 5-68, 5-69

ERASE Frees the memory used by an array. 5-3, 5-5

ERL() Returns the line number where the error occurred, or the closest line
number before the line where the error occurred.

5-95

ERR() Returns the runtime error code for the most recent error. 5-95

ERROR Simulates an occurrence of an error. 5-95

EVENT Allocates a keyboard event or timer event. 5-80, 5-84

EVENTON Returns the state of the event. 5-80, 5-83

EXP() Returns e raised to a specified power, where e is the base of natural
logarithms.

5-30, 5-32

FIELD Defines the structure of records to be used in indexed-sequential and
random-access file buffers.

5-65, 5-68

FLUSH Discards received data in the BIOS serial input buffer. 5-53, 5-56

FOR NEXT Repeats a section of the program the specified number of times. 5-20, 5-23

GET Reads a record from the random-access or indexed-sequential file. 5-65, 5-69

GOSUB Branches to a specified line number with intent to return to the next
line.

5-20, 5-23

GOTO Branches unconditionally to the specified line number. 5-20, 5-24

HEX$() Returns a hexadecimal string representation of a number. 5-36, 5-37

IF THEN Executes the sub-statement depending on specified conditions. 5-20, 5-24

INDEXED Identifies a file as an indexed-sequential file and which field in the
record is the index key.

5-65, 5-70

Chapter 11: Appendix 1

(10/01) 11-3

Command Usage Page

INKEY$ Returns a single keystroke from either the keyboard or keypad as a
string.

5-45, 5-47

INPUT Reads input from the keyboard, serial port, or a file. 5-45, 5-47,
5-53, 5-56,
5-65, 5-71,
5-80, 5-85

INSTR Returns the position of the first occurrence of a string in another string. 5-36, 5-38

INT() Returns the largest integer less than or equal to a numeric expression. 5-30, 5-33

IPD Converts a double float representation of an IP address to a dotted
string representation of an IP address

5-97,

5-101

IPS Converts the dotted string representation of an IP address to a double
for storage in Shared Data.

5-97, 5-
101

JULDATE Converts a date-time string: "mm-dd-yyyyHH:MM:SS" to a double
precision Julian date.

5-92, 5-93

KEYSRC Reports latest keystroke read by JagBASIC through INPUT or INKEY$
commands.

5-45, 5-50

KILL Deletes the specified file from the JAGXTREME RAMDISK. 5-3, 5-5

LCASE$ Convert a string to lower case. 5-36

LEFT$() Returns a specified number of leftmost characters in a string. 5-36, 5-38

LEN() Returns the number of characters in a string or the number of bytes
required to store a variable.

5-36, 5-39

LET Assigns the value of an expression to a variable. 5-11, 5-17

LINE INPUT

Reads sequentially all characters of an entire line (up to 80
characters) without delimiters from a sequential file up to the next
carriage return into a string variable.

5-65, 5-71

LIST Lists all or part of a program to the LPRINT device. 5-3, 5-5

LISTEN Initializes TCP/IP to begin queuing the connection requests for the
host port.

5-97, 5-101

LOAD Loads a file (filename.bas) from the RAMDISK into memory. 5-3, 5-6

LOC() Returns the current position within a file. 5-65, 5-71

LOF() Returns the length of a file. 5-65, 5-71

LOG Returns the natural logarithm of a numeric expression. 5-30, 5-33

LPRINT Outputs data to a JAGXTREME LPRINT serial port device. 5-53, 5-57

LPRINT
USING

Prints formatted output on the LPRINT device. 5-53, 5-58

LSET Moves data into a random-access file buffer (in preparation for a PUT
statement) and left-justifies the value of a string variable.

5-71, 5-74

LTRIM$ Removes spaces at the beginning of a string. 5-36, 5-39

MID$() Returns part of a string. 5-36, 5-39

MSET$ Inserts one string into another string at a specified position. Overwrites
the existing characters so the length of the string remains the same.

5-36, 5-40

MKI$, MKS$,
MKD$

Convert numbers to numeric strings that can be stored in FIELD
statement string variables.

5-65, 5-73

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 11-4

Command Usage Page

NEW Clears the current program and all variables from memory. 5-6

NEWLADDER Clears the ladder that is used by the ladder logic processor in the
JAGXTREME operating system.

5-80, 5-86,
5-88

NEXTLINE Displays next line number to execute or sets a “new” next line 5-3, 5-6

NEW Clears the current program and all variables from memory. 5-3, 5-6

OCT$() Returns an octal string representation of a number. 5-36, 5-40

ON ERROR
GOSUB

Enables error handling and, when a run time error occurs, directs
your program to an error handling routine.

5-95, 5-96

ON ERROR
GOTO

Enables error handling and, when an error occurs, directs your
program to an error handling routine.

5-95, 5-977

ON EVENT
GOSUB

Enables you to asynchronously monitor an event. Defines the Event
Service Routine.

5-81, 5-86,
5-89

OPEN Accesses a file or prepares a serial port for use as a file device. 5-53, 5-59,
5-65, 5-73

OPTION
BASE

Declares the minimum value (0 or 1) for array subscripts. 5-11, 5-17

OR Used as a logical operator in a decision statement to establish two
possible conditions, of which only one needs to be met.

5-20, 5-25

PADC$ Add pad characters to beginning and end of a string 5-36, 5-41

PADL$ Add pad characters to beginning of a string 5-36, 5-41

PADR$ Add pad characters to end of a string 5-36, 5-42

PRINT Writes data to the lower display, to a sequential file, or outputs data to
the specified serial port.

5-45, 5-50,
5-53, 5-61,
5-66, 5-74

PRINT # Outputs data to a sequential file, or outputs data to the specified serial
port.

5-53, 5-63,
5-66, 5-76

PRINT USING Writes formatted output to the JAGXTREME display or to a file. 5-45, 5-50,
5-53, 5-61,
5-66, 5-74

PUT Writes a record to a random-access file or an indexed-sequential file. 5-66, 5-76

RANDOMIZE Initializes the random-number generator. 5-30, 5-33

READ Reads values from a DATA statement and assigns them to variables. 5-11, 5-18

RECV$ Allows the JagBASIC to receive data over an established connection. 5-97, 5-101,
5-103

REM Allows adding any comments or reference remarks to the code listing. 5-3, 5-7

RESETJAG Re-initialize JAGXTREME by forcing power-up cycle. 5-20, 5-26

RESETKEYS Sets the JagBASIC keyboard parameters back to a known state. 5-3, 5-6

RESTART Clears the JagBASIC execution stacks and sends program control to
the first line of the current program.

5-20, 5-26

RESTORE Allows DATA statements to be reread from a specified line. 5-11, 5-18

RETURN Used in conjunction with GOSUB, indicates that the subroutine is
complete.

5-20, 5-26

RIGHT$() Returns a specified number of rightmost characters in a string. 5-36, 5-42

Chapter 11: Appendix 1

(10/01) 11-5

Command Usage Page

RND Returns a single-precision random number between 0 and 1. 5-30, 5-33

RSET Moves data into a random-access file buffer (in preparation for a PUT
statement) and right-justifies the value of a string variable.

5-66, 5-77

RTRIM$ Remove spaces from the end of a string. 5-36, 5-42

RUN Executes the current file in memory. 5-3, 5-7

RUNGAND Adds a ladder rung and takes two inputs AND’s them together, and
outputs the value.

5-80, 5-87

RUNGANDNT Adds a ladder rung and takes two inputs AND’s them together, and
outputs the inverse value.

5-80, 5-88

RUNGMOV Adds a new rung to the ladder and commands the ladder logic
processor to continually move the value of one shared data variable
into another.

5-81, 5-88

RUNGMVNOT Adds a new rung to the ladder and commands the ladder logic
processor to continually move the “not” or opposite value of one
shared data variable into another.

5-81, 5-88

RUNGOR Adds a ladder rung and takes two inputs OR’s them together, and
outputs the value.

5-81, 5-89

RUNGORNT Adds a ladder rung and takes two inputs OR’s them together, and
outputs the inverse value.

5-81, 5-89

RZ Initiates a ZMODEM file receive over serial port 1 into the RAMDISK file
system.

5-3, 5-7

SAVE Saves the current BASIC program in memory to the RAMDISK with the
specified file name.

5-3, 5-7

SEND Allows the JagBASIC to send data over an established connection. 5-97, 5-102

SGN Returns a value indicating the sign of a numeric expression. 5-30, 5-34

SHOW Displays the last line executed, the variable name and current value 5-3, 5-8

SIN() Returns the sine of a specified angle expressed in radians. 5-30, 5-34

SLEEP Suspends program execution for the of specified number of
milliseconds.

5-92, 5-94

SOCKET Creates a socket for a subsequent CONNECT command, which
initiates a connection to a remote host using this socket.

5-97, 5-103

SOCKCLS Allows the JagBASIC application to close an established TCP/IP
connection.

5-97, 5-103

SOCKOPT Makes a TCP/IP socket blocking or non-blocking. 5-97, 5-104

SORTREC Identifies the file as an indexed sequential file and sorts records in the
file.

5-6, 5-78

SPACE$() Returns a string of spaces. 5-36, 5-43

SPC() Skips a specified number of spaces in a PRINT or LPRINT statement. 5-53, 5-63

SQR() Returns the square root of a numeric expression. 5-30, 5-34

STARTIME Starts the timer, which specifies the length of the timer in milliseconds. 5-81, 5-90

STEP Executes next line number after BREAK 5-3, 5-8

STOP Terminates program execution and returns to command level. 5-3, 5-8

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

(10/01) 11-6

Command Usage Page

STOPTIME Stops a running timer. 5-81, 5-90

STR$ Returns a string representation of a number. 5-36, 5-43

STRING$() Returns a string of a specified length made up of a repeating
character.

5-36, 5-43

SWAP Exchanges the values of two variables that are variables of the same
data type.

5-11, 5-19

SWITCHSUB Performs a GOSUB call to the line specified in the variable. 5-20, 5-26

SWITCHTO Performs a GOTO operation to the line specified in the variable. 5-20, 5-28

SZ Initiates a ZMODEM file transfer over serial port 1 from the RAMDISK. 5-3, 5-9

TAB Advances to the specified print position. 5-53, 5-64

TAN() Returns the tangent of a specified angle expressed in radians. 5-30, 5-34

TIMEDAT$ Converts a double precision floating point Julian date number to a
string: "mm-dd-yyyyJJ:MM:SS"

5-92, 5-94

TIMER Returns a double precision floating point number that contains the
elapsed time in seconds since 00:00:00 GMT, January 1, 1970.

5-92, 5-94

TIME$ Sets or returns the JAGXTREME system time. 5-92, 5-95

TRON, TROFF Enables and disables tracing of program statements. 5-3, 5-9

UCASE$ Convert a string to upper case characters. 5-36, 5-44

VAL() Converts a string representation of a number to a number. 5-36, 5-44

VARS Prints a list of all variables to the LPRINT device. 5-3, 5-10

WAITEVENT Suspends program execution until an event trigger causes program
execution to resume.

5-81, 5-91

WATCH Monitors variable during execution 5-3, 5-10

WHILE
WEND

Repeats a section of the program until a specified logical condition is
true.

5-20, 5-28

WIDTH Assigns an output line width to the LPRINT device or a file. 5-53, 5-64

WIDTHIN Allows you to dynamically reassign serial input length, as it is defined
in OPEN.

5-53, 5-64

WRITE # Writes data to the LPRINT device or to a sequential file. 5-66, 5-79

XOR Used as a logical operator in a decision statement to establish two
possible conditions, only one of which can be met.

5-20, 5-28

METTLER TOLEDO
1900 Polaris Parkway
Columbus, Ohio 43240
Phone: (US and Canada) (800) 786-0038
 (614) 438-4511
(All Other Countries) (614) 438-4888

www.mt.com

16384600A
(10/01)

METTLER TOLEDO® is a registered Trademark of Mettler-Toledo, Inc.
©2001 Mettler-Toledo, Inc.
Printed in U.S.A.

16384600A

	JAGBASIC 1 TM 10-01.pdf
	Introduction

	JAGBASIC 2 TM 10-01.pdf
	Shared Data

	JAGBASIC 3 TM 10-01.pdf
	Setup

	JAGBASIC 4 TM 10-01.pdf
	Programming Fundamentals

	JAGBASIC 5 TM 10-01.pdf
	JagBASIC Commands

	JAGBASIC 6 TM 10-01.pdf
	Shared Data Variables

	JAGBASIC 7 TM 10-01.pdf
	Global Discrete I/O Data

	JAGBASIC 8 TM 10-01.pdf
	Sample Application Programs

	JAGBASIC 9 TM 10-01.pdf
	Error Codes and Messages

	JAGBASIC 10 TM 10-01.pdf
	ASCII/HEX Code Chart

	JAGBASIC 11 TM 10-01.pdf
	Appendix 1

