JagBASI(

for JAGXTREME
Terminals

Programmer’s Guide

666666666
(10/01)

©Mettler-Toledo, Inc. 2001

No part of this manual may be reproduced or fransmitted in any form or by any means, electronic or

mechanical, including photocopying and recording, for any purpose without the express written permission
of Mettler-Toledo, Inc.

U.S. Government Restricted Rights: This documentation is furnished with Restricted Rights.

/f,?«:%* ;
METTLER o TOLEDO

CUSTOMER FEEDBACK

Your feedback is important to us! If you have a problem with this product or itfs documentation, or a suggestion on how we can
serve you better, please fill out and send this form to us. Or, send your feedback via email to: quality feedback.miwi@mt.com. If
you are in the United States, you can mail this postpaid form fo the address on the reverse side or fax it fo (614) 438-4355. If you
are outside the United States, please apply the appropriate amount of postage before mailing.

Your Name: Date:
Organization Name: Metftler Toledo Order Number
Address: Part / Product Name:

Part / Model Number:

Serial Number:

Phone Number: () Fax Number: () Company Name of Installation:

E-mail Address: Contact Name:

Phone Number:

How well did this product meet your Comments:
expectations in its infended use?

Met and exceeded my needs

Met all needs

Met most needs

Met some needs

Did not meet my needs

PROBLEM:

UNACCEPTABLE DELIVERY: OUT OF BOX ERROR:
Shipped late Wrong item Wrong documentation
Shipped early Wrong part Missing documentation
Shipped fo incorrect location Missing equipment Incorrectly calibrated
Other (Please Specify) Equipment failure Other (Please specify)

Comments:

DO NOT WRITE IN SPACE BELOW; FOR METTLER TOLEDO USE ONLY

I:l Retail I:l Light Industrial I:l Heavy Industrial |:| Systems

RESPONSE: Include Root Cause Analysis and Corrective Action Taken.

mailto:quality_feedback.mtwt@mt.com

FOLD THIS FLAP FIRST

BUSINESS REPLY MAIL

FIRST CLASS ~ PERMIT NO. 414 COLUMBUS, OH

POSTAGE WILL BE PAID BY ADDRESSEE

Mettler-Toledo, Inc.
Quality Manager - MTWI
P.0. Box 1705

NO POSTAGE

NECESSARY IF
MAILED IN THE
UNITED STATES

CO|UmbUS, OH 432"6 II

USA

Please seal with lape.

INTRODUCTION

This publication is provided solely as a guide for individuals who have received Technical Training in
servicing the METTLER TOLEDO product.

Information regarding METTLER TOLEDO Technical Training may be obtained by writing fo:

METTLER TOLEDO
1900 Polaris Parkway
Columbus, Ohio 43240
(US and Canada) 614- 438-4511
(All Others) 614-438-4888

FCC Notice

This device complies with Part 15 of the FCC Rules and the Radio Interference Requirements of the
Canadian Department of Communications. Operation is subject fo the following conditions: (1) this device
may not cause harmful inferference, and (2) this device must accept any interference received, including
interference that may cause undesired operation.

This equipment has been tested and found to comply with the limits for a Class A digifal device, pursuant
to Part 15 of FCC Rules. These limits are designed to provide reasonable protection against harmful
interference when the equipment is operated in a commercial environment. This equipment generafes,
uses, and can radiafe radio frequency energy and, if not installed and used in accordance with the
instruction manual, may cause harmful interference fo radio communications. Operation of this equipment
in a residential area is likely fo cause harmful interference in which case the user will be required to correct
the interference at his or her own expense.

METTLER TOLEDO RESERVES THE RIGHT TO MAKE REFINEMENTS OR
CHANGES WITHOUT NOTICE.

PRECAUTIONS

READ this manual BEFORE
operating or servicing this
equipment.

FOLLOW these instructions
carefully.

SAVE this manual for future
reference.

DO NOT allow untrained
personnel fo operate, clean,
inspect, maintain, service, or
tamper with this equipment.

ALWAYS DISCONNECT this
equipment from the power
source before cleaning or
performing maintenance.

CALL METTLER TOLEDO for parts,
information, and service.

/A WARNING

DISCONNECT ALL POWER TO THIS UNIT BEFORE
INSTALLING, SERVICING, CLEANING, OR REMOVING THE
FUSE. FAILURE TO DO SO COULD RESULT IN BODILY
HARM AND/OR PROPERTY DAMAGE.

/A CAUTION

OBSERVE PRECAUTIONS FOR HANDLING
ELECTROSTATIC SENSITIVE DEVICES.

/A WARNING

PERMIT ONLY QUALIFIED PERSONNEL TO SERVICE THIS
EQUIPMENT. EXERCISE CARE WHEN MAKING CHECKS,
TESTS AND ADJUSTMENTS THAT MUST BE MADE WITH
POWER ON. FAILING TO OBSERVE THESE PRECAUTIONS
CAN RESULT IN BODILY HARM OR EQUIPMENT DAMAGE.

/AN WARNING

FOR CONTINUED PROTECTION AGAINST SHOCK
HAZARD, CONNECT TO PROPERLY GROUNDED OUTLET
ONLY. DO NOT REMOVE THE GROUND PRONG.

/A CAUTION

BEFORE CONNECTING OR DISCONNECTING ANY INTERNAL ELECTRONIC
COMPONENTS OR INTERCONNECTING WIRING BETWEEN ELECTRONIC
EQUIPMENT, ALWAYS REMOVE POWER AND WAIT AT LEAST THIRTY (30)
SECONDS BEFORE ANY CONNECTIONS OR DISCONNECTION'S ARE MADE.
FAILURE TO OBSERVE THESE PRECAUTIONS COULD RESULT IN DAMAGE TO OR
DESTRUCTION OF THE EQUIPMENT, OR BODILY HARM.

CONTENTS

130T 11T 1 o U 1-1
L0111 4= PPN 1-1
File SPECIfICANIONSooieiiiiiiicci e e e e e e e e a e s 1-3
STANAArds COMPIIANCEuuueiii it e e e e s e s s e e e e e e s s s e e s seeeeennns 1-3
PC Program DevelopmEeNt..........ccooiiiiiiiiiii e e e e e e e n 1-3
R3] 1 T (=T I 0 | (PP UPPRRPOt 2-1
JAGXTREME Terminal Operating Environment and Shared Datd...............eeeeveeemememeeereeeeeeeeeeeennn. 2-1
SNATEd DATA TYPES ..o s e e e e s 2-2
RS- L] PR 3-1
Configuring JagBASIC in the JAGXTREME Terminalooooeviiiiiiiiiiiiii s 3-1
Connecting the TermMINAI 10 @ PCooorriiieeeeeeeeeeeee e 3-3
Programming FUNAAMENTAIS.............iiiiiiiiiiiiiaeaassasasras s s e e e e e e e e e reeeeeeeeeeeeeeeeeeeees 4-1
JUGBASIC FlSeniiiieeeieiii e e s s s e e e e e e e e a e e s s e e ee e e e s nna e e e eaeeeennnns 4-1
DOTA FIlES ... e e e e e e e e e 4-2
Operator and Program CONTIOISccoevieiiiiiiiiii e 4-2
Using the Termindl BASIC INTEIPIETENccceeeiiiieiieceece s nnnnnnnnes 4-3
Creating and Editing JAgBASIC Program FileScoevvieiiiiiiiiiiiiiiieeeeee e 4-4
Using the JAGBASIC PrE@PIOCESSOL.........cccceeeeeaeiii s snnnnnnssnsnssnnnnnnnnns 4-5
Serial TermMiNAl SUPPOI i re e e e e e aa e e s e e raa e s e e rans e s e ernnaasseerannnnss 4-8
JAGBASIC COMMANGScovvruiiiiiiiiieieeceiirie e s s e e e e e e e s s s s e e e e e e aasaa e s s e s e e e e e e snnssaareeeseennnns 5-1
Interpreter COMMUNAS........ccuuuiiiiiiiriie e it e e e e e e e s e eran e s e e ras e s eerans s s e eranssseeransnsseernnsnsserrnnan 5-2
Variable COMMUANGScuuueiii e e e e e e s s e e e e e e ranaa e e e s s eeeenens 5-10
Flow Control and Operator COMMUANASccuuuiiieriunirrerinnierrrrrnseereeesseesressnseserrsnsaeseernnss 5-19
Math COMMUANAS.uuiiiii e e e e e e e e e e s s s e e e e e e a s e e s s s e e e e e nnnnnanneenas 5-30
SHING COMMANAS........coiiiiiiiiiiiicee e e e e e e e e e s s e e e e e e s aaa i r e e s s e e e e e e rnnnnaaneeenes 5-35
SiMple 1/0 COMMUNGS.........oiiiiiiiie e e e s raa e e e e asa e s e e eaaa e e s resnnsseseennnnsssernnnnn 5-44
Serial I/0 COMMUNGS........coouuuiiiiei e e e e e e s e e e e e e nanaa e e e eees 5-52
File COMMANGS........uuiiii i e e e e s e e e e e e e as e e e s s s e e e e rrann e enas 5-65
Real-time Process Control COMMUANAScooviiiieiiimimiiiiere e e e e rrrrrs e e e e e rrnnn s 5-79
TIMING COMMUNGScooiiiiiiiiiee e e s s e e e e e e e ssa e e e s s e e e e erennnn e eseeeennens 5-92
Error Trapping COMMUANASuuuuiieiiiieeiirireee e e e e e e s s s s e s e e e s rnnsa e e s s s e e e e rennnnnneeneas 5-95
TCP/IP COMMOANGSceeiiiiuuiiiie e e e e e e eeerrnse e s e e s s e e e e e rassa e e e s s s e e e e rssssaaaeesseeeeennsnsssnnsssseenennnns 5-97
Shared Data VAriabIeseeueeii e reen 6-1
Shared Data Hedp EIEMENTS..........coiiiiiiii e rrrs e e s e s e e e e s e e e aaa e e e e ana e e e ennnnns 6-1
Shared Data Static RAM EIEMENTS.........ouuuueiiie it e e e e 6-6
Shared Data EEPROM EI@MENTS..........ccooiiimiiiiie i eeccrrrne e s e s e e e r e 6-17
Global DISCrete 1/0 DATAceeiiiieeeiiiiiiee e e e e e e e a e e s e s e e e e e e nsnnaaeeeaaaenennns 7-1
Level-Sensitive, Logical Discrete 1/0 DATd...........ccoveumuuiiiiiee e 7-1
Edge-Sensitive, Logical Discrete 1/0 DATQooeeeiiiiiiiiiee e 71-7

Physical DiSCrete 1/0 DATQ.........ccceeimuuiiie e e e e e s s s e e e e e e rnn e e e e e e e e e ennnns 7-11

10
11

Sample ApPlICATION PrOGIAMS.........cceoureeeeeiecseeeseesessessessessessessessesbesbesbessessesassassssssssssnsnses 8-1

Display Scale A WeIgNt..........cooiiiiiiiiii i nnnnnnn 8-1
Display/Toggle Scale Aand SCale Bcooverrririiiii i ——————— 8-2
RANAOM ACCESS FlES........cce i i nnnnnnnnn 8-3
L0011 11010011 | 8-3
SetPOINT DISPIAY ... ———————— 8-4
1] o 8-5
Simple TIUCK IN-OUL ... 8-7
Truck Inbound-OUTDOUNAcoeeeeeeeeecee e e e e e e e e e e e e e e e e e e nan e e e e eeees 8-10
Multiple Ingredient Formulation (Manual Batching).........ccoeeeveeiiiiiii s 8-19
o 0011 1)1 o 8-32
o (LT =T g o] o (= 8-34
L0 T (o] o] - 8-36
JAgBASIC SMTP Client PrOQIAMccceuuueieeiiiieeeiieetness e e e e e e e eeenssssassesesseeeeennsnssssnsseseeseenens 8-40
Error COdes AN MESSUQGES.uuuuuuueereeeeeeeeiernnnraseeseeeerrrersssaaneeeeeseereerassnnssnreeseeeeerennnnnnnnnnns 9-1
COMIMON EITOISuuiieieieeeieeieti i eee e e e e s e e e e e eea e e e e e s e e e e eeeana e s eeseeeeeeaannns e aeeeeeeerennnnsnnnsssseeennnns 9-1
00T T T 9-1
0T 17 1= 00T [6 3 T o N 10-1
Y 00T 1o [11-1

JAGBASIC COMMUNASocoiiiiiiiirriiiii i 11-1

Chapter 1: Introduction
Overview
|

1 Infroduction

Overview

. o . JagBASIC is a tool for customizing the JAGXTREME industrial scale terminal. It provides
NOTE: The inf I th |) . . : .
specificolz/lpo?[gg \Ila?h"J]A(;)S(TrSE&UEG ® the means for creating custom Qperotor inferaction for data input using the JAGXTREME
ferminals. For information on using terminal’s 16-character lower display and keypad. An external keyboard, serially
JagBASIC with JAGUAR terminals, please connected display devices, as well as the terminal display, may be used to
refer to the JagBASIC manuals with part communicate messages to the operator.

numbers C14839600A or earlier (non-
revision, A revision, or B revision).

Programming Language
The JagBASIC language is a standard BASIC programming language with more than
120 standard BASIC statements and functions, plus extensions for special JAGXTREME
terminal operatfions. The language provides functionality to perform many tasks
including operafor interaction, serial input and oufput, discrefe input and output, scale
data exchange, string manipulation, arithmetical and relational operatfions, and open,
close, read (get) and write (put) file operations.

Editors

JagBASIC includes a simple line editor that uses the JAGXTREME terminal’s lower
display. When the “BasTerminal” is selected in the serial porf setup menu, a remote PC
with a terminal emulator program interfaces with the line editor. These editors permit
creation and modification of JagBASIC programs.

Entering, Editing and

Munaging Programs
When using JagBASIC file names of filel.bas through file9.bas, the operator may start
any of nine programs by pressing the FUNCTION key followed by the program number.
This provides a simple way to manage multiple programs as separafe modes of
operation and allows larger applications to be divided into smaller, more manageable
programs. The filel.bas program may be designated fo automatically start on power-up.
Other file names can be used but must be called up using the JagBASIC LOAD
command, or chained from the main JagBASIC program.

Small JagBASIC programs may be entered and edited on the ferminal with an exfernal
keyboard using the lower display. This allows simple programs fo be quickly entered or
modifications fo larger programs to be made in the field without additional equipment. A
personal computer (PC) is recommended when creating larger programs. A PC can be
directly connected tfo the terminal through a serial port. The PC, running a terminal
emulator, acts as a monitor and keyboard for the terminal. Using Zmodem protocol over
a serial port or FTP on a JAGXTREME ferminal through Ethernef, files can be fransferred
between the PC and the ferminal.

(10/01) 1-1

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

JagBASIC Integration and
Security in the JAGXTREME
Terminal

JagBASIC Encryption
Feature

Compatibility with Scales
and PLCs

File Transfer

1-2 (10/01)

JagBASIC is integrated info the operating environment of the JAGXTREME ferminal.
JagBASIC programs reside with the standard terminal program. The JagBASIC interpreter
runs as a separate fask using the terminal’s multi-fasking operating system. This allows
the custom JagBASIC program to interact with other terminal tasks and resources using
the ferminal’s exclusive shared memory design. All shared memory in the JAGXTREME
terminal may be accessed by the JagBASIC program using this simple construction.

JagBASIC programs are stored as source files then interpreted in the ferminal. Source file
storage allows you to edit the program on the terminal and provides the security of
having the source available even if a PC sfored copy is not available. The source files
may be refrieved from the terminal for archiving, modification, or duplication. The
JagBASIC interpreter was designed to provide a more secure operafing environment
where the program is restricted from accessing and possibly corrupting the standard
functions of the terminal. Access to JagBASIC can be password-protected to limit access
to the source code, or the operator may be given access fo all of the standard terminal
functions as well as the custom functions provided by the JagBASIC program.

The JagBASIC program encryption feature prevents unauthorized users from modifying
or copying a JagBASIC program. The program developer can encrypt the JagBASIC
program using the either JagBASIC preprocessor or the new PC JagBASIC programming
utility. The encrypted program file has the *.cpt” name qualifier. When the program is
loaded, the JagBASIC interpreter aufomatically decrypts the encrypted program before
running it. You cannot save or list the encrypted program using the JagBASIC
interprefer. Also, you cannof exiract an encrypted program from the JAGXTREME

terminal using ZMODEM or FTP. Using the JagBasic Preprocessor, place a *-¢” on the
command line to encrypt the program. For example,

jopp filetest.bas file1.cpt -N1 -IT —e

Using PCJagBASIC Editor, run the preprocessor with the option for output code with
encryption selected.

JagBASIC will operate in JAGXTREME terminals configured for any type of scale,
including METTLER TOLEDO’s DigiTOL® bench/porfable scales, high precision scales,
floor scales, truck scales, or industry standard analog load cell scales such as tank or
hopper weighing sysfems. JagBASIC can also co-exist and communicate through
shared memory with PLC interfaces.

JagBASIC programs and data files are stored in the terminal in a DOS file-compatible
RAMDISK. An FTP communications utility permits these files to be sent between a
JAGXTREME terminal and a PC, using FTP utility software sent over Ethernet. The
optional PCJagBASIC Editor's built-in file transfer utility enables files fo be sent serially
between a JAGXTREME terminal and a PC.

File Specifications

Standards Compliance

PC Program
Development

Chapter 1: Introduction
File Specifications

The JAGXTREME terminal file system has a capacity of 1900 KB for program and data
files. The maximum number of files is 96. Individual programs have a limit of 600 lines
of code or 30 KB. The maximum line length and string size is 160 characters. The
maximum number of variables is 200.

If the JAGXTREME terminal's alibi memory is enabled, the RAMDISK space available to
JagBASIC is reduced to 900K bytes. Before configuring alibi memory, it is recommended
that all files be backed up since you will likely lose files in the RAMDISK.

JagBASIC is based on the American National Standards Institute (ANSI) standard for
minimal BASIC (ANSI X3.60-1978) with extensions and integration info the JAGXTREME
terminal operating environment by METTLER TOLEDO. Programmers familiar with BASIC
can quickly become proficient in using JagBASIC.

METTLER TOLEDQ’s PCJagBASIC Editor (P/N 09170301) is recommended for program
development. PCJagBASIC is a fool for programming, debugging, and archiving
JagBASIC programs. PCJagBASIC Editor features:

e Multiple code windows

o Code development without line numbers — label and procedure name support
Document access

e Data access

e Preprocessor with setup selection for JAGXTREME or custom versions
o Alias filename support

o Built-in file upload/download

e JagBASIC command, shared data, and macro help

o Total project archival

e Reference code windows

o New macros: table, I/0, timer, If/Then/EndIf, While, Close

e Built-in debug window

(10/01) 1-3

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals
NOTES

1-4 (10/01)

2

JAGXTREME Terminal
Operating Environment
and Shared Data

Refer to Chapter 6 of this manual
for information on Shared Data
Variables.

Chapter 2: Shared Data
JAGXTREME Terminal Operating Environment and Shared Data

Shared Data

Shared Data Database

Shared Data Callbacks

Three concepts are fundamental to the way the JAGXTREME terminal handles data within
the terminal’s operating system: Shared Dafa Dafabase, Shared Data Callbacks, and an
Event Driven Ladder Logic Engine. They enable the terminal fo:

o Handle a multitude of actions virtually concurrently,
e Provide fast reaction to infernal and external instructions, and

o Provide users with maximum flexibility fo meet their application demands.

Central to the JAGXTREME terminal’s open architecture is the implementation of a Shared
Data Database. This central table of variables tracks virtually every data value used
within the terminal. Variables containing values corresponding fo weight information,
setup and calibration parameters, user input literals, prompts and responses, printer
templafes and setpoint information are all stored in this table. The status of physical and
logical discrete inpufs and outputs as well as the *mappings” of serial and discrete 1/0
connections are also sfored. The terminal accesses and uses this database as a central
depository for information used in all functions relafed to:

o Weighing and process control

e Communication with external printers, bar code readers, and other devices
e Personal computer hosts

e PLCs

o Applications written in the JagBASIC programming language

The JAGXTREME terminal couples this dafabase concept with Shared Data Callbacks.
Each operating system fask has the shared datfa variables it uses mapped directly to it.
Whenever a fask requires a specific variable or group of variables, their values can be
found in the Shared Data Table. Every time a shared data variable is changed, all
operating system fasks, which use the variable, are identified and nofified that a change
has occurred using the Shared Data Callback. When a particular task is notified of a
change, the task is executed, updating all other affected variables and related tasks.

For example, if a logical 1 is written to the discrete logical variable associated with the
pushbutfon tare command, the scale task is notified and the process of initiating a tare
undertaken. This affects the shared data variables associated with the displayed weight,
tare weight, and net weight, among others. Changes in these variables initiate other
tasks and affect other variables (e.g. the variable associated with whether or not a net
weight is being displayed). This automatic processing of tasks simplifies interfacing the
terminal to external controls such as a PLC, or to an internal JagBASIC program.

(10/01) 2-1

METTLER TOLEDO JagBasic Programmer’s Guide for JAGXTREME Terminals

Event Driven Ladder Logic

Engine

Shared Data Types

2-2

(10/01)

In traditional ladder logic circuits, an engine continually cycles through the rungs of the
ladder, allowing any changes in the coils to cause a change in the confacts. Wherever
an input is changed, the corresponding output is potentially changed to reflect the
change in input. The JAGXTREME ferminal uses the Event Driven Ladder Logic Engine
concept fo scan for changes in shared data variables (“coils” or inputs) and fo make
resulting changes in other shared dafa variables, the terminal outputs or displays
(confacts or outputs).

The terminal’s ladder logic creates a smart ladder logic engine. The terminal’s engine
only runs when an eventf occurs. The event or friggering mechanism could be a change
in a shared dafa variable, a JAGXTREME terminal message, or the result of some type of
physical input. Once the ladder logic engine is run, the changes cause an “output
engine” fo run and make changes in shared data variables, physical outputs, and/or
terminal messages. These may, in turn, cause further “cycling” of the ladder logic
engine and result in further changes.

There are four types of Shared Data Variables.

o The first holds the values associated with different scale parameters such as
displayed weight and tare weight. These variables function like fields in a database.
The fields sfored include setpoint values, time and date information, and user
programmed literals and prompts. The actual values stored in these variables may
be strings, integers, or double precision floating point numbers. Besides these
values, status or source information may be stored.

o The second type of variable is a level-sensitive logical variable. These values store
a logical 1 or O as an integer in a bit field within shared data. These particular
variables are known as “level-sensitive” because they generate a callback when
either a O or a 1 is written to the field. These variables indicate the status of a
particular scale condition, such as whether a parficular scale is in motion or over
capacity, or whether or not a parficular setpoint is feeding or a weight is within a
sefpoint tolerance. By reading the values of these variables, the programmer can
determine the status of a particular frait of the ferminal without having to use an
actual terminal discrete output.

¢ The third variable type is an edge-sensitive logical variable. A logical 1 or O is
stored as an integer in a shared data bit field. These variables differ from those
above in that they frigger a callback when a 1 is writfen to the field. When the
“friggered” task is complete, a O is automatically written (by the ferminal) back to
the field. In terms of some of the operations of the terminal, a T written to one of
these variables would be like pressing a bufton on the terminal front panel. By
using these variables, the programmer could initiate a scale task in the same way
as if a pushbufton was pressed or a discrete input were used.

o The last variable type indicates the status of the physical discrete inputs and outputs
found on the Contfroller and multi-function boards. The stored logical 1s or Os
correspond to whether a physical discrete input or output is frue or false, on or off. It
may be useful to use these variables to initiate further actions within a program in
conjunction with an external event tied to a physical input or output.

Chapter 3: Setup
Configuring JagBASIC in the JAGXTREME Terminal

3 Setup

Configuring JagBASIC in
the JAGXTREME
Terminal

The JAGXTREME terminal setup contains a special program block and sub-blocks for
configuring JagBASIC, as shown here.

Configure
JagBASIC

Password) If Password is enabled, enter
the password or press ENTER.

Keyboard
N Select Data Entry Method

Display Select Display
» Functionally
Auto Start Enable/Disable JagBASIC on
‘ > Power-up
Manual Start Enable/Disable JagBASIC
‘ . from FUNCTION key

Send RAM Files | — Files to PC? - Files from PC?

— - s
Initialize ‘ > Delete All Data in RAM Disk?

RAMDISK (Y/N)
Password Change or enable
Maintenance | > Password
Reset to Factory L Are You Sure?

SW2-2 must be OFF for normal

JagBASIC operation. To access the program block, you must first enter setup by pressing the FUNCTION key
A~ and then SELECT until [Enter Setup?] is displayed. Press ENTER.
Note: Use an anti-static strap when

fouching the controller PCB. Press the SELECT key until [Config JagBASIC] is displayed. Press ENTER.

(10/01) 3-1

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

Make sure the password is written
down in a secure place. If the
password is lost, the only way to re-
enfer the JagBASIC Configuration menu
is by performing a Master Reset which
will erase all configuration data in the
terminal and sef all values fo factory
defaults!

You will also lose JagBASIC files stored
on the ramdisk when a Master Resef is
performed. Do nof perform a Master
Reset unless you can reload the
JagBASIC files!

*Af the [Display] prompt, the
choices are None or JAGUAR,
with JAGUAR representing the
JAGXTREME terminal.

NOTE: Use caution when
selecting this option since the
files cannot be recovered once
they are deleted!

Once you enfer a password, be sure
to record it in a secure place and
provide it to all persons who will
need to access the JagBASIC
program block.

32 (10/01)

At the [Passwd?] prompt, enter a password. Password security allows the JagBASIC
programs to be protected from unauthorized changes. Press ENTER. Or, just press
ENTER if no password has been previously configured. Enfry of an incorrect password
will cause the terminal to display the message [Access Denied.]

At the [Keyboard] prompt (which permits designation of the keyboard input device that
will pass characters fo a JagBASIC program when an INPUT or INKEY statement is
executed and of the device that will be used for the BASIC command line mode) press
ENTER to access the sub-block and then press SELECT to choose:

e [None]—No keyboard input is required. This would be used with programs that
monitor other I/O then act in the background without operator infervention.

o [Keypad]—The ferminal keypad is used only for operator input fo JagBASIC. The
normal JAGXTREME keypad functions are not available.

o [Kboard]—External QWERTY keyboard or remote PC with terminal emulator aftached
fo the ferminal will be used for operator input to JagBASIC.

o [Both]—Both the ferminal keypad and an external keyboard will inpuf to JagBASIC.

At the [Display] prompt (which permits designation of the display output device that will
be used by a JagBASIC program when a PRINT statement is executed), press ENTER to
access the sub-block and then press SELECT to choose:

e [None]—No display output device is fo be used.

o [JAGUAR]*—The terminal's lower display is to be used. This display will also be
used for standard terminal functions.

At the [Autostart?] prompt (which enables or disables the aufomatic starf up of the
file1.bas JagBASIC program on power up) press ENTER fo access the sub-block and
then press SELECT to choose Y(es) to use the automatic program start feature or N(0) fo
disable it. If you select Y(es), JagBASIC will automatically start file1.bas program on
power up and when you exit setup.

If you selected N(0) the [Manual Start] prompt appears, which allows you enable or
disable the manual mode startup of JagBASIC programs by pressing the FUNCTION key.
Select keys 1 fo 9 fo represent file1.bas through file9.bas.

At the [Send RAM Files] prompt, press ENTER to access the sub-block.

At the [Files to PC? N] prompt, press ENTER fo select N(0) or press SELECT and then
ENTER to select Y(es).

o Ifyou choose Y(es), the terminal prompts you with [Are You Sure?]. Choose Y(es)
to place the ferminal in the mode to fransmit its RAMDISK files fo a PC.

e If you choose N(o), you will be prompted with [Files From PC?].
o If you select N(0), you will go the next prompt.
o |f you select Y(es), you will see the prompt [Are You Sure?]

o If you select Y(es), you will place the ferminal in a mode to receive files from a
PC. The terminal will display [Recving from PC.] The file fransfer is inifiated
from the PC. Refer to the chapter on programming fundamentals for details of
this operation. If communication with the PC is not established, the terminal will
time out and return to the sub-block.

At the [Init RAM Disk?] prompt, you can delete all files in the ferminal’'s RAMDISK. Press
ENTER to access the sub-block. The terminal will then prompt with [Are You Sure?] You
must then choose Y(es) fo delete the RAMDISK files. The display will read [Please
Standby] and then the system will reboot before displaying [BASIC]. You must re-enter
setup and scroll through the sub-blocks until you reach the [Password Maint] prompt.

Chapter 3: Setup
Connecting the Terminal to a PC

At this prompt, you can configure a security password fo be configured for the JagBASIC
programs. Press ENTER to access the sub-block. The terminal will then prompt with
[Passwd?] Enfer a password of up fo eight characters and then press ENTER. After
exiting the program block this time, you will need this password to re-enter the block.

Reset to Factory?—This sub-block allows you to reset the Config JagBASIC program
block parameters fo their factory settings.

Connecting the Terminal

toa PC
Refer fo the following diagram for proper cable connections to the ferminal’s serial ports
COMT and COM2. COMT and COM2 are located on the Controller board, which is
positioned in the top slot.
METTLER TOLEDO CONTROLLER
O : ZSESE_ ..z Lsfomerrts (O

TTE D 2 Wttt e e i e

CAL TR KEYBOARD PAR 2 PAR 1 COM 1 COM 2

Figure 3-1: Controller PCB Rear View

The COM1 and COM2 terminal strips will accommodafe wire sizes ranging from 23 fo
16 AWG. The ferminal strips may be removed to facilitate wiring. Removal of the
terminal strips also permits easier viewing of the terminal designations printed on the
board back plate.

(10/01) 3-3

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

The following diagram and table describe COM1 (or COM2) pin-to-pin cable
connections using an RS-232 cable fo a PC serial port. The maximum recommended
cable length for RS-232 communications is 50 feet (15.24 meters.)

JAGXTREME PC Serial PC Serial
COM 1 Port DB-9 Port DB-25
TXDA > 2 REC 3 REC
RXDA < 3TR 2TR
GND < » 5SGnd 7 S6nd
CLTX+ — 7RIS _ 4RTS
CLRX+ — 8CTS — b(CTS
CLRX- — 4 DTR — 6DSR

— 1DCD — 8DCD
— 6DSR —— 20DTR

Figure 3-2: RS232 Connections to Terminal and PC Serial Port

The PC cable can be used for five different applications:
e Flashing new software into the ferminal through COM2.
e JagBASIC file transfer through COM1.

e LPRINT device output fo a terminal emulation program or communications program
to receive data sent using LPRINT, LIST, VARS, etc. Output from the terminal will be
sent fo the first port configured for demand output.

e PCJagBASIC Editor allows a PC terminal emulafor fo act as a program development
interface for JagBASIC.

e JagBASIC program interface directly fo serial ports for input and output.

JAGXTREME Personal
Terminal - Computer -
Ethernet Port Ethernet Port

You can connect the JAGXTREME terminal to a personal computer (PC) using either of
these methods:

e A 10 BASE-T Cafegory 5 Cross-over cable.

e An Ethernet Hub and standard patch cables.

3-4 (10/01)

4

JagBASIC Files

Chapter 4: Programming Fundamentals
JagBASIC Files

Programming Fundamentals

Naming Conventions

Program Size

Line Numbers

Line Length

JagBASIC program files are sfored in the JAGXTREME terminal’s battery backed
RAMDISK file system. This file system is equivalent to the file system on a PC.

JagBASIC enables you to run nine program files using the function key followed by a
digit. The files are named as follows:

o filel.bas
o file2.bas
e file3.bas
o filed.bas
o fileb.bas
o file6.bas
o file7.bas
o file8.bas
o file9.bas

Throughout the documentation, these files are referred to as filex.bas files. When using
other names, the names must follow the MS-DOS file name conventions -- an 8-
character prefix and 3-character suffix (normally .bas). Characters A-Z and 0-9 can be
used. Some characters are reserved and cannot be used in file names, such as #, A,
%, * (). {.} [] These files can only be called up and run using the BASIC
interprefer commands RUN or LOAD, or called from within another program using the
CHAIN command. See Chapter 5, JagBASIC Commands, for more information.

The maximum size for a program is 600 lines and 30 KB. The maximum number of
variables is 200. The maximum string size and line size is 160 byfes.

JagBASIC requires the use of line numbers for every line of the BASIC program.
Programs that start line numbering at 1 and are numbered sequentially (1, 2, 3, 4, efc.)
execute most efficiently on the JAGXTREME terminal. The largest line number permitted is
30,000. The JagBASIC preprocessor supports symbolic labels and automatically
numbers the program lines.

Line lengths are limited to 160 characters per line, therefore string sizes are limited 160
characters also.

(10/01) 4-1

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

Multiple Statements on a
Line

Unless noted, you can puf multiple statements on a line if they are separated by a colon
(). The program will be more legible if only single statements are placed on a line.

Data Files

You can use data file numbers from O fo 7 with JagBASIC. The JAGXTREME ferminal’s
RAMDISK has 1900 KB of file space available. Using the JAGXTREME terminal's alibi
memory feature reduces the amount of RAM disk space to 900 KB and a maximum of
96 RAM disk files.

Operator and Program
Controls

Automatic Startup

Starting JagBASIC
Programs

Stopping JagBASIC
Programs

42 (10/01)

Selecting Automatic Startup in the JagBASIC configuration allows a hands-off, power-on
startup of the JAGXTREME terminal. When Aufomatic Startup is selected, the file1.bas
program runs at starfup and on exif from setup mode. The JAGXTREME terminal does
not aufo-start the JagBASIC program when existing setup. JagBASIC must be manually
restarfed by an operation.

The nine JagBASIC programs file1.bas through file9.bas may be starfed by pressing the
FUNCTION key followed by the program number. For example, to run file3.bas, press the
FUNCTION key then the number 3. This provides a simple way of managing multiple
programs as separate modes of operation and allows larger applications fo be divided
into more manageable programs.

Every program written in JagBASIC should include an END statement to cause
termination. A program may be stopped af any fime by pressing the ESC key twice, as
long as the EXC key has not been disabled by the JagBASIC code. A program will
automatically ferminate any time the JAGXTREME terminal is placed into setup from the
terminal's front panel.

Note: A JagBASIC program will not aufomatically terminate if remote access is afttempted
through the embedded web server. The JagBASIC program will have fo be stopped
before remote access to sefup is permitted.

Interaction of JagBASIC
Program with JAGXTREME
Web Browser

Switching the Display
between JagBASIC and the
Terminal

To disable the stop program (press ESC
twice) and switch display (press SELECT)
functionalities, write to the shared datfa
variables /bas86, /bas89, and /bas87,
respectively, in the program file.

Securing a JagBASIC
Program

Chapter 4: Programming Fundamentals
Using the Terminal BASIC Interpreter

The JAGXTREME web browser will not permit a user fo enter sefup when there is a
JagBASIC program running. The JAGXTREME shared data variable t_61e is setfo "1"
to indicate to the JagBASIC program that the web browser operator is attempting to enter
sefup. The JagBASIC program may optionally monitor this variable and terminate itself.
Once the program terminates, the web browser operator can then instruct the
JAGXTREME to enter setup. An operator af the JAGXTREME can also manually start
JagBASIC through the function keys or by cycling power af the JAGXTREME ferminal.

While a JagBASIC program is running, press the ESC key once to assign the lower
JagBASIC display back to the JAGXTREME ferminal. JagBASIC will continue fo run. Only
the display is changed. To return to the JagBASIC display, press SELECT.

Unencrypted JagBASIC programs can be secured so that a user cannot alter or illegally
procure a program. To secure a program:

1. Set the password in the JagBASIC Sefup menus.
2. Set AutoStart=Y in the Setup menus.

3. Within the JagBASIC program, set Manual Stop Enable(bas89)=0. This prevents a
user from stopping the program.

4. Name your startup program file1.bas.

Refer fo page 1-2 for information on the JagBASIC program encryption option.

Using the Terminal
BASIC Interpreter

You may use a PC terminal emulator or the terminal’s display and an external keyboard
to create and edit JagBASIC programs. Programs are entered at the JagBASIC interpreter
prompt. With JagBASIC enabled and no programs running, press the ESC key to display
the interpreter “BASIC:” prompt. From this prompt you may start fyping lines of BASIC or
type in a BASIC command. Enfering a line of code fo the inferpreter without a line
number will cause the interpreter to execute the line immediately.

(10/01) 4-3

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

Creating and Editing

JagBASIC Program Files

File Transfers

Sending Files to the
Terminal

Set the serial port to 9600,8,N,1 to
match the file transfer fixed settings of
9600,8,N, 1. This enables you to
upload and download files, plus
receive oufput into your
communications program without
requiring any parameter changes.

The terminal will always use

9600,8,N, 1 for file fransfer, overriding
the serial port defaults.

4-4 (10/01)

Using PCJagBASIC
PCJagBASIC is a self-confained development environment that handles the editing,
debugging, and file management of JagBASIC programs. The software is Windows-
compliant and confains application help files.

Using a PC
You may use a personal computer (PC) to creafe and edit the JagBASIC program file
using either a DOS or Windows fext edifor. Files must use standard DOS affribufes, such
as date, fime, length, and reserved characters.

When you have completed writing the program in the fext editor, send the text file to the
terminal's COM1 serial port using one of the following:

e A communications program such as RIPterm®
e HyperTerminal© if using Windows 95 or higher.
e Procomm Plus for Windows

The text file will be stored in the RAMDISK. The file transfer uses standard Zmodem file
transfer profocol. The JagBASIC RZ command initiates receiving files at the ferminal from
the PC using the ZMODEM protocol over the BasTerminal serial communication line. The
JagBASIC SZ command initiafes sending files from the ferminal to the PC. If you want o
use the RZ and SZ commands from the BasTerminal, you need to set up the serial
communications to use the 8-bit, No Parity data format

For file fransfers, setup the PC for 8-bit, No Parity, 1 Stop Bit. These seftings are
independent of the serial port settings in the terminal. The file names will be displayed
on the terminal's lower display as they are transferred. Always start the file fransfer
process on the PC, then on the ferminal.

The JAGXTREME terminal is capable of receiving files using standard Zmodem file
transfer profocol.

To send files fo the terminal from your PC:

1. Set the password in the JagBASIC Setup menus (optional).
2. Select Zmodem protocol at the PC communications utility.
3. Type in or select the file, but do not start the transfer.

4. Setf up the terminal for receiving files.

e Ifyou have a PC console for JagBASIC, type “RZ” at the JagBASIC interprefer
prompt and then press ENTER. Proceed fo step 8. You do notf need to complete
step 9.

e [fyou do not have a PC console for JagBASIC, press the FUNCITON key. Press
SELECT until [Enter Setup?] is displayed and then press ENTER. Proceed fo
step b.

Receiving Files from the
Terminal

Set the serial port o 9600, 8N1 to
match the file transfer fixed settings
of 9600,8,N, 1. This enables you fo
upload and download files, plus
receive oufput info your
communications program without
requiring any parameter changes.
The terminal will always use
9600,8,N,1 for file fransfer,
overriding the serial port defaults.

Chapter 4: Programming Fundamentals
Using the JagBASIC Preprocessor
Press SELECT until [Config JagBASIC] is displayed, then press ENTER.

When [Passwd?] is displayed, enter the password. If no password has been
programmed, press ENTER.

Press SELECT until [Send RAM Files] displays, then press ENTER. Press ENTER
again when [Files To PC? N] displays. When [Files From PC? N] is displayed,
press SELECT to change the prompt to Y(es), and then press ENTER again.

Start the communications program file fransfer.

e Ifusing RIPferm, press the Page Up key, select Zmodem then type in the file
name.

e [f using HyperTerminal, click Transfer, Send File, then type in the file name, or
use browse to locate the file. When the file has been selected, click OK.

When the PC file fransfer has been started, press ENTER on the ferminal keyboard to
start the transfer. As the files are sent to the terminal, the file names will display on
the lower terminal display.

The PC receives all unencrypted files currently residing in the terminal RAMDISK,
including BASIC files and any data files that exist. Any encrypted file (extension of .cpt)
cannot be sent fo the PC.

To set up the terminal fo send files fo the PC:

1.

If you have a PC console for JagBASIC, type *SZ” at the JagBASIC inferprefer prompt
and then press ENTER. Proceed to step 5; however, you do not need to press
ENTER in step 5.

Or, if you do not have a PC console for JagBASIC, press the FUNCTION key, then
SELECT until [Enter Setup?] displays. Then press ENTER.

Press SELECT until [Config JagBASIC] is displayed, then press ENTER.

When [Passwd?] is displayed, enter the password, or if no password has been
programmed, just press ENTER.

Press SELECT until [Send RAM Files] is displayed, then press ENTER. When [Files
To PC? N] is displayed, press SELECT fo change the prompt to Y, then press ENTER
again to display [Are You Sure? N]. Press SELECT to change the Nio Y.

If the autodownload function is not enabled in your communications software, start
the download in the PC software program, then press ENTER on the ferminal
keyboard to start the fransfer.

Using the JagBASIC
Preprocessor

The JagBASIC preprocessor can translafe from the free line format permitted in PC BASIC
to the strict line numbering format required by JagBASIC, strip out memory consuming
comments (REM statements), and warn of JagBASIC constraint violations. The
JagBASIC preprocessor is available as part of the JagBASIC programmers kit.

(10/01) 4-5

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

User Environment

Run Time Operation

4-6

(10/01)

The JagBASIC preprocessor is a DOS-based, command line orienfed utility. It is invoked
with command line arguments as follows: jbpp infile outfile (option)

infile Input text file, with free format statement labels.
ouffile Output text file, with JagBASIC line numbering, and error messages.
option Any of a combination of command line options, including the following:

-R Pass through all REM statements from the infile to the ouffile. Default is
eliminating REM statements from the output file.

-NXXX Start statement numbering with XXX. Default starting number is 100.

-IYyy Increment statement numbering by YYY. Default increment step is 10.

-W Do not compress white space within a statement. Default is fo compress
mulfiple consecutive space (or fab) characters fo a single space (or tab)
character.

The output file is suitable to be downloaded to a JagBASIC enabled terminal.

Example: jopp bulkway.bas filel.bas -N1 -I1.

The primary purpose of the preprocessor is to add line numbers to all statements and to
replace symbolic labels with numeric labels. Two passes through the input file are
required. The first creates a list of symbolic labels. The second adds line numbers and
performs error checking on the resulting output file. Symbolic labels are typically
identified as the first single word on a line that is followed by a colon. In the following
example, the *begin” is a symbaolic label.

Example 1:IF x = T THEN GOTO BEGIN
y=1
begin:

Example 2: GOSUB CheckMotion

CheckMotion:
RETURN

The JagBASIC preprocessor identifies symbols that are preceded by an “xx” as symbolic
labels, allowing the JagBASIC program to build state tables within the program. The
symbols in the following statement are inferprefed as symbolic labels.

Example: FillCycle:
CIoseGotes:
CoptureGross:
hecordGross:

DATA xx FillCycle, xx CloseGates, xx CatureGross, xx RecordGross

Chapter 4: Programming Fundamentals
Using the JagBASIC Preprocessor

Line Number Substitution
Label numbering normally uses 100 as the first statement in the JagBASIC program and
increments statement numbers by 10. Both defaults can be overridden using optional
command line arguments. One or more blank lines encountered in the source file
causes the next line number to be adjusfed upward to the next nearest module 100.
Line numbers encountered in the input file are treafed just like other symbolic labels and
are substituted accordingly.

Programs execute most efficiently if 1 is set as the first line number and subsequent line
numbers are incremented by 1.

White Space, Blank Line, and Comment Handling

Multiple consecutive space (or tab) characters encountered within an input file statement
are compressed to a single space (or tab) character unless the user specified otherwise
via opfional command line argument. One or more consecufive blank lines encountered
in the input file are oufput as a single blank line in the output file. Remarks (REM
statements) are eliminafed unless instructed otherwise by the user via an optional
command line switch.

Error Checking

Several JagBASIC specific error conditions are checked in the preprocessor. In each
case, an error message is added to the oufput file on a new line following the line
confaining the error. The error message is also output to the console. A count of total
errors is provided on the console and at the end of the output file at the completion of the
preprocessor. No error count message is added fo the output file if no errors are
detected.

Exceeding the maximum number of lines or maximum program size are fatal errors.
Preprocessor operation stops at the first occurrence of a fatal error condition.

General Error Messages
The preprocessor can return the following general error messages:

"“**Error** Label Not Found! Input File Line #"

—When a GOTO or GOSUB is followed by a label, the label should appear in the
JagBASIC file.

"“**Error** Maximum Char. Per Line(80) Reached! Input File Line #"
—The maximum characters per line are 80 characters.
"“**Error** Duplicate Label Found! Input File Line #"

—A label was previously found in the document. The second label is ignored.

(10/01) 4-7

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

Fatal Error Messages
The preprocessor can return the following fatal errors. The preprocessor terminates when
the first fatal error is encountered.

“**Error** No Label! Input File Line #"

—When a GOTO or GOSUB is present a label must follow the GOTO or GOSUB.
"**Error** Maximum Line #(30000) Reached! Input File Line #"

—The maximum line number is 30,000.

"**Error** Maximum Number Of Output Lines Reached(600)! Input File Line #"
—The maximum number of lines allowed in the output file is 600.

"“**Error** Maximum Output File Size Reached(30000 Bytes)!"

—The maximum byfe size of the output file is 30,000 byfes.

Serial Terminal Support

JagBASIC supports a serial ferminal, such as a dumb ferminal or a PC running a
terminal emulafor, as a console for JagBASIC program development and debugging.
You can type commands at the keyboard and view the typed commands on the serial
terminal display. The serial terminal must be attached fo a serial port on the local
terminal. BasTerminal must be assigned to the serial port in the Serial Config menus.
BasTerminal is also used for the debug window in PCJagBASIC Editor.

Configuring BasTerminal
The Configure Serial menus allow you to setup the JagBASIC keyboard input from a
serial port. Select the appropriate port and assign the BasTerminal connection. Input
characters from the serial port are routed to JagBASIC. This connection is for keyboard
input fo the JagBASIC interpreter. The BASIC interpreter displays the “BASIC:” prompt and
input keystrokes to the BasTerminal. You must assign the keyboard fo JagBASIC in the
JagBASIC setup menus. To fransfer files from the PC to JagBASIC, use 8 bits, no parity.

TPRINT Command

You can output messages fo the BasTerminal from a BASIC applicatfion using the
TPRINT command. It has the same syntax as the PRINT and LPRINT commands. This is
a simple program for entering data and echoing it to BasTerminal using the INKEYS
function and TPRINT.

10 PRINT "enter line"

30 cS=INKEYS

40 IF CS="" THEN GOTO 30

50 IF CS=CHRS(08) THEN GOTO 90
60 TPRINT c$;

70 xS=xS+c$

80 GOTO 30

90 TPRINT "

100 TPRINT "input line= ";x$

110 GOTO 10

Configuring LPRINT Device
The LPRINT device is the first demand print port assigned fo Scale A in the serial setup
menus. In a typical development setup, both BasTerminal and LPRINT device would be
assigned to Com Port 1. Com Port 1 is also the default Zmodem file fransfer port.

4-8 (10/01)

Special Keys

Chapter 4: Programming Fundamentals
Serial Terminal Support

BasTerminal translates the following standard serial input keys fo these terminal internal
key values. You can use the following keys on a standard serial keyboard to simulate
the function keys on JAGXTREME keypad.

Serial Input Character JAGXTREME Character (Hex Value)
Back Space (0x08) is translated to Delete (Ox71)
Tab (0x09) is franslated to Select (0x05)
Escape (Ox1b) is translafed to Escape (0x02)
Enter (0x0d) is franslated to Enfer (0x08)
Ctrl+A (0x01) is translated to Function ~ (Ox0T1)
Cirl+B (0x02) is franslated to Escape (0x02)
Ctrl+C (0x03) is franslated to Memory (0x03)
Ctrl+D (0x04) is franslafed fo Tare (0x04)
Ctrl+E (0x05) is franslated to Select (0x05)
Cirl+F (0x06) is franslated fo Clear (0x06)
Ctrl+G (0x07) is franslated to Zero (0x07)
Ctrl+H (0x08) is franslafed fo Enfer (0x08)

(10/01)

4-9

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals
NOTES

4-10 (10/01)

Chapter 5: JagBASIC Commands
Interpreter Commands

JagBASIC Commands

The JagBASIC commands are broken info 12 groups:

Interpreter Commands—perform file and program maintenance functions, transfer files,
and aid in debugging.

Variable Commands—assign values to variables, define global variables, exchange
variable values, access the ferminal’s shared database, declare arrays, read values from a
DATA statement and assign them to variables, and allow DATA statements fo be reread
from a specified line.

Flow Control and Operator Commands—repeat a section of the program; branch to a
specified line number; execute a sub-statement depending on specified conditions; provide
logical operafors for use in decision stafements; clear the JagBASIC execution stacks; send
program control to the first line of the current program, and branch to a location specified
by a variable’s value.

Math Commands—execute frigonometric, logarithmic and exponential, conversion,
rounding and fruncation, random number generating, and other arithmetic operations.

String Commands—exiract part of a string, convert decimal numbers fo hexadecimal or
octal numbers, convert a character to ASCII code and the reverse, create "filler" sirings,
count the number of characters in a string or the number of bytes required to store a
variable, display the string representation of a number, locate one string within another
string, and inferpret the string entered by the user as though it were a number.

Simple 1/0 Commands—sound the ferminal beeper on a specified input or output,
generafe prompts, accept user input from the keyboard, check for key presses, and format
output with tabs and spaces.

Serial /0 Commands—access files; open or close a serial port; flush received data in the
BIOS serial input buffer; read input from the keyboard or serial port; output data fo a
terminal serial COMx port; print formatted output on the LPRINT device; output dafa to the
specified serial port; and assign an output line width to the LPRINT device or a file.

File Commands—open and close a file; convert sirings fo numbers and the reverse; read,
write, and delefe records from the indexed sequential file; test for the end of a file; allocate
space for variables in a random-access file buffer; identify files as indexed sequential files;
identify which field in a record is the index key; read and write to a sequential file; get
records from and put records in an indexed file; read all characters of an entire line; return
the current position within a file; and move data into a random-access file buffer.

Real-Time Process Control Commands—allocate and de-allocate events; suspend
program execution until an event frigger causes program execution to resume; clear
outstanding event triggers, disable asynchronous event triggers; re-enable asynchronous
event triggers after a critical section of code; return the stafe of an event; enable
asynchronously moniforing of an event; enable ladder logic rungs.

Timing Commands—set or return the terminal system date and time; suspend program
execution for the of specified number of milliseconds; start and stop the timer; and return a
double precision floating point number that contains the elapsed time in seconds.

Error Trapping Commands—return the runtime error code for the most recent error; return
the line number where the error occurred, or the closest line number before the line where
the error occurred; simulate an occurrence of an error; and enable error handling and,
when an error occurs, directs your program to an error handling routine.

(10/01) 5-1

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

Interpreter Commands

5-2

(10/01)

TCP/IP Commands — allow JagBASIC application programs fo use TCP/IP
communications. (Only available in JAGXTREME terminals.)

Each group contains examples and information on the command's usage and syntax.
Some commands are discussed in two places in the chapter since they apply fo more than
one area. JagBASIC syntax and program examples use the following conventions:

Commands are not case-sensitive.
Square brackets [] signify optional information.

Divider bars | signify the available choices.

JagBASIC programs can be entered in the JagBASIC interpreter. The inferpreter provides a
secure operating environment where programs are restricted from accessing and corrupting
the ferminal’s standard functions. Interpreter commands are typed at the "BASIC:" prompt to
perform a function. With JagBASIC enabled and no programs running, press ESC to get the
BASIC: prompt. Start typing lines of JagBASIC or a JagBASIC command. The interprefer’s
program and file maintenance commands enable you to:

e C(Close all files, release file buffers, clear all common variables, set numeric variables
and arrays to zero, and set string variables fo null.

e End a program and close all files.

o Delete a specific program line or a range of lines.

o Display the RAMDISK direcfory on the LPRINT device.

e Free the memory used by an array.

e Load and delefe files from the RAMDISK.

e Save the current BASIC program fo the RAMDISK with the specified file name.
o Listall variables, or all or part of the program, to the LPRINT device.

o (Clear the current program and all variables from memory.

o Execute the current file in memory.

e Terminafe program execution and return to command level.

e Add comments or reference remarks fo the code listing.

o Trace program execution for debugging purposes.

o Initiate a Zmodem file receive or fransfer between serial port 1 and the RAMDISK.
e Insert/clear breakpoints

e Insert/clear watchpoints

e Resume execution after break

e Step execution affer break

e Show variable’s name and current value

Chapter 5: JagBASIC Commands
Interpreter Commands
This section discusses the following JagBASIC inferpreter commands:

Command Usage

BREAK Stops execution of program at line number

CLEAR Closes files, releases file buffers, clears common variables, sets numeric
variables and arrays to O, sefs string variables to null. Can also be used
to clear BREAK or WATCH.

DELETE Deletes a specific program line or a range of lines.

DIR Prints the RAMDISK directory on the LPRINT device.

END Ends a program and closes all files.

ERASE Frees the memory used by an array.

KILL Deletes the specified file from the terminal RAMDISK.

LIST Lists all or part of a program to the LPRINT device.

LOAD Loads a file (filename.bas) from the RAMDISK info memory.

NEXTLINE | Displays next line number to execute or sets a “new” next line

NEW Clears the current program and all variables from memory.

REM Enables you to add any comments or reference remarks fo the code
listing.

RESET Recovers control of the keypad and keyboard for program editing or

KEYS accessing setup.

RUN Executes the current file in memory or resumes execution affer a BREAK.

RZ Initiates a Zmodem file receive over serial port 1 into the RAMDISK file
system.

SAVE Saves the current BASIC program in memory to the RAMDISK with the
specified file name.

SHOW Displays last line executed, the variable name and current value

STEP Executes next line number after BREAK

STOP Terminates program execution; returns to command level or executes
temporary break.

SZ Initiates a Zmodem file transfer over serial port 1 from the RAMDISK.

TRON Enables and disables fracing of program statements.

TROFF

VARS Prints a list of all variables to the LPRINT device.

WATCH Monitors variable during execution

BREAK
Usage

A breakpoint is 1 of up to 20 line numbers. JagBASIC compares the breakpoints with the
next line number to execute. If JagBASIC finds a match, it stops execution and displays the
next line number fo execute in square brackets. You can remove a breakpoint from the list
with the BREAK OFF option or by clearing all breakpoints with the CLEAR or CLEAR BREAK
statements.

The BREAK command without any parameters displays the current list of all breakpoints.

Syntax
BREAK linenumber [OFF]

Example
BREAK 100

(10/01) 5-3

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

CLEAR

DELETE

DIR

END

5-4

(10/01)

Usage

Closes all files, releases file buffers, clears all common variables, sets numeric variables
and arrays to zero, and sefs string variables to null. Used to reinitialize all variables fo zero
or to null. Clears all break and watch points.

Syntax
CLEAR [BREAK | WATCH]

Example
CLEAR (Clears both break points and watch points)

CLEAR BREAK (Clears break points only)
CLEAR WATCH (Clears watch points only)

Usage
Deletes a specific program line or a range of lines.

Syntax
DELETE line[-line]

line The number of the line in the program that you want to delete. If a range of
lines is deleted, the first, the last, and all lines inclusive in the range are
deleted.

Example 1

DELETE 40

Example 2

DELETE 40-100

Usage
Prints the RAMDISK directory on the LPRINT device.

Synfax
DIR

Example
DIR

Usage

Ends a program and closes all files. If a program confains subroutines, an END statement
should be placed between the main program and the first subroutine to prevent you from
inadvertently running the subroutine. An END statement is execufed implicitly at the end of
every program.

Syntax
END

ERASE

KILL

LIST

Chapter 5: JagBASIC Commands
Interpreter Commands
Example 1
10 PRINT "Program Over."
20 END

Example 2
520 IF K>1000 THEN END ELSE GOTO 20

Usage
Frees the memory used by an array. Arrays may be redimensioned after they are erased so
the memory space allocated may be used for other purposes.

Syntax

ERASE array name [,array name]...

array name The name of the array that you want fo erase from memory.
Example

200 DIM B(250)

450 ERASEB

Usage
Deletes the specified file from the terminal RAMDISK and frees the space it occupied.

Syntax
KILL "filename.bas"

filename.bas The name of the file that you want to delefe.

Example 1
KILL “file4.bas”

Example 2
10 KILL “dafa2.bas”

Usage
Lists all or part of a program fo the LPRINT device.

Syntax
LIST [startline-endline]

Starfline Range of line numbers that you want to list to the LPRINT device.

endline Startline is the first line to print and endline is the last line o print. If startline
and endline are not specified, the entire program will be listed.

Example 1
LIST

Example 2
LIST 10-20

(10/01) 55

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

LOAD

NEW

NEXTLINE

RESETKEYS

5-6

(10/01)

Usage
Loads a file from the RAMDISK into memory. LOAD closes all open files and deletes all
variables residing in memory before loading the new file.

Syntax
LOAD “filename.bas”

filename.bas The name of the file that you want to load into memory. If the extension
and end quotes are omitted, .bas is assumed.

Example 1
LOAD *ile1.bas”

Example 2
LOAD “TEST

Usage
Clears the current program and all variables from memory.

Syntax
NEW

Example
NEW

Usage

NEXTLINE displays the next line number to execute or send a new next line when you set
the optional line number. JagBASIC displays the new line number o confirm the selection.
If you enfer a nonexistent line number, JagBASIC refains the current next line. Square
brackets surround the displayed line number. You use RUN fo resume execution. If you use
NEXTLINE to reposition the program into or out of an execution block, you will likely get a
program execution error after execution resumes. If there is no program currently executing,
NEXTLINE displays a [0] line number.

Syntax
NEXTLINE [linenumber]

Example
NEXTLINE

NEXTLINE 100

Usage

The RESETKEYS command sefs the JagBASIC keyboard parameters back to a known state.
(Autostart fo "N" and Manual Start to ""N".) It is used primarily when debugging a program
that fakes control of the keyboard parameters. If the program crashes, you can use the
RESETKEYS command fo recover control of the keyboard for program editing and of the
keypad for accessing setup.

Syntax
RESETKEYS

Example
RESETKEYS

REM

RUN

RZ

SAVE

SHOW

Chapter 5: JagBASIC Commands
Interpreter Commands

Usage

Enables you to add comments or reference remarks to the program code. This information
is non-executable and is typically used to describe or explain the program operation. The
JagBASIC preprocessor deletes all REM statements in building the executable JagBASIC
program.

Syntax
REM comment

comment Text in any combination of characters.

Example
10 REM This is a comment.

Usage

Executes the current file in memory. If no program is resident in memory when RUN is
executed, JagBASIC returns fo the command prompt. Resumes execution af next line
number after BREAK (JAGXTREME only).

Syntax
RUN [*filename.bas”]
filename. bas The name of the file that you want to execute. All open files will be
closed and the new program loaded into memory and executed. If a
filename is not specified, the current open program is executed.
Example

RUN “test.bas”

Usage
Initiates receiving files into the ferminal's RAMDISK file system from the PC using ZMODEM
protocol over serial port 1.

Syntax
RZ

Example
RZ

Usage
Saves the current BASIC program in memory fo the RAMDISK with the specified file name.

Syntax
SAVE “filename.bas”

filename.bas Name under which you want to save the current BASIC program.

Example
SAVE *file1.bas”

Usage
SHOW displays the last line number executed in square brackets, the variable name, and
itfs current value. SHOW is a program debug command.

(10/01) 5-7

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

STEP

STOP

5-8

(10/01)

Syntax
SHOW variable

Example
SHOW a$

Usage

Executing the STEP command at a breakpoint executes the next line number and sfops.
Pressing the ENTER key at a breakpoint performs the STEP function. STEP is a program
debug command.

Syntax
STEP

Example
STEP

Usage

Terminates program execution and returns to the command level. STOP may be used
anywhere in a program fo terminate execution. When STOP is encountered, the ferminal
displays the message: "end pgm." A STOP command with optional line number inserts a
temporary breakpoint at the line number (JAGXTREME only). JagBASIC removes the
temporary breakpoint after the line execufes and the execution stops at this BREAK. Only
one temporary breakpoint can be used at a time.

Syntax
STOP [line number]

Example
10 INPUTA, B, C

20 PRINTA, B, C
30 STOP

STOP 200

SZ

TRON, TROFF

Chapter 5: JagBASIC Commands
Interpreter Commands

Usage
Initiafes sending files from the terminal's RAMDISK to the PC using a Zmodem file transfer
over serial porf 1.

Syntax
SZ ["filename"]

fitename The name of the file fo be transmitted. If you do not specify a file name,
Zmodem transmits all files in the RAMDISK.

Example
SZ "file1.bas"

Usage
Enables and disables fracing of program statements. TRON and TROFF can be used fo help
debug the program.

TRON (Trace On) enables a frace flag that prints each line number of the program as it
executes. The numbers appear enclosed in brackets. The output will use the LPRINT device.

TROFF (Trace Off) disables the frace flag.

Syntax
TRON
TROFF

Example

10 B=10

20 FOR C=110 2

30 D=B +10

40 PRINT B;C;D

50B=B + 10

60 NEXT

70 END

TRON

RUN

[10][20]1[30][40]1 1020
[560] [60] [30] [40] 2 20 30
[50] [60] [70]

TROFF

(10/01) 5-9

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

VARS

WATCH

Variable Commands

Data variables defined in the program
are saved in the JagBASIC interpreter
until the ferminal is powered down, the
NEW command is issued, or a new
program is loaded using the LOAD
command.

Variable names of 8 characters or less

make the most efficient use of memory.

5-10 (10/01)

Usage
Prints a list of all variables to the LPRINT device.

Synfax
VARS

Example
variable <sb> INTEGER val: <O>

variable <sa> INTEGER val: <O>
variable <w2> STRING val: < 100.00>
variable <w1> STRING val: < 200.2>

4 variables 90 max

Usage

WATCH is a program debug command. A watchpoint is a variable that JagBASIC monitors
during execution. When the program writes a value to the variable, WATCH displays the
line number of the statement in square brackets, the variable name, and its new value. If
you use the optional BREAK parameter, the program stops after the current line executes.
Multiple statements within a line that affect the variable value will resulf in multiple display
lines before execution stops. You can remove a watchpoint from the list with the WATCH
OFF option or by clearing all wafchpoints with the CLEAR or CLEAR WATCH stafements. The
WATCH command without any parameters displays the current list of all watchpoints.

Syntax
WATCH variable [BREAK | OFF]

Example
WATCH a$

JagBASIC enables you to represent two fundamental kinds of data: sirings and numbers.
Number data is further divided info “types.” JagBASIC has three numeric data fypes and
one string type.

Integer (A%)—a numeric variable representing a whole number befween
-32768 and +32767.

Single precision (Al)—a numeric variable in 32-bit floating point nofation between 3.4E-
38 to 3.4E+38.

Double precision (A#)—a numeric variable in 64-bitf floating point notafion between 1.7E-
308 fo 1.7E+308.

Variable length string (AS)—a list of characters ferminafed by a 0. The maximum length
sfring is 160 bytes in the JAGXTREME ferminal.

JagBASIC enables you to assign descriptive names fo data values, called variables.
Variable names can contain up to 16 characters and must begin with a letter. Valid
characters are A-Z and 0-9. Variables are case sensitive, for example AS and a$ are
different variables. The last character of the variable name specifies the data type (%, !, #,
or $). The maximum number of variables is 200.

Chapter 5: JagBASIC Commands
Variable Commands
JAGXTREME ferminals use a mechanism called shared data for the various program
threads to share variable data. The link to shared dafa from JagBASIC is implemented with
a unique JagBASIC function.

DEFSHR ABC, fieldname

ABC The internal reference (variable) in BASIC for a variable in shared data with a
specified fieldname.

fieldname Any ferminal shared dafa variable name as listed in Chapter 6 or 7.
Assignments fo shared data appear the same as standard variables, i.e.,

ABC = SQR(XYZ!
Shared data inpufs fo expressions or functions also appear the same, i.e.,

XYZ! = ATAN(ABC)

Shared data long infegers are converfed fo double precision fype in JagBASIC when
reading or writing to shared dafa. A long infeger is a four-byte (32-bit) signed number. Bit
fields in shared dafa are converted to infegers.

JagBASIC does not support using JagBASIC provides a simple structure called the array to manipulate lists of data. An array
array variables as an index info is a collection of values stored in elements that are accessed by indexing info an array. It
an array. can hold only one type of variable. Arrays function as data storage and retrieval fools in

memory, just as files function as data storage and retrieval tools on disk. Arrays are used
as tools for organizing and processing data. An array enables you to create a set of
variables with a common name. Declaring the name and type of an array and sefting the
number of elements and their arrangement in the array is referred to as defining, or
dimensioning, the array. Arrays may have up to three dimensions.

JagBASIC provides several data commands.

Command Usage

COMMON Defines global variables that can be shared between chained
programs.

DATA Specifies values to be read by READ stafements.

DEFSHR Allows a program to access the terminal shared database.

DIM Declares an array, where subscripts are the dimensions of the
array.

LET Assigns the value of an expression to a variable.

OPTION BASE Declares the minimum value for array subscripfs.

READ Reads values from a DATA statement and assigns them fo
variables.

RESTORE Allows DATA statements to be reread from a specified line.

SWAP Exchanges the values of two variables that are variables of the
same data type.

TIPS

The LET command is optional and its use is not recommended. The following two
statements are equivalent: LET X=1 and X=1.

(10/01) 5-11

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

COMMON

DATA

5-12 (10/01)

Usage
Defines global variables that can be shared between chained programs.

By defaulf variable names in a program module are available only in that program
module. COMMON extends the scope of listed variables fo other chained programs.

Syntax

COMMON variablelist

variablelist One or more variables to be shared.
Example

COMMON aS, pi#t

Usage

Specifies values to be read by READ stafements. DATA statements contain lists of values
separated by commas. The first READ statement in a program reads the first value in the
DATA list. The second READ statement reads the second value in the DATA list, and so on.
JagBASIC fracks the next value fo be read.

Syntax
DATA constant[,constant]...

consfant One or more numeric or string constants specifying the data fo be read. String
constants containing commas, colons, or leading or trailing spaces are
enclosed in quotation marks ("").

Example
10 DIM itemS(5), number(5,3)

20 FORk% =110b

30 READ itemS(k%)

33 FORj% =1103

35 READ number(k%,j%)

36 NEXT %

40 NEXT k%

45 FORj% =1103

60 FORk% =1105

70 LPRINT itemS(k%), number(k%,j%)

80 NEXT k%

85 NEXT %

90 DATA hammers,4,5,6,umbrellas,2,3,4,wood_stoves, 1,2
100 DATA bags_of_salt,4,5,6,needle_nose_pliers,2,3,4
110 END

DEFSHR

Chapter 5: JagBASIC Commands
Variable Commands
Output: hammers
umbrellas
wood_stoves
bags_of_salt
needle_nose_pliers
hammers
umbrellas
wood_stoves
bags_of_salt
needle_nose_pliers
hammers
umbrellas
wood_stoves
bags_of_salt
needle_nose_pliers

P OWPRODWONWON R =N

Usage

Allows a program to access the terminal shared database. Any read or write to the variable
name automatically refers to the associated field within the shared database. JagBASIC
automatically determines the variable type from the shared file name. The shared file name
overrides the variable name suffix.

SYNTAX
DEFSHRvar, SDname

JagBASIC Shared Data

gross$ wt101

Once the DEFSHR command is executed for a variable, the shared data variable may be
read or written using JagBASIC’s variable name for it. The variable type (string, float,
integer) must match the shared data type; otherwise a syntax error is indicated. No type
conversion is performed.

Syntax
DEFSHR variablename,sharedfilename
variablename The name of the variable.

sharedfilename The name of the shared dafa file.

Example
This program displays the gross weight of the scale not selected in the lower terminal

N/

display using the “print” command. The “a” and *b” keys on the terminal keyboard enable
you to switch between Scale A and Scale B.

1 REM wl=gross weight Scale A, w2=gross weight scale B.
REM sa is the discrete event to select scale A.

REM sb is the discrete event to select scale B.

2

3

4 REM Display the gross weight of the scale not selected in

5 REM the lower terminal display using the "print" command.
6

REM Switch between Scale A and Scale B using the

(10/01) 5-13

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

5-14 (10/01)

7 REM "a" and "b" keys on the terminal keyboard.
10 DEFSHR w1,wt101

20 DEFSHR w2,wt201

30 DEFSHR sa,i_6c0

40 DEFSHR sb,t_6c¢1

50 sa=1

60 PRINT " wa=";w2

70 IF INKEYS = "b" THEN GOTO 100
80 GOTO 60

100 sb=1

110 PRINT " wb=";w1

120 IF INKEYS = "a" THEN GOTO 50
130 GOTO 110

140 END

DEFSHR Arrays

You may use single dimension or multidimensional arrays of DEFSHRs. JagBASIC allows
you to sefup an array of DEFSHRs so thaf you can index into an array of shared data
variables. This feafure reduces the amount of JagBASIC code needed for accessing multiple
scales, setpoints, discrefe inpuf variables, discrete output variables, and literals. You must
use the dimension stafement to define the array type and array size. Then, you use the
DEFSHR statement to assign a shared data variable fo each element of the array. The fype
of each shared data variable must be the same type as the array.

Example 1
5 REM ARRAY OF SHARED DATA LITERALS

10 DIM aS(5)

20 DEFSHR aS(1),lit01

30 DEFSHR a$(2),1it02

40 DEFSHR a$(3),1it03

50 DEFSHR aS(4),1it04

60 DEFSHR a$(5),it05

70 FORi% =1tob

80 LPRINT "literal";i%;" = ";aS(i%)
90 NEXT i%

100 END

Example 2
5 REM ARRAY OF SETPOINT COINCIDENCE VALUES

10 DIM setpoint#(4)

20 DEFSHR setpoint#(1),sp105
30 DEFSHR setpoint#(2),sp305
40 DEFSHR setpoint#(3),sp505

50 DEFSHR setpoint#(4),sp705
60 FOR 1% =110 4

70 setpoint#(i%)=2.0*i%

80 NEXT i%

90 END

Example 3
5 REM ARRAY OF DISCRETE OUTPUTS

10 DIM do%(12)

20 DEFSHR do%(1),p_500
30 DEFSHR do%(2),p_501
40 DEFSHR do%(3),p_502
50 DEFSHR do%(4),p_503
60 DEFSHR do%(5),p_508
70 DEFSHR do%(6),p_509
80 DEFSHR do%(7),p_50a
90 DEFSHR do%(8),p_50b
100 DEFSHR do%(9),p_50c
110 DEFSHR do%(10),p_50d
120 DEFSHR do%(11),p_50e
130 DEFSHR do%(12),p_50f
140 FOR|% = 110 10

150 FORi% = 110 12

160 DO%(i%)=1

170 SLEEP 1000

180 DO%(i%)=0

190 NEXT i%

200 NEXT j%

DEFSHR Links to Remote Shared Data

Chapter 5: JagBASIC Commands
Variable Commands

JagBASIC programs can access shared data variables located in remote JAGXTREME
terminals in a cluster. The node location and name of the remofe data variable is specified
in a DEFSHR statement. When there is no node specified in the DEFSHR command,

JagBASIC assumes that the request is for the local node.

DEFSHR a$,j2/wt101 creates a remote link to gross weight shared data variable wt101 in

ferminal node j2.

DEFSHR bS,wt101 creates a local link to gross weight shared data variable wt101.

Once the link has been established, use the normal JagBASIC syntax to access the remote
variable. The program should take into account that the remote terminal may not be online
when you atfempt to access it. Use an ON ERROR GOTO or ON ERROR GOSUB statement o

handle these offline errors.

(10/01) 5-15

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

The program should also fake into account that there is a short time delay when it
accesses the remofe shared dafa variable. When the BASIC application uses the same
remote variable more than once in a series of calculations, it should access it only once
and store the value in a local BASIC variable. Then, the BASIC application can use the local
BASIC variable in the subsequent calculations. This procedure will streamline the execution
speed of the program.

Example
10 REM SUM GROSS WEIGHT IN A CLUSTER

20 ON ERROR GOSUB 1000

30 DIMw#(4,2)

40 DEFSHR w#(1,1),j1/wt110

50 DEFSHR w#(1,2),j1/wt210

60 DEFSHR w#(2,1),j2/wt110

70 DEFSHR w#(2,2),j2/wt210

80 DEFSHR w#(3,1),j3/wt110

90 DEFSHR w#(3,2),j3/wt210

100 DEFSHR w#(4,1),j4/wt110

110 DEFSHR w#(4,2),j4/wt210

120 SUM#=0

130 FORi% =110 4

140 FOR % = 1102

150 sum#=sum#+w#(i%,j%)

160 NEXT j%

170 NEXT i%

180 PRINT using "fotal_+##### ##";sum#
190 TPRINT using "total_+##### ##";sum#
200 GOTO 120

1000 IF err()<>32 or erl()<>150 then end
1010 PRINT "JAGXTREME ";i%;" offline"
1020 IF INKEYS = "" then GOTO 1020
1030 RETURN

DIM

Usage
Array variables *can not” be used as Declares the name, size and fype of an array and allocates sforage for it. An array is a
part of any serial input statement,. variable containing a series of values that are referred fo with one name. The number in
parentheses following the array name defines the number of individual variables in the

Example of illegal operafion: array. A JagBASIC array can have up fo three dimensions.

10 open “com1:xpr len10 frm13
tmo100” for input as #1
20 Input #1, dataS(x)

Syntax
DIM variable[(subscripts)] [,variable[(subscripts)]]

variable Name of an array.

subscript Used in conjunction with variable; defines dimensions of array.

5-16 (10/01)

LET

OPTION BASE

Chapter 5: JagBASIC Commands
Variable Commands
Example
10 DIM itemS(5), number(5,3)

20 FORk% =1t05b

30 READ itemS(k%)

33 FORj% =1103

35 READ number(k%,j%)

36 NEXT j%

40 NEXT k%

45 FORj% =1103

50 PRINT "You have these items:"

60 FORk% =1105

70 PRINT itemS(k%), number(k%,j%)
80 NEXT k%

85 NEXT %

90 DATA hammers,4,5,6,umbrellas,2,3,4
95 DATA wood_sfoves,1,2,3

100 DATA bags_of_salt,4,5,6,pliers,2,3,4
110 END

Usage

Assigns the value of an expression fo a variable. Use of the keyword LET is optional. This
command is used to initialize variables or fo change their current value. The command
word LET is optional and its use is nof recommended.

Syntax

[LET] variable=expression

variable The variable name.

expression The value that you want to assign to the variable name.
Example 1

10 LET AS = “JAGXTREME”

Example 2
20 BS = “JagBASIC”

Usage

Declares the minimum value for array subscripts. Subscripts are the numbers which can be
used to access the elements of an array. OPTION BASE gives an error if the base value is
changed. The defaulf subscript base is 1.

(10/01) 5-17

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

READ

RESTORE

5-18 (10/01)

Syntax
OPTION BASE {O | 1}

O Sets the lowest value any array subscript can have o 0.

] Sets the lowest value any array subscript can have fo 1. This is the default setting.

Example 1
OPTION BASE 1

Example 2
OPTION BASE O

Usage
Reads values from a DATA statement and assigns them to variables. Values are always
read in the order in which they appear in the DATA statements.

Syntax
READ variablelist

variablelist One or more variables, separafed by commas.

Example
70 DIMAC10)

80 FORI=1T0 10
90 READ A(l)

100 NEXT |

110 DATA 3.10,5.20,6.10,7.20,8.10
120 DATA 5.30,6.30,7.30,8.30,9.30

Usage
Allows DATA stafements to be reread from a specified line. Enables a program fo read data
selectively based on a particular condition.

Syntax
RESTORE [line]

line The line number of a DATA statement. If line is omitted, the next READ accesses
the first item in the first DATA stafement.

Example
10 READ A,B,C

20 RESTORE
30 READ D,E,F
40 DATA 57,58,59

SWAP

Flow Control and Operator

Commands

Chapter 5: JagBASIC Commands
Flow Control and Operator Commands

g;:r?:nges the values of two variables, if the variables are the same data type.
Syntax

SWAP variable1, variable2

variable] One of the variables whose value you want to exchange.
variable2 One of the variables whose value you want to exchange.
Example

10 0% =1:b% =2

20 PRINT "Before: *; a%, b%
30 SWAP a%, b%

40 PRINT "After: "; 0%, b%

Output: Before 1,2
Affer 2,1

Few programs run straight through the program code from the first statement to the last in
sequence. Usually, you need fo branch to a different piece of code or repeat a section
multiple times. Identical tasks that are used in several places can also be made into a
subroutine to save code space. This section details how JagBASIC allows you fo control
the sequence of program execution.

Branching directs control of the code away from the next sequential step. JagBASIC has
two commands that can be used to perform branching: GOTO and GOSUB RETURN.

GOTO causes the program fo jump fo a different execution point and continue sequencing
from the line number indicated until the program ends or encounters another *branching”
command.

GOSUB ... RETURN causes the program fo jump to a different execution point and then
return fo the statement following the original branching point once the RETURN stafement is
reached.

IF condition THEN line executes an implied GOSUB call fo the appropriate line depending
on the specified condition. The program jumps to a different execution point and then
returns to the statement following the original branching point once the RETURN statement
is reached.

Looping execufes the same sequence of statements more than one time. JagBASIC has two
loop commands: FOR NEXT and WHILE WEND.

The FOR NEXT loop is repeated a fixed number of times as defermined in the
statement’s first line.

The WHILE WEND loop is repeated until a condition has been met.

Decision and operator commands enable programs to change processing based on
certain criteria. JagBASIC’s fundamental criteria determining statement is the IF THEN
command.

(10/01) 5-19

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

IF THEN, used in conjunction with the logical operators, AND, OR, and XOR, enables
you tfo establish specific conditions which must be met in order for a resulting action to
occeur.

This section discusses the following flow control and operator commands:

Command Usage

AND A logical operator in a decision statement which establishes two sets
of criteria to be met.

CHAIN Dynamically loads another program file for execution and begins
executing the program.

CHAINCALL Operates same as CHAIN command except it remembers the current
program name and line number of the program initiating chaining.

CHAINRET Operates same as CHAIN command except it returns control from the
chained program to the chaining program of next line after the
CHAINCALL.

FOR...NEXT Repeats a section of the program the specified number of times.

GOSUB Branches fo a specified line number with intent to return to the next
line.

GOTO Branches unconditionally to the specified line number.

IF...THEN Execufes the sub-statement depending on specified conditions.

OR Used as a logical operator in a decision statement to establish two
possible conditions, of which only one needs fo be met.

RESETJAG Resets the terminal by forcing its execution through power-up.

RESTART Clears the JagBASIC execution stacks and sends program control to
the first line of the currenf program.

RETURN Used in conjunction with GOSUB, indicates that the subroutine is
complete.

SWITCHSUB Branches fo a line number specified by the value of a variable with
intent 1o return to the next line.

SWITCHTO Branches unconditionally to the line number specified by the value of
a variable.

WHILE...WEND | Repeats a section of the program until a specified logical condition is
frue.

XOR Used as a logical operator in a decision statement to establish two
possible conditions, only one of which can be met.

TIPS

AND

The AND operator has a lower
precedence than assignment
operators. Use parentheses around
the operation to assign ifs value to a
variable.

5-20 (10/01)

JagBASIC does not support commands for breaking out of loops other than their normal
exit point. For this reason programmers may try to branch out of loops. Do nof jump from
inside a loop fo outside the range of the loop. Always fake the normal return from a GOSUB
command. JagBASIC supports nine levels of nesting for GOSUB, FOR-NEXT, and WHILE-
WEND. If you branch out of these structures, the nesting level does not gef reset.
Eventually, an overflow error will occur.

Usage

Used as a logical operator in a decision statement to establish two sets of criteria, both of
which must be met. AND can also be used as a bitwise operator between two integer
expressions.

CHAIN

For the most efficient memory
utilization, start execution with
the largest program and chain
the smaller programs.

CHAINCALL

Chapter 5: JagBASIC Commands
Flow Control and Operator Commands

Syntax

IF condition1 AND condition2 THEN result.

condition] First condition for decision.

condifion2 Second condifion for decision.

result Result that will occur if both conditions are met.
Example 1

30 IF A>75 AND B<20 THEN 5000

Example 2
50 A% = (B% AND 1)

Usage

Allows you fo program a large application by enabling you to split the application info
smaller program modules. CHAIN loads another program and transfers control from the
current program to another BASIC program. Variables identified as common variables are
accessible by the chained JagBASIC program. CHAIN commands must be placed in the top
level of the JagBASIC program, not within a GOSUB, [F-THEN-ELSE, WHILE-WEND, or
FOR-NEXT loop.

Syntax

CHAIN *“filename.bas”

filename. bas The name of the program in the terminal RAMDISK directfory fo which
you want fo transfer the current program's controls and variables.

Example

CHAIN "fest.bas"

Usage

The CHAINCALL command as operates the same as a CHAIN command except that it
remembers the current program name and line number of the program that is initiating the
chaining. Affer issuing a CHAINCALL, you must execufe a CHAINRET before issuing another
CHAINCALL.

Syntax

CHAINCALL "filename.bas"

Filename.bas The name of the program in the RAMDISK directory you want to
transfer to the current program's controls and variable with the infent
to return.

Example

5 REM Program CHAIN_X.BAS

10 LPRINT "The square root of *; 9; "is "; sqr(9)
20 LPRINT "The square root of *; 6; " is "; sqr(6)
30 LPRINT "The difference is "; sqr(9) - sqr(6)
40 LETnum=5.0/3

50 LPRINT "5 divided by 3is "; num

60 LPRINT "5 divided by 2is *; 5.0/ 2

70 PRINT "hello"

(10/01) 5-21

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals
80 CHAINCALL "chain_y.bas"
90 PRINT "bye bye"
100 SLEEP 300
120 GOTO 10

REM Program CHAIN_Y.BAS
LPRINT "This is Y"

LPRINT "Time fo refurn"

30 CHAINRET

CHAINRET

Usage

The CHAINRET command operates the same as a CHAIN command except that it returns
control from the chained program to the chaining program af next line after the CHAINCALL.

Syntax

CHAINRET

Example

5 REM Program CHAIN_Y.BAS

10 DIM itemS$(5), number(5,3)
20FORk% =1105

30 READ itemS$ (k%)

33FORj% =113

35 READ number(k%, %)

36 NEXT j%

40 NEXT k%

45FORj% =1103

50 LPRINT "You have these items:"
B0FORKk% =1105

70 LPRINT itemS(k%), number(k%,j%)
80 NEXT k%

85 NEXT j%

90 DATA hammers, 4,5,6,umbrellas,2,3,4,wood_stoves, 1,2,3
100 DATA bags_of_salt,4,5,6,pliers,2,3,4
110 LPRINT "I am here"

120 SLEEP 300

140 CHAINRET

5-22 (10/01)

FOR NEXT

GOSUB

Chapter 5: JagBASIC Commands
Flow Control and Operator Commands

Usage
Repeats the block of statements between the keywords FOR and NEXT the specified number
of fimes.

Syntax
FOR counter = start TO end [STEP increment]

*
*
*

*

NEXT counter

counfer A numeric variable used as the loop counter.
start The initial value of the counter.
end The final value of the counter.

increment The amount the counter changes each fime through the loop. A fractional value
is not allowed. If STEP is not specified, JagBASIC assumes a value of 1.

Example 1

100 FOR % = 1T0 15
110 PRINT j%

120 SLEEP 1000

130 NEXT j%

Example 2
100 FOR 0% =1 TO 100 STEP 10

110 PRINT 0%
120 NEXT a%

Usage
Branches fo a subroutine. Used in conjunction with RETURN.

Syntax
GOSUB line

*

*
line *
*

RETURN

line The line number of the subroutine to branch to in the program.

(10/01) 5-23

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

GOTO

IF THEN

5-24 (10/01)

Example
10 FORb% =1 TO 20

20 GOSUB 50

30 NEXT b%

40 END

50 REM Print Subroutine
60 PRINT “b%= ",b%
70 RETURN

Usage
Branches unconditionally to a specified line.

Syntax
GOTO line

*
*

*

line *

line The line number fo branch to in the program.

Example
10 IF INKEYS="E" then GOTO 50

20G0TO 10
50 END

Usage

Executes the sub-statement depending on specified conditions. The entire IF statement
must be confained on one line. The condition is any expression that can be evaluated as
true or false. You can have multiple statements in a THEN or ELSE clause as long as the
entire statement is contained on one line. The IF condition THEN line stafement execufes an
implied GOSUB call to the appropriate line depending on the specified conditions. Be sure
to execute a RETURN from this implied GOSUB.

Syntax
IF condition THEN statement [ELSE statement]

IF condition THEN GOTO linenumber [ELSE statement]
IF condition THEN line [ELSE line]

Example 1
10 INPUT "SELECTION ? ", i%

20 IF i% = 1 THEN PRINT "OK" ELSE GOTO 50
30 GOTO 10
50 END

Chapter 5: JagBASIC Commands
Flow Control and Operator Commands
Example 2
T10FOR % =110 10

20 IFi% < 7 THEN 100 ELSE 120
30 NEXT i%

40 END

100 PRINT " You lose."

115 RETURN

120 PRINT " You win."

130 RETURN

Example 3
NextKey:

mS=inkey$

IF mS=chr$(2) THEN x%=2: GOTO Escape

IF mS=chr$(3) THEN x%=3: GOTO Memory ELSE x%=0: GOTO NextKey
Escape:

PRINT “Escape”; x%: GOTO NextKey

Memory:

PRINT *Memory”; x%: GOTO NextKey

OR
The OR operator has a lower Usage
precedence than assignment Used as a logical operator in a decision stafement to establish two possible conditions, of
operators. Use parentheses around which only one needs to be met. OR can also be used as a bitwise operafor befween two
the operation fo assign its value fo a integer expressions.
variable.
Syntax
IF condition1 OR condition2 THEN result
condifion] First condition for decision.
condifion2 Second condition for decision.
result Result that will occur if either condition is met.
The first lei implied GOSUB Example 1
e Tirst example IS an implie:
and requires a RETURN statement later 30IF A>75 OR B<20 THEN 5000
in the program. Example 2
30 IF A>75 OR B<20 THEN GOTO 5000
Example 3

10 B% = (A% ORC%)

(10/01) 5-25

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

RESETJAG

Usage
The RESETJAG command re-initializes the terminal by forcing execution through the power-
up cycle.

Syntax
RESETJAG

Example
RESETJAG

RESTART

Usage
Clears the JagBASIC execution stacks and sends program control to the first line of the
current program. This command does not affect the BASIC variables.

Syntax
RESTART

Example
RESTART

RETURN

Usage
Branches back to the line following a GOSUB statement.

Syntax
RETURN

Example
10 GOSUB 1000

*
1000 LPRINT "Hello"
1070 RETURN

SWITCHSUB

Usage
Performs a GOSUB call fo the line specified in the variable.

Syntax
SWITCHSUB lineNumber%

lineNumber% is a variable containing the line number to which contfrol is fransferred.

Example 1

110 IF a%=1 THEN j%=1000 ELSE j%=2000
120 switchsub j%

130 REM Main Loop

140 0%=0

150 END

1000 LPRINT "Test complete"
1010 RETURN

5-26 (10/01)

Chapter 5: JagBASIC Commands
Flow Control and Operator Commands
2000 LPRINT “Select Test”

2010 RETURN

Example 2
Code before running through JagBASIC preprocessor. The JagBASIC preprocessor resolves
labels that are identified by xx to line numbers.

REM table initialization

DIM cmd% (18)

%=1

NextCmd:

Read cmd%(j%)

if j%<18 then j%=j%+1; GOTO NextCmd

*

*

REM call subroutine fo process command
ProcessCommand:

Input *Acommand”; j%

If j%<0 or j%>18 then GOTO ProcessCommand
switchsub j%

*

SetDischargeCycle:

*
CaptureTare:
*

*

REM command state fable

DATA xx SetDichargeCycle, xx CloseGates, xx CloseGate

DATA xx WaitForwHGafeClose, xx CloseGate, xx WaitUGClose

DATA xx WaitSettlingTimer, xx WaitNoMotion, xx NoMotion

DATA xx CaptureTare, xx RecordDraftComplete, xx CheckUpstreamPreact
DATA xx SetFill cycle, 0,0,0,0,0

(10/01) 5-27

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

SWITCHTO

WHILE...WEND

5-28 (10/01)

Usage
Performs a GOTO operation fo the line specified in the variable.

Syntax
Switchto lineNumber%

lineNumber% is a variable value that specifies the location to GOTO.

Example
100 IF %=1 THEN j%=1000

110 IF 0%=2 THEN j%=1100
120 IF 0%=3 THEN j%=1200
500 SWITCHTO j%

1000 LPRINT"Test 1"

1010 a%=0

1020 GOTO 2000

1100 a%=1

1120 GOTO 2000

1200 LPRINT "Test 3"

1210 0%=2

2000 *

Usage

Executes a series of statements as long as a specified condition is true. If the condition is
false when the WHILE statement is first encountered, the loop is bypassed and not
executed.

Syntax
WHILE condition

WEND

Example

10 years=0

20 money=10000

30 start=money

40 interest=8.5/100

50 WHILE money <= 2*start
60 PRINT years,money

70 years = years+1

80 money = money+(inferest*money)
90 WEND

XOR

The XOR operator has a lower
precedence than assignment operators.
Use parentheses around the operation
fo assign its value to a variable.

This example is an implied GOSUB
statement.

Precedence of Operators

Chapter 5: JagBASIC Commands
Flow Control and Operator Commands
100 PRINT "In *; years ; " years, you'll have $"; money

110 END

Usage

Used as a logical operator in a decision stafement to establish two possible conditions,
only one of which can be met. Used fo guarantee that only one variable is frue, preventing
conflicting options from being true. XOR can be used as a bitwise operator between two
integer expressions. The XOR operator has a lower precedence than assignment operators.
Use parentheses around the operation to assign its value to a variable.

Syntax

IF condition1 XOR condition2 THEN result

condifion] First condition for decision.

condifion2 Second condifion for decision.

result Resulf that will occur if only one conditions is met.
Example 1

30 IF A>75 XOR B<20 THEN 5000

Example 2

100 x%=(4 XOR A%)

JagBASIC’s order of operations has a predefined precedence when evaluating expressions.
The following numeric and conditional operators are in precedence order.

A Exponent

* Multiply

/ Divide

\ Integer Divide

MOD Modulus

+ Add

- Subtract

= Equals

= Assign

<> Not Equal

< Less Than

> Greater Than

<= Less Than Or Equal
>= Less Than Or Equal
=> Greater Than Or Equal
NOT Not

AND And

OR Or

XOR Exclusive Or

(10/01) 5-29

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

Math Commands

For example,
60 B=3+4*5
70 PRINT B
Output: 23

AND, OR, and XOR have lower precedence than an assignment operator. Therefore, if you
need o assign the results of an AND, OR, and XOR operation fo a variable, you must put
parentheses around the operation.

JagBASIC provides numerous advanced mathematical commands. Using the commands
listed in this section, you can perform the following types of mathematical functions:

Trigonometric commands ATN, COS, SIN, and TAN return the arctangent, sine, cosine, and
tangent. The angle values are expressed in radians. To convert to degrees, multiply the
number of radians by (180/x) or approximately 57.3°.

Logarithmic and Exponential commands return the natural logarithm and its complement.

Natural logarithms are based on e (approximately 2.718282.)

Conversion commands convert numbers from one type to another. These commands
enable you to convert a number from its existing format fo the format expected by the
function or subroutine. Conversion is implied by the variable’s data type. For example,
a#=1 automatically converts the integer 1 to a double precision floating point number.

Rounding and Truncating commands round and truncate numbers.

Random Number commands generate random numbers.

Arithmetic Operations commands perform operations such as finding a number’s absolute

value, defermining its sign, and finding its square root.

This section discusses the following JagBASIC mathematical commands:

Command Usage
ABS() Returns the absolute value of a number.
ATNO Returns the arctangent of specified numeric expression in radians.
CINT Rounds a numeric expression to the closest integer.
COSO Returns the cosine of a specified angle expressed in radians.
GSNGO Converts a numeric expression to a single-precision value.
EXPO Returns e raised fo a specified power, where e is the base of natural
logarithms.
INTO Returns the largest integer less than or equal to a numeric expression.
LOG O Returns the natural logarithm of a numeric expression.
RANDOMIZE | Initializes the random-number generator.
RND O Returns a single-precision random number between O and 1.
SGN O Returns a value indicating the sign of a numeric expression.
SINO Returns the sine of a specified angle expressed in radians.
SQR(O Returns the square root of a numeric expression.
TANQ Returns the tangent of a specified angle expressed in radians.

TIPS

5-30 (10/01)

If you specify nonnumeric values with any of the mathematical commands, you will receive

a type mismatch error message.

ABS()

ATNO

CINT()

Chapter 5: JagBASIC Commands
Math Commands

Usage
Returns the absolute value of a number. The absolute value of a number is the magnitude
of the number without regard to sign. Absolute values are always positive numbers.

Syntax
ABS(numeric-expression)

numeric-expression Any numeric expression.

Example
10 PRINT ABS(45.5-100)

Output: 54.5

Usage
Returns the arctangent of a specified numeric expression in radians. The arctangent is the
angle whose tangent is equal to the specified value.

Syntax
ATN(numeric-expression)

numeric-expression Any numeric expression expressed in radians.

Example
10 LPRINT ATN(.75), ATN(.9)

Output (in radians): 0.6435011 0.7328151

Usage
Rounds a numeric expression to the closest infeger. The numeric expression can be any
number in the range -32,768 through 32,767.

For positive numbers

If the numeric expression contains a fractional part that is less than 0.5, CINT rounds to the
next lower infeger.

If the numeric expression contains a fractional part that is greater than or equal fo 0.5,
CINT rounds to the next higher integer.

For negative numbers

If the numeric expression contains a fractional part that is less than 0.5, CINT rounds to the
next higher integer.

If the numeric expression contains a fractional part that is greater than or equal fo 0.5,
CINT rounds to the next lower infeger.

Syntax
CINT(numeric-expression)

numeric-expression Any numeric expression.

Example
10 PRINT CINT(12.49), CINT(12.51), CINT(12.50), CINT(-12.49)

Output: 12 13 12 -12

(10/01) 5-31

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

COS()

CSNG()

A single precision numeric variable
represents a number of seven or
fewer digits plus an exponent.

A double precision numeric variable
represents a number of eight or more
digits plus an exponent.

Single-precision and double-
precision are also referred to as
floating point variables.

EXP()

5-32 (10/01)

Usage
Returns the cosine of a specified angle expressed in radians.

Syntax
COS(angle)

angle Angle expressed in radians.

Example
40 pi#=3.141592654
50 LPRINT COS(180*pi#/180)

Output: -1

Usage
Converts a numeric expression to a single-precision value.

numeric-expression Any numeric expression.

Syntax
CSNG(numeric-expression)

Example
PRINT CSNG(975.342151523497)

Output: 975.342152

Usage

Returns e raised o a specified power. The natural logarithm base, e, has a value of
approximately 2.71828. The natural logarithm of a number is the power fo which the base
e must be raised to obtain the number. EXP is the inverse function of the natural log
function.

Syntax
EXP(numeric-expression)

numeric-expression Any numeric expression.

Example
PRINT EXP(0), EXP(1)

Output: 1 2.718282

INTQ

LOG()

RANDOMIZE, RND ()

Chapter 5: JagBASIC Commands
Math Commands

Usage
Returns the integer portion of a specified numeric expression.

For positive numbers, the fractional part of the numeric expression is truncated, that is cut-
off.

For negative numbers, the next lower integer is returned.

Rounding does nof occur with this command.

Syntax
INT(numeric-expression)

numeric-expression Any numeric expression.

Example
10 PRINT INT(12.54), INT(-99.4)

Output: 12 -100

Usage

Returns the natural logarithm of a numeric expression. Natural logarithms are based on ¢,
which is approximately 2.718282. The natural logarithm of a number is the power to
which the base e must be raised to obtain the number.

Syntax
LOG(numeric-expression)

numeric-expression Any positive numeric expression.

Example
10 PRINT LOG(5), LOG(EXP(1))

Output: 0.69897 1

Usage

RANDOMIZE specifies a particular initial value or seed value for the random number
generator. This seed value is used in specifying the random-number series fo be used
when the program calls the RND function.

RND returns a single-precision random number between O and 1. The same sequence of
random numbers is generated each time the program runs unless the RANDOMIZE
statement was used to specify a different sequence.

RND returns a pseudorandom number which is generafed from the seed value using a
formula designed to produce numbers that have no pattern or order and appear to be
random. Each seed actually creafes a fixed sequence of numbers. RANDOMIZE enables
you to change the seed value and the sequence generated.

Syntax

RANDOMIZE [seed%)]

RND[(n#)]

seed % A number used to initialize the random-number generator.

n# A value that sets how RND generates the next random number.

(10/01) 5-33

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

Example
10 RANDOMIZE

20 FOR game% = 110 10

30 diel = INT(6*RND + 1)

40 die2 = INT(6*RND + 1)

50 dice = diel + die2

60 PRINT dice;

70 IF dice < 7 THEN GOSUB 100 ELSE GOSUB 120
80 NEXT game%

90 GOTO 150
100 PRINT " You lose."
115 RETURN
120 PRINT " You win."
130 RETURN
150 END
SGN ()
Usage
Returns a value indicating the sign of a numeric expression. Used to fest whether a value is
negative, positive, or zero.
Syntax
SGN(numeric expression refurns)
/ The expression is positive.
0 The expression is zero.
-7 The expression is negative.
Example
10 PRINT SGN(12), SGN(-15), SGN(0)
Oufput: 1 -1 O
SINQ)
Usage
Returns the sine of a specified angle expressed in radians.
Syntax
SIN(angle)
angle Angle expressed in radians.
Example

10 pi#=3.141592654
20 LPRINT SIN(90*pi#/180)

Output: 1

5-34 (10/01)

SQR()

TANQ

String Commands

Chapter 5: JagBASIC Commands
String Commands

Usage
Returns the square root of a positive numeric expression.

Syntax
SQR(numeric-expression)

numeric-expression Any numeric expression.

Example
10 PRINT SQR(25), SQR(2)

Output: 5 1.414214

Usage
Returns the tangent of a specified angle expressed in radians.

Syntax
TAN(angle)

angle Angle expressed in radians.

Example
10 pi#=3.141592654

20 LPRINT TAN(45*pi#/180)
Output: 1

JagBASIC enables you to form many string expressions. A string is simply a variable length
series of character values. Each byte in a string expression is treated in one of fwo ways:

As an ASCII character with a value in the range 1 to 127. The ASCII character set includes
uppercase and lowercase lefters, numbers, punctuation marks, mathematical symbols,
and printer control characters.

As an extended character in the range 128 through 255.
Strings are terminafed by a O (null). The maximum length of a string is 80 characters.

To define a string variable, select a name that describes the string's confents, such as
name$ for the name on a mailing label. The dollar sign (S) suffix means that the variable
holds string data. Use an equal sign (=) followed by a string expression fo assign a value
to the string. A string expression can be as simple as a single variable name or as
complex as a combination of string literals, variables, functions, and the plus sign.

Expression Comment

“Tom and Harry" Single literal

Name$ Single variable
RIGHTS(NameS, 5) String function

"Smith" + LastNameS Combination expression

(10/01) 5-35

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

JagBASIC's sfring commands enable you fo:

5-36 (10/01)

Extract part of a string.

Convert decimal numbers (base 10) fo hexadecimal (base 16) or octal (base 8)

strings.

Convert a character o ASCII code and the reverse.

Create "field" sfrings, which are used to format and arrange output.

Count characters in a string or the number of bytes required fo store a variable.

Display the string representation of a number.

Locate one string within another string.

Interpret the string entered by the user as though it were a number.

Insert a string into another string.

Convert a siring to upper case or lower case

Trim spaces from the beginning or end of a string

This section discusses the following string commands.

Command Usage

ASC(Returns the ASCII or extended code value for the first character in a string
expression.

CHRSO Returns the single-character string corresponding to the specified ASCII
code.

HEXSQ Returns a string confaining the hexadecimal value of a number.

INSTR O Returns the position of the first occurrence of a string in another string.

LCASES Converts a string fo a lower case.

LEFTSQO Returns a specified number of leftmost characters in a string.

LENO Returns the number of characters in a string or the number of bytes
required to sfore a variable.

LTRIMS () | Removes spaces from the beginning of a string.

MIDSO Refurns part of a siring.

MSETS() Inserts one string into another string, overwriting the existing characters.

PADCS () | Add pad characters to beginning and end of a string.

PADLS O | Adds pad characters fo the beginning of a string.

PADRS () | Adds pad characters to end of a string

0CTSO Returns an octal string representation of a number.

RIGHTS(O | Returns a specified number of rightmost characters in a string.

RTRIMS () | Removes spaces from the end of a string.

SPACE() Returns a siring of spaces.

STRS () Returns a string representation of a number.

STRINGS() | Returns a string of a specified length made up of a repeating character.

UCASES () | Converts a string to upper case.

VALQ Converts a string representation of a number to a number.

ASC()

CHRS()

HEXS$()

Chapter 5: JagBASIC Commands
String Commands

Usage
Returns the ASCII or extended code value of the first character in the specified siring
expression.

Syntax
ASC(stringexpression$)

stingexpressionS Any string expression.

Example
10 PRINT ASC("Quiet")

Output: 81
The ASCII value of a capital Q is 81.

Usage

Returns the single-character string corresponding fo the specified ASCII code. Used for
characters not easily entered on the keyboard and placed in a string, such as most control
characters and graphic characters. The CHRS commands can generate all 255 characters
of the ASCII and extended character sets.

Syntax
CHRS (ascii-code%)

ascii-code % ASCII or extended code of the desired character in the range of 1-255.

Example
20 PRINT CHRS(65)

Output: A

Usage
Converts a decimal number (base 10) to a hexadecimal number (base 16).

Syntax
HEXS (numeric-expression)

numeric expression Any numeric expression.

Example
10 INPUT x

20 a$ = HEXS(X)

30 PRINT x; "decimal is "; a$; * hexadecimal”

(10/01) 5-37

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

INSTR ()

LEFTS()

5-38 (10/01)

Usage
Returns the position of the first occurrence of a string in another string. Used for searching
text in database fields or for validating user input.

Syntax

INSTR(string 18, string2$)

sting18 String expression being searched.
sting2S String expression thaf you want to locate.
Example

10 DIM prglstS(5)

20 prglstS(1)="abcdefgh"

30 prgS="bcd"

40 PRINT INSTR(prglstS(1),prg$)

Output: 2

Usage
Returns the specified number of leffmost characters in a string. If you specify a number of
characters greater than or equal to the string's length, the entire string is refurned.

Syntax
LEFTS(stringexpression$,n%)

stringexpressionS Any string expression.

n% Number of characters fo return. Range is O to 80.

Example
10 a$ = "JAGXTREME BASIC"

20 PRINT LEFTS(aS, 9)

Output: JAGXTREME

LEN()

LTRIMS ()

MIDS$()

Chapter 5: JagBASIC Commands
String Commands

Usage
Returns the number of characters in a string or the number of bytes required to store a
variable. Used fo obtain the length of a string. If a zero is returned, the string is empty.

Syntax
LEN(stringexpression$)

stingexpressionS Any string expression.

Example
10 AS = "ABC"

20 WHILE LEN(AS) < 8

50 AS=AS +"'C"

60 LPRINT AS;" HAS LENGTH "; LEN(AS)
70 WEND

80 END

Output: ABCCCCCC has length 8

Usage
Removes the spaces from the beginning of a string.

Syntax
LTRIMS (stringexpressionS)

stringexpressionS Any string expression.

Example
10aS =" 12345"

20 bS = LTRIMS(aS)
Result: b$="12345"

Usage

Returns part of a string. The part of the string returned begins af the specified position and
confains the given number of characters. If the sfarting position is greater than the length of
the string, a null string is refurned. If the number of characters to return is greafer than the
length of the string, the entire string is returned.

Syntax

MIDS(stringexprS, start%[, length%1)

stringexprs Any string expression.

start% The starting character position to read.
length % The number of characters fo read.
Example

10 a$ = "Where is Cambridge?"
20 PRINT MIDS(aS$, 10, 10)

Outfput: Cambridge?

(10/01) 5-39

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

MSETS$()

0CTS()

5-40 (10/01)

Usage
Inserts one string into another siring af a specified position. Overwrites the existing
characters so that the length of the string remains the same.

Syntax

MSETS() (string1S, string2S, position%)

sting18 string to be changed

Sting28 string to insert

posifion % Number of character fo insert string affer
Example

5 0$="123456789"

10 bS="abc"

15 a$=MSETS$(a$,bS$,3)
20 LPRINT "a$'=";0$

Output; a$=123abc789

Usage
Converts a number fo an octal string.

Syntax
OCTS(numeric-expression)

numeric expression Any numeric expression.

Example
10 x=8

20 bS = 0CTS(x)
30 PRINT x; " decimal is *; a$; * octal”
Output: 8 decimal is 10 octal

PADCS ()

PADLS ()

Chapter 5: JagBASIC Commands
String Commands

Usage
Pad the right side and left side of a string, to a specified string length, with a specified
string character. The input string is centered in the refurned string.

Syntax
PADCS(string$S, length, padCharS)

stingS The input sfring fo be padded.
length Length of the oufput string.
padcharS Character used as the pad character.

PADCS refurns an input string centered in the output string.

Example
Os - \\ObCI/

b$ = PADCS(aS$, 5,"0")
Result: bS = “0abcO”

Usage
Pad the left side of a string, to a specified string length, with a specified string character.

Syntax
PADLS(string$, length, padCharS)

sting8§ The input string fo be padded.
lengih Length of the output string.
padcharS Character used as the pad character.

PADLS returns an input string right-justified in the output string.

Example

a$ = “aBc¢”
bS = PADL $(a$, 5,”0")
Result: bS = “00aBc”

bS = PADL S(a$, 7,”C")
Result: bS = “CCCCaBc”

bS = PADL $(a$, 3,”C")
Result: bS = “aBc”

(10/01) 5-41

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

PADRS ()

RIGHTS()

RTRIMS ()

5-42 (10/01)

ggg%ﬁe right side of a string, fo a specified string length, with a specified string character.
Syntax

PADRS (string$, length, padcharS)

stringS The input string fo be padded.

lengih Length of the output string.

paachar§ Character used as the pad character.

PADRS refurns an input string left-justified in the output string.

Example
Gs - \\GBC//

b$ = PADRS(aS$, 5,"0")
Result: bS = “aBc00”

b$ = PADRS(aS$, 7,"C")
Result: bS = “aBcCCCC”

Usage
Returns the specified number of rightmost characters in a string. If you specify a number of
characters greater than or equal to the string's length, the entire string is refurned.

Syntax
RIGHTS (stringexpression$,n%)

stringexpressionS Any string expression.

n% Number of characters fo return. The range is O fo 80.

Example
10 a$ = "JAGXTREME BASIC"
20 PRINT RIGHTS(aS, 5)

Oufput: BASIC

Usage
Removes spaces from the end of the string.

Syntax
RTRIMS (stringexpressionS)

stringexpressionS Any string expression.

Example
10 a$S = "Hello Cambridge “

20 bS = RTRIMS (a$).
Resulf: bS = "Hello Cambridge"

SPACES()

STRINGS()

STRS ()

Chapter 5: JagBASIC Commands
String Commands

Usage
Returns a string of spaces. Used fo indent text.

Syntax
SPACES(n%)

n% The number of spaces you want in the string. The range is 0 to 80.

Example
10FORi% =1T05

20 x$ = SPACES (i%)
30 PRINT X$; %
40 NEXT i%

Usage
Returns a string of a specified length made up of a repeating character. Used fo create
underlines, rows of asterisks, efc.

Syntax

STRINGS (length%, {ascii-code% | stringexpression$})

lengih % The length of the string.

ascii-code % The ASCII code of the repeating character.

stringexpressionS The character you want fo repeat.

Example
10 PRINT STRINGS(5, "-");

Usage
Returns a string representation of a number. Used to manipulate a number as a string and
to apply string functions fo the number for validation and formatting.

Syntax
STRS(numeric-expression)

numeric expression Any numeric expression.

Example
10 NUMBER! = 2.5

20 NUMS = STRS(NUMBER!)
30 PRINT "XXXXX"

40 PRINT NUMS

50 PRINT LEN (NUMS)

Output: XXXXX, 2.5, 3

(10/01) 5-43

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

UCASES ()

VAL(Q)

Simple 1/0 Commands

5-44 (10/01)

Usage
Converts a string fo upper case.

Syntax
UCASES(stringexpression$)

stingexpressionS Any string expression.

Example
10 AS = "good morning, sunshine"

20 AS = ucase$ (aS)

Result: AS="GOOD MORNING, SUNSHINE”

Usage

Converts a numeric stfring to a number. Enables a program to accept numeric input as @
string, use various string functions to validate the input, and then convert the input back to
a number for use in calculations.

Syntax
VAL(stringexpression$)

stringexpressionS Any numeric string expression.

Example
10 PRINT VAL("76")

Output: 76

One of the most important parts of your program is its ability to interface with the terminal
operator. JagBASIC supports several simple input/output commands. These commands
provide an interface between JagBASIC programs and users. These commands enable
your program fo:

e Sound the terminal beeper on a specified input or output
e (Generafe prompts

e Accept user input from the keyboard

o (Check for key presses

The beeper tone can be used to signify a warning to a user or to provide positive
reinforcement. This simple command enables your program to inferactively inferface with
the user through the use of sound.

The INKEYS, INPUT and LINE INPUT commands enable the program to accept keyboard
input.

INKEYS—command checks to see if a key has been pressed. Program execution is not
inferrupfed.

TIPS

Chapter 5: JagBASIC Commands
Simple 1/0 Commands
INPUT—command pauses the program's execution while the user enfers numeric or
character data. Dafa is assigned to one or more variables of the appropriate type. Program
execution resumes when the user presses ENTER.

Character display on the terminal's lower display is accomplished through the PRINT
command.

This section discusses the following simple input/output commands.

Command Usage

BEEP Sounds the terminal beeper tone for the specified milliseconds.

INKEYS Returns a single keystroke from either the keyboard or keypad as a
string.

INPUT Reads input from the keyboard, serial port, or a file.

KEYSRC Reports the source of the latest keystroke read by the JagBASIC
application through an INPUT or INKEYS.

PRINT Writes data to the lower display or fo a sequential file.

PRINT USING | Writes formatted output fo the terminal display or to a file.

In order for JagBASIC to use the numeric keypad, either the operator must assign the
keypad to JagBASIC using the setup menus or the JagBASIC program must assign the
keypad fo itself by setting an appropriate value in bas10.

The JagBASIC keyboard input statfement supports inputting alphabetic characters using the
numeric keypad and the SELECT key. Before issuing the input statement, the JagBASIC
program must disable the control panel using the SELECT key by seffing bas87 = 0.

A JagBASIC program may read the function keypad using the keyboard input statement.
The function keys operate as follows:

FUNCTION (01), MEMORY (03), TARE (04), and ZERO (07) keys— Terminate the input
statement. The input stafement returns the key value for the terminating key at the end of the
input string.

ESCAPE (02) key—Terminafes the input. To use the ESCAPE key, the JagBASIC program
must disable the control panel using the ESCAPE key setting bas86 = 0. The input
statement appends the ESCAPE key value fo the end of the input string.

SELECT (05) key—*Facilitates the entry of alphabetic characters through the keypad. To use
the SELECT key, the JagBASIC program must set bas87 = 0. The SELECT key selects the
alphabetic characters as shown on the keypad overlay. It does not ferminate the input. The
input statement does not return a key value for the SELECT key in the input string.

CLEAR (06) key—Performs a backspace-erase on the input string. It does not terminate
the input. The input statement does not place the CLEAR key value in the input string.

ENTER (08) key—Terminates the input statement. The input stafement does nof return the
ENTER key value in the input string.

To get key input data from the keypad, you could use the following program:
10 DEFSHR escape,bas86

20 DEFSHR select,bas87

30 DEFSHR keyboard,bas10

40 escape=0:REM this enables eniry of escape key to JagBASIC

50 select=0:REM this enables eniry of alphabefic data fo JagBASIC

60 keyboard=1:REM this assigns keypad fo JagBASIC

(10/01) 5-45

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals
70 INPUT "enter";a$S
80 IF a$="" then GOTO 70
90 termchar%=ASC(right$(a$, 1))
100 IF termchar% < 8 THEN LPRINT "function key = ";fermchar%
110 LPRINT "input string = ";a$
120 GOTO 70

JagBASIC has these special function key values for the QWERTY keyboard keys. These
special keys terminate the input.

LEFT_ARROW = 0x09

Note: Sefting Shared Data RIGHT_ARROW = 0Ox0A

frigger s_60b=1 disables the INSERT KEY = 0x0B

QWERTY positioning keys in the HOME KEY — 0x0C

JagBASIC INPUT stafement. END K_EY _ 0x0D

Positioning key are key values DELE_TE KEY _ OxOE

0x09 to Ox12. iy
UP_ARROW = OxOF
DOWN_ARROW = 0x10
PAGE_UP = OxT11
PAGE_DOWN = 0x12
F1_KEY = 0x13
F2_KEY = 0x14
F3_KEY = 0x15
FA_KEY = 0x16
F5_KEY = ZERO_KEY = 0x07
F6_KEY = FUNCTION_KEY = 0x01
F7_KEY = SELECT_KEY = 0x05
F8_KEY = CLEAR_KEY = 0x06
FO_KEY = TARE_KEY = 0x04
F10_KEY = MEMORY_KEY = 0x03
F11_KEY = 0x17
F12_KEY = 0x18

BEEP

Usage

Sounds the terminal beeper fone for the specified milliseconds. Used to signal an error or
warn the user of the consequences of an action.

Syntax
BEEP milliseconds

milliseconads The number of milliseconds that you want the tone fo sound.

Example
T0FOR 1% =1T0 20

20 BEEP 30
30 SLEEP 100
40 NEXT 1%

5-46 (10/01)

INKEYS

INPUT

Chapter 5: JagBASIC Commands
Simple 1/0 Commands

Usage

Reads a character from the keyboard or keypad. This commands enables your program fo
respond to special keys without inferrupting program execution. INKEYS returns a single
keystroke from either the keyboard or keypad as a siring. As many as 10 keysirokes can
be stored in the buffer. If the keysiroke was an ASCII character or an extended character, the
string is 1-byte.

If there is no keystroke available in the buffer, INKEYS returns a null string. If you want to
refrieve a key and determine if it has one of several values, you must save the keystroke in
a JagBASIC variable, as follows:

10 ¢S=INKEYS

20 IF ¢§=CHRS(1) THEN PRINT "function key": GOTO 10
30 IF cS=CHRS(2) THEN PRINT "escape key": GOTO 10
40 IF ¢S="1" THEN PRINT "1 key": GOTO 10

50 IF ¢cS="A" THEN PRINT "A key": GOTO 10

60 IF ¢cS="" THEN PRINT "no keystroke"

70 GOTO 10

Syntax
INKEYS

Example 1
10 PRINT "Press A to exit..."

20 IF INKEYS = “A” THEN GOTO 50
30 GOTO 20
50 END

Example 2
20 AS=INKEYS

30 IF AS="A" THEN GOTO 60

40 IF AS = “B” THEN GOSUB 1000
50 GOTO 20

60 END

1000 PRINT AS

1010 RETURN

Usage

Reads data input from the keyboard. The program accepts character inputf from the
keyboard until the user presses a fermination character, such as Enter. The prompt can tell
the user what type of information to enfer. There are several prompfing options with the
prompt string. The prompt can specify menu selections, defaulf values, and its appearance
on the lower display.

Input reads dafa from the terminal keyboard, the keypad, or both. The JagBASIC keyboard
device must be selected through the setup menus.

(10/01) 5-47

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

Syntax

INPUT [;] ["prompt"{; | ,]] variablelist

prompt An optional literal string that is displayed on the lower terminal display
before the user enters data.

variablelist Comma delimited list of variables fo which the input is assigned.

semmicolon {7} Causes the question mark to be displayed af the end of the prompt.
comma {,} Suppresses the question mark at the end of the prompt.

caret {7} When used in the prompt, the prompt will be displayed during input and
identifies menu selections. Individual selections within a menu selection
list may be separated by a comma, colon, semicolon, or space.

Keyboard Input Example #1

110 LPRINT "(”) keeps prompt on display during key input, () generates ?"
120 DIM aS$(5)

130 aS(3)="~enfer"

140 INPUT aS(3);bS

150 LPRINT "input = ";b$S

Keyboard Input Example #2

210 LPRINT "Does not keep prompt on display during key input, (,) supresses ?"
220 cS="hello "

230 INPUT ¢$,bS

240 LPRINT "input = ";b$S

Keyboard Input Example #3

310 LPRINT "(*) keeps prompt on display during input,) generafes ?"
320 INPUT "Ahello";bS

330 LPRINT "input = ";b$S

Keyboard Input Example #4

470 LPRINT "(,) keeps print message on display only until key input begins"
420 bS="hello"

430 PRINT "enter? ";b$S

440 INPUT ,cS

450 LPRINT "input = ";c$S

Keyboard Input Example #5

510 LPRINT "Setup an input defauli, keep prompt on display"
520 LPRINT "Enter key accepts the defaul, or key in new data"
530 aS(4)="~ype A default'

5-48 (10/01)

Chapter 5: JagBASIC Commands

540 INPUT a$(4),b$
550 LPRINT "input = ";b$

Keyboard Input Example #6

610 LPRINT "Setup an input defauli, keep prompt on display"
620 LPRINT "Enter key accepts the defaul, or key in new data"
630 bS="default"

640 INPUT "AMype/"+b$;bS

650 LPRINT "input = ";b$S

Keyboard Input Example #7

710 LPRINT "Select from a list of inputs, keep prompt on display"
720 LPRINT "Enter key accepts the selection”

30 LPRINT "Any other key advances to next selection"

40 LPRINT "Input variable contains the default value"

50 bS="no"

60 INPUT "AMype” yes,no,maybe";b$S

70 LPRINT "input = ";bS

Keyboard Input Example #8

810 LPRINT "Select from a list of inputs, keep prompt on display"
820 LPRINT "Enter key accepts the selection"

830 LPRINT "Any other key advances 1o next selection”

840 LPRINT "Input variable contains the defaulf value"

850 b%=4

860 aS(5)="~Number”1,2,3,4,5,6,7,8,9,10"

870 INPUT a$(5);b%

880 LPRINT "input = ";b%

Keyboard Input Example #9

910 LPRINT "Set integer default value with a template"
920 b%=100

930 INPUT "Mype/#t##" ; b%

940 LPRINT "input = ";b%

Keyboard Input Example #10
1070 LPRINT "Set double float value with a femplate"
1020 b#=100.55

Simple 1/0 Commands

(10/01) 5-49

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

KEYSRC

PRINT, PRINT USING

5-50 (10/01)

1030 INPUT "Atype #iH## ###" ; b#
1040 LPRINT "input = *;b#

Keyboard Input Example #11

1110 LPRINT "Set string value with a template"
1120 aS(1)="happy frails"

1130 INPUT "AenterA 1 - aS(1)

1140 LPRINT "input = ";a$(1)

Usage
Reports the source of the latest keystroke that has been read by the JagBASIC application
through an INPUT or INKEYS command.

Syntax
KEYSRC()

Returns:

0 = None so far

1 = Keypad

2 = QWERTY Keyboard

3 = Serial Keyboard Input

Example

10 CS=inkey$

20 IF cS<>"" AND KEYSRC()=1 THEN PRINT “Keypad Input”
30 GOTO 10

Usage
PRINT writes data to the lower terminal display, to a sequential file, or oufputs data to the
specified serial port.

PRINT USING writes formatted outpuf to the terminal display or to a file. A template is
defined that specifies the length and format of each item fo be displayed.

Syntax
PRINT [#filenumber%,] expressionlist [{;]]

PRINT [#filenumber%,] USING formatstring$; expressionlist [{;}]
PRINT “expression”

PRINT USING “####.##*, formatstring$

PRINT [#filenumber%], string$

#lilenumber % The number of an open sequential file. If the file number is omitted,
PRINT writes fo the lower ferminal display. If the filenumber is a Com
Port, then PRINT command outputs data to the specified serial port.

expressionlist

semicolon {;:}

formarstringS

WA

expression
sting8

Example

10 netto=10.0
20 brufto=20.0

Chapter 5: JagBASIC Commands
Simple 1/0 Commands
List of one or more numeric or string expressions to print.

Means print immediately affer the last value. The absence of a
semicolon {;} means fo insert a new line.

A string expression containing characters that format a numeric
expression.

Digit position.

Decimal point position.

Prints in exponential format.

Space.

Sign.

Other characters are prinfed as literal dafa in the output.
Use these characters to format string expressions

Prints corresponding characters of string.

Prints first n characters of string, where n is the number of blanks
between the slashes.

Any character or numeric expression.

Any string expression.

30 PRINT USING "neffo_##### ## _ brutio_##### ##" neffo; brutfo
40 o#=123.456789:b#=87.54321:c#=b5.55b

50 PRINT USING "S### ## _ St ## S ##" oft b#;c#
70 PRINT USING "+### ## S##t# ## +##H ##"0f b#; c#
80 a#=-123.456789

90 PRINT USING "S##t ##"; a#

100 PRINT USING "+### ##",0#

110 0%=4567:0%=12:¢%=1:d%=123

120 PRINT USING "_###";0%

121 PRINT USING "_###":b%

122 PRINT USING "_###";c%

123 PRINT USING "_###";d%

130 PRINT USING "+### ##",0%

140 a%= -4567

150 PRINT USING "#######";0%

151 PRINT USING "######",0%

152 PRINT USING "#####";0%

160 PRINT USING "+### ##",0%

170 aS="abcdefghijkimnopgrstuvwxyz"

(10/01) 5-51

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals
180 PRINT USING "llI".a$
T90 PRINTUSING ™\ \ _\ \";aS;a$

200 PRINT USING "_AAAA - AANAANY oD

Serial I/0 Commands

JagBASIC has an enhanced serial I/O capability, including file-type 1/0 statements and
In order for JagBASIC fo access a remote terminal support.
remote serial port, you must set up

the ferminal with either a demand JagBASIC can read and write fo local serial ports. In addition, JagBASIC program may read

print or custom print connection. Use and write to serial ports on remote JAGXTREME ferminals within a cluster. The terminal
the setup menus af the remofe routes the serial /0 messages across Ethernet to the remote terminal containing the serial
terminal fo set these options. port. Remofe serial I/0 allows sharing of devices, such as printers or host connections,

among all ferminals in a cluster.

A JagBASIC application using the remote serial I/O must be prepared fo handle "offline”
error situations that do not occur in local serial I/0. You cannot use asynchronous events
with remofe serial. All operations are performed synchronously.

JagBASIC's serial input and output commands enable you fo:
o Access files or serial ports.

e (Close afile or serial port.

o Flush received data in the BIOS serial input buffer.

e Read input from the serial port.

e Qutput dafa to a terminal serial COMx port.

e Print formatted output on the LPRINT device.

o QOutput dafa to the specified serial port.

e Specify the width of a printed line.

o Format lines of text by inserting specified amounts of space between values.

5-52 (10/01)

TIPS

CKSUMS ()

Chapter 5: JagBASIC Commands
Serial I/0 Commands

This section discusses the following serial inpuf/output commands

Command Usage

CKSUMS O Generates the checksum of a string and returns the checksum
in sfring format.

CLOSE Closes a file or serial port.

COMBITS O Reads the Modem input status of Com 3

CRCS Generates the CRC of a sfring and returns the CRC in string
format.

FLUSH Discards received data in the BIOS serial input buffer.

INPUT Reads input from the serial port.

LPRINT Outputs data to a terminal serial LPRINT device.

LPRINT USING Prints formatted output on the LPRINT device.

OPEN Accesses a file or serial port.

PRINT Writes dafa to the lower terminal display, to a sequential file, or
to a serial port.

PRINT USING Writes formatted output to the ferminal display or fo a file.

PRINT # Outputs data to the specified file or serial port.

SPCQO Skips a specified number of spaces in a PRINT or LPRINT
statement.

TAB Advances to the specified position

WIDTH Assigns an output line width fo the LPRINT device, serial port,
or afile.

WIDTHIN Dynamically assigns input length for serial 1/0 device.

JagBASIC serial file I/O commands cannot be used to access a serial port for which there is

an input or confinuous output connection assigned in CONFIG SERIAL setup.

The LPRINT device is serial port configured as the first demand print port for Scale A.

This function generates the checksum of a string and returns the checksum in string format.
It calculates the checksum by adding the lower 7 bits of each byte in the string and taking

the 2’s complement. It is used for validating sent and received messages.

Syntax

CKSUMS(string 1S, [string2S,][string3S,]start%)

sting1S
Sting2S
Sting3S
start%

Example

Input siring with a maximum length of 80 characters.
Opfional input string with a maximum length of 80 characters.
Opfional input string with a maximum length of 80 characters.

Character in the string where checksum starts.

OPEN "com2:xpr null trm13 len40" FOR OUTPUT AS as #1
messageS= chr$(2)+"hello world"+chr$(3)

messageS= messageS+cksumS(messages, 1)

PRINT#1,messages;

(10/01) 5-53

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

CLOSE

When a program executes a CLEAR,
END, or RUN statement or its last
statement, JagBASIC closes all open files
and serial ports. Each open file must be
closed by its own CLOSE command.

COMBITS ()

CRCS

5-54 (10/01)

Usage

Closes an open file or serial port. Use CLOSE after all input and output operations for a file
or device are concluded. CLOSE releases the memory space reserved in the buffer for the
open file or serial port.

Syntax

CLOSE #filenumber%

filenumber% The number of an open file.
Example

10 OPEN “comd4:cr” FOR OUTPUT AS #2
20 PRINT #2, "HELLO"
30 CLOSE #2

Usage
The COMBITS command allows you to read the status of the four modem input signals on
the COM3 serial port. You must first open the COMS3 serial port using the OPEN command.

Syntax
COMBITS(filenumber)
filenumber File number used in the OPEN command for the COM3 serial port.

COMBITS returns an integer with the following bit values OR"ed together. The bit value is
set fo one.

Example
OPENnN "com2:” FOR OUTPUT AS #1

0%=combits(1)

Usage

CRCS computes a 16 bit CRC on the message text and returns a 4-character string that
contains the CRC in ASCII format. The CRC is used primarily with serial communications fo
ensure that a message is transmitted without errors. The CRC calculation is a CCITT method
that uses an “exclusive OR” hashing method with a lookup table. The CRC calculation
starts with the first byte and proceeds sequentially to the last byte of the message text.
CRCS uses the following procedure fo calculate and return CRC:

e “Exclusive OR” the high-order byte of the current CRC with the next byfe of the message
text.

e Use resulting 8-bif value as an index into the lookup table to get 16-bif fable value.

o Shift the low-order byte of current CRC to the high-order byte and “exclusive OR” the
result with the 16-bit value from step 2. This becomes the new current CRC.

e (oo step 1 and repeat the calculation for each byte of the message.

e “OR” each 4-bit nibble of the 16-bit CRC with a hex 30 to convert the CRC to four
printable ASCII characters. Start with low-order byte then convert high order byte last.

Chapter 5: JagBASIC Commands
Serial I/0 Commands
The following fable is used for the calculating the CRC.

0x0000, O0x1021, 0x2042, O0x3063, O0x4084, O0xb50A5, 0x60C6, Ox70E7,
0x8108, 0x9129, OxA14A, OxB16B, OxC18C, OxD1AD, OxE1CE, OxFIEF,

0x1231, 0x0210, 0x3273, 0x2252, Oxb52Bb, 0x4294, O0x72F7, 0x62D6,
0x9339, 0x8318, 0xB37B, OxA3bA, O0xD3BD, 0xC39C, OxF3FF, OxE3DE,
0x2462, 0x3443, 0x0420, O0x1401, Ox64E6, O0x74C7, Ox44A4, 0x5485,
OxAbBA, 0xB54B, 0x8528, 0x9509, OxEBEE, OxF5CF, OxCHAC, OxD58D,
0x3653, 0x2672, 0x1611, 0x0630, Ox76D7, Ox66F6, 0xb695, 0x46B4,
OxB75B, OxA77A, 0x9719, 0x8738, OxF7DF, OxE7FE, 0xD79D, OxC7BC,
0x48C4, Oxb8EH, 0x6886, Ox78A7, O0x0840, O0x1861, 0x2802, 0x3823,
O0xCOCC, OxDOED, OxE98E, OxFOAF, 0x8948, 0x9969, O0xA90A, O0xB92B,
OxbAFb, Ox4AD4, Ox7AB7, Ox6A96, Ox1A71, OxO0A50, Ox3A33, Ox2A12,
OxBDFD, OxCBDC, OxFBBF, OxEB9E, Ox9B79, 0x8B58, 0xBB3B, OxABIA,
O0x6CA6, O0x7C87, O0x4CE4, O0xbCCH, 0x2C22, 0x3C03, 0x0C60, Ox1C41,
OxEDAE, OxFD8F, OxCDEC, OxDDCD, OxAD2A, 0xBDOB, 0x8D68, 0x9DA49,
Ox7E97, Ox6EB6, OxbED5, Ox4EF4, Ox3E13, Ox2E32, Ox1E51, OxOE70,
OxFFOF, OxEFBE, OxDFDD, OxCFFC, OxBFIB, OxAF3A, 0x9Fb9, Ox8F78,
0x9188, O0x81A9, OxBI1CA, OxATEB, OxD10C, OxC12D, OxF14E, OxEI6F,
0x1080, Ox00A1, 0x30C2, Ox20E3, O0x5004, 0x4025, 0x7046, O0x6067,
0x83B9, 0x9398, OxA3FB, OxB3DA, OxC33D, 0xD31C, OxE37F, OxF35E,

0x02B1, O0x1290, Ox22F3, 0x32D2, O0x4235, 0xb214, 0x6277, 0x7256,
OxBBEA, OxABCB, 0x95A8, 0x8689, OxFbGE, OxEH64F, 0xD52C, OxCbhOD,
Ox34E2, O0x24C3, Ox14A0, 0x0481, O0x7466, O0x6447, 0xb424, 0x4405,
OxA7DB, OxB7FA, 0x8799, 0x97B8, OxE756F, OxF77E, 0xC71D, OxD73C,
0x26D3, Ox36F2, 0x0691, O0x16BO, O0x6657, 0x7676, 0x4615, 0x5634,
0xD94C, 0xC96D, OxFOOE, OxEQ2F, 0x99C8, O0x89E9, 0xB98A, OxA9AB,
Ox 5844 0x4865, 0x7806, O0x6827, Ox18CO, OxO8E1, 0x3882, O0x28A3,
OxCB7D, OxDB5C, OxEB3F, OxFB1E, Ox8BF9, 0x9BD8, OxABBB, OxBBOA,
Ox4A75, OxbAb4, O0x6A37, Ox7A16, OxOAF1, Ox1ADO, Ox2AB3, O0x3A92,
OxFD2E, OxEDOF, 0OxDD6C, OxCD4D, OxBDAA, OxAD8B, Ox9DE8, 0x8DC9,
0x7C26, 0x6C07, 0xbC64, 0x4C45, Ox3CA2, 0x2C83, Ox1CEO, O0xOCCI1,
OxEF1F, OxFF3E, OxCFbD, OxDF7C, OxAF9B, OxBFBA, Ox8FD9, Ox9FF8,

Ox6E17, Ox7E36, Ox4Ebb, OxbE74, Ox2E93, Ox3EB2, OxOED1, Ox1EFO

Syntax
CRCS(string$)

stingS Input string with a maximum length of 160 characters in the JAGXTREME
terminal.

Example 1
OPEN "com2:xpr null" FOR OUTPUT AS #1

messageS= CHRS(2)+"hello world"+CHRS(3)
messageS= messageS+CRCS(messageS)
PRINT #1,messages;

(10/01) 5-55

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

FLUSH

INPUT

The serial port input can occur
asynchronously with the normal program
operation. The program execution does
not necessarily have to suspend itself
while the serial input operation completes
using the EVENT option.

5-56 (10/01)

Example 2
messageS= chr§(2)+"hello world"+chr$(3)

x$=CRCS(message$)
message2S="happy trails to you”
yS$S=CRCS(message2$)
zS=CRCS(*a")

LPRINT “xS$: ;xS

LPRINT *y$: “:y$

LPRINT “zS$: *;z$

Output
XS$: 9==9

YS: 060?
ZS: 877<

Usage
Discards received data in the BIOS serial input buffer.

Syntax
FLUSH #1

Example
20 FLUSH #1

Usage

Synchronously reads data bytes from the specified serial communication port into variables
until one of the terminating conditions occurs. The terminating conditions are specified in
the OPEN statement. Using the EVENT option, the INPUT statement can also be used to
asynchronously input data from a serial port.

Syntax

INPUT #filenumber, string variable

#lilenumber % Open serial I/0 device from which you want fo read data.
string variable The input datfa.

Example 1

10 OPEN "com1: tmo5000 len40 trm13 event" FOR INOUT AS #1
30 ON EVENT #1 GOSUB 1000
40 INPUT #1,0S

. MAIN PROGRAM

50 IF INKEYS<>"x" THEN GOTO 50

LPRINT

The Configure Serial menu allows
you to setup the LPRINT device for
JagBASIC. The LPRINT device is the
first demand print port for Scale A.
When you assign the LPRINT device
and the BasTerminal connection to
the same serial port, then that serial
port operates as an inferactive serial
port for JagBASIC.

Chapter 5: JagBASIC Commands
Serial I/0 Commands
60 CLOSE #1

70 END

1000 LPRINT "serial message";a$
1010 INPUT #1,aS :REM start next input
1020 RETURN

Example 2
10 OPEN "com2: tmo1000 len20 trm13" FOR INPUT AS #1

20 INPUT #1,0S
30 LPRINT "msg="; a$
40 GOTO 20

Usage

Outputs the contents of numeric or string variables fo a terminal serial port. The first serial
port configured as the first demand print connection is used as the output device. The
LPRINT statement is most useful for software debugging and for use as an application
report printer. When used as an aid in debugging software, error messages are oufputted
to the LPRINT device.

LPRINT for general serial output is limited by the special handling of three ASCII character
codes as listed below:

Name Hex Code | JagBASIC LPRINT Action

repeat 7F Used as an escape character in the "tab fo column x" feature.
The character following the repeat character specifies how
many space characters are needed to get to the desired

column.,

tab 09 Translates info 1 t014 spaces, as required to reach the next
“tab stop".

newline | OA Translates info a <cr><If> combination.

LPRINT sends output directly fo an oufpuf device. LPRINT enables you to print strings,
numbers, and so on the printer, just as PRINT enables you fo display these items on the
lower terminal display.

Syntax
LPRINT expressionlist [{;1]
expressionlist List of one or more numeric or sfring expressions to print. ltems must

be separated by commas or semicolons.

, When used in a list of expressions, the semicolon deter- mines that the next output is
printed immediately after the previous one. When used af the end of the LPRINT stafement
the semicolon determines that the print head does not move to the next line after printing.

(10/01) 5-57

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

Example
10 LPRINT CHRS(10);"Sample Line Print"

Output: Sample Line Print

LPRINT USING

Usage

Prints formatted output on the LPRINT device and specifies the length and format of each
item printed. LPRINT USING creafes a femplate string that filters and formats your output.
LPRINT USING functions similarly to PRINT USING. PRINT USING is discussed in the Simple
I/0 Commands section of this chapter.

Syntax
LPRINT USING formatstring$; expressionlist [{;1]
formatstringS A string expression containing characters that format a numeric
expression.
Digit position.
Decimal point position.

A Exponential format.
+ Sign.

Or a string expression
! Print corresponding characters of string.

\ Print first n characters of string, where n is the number of
blanks between the slashes.

expressionlist List of one or more numeric or string expressions to print.

. When used in a list of expressions, the semicolon defermines the next output is printed
immediately after the previous one. When used at the end of the LPRINT USING statement,
the semicolon determines that the print head does not move fo the next line after printing.

Example
10 netto=10.0

20 brutto=20.0

30 LPRINT USING "nefto_##### ## ___ brufto_##### ##";nefto; brutto
40 a#=123.456789:b#=87.54321.c#=5.555

50 LPRINT USING "S### ## _ SH## ## _ S#HHE# a8 b#;c#
70 LPRINT USING "+##H# ## _ SH##H# ## _ +#H 8" a#,b#;c#
80 a#=-123.456789

90 LPRINT USING "S### ##",a#

100 LPRINT USING "+### ##",a#

110 0%=4567:b%=12:c%=1:d%=123

120 LPRINT USING "_###",0%

121 LPRINT USING "_###",0%

122 LPRINT USING "_###",c%

123 LPRINT USING "_###",d%

130 LPRINT USING "+### ##",0%

5-58 (10/01)

OPEN

You must sef up the serial
connections used by the terminal
operating system with the
Configure Serial in the terminal
setup menus. Demand print and
cusfom print ports can be shared
by JagBASIC and the ferminal
operating system. If you aftempt
to open a serial port that is in the
middle of a demand print, for
example, you will get a “No
Remote Access” error. You must
handle this error with an ON
ERROR GOTO statement. Once
the demand print is complete,
you will be able to open the
serial port. Similarly, you will not
be able to do a demand print
while JagBASIC has the port
open.

Chapter 5: JagBASIC Commands
Serial I/0 Commands
140 a%= -4567

150 LPRINT USING "#######",0%

151 LPRINT USING "######",0%

152 LPRINT USING "#####",0%

160 LPRINT USING "+###.##",0%

170 aS="abcdefghijkimnopgrstuvwxyz"

180 LPRINT USING "l!".a$

T90 LPRINTUSING "™\ _\ \";a$;a$
200 LPRINT USING "_AAAN_ AAAANY. gD

Usage

Prepares a serial port for use as a file device. You can access a serial port that you have
sef up as a demand print serial connection or a custom print serial connection. You cannot
access a serial port from JagBASIC if it has been set up as a continuous output connection
or as an input connection. If the serial port is on the local ferminal, you can access the
serial port even if it is not sef up in a connection.

The OPEN command allows you to specify the remote ferminal address and the serial port
address on the remofe terminal. When it issues the OPEN command, the JagBASIC
program is establishing exclusive access to the remofe serial port as long as it has the
serial port open. If another terminal has already opened the serial port, the JagBASIC
program will get an error status back indicating there is a file-sharing error. In order fo
effectively share a serial port among several ferminals, you should open the serial port,
quickly perform the 1/0, and then close the serial port fo make it available to another
terminal.

Syntax
OPEN "com1: tmo5000 len40 frm13 cr event" FOR INPUT AS #1

OPEN "j2/com1: imo5000 len40 frm13 cr" FOR INPUT AS #1
OPEN "com2: null xpr tmo100" FOR INPUT AS #1

coml, com2, com3, and com4 File names which specify the serial port to be used

for communications.

Imo Specifies the fime-out value to wait for a serial input message in decimal
milliseconds. The default value is zero milliseconds, or no time-out value. The
maximum fime-ouf value is 30,000 milliseconds.

len Specifies the maximum input length for a serial input message.
The maximum length is 80 bytes, which is the maximum string
size in JagBASIC. The default length is 80 byfes.

frm Specifies an optional ferminating character for the serial input message. Its
value is specified in decimal. When the input command encounters the
terminatfing character, it returns the characters up to and including the
terminating character in the serial message as a string variable.

cr Specifies that a carriage return character is to be inserfed at the end of any
serial output message.

event Allocates an evenf which may trigger an event processing routine when a serial
input operation completes.

(10/01) 5-59

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

5-60 (10/01)

xpr Selects the "express print" opfion. Normally, JagBASIC sends PRINT dafa to @
serial port when either it encounters a "new line" character in the print data or
the print dafa length exceeds the WIDTH value. This option causes JagBASIC to
send the PRINT data to the serial port immediately at completion of the PRINT
statement, even when there is no ferminating "new line" character.

null Enables the inputting and outputting of NULL (0) characters through JagBASIC
serial I/0. Since the NULL character is a terminator for JagBASIC strings, you
must send and receive a special sequence of characters for the NULL character.
The sequence "DLE Oxff" represents the NULL character in the JagBASIC
application. The sequence "DLE DLE" represents a single DLE character. The
following statements fransmit a NULL character embedded in each print
statement.

open "com2:null xpr tmo100" for output as #1
print #1,chrS$(16)+chr$(255)+"hello"

The following statements fransmit a single DLE character embedded in the print statement.

open "com2:null xpr tmo100" for input as #1
print #1, "hello"+chr$(16)+chr$(16)+"dolly"

The following statements can receive a single NULL character in the input string.

10 OPEN "com2:null xpr imo1000" FOR INPUT AS #1

20 INPUT #1,a$

30 IF len(a$)=0 THEN LPRINT "timeout":GOTO 20

40 IF len(a$)<>2 THEN GOTO 20

50 IF asc(mid$(a$,1,1))=16 and asc(midS$(a$,2,1))=-1 THEN LPRINT "NULL"
60 GOTO 20

input oujput The mode can be either input or output. No matter which is
chosen, you can do input or output to the specified serial device.

#1N The internal device number with a value between O and 7,
inclusive.

J1 /2 j3, j4 j5, ~ Terminal addresses which specify remote terminal containing the
and J6 remote serial port.

Example 1
10 ON ERROR GOTO 1000

20 OPEN "COM1: TMO3000 TRMT13" FOR INPUT AS #1
30 OPEN "COM4: CR" FOR OUTPUT AS #2

40 FLUSH #1

50 INPUT #1,AS

60 PRINT #2,AS

70 IF INKEYS<>"C" THEN GOTO 50

80 CLOSE #1

90 CLOSE #2

100 END

1000 SLEEP 500

1010 IF ERR()=32 AND ERL()=20 THEN GOTO 20
1020 IF ERR()=32 AND ERL()=30 THEN GOTO 30

Chapter 5: JagBASIC Commands
Serial I/0 Commands
1030 PRINT "FATAL ERROR"

1040 SLEEP 2000
1050 END

Example 2
10 OPEN "COM2: TMO5000 TRM13 LENTO CR" FOR INPUT AS #1

20 FLUSH #1

30 PRINT #1,"SEND SERIAL INPUT"

40 INPUT #1,AS

50 PRINT #1,"SERIAL OUTPUT DATA ".AS
60 GOTO 40

PRINT, PRINT USING

Usage
PRINT writes data to the lower terminal display, to a sequential file, or oufputs data to the
specified serial port.

PRINT USING writes formatted output to the terminal display or fo a file. A template is
defined that specifies the length and format of each item fo be displayed.

Syntax
PRINT [#filenumber%,] expressionlist [{;]]

PRINT [#filenumber%,] USING formatstring$; expressionlist [{;}]
PRINT expression

PRINT USING “####.##", formatstring$

PRINT [#filenumber%], string$

#filenumber % The number of an open sequential file. If the file number is
omitted, PRINT writes fo the lower terminal display. If
the filenumber is a Com Port, then PRINT command outputs
data to the specified serial port.

expressionlist List of one or more numeric or string expressions to print.
semicolon {;:} The absence of a semicolon {;} at the end of the line means to
insert a new line.
formatstringS A string expression containing characters that format a numeric
expression.
Digit position.

Decimal point position.
A Prints in exponential format.
- Space.
+ Sign.

Other characters are printed as literal dafa in the output.
Use these characters to format string expressions

! Prints corresponding characters of string.

(10/01) 5-61

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

5-62 (10/01)

A\ Prints first n characters of string, where n is the number of
blanks between the slashes.

expression Any character or numeric expression.

sting8§ Any string expression.

Example

10 netto=10.0

20 brutto=20.0

30 PRINT USING #1, "netfo_##### ## ___ brutfo_##### ##",netfto; brutto

40
50
70
80
90

a#=123.456789:b#=87.54321:c#=5.5565

PRINT USING #1," Sttt #h#t _ Sttt #h#t Sttt #4108, b# c#t
PRINT USING #1, "+### ## _ St#t ## _ +### ##",0# ;b c#
a#=-123.456789

PRINT USING #1, "S### ##",a#

100 PRINT USING #1, "+#t# ##",a#
110 0%=4567:b%=12:c%=1:d%=123
120 PRINT USING #1, "_###",0%

121 PRINT USING #1,"_###":b%

122 PRINT USING #1, "_###",c%

123 PRINT USING #1, "_###",d%

130 PRINT USING #1,"+### ##",0%
140 a%= -4567

150 PRINT USING #1, "#######",0%
151 PRINT USING #1,"######",0%
152 PRINT USING #1,"#####",0%
160 PRINT USING #1,"+### ##",0%
170 aS="abcdefghijkimnopgrstuvwxyz"
180 PRINT USING #1,"11".a$

190 PRINT USING #1,"n \ _\ \";a$;0S
200 PRINT USING #1,"_AAAA - AANNAATqifD#
210 CLOSE #1

PRINT #

SPC()

Chapter 5: JagBASIC Commands

Usage

Outputs unformatted data fo the specified serial port.

Syntax

PRINT comport#1,string$

comport# Number of the serial port.

stringS Any string expression.

Example

10 OPEN "COM2: TMO5000 TRMT3 LEN10 CR" FOR INPUT AS #1
20 FLUSH #1

30 PRINT #1,"SEND SERIAL INPUT"

40 INPUT #1,AS

50 PRINT #1,"SERIAL OUTPUT DATA "AS
60 GOTO 40

Usage

Serial I/0 Commands

Displays the specified number of spaces in a PRINT or LPRINT statement. Use SPC to

format output for readability.

Syntax

SPC(n%)

n% The number of spaces to display. The range is 1 fo 80.
Example

10 PRINT "Text1"; SPC(10); "Text2"

Output: Textl Text2

(10/01) 5-63

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

TAB ()

WIDTH

WIDTHIN

5-64 (10/01)

Usage
Advances the cursor to the specified position in a PRINT or LPRINT statement. Use a
semicolon (;) to stay on the same line.

Syntax
TAB(n)

n Position to advance to the right.

Example
10 LPRINT "COMPANY" TAB(25) "PRODUCT" : PRINT

20 READ AS, BS

30 PRINT AS; TAB(25); BS

40 DATA "METTLER TOLEDQ", "JAGBASIC"
RUN

Output:

COMPANY PRODUCT
METTLER TOLEDO JAGBASIC

Usage

Assigns an output line width to the LPRINT device, serial port, or a file. Used fo limit the line
lengths in a file containing a report. Line lengths beyond the established width are wrapped
to the next line. The default width is 80 characters.

Syntax
WIDTH [#filenumber%], columns%

#filenumber % The number of an open file. If #filenumber% is not specified, WIDTH
applies o the LPRINT device.

columns % The desired width in columns.

Example

10 OPEN “COM2:CR” FOR OUTPUT AS #1
20 WIDTH #1, 75

Usage
Allows you fo dynamically reassign the maximum serial input length, as it is defined in
OPEN.

Syntax
WIDTHIN #filenumber, length%

#filenumber Open serial I/0 device.

length% The desired length. The length can be 0O to 80.

File Commands

Chapter 5: JagBASIC Commands
File Commands
Example
10 OPEN "com?2: TMO5000 TRM13 LENT0 CR" FOR INPUT AS #1

20 WIDTHIN #1,5
30 INPUT #1, AS
40 LPRINT AS
50 CLOSE #1

JagBASIC commands perform simple operations such as open and close, as well as
complex operations. JagBASIC supports sequential, random, and indexed sequential files.
Sequential files are read and written sequentially. Sequential files can have variable length
records. You can dynamically change the length of a sequential file by appending records
to the end of the file. When you are writing a sequential file, you should frequently close the
file so that the file poinfers are permanently updafed in the RAM disk. Otherwise, you can
lose data in the event of a power failure.

Random access files are fixed in length. Records are accessed randomly by number or can
be accessed sequentially. Record sizes are fixed in length. You create a random access
file by writing it sequentially when you first creafe the file.

A JagBASIC program can creafe and access indexed sequential files. Indexed sequential
files contain records stored sequentially based on a logical key within a random access
file. The records have a fixed length. Indexed sequential files provide keyed access to
records within the file. JagBASIC can read, insert, update, or delefe records from the file
based on the logical key that is stored as part of the record. The JagBASIC inferpreter
performs a binary search of the records in the file to locate a parficular record, providing
faster logical access to the records in the file.

This section discusses the following JagBASIC file commands:

Command Usage

CLOSE Closes an open file or serial port.

CVI, CVS, CVD Convert strings fo numbers.

DELREC Deletes a record from the indexed sequential file.

EOF(Tests for the end of a file.

FIELD Defines the structure of records to be used in indexed-sequential
and random-access file buffers.

GET Reads a record from the random-access or indexed-sequential
file.

INDEXED Identifies a file as an indexed-sequential file and which field in
the record is the index key.

INPUT Reads inpuf from the keyboard, serial port, or a sequential file.

LINE INPUT# Reads sequentially all characters of an entire line (up to 80

characters) without delimiters from a sequential file up to the
next carriage refurn info a string variable.

LOCO Returns the current position within a file.

LOF(O Returns the length of the file.

LSET Moves data into a random-access file buffer (in preparation for a
PUT stafement) and left-justifies the value of a siring variable.

MKIS, MKSS, Convert numbers to numeric strings that can be sfored in FIELD

MKDS statement string variables.

OPEN Accesses a file.

(10/01) 5-65

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

Command Usage

PRINT Writes dafa to the lower terminal display or to a sequential file.

PRINT USING Writes formatted output to the ferminal display or fo a file.

PRINT# Qutputs data to the specified serial port or sequential file.

PUT Writes a record fo the indexed sequential file.

RSET Moves data info a random-access file buffer (in preparation for a
PUT statement) and right-justifies the value of a string variable.

SORTREC Identifies the file as an indexed sequential file and automatically
sorts the records.

WRITE# Writes datfa to the LPRINT device or to a sequential file.

TIPS

To perform quick file look-ups based on a logical key, use indexed sequential files.
CLOSE
Each open file must have its own Usage
CLOSE command. Closes an open file or serial port. Only one CLOSE command is permitted per program line.
When you are writing a indexed- Syntax
sequential or sequential file, you CLOSE #filenumber%

should frequently close the file to
avoid losing data in the event of a

power failure. Example
10 OPEN *LOG” FOR OUTPUT AS #1

20 WRITE #1, "This is saved fo the file."
30 CLOSE #1

40 OPEN “LOG” FOR INPUT AS #1

50 INPUT #1, a$

60 PRINT "Read from file: *; a$

70 CLOSE #1

#hilenumber % The number of an open file.

5-66 (10/01)

CVI, CVS, CVD

DELREC

Chapter 5: JagBASIC Commands
File Commands

Usage

Convert string variable fypes, created by either the MKDS, MKIS, or MKSS commands, to
numeric variable types. These commands are used after reading the string representation of
a double-precision number in a random-access file that confains records defined by the
FIELD statement. Because you cannot store numeric values in random-access files, you
must convert numbers to strings before storing them and convert them back to numbers
when you read the file.

Command Refurns

GV Integer

CVS Single-precision number
CvD Double-precision number
Syntax

CVI(2-byte-numeric-string)
CVS(4-byte-numeric-string)
CVD(8-byte-numeric-string)

2-byte-numeric string 2-byte string variable created by the MKIS command
4-byte numeric sting 4-byte string variable created by the MKSS command

8-byte-numeric string 8-byte string variable created by the MKDS command

Example
70 FIELD #4, 4 AS NS, 12 AS BS

80 GET #1

Usage

Deletes a record from the indexed sequential file. The JagBASIC program must set the
logical index into the key field of FIELD variables. DELREC searches the file for a record
confaining the logical key. If it finds the record, DELREC deletfes the record in the FIELD
variables. Otherwise, DELREC generates a "RECORD NOT FOUND" error.

Syntax
DELREC #file number

#file number The number of the indexed sequential file.

Example
6000 LPRINT "delete some records"

6001 ON ERROR GOSUB 6200

6010 OPEN "fesffile" FOR RANDOM AS #1 len=26
6020 field #1,16 AS aS,8 AS bS$, 2 AS ¢c$

6030 INDEXED #1,0S

6050 LSET aS=STRINGS(16,"A")

6080 DELREC #1

(10/01) 5-67

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals
6090 LSET aS=STRINGS(16,"Z")
6120 DELREC #1
6130 END
6200 IF ERR()<>6 THEN END
6210 LPRINT "error line ";ERLQ
6220 RETURN

EOF()

Usage
Tests for the end of a file. Returns true (nonzero) if the end of a file has been reached. Used
to decide whether to continue processing a file.

Syntax
EOF(filenumber%)

filenumber% Number of the file fo test.

Example
10 OPEN "TEST.DAT" FOR OUTPUT AS #1

20FORi% =1T0 10

30 WRITE #1, i%, 2 *i%, 5 * %

40 NEXT i%

50 CLOSE #1

60 OPEN "TEST.DAT" FOR INPUT AS #1
70 WHILE EOF(1) =0

80 LINE INPUT #1, aS

90 PRINT a$

100 WEND

FIELD

Usage
The maximum record length fora Defines the structure of records to be used in indexed-sequential and random-access file
random access or indexed-sequential buffers. Records contain various fields. Each field is a location in a record that can be
file is 200 characters. accessed by a field name.

Syntax
FIELD #filenumber%, fieldwidth% AS stringvariable$ [, fieldwidth% AS stringvariable$]

#ilenumber % The number of an open file.
fielawidih % The number of characters in field.

stingvariableS A variable that identifies the field and contains field data.

Example
40 OPEN "FILE" FOR RANDOM AS #1 LEN = 80

50 FIELD #1, 30 AS NameS, 50 AS addressS

5-68 (10/01)

GET

Chapter 5: JagBASIC Commands
File Commands

Usage
Reads a record from a random access file by record number info fields defined by the field
sftatement.

Reads a record from the indexed sequential file into the fields defined by a FIELD statement.
The program must first set a logical index into the key field of the FIELD variables. GET
executes a binary search of the file for a record confaining the logical key. If it finds the
record, GET returns the record in the FIELD variables. Otherwise, GET generates a "RECORD
NOT FOUND" error. You must use an ON ERROR statement fo handle these errors.

Syntax
GET #file number[,record number]

#file number Number of the open or sequential file.

record number For random access files, the number of the record to read. If record
number is not specified, GET returns the next sequential record.

For indexed-sequential files, the number is typically not specified. When it is not specified,
GET returns the record specified in the keyword field of the FIELD statement. The INDEXED
or SORTREC command specifies which field is the keyword field. When the record number
is specified, the GET statement refurns the specified record number. The record number can
be variable or a constant.

Example 1
Reading a Random Access File Sequentially

10 OPEN "M" FOR RANDOM AS #1 LEN=21
20 FIELD#1, 5 AS IDS, 16 AS MATNAMES
30 WHILE EOF (1)=0

40 GET #1

50 PRINT IDS; TAB (10); MATNAMES;

60 WEND

70 CLOSE #1

80 END

Example 2
Indexed Sequential File

8000 LPRINT "get some records"

8001 ON ERROR GOSUB 8200

8010 OPEN "testfile" FOR RANDOM AS #1 len=26
8020 field #1,16 as a$,8 as b$, 2 as ¢$

8030 INDEXED #1,aS

8040 LSET aS=STRINGS(15,"A")+"1"

8050 GET #1

8060 LPRINT b$

8070 LSET aS=STRINGS(15,"J")+"1"

8080 GET #1

(10/01) 5-69

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

INDEXED

5-70 (10/01)

8090 LPRINT bS

8100 END

8200 IF ERR()<>6 THEN END
8210 LPRINT "error line ";ERLQ
8220 RETURN

Example 3
Reading Indexed Sequential File sequentially

1000 OPEN "fesffile" FOR RANDOM AS #2 len=27
1010 FIELD #2, 5 AS a$, 10 AS bS$, 12 AS ¢S
1020 INDEXED #2, b$S

1030 r%=0

1040 WHILE NOT EOF(2)

1050 r%=r%-+1

1060 GET #2, 1%

1070 LPRINT ¢S

1080 WEND

Usage

Identifies which field in the record is the index key. JagBASIC must first OPEN the file as a
random access file and define the record format using the FIELD command. The INDEXED
command identifies the file as an indexed sequential file.

Syntax
INDEXED #file number,variable name

#file number The opened random access file.
variable name Name of the FIELD variable that is the index key.
Example

1000 LPRINT "create indexed file"

1010 OPEN "festfile" FOR RANDOM AS #1 len=26
1020 FIELD #1,16 AS aS,8 AS bS, 2 AS ¢S

1030 INDEXED #1,aS

1040 FOR i% = 1010 1 step -1

1050 LSET aS=STRINGS(16,chrS$(64+i%))

1055 LSET bS="00000000"

1060 LSET ¢S=CHRS(13)+CHRS(10): REM LF/CR
1070 PUT #1

1080 NEXT i%

1090 CLOSE #1

2000 LPRINT "print file"

INPUT #

LINE INPUT #

Chapter 5: JagBASIC Commands
File Commands
2010 OPEN "fesffile" FOR INPUT AS #1

2020 WHILE NOT EOF(1)
2030 LINE INPUT #1,x$
2040 LPRINT x$

2050 WEND

Usage

Reads input from the keyboard, serial port, or a sequential file. When reading a sequential
file, the file must be “comma-delimited”. That is, commas between items and quotation
marks around strings in the file are required.

Syntax
INPUT #filenumber%, variablelist

#hilenumber % Open sequential file from which you want to read data. When no
filename is specified, INPUT reads data from the keyboard.

variablelist List of variables to which input is assigned.

Example

100 OPEN "LOG" for output as #1
200 WRITE #1, "Write this to the file."
300 CLOSE #1

400 OPEN "LOG" for input as #1

500 INPUT #1, a$

600 PRINT "Read from file:"; a$

700 CLOSE #1

Usage
Reads sequentially all characters of an entire line (up to 160 characters) without delimiters
from a sequential file up to the next carriage return into string variable.

Syntax

LINE INPUT #filenumber%,string$S
#filenumber% File.
stringvariable String variable.
stingS String expression.
Example

10 OPEN "log" for input a$ #1
20 WHILE eof(1)=0

30 LINE INPUT #1, a$

40 WEND

(10/01) 5-71

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

LOC()

LOF

LSET

5-72 (10/01)

Usage
Returns the current pointer position within a file that shows where the next read or write
operation will take place.

For random access files, LOC returns the next record number after the last record read from
or written to the file.

For sequential input or output, LOC returns the current byte position.

Syntax
LOC(filenumber%) #number

filenumber% The number of an open file.
#number The number of records.
Example

200 IF LOC(1)=50 THEN STOP

Usage
Returns the length of a file.

Syntax
LOF (filenumber%)

Filenumber The number of an open file.

Example
100 OPEN "TEST" FOR INPUT AS #1
200 size# = LOF(1)

Usage
Moves the value of an expression or variable info a field in a random-access file buffer in
preparation for a PUT statement. LSET lefi-justifies the value of a string variable in the field.

Syntax
LSET stringvariable$ = stringexpression$

stingvariableS Any string variable or a random-access file field defined in a
FIELD statement.

stingexpressionS The left-justified version of string variableS.

Example
1 OPEN "F" FOR RANDOM AS #1 LEN = 10

2 FIELD #1, 5 AS Ls1S, 5 ASRs1S
3 LSET Ls1S = "LSET"

4 RSET Rs1S = "RSET"

5 PUT #1, 1

6 CLOSE #1

MKIS, MKSS, MKDS

OPEN

Chapter 5: JagBASIC Commands
File Commands

Usage

Convert numbers fo numeric sirings that can be stored in FIELD stafement string variables.
You cannot store numeric values in random-access files. You must convert numbers to
sfrings before storing them. These commands complement the CVI, CVD, and CVS
commands which convert the strings back to numbers when you read the file.

Function Returns

MKIS 2-byte string
MKSS 4-byte string
MKDS 8-byte string

Syntax
MKIS (integer-expression%)

MKSS(single-precision-expression!)

MKDS(double-precision-expression#)

Integer-expression % Any infeger number in the range of -32768 to 32767.

single-precision-expression! Single-precision number in the range of 3.4E-38 to
3.4E+38.

aouble-precision-expression# Double-precision number in the range of 7E-308 fo
7E+308.

Usage
Accesses a file. Files can be sequential, random, or indexed-sequential files stored on the
terminal RAMDISK.

Syntax
OPEN fileS [FOR mode] AS #filenumber% [LEN=reclen%]
OPEN fileS [FOR mode] AS #filenumber% [LEN=reclen%]

fileS The name of the file on the RAMDISK.
modae INPUT, OUTPUT, APPEND, or RANDOM.

Sequential files are opened as INPUT, OUTPUT, or APPEND. Opening a sequential file for
OUTPUT creates a new file. Opening a sequential file for APPEND adds new records to the
end of an existing file. Random access and indexed sequential files must be opened as
RANDOM.

filenumber % A number in the range O through 7 that identifies the file while it
Is open.

reclen% For random access files and indexed-sequential files, this is the record
length.

(10/01) 5-73

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

Example
100 OPEN "LOG" FOR OUTPUT AS #1

200 WRITE #1, "write this fo the file."
300 CLOSE #1

400 OPEN “LOG” FOR INPUT AS #1
500 INPUT #1, a$

600 PRINT "Read from file: *; a$
700 CLOSE #1

PRINT, PRINT USING #

Usage
PRINT writes data to the lower terminal display, to a sequential file, or outputs data to the
specified serial port.

PRINT USING writes formatted output to the terminal display or to a file. A femplate is
defined that specifies the length and format of each item fo be displayed.

Syntax
PRINT [#filenumber%,] expressionlist [{;]]

PRINT [#filenumber%,] USING formatstring$; expressionlist [{;}]
PRINT “expression”

PRINT USING “####.##", formatstring$

PRINT [#filenumber%], string$

#filenumber % The number of an open sequential file. If the file number is omitted,
PRINT writes fo the lower ferminal display. If the filenumber is a Com
Port, then PRINT command outputs data to the specified serial port.

expressionlist List of one or more numeric or string expressions to print.

; The absence of a semicolon {;} af the end of a line means to insert a
new line.

formarstringS A string expression containing characters that format a numeric
expression.

Digit position.
Decimal point position.

A Prints in exponential format.

- Space.

+ Sign.

Other characters are printed as literal data in the output.
Use these characters to format string expressions

! Print corresponding characters of string.

A Print first n characters of siring, where n is the number of blanks
between the slashes.

expression Any character or numeric expression.

stingS Any string expression.

5-74 (10/01)

Chapter 5: JagBASIC Commands
File Commands
Example
10 netto=10.0

20 brutto=20.0

30 PRINT #1, USING"netto_##### ## ___ brutto_s#t### ##";netto; brutto
40 a#=123.456789:b#=87.54321.c#=5.555

50 PRINT #1, USING"S### ## __ SH#i#t# ## __ S#it# ##" ;0 b#;c#
70 PRINT #1, USING"+##t# ## __ SH## ## _ +#it# ##" 08, b#;c#
80 a#=-123.456789

90 PRINT #1, USING "S### ##";a#

100 PRINT #1, USING "+### ##";0#

110 0%=4567:b%=12:c%=1:d%=123

120 PRINT USING #1, "_###":0%

121 PRINT USING #1, "_###":b%

122 PRINT USING #1, "_###":c%

123 PRINT USING #1, "_###";d%

130 PRINT USING #1, "+#i## ##",0%

140 a%= -4567

150 PRINT USING #1, "#######":0%

151 PRINT USING #1, "######",0%

152 PRINT USING #1, "#####";0%

160 PRINT USING #1, "+#i## ##",0%

170 aS="abcdefghijkimnopgrstuvwxyz"

180 LPRINT USING #1, "li".a$

190 PRINT, USING #1"™\ \ _\ \";aS;a$
200 PRINT, USING #1"_AAAA- _ ANNANY o bi#
210 CLOSE #1

(10/01) 5-75

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

PRINT #

PUT

Field variables are cleared after
the PUT statement.

5-76 (10/01)

Usage
Outputs dafa to the specified serial port or sequential file.

Syntax
PRINT#1,string$

#1 Serial port or file number.
stingS String expression.
Example

10 OPEN "LOG" FOR APPEND a$ #1
20 PRINT #1, "hello"
30 CLOSE #1

Usage
Writes records to a random access file.

\Writes a record to the indexed sequential file. The JagBASIC program must first sef values
into the FIELD variables, including the logical key variable. PUT searches the file for a
record containing the logical key. If it finds the record, PUT overwrites the existing record
with the new data. If there is no existing record with the same key, PUT inserts a new

record into file in its proper sequential position.

Field variables are cleared after the PUT statement is run.

Syntax
PUT #file number[,record number]

#file number Number of the open, random, or indexed sequential file.

record number Number of the record fo write. When a record number is not specified
for random access files, JagBASIC writes to the record specified by the
indexed field of the field variables. Record number is not used for

indexed-sequential files.

Example 1
Random File

10 OPEN "IDFILE" FOR RANDOM AS #1 LEN = 19

15 REM added line feed, carriage return for

16 REM printing out file with standard editors,

20 FIELD #1,9 AS FIDS, 8 AS FWEIGHTS, 2 AS LFCRS
30FORX% =1T0 10

35 REM re-initialize record image before each "PUT"

40 LSET FIDS = "000000000" : LSET FWEIGHTS = "00000000"

50 LSET LFCRS=chr$(13)+chr$(10)
60 PUT #1, X%

70 NEXT X%

80 CLOSE #1

RSET

Chapter 5: JagBASIC Commands
File Commands
230 USEREC%=0

240 FOR REC% = 1T0 10
250 GET #1, REC%

270 IF FID$ = "000000000" THEN USEREC% = REC% : REC%=10
280 IFEOF(1) = 1 THEN REC% = 10

290 NEXT REC%

300 LSET FWEIGHTS = "12345.6"

310 LSET FID$="JOE TRUCK"

320 LSET LFCRS=chr$(13)+chr$(10)

330 IF USEREC%<>0 THEN PUT #1, USEREC%

340 CLOSE #1

Example 2
Indexed-Sequential File

3000 LPRINT "write some records"

3010 OPEN "tesffile" FOR RANDOM AS #1 len=26
3020 FIELD #1,16 as a$,8 as bS, 2 as ¢S
3030 INDEXED #1,aS

3050 LSET a$S=STRINGS(16,"Z")

3060 LSET bS="11111111"

3070 LSET ¢S=CHRS(13)+CHRS(10)
3080 PUT #1

3090 LSET aS=STRINGS(16,"Y")

3100 LSET bS="11111111"

3110 LSET ¢S=CHRS(13)+CHRS(10)
3120 PUT #1

3170 CLOSE #1

Usage

Moves the value of an expression or variable info a specified field in a random-access file
buffer in preparation for a PUT statement. RSET also right-justifies the value of a string
variable in the field variable.

Syntax
RSET stringvariable$S = stringexpression$

stingvariableS Any string variable or a random-access file field
defined in a FIELD statement.

stingexpressionS The right-justified version of string variableS.

(10/01) 5-77

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

Example
10 OPEN "F" FOR RANDOM AS #1 LEN = 10

20 FIELD #1, 5 ASLs1S, 5 ASRs1S
30 LSET Ls1S = "LSET"

40 RSET Rs1S = "RSET"

50 PUT #1, 1

60 CLOSE #1

SORTREC

Usage
Identifies the file as an indexed sequential file. Identifies which field is the index field. Sorts
the file records in sequential order by key if necessary.

Syntax

SORTREC #file number,variable name

file number Opened random access file.

variable name The FIELD variable used as the index key.
Example

1000 LPRINT "create indexed file"

1070 OPEN "testfile" FOR RANDOM AS #1 len=26
1020 FIELD #1,16 as a$,8 as b$, 2 as ¢$
1040 FOR i% = 1010 1 step -1

1050 LSET aS=STRINGS(16,chr$(64+i%))
1055 LSET b$="00000000"

1060 LSET ¢$=CHRS$(13)+CHRS(10): REM LF/CR
1070 PUT #1

1080 NEXT i%

1100 SORTREC #1,a$

1110 LSET a$S=STRINGS(16,"J")

1120 GET #1

1130 LPRINT b$

1140 CLOSE #1

2000 LPRINT "print file"

2010 OPEN "tesffile" FOR INPUT AS #1
2020 WHILE NOT EOF(1)

2030 LINE INPUT #1,xS

2040 LPRINT xS

2050 WEND

2060 CLOSE #1

Output: SORTREC sorfed the records into sequential order to make the file an indexed
sequential file.

5-78 (10/01)

Chapter 5: JagBASIC Commands
Real-time Process Control Commands

WRITE #

Usage

Outputs delimited dafa to the sequential file. WRITE inserts commas between items and
quotation marks around strings as they are written. WRITE writes values in a form that can
be read info separate variables by the INPUT statement.

Syntax
WRITE [#filenumber%,] expressionlist

filenumber % The number of an open sequential file. If the file number is
omitted, WRITE writes fo the LPRINT device.

expressionlist One or more variables or expressions.

Example

5 ON ERROR GOSUB 80

10 OPEN "log" FOR APPEND AS #1
20 WRITE #1,"write this fo log"; "write some more"
30 CLOSE #1

40 OPEN "log" FOR INPUT AS #1
45 WHILE EOF(1) =0

50 INPUT #1,aS$,bS

60 LPRINT "read from log: ";a$,b$S
65 WEND

70 CLOSE #1

75 END

80 a$ = "done"

90 RETURN

Real-time Process Control
Commands

A JagBASIC program can implement "eveni-driven" processing. A program can execufe d
particular command or subroutine based on the occurrence of a specified event. A
JagBASIC program can also build ladder logic rungs. The ferminal’s O/S can then use its
ladder logic processor to rapidly evaluate the discrete inputs, the discrefe outputs, and the
associafed shared data friggers. The maximum number of rung elements that may be
active is 70.

JagBASIC’s real-time process control commands enable you fo:

You cannot define an event associated ¢ Allocate and de-allocate events.

with a remote shared data field. o Allocate a keyboard event or timer event.
e Suspend program execution until an event trigger causes program execution fo
resume.

o Clear oufstanding event triggers.
o Disable asynchronous event triggers.

(10/01) 5-79

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

e Re-enable asynchronous event triggers after a critical section of code.
e Return the stafe of the event.
e Add a rung to the ladder.

e (Clear the ladder.

The JagBASIC program allocates events with event names. A maximum of 16 events may

be active at any one time. The event name is one of the following:

e a shared datfa variable name

o the keyword, KEY
o the file number of an open serial communications file, COM1, COM2, COM3, or COM4
e the keyword, TIME

The JagBASIC program can synchronously monitor an event state or wait for the
"triggering" of any event in the main line of the program. Changes to local shared data
elements, keystrokes, or serial port inputs can trigger events.

Level-sensitive and edge-sensitive discrefe shared dafa fields can trigger events.

Level-sensitive state bit fields frigger events when the terminal O/S writes either O or 1 1o the

field. Applications can use events to monitor when these fields change values.

Edge-sensitive bit fields only trigger events when a 1 is written fo the field. The terminal

0/S, a PLC host, or a PC host can write these bit fields. Applications can set these discrete

shared data bits fo issue commands fo the terminal O/S. Once the terminal O/S has

processed the command, it sets the discrete bit to O to rearm the bit for another command.

Applications do not typically use events fo monitor the state of these bits.

The JagBASIC program can "trap" events asynchronously by designating a specific routine
to be executed when the event occurs. The event trapping routines must be short routines
that execute quickly then return execution control to the main line of executable code. When
you CHAIN from one program to another, the JagBASIC Inferpreter automatically clears all

events.

This section discusses the following JagBASIC event commands:

Command

Usage

CLREVENT

Clears outstanding event friggers.

DEFSHR EVENT

Allocates a shared data event.

DELEVENT

De-allocates an event.

DISABLE

Disables asynchronous event friggers.

ENABLE

Re-enables asynchronous event triggers affer a critical
section of code.

EVENT

Allocates a keyboard event or fimer event.

EVENTON

Returns the state of the event.

INPUT

Used in conjunction with event commands fo implement
asynchronous serial input.

NEWLADDER

Clears ladder used by ladder logic processor in JAG UAR
terminal O/S

RUNGAND

Adds a rung which represents the AND value of two
inputs.

RUNGANDNT

Adds a rung which represents the inverse of the AND
value af the inputs.

5-80 (10/01)

Chapter 5: JagBASIC Commands
Real-time Process Control Commands

Command Usage

RUNGMOV Adds a rung to the ladder which moves the value of
SharedDatal to SharedData2.

RUNGMVNOT Adds a rung to the ladder which moves the "NOT" value
of SharedDafal fo SharedData2.

RUNGOR Adds a rung which represents the OR value of two inputs.

RUNGORNOT Adds a rung which represents the inverse of the OR value
of two inputs.

ON EVENT GOSUB Enables you to asynchronously monitor an event.

STARTIME Starts the timer, which specifies the length of the fimer in
milliseconds.

STOPTIME Stops a running timer.

WAITEVENT Suspends program execution until an event trigger
causes program execution fo resume.

TIPS

An applicafion can monitor discrete edge-sensitive fields to start processing when the scale
has read a new weight from the scale base. Trigger t_688 is for Scale A and t_689 is for
Scale B. Once it has processed the event, the scale application must set the field back fo
zero in order to re-enable the trigger for the next event.

Physical discrete input fields are level-sensitive shared data fields that reflect the state of the
physical outputs from the terminal. JagBASIC applications can use events fo monitor the
changing state of the physical inputs.

Physical discrete oufput fields are level-sensitive shared data fields that reflect the state of
the physical outputs from the ferminal. JagBASIC applications inferface to shared data to
set the discrete outputs and would not typically use events to monitor the state of physical
discrete outputs.

An application can monitor the rising or falling edge of physical discrete inputs. An event
may be processed on either the rising edge when a physical discrete input fransitions from
a Oto 1 state, or on the falling edge when the physical discrete input transitions from a 1
to O state.

The ferminal ladder logic processor continually monitors the state of the physical inputs. It
samples the physical discrete inpufs once every 55 milliseconds. The ladder logic
processor sefs the rising or falling edge frigger when it sees a state transition in the discrete
input.

The following discrefe edge-sensitive triggers can alerf an event on either the rising edge or
falling edge of a discrete input. Once the application processes the event, it must reset the
shared data frigger to O to re-enable the next occurrence of the trigger.

DiscretelnputRisingEdge_1 /p_6e0
DiscretelnputRisingEdge_2 /p_6el

DiscretelnputRisingEdge_12 /p_6ef

(10/01) 5-81

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals
DiscretelnputFallingEdge_1 /p_6f0
DiscretelnputFallingEdge_2 /p_6f1

DiscretelnputFallingEdge_12 /p_6ff

The following sample program uses events fo monitor the rising edge and falling edge of
discrete input 1. Note thaf the program resets the triggers to O so that they will frigger
again.

10 DEFSHR event re_1,p_6e0
20 DEFSHR event fe_1,p_6f0
30re_1=0

40fe_1=0

50 ON EVENT re_1 GOSUB 1000
60 ON EVENT fe_1 SOSUB 2000
70 IF INKEYS="" then GOTO 70
80 END

1000 TPRINT "rising edge"
1010 re_1=0

1020 RETURN

2000 TPRINT "falling edge"
2010fe_1=0

2020 RETURN

CLREVENT

Usage
Clears outstanding event friggers. The JagBASIC inferpreter automatically clears an event
trigger upon completion of an event trapping routine for that frigger.

Syntax

CLREVENT [event name]

event name Name of the specific event that you want fo clear. If no
event name is specified, all event friggers are cleared.

Example

10 CLREVENT SPFEED%
20 CLREVENT TIME

30 CLREVENT KEY

100 CLREVENT

5-82 (10/01)

DEFSHR EVENT

DELEVENT

DISABLE

Chapter 5: JagBASIC Commands
Real-time Process Control Commands

Usage
Allocates an event associated with a shared data field. Writing a value fo the shared datfa
field triggers a JagBASIC event.

Syntax

DEFSHR EVENT variable name, shared dafa field name

variable name The variable name. You cannot define an event for a remote shared
data field.

shared dafa field name Local shared data field name.

Example
10 DEFSHR EVENT SPFEED%,s_210

Usage
De-allocates an event.

Syntax
DELEVENT event name

event nameName of the specific evenf you want to delete. If no name is
specified, all events are delefed.

Example
500 DELEVENT SPFEED%

510 DELEVENT KEY
530 DELEVENT #1
600 DELEVENT

Usage
Disables asynchronous event friggers. This command is used fo protect critical sections of
code.

Syntax
DISABLE

Example
30 DISABLE

(10/01) 5-83

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

ENABLE

Usage
Re-enables asynchronous event triggers after a critical section of code.

Syntax
ENABLE

Example
50 ENABLE

EVENT

Usage
Allocates a keyboard event or timer event. An event occurs asynchronously from the
normal execution of the JagBASIC program.

The keyboard event friggers an event when there is a key available. Use the INKEYS
function to read the key.

The fimer event triggers at the expiration of the timer. Use the STARTIME command to start
the timer.

Syntax
EVENT [KEY] | [TIME]

key Keyboard event.

Time Timer event.

Example 1
10 EVENT key

20 WAITEVENT
30 CLREVENT

40 cS=INKEYS
50 WHILE cS<>""
60 TPRINT cS;

70 cS=INKEYS
80 WEND

90 GOTO 20

Example 2

10 event time

20 ON EVENT fime GOSUB 200
30 startime 1000

200 PRINT “fimer expired”
210 RETURN

5-84 (10/01)

EVENTON

INPUT

Chapter 5: JagBASIC Commands
Real-time Process Control Commands

Usage

Returns the stafe of the event. A zero value indicates the event is in a "non-triggered” state.
A nonzero value is the "friggered" stafe. You must put quotation marks around the event
name.

Syntax
EVENTON("event name")

event name Name of the event.

Example
100 IF EVENTON("SPFEED%") THEN PRINT "sefpoint event"

110 CLREVENT SPFEED%
120 GOTO 100

Usage

Used in conjunction with the event commands fo implement asynchronous serial input, the
INPUT command initiates an input operation from a serial port. This can occur
asynchronously with the normal application operation. Program execution does not have
to be suspended while the serial input operation completes. Upon completion of the serial
input, an event trigger alerts the application that the input is complete. The application
defines the serial input termination conditions on the OPEN statement (a time-out, reaching
a specified input length, or encountering the terminating character in the input stream). The
application can use either synchronous or asynchronous event processing roufines to
complete serial inpuf processing.

Affer receiving an INPUT message and transferring control to the Event Service Routine, the
JagBASIC program must re-prime the input by issuing another INPUT command.

Syntax
INPUT #filenumber, string variable

#lilenumber Open sequential file or serial port from which you want fo read data.
When no filename is specified, INPUT reads data from the ferminal keyboard, the terminal
keypad, or both. The JagBASIC keyboard device must be selected through the ferminal
operator setup menus. Commas between ifems and quofation marks around strings in the
file are required.

string variable The input dafa.

Example
10 OPEN "com1:tmo5000 len40 trm13 event" for input as #1

30 ON EVENT #1 GOSBU 1000
40 INPUT #1,a$
. MAIN PROGRAM

50 IF inkey$ <>"x" then GOTO 50

(10/01) 5-85

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

NEWLADDER

ON EVENT GOSUB

5-86 (10/01)

60 CLOSE #1
70 END

1000 LPRINT "serial message";a$
1010 INPUT #1, a$: REM start next input
1020 RETURN

Usage
Clears the ladder that is used by the ladder logic processor in the ferminal Operating
System.

Syntax
NEWLADDER

Example
210 REM Ladder based on sefpoint

220 NEWLADDER
230 REM Setpoint1 to Out2
240 RUNGMOV 5_210, p_501

Usage

Enables you to asynchronously monitor an event and define the Event Service Routine.
Upon the occurrence of an asynchronous event, the program execution branches to an
event trapping subroutine.

Event trapping routines must be short routines that execute quickly and then refurn
execution control to the main line of program code. The execution of an event trapping
subroutine completes without inferruption by another asynchronous event. The event
tfrapping routines can occur between any two lines in the main program. Be careful of the
variables used in these routines. Temporary variables, such as loop counters, should be
unique to the event-irapping routine. Upon exit of the event-trapping roufine, the JagBASIC
interpreter automatically clears the event that triggered the execution of the routine.

Syntax
ON EVENT event name GOSUB line number

Example 1
Monitoring One Setpoint

10 DEFSHR EVENT SPFEED%,s_210
20 ON EVENT SPFEED% GOSUB 1000

1000 IF SPFEED%=0 THEN PRINT "SETPOINT REACHED"
1010 RETURN

Chapter 5: JagBASIC Commands
Real-time Process Control Commands
Example 2
Monitoring Multiple Setpoints

5 REM Turn discrefe outputs on or off as setpoint coincidence values change.
10 DIM SPFEED%(4)

20 DEFSHR EVENT SPFEED%(1),s_210
30 DEFSHR EVENT SPFEED%(2),s_214
40 DEFSHR EVENT SPFEED%(3),5_218
50 DEFSHR EVENT SPFEED%(4),s_21c¢
60 DIM DOUT(4)

70 DEFSHR DOUT(1),p_500

80 DEFSHR DOUT(2),p_501

90 DEFSHR DOUT(3),p_502

100 DEFSHR DOUT(4),p_503

110 FOR i%= 110 4

120 ON EVENT SPFEED%(i%) GOSUB 1000
130 NEXT i%

.MAIN PROGRAM

1000 CLREVENT

1010 FOR j%=1 1o 4

1020 IF SPFEED%(j%)=0 THEN DOUT(%)= O ELSE DOUT(j%)= 1
1030 NEXT %

1040 RETURN

RUNGAND

Usage

RUNGAND adds a ladder rung fo the ferminal’s Ladder Logic. The ladder is run every 55
milliseconds in the terminal’s O/S whenever there is a change in the ladder inputs. The
rung inputs are physical discrefe inputs or global discrefe data from Shared Dafa. The
outputs are physical discrete outputs or global discrete dafa in Shared Datfa. This rung
takes two inputs, AND’s them together, and outputs the value.

Syntax
RUNGAND inputT,input2,output

Example
A physical discrete input with "Setpoint1 feeding" fo generafe a physical discrefe output.

RUNGAND p_101,s_210,p_501

(10/01) 5-87

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

RUNGANDNT

RUNGMOV

RUNGMVNOT

5-88 (10/01)

Usage

RUNGANDNT adds a ladder rung to the Ladder Logic. The ladder is run every 55
milliseconds in the ferminal's O/S whenever there is a change in the ladder inputs. The
rung inputs are physical discrefe inputs or global discrefe data from Shared Dafa. The
oufputs are physical discrete outputs or global discrete data in Shared Data. This rung
takes two inputs, AND’s them together, and oufputs the inverse value.

Syntax
RUNGANDNT inputl,input2,output

Example
Take two physical inputs and generate a physical discrete output.

RUNGANDNT p_101,p_102,p_501

Usage

RUNGMOV adds a ladder rung fo the Ladder Logic. The ladder is run every 55
milliseconds in the O/S whenever there is a change in the ladder inputs. The rung inputs
are physical discrete inputs or global discrete data from Shared Data. The outpufs are
physical discrete outputs or global discrete data in Shared Data. This rung takes an input
and generafes an oufput with the same value.

Syntax
RUNGMOV input,output

Example
Take a tare on Scale B when a physical discrefe input is turned on.

RUNGMOV p_103,1_6a0

Usage

RUNGMVNOT adds a ladder rung to the Ladder Logic. The ladder is run every 55
milliseconds in the O/S whenever there is a change in the ladder inputs. The rung inputs
are physical discrete inputs or global discrete data from Shared Data. The outpufs are
physical discrete outputs or global discrete data in Shared Data. This rung moves the
inverse of the input to the output.

Syntax
RUNGMVNOT input,output

Example
Turn on a physical discrete output when the dafa from Scale A is invalid.

RUNGMVNOT s_261,p_b08

RUNGOR

RUNGORNOT

Chapter 5: JagBASIC Commands
Real-time Process Control Commands

Usage

RUNGOR adds a ladder rung fo the Ladder Logic. The ladder is run every 55 milliseconds
in the O/S whenever there is a change in the ladder inputs. The rung inputs are physical
discrete inputs or global discrete dafa from Shared Data. The outputs are physical discrefe
oufputs or global discrefe data in Shared Dafa. This rung takes two inputs, OR’s them
together, and outputs the value.

Syntax
RUNGOR inputl,input2,output

Example
Turn on a physical discrete output if Scale A or Scale B is in mofion.

RUNGOR s_200,s_208,p_508

Usage

RUNGORNOT adds a ladder rung to the Ladder Logic. The ladder is run every 55
milliseconds in the O/S whenever there is a change in the ladder inputs. The rung inputs
are physical discrete inputs or global discrete data from Shared Data. The outputs are
physical discrete outputs or global discrete data in Shared Data. This rung fakes two
inputs, OR’s them together, and outputs the inverse value.

Syntax
RUNGORNOT inputl,input2,output

Example

Turn on a physical discrete output when either the JagBASIC application turns off a
temporary output or a physical discrete input is turned off. The JagBASIC application must
DEFSHR the s_250 global discrefe data and then can toggle its value on or off,

RUNGORNOT s_250,p_103,p_502

(10/01) 5-89

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

STARTIME

STOPTIME

5-90 (10/01)

Usage

Starts the internal timer. The maximum timer value is 65 seconds.
Syntax

STARTIME milliseconds

mifliseconas The time in milliseconds to start the internal timer.
Example 1

10 EVENT TIME

20 STARTIME 2000

30 WAITEVENT

40 IF EVENT("time") THEN PRINT "TIMER EXPIRED"
50 CLREVENT

60 GOTO 30

Example 2
10 EVENT TIME

20 ON EVENT TIME GOSUB 1000
30 STARTIME 3000

. MAIN PROGRAM

1000 PRINT "TIMER EXPIRED"
1010 CLREVENT TIME
1020 RETURN

Usage
Stops a running timer.

Syntax
STOPTIME

Example

10 EVENT TIME

20 STARTIME 2000
200 STOPTIME

Chapter 5: JagBASIC Commands
Real-time Process Control Commands

WAITEVENT

Usage
Suspends program execution until an event frigger causes program execution to resume.

Syntax
WAITEVENT

Example 1
10 DEFSHR EVENT SP%,s_210

20 CLREVENT

30 WAITEVENT

40 IF EVENTON("SP%")=0 THEN GOTO 20

50 IF SP%=0 THEN PRINT "ABOVE SETPOINT" ELSE PRINT "BELOW SETPOINT"
60 GOTO 20

Example 2
10 DIM SPFEED%(4)

20 DEFSHR EVENT SPFEED%(1),s_210
30 DEFSHR EVENT SPFEED%(2),s_214
40 DEFSHR EVENT SPFEED%(3),5_218
50 DEFSHR EVENT SPFEED%(4),s_21c¢
60 EVENT key

100 DIM DOUT(4)

110 DEFSHR DOUT(1),p_b00

120 DEFSHR DOUT(2),p_501

130 DEFSHR DOUT(3),p_b02

140 DEFSHR DOUT(4),p_b03

200 CLREVENT

210 WAITEVENT

220 FOR i%=1to 4

230 IF EVENTON("SPFEED%(i%)")=0 THEN GOTO 250
240 IF SPFEED%(i1%)=0 THEN DOUT(i%)= 0 ELSE DOUT(i%)= 1
250 NEXT 1%

260 cS=INKEYS

270 IF ¢cS<>"" THEN GOSUB 500

280 GOTO 200

500 REM process keystroke

510 PRINT ¢S

520 RETURN

(10/01) 5-91

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

Timing Commands

JagBASIC offers several commands that work with date and time. The most fundamental
timing commands, DATES and TIMES, simply display the current system date and time.
You can also change the terminal system date and time with these commands.

Timing commands also enable your program to provide information about when or how
long a cerfain event fook place. These commands can be used fo tell when a file was
opened or how long it fook to execute a section of code.

The SLEEP command lets you pause the program for a specified number of milliseconds.
This command can be used fo provide time for the user to read the screen. The program
will resume execution after the time has elapsed or whenever the user presses a key.

This section discusses the following JagBASIC timing commands:

Command Usage
CLKTICK Allows more precise tming loops and timing of events
DATES Sets or returns the terminal system date.

JULDAT Converts a dafe-time string: "mm-dd-yyyyHH:MM:SS" fo a double
precision Julian Dafe number.

SLEEP Suspends program execution for the of specified number of
milliseconds.

TIMDATS [TIMDATS converts a double precision floating point Julian Date number
fio a string: "mm-dd-yyyyHH:MM:SS".

TIMER Returns a double precision floating point number that contains the
elapsed fime in seconds since 00:00:00 GMT, January 1, 1970.
TIMES Sets or returns the terminal system date and time.

TIPS

Time and Date

The Shared data variables Jag19 and Jag20 have the date and time formatted as specified
in the ferminal setup. These shared datfa variables are NOT updated automatically.
However, executing either a dafe$S or timeS command will cause both to be updated.
Here’s a sample clock program:

5 DEFSHR CurTime, Jag20

10 DEFSHR CurDate, Jag19

15 aS=TIMES

20 PRINT leftS(CurDate,6)+" "+CurTime
25 SLEEP 100

30 GOTO 15

5-92 (10/01)

CLKTICK

DATES

JULDAT ()

Chapter 5: JagBASIC Commands
Timing Commands

CLKTCK allows more precise timing loops and timing of events. CLKTICK returns a double
float number that is the number of clock ficks that have occurred since the last power up of
the ferminal. The JAGXTREME ferminal's clock ticks 36 times per second or approximately

once every 27.5 seconds. When CLKTICK reaches the number 4,294,967,295, it wraps to
zero. This occurs in about 3.7 years.

Usage
Sets or returns the terminal system date.

Syntax
DATES
DATES="mm-dd-yyyy"

mm-ad-yyyy Month, day, and year. You do not need to enter a leading zero in
front of single-digit month or day values.

Example
10 a$="10-16-1997"

20 DATES=a$

30 PRINT DATES

50 TIMES="10:05:00"
60 PRINT TIMES

Usage

JULDATE converts a date-time string: "mm-dd-yyyyHH:MM:SS" to a double precision Julian
Date number.

The Julian Dafe format is a compact, numerical representation of the date and time. It is
the number of seconds since 00:00:00 GMT, January 1, 1970. Since the Julian Date is
numerical, it is convenient for doing mathematical computations on the date and time.

Syntax

JULDATE ("mm-dd-yyyyHH:MM:SS")
Example

10 a$ ="11-21-200010:37:00"
20 b# = JULDATE(aS)

30 PRINT "Julian Date = ",b#

Output: Julian Date = 974820420

(10/01) 5-93

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

TIMDATS ()

SLEEP

TIMER

5-94 (10/01)

Usage

TIMDATS converts a double precision floating point Julian Date number to a string:
"mm-dd-yyyyHH:MM:SS".

Syntax

TIMEDATS (Julian date)

Example

10 b# = 974820420

20 a$ = TIMDATS (b#)

30 PRINT "Date and Time:":a$

Output: Date and Time: 11-21-200010:27:00

Usage

Suspends program execution for the specified number of milliseconds. The terminal timer
interrupts every 27.5 milliseconds, so SLEEP can be set up fo this accuracy. This
command is frequently used to pause a program so the user has time fo read the oufput
screen.

Syntax
SLEEP [milliseconds]

milliseconas The number of milliseconds that you want to suspend program
execution.

Example

10 PRINT "Taking a 10 second nap..."
20 SLEEP 10000

30 PRINT "Wake up!"

Usage
Returns a double precision floating point number that contains the elapsed fime in seconds
since 00:00:00 GMT, January 1, 1970. Used to time the length of specific operations.

Syntax
TIMERQ

Example

10 fime#=TIMERQ);

20 SLEEP 1000

30 LPRINT TIMERQ)-time#

TIMES

Error Trapping Commands

Chapter 5: JagBASIC Commands
Error Trapping Commands

Usage
Sefs or returns the ferminal system fime.

Syntax
TIMES
TIMES="hh:mm:ss"

hh:mm.ss Hours, minutes and seconds.
Example

10 a$="10-16-1997"

20 DATES=a$

30 PRINT DATES
50 TIMES="10:05:00"
60 PRINT TIMES

Despite all of your efforts, errors can occur in your program. JagBASIC offers both error
trapping and error handling commands for runfime errors. Runtime errors can be difficult to
locate because they may occur only when a certain combination of circumstances occur.
Runtime errors can also be caused by circumstances outside of your programming control,
such as looking up nonexistent records in a file or accessing a remote shared data item
when the Ethernet connection is down.

JagBASIC’s debug commands assist you in finding runtime errors.

JagBASIC’s error handling commands fell the program what to do if an error occurs. Only
certain errors can be handled at run fime.

JagBASIC's error commands can return an error code for the error, return the line number
where the error occurred, or provide error handling instructions. Chapter 9 contains a list of
JagBASIC error codes.

This section discusses the following JagBASIC error frapping commands:

ERL(), ERR(), ERROR

Command | Usage
ERLO Returns the line number where the error occurred, or the closest line
number before the line where the error occurred
ERRO Returns the runtime error code for the most recent error
ERROR Simulates an occurrence of an error.
ON ERROR Enables error handling and, when a run time error occurs, directs
GOSUB your program to an error handling routine.
ON ERROR Enables error handling and, when an error occurs, directs your
GOTO program to an error handling routine.
Usage

ERL returns the line number where the error occurred, or the closest line number before the
line where the error occurred. Used as a debugging aid to fix runtime errors in your
program.

(10/01) 5-95

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

ON ERROR GOSUB

The following errors can be frapped with
the “on error” command.

File open failed 0
Resource In Use 3
Record not found 6
Device Error 13
Command Error 14

Invalid Shared Data Name 28
Shared Data String Too Long 31
No Remote Access 32

5-96 (10/01)

ERR refurns the runtime error code for the most recent error. Used in error handling routines
to help identify the program and determine whether the program can recover from the error.

ERROR simulates an occurrence of an error. Used fo debug error handling routines.

Syntax
ERL()
ERR()
ERROR number%

number% Error code.

Example
10 ON ERROR GOSUB 1000

20 ERROR 22
30 END
40 IF ERR()=error_code THEN GOSUB 4000

1000 LPRINT ERR()
1010 LPRINT ERL()

Usage

Enables error handling and when a run time error occurs the command directs the program
to an error handling routine. If ON ERROR GOSUB is not used, any run time error ends the
program.

Syntax
ON ERROR GOSUB line

line The first line of the error handling routine.

Example
10 ON ERROR GOSUB 1000

20 OPEN “X.DAT” FOR INPUT AS #1

1000 IF ERR()=0 THEN PRINT “FILE ERROR”
1010 PRINT *ERROR ON LINE *; ERL()
1020 RETURN : REM returns to the next line after error

ON ERROR GOTO

The ON ERROR GOTO error handling
routine differs from the ON ERROR
GOSUB routine in that control does not
return to the next line of the program. The
ON ERROR GOTO error routine must
explicitly jump fo the next line of the
execution.

You must be particularly careful of
processing errors that occur in the middle
of WHILE-WEND loops, FOR-NEXT loops,
and GOSUB routines. These structures
creafe processing stacks and, if you do
not clear these stacks by properly exiting
these processing structures, you will
eventually get an OVERFLOW error.

TCP/IP Commands

Chapter 5: JagBASIC Commands
TCP/IP Commands

Usage
Enables error handling and when an error occurs directs the program to an error handling
routine. If ON ERROR GOTO is not used, any run fime error ends the program.

Syntax

ON ERROR GOQOTO line

line The first line of the error handling routine.
Example

10 ON ERROR GOTO 100

20 DEFSHR w#, j1/wt110

30 DEFSHR x#, j2/wt110

40 DEFSHR v#, j3/wt110

50 sum# = w# + x# + y#

60 PRINT sum#

70 GOTO 50

100 IF err() <> 32 then end
110 PRINT “JAGXTREME offline”
120 GOTO 50

JagBASIC TCP/IP “sockets” commands allow JagBASIC application programs to utilize the
TCP/IP communications. A JagBASIC application can communicate to a TCP/IP
application running on a PC host or fo a JagBASIC application in another JAGXTREME
terminal. The JagBASIC socket commands have functionality similar to the BSD socket
commands. A JagBASIC application may have up to eight open sockets at once.
JagBASIC closes all open sockets when the JagBASIC application ferminates.

Commands Usage

ACCEPTS Allows new connection request fo be accepted

CONNECT Initiates TCP/IP connection fo a remote host

IPD Converts a double float representation of an IP address to a
dotted string representation of an IP address

IPS Converts the dofted string representation of an IP address fo a
double for storage in Shared Data.

LISTEN Initiates TCP/IP fo begin queuing connection requests

RECVS Allows data fo be received over an established connection

SEND Allows data fo be sent over an established connection

SOCKET Creates socket for CONNECT command

SOCKCLS Closes an established connection

SOCKOPT Sets socket fo blocking or non-blocking

(10/01) 5-97

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

TIPS

5-98 (10/01)

JagBASIC prints the specific socket error codes fo the BAS_TERMINAL port, when you have
configured this port.

TCP/IP Socket Errors

ENOBUFS No buffers

ETIMEDOUT Timed Out

EISCONN Is connected
EOPNOTSUPP Operation not supported
ECONNABORTED Connection aborted
EWOULDBLOCK Operation would block
ECONNREFUSED Connection refused
ECONNRESET Connection reset
ENOTCONN Not connected
EALREADY Already in error state
EINVAL Invalid

EMSGSIZE Bad message size
EPIPE Socket not connected
EDESTADDRREQ Destination address request
ESHUTDOWN Shutdown
ENOPROTOOPT No protocol option
EHAVEOOB Has out of band data
ENOMEM No memory
EADDRNOTAVAIL Address not available
EADDRINUSE Address in use
EAFNOSUPPORT No support
EINPROGRESS Operation in progress
ELOWER Lower (IP) layer error
27. EIEIO Bad input/output on Old McDonald’s farm

TCP/IP Examples

These two sample programs illustrate how two JAGXTREME ferminals to falk back-to-back
using JagBASIC TCP/IP communications

5 REM Client Example

10 SOCK%=SOCKET(

20 stat%=SOCKOPT(SOCK%,-1)

30 stat%=CONNECT(SOCK %,"146.207.105.244",1920)

40 IF stat%=-1 THEN PRINT "connecting":SLEEP 200:GOTO 20

50 IF stat%=0 THEN PRINT "failed":stat%=SOCKCLS(sock%):SLEEP 2000:end

ACCEPTS

Chapter 5: JagBASIC Commands
TCP/IP Commands
60 PRINT "connect success":SLEEP 2000

70 aS="Hello Dolly":len%=len(a$)

80 FOR % =1T0 20

90 stat%=SEND(sock%,"Hello Dolly")

100 IF stat%<>len% THEN PRINT "send failed":SLEEP 2000:end
110 PRINT "sending ";i%:LPRINT "sending ";i%:sleep 100

120 NEXT i%

130 PRINT "closing SOCKET":sleep 2000

140 stat%=SOCKCLS (SOCK%)

150 END

10 REM Server Example

20 Isocket%=listen(1920)

30 asocket%=acceptS(Isocket%)

40 IF INKEYS=chr$(2) THEN GOTO 200

50 IF asocket%=0 THEN GOTO 200

60 IF asocket%=-1 THEN PRINT "awaiting connect":SLEEP 100:GOTO 30
70 PRINT "ip";IPS:LPRINT "ip=";IPS:SLEEP 2000

80 i%=0

90 aS=RECVS(asocket%,11)

100 IF INKEYS=chrS$(2) then GOTO 200

110 IF aS="" then sleep 100:GOTO 90

120 i%=i%-+1:PRINT "receiving ";i%:LPRINT i%;" ";aS

130 IF i% < 20 THEN GOTO 90

200 PRINT "closing socket":SLEEP 2000

210 stat%=SOCKCLS(Isocket%):stat%=SOCKCLS(asocket%)
220 END

Usage

ACCEPTS allows the JagBASIC application to accept new connection requests that remote
clients are initiating. The JagBASIC application must supply an integer number that is the
socket number of the LISTEN connection. If ACCEPTS finds a new connection, it creates
new socket for the new connection.

The ACCEPTS command may be either blocking or non-blocking. The default is non-
blocking. When in non-blocking mode, the ACCEPTS command returns a sfatus indicating
whether it has accepfed a new connection request. If there is no new connection, the
JagBASIC application must periodically issue the ACCEPTS command to know when a new
connection occurs.

(10/01) 5-99

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

CONNECT

5-100 (10/01)

If the socket is in blocking mode, ACCEPTS suspends execution until it has accepted a
connection from a remote host. The JagBASIC application uses the SOCKOPT command to
put the socket in blocking or non-blocking mode.

The refurn value is an integer variable. If it is successful, the ACCEPTS returns the socket
number of the new connection. If there is no new connection, ACCEPTS returns a (-1). If
there is a fatal error, ACCEPTS returns a (0).

When there is a successful new connection, ACCEPTS also sets the IP address of the
remote node that initiated the connection in the variable IPS.

Syntax
newSocket% = ACCEPTS(socket%)

Example
10 REM Server Example

20 Isocket%=listen(1920)
30 asocket%=acceptS (Isocket%)

Usage

The CONNECT function initiates a TCP/IP connection fo a remote host. The JagBASIC
application must supply the socket number, the host IP address string, and the host port
integer.

The connection attempt may be a blocking or a non-blocking attempt. The default is non-
blocking. When it is a non-blocking, CONNECT returns an “in progress” status when the
connection is in progress but has not yet complefed. Then, the JagBASIC application must
periodically re-issue the CONNECT to know when the connection is complete. If it is a
blocking attempt, JagBASIC suspends execution until a successful connection is made.
The JagBASIC application uses the SOCKOPT command to put the socket in blocking or
non-blocking mode.

The return value is an integer variable. If the connection afttempt is successful, CONNECT
returns a (1). If the connection is still “in progress” but not completed, it returns a (-1). If
the connection attempt fails, CONNECT returns a (0).

Syntax
status% = CONNECT(socket%, IPAddressS, hostport%)

Example
5 REM Client Example

10 sock%=SOCKET()
20 stat%=SOCKOPT(sock%,-1)
30 stat%=CONNECT(sock%,"146.207.105.244",1920)

IPD

IPS

LISTEN

RECVS

Chapter 5: JagBASIC Commands
TCP/IP Commands

Usage

The IPD function converts the dotted string representation of an IP address to a double for
storage in Shared Data. If successful, "ipd" refurns the IP address. If not successful, ipd
returns a 0.

Syntax

Ipadr# = ipd(ipstring$)

Example

5 DEFSHR subnetmask#,net03

10 subnetmask# = IPD ("255.255.255.0")

Usage

The IPSS function converts a double float representation of an IP address to a dotted string
representation of an IP address, e.g., *111.111.111.123". Use it for converting an IP
address that is refrieved from Shared Data to its string representation.

Syntax

AS = IPSS(ipdouble#)

Example

5 defshr ipaddress#,net02

10 ipaddressS = ipsS(ipaddress#)

Usage

LISTEN function initializes TCP/IP to begin queuing the connection requests for the host
port. The JagBASIC application must supply an infeger host port number. Subsequently,
the ACCEPTS command allows the JagBASIC application to begin accepting the connection
requests from a remotfe node. Remote clients initiate the connection requests with the
CONNECT command.

The return value is an integer variable. If it is successful, LISTEN returns the socket number.
If LISTEN fails, it returns a (0).

Syntax
socket% = LISTEN(hostport%)

Example
10 REM Server Example

20 Isocket%=LISTEN(1920)
30 asocket%=ACCEPTS(Isocket%)

Usage
RECVS command allows the JagBASIC fo receive data over an established connection. The
JagBASIC application must supply an infeger socket number and length for the received

(10/01) 5-101

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

SEND

5-102 (10/01)

sfring. The maximum received data length on each call is the JagBASIC maximum siring
size (160 bytes).

The RECVS command may be blocking or non-blocking. The default is non-blocking.
When it is in non-blocking mode, RECVS returns data immediately or returns a status
indicating there is no data available. In this mode, the JagBASIC application must
periodically re-issue the RECVS command to see if there is more data. If the socket is in
blocking mode, RECVS suspends execution until the socket receives data. The JagBASIC
application uses the SOCKOPT command fo put the socket in blocking or non-blocking
mode.

The refurn value is a string variable. If it is successful, RECVS returns the data string. If
there is no data available on the connection, RECVS returns the null string. If there is a fatal
error on receiving, RECVS sets the JagBASIC “device error”. The JagBASIC application
must use the ON ERROR GOTO or ON ERROR GOSUB statements to trap this error.

Syntax
inputStringS = RECVS(socket%, length%)

Example
10 REM Server Example

20 Isocket%=LISTEN(1920)

30 asocket%=ACCEPTS(Isocket%)

40 IF INKEYS=chr$(2) THEN GOTO 200

50 IF asocket%=0 then GOTO 200

60 IF asocket%=-1 then prinf "awaiting connect":sleep 100:G0OTO 30
70 PRINT "ip";IPS:LPRINT "ip=";IPS:sleep 2000

80 i%=0

90 aS=RECVS(asocket%,11)

Usage
The "send" command allows the JagBASIC fo send data over an established connection.
The JagBASIC application must supply an infeger socket number and the string to be sent.

The return value is an integer variable. If SEND is successful, it returns a positive number
that is the number of characters sent. If it fails, SEND returns a (0).

If there is a fatal error on sending, SEND sets the JagBASIC “device error”. The JagBASIC
application must use the ON ERROR GOTO or ON ERROR GOSUB statements fo trap this
error.

Syntax
numChars% = SEND(socket%, stringToSend$)

Example
5 REM Client Example

10 sock%=SOCKET()
20 stat%=SOCKOPT(sock%,-1)
30 stat%=CONNECT(sock%,"146.207.105.244",1920)

SOCKET

SOCKCLS

Chapter 5: JagBASIC Commands
TCP/IP Commands
40 IF stat%=-1 THEN PRINT "connecting":SLEEP 200:GOTO 20

50 IF stat%=0 THEN PRINT "failed":stat%=sockcls(sock%):SLEEP 2000:END
60 PRINT "connect success":SLEEP 2000

70 aS="Hello Dolly":len%=LEN(a$)

80 FOR i% =110 20

90 stat%=SEND(sock%,"Hello Dolly")

Usage
The SOCKET function creates a socket for a subsequent CONNECT command, which
initiates a connection to a remote host using this socket.

The return value is an integer variable. If it is successful, SOCKET returns the socket
number. If it fails, SOCKET returns a (0).

Syntax
socket% = SOCKET()

Example
5 REM Client Example

10 sock%=SOCKET()
20 stat%=SOCKOPT(sock%,-1)

Usage

SOCKCLS command allows the JagBASIC application to close an established TCP/IP
connection. The JagBASIC application must supply an infeger number. SOCKCLS refurns
an infeger 1.

Syntax
stat% = SOCKCLS(socket#)

Example
130 PRINT "closing socket":SLEEP 2000

140 stat%=SOCKCLS(sock%)
150 END

(10/01) 5-103

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

SOCKOPT

Usage

The SOCKOPT function makes a TCP/IP socket blocking or non-blocking. The default is
non-blocking. The JagBASIC application must supply an infeger socket number and an
integer option number. If the opfion is 1, SOCKOPT makes the socket a blocking socket. If
the option is —1, it makes the socket a non-blocking socket. The blocking/non-blocking
functionality applies only fo the ACCEPTS, LISTEN, and RECVS commands.

The return value is an integer variable. If the command is successful, it returns a (1). If the
command fails, it returns a (0).

Syntax
status% = SOCKOPT(socket%, option%)

Example
5 REM Client Example

10 sock%=SOCKET()
20 stat%=SOCKOPT(sock%,-1)

5-104 (10/01)

Chapter 6: Shared Data Variables
Shared Data Heap Elements
|

6 Shared Data Variables

The shared data database is the main dafa storage area for JAGXTREME information.
This central variable table keeps track of virtually every data value used by the
JAGXTREME terminal. All operating system fasks can directly use these shared values.

The Scale threads or Setup is the main shared dafa source. Other "external" agencies
such as JagBASIC, the Windows API, Save/Restore/Setup Utility, Allen-Bradley interface,
MODBUS Plus inferface, or PROFIBUS interface can also read or write to shared dafa.

External write access fo shared data variables is sometimes restricted. The Scale threads
and Setup maintain write access fo any variable, but access to Setup itself may be
restricted by the Legal-for-Trade jumper. If the Legal-for-Trade jumper is installed, any
shared data variables listed, as "External Read Only" cannot be written fo by external
agencies. If the Legal For Trade jumper is removed, there are no external write access
restrictions. Access restrictions are enforced on a whole block basis only. Note:
Dipswitch 1 must be on for sefup to be entered.

See the JAGXTREME Operating Environment and Shared Data and the Shared Data
Types sections in Chapter 1 for more information.

This chapter lists the various shared data variables. The following abbreviations are
used throughout the chapter.

e UC—Unsigned Character

e C—Siring Character variables are any ASCII characters with values in the range 1 fo
127 or extended characters in the range 128 through 255, terminafed by a O.

e D—Double Float variables are numeric variables in 64-bit double-precision format.

e L—Llong variables are numeric integers representing a number of eight or more
digits.

e US bit—Unsigned bit variables have a value of O or 1.

Shared Data Heap
Elements

This section lists the shared data heap elements. These variables hold the values
associated with different scale weights and with board configurations.

(10/01) 6-1

METTLER TOLEDO JagBASIC Programmer's Guide for JAGXTREME Terminals

Scale Weight Shared Data
These variables hold the shared data values associated with scale weight. The fields are
external read only. The 'n' listed below in Local Field ID will be replaced with the internal
scale number. The scale number can be from 1 1o 5.

Local Method Local Internal External Format
File I1d Format

DisplayedGrossWeight /winQ1 12C 12 alphanumeric, right-justified

DisplayedNetWeight /win02 2C 12 alphanumeric, right-justified

DisplayedWeightUnits /win03 2C 2 alphanumeric (Ibpounds, kgkilograms, grams,
tmefrictons)

DisplayedAuxGrossWeight /win04 12C 12 alphanumeric, right-justified

DisplayedAuxNetWeight /win05 12C 12 alphanumeric, right-justified

DisplayedAuxWeightUnits /win06 6C 6 alphanumeric (Ibpounds, kgkilograms, ozounces, Ib-
ozpounds & ounces, oztroy ounces, dwtpenny weights,
metric tons, ton, or custom units name)

DisplayedAuxRatePeriod /win07 C 1 alphanumeric (No, Sec, Min, Hour)

DisplayedRate /win08 12C 12 alphanumeric, right-justified

DisplayedDiagnosticWeight /win09 12C 12 alphanumeric, right-justified

LegalGrossWeight /win10 D double float weight

LegalNetWeight /winT1 D double float weight

AuxiliaryGrossWeight /win12 D double float weight

AuxiliaryNetWeight /win13 D double float weight

AuxiliaryRate /win14 D double float weight

ScaleState /win15 uc O=disabled, T=normal weight processing, 2=diagnostic,
3=calibration, 4=shift adjust.

ContinuousOutputStatusA /win16 uc 1 byte, any value.

FineGrossWeight /win17 D double float weight

FineNetWeight /win18 D double float weight

Weighing Range /win19 uc 0= single weighing range, T=multi-range 1, 2=mulfi-
range 2, 3=multi-range 3

WIM Time Counts /win20 D Double float WIM time counts

WIM Weight Units /win21 3C 3 alphanumeric (Ibpounds, kgkilograms, grams, tmetric
tons)

6-2 (10/01)

Chapter 6: Shared Data Variables
Shared Data Heap Elements

Board Configuration Shared

Data
These variables hold the shared data values associated with board configuration. Board
configuration shared dafa variables are initialized at power up. The fields are external
read only.
Local Method Local Internal External format
File I1d Format
Read the JAGXTREME display /bd001 50C Read contents of JAGXTREME display.

The first 8 bytes have the contents of the
numeric display. The next 16 bytes have
the contents of the alphanumeric dislay.
The next 8 byfes have the contents of
thenumeric cursors. The next 16 bytes
have the confents of the alphanumeric
cursors. For each cursor, its corresonding
byte has an ASCII "O" if the cursor is off
and an ASCII '1" if the cursor is on.
Board configuration string /bd002 60C Contains a 15-byte entry for each of four
board slots. Each entry confains a two-
character board identifier and a 13-
character board software serial number
where applicable.

Latest keysiroke/key source /bd003 2C 2 alphanumeric; read/write
EEPROMAutorizationByte /bd004 10C 10 alphanumeric; read only
ConsoleSoftwarePartNo /bd005 13C 12 alphanumeric; read only
Scale1SoftwarePartNo /bd006 13C 12 alphanumeric; read only
Scale2SoftwarePartNo /bd007 13C 12 alphanumeric; read only
Scale3SoftwarePartNo /bd008 13C 12 alphanumeric; read only
Scale4SoftwarePartNo /bd009 13C 12 alphanumeric; read only
ScalebSoftwarePartNo /bd0010 13C 12 alphanumeric; read only
MulfiFunctionlOSoftwarePartNo /bd011 13C 12 alphanumeric; read only
POWERCELL SoftwarePartNo /bd012 13C 12 alphanumeric; read only
DisplayContents /bd013 17C Reserved for JAGXTREME O/S Use Only

(10/01) 6-3

METTLER TOLEDO JagBASIC Programmer's Guide for JAGXTREME Terminals

HMI Weight Stream /bd014 105C Contains HMI weight streams for up to
five scales. The HMI subscribes to which
fields the JAGXTREME will send by
sending the subscribe message. Its
format is:
<STX>S<ABCDESJL<ETX><chk> where
ABCDE represents the scales, S represents
the selected scale, L reprsents the lower
JAGXTREME display, and J is the
JagBASIC message filed. "S" is mutually
exclusive from ABCDE. Jag60 stores
subscription. The HMI weight stream is
formatted as follows:
Stream1><US><stream2><US><stream
n>

Each weight stream has the following
contents:

<JagX ID> 1N Range: 1 fo 6

<Scale ID> TA Range: Afo E

If selected scale, range is in lowercase <a
to e>.

<Status> 1C

Bit 7 Always O

Bit 6 Always 1

Bit 5 1=Scale in Mofion

Bit 4 1 = Center of Zero

Bit 3-2 00=single range

OT=weight range 1

02 = weight range 2

03 = weight range 3

Bif T 1 = Net Mode

Bit O 1 = Present Tare

<Units> 1 N O=None, 1=Ib, 2=kg, 3=g,
4=0z. 5=0zt, 6=dwt. 7=t. 8=ton,

9=custom
<Net Wt> 8N 6 digifs plus ossible "_"
and"."
<Tare Wt> 8N 6 digits plus possible "_"
and"."

PowerCellScale-CellErrors /bd016 25C 25 Byfes. There is an error number for up

fo 24 POWERCELLS. This field has cell
errors for both Scale A, Scale B, Scale C,
and Scale D.

6-4 (10/01)

Chapter 6: Shared Data Variables
Shared Data Heap Elements

PowerCellScale_CellCounts /bd017 24D 192 Bytes. Each double float contains the
current shift-adjusted counts for consecutive
power cells in a scale. An external agency can
request the current count for a scale by setting
frigger /t_69d for Scale A, /i_6ad for Scale B to
1, /t_62d for Scale C, and /t_63d for Scale D.

ScanTable /bd018 25C Scan Table contains ordered list of current
power cell addresses.

PowerCellScale-CellCounts /bd019 24L 96 bytes. Each long confains the current shift-
adjusted coutns for consecutive POWERCELLS in
a scale. An appliation can request the current
counts for a scale by sefting trigger t_69d for
Scale A, t_6ad for Scale B to1, t_62d for Scale
C, and t_63d for Scale D. Read only.

PowerCellOverloadState bd020 25C 25 Bytes. There is one entry each for up to 24 power
cells. O = Cell not assigned, 1 = Cell OK, 2 = Cell in
Overload condition.
PowerCellZeroDriftState /bd021 25C [25 byfes. There is one enfry each for up fo 24
POWERCELLs. 0=Cell not assigned, 1=Cell OK, 2=
Cell in Overload condition.

Read Discrete Inputs /bd030 us Retrieves the status of all discrefe inputs p_100

through p_10f

Read Discrete Outputs /bd031 us Retrieves the status of all discrefe outputs p_500

through p_50f

Read Status Flags for Scale A /bd032 us Retrieves scale A status bits s_200 through s_207

and s_260 through s_264

Read Status Flags for Scale B /bd033 us Retrieves scale B status bits s_208 through s_20f

and s_268 through s_26¢

Read Status Flags for Scale C /bd034 us Retrieves scale C status bits s_270 through s_27c¢

Read Status Flags for Scale D /bd035 us Retfrieves scale D staius bits s_280 through s_28¢c

Read Status Flags for Scale E /bd036 us Retrieves scale E status bits s_2f0 through s_2fc

Read JagBASIC Custom Flags /bd037 us Retfrieves custom stafus bits s_250 through s_25f

Display Board /bd085 US bit |1=Yes, 0=No; Read only.

AnalogBoard1 /bd086 US bit [1=Yes, 0=No; Read only.

AnalogBoard? /bd087 US bit |1=Yes, 0=No; Read only.

AllenBradleyPLC /bd088 US bit |1=Yes, 0=No; Read only.

PROFIBUS /bd089 US bit _[1=Yes, 0=No; Read only.

Ethernet /bd090 US bit _|1=Yes, 0=No; Read only.

MultiFunctionlO1 /bd091 US bit _|1=Yes, 0=No; Read only.

PowerCell /bd092 US bit _|1=Yes, 0=No; Read only.

ModBus Plus /bd093 US bit _[1=Yes, 0=No; Read only.

AnalogOut /bd094 US bit |1=Yes, 0=No; Read only.

HighPrec1 /bd095 US bit |1=Yes, 0=No; Read only.

HighPrec? /bd096 US bit |1=Yes, 0=No; Read only.

Multi-Functionl02 /bd097 US bit _[1=Yes, 0=No; Read only.

(10/01)

6-5

METTLER TOLEDO JagBASIC Programmer's Guide for JAGXTREME Terminals

Shared Data Static RAM

Elements

Scale Weight Stored in

Static RAM Shared Data

6-6

This section lists the shared data static random access memory elements. These
elements include variables for scale weight, scale calibration parameters, scale fare
weight, setpoints, system values, user literals, user prompts, user variables, cluster
variables, PLC configuration, femplates, security, serial port setup, network inferface,
network remote nodes, network host workstation nodes, analog output, connections,
ladder logic, and BASIC applications. These fields are preserved when the terminal is
powered down.

These shared data variables hold the values associafed with scale weight stored in
static RAM. The fields are external read only. The 'n' will be replaced with the
Internal Scale number. The scale number can be from 1 to 5.

Local Method Local Internal External Format
File Id Format

ScaleModeOut /wsnOT C 1 alphanumeric (GROSS or NET)
DisplayedTareWeight /wsn02 12C 12 alphanumeric, right-justified
DisplayedAuxTareWeight /wsn03 12C 12 alphanumeric, right-justified
FineTareWeight /wsn04 D double float weight
AuxiliaryTareWeight /wsn05 D double float weight
CurrentUnits /wsn06 uc 1=Primary, 2=Secondary
TareSource /wsnQ7 uc 1=Pushbutton, 2=Keyboard, 3=Autotare
CurrentZeroCounts /wsn08 D Double PB&AZM current zero counts
TareSourceString /wsn09 2C "PT"=keyboard tare, else "T"
DisplayedStoredWeight /wsn10 12C 12 AN, right justified
Stored Weight /wsn11 D double float weight
LegalTareWeight /wsn12 D double float weight
LastScaleError /wsn13 41C Date — fime - error message
NumberScaleErrors /wsn14 F Errors since calibration or reset

(10/01)

Scale Calibration
Parameters Stored in Static
RAM

Chapter 6: Shared Data Variables
Shared Data Static RAM Elements

These shared data variables hold the values associafed with scale calibration
parameters stored in static RAM. The fields are external read only. The 'n' will be
replaced with the Internal Scale number.

Local Method Local Internal External Format
File I1d Format

AuxiliaryDisplayUnits /csn01 uc 1=pounds, 2=kilograms, 3=grams, 4=ounces, 5=pounds
& ounces, 6=froy ounces, 7=penny weights, 8=meitric tons,
9=tons, 10=custom units

CustomUnitsName /csn02 6C 6 alphanumeric

CustomUnitsConversionFactor /csn03 D double float

RafelntegrationPeriod /csn04 C 1 alphanumeric (No, Sec, Min, Hour)

RafeSampleTime /csn05 uc seconds

RafeDisplayFrequency /csn06 uc O=every second, 1=every five seconds,2=every half second

IDNET Higher Precision /csn08 uc O=Normal 1=Higher

PowerUpTimer /csn09 uc 2 alphanumeric, right-justified (in minutes)

LowPassFilterCornerFrequency /csn10 D double floaf (0.1 Hz t0 9.9 Hz in steps of 0.1 Hz)

NotchFilterFrequency /csnll D double float (0.1 Hz t0 9.9 Hz in steps of 0.1 Hz)

CombFilterFrequency /csnl2 D double float (0.1 Hz t0 9.9 Hz in steps of 0.1 Hz)

PrinfThreshold /csn13 D double float weight

PrintResefThreshold /csn14 D double float weight

DisplayUpdateFrequency /csn15 D double float hertz

CustomConfinuousOutUpdateFreq /csn16 D double float hertz

LowPassFilterPoles /csn17 US bit unsigned integer.

ScalelD /csn18 8C 8 byfes text string.

AveragingFilterOrder /csn19 US bit unsigned integer.

CombpFilterOrder /csn20 UsS bit unsigned integer.

ScaleType /csn21 C 1 alphanumeric (Analog Load Cells, Power Digital Load
Cells, IHigh Precision, Single cell DigiTOL, Power Module
DigiTOL, UliraResHigh, or UliraResLow)

ScaleLocation /csn22 uc O=first unit, 1=second unit (board or COM: port)

IDNetVibrationAdaptor /csn23 C '0' - '9' (specific to Precision Base)

IDNetWeighingProcessAdaptor /csn24 C '0' - '9' (specific fo Precision Base)

IDNetAutomaticStabilityDefection /csn25 C '0' - '9' (specific to Precision Base)

IDNetAutoZeroSetting /csn26 C '0'="0ff", '1'="On"

IDNetSoftwarePartNum /csn27 11C XXXX-X-XXXX string from Precision Base

IDNetldentcode /csn28 2C ""10 '99' calibration count from Precision Base

ScalesinSummingScale /csn29 uc Add Scale fo Summing Scale, 0=No, 1=Yes

CalibrationDate /csn30 11C 11 alphanumeric

FillnoiseFilterEnable /csn85 US bit 1=True, O=False

AutoPrint /csn86 UsS bit 1=True, O=False

NoMotionBeforePrint /csn87 US bit 1=True, O=False

DisplayRate /csn88 US bit 1=True, O=False

DisplayAuxiliaryUnits /csn89 US bit 1=True, O=False

UnitsSwitchEnable /csn90 UsS bit 1=True, O=False

PrintinferlockEnable /csn91 US bit 1=True, O=False

Do_IDNET_TarelnJag /csn92 UsS bit 1=True, O=False

ProcessApplication /csn93 US bit 1=True, O=False

(10/01) 6-7

METTLER TOLEDO JagBASIC Programmer's Guide for JAGXTREME Terminals

Scale Tare Shared Data

These shared dafa variables hold the values associated with scale tare weight. The fields
are external read only. The 'n' will be replaced with the Internal Scale number. The scale
number can be from 1 1o 5.

Local Method Local Internal External Format
File Id Format
AutoTareThreshold /im0 double double float weight
AufoTareResetThreshold /irn02 double double floaf weight
AutoClearTareThreshold /trn03 double double float weight
TareEnabled /trn85 US bit 1=True, O=False
PushbuttonTare /frn86 US bit 1=True, O=False
KeyboardTare /irn87 US bit 1=True, O=False
AutoTare /trn88 US bit 1=True, O=False
AutoTareCheckMotion /trm89 US bit 1=True, O=False
AutoClearTare /90 US bit 1=True, O=False
AutoClearTareAfterPrint /91 US bit 1=True, O=False
AutoClearTareMotion /trn92 US bit 1=True, O=False
Tarelnterlock /93 US bit 1=True, O=False
DisplayTare /irn94 US bit 1=True, O=False
NetSignCorrection /ir96 US bit 1=True, O=False

Setpoint Shared Data

6-8

(10/01)

These shared data variables hold the values associated with sefpoints. Although the
terminal's setpoints are numbered 1-12, they are referenced with an infernal setpoint
number 1-C, where A=10, B=11, and C=12. The fields are external read/write. The "n"
will be replaced with the Internal Setpoint number (1-C).

The Setpoint Target Variable (spn03) can be used fo select the type of setpoint operation
required:

Gross = gross setpoint without aufo preact adj
H = gross setpoint with auto preact adj

Jog = Jog Setpoint

Learn = Learn Jog Sefpoint

Net = nef setpoint without auto preact adj

M = nef setpoint with auto preact adj
Displayed = displayed setpoint

Rate = rate setpoint

The operation of Setpoint Preact Value (spn06) will vary depending on the selection of
the Setpoint Target Variable (spn03). If G, N, or D is selected, the Setpoint Preact Value
(spn06) is a double float weight value, and there is no aufo preact adjustment. If H or M
is selected, the Setpoint Preact Value (spn06) is a double float seconds value, and auto
preact adjust is enabled. As the scale is used for weighments, the ferminal's operating
system will adjust the time value stored in this field. When R is selected, there is no
associated preact value.

The following four fields are secondary inputs fo a single setpoint that has auto-
adjusting preacts based on flow rates. When the flow rate is greafer than threshold 3,
preact 3 is used. When the flow rate is greater than threshold 2, preact 2 is used.

Chapter 6: Shared Data Variables
Shared Data Static RAM Elements
Threshold 3 is the higher threshold rate. Threshold 2 is the lower threshold rate. If the
flow rate is below both thresholds, the standard preact is used.

Local Method Local Internal External Format
File Id Format
AutoAdjustSetpoiniThreshold2 /spc08 D double float weight
AutoAdjustSetpointPreact2 /spc06 D double float weight
AutoAdjustSetpointThreshold3 /spb08 D double float weight
AutoAdjustSetpointPreact3 /spb06 D double float weight

Latching of the setpoint is controlled by Setpoint Lafching (spn87). When an external
agency enables "Feed Lafching”, the ferminal's O/S sets the Sefpoint Latched=1 and the
Setpoint Feeding=0 condition again until the external agency resets the Setpoint
Latched=0. The exfernal agency must reset Setpoint Laiched=0 before starting a new
sefpoint. Any time you wish to change a setpoint value, setting, or latch, Restart
Setpoints A (1_698) or Restart Setpoints B (f_6a8) must be triggered by setting its value
equal fo 1 in order fo instruct the terminal's O/S to use the new setpoint seftings.

Jog Tables for the Jog setpoints are contained in the Cluster Variable fields. The fields
contain numbers in string format. Cluster variables 1-10 are the weight values. Clustfer
Variables 11-20 are the timer values associated with each of the weight values. The
weight and timer values must be ordered in ascending order. A weight value of O
indicates the termination of the fable values.

Local Method Local Internal External Format
File Id Format
SetpointName /spn01 8C 8 alphanumeric
SetpointEnbleButton /spn02 uc alphanumeric (O=disabled; Scale A=1, Scale B= 2,
Scale C= 3, Scale D= 4, Scale E= b)
SetpoiniTargetVariable /spn03 C 1 alphanumeric (G,H,N,M,D,R,L or J)
SetpointCoincidenceValue /spn05 D double floaf weight; For learn Jog setpoints, this field
confains a time value in seconds
SetpointPreactValue /spn06 D double float weight or double float seconds
SetpointDribbleValue /spn08 D double floaf weight
SetpoiniToleranceValue /spn10 D double floaf weight
SetpointFillOrDischarge /spn86 US bit 1=Discharge, O=Fill
SetpointLatching /spn87 US bit 1=Feed Laiching Enabled, O=Feed Latching Disabled
SetpointLatched /spn88 US bit 1=Latched, O=Unlatched

(10/01) 6-9

METTLER TOLEDO JagBASIC Programmer's Guide for JAGXTREME Terminals

System Shared Data
These shared dafa variables hold the values associated with system data, such as the
system date and time. The fields are external read only.

Local Method Local Internal External Format
File Id Format

Current Selected Scale /jag01 2C First Char= L or n, 2nd=A or B

ETHERNET Node Address /jag02 uc 8 bit address

Market /jag04 C 1 alphanumeric (USA, European Community,
Australia, Canada)

DateFormat /jag05 ucC 1 byte integer

TimeFormat /jag06 uc 1 byte integer

JulianDate /jagQ7 8C 8 alphanumeric

JulianTime /jag08 8C 8 alphanumeric

Consecutive Number /jag09 L long integer counter

Error Message /jag10 41C Date — time — error message

SoftwarelD /jag11 12C 12 alphanumeric

SoftwareSerialNumber /jag12 12C 12 alphanumeric

BRAMVersionNumber /jag14 L 4 byte infeger

NumberOfinternalScales /jag15 uc 1 byte unsigned integer

DateSeparator /jag16 C 1 byte character

TimeSeparator /jag17 C 1 byte character

ConsecutiveNumberDest /jag18 10C Size of J_FNAME + 1

CurrentDate /jag19 11C 11 alphanumeric

TimeOfDay /jag20 11C 11 alphanumeric

WeekDay /jag21 10C 10 alphanumeric

ConsecutiveNumberPreset /jag22 L CN Preset value

CharacterSet /jag23 uc 0=USA, T=France, 2=England, 3=Germany, 4=Den
mark-I, 5=Sweden, 6=ltaly, 7=Spain-I, 8=Japan,
9=Nor way, 10=Denbmark-Il, 11=Spain-Il, 12=Latin
America

Language /jag24 uc 0=English, 1=French, 2=German, 4=Spanish

Keyboard /jag25 ucC 0=English, 1=French, 2=German, 4=Spanish

Disable Memory Key /jag91 UsS bit 1=True, O=False

Error Log Reset Time /jag26 24C Date-Time

KeyBeeperEnable /jag85 US bit 1=0n, 0=0ff

AlarmBeeperEnable /jag86 US bit 1=0n, 0=0ff

LegalForTrade /jag88 US bit 1=True, O=False

ConsecutiveNumberEnable /jag89 US bit 1=True, O=False

ConsecutiveNumberPresetEnable /jag90 US bit 1=True, O=False

Disable Memory Key /jag91 US bit 1=True, O=False

User Literals Shared Data

These shared data variables hold the values associated with user literal datfa. The fields
are external read/write.

Local Method Local Internal External Format
File Id Format
User Literal 1 /it01 40C 40 alphanumeric
User Literal 2 /it02 40C 40 alphanumeric
User Literal 20 /lit20 40C 40 alphanumeric

6-10 (10/01)

User Prompts Shared Data

Chapter 6: Shared Data Variables
Shared Data Static RAM Elements

These shared dafa variables hold the values associated with user prompts. The fields
are external read/write.

Local Method Local Internal External Format
File Id Format
User Prompt 1 /pmi01 16C 16 alphanumeric
User Prompt 2 /pmt02 16C 16 alphanumeric
User Prompt 20 /pmt20 16C 16 alphanumeric

User Variables Shared Data

These shared datfa variables hold the values associated with user variable data. The
fields are external read/write.

Local Method Local Internal External Format
File Id Format
User Variable 1 varQ1 47C USER_VARIABLE structure
User Variable 2 /var02 47C USER_VARIABLE structure
User Variable 20 /var20 47C USER_VARIABLE structure
VariablesinUse var81 uc Number 0-20
PromptLoopingMode /var82 ucC 0=No Loop, 1=Loop

Cluster Variable Shared
Data

These shared data variables hold the values associafed with cluster variable data. The
fields are external read/write. Cluster Variable fields may contain Jog Tables for the Jog
Setpoints. The fields have numbers in string format. Cluster variables 1-10 are the
weight values. Cluster variables 11-20 are the associated timer values.

Local Method Local Internal External Format
File Id Format
Cluster Variable 1 /clvO1 40C 40 alphanumeric
Cluster Variable 2 /clv02 40C 40 alphanumeric
Cluster Variable 20 /clv20 40C 40 alphanumeric

Template Shared Data

These variables hold the values associated with template shared data. The fields are
external read only.

Local Method Local Internal External Format
File Id Format
Printer Template 1 /ptp01 409C 400 a/n grammar + 8 a/n template name + null
Printer Template 2 /ptp02 409C 400 a/n grammar + 8 a/n template name + null
Printer Template 3 /ptp03 409C 400 a/n grammar + 8 a/n template name + null
Printer Template 4 /ptp04 409C 400 a/n grammar + 8 a/n template name + null
Printer Template 5 /ptp05 409C 400 a/n grammar + 8 a/n template name + null

(10/01) 6-11

METTLER TOLEDO JagBASIC Programmer's Guide for JAGXTREME Terminals

Serial Port Setup Shared

Data
These variables hold the values associafed with serial port setup shared data, such as
the fransmit and receive baud rates. The fields are external read only. The 'n' will be
replaced with the Internal Scale number.
Local Method Local Internal External Format
File Id Format
InterfaceType: /sr01 uc 0=RS232, 1=RS422, 2=RS485
XmitBaudRate /srn02 uc 0=300, 1=600, 2=1200, 3=2400, 4=4800, 5=9600,
6=19200, 7=38400, 8=57600, 9=76800, 10=115200.
Parity /srn04 uc Same as BIOS values. O=even, 16=0dd, 64=none
FlowControl /sr05 uc Same as BIOS values. O=none, 1=Xon/Xoff, 2=RS232.
Data Bits /srn07 uc Same as BIOS values. 8=7 bits, 12=8 bits
Stop Bits /srn08 uc Same as BIOS values. 1=1, 2=1.5, 3=2
Checksum /srn85 US bit 1=0n, 0=0ff

Network Interface Shared

Data
These variables hold the values associated with network inferface shared data.
Local Method Local Internal For External Format
File Id mat
NetworkConsole /net91 US bit 1=True, O=False

Network Remote Node
Shared Data

These variables hold the values associated with network shared dafa. The fields are
external read only. The 'n' will be replaced with a remofe node index number (1-6).

Local Method Local Internal External Format
Field For mat
RemoteConnectionEnabled /rmn87 US bit 1=True, O=False

Network Host Workstation
Node Shared Data

These variables hold the values associated with network host workstation node shared
data. The fields are external read only. The 'n' will be replaced with a remote node index
number (1-3).

Local Method Local Internal External Format
File Id Format
RemoteConnectionEnabled /rwn87 US bit 1=True, O=False

6-12 (10/01)

Chapter 6: Shared Data Variables
Shared Data Static RAM Elements

PLC Configuration on
Shared Data

These variables hold the values associated with PLC configuration shared data, such as
the number of scales. The fields are external read only.

Local Method Local Internal External Format
File Id Format

RackAddress /abcO1 uc Allen-Bradley 0-59, PROFIBUS station ID 1-127,
MODBUS Plus 1-63.

AllenBradleyStartingQuarter /abc02 uc 1-4

AllenBradleyDataRate /abc03 uc 0=57.6k, 1=115.2k, 2=230.4k

NbrOfScales /abc05 uc 1-4

DiscreteDataFormat /abc06 uc O=Integer Weight, T=Increments, 2=Extended Weight,
4=Floating Point

InputRotation /abc07 10C 10 character string

AllenBradleyLastRack /abc85 US bit 1=Yes, 0=No

BlockTransferEnable /abc86 UsS bit 1=Yes, 0=No

ModbusPlusGlobalsEnable /abc87 US bit 1=Yes, 0=No

PLC_ControlsScaleASetpoints /abc88 US bit 1=Yes, 0=No

PLC_ControlsScaleBSetpoints /abc89 US bit 1=Yes, 0=No

PLC Scale Configuration
Shared Data

These variables hold the values associated with PLC configuration shared dafa, such as
the scale location. The fields are external read only. The 'n' will be replaced with a scale
index number.

Local Method Local Internal External Format
File Id Format
TerminalNodeName /abn01 2C 2 alphanumeric (J1, J2, J3, J4, J5, J6)
ScaleSelection /abn02 uc 1 byte unsigned integer
ScaleLocation /abn85 US bit O=Local, T=Remote

(10/01) 6-13

METTLER TOLEDO JagBASIC Programmer's Guide for JAGXTREME Terminals

Analog Output Shared Data

These variables hold the values associafed with analog output shared datfa. The fields
are external read only. The 'n' will be replaced with a channel index number.

Local Method Local Internal External Format
File Id Format
AnalogOutSourceData /aon01 C G=Gross Weight Scale 1, H=Gross Weight Scale 2,

I=Gross Weight Scale 3, J=Gross Weight Scale 4,
K=Gross Weight Scale 5, L=Nef Weight Scale T,
M=Net Weight Scale 2, N=Net Weight Scale 3,
O=Net Weight Scale 4, P=Net Weight Scale 5,
Q=Rafe Scale 1, R=Rate Scale 2, S=Rate Scale 3,
T=Rate Scale 4, U=Rate Scale 5, B=JagBASIC
Scale 1, C=JagBASIC Scale 2, D=JagBASIC Scale
3, E=JagBASIC Scale 4, F=JagBASIC Scale 5.

AnalogOutZeroTrim /aon02 D Zero Adjustment Offset
AnalogOuiSpanTrim /aon03 D Full Scale Adjustment Offset
AnalogOutZeroPreset /aon04 D Zero Adjustment Preset Value
AnalogOutSpanPreset /aon04 D Full Scale Adjustment Present Value

Ladder Logic Data

These variables hold the values associated with ladder logic shared dafa. The fields are
external read only.

Local Method Local Internal External Format
File I1d Format
LadderRungCounter /lad01 us Number 'n' of rungs in ladder
LadderRungs /lad02 600C Ladder, containing 'n' rungs

BASIC Application Shared

Data
These variables hold the values associated with BASIC application shared data. The
fields are external read/write.
Local Method Local Internal External Format
File ID Format
Program 1 /basO1 20C 19 Alphanumeric characters + 0
Program 2 /bas02 20C 19 Alphanumeric characters + O
Program 3 /bas03 20C 19 Alphanumeric characters + 0
Program 4 /bas04 20C 19 Alphanumeric characters + O
Program 5 /bas05 20C 19 Alphanumeric characters + 0
Program 6 /bas06 20C 19 Alphanumeric characters + O
Program 7 /bas07 20C 19 Alphanumeric characters + 0
Program 8 /bas08 20C 19 Alphanumeric characters + O
Program 9 /bas09 20C 19 Alphanumeric characters + O
KeyboardSource /bas10 uc O0=None, 1=Keypad, 2=Keyboard, 3=Both
DisplayDestination /bas1l uc O=None, 1=Lower Display, 2=Serial Port

6-14 (10/01)

Chapter 6: Shared Data Variables
Shared Data Static RAM Elements

Local Method Local Internal External Format
File ID Format
ProgrammableTareWeighiScaleA /bas12 D double float weight
ProgrammableTareWeightScaleB /bas13 D double float weight

JagBASIC applications use these fields to communicate custom fields with a PLC. Scale A and Scale B have unique shared
data field names. The floating point and string fields are each four bytes long. The PLC and the JagBASIC application
define the meaning of the fields. The terminal sends the PLC input fields designated as "Real-Time" to the PLC at every
weight update. It sends or receives the other fields only when the PLC specifically requests them.

You can also use these shared data variables as sources for Analog Output channel 1, channel 2, or both channels. The
JagBASIC source variable for channel 1 is floating point variable /bas18. The JagBASIC source variable for channel 2 is
floating point variable /bas20. You can use a JagBASIC source for one channel and scale source for the other channel.

CustomOutput_A1_FromPLC /bas14 F Float. Defined by user. Scale A. Custom Output 1 fo
Scale A from PLC.

CustomOutput_A2_FromPLC /bas15 4C String. Defined by user. Scale A. Custom Output 2 fo
Scale A from PLC.

CustomOutput_A3_FromPLC /bas16 F Float. Defined by user. Scale A. Custom Output 3 fo
Scale A from PLC.

CustomOutput_A4_FromPLC /bas17 4C String. Defined by user. Scale A. Custom Output 4 fo
Scale A from PLC.

Custominput_A1_ToPLC /bas18 F Float. Defined by user. Scale A. Real-Time. Cusfom
Input 1 from Scale A fo PLC.

Custominput_A2_ToPLC /bas19 4C String. Defined by user. Scale A. Real-Time. Cusfom
Input 2 from Scale A fo PLC.

CustomInput_A3_ToPLC /bas20 F Float. Defined by user. Scale A. Custom Input 3
from Scale A fo PLC.

Custominput_A4_ToPLC /bas21 4C String. Defined by user. Scale A. Custom Input 4
from Scale A fo PLC.

CustomOutput_B1_FromPLC /bas22 F Float. Defined by user. Scale B. Custom Output 1 1o
Scale B from PLC.

CustomOutput_B2_FromPLC /bas23 4C String. Defined by user. Scale B. Custom Output 2 1o
Scale B from PLC.

CustomOutput_B3_FromPLC /bas24 F Float. Defined by user. Scale B. Custom Output 3 1o
Scale B from PLC.

CustomOutput_B4_FromPLC /bas25 4C String. Defined by user. Scale B. Custom Output 4 1o
Scale B from PLC.

Custominput_B1_ToPLC /bas26 F Float. Defined by user. Scale B. Real-Time. Custom
Inputf 1 from Scale B to PLC.

Custominput_B2_ToPLC /bas27 4C String. Defined by user. Scale B. Real-Time. Custom
Input 2 from Scale B to PLC.

CustomInput_B3_ToPLC /bas28 F Float. Defined by user. Scale B. Custom Input 3
from Scale B to PLC.

Custominput_B4_ToPLC /bas29 4C String. Defined by user. Scale B. Custom Input 4
from Scale B to PLC.

CustomQutput_C1_FromPLC /bas30 F Float. Defined by user. Scale C.

CustomOutput_C2_FromPLC /bas31 4C String. Defined by user. Scale C.

CustomOQutput_C3_FromPLC /bas32 F Float. Defined by user. Scale C.

CustomOutput_C4_FromPLC /bas33 4C String. Defined by user. Scale C.

(10/01) 6-15

METTLER TOLEDO JagBASIC Programmer's Guide for JAGXTREME Terminals

Local Method Local Internal External Format
File ID Format

Custominput_C1_ToPLC /bas34 F Float. Defined by user. Scale C. High Speed.
CustomInput_C2_ToPLC /bas35 4C String. Defined by user. Scale C. High Speed.
Custominput_C3_ToPLC /bas36 F Float. Defined by user. Scale C.
CustomInput_C4_ToPLC /bas37 4C String. Defined by user. Scale C.
CustomOQutput_D1_FromPLC /bas38 F Float. Defined by user. Scale D.
CustomOutput_D2_FromPLC /bas39 4C String. Defined by user. Scale D.
CustomQutput_D3_FromPLC /bas40 F Float. Defined by user. Scale D.
CustomOutput_D4_FromPLC /bas4 4C String. Defined by user. Scale D.
Custominput_D1_ToPLC /bas4?2 F Float. Defined by user. Scale D. High Speed.
Custominput_D2_ToPLC /bas42 4C String. Defined by user. Scale D. High Speed.
Custominput_D3_ToPLC /bas44 F Float. Defined by user. Scale D.
Custominput_D4_ToPLC /bas4b 4C String. Defined by user. Scale D.
CustomQutput_E1_FromPLC /bas46 F Float. Defined by user. Scale E.
CustomOutput_E2_FromPLC /bas47 4C String. Defined by user. Scale E.
CustomQutput_E3_FromPLC /bas48 F Float. Defined by user. Scale E.
CustomOutput_E4_FromPLC /bas49 4C String. Defined by user. Scale E.
Custominput_E1_ToPLC /basb0 F Float. Defined by user. Scale E. High Speed.
Custominput_E2_ToPLC /bash1 4C String. Defined by user. Scale E. High Speed.
Custominput_E3_ToPLC /basbH2 F Float. Defined by user. Scale E.
Custominput_E4_ToPLC /basb3 4C String. Defined by user. Scale E.
ProgrammableTareWeightScaleC /basb4 D double float weight
ProgrammableTareWeightScaleD /basbb D double float weight
ProgrammableTareWeightScaleE /bas56 D double float weight
AutoStartEnabled /bas85 US bit 1=True, O=False
EscapeEnabled /bas86 US bit 1=True, O=False
SelectEnabled /bas87 US bit 1=True, O=False
ManualStartEnabled /bas88 US bit 1=True, O=False
ManualStopEnabled /bas89 US bit 1=True, O=False

Power Cell Log
The fields are external read only.

Local Method Local Internal External Format
File ID Format
NumberErrors_Cell 1-24 /pce0] 24D 192 bytes. One double float entry for each cell.
Calibrated Zero Count-Cell 1-24 /pce02 24D 192 bytes. One double float entry for each cell.
Current Zero Counts_Cell 1-24 /pce03 20C 192 bytes. One double float entry for each cell.

6-16 (10/01)

Chapter 6: Shared Data Variables
Shared Data EEPROM Elements

Shared Data EEPROM

Elements

Scale Calibration

Parameters Stored in

EEPROM

This section lists the shared data EEPROM elements. These variables hold the values
associafed with different erasable programmable read-only memory elements.

These shared data variables hold the values associated with scale calibration
parameters stored in the EEPROM. The fields are external read only. The 'n' will be
replaced with the Internal Scale number. The scale number can be from 1 fo 5. The
Scale 5 parameters, or summing scale parameters are stored in BRAM rather than

EEPROM.
Local Method Local Internal External Format
File ID Format
AddressOfFirstLoadCell /cen01 uc POWERCELL starting address
NumberLoadCells /cen02 uc unsigned 0-255
PrimaryUnits /cen03 uc 1 alphanumeric (1=pounds, 2=kilograms, 3=grams, or 4= meric fons)
PrimaryNumberRanges /cen04 uc 1 alphanumeric
PrimaryLowIncrementSize /cen05 D double float weight
PrimaryMidincrementSize /cen06 D double float weight
PrimaryHighincrementSize /cenQ7 D double float weight
PrimaryLowMidThreshold /cen08 D double float weight
PrimaryMidHighThreshold /cen09 D double float weight
PrimaryScaleCapacity /cen10 D double float weight
SecondaryUnits /cenl] uc 1 alphanumeric (1=pounds, 2=kilograms, 3=grams, or 4=mefric fons)
SecondaryNumberRanges /cen12 uc 1 alphanumeric
SecondaryLowlIncrementSize /cen13 D double float weight
SecondaryMidIncrementSize /cen14 D double float weight
SecondaryHighlncrementSize /cen1b D double float weight
SecondaryLowMidThreshold /cen16 D double float weight
SecondaryMidHighThreshold /cen17 D double float weight
SecondaryScaleCapacity /cen18 D double float weight
CalibrationUnits /cen19 uc 1 alphanumeric (1=primary or 2=secondary)
ZeroCalibrationCounts /cen20 L integer
HighCalibrationCounts /cen21 L integer
HighCalibrationWeight /cen22 D double float weight
MidCalibrationCounts /cen23 L integer
MidCalibrationWeight /cen24 D double float weight
GravityAdjust /cen25 D double float
MotionStabilitySensitivityinD /cen26 F float divisions
MotionStabilityTimePeriod /cen27 uc (1=3 sec, ..., 7=10sec)
ScaleSerialNumber /cen28 12C 12 alphanumeric

(10/01) 6-17

METTLER TOLEDO JagBASIC Programmer's Guide for JAGXTREME Terminals

CalibrationCounter1 /cen29 uc 1 byte unsigned binary
CalibrationCounter2 /cen30 uc 1 byte unsigned binary

AtoD Update Rate /cen3| uc Conversions / Second (1-255)
OverCapacityDivisions /cen32 uc number of divisions (1-255)
LinearityCorrectionEnable /cen85 US bit 1=True, O=False
OverCapacityBlanking /cen86 US bit 1=True, O=False
MultirangeMode /cen87 US bit 1=Aufo, 0=Manual

Shift Adjust Mode /cen88 US bit 0=Cell, 1=Pair

EEPROM Version
Identification

These shared data variables hold the values associated with EEPROM version
identification. The fields are external read only.

Local Method Local Internal External Format
File ID Format
EEPROMVersionld (Scale A) /ee101 L Long Integer (32 bits)
EEPROMVersionld (Scale B) /ee201 L Long Integer (32 bits)

Shift Adjust Variables

These variables hold the values associated with shift adjust shared data. The fields are
external read only. The 'n' will be replaced with the Internal Scale number.

Local Method Local Internal External Format
File ID Format
Cell #1 Shift Constants /san01 L Long Integer (32 bits) Normalized
Cell #16 Shift Constants /san16 L Long Integer (32 bits) Normalized

Expanded Shift Adjust
Variables

These variables hold the values associated with expanded shift adjust shared data. The
fields are external read only. The 'n' will be replaced with the Infernal Scale number.

Local Method Local File ID Internal External Format
For mat
Cell #17 Shift Constants /sxn17 L Long Integer (32 bits) Normalized
Cell #24 Shift Constants /sxn24 L Long Integer (32 bits) Normalized

6-18 (10/01)

Chapter 6: Shared Data Variables
Shared Data EEPROM Elements

Scale Zero Shared Data

These variables hold the values associated with scale zero shared data. The fields
are external read only. The 'n' will be replaced with the Internal Scale number.

Local Method Local Internal External Format
File ID Format

PowerUpZeroCapturePosRange /zrn01 uc percent capacity (0-99)
PowerUpZeroCaptureNegRange /202 uc percent capacity (0-99)
PushbuttonZeroPosRange /zrn03 uc percent capacity (0-99)
PushbuttonZeroNegRange /zrn04 uc percent capacity (0-99)
AutoZeroMaintWindow /zrn05 F floatnumber of divisions
BehindZeroDivisions /206 uc 0-99 divisions
PushbuttonZero /zrn85 US bit 1=True, O=False
AutoZeroGross /286 US bit 1=True, O=False
AutoZeroGross_Net /zrn87 US bit 1=True, O=False
ZerolndicationGross /zrn88 US bit 1=True, O=False
ZerolndicationGross_Net /zrn89 US bit 1=True, O=False

(10/01) 6-19

METTLER TOLEDO JagBASIC Programmer's Guide for JAGXTREME Terminals
NOTES

6-20 (10/01)

Chapter 7: Global Discrete 1/0 Data
Level-Sensitive, Logical Discrete 1/0 Data

Level-Sensitive, Logical
Discrete 1/0 Data

Global Discrete 1/0 Data

Global Discrete 1/0 data has bit fields representing physical discrete I/0 and logical I/0
bits. The logical I/0 may be either level-sensitive stafes or edge- sensitive events. Global
Discrete I/0 is transitory data in that it is not saved during a power-down. It is initialized
to zero and then regenerated on power-up. These bit fields are the "contacts” and "coils"
for the ladder logic processor.

Level-sensitive fields can generate callbacks when either a O or a 1 is writfen to the field.
Field names starting with s_2 are inpuf contacts fo the ladder processor. Field names
starting with s_6 are coils for the ladder processor.

For all level-sensitive logical I/O data the following apply:

Internal Format External Format Condition
G US Bit 1 = True, O = False
Description | Local Field | Comments
The terminal O/S sets the following fields to reflect the status of Scale A and ScaleB.
MotionOut_A /s_200 Read only
CenterOfZero_A /s_201 Read only
OverCapacity_A /s_202 Read only
UnderZero_A /s_203 Read only
NetMode_A /s_204 Read only
ScaleCriticalError_A /s_205 Read only
StoredWeightMode_A /s_206 Read only
ScaleSelected_A /s_207 Read only
IDNET_In_Motion_Error_A /s_260 Reserved for ferminal
0/S use only.
WeightDataOK_A /s_261 Read only
RafeSetpointOK_A /s_262 Read only
The 0/S sets the following fields to report on the status of Scale B
MotionOut_B /s_208 Read only
CenterOfZero_B /s_209 Read only
OverCapacity_B /s_20a Read only
UnderZero_B /s_20b Read only
NetMode_B /s_20c Read only
ScaleCriticalError_B /s_20d Read only
StoredWeightMode_B /s_20e Read only
ScaleSelected_B /s_20f Read only
IDNET_In_Motion_Error_B /s_268 Reserved for ferminal O/S
use only.
WeightDataOK_B /s_269 Read only
RafeSetpointOK_B /s_26a Read only
The terminal O/S sets the following fields to report status of Scale C.

(10/01) 7-1

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

7-2

(10/01)

Description Local Field Comments
MotionOut_C /s_270 Read only
CenterOfZero_C /s_271 Read only
OverCapacity_C /s_272 Read only
UnderZero_C /s_273 Read only
NetMode_C /s_274 Read only
ScaleCriticalError_C /s_275 Read only
StoredWeightMode_C /s_276 Read only
ScaleSelected_C /s_277 Read only
IDNET_In_Motion_Error_C /s_278 Reserved for ferminal
0/S use only.
WeightDataOK_C /s_279 Read only
RafeSetpointOK_C /s_27a Read only
The terminal O/S sets the following fields to report status of Scale D.
MotionOut_D /s_280 Read only
CenterOfZero_D /s_281 Read only
OverCapacity_D /s_282 Read only
UnderZero_D /s_283 Read only
NetMode_D /s_284 Read only
ScaleCriticalError_D /s_285 Read only
StoredWeightMode_D /s_286 Read only
ScaleSelected_D /s_287 Read only
IDNET_In_Motion_Error_D /s_288 Reserved for terminal
0/S use only.
WeightDataOK_D /s_289 Read only
RafeSetpointOK_D /s_28a Read only
The Terminal O/S sets the following fields to report status of Scale E.
(Summing Scale)
MotionOut_E /s_2f0 Read only
CenferOfZero_E /s_2f1 Read only
OverCapacity_E /s_212 Read only
UnderZero_E /s_213 Read only
NetMode_E /s_2f4 Read only
ScaleCriticalError_E /s_2f5 Read only
StoredWeightMode_E /s_2f6 Read only
ScaleSelected_E /s_2f7 Read only
IDNET_In_Motion_Error_E /s_218 Reserved for ferminal
0/S use only.
WeightDataOK_E /s_2f9 Read only
RafeSetpointOK_E /s_2fa Read only

Terminal O/S sets the following fields

to reflect the status of Setpoints 1-12.

SetpointFeeding_1 /s_210 Read only
SetpointFastFeeding_1 /s_211 Read only
SetpointWithinTolerance_1 /s_212 Read only
SetpointFeeding_2 /s_214 Read only
SetpointFastFeeding_2 /s_215 Read only
SetpointWithinTolerance_2 /s_216 Read only
SetpointFeeding_3 /s_218 Read only
SetpointFastFeeding_3 /s_219 Read only
SetpointWithinTolerance_3 /s_21a Read only
SetpointFeeding_4 /s_21¢ Read only
SetpointFastFeeding_4 /s_21d Read only

Chapter 7: Global Discrete 1/0 Data
Level-Sensitive, Logical Discrete 1/0 Data

Description Local Field | Comments
SetpointWithinTolerance_4 /s_21e Read only
SetpointFeeding_b /s_220 Read only
SetpointFastFeeding_b /s_221 Read only
SetpointWithinTolerance_5 /s_222 Read only
SetpointFeeding_6 /s_224 Read only
SetpointFastFeeding_6 /s_225 Read only
SetpointWithinTolerance_6 /s_226 Read only
SetpointFeeding_7 /s_228 Read only
SetpointFastFeeding_7 /s_229 Read only
SetpointWithinTolerance_7 /s_22da Read only
SetpointFeeding_8 /s_22¢ Read only
SetpointFastFeeding_8 /s_22d Read only
SetpointWithinTolerance_8 /s_22¢ Read only
SetpointFeeding_9 /s_230 Read only
SetpointFastFeeding_9 /s_231 Read only
SetpointWithinTolerance_9 /s_232 Read only
SetpointFeeding_10 /s_234 Read only
SetpointFastFeeding_10 /s_235 Read only
SetpointWithinTolerance_10 /s_236 Read only
SetpointFeeding_11 /s_238 Default is ZERO TOL A.

Read only
SetpointFastFeeding_11 /s_239 Read only
SetpointWithinTolerance_11 /s_23a Read only
SetpointFeeding_12 /s_23c Default is ZERO TOL B.

Read only
SetpointFastFeeding_12 /s_23d Read only
SetpointWithinTolerance_12 /s_23e Read only
Terminal O/S sets the following fields to give the status of the Ethernet connections.

NodeOnLine_1 /s_241 Read only
NodeOnLine_2 /s_242 Read only
NodeOnLine_3 /s_243 Read only
NodeOnLine_4 /s_244 Read only
NodeOnLine_5 /s_245 Read only
NodeOnLine_6 /s_246 Read only
HostOnLine_3 /s_24d Read only
HostOnLine_2 /s_24e Read only
HostOnLine_1 /s_24f Read only

(10/01)

7-3

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

7-4

(10/01)

Description

Local
Field

Comments

JagBASIC applications can set the following four discrete bit fields to send real-time

status data to a PLC.

PLC_CustomStatus1_Scale_A

/s_250

Read/Write. Custom Real-
Time Status 1 from Scale A to
PLC.

PLC_CustomStatus2_Scale_A

/s_25]1

Read/Write. Custom Real-
Time Status 2 from Scale A to
PLC.

PLC_CustomStatus1_Scale_B

/s_252

Read/Write. Custom Real-
Time Status 1 from Scale B to
PLC.

PLC_CustomStatus2_Scale_B

/s_2563

Read/Write. Custom Real-
Time Status 2 from Scale B to
PLC.

PLC_CustomStatus1_Scale_C

/s_254

Read/Write. Custom Real-
Time Status 1 from Scale C to
PLC.

PLC_CustomStatus2_Scale_C

/s_2b65

Read/Write. Custom Real-
Time Status 2 from Scale C to
PLC.

PLC_CustomStatus1_Scale_D

/s_256

Read/Write. Custom Real-
Time Status 1 from Scale D to
PLC.

PLC_CustomStatus2_Scale_D

/s_257

Read/Write. Custom Real-
Time Status 2 from Scale D fo
PLC.

PLC_CustomStatus1_Scale_E

/s_258

Read/Write. Custom Real-
Time Status 1 from Scale E to
PLC.

PLC_CustomStatus2_Scale_E

/s_259

Read/Write. Custom Real-
Time Status 2 from Scale E to
PLC.

Terminal O/S sets the following fields to report success (=0) or error (=1) when an
external agency uses a corresponding discrete field to trigger a command in the

terminal 0/S.
Command Staus Bits for Scale A

TareScaleError_A /s_290 Read only
ClearTareScaleError_A /s_291 Read only
PrintScaleError_A /s_292 Read only
ZeroScaleError_A /s_293 Read only
SwitchToPrimUnitsError_A /s_294 Read only
SwitchToSecondUnitsError_A /s_295 Read only
SwitchToOtherUnitsError_A /s_296 Read only
ApplySetupError_A /s_297 Read only

Chapter 7: Global Discrete 1/0 Data
Level-Sensitive, Logical Discrete 1/0 Data

Description Local Comments
Field
RestariSetpointsError_A /s_298 Read only
RestartRateCalculationError_A /s_299 Read only
RestartFilterError_A /s_29a Read only
RestartSetpointCoincidenceError_A /s_29b Read only
DisableScaleError_A /s_29c Read only
CapturePowerCellCountError_A /t_29d Read Only
WriteCal. TOEEPromErrorA /t_ 29 Read Only
Command Staus Bits for Scale B
TareScaleError_B /s_2a0 Read only
ClearTareScaleError_B /s_2al Read only
PrintScaleError_B /s_2a2 Read only
ZeroScaleError_B /s_2a3 Read only
SwitchToPrimUnitsError_B /s_2a4 Read only
SwitchToSecondUnitsError_B /s_2ab Read only
SwitchToOtherUnitsError_B /s_206 Read only
ApplySetupError_B /s_2a7 Read only
RestartSetpointsError_B /s_2a8 Read only
RestartRateCalculationError_B /s_2a9 Read only
RestartFilterError_B /s_2ad Read only
RestartSetpointCoincidenceError_B /s_2ab Read only
DisableScaleError_B /s_2ac Read only
CapturePowerCellCountError_B /t_2ad Read Only
WriteCal.TOEEPromErrorB /t_2ae Read Only
Command Staus Bits for Selected Scale
TareScaleError_SelectedScale /s_2b0 Read only
ClearTareScaleError_SelectedScale /s_2b]1 Read only
PrintScaleError_SelectedScale /s_2b2 Read only
ZeroScaleError_SelectedScale /s_2b3 Read only
SwitchToPrimUnitsError_SelScl /s_2b4 Read only
SwitchToSecondUnitsError_SelScl /s_2b5 Read only
SwitchToOtherUnitsError_SelScl /s_2b6 Read only
Command Staus Bits for Custom Print
CustomPrintError_1 /s_2b7 Read only
CustomPrintError_2 /s_2b8 Read only
CustomPrintError_3 /s_2b9 Read only
CustomPrintError_4 /s_2ba Read only
CustomPrintError_5 /s_2bb Read only
Command Status Bits for Scale C
JagBasicEnabled /2_sbf Read only
TareScaleError_C /s_2c0 Read only
ClearTareScaleError_C /s_2c] Read only
PrintScaleError_C /s_2c2 Read only
ZeroScaleError_C /s_2c3 Read only

(10/01) 7-5

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

7-6

(10/01)

Description Local Comments
Field
SwitchToPrimUnitsError_C /s_2c4 Read only
SwitchToSecondUnitsError_C /s_2¢Hh Read only
SwitchToOtherUnitsError_C /s_2c6 Read only
ApplySetupError_C /s_2¢7 Read only
RestartSetpointsError_C /s_2c8 Read only
RestartRateCalculationError_C /s_2¢9 Read only
RestartFilterError_C /s_2ca Read only
RestartSetpointCoincidenceError_C /s_2cb Read only
DisableScaleError_C /s_2cc Read only
CapturePowerCellCountError_C /t_2cd Read Only
WriteCal. TOEEPromErrorC /t_2ce Read Only
Command Status Bits for Scale D
TareScaleError_D /s_2d0 Read only
ClearTareScaleError_D /s_2d1 Read only
PrintScaleError_D /s_2d2 Read only
ZeroScaleError_D /s_2d3 Read only
SwitchToPrimUnitsError_D /s_2d4 Read only
SwitchToSecondUnitsError_D /s_2d5 Read only
SwitchToOtherUnitsError_D /s_2d6 Read only
ApplySetupError_D /s_2d7 Read only
RestartSetpointsError_D /s_2d8 Read only
RestartRateCalculationError_D /s_2d9 Read only
RestartFilterError_D /s_2da Read only
RestartSetpointCoincidenceError_D /s_2db Read only
DisableScaleError_D /s_2dc Read only
CapturePowerCellCountError_D /t_2dd Read Only
WriteCal.TOEEPromErrorD /t_2de Read Only
Command Status Bits for Scale E
TareScaleError_E /s_2e0 Read only
ClearTareScaleError_E /s_2el Read only
PrintScaleError_E /s_2e2 Read only
ZeroScaleError_E /s_2e3 Read only
SwitchToPrimUnitsError_E /s_2e4 Read only
SwitchToSecondUnitsError_E /s_2eb Read only
SwitchToOtherUnitsError_E /s_2e6 Read only
ApplySetupError_E /s_2e7 Read only
RestartSetpointsError_E /s_2e8 Read only
RestartRateCalculationError_E /s_2e9 Read only
RestartFilterError_E /s_2eq Read only
RestartSetpointCoincidenceError_E /s_2eb Read only
DisableScaleError_E /s_2ec Read only
CapturePowerCellCountError_E /t_2ed Read Only
WriteCal. TOEEPromErrorE /t_2ee Read Only

Chapter 7: Global Discrete 1/0 Data
Edge-Sensitive, Logical Discrete I/0 Data

Miscellaneous Status Bits

SelectScaleError_A /s_2¢c0 Read only Rel. M
SelectScaleError_B /s_2c] Read only Rel. M
SelectOtherScaleError /s_2¢2 Read only Rel. M
DemandCustomPrintError_1 /s_2¢c3 Read only Rel. M
DemandCustomPrintError_2 /s_2c¢c4 Read only Rel. M
DemandCustomPrintError_3 /s_2¢cb Read only Rel. M
DemandCustomPrintError_4 /s_2c6 Read only Rel. M
DemandCustomPrintError_5 /s_2c7 Read only Rel. M
JagBASICEnabled /s_2d0 Read only Rel. M

Miscellaneous Triggers

MasterControlRelay /s_600 Shuts down all I/0.
Read/\Write
DisableErrorDisplay /s_603 Read/Write
DisableNumericDisplay /s_604 Read/Write
Disable Setup /s_609 Read/Write
Disable Keypag /s_60a Read/\Write
Disable Qwerty PG keys postioning, /s_60b Read/Write

(home, end, etc...)

Edge-Sensitive, Logical
Discrete 1/0 Data

Edge-sensitive bit fields only trigger events when a 1 is written fo the field. They are
ladder logic coils. If an error occurs in the event, the task writes a 1 into the
corresponding error bit. If the event is successful, it writes a O on completion.

For all edge-sensitive logical discrete 1/0 data the following apply:

Internal Format

External Format

Condition

G

1 = Trigger, O = Complete

Fields are external read/write.

Description

| Local Field |

Terminal O/S sets the following fields to indicate when the terminal has
calculated a new weight value. A JagBASIC application can use events to
monitor these fields. It must set the field to 0 before the same event will trigger

again.

WeightUpdated_A /1_688
WeightUpdated_B /t_689
WeightUpdated_C /t_ 613
WeightUpdated_D /t_ 614
WeightUpdated_E /t 615

(10/01) 7-7

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

7-8

(10/01)

Description

| Local Field

Terminal O/S sets these discrete fields =1 whenever it installs a new setpoint. A
JagBASIC application can use events to monitor these fields. It must set the field
to 0 before the same event will frigger again.

Setpointinstalled_A /t_68c
Setpointinstalled_B /t_68d
Setpointinstalled_C /_616
Setpointinstalled_D 617
Setpointinstalled_E /t 618
CalibrationComplete_A /t_68e
CalibrationComplete_B /t_68f
CalibrationComplete_C /619
CalibrationComplete_D /f_61a
CalibrationComplete_E f_61b

External agencies can set the following fields to trigger a command within the
terminal O/S. The terminal O/S sets the field to O when it is done processing the
command. It will also set a corresponding error bit to indicate when there is an
error in processing the command.

Triggers for Scale A

TareScale_A /t_690
ClearTareScale_A /f_691
PrintScale_A /_692
ZeroScale_A /1_693
SwitchToPrimaryUnits_A /t_694
SwitchToSecondUnits_A /t_695
SwitchToOtherUnits_A /t_696
ApplySetup_A /t_697
RestartSetpoints_A /t_698
RestariRateCalculation_A /t_699
RestartFilter_A /_69a
ResetSetpointCoincidence_A /1_69b
DisableScale_A /_69c
CapturePowerCellCounts_A /1_69d
WriteCalibrationTOEEProm_A /t_69e
Triggers for Scale B
TareScale_B /t_6a0
ClearTareScale_B /t_6al
PrintScale_B /_602
ZeroScale_B /t_6a3
SwitchToPrimaryUnits_B /t_6a4
SwitchToSecondUnits_B /t_6ab
SwitchToOtherUnits_B /t_6a6
ApplySetup_B /i_6a7
RestfartSetpoints_B /t_608
RestartRateCalculation_B /t_6a9
RestartFilter_B /_6aa

Chapter 7: Global Discrete 1/0 Data
Edge-Sensitive, Logical Discrete I/0 Data

Description Local Field
ResetSetpointCoincidence_B /i_6ab
DisableScale_B /t_6ac
CapturePowerCellCounts_B /i_6ad
WriteCalibrationToEEProm_B /i_6ae
Triggers for Scale C
TareScale_C /1620
ClearTareScale_ C h_621
PrintScale_C _622
ZeroScale_C _623
SwitchToPrimaryUnits_C /t_624
SwitchToSecondUnits_C /t_625
SwitchToOtherUnits_C /1_626
ApplySetup_C 1t 627
RestartSetpoints_C /1_628
RestartRateCalculation_C /t_629
RestartFilter_C /t_62a
ResetSetpointCoincidence_C h_62b
DisableScale_C /t_62¢c
CapturePowerCellCounts_C /_62d
WriteCalibrationToEEProm_C /i_62e
Triggers for Scale D
TareScale_D /t_630
ClearTareScale_D M_631
PrintScale_D /_632
ZeroScale_D /_633
SwitchToPrimaryUnits_D /t_ 634
SwitchToSecondUnits_D /t_635
SwitchToOtherUnits_D /1_636
ApplySetup_D h_637
RestartSetpoinis_D /t_638
RestartRateCalculation_D /t_639
RestartFilter_D /t_63a
ResetSetpointCoincidence_D /t_63b
DisableScale_D /i_63c
CapturePowerCellCounts_D /_63d
WriteCalibrationToEEProm_D /1_63e
Triggers for Scale E
TareScale_E /t_640
ClearTareScale_E h_641
PrintScale_E f_642
ZeroScale_E /_643
SwitchToPrimaryUnits_E /t_644
SwitchToSecondUnits_E /t_645
SwitchToOtherUnits_E /1_646

(10/01)

7-9

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

Description Local Field
ApplySetup_E h_647
RestartSetpoints_E /t_648
RestartRateCalculation_E /t_649
RestartFilter_E /t_64a
ResetSetpointCoincidence_E M_64b
DisableScale_E /t_64c
CapturePowerCellCounts_E /i_64d
WriteCalibrationToEEProm_E /t_64e
Triggers for Selected Scale

TareScale_SelectedScale /t_6b0
ClearTareScale_SelectedScale /t_6b1
PrintScale_SelectedScale /t_6b2
ZeroScale_SelectedScale /t_6b3
SwitchToPrimaryUnits_SelScl /t_6b4
SwitchToSecondUnits_SelScl /t_6b5
SwitchToOtherUnits_SelScl /t_6b6
SelectScale_A /i_6c0
SeleciScale_B /t_6c1
SelectScale_C /t_650
SeleciScale_D /1_651
SelectScale_E /1_652

*Enable Custom Print in Serial Setup fo SelectOtherScale /t_6¢c2

enable JogBASIC to print using Demand Custom Print Triggers

Cusfom Print. -
DemandCustomPrint_1* /i_6¢c3
DemandCustomPrint_2* /_6¢4
DemandCustomPrini_3* /i_6¢ch
DemandCustomPrint_4* /1_6¢c6
DemandCustomPrini_5* /_6c¢7
A PC Host sets the following four discrete bit fields to send real-time commands to
a JagBASIC application.
CustomCommand1 /t_6ce
CustomCommand? /t_6cd
CustomCommand3 /t_6ce
CustomCommand4 /t_6cf
Terminal O/S sets these fields =1 whenever it detects a rising or falling edge in the
discrete inputs. A JagBASIC application can use events to monitor these fields. It
must sef the field to O before the same event will trigger again.
DiscretelnputRisingEdge_1 /p_6e0
DiscretelnputRisingEdge_2 /p_6el
DiscretelnputRisingEdge_3 /p_6e2
DiscretelnputRisingEdge_4 /p_6e3
DiscretelnputRisingEdge_b /p_6e8
DiscretelnputRisingEdge_6 /p_6e9
DiscretelnputRisingEdge_7 /p_6ea
DiscretelnpuiRisingEdge_8 /p_6eb

7-10 (10/01)

Chapter 7: Global Discrete 1/0 Data

Physical Discrete 1/0 Data

Description | Local Field
DiscretelnputRisingEdge_9 /p_6ec
DiscrefelnputRisingEdge_10 /p_6ed
DiscretelnputRisingEdge 11 /p_6Gee
DiscrefelnputRisingEdge_12 /p_6ef
DiscretelnputFallingEdge_1 /p_6f0
DiscrefelnputFallingEdge_2 /p_6f1
DiscretelnputFallingEdge_3 /p_612
DiscretelnputFallingEdge_4 /p_6f3
DiscretelnputFallingEdge_5 /p_618
DiscretelnputFallingEdge_6 /p_6f9
DiscretelnputFallingEdge_7 /p_6fa
DiscretelnputFallingEdge_8 /p_6fb
DiscretelnputFallingEdge_9 /p_6fc
DiscretelnputFallingEdge_10 /p_6fd
DiscretelnputFallingEdge_11 /p_6fe
DiscretelnputFallingEdge_12 /p_6ff

Physical Discrete 1/0
Data

For all physical discrete 1/0 dafa the following apply:

Physical discrefe input and output dafa is stored on the Controller and Multi-Function
Boards. The stored logical 1s or Os correspond fo whether a physical discrete input or
output is true or false and on or off.

Internal Format

External Format

Condition

G US bit 1 = Trigger, O = Complete
Description Local Field Comment
PhysicalDiscrefelnput_1 /p_100 Read only
PhysicalDiscretelnput_2 /p_101 Read only
PhysicalDiscrefelnput_3 /p_102 Read only
PhysicalDiscretelnput_4 /p_103 Read only
PhysicalDiscrefelnput_5 /p_108 Read only
PhysicalDiscretelnput_6 /p_109 Read only
PhysicalDiscrefelnput_7 /p_10a Read only
PhysicalDiscretelnput_8 /p_10b Read only
PhysicalDiscrefelnput_9 /p_10c Read only
PhysicalDiscretelnput_10 /p_10d Read only
PhysicalDiscrefelnput_11 /p_10e Read only
PhysicalDiscretelnpuf_12 /p_10f Read only
PhysicalDiscrefeOutput_1 /p_500 Read/Write
PhysicalDiscreteOutput_2 /p_501 Read/Write

(10/01) 7-11

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

7-12 (10/01)

Description Local Field Comment
PhysicalDiscrefeOutput_3 /p_b502 Read/Write
PhysicalDiscreteOutput_4 /p_b03 Read/Write
PhysicalDiscrefeOutput_5 /p_508 Read/Write
PhysicalDiscreteOutput_6 /p_b09 Read/Write
PhysicalDiscrefeOutput_7 /p_50a Read/Write
PhysicalDiscreteOutput_8 /p_b0b Read/Write
PhysicalDiscrefeOutput_9 /p_50c Read/Write
PhysicalDiscrefeOutput_10 | /p_50d Read/Write
PhysicalDiscrefeOutput_11 /p_b0e Read/Write
PhysicalDiscrefeOutput_12 | /p_50f Read/Write

Chapter 8 Sample Application Programs
Display Scale A Weight

8 Sample Application Programs

y

/A WARNING

PERMIT ONLY QUALIFIED PERSONNEL TO SERVICE THIS
EQUIPMENT. EXERCISE CARE WHEN MAKING CHECKS,
TESTS AND ADJUSTMENTS THAT MUST BE MADE WITH
POWER ON. FAILING TO OBSERVE THESE PRECAUTIONS
CAN RESULT IN BODILY HARM OR PROPERTY DAMAGE.

/A\ CAUTION

THESE PROGRAMS ARE ONLY INTENDED TO DEMONSTRATE THE PROGRAMMING
FLEXIBILITY OF JAGBASIC. THEY MAY NOT APPLY TO YOUR SPECIFIC
APPLICATION! ONLY PERMIT QUALIFIED PERSONNEL TO CREATE JAGBASIC
PROGRAMS.

This section contains examples of application programs that can be used as starting
points in creating your own JagBASIC programs. They include examples which:

o Display the weight of Scale A.

o Display/foggle Scale A and Scale B.

o Clear random access files.

¢ (Generate continuous output.

o Display the setpoint value.

¢ Weigh inbound/outbound trucks.

o Perform manual batching.

o Count parts.

Display Scale A Weight

Only a few lines of code are required fo create a JagBASIC program. For example, this
short program displays Scale A on the lower terminal display.

10 DEFSHR grossS,wt101

20 PRINT " W =";gross$

30 GOTO 20

40 END

This program can be created in one of the following ways:

e Typed in on the terminal.

o Created in a fext editor on a PC and downloaded fo the ferminal using the program
download command SZ.

o Created in a fext editor on a PC and downloaded with a communication program
supporting Zmodem.

(10/01) 81

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

Display/Toggle Scale A
and Scale B

8-2 (10/01)

You can then perform the following operations on the program:

To execute the program, assuming the program was typed in on the JAGXTREME
terminal, type RUN at the BASIC: prompt. The weight from Scale A should display on
the lower JAGXTREME terminal display.

To end the program, press the ESC key on either the keyboard or keypad.

To save the program, type: save "filex.bas", where x is a number from 1 fo 9. For
this example, we will save the program as "file1.bas".

To call up the program file, type load “file1.bas".To run this program (or any
program named file1.bas) automatically on power-up, sef Autostart to Yes in the
JagBASIC sefup. When this feature is set to Yes, each time the terminal is powered
up, the file named file1.bas (if resident in the RAMDISK) will be automatically
loaded and run.

To manually load and run finished programs, set the Manual Start feature to Yes in
the JagBASIC setup. When this feature is enabled, pressing the FUNCTION key on
the JAGXTREME keypad displays the prompt: [Run Program #?] To execute the
desired program, press key 1 for file1.bas, press key 2 for file2.bas, press key 3 for
file3.bas, and so on up to key 9 for file9.bas.

This example displays and toggles the weight from Scale A or B on the upper and lower
JAGXTREME displays. The programming keyboard is used fo toggle the weight display.

When A is pressed, the upper display shows the weight from Scale A and the lower
display shows the weight from Scale B.

When B is pressed, the upper display shows the weight from Scale B and the lower
shows Scale A.

The weight is obtained from pulling the righfmost 8 characters from the standard 12
character strings w101 and wi102.

10 DEFSHR w1S,wt101

20 DEFSHR w2S,wt201

30 DEFSHR sa,t_6¢0

40 DEFSHR sb,t_6¢1

50 sa=1

60 PRINT "Scale B=";RIGHTS(W2§,8)
70 IF INKEYS = "b" THEN GOTO 100
80 GOTO 60

100 sb=1

110 PRINT "Scale A=";RIGHTS(W1S,8)
120 IF INKEYS = "a" THEN GOTO 50
130 GOTO 110

140 END

Chapter 8
Random Access Files

Random Access Files

The following code segment clears a random access file to standard default ID values.
Note that the JagBASIC code must re-inifialize the entire output record before each "PUT"
command.

10 OPEN "IDFILE" FOR RANDOM AS #1 LEN = 19

15 REM added line feed, carriage return for

16 REM printing out file with standard editors,

20 FIELD #1,9 AS FIDS, 8 AS FWEIGHTS, 2 AS LFCRS

30 FOR X% =1T0 10

35 REM re-initialize record image before each "PUT"

40 LSET FIDS = "000000000" : LSET FWEIGHTS = "00000000"
50 LSET LFCRS=CHRS(13)+CHRS(10)

60 PUT #1, X%

70 NEXT X%

80 CLOSE #1

The following code segment sequentially searches the random access file for an empty
record in which it writes a new ID-WEIGHT record.

210 OPEN "IDFILE" FOR RANDOM AS #1 LEN = 19
220 FIELD #1, 9 AS FIDS, 8 AS FWEIGHTS, 2 AS LFCRS
230 USEREC%=0

240 FOR REC% = 1 TO 10

250 GET #1, REC%

270 IF FID$ = "000000000" THEN USEREC% = REC% : REC%=10
280 IF EOF(1) = 1 THEN REC% = 10

290 NEXT REC%

300 LSET FWEIGHTS = 12345 6"

310 LSET FID$="JOE TRUCK"

320 LSET LFCR$=CHRS$(13)+CHRS(10)

330 IF USEREC%<>0 THEN PUT #1, USERECY%

340 CLOSE #]1

Continuous Output

This JagBASIC program generates the standard METTLER TOLEDO continuous oufput for
the currently selected scale, either Scale A or Scale B.

15 REM Preformatted Status Word A:

20 DEFSHR sw1a,wt116

30 DEFSHR sw2a,wi216

35 REM Weight units "Ib", "kg" or " g":

40 DEFSHR unitAS,wt103

50 DEFSHR unitBS,wt203

55 REM Motion status

60 DEFSHR motionA,s_200

70 DEFSHR motionB,s_208

75 REM Net mode (1 = net, O = gross):

80 DEFSHR netA,s_204

90 DEFSHR netB,s_20c

95 REM Overcapacity status (1 = Overcapacity, O = not Overcapacity):
100 DEFSHR overA,s_202

110 DEFSHR overB,s_20a

115 REM Under zero status (1 = Underzero, O = not Underzero):
120 DEFSHR underA,s_203

(10/01) 83

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

Setpoint Display

8-4

(10/01)

130 DEFSHR underB,s_20b

135 REM Displayable net weight (with embedded decimal point)
140 DEFSHR netwtAS,wt102

150 DEFSHR netwtBS,wt202

155 REM Displayable tare weight (with embedded decimal point)
160 DEFSHR tarewtAS,ws102

170 DEFSHR tarewtBS,ws202

175 REM Selected scale

180 DEFSHR selectedScale,jagOT

190 REM "width -1" suppresses LF/CR being appended LPRINT line
191 WIDTH -1

192 REM Define ASCII STX:

193 STARTS = CHRS(02)

194 REM Define ASCII CR:

195 ENDS = CHRS(13)

196 REM Check for selected scale here:

197 REM (Program loops back fo here)

198 REM Clear status word B bits:

200b% =0

210 IFselectedScale = "LB" THEN GOTO 2000

1000 IFnefA=1 THEN b%=1

1020 IFnegA=1 THEN b%=b%+2

1030 IF overA=1 or underA = 1 THEN b%=b%+4

1040 IF motionA=1 THEN b%=b%+8

1050 IF unitAS="kg" THEN b%=b%+16

1070 statusBytesS=STRINGS(1,sw1a)+CHRS(32+b%)+ CHRS(32)
1080 IPRINT startS+statusBytesS+RIGHTS (netwtAS, 6)+RIGHTS (farewtAS, 6)+end$
1100 GOTO 200

2000 IF netB=1 THEN b%=1

2030 IF negB=1 THEN b%=b%+2

2040 IF overB=1 or underB=1 THEN b%=b%+4

2050 IF motionB=1 THEN b%=b%+8

2060 IF unitBS="kg" THEN b%=b%+16

3070 statusBytesS=stringS(1,sw2a)+CHRS(32+b%)+CHRS(32)
3090 LPRINT startS+statusBytesS+RIGHTS (netwtBS, 6)+RIGHTS (farewtBS, 6)+end$
3100 GOTO 200

9999 END

This JagBASIC program displays the setpoint value for the selected scale on the terminal
lower display. Scale A uses Setpoinf 1 and Scale B uses Setpoint 3. This program
allows an operator on the factory floor to monitor the setpoint values for doing "hand-
adds" where a remote PLC changes the sefpoint values.

10 DEFSHR stopEnable%,bas89

20 stopEnable%=0

30 DEFSHR numScales%,jag15

40 REM INITIALIZE ONE SCALE

50 DEFSHR sp1#,sp105

60 DEFSHR units1%,ce103

70 DIM units$(3)

80 UNITSS(1)=" Ib":units$(2)=" kg":unitsS(3)="g"
90 U1S=unitsS(units1%)

100 IF numScales%=2 THEN GOTO 300
200 REM LOOP FOR ONE SCALE

Rate Calculation without
the Rate Display

Chapter 8
Filling
210 SLEEP 900
220 PRINT "A ";sp1#;u1$
230 GOTO 210
300 REM INITIALIZE TWO SCALES
310 DEFSHR scalelDS,jag01
320 DEFSHR sp3#,sp305
330 DEFSHR units2%,ce203
340 U2S=unitsS(units2%)
400 REM LOOP FOR TWO SCALES
410 SLEEP 900
420 IF scalelDS="LB" THEN GOTO 450
430 PRINT "A ";sp1#;u1$
440 GOTO 410
450 PRINT "B ";sp3#;u2$
460 GOTO 410

This is a sample JagBASIC program for setting up the rate without the rate display. This
JagBASIC setup uses less of the JAGXTREME terminal’s processing power than the
standard control panel setup which always enables the rafe display. The lower display is
not constantly updafed with new rate information, so it can be used for displaying more
critical information.

5 DEFSHR ratedisp,cs188:DEFSHR auxdisp,cs189:rafedisp=0:auxdisp=0
10 DEFSHR auxunit,cs101:DEFSHR period,cs104

20 DEFSHR sample,cs105:DEFSHR freq,cs106:DEFSHR setup,t_697

30 auxunit=1:REM pounds

40 period="S":REM per second

50 sample=3:REM sample fime

60 freq=1:REM interval every one second

70 setup=1:REM apply setup

80 END

Filling

This JagBASIC program is used for filling applications.

1 REM Example Filling Application
7 DEFSHR StopEnabled,bas89

8 DEFSHR SPfeeding,s_210

9 DEFSHR SPtolerance,s_212

12 DEFSHR Discrefeln,p_100

13 DEFSHR TareA,t_690

14 DEFSHR TareAerr,s_290

15 DEFSHR DiscreteOut,p_503

16 DEFSHR NefWi,wi111

17 DEFSHR ClearTareA,t_691

18 DEFSHR MotionA,s_200

20 StopEnabled=0

60 PRINT "Place Container"

70 IF Discreteln=0 THEN GOTO 70
75 PRINT "Taring Container"

77 SLEEP 3000

90 TareA=1

(10/01) 85

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

Rate-based Setpoint
Auto-Preact

8-6

(10/01)

100 IF TareA=1 THEN GOTO 100

120 IF TareAerr=0 THEN GOTO 155

125 PRINT "Tare Failed"

130 SLEEP 1000

150 GOTO 90

155 PRINT "Fill Container"

160 IF MotionA=0 THEN GOTO 160

170 SLEEP 3000

180 SLEEP 200

190 IF SPfeeding=0 and SPfolerance=0 THEN PRINT "Too Much Fill"
192 IF SPfeeding=1 and SPfolerance=0 THEN PRINT "More Fill"
193 IF SPtolerance=1 THEN PRINT "Fill In Tolerance"
194 IF SPfolerance=1 and MotionA=0 THEN GOTO 200
195 GOTO 180

200 Print "Filling Complete"

220 SLEEP 3000

230 PRINT "Remove Container"

240 DiscreteOut=1

260 IF NefWt > 0.0 THEN GOTO 260

270 DiscreteOut=0

280 PRINT "Completed"

290 SLEEP 3000

293 ClearTareA=1

294 IF ClearTareA=1 GOTO 294

300 GOTO 60

JagBASIC application can set up an Aufo-Preact setpoint. In an auto-preact setpoint, the
preact weight is aufomatically adjusted based on the rate that material is being filled or
discharged from a hopper and an aufo-preact time value. Whenever the JAGXTREME
terminal calculates a new rate value, it adjusts the preact weight for the setpoint based
on the rate and the auto-preact time value.

Auto-preact time value is the number of seconds it takes for the gate to close and the
filling to complefe once the JAGXTREME ferminal detects that coincidence weight - preact
weight has been reached. The auto-preact time is stored in shared data variable
'spn06", where "n" is the number of the setpoint. The JAGXTREME terminal
automatically learns the best auto-preact time by adjusting the value based on the error
weight in each trial. Once a setpoint reaches coincidence value, the JAGXTREME
calculafes the difference between the setpoint coincidence value and the actual weight in
the weigh hopper once the hopper reaches a "no motion" state. This difference is the
error for the last frial. The JAGXTREME adjusts the auto-preact fime by a value
proportional fo the error in the last trial and the sum of the errors over all trials.

To setup the aufo-preact, the JagBASIC application must set the setpoint target to either
"H" for a gross weight setpoint or "M" for net weight setpoint. You should initialize the
auto-preact time value to your best guess of the preact time to minimize the number of
trials it takes for the JAGXTREME terminal fo learn and adjust to the best preact time. The
other fields of the auto-preact setpoint are the same as in a standard setpoint.

With the JagBASIC ladder commands, you can use the setpoint feeding output fo
generate a discrefe output for opening and closing a feed gate.

Chapter 8
Simple Truck In-Out

Example

REM // Setup Rate

DEFSHR unit$,wt103

DEFSHR rateDisplay%,cs188

DEFSHR auxDisplay%,cs189

DEFSHR rateUnit%,cs 101

DEFSHR periodS,cs104

DEFSHR sample%,cs105

DEFSHR freq%,cs106

DEFSHR setup%,1_697

IF unitS="Ib" THEN rateUnit%=1 ELSE rateUnit%=2
period$="S":rafe = weight units per second
sample%=2:REM rate averaged over last two seconds
freq%=2:REM rate calculation frequency 1=1 sec;2=5 sec;2=half-second
rafeDisplay%=0:auxDisplay%=0:REM turn-off rate display
setup%-=1

REM Setpoint #1

REM Filling Setpoint using Auto preact
DEFSHR coincidence#,sp105
DEFSHR autopreact#,sp106
DEFSHR target,sp103

DEFSHR filling%,sp 186

DEFSHR enable%,sp102

DEFSHR lafching%,sp187
DEFSHR lafched%,sp188
enable%=1

latching%=1

filling%=0

targetS="H"

latched%=0
coincidence#=1000.0:REM weight
autopreact#=1.2:REM seconds
NEWLADDER

RUNGMOV s_210,p_500

DEFSHR setpoint%,i_698
setpoint%=1

Simple Truck In-Out

This JagBASIC program is used for a simple truck inbound/outbound application.

10 DEFSHR gross#,wt110:REM gross weight
20 DEFSHR unitS,wt103:REM weight units
30 DEFSHR stopEnable%,bas89

40 DEFSHR keyboards%,bas10

50 DEFSHR motion%,s_200

60 stopEnable%=0

70 keyboards%=3

80 password$="555555"

100 REM main menu

TTOPRINT'IN=1 OUT =4"

(10/01) 87

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

120 GOSUB 3000

130 IF kS="1" THEN GOTO 1000

140 IF kS="4" THEN GOTO 2000

150 IF kS="7" THEN GOTO 5000

160 IF kS="8" THEN GOTO 6000

170 IF kS="9" THEN GOTO 7000

180 GOTO 120

1000 PRINT "Inbound?"

1005 GOSUB 3000

1006 IF kS<>CHRS(8) THEN GOTO 100

1010 IF gross#<10.0 THEN PRINT "SCALE EMPTY":GOTO 1180
1020 PRINT "Register #"

1030 OPEN "inbound.dat" for random as #1 len=10
1040 FIELD #1,8 as inwght$, 2 as IfcrS

1050 reg%=999

1060 FOR x% = 1 fo 50

1070 GET #1,x%

1080 IF inwght$="00000000" THEN reg%=x%: x%=50
1090 NEXTx%

1100 IF reg%=999 THEN PRINT "Memory Full":GOTO 1170
1105 IF motion%=1 THEN PRINT "Scale In Mofion"
1106 IF motion%=1 THEN GOTO 1106

1110 LSET IferS=CHRS(13)+CHRS(10)

1120 RSET inwghtS=mkdS (gross#)

1130 LPRINT "Register # ";reg%

1140 LPRINT dateS;" ";timeS;" ";gross#;" ";unitsS;" IN"
1150 PRINT "Register # ";reg%

1160 PUT #1,reg%

1170 CLOSE #1

1180 GOSUB 3000

1190 GOTO 100

2000 PRINT "Outbound?"

2005 GOSUB 3000

2006 IF kS<>CHRS(8) THEN GOTO 100

2010 INPUT "Enter Register",reg%

2030 IF reg%=<T1 or reg%>50 THEN GOTO 2010

2040 PRINT "Register # ";reg%

2045 SLEEP 1000

2050 OPEN "inbound.dat" for random as #1 len=10
2060 FIELD #1,8 as inwght$, 2 as IfcrS

2070 GET #1,reg%

2080 IF inwght$="00000000" THEN PRINT "Register Empty":close #1:60TO 2220
2090 IN#=cvd(inwghtS)

2100 LSETIfer§=CHRS(13)+CHRS(10)

2110 RSETt inwght$="00000000"

2120 PUT #1,reg%

2130 CLOSE #1

2135 IF motion%=1 THEN PRINT "Scale In Motion"
2136 IF motion%=1 THEN GOTO 2136

2140 IF in#>gross# THEN finalGross#=in#:tare#=gross#:60TO 2160
2150 tare#=in#:finalGross#=gross#

2160 net#=finalGross#-tare#

2170 PRINT using "NET__###### #_1I".net#;unitS
2180 LPRINT DATES+" "+TIMES

2190 LPRINT using "NET____###### #_1I".net#; unitS
2200 LPRINT using "GROSS__ ######.#_!I":finalGross#; unitS
2210 LPRINT using "TARE___######.# |I":tare#;unitS

8-8 (10/01)

Chapter 8
Simple Truck In-Out
2220 GOSUB 3000
2230 GOTO 100
3000 REM get key
3010 kS=inkey$
3020 IF kS="" THEN GOTO 3010
3030 RETURN
5000 PRINT "View Regs?"
5005 GOSUB 3000
5010 IF k§<>CHRS(8) THEN GOTO 100
5020 INPUT "Enfer Password";pw$S
5030 IF passwordS<>pwS THEN GOTO 100
5040 OPEN "inbound.dat" for random as #1 len=10
5050 field #1,8 as inwght$,2 as IferS
5060 PRINT "Prinfout? Y=3"
5065 GOSUB 3000
5080 IF kS="3" THEN LPRINT "Reg Stored Weight"
5090 FOR x%=1 fo 50
5100 GET #1,x%
5110 IF inwght$="00000000" THEN GOTO 5150
5120 PRINT using "##__######.#",x%;cvd(inwghtS)
5130 IF kS="3" THEN LPRINT using "##__###### #"',x%;cvd(inwghtS)
5140 SLEEP 1000
5150 NEXT x%
5160 CLOSE #1
5170 GOTO 100
6000 PRINT "Reset Regs?"
6005 GOSUB 3000
6010 IF kS<>CHRS(8) THEN GOTO 100
6020 INPUT "Enfer Password"; pwS$
6030 IF passwordS<>pwS THEN GOTO 100
6040 open "inbound.dat" FOR OUTPUT AS#1
6050 for x%=1 fo 50
6060 PRINT #1,"00000000"
6070 NEXT x%
6080 CLOSE #1
6090 PRINT "Reset Complete”
6100 SLEEP 2000
6110 GOTO 100
7000 PRINT "Exit?"
7005 GOSUB 3000
7010 IF k§S<>CHRS(8) THEN GOTO 100
7020 INPUT "Enfer Password";pw$S
7030 IF passwordS<>pwS THEN GOTO 100
7040 keyboards%=0
7050 END

(10/01) 8-9

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

Truck Inbound-Outbound

This application records the weight of a truck when it arrives at a plant, calculates the
net weight of the fruck when it leaves the plant, and updates tallies as directed by the
operator. It uses up to two scales connected to a JAGXTREME ferminal. Typical uses of
this application are to record and fally the amount of:

e Asphalf loaded af an asphalt plant.
e Grain delivered o a grain elevator.
o Trash delivered to a trash dump.

This application uses the JagBASIC preprocessor, which uses the program source code
listed here as inpuf and generates the output file which runs on the JAGXTREME
terminal.

Printing Tickets
This application prints a ficket after each truck inbound or outbound processing
operation using the Demand Custom Prinf #3 connection. The operator must assign a
serial port fo this connection using the "CONFIG SERIAL" menu in the JAGXTREME
terminal setup menus. The operator must also use the "CONFIG TEMPLATE" menu to
setup the ficket format. This application sets the print literals as follows:

Literal 1 Header 1. Set up using Memory Key.
Literal 2 Header 2. Set up using Memory Key.
Literal 3 Net Weight.

Literal 4 Tare Weight.

Literal 5 Gross Weight.

Literal 6 Truck ID.

Literal 7 Tally 1 1D.

Literal 8 Tally 1 Weight Value.

Literal 9 Tally 2 ID.

Literal 10 Tally 2 Weight Value.

Literal 11 Tally 3 1ID.

Literal 12 Tally 3 Weight Value.

Literal 13 Tally 4 ID.

Literal 14 Tally 4 Weight Value.

Literal 15 Tally 5 ID.

Literal 16 Tally 5 Weight Value.

Literal 17 Tally 6 ID.

Literal 18 Tally 6 Weight Value.

Processing Modes

This application has two processing modes: File Maintenance and Truck
Inbound/Outbound. The operator presses the Esc key fo switch between them.

File Maintenance Processing

The application maintains two files: the Truck File and the Tally File. The number of
records stored in each file is limited to 1000 records since the JAGXTREME RAMDISK is
64K bytes. These files are random-access files with the records stored alphabetically by
ID. The application quickly retfrieves records from the files through a binary search. In
File Maintenance processing, the operatfor can perform the following operations:

8-10 (10/01)

Chapter 8
Truck Inbound-Outbound
e Edit the Truck File

e Print the Contents of the Truck File
e Listthe Truck IDs
o Edit the Tally File

o Print the confents of the Tally File

Truck File

The Truck File has one record for each fruck. The application weight units are the same
as the scale's primary calibration units. The application does not support unit switching.
Each record in the Truck File is 26 bytes long and has the following format:

Truck ID 8 characters
Tare Weight in ASCII 6 characters
Total Weight in ASCII 8 characters
Tare Type P/T 1 character
Truck In Plant Y/N 1 character
Line Feed/Carriage Return 2 characters
26 characters

The Tofal Weight is the sum of the fruck's net weights in all its trips to the plant. The
truck's Tare Type is either "P" or "T".

"P" indicates that the operator entered the fare through the keyboard.

"T" indicates that the operator entered the tare by weighing the truck on the scale.

Tally File

The Tally File has one record for each tally that the operator records. Each record in the
Tally File is 20 bytes long and has the following format:

Tally ID 8 characters

Tally Weight in ASCII 10 characters

Line Feed/Carriage Refurn 2 characters
20 characters

Truck Inbound/Outbound Processing

In truck inbound processing, the application prompts the operator to enfer the truck ID. If
the truck ID does not exist in the Truck File, the application creates a new record in the
file. The application records the inbound weight of the fruck in the Truck File. The
application sets the values in Literals 5 and 6; and blanks Literals 3, 4 and 7 through
18. The application issues the command to print a ticket through the Demand Custom
Prinf #3 connection.

In truck outbound processing, the application prompts the operafor to enter the truck ID.
The application refrieves the inbound weight of the fruck from the Truck File and
calculates the net weight of the truck. The application prompts the user to enter up to six
tally IDs and adds the net weight to each tally. The application sets the print literals and
issues the command to print the ficke.

(10/01) 8-11

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

Operations Program
This program code executes the steps needed to carry out the inbound/outbound
application.

REM TRUCK IN/OUT PROGRAM

IF OP%=0 THEN GOTO Initialize

IF OP%=2 THEN GOTO TruckInOutStart ELSE GOTO MaintenanceStart
Initialize:

DIM Gross#(2):DEFSHR Gross#(1),wt110:DEFSHR Gross#(2),wt210
DIM Motion%(2):DEFSHR Motion%(1),s_200:DEFSHR Motion%(2),s_208
DIM Select%(2):DEFSHR Select%(1),t_6¢0:DEFSHR Select%(2),t_6c1
DIM Zero%(2):DEFSHR Zero%(1),1_693:DEFSHR Zero%(2),t_6a3
DEFSHR Unit$,wt103

DEFSHR stopEnable%,bas89:stopEnable%=1

DEFSHR selKey,bas87:selkey=0:DEFSHR escKey,bas86:esckey=0
DEFSHR numScales,jag15:DEFSHR CustomPrint3%,t_6¢b

DIM LS(18):DEFSHR LS(1),1it01:DEFSHR LS(2),1it02:DEFSHR LS(3),1it03
DEFSHR LS(4),1it04:DEFSHR LS(5),1it05:DEFSHR LS(6),1it06

DEFSHR LS(7),1it07:DEFSHR LS(8),1it08:DEFSHR LS(9),1it09

DEFSHR LS(10),lit10:DEFSHR LS(11),lit1 1:DEFSHR LS(12),1it12
DEFSHR LS(13),lit13:DEFSHR LS(14),lit14:DEFSHR LS(15),1it15
DEFSHR LS(16),lit16:DEFSHR LS(17),1it17:DEFSHR LS(18),1it18

REM TRUCK INBOUND/OUTBOUND OPERATIONS

TruckInOutStart:
0P%=1:Scl%=1:Select%(1)=1
NexiTruck:

REM ftroff

FOR i%=3 1o 18

LS(i%)=""

NEXT i%

REM tron

CustomPrint3%=0

INPUT "Truck";M$

REM ***** 7ERQ SCALE *****

IF MS=CHRS(7) THEN Zero%(Scl%)=1:G0TO NexiTruck

REM ***#* PROCESS TRUCK *****

IF MS<>CHRS(1) THEN GOSUB ProcessTruck:GOTO NexiTruck
REM ****% QE| ECT SCALE *****

IF numScales=1 THEN GOTO NexiTruck

IF Scl%=1 THEN Scl%=2 ELSE Scl%=1
Select%(Scl%)=1:6G0TO NexiTruck

8-12 (10/01)

Chapter 8
Truck Inbound-Outbound

REM PROCESS TRUCK

ProcessTruck:

[F MS="" THEN RETURN

GOSUB CheckIDString:truckDS=MS:L$(6)=M$

GOSUB GetWgt:MS=STRS(Weight#):G0SUB SetToWidth8:L$(5)=M$

GOSUB OpenTruck:LSET TrkIDS=truckIDS:ON ERROR GOTO NewlInboundTruck:GET #2
IF TIPS="Y" THEN GOTO OutboundTruck

REM PROCESS INBOUND TRUCK

InboundTruck:

PRINT "InBound ";truckIDS:SLEEP 1000

IF TTypS="P" THEN LS(5)=TWS ELSE RSET TWS=RIGHTS(LS(5),8)
GOTO Donelnbound

REM NEW INBOUND TRUCK ID

NewInboundTruck:

IF ERR()<>6 THEN LPRINT ERRQ);" ";ERL():END

PRINT "New ID ";truckIDS;"?":GOSUB GetKey

IF CS<>CHRS(8) THEN CLOSE #2:RETURN

RSET TWS=RIGHTS(LS(5),8)

LSET TTypS="T":LSET TrkIDS=truckIDS:RSET TTotS=" 0"

Donelnbound:

RSET TIPS="Y":LSET crS=CHRS(13)+CHRS(10):PUT #2

GOSUB PrintHeader:LPRINT "Inbound Truck ";truckiD$S

LPRINT USING "GROSS_WT___ . _11";VAL(LS(5));UnitS:LPRINT "*
CustomPrint3%=1:CLOSE #2:RETURN

REM PROCESS OUTBOUND TRUCK

OutboundTruck:

NetWi#=Weight#-VAL(TWS):MS=STRS (NetWi#):Width%=8:G0SUB
SefToWidth:LS(3)=M$

MS=TWS:GOSUB SetToWidth8:LS(4)=M$
Weight#=NetW#+VAL(TTotS)
MS=STRS(Weight#):Width%=10:G0SUB SetToWidth:RSET TTot$=M$
RSET TIPS="N":LSET crS=CHRS(13)+CHRS(10):PUT #2:CLOSE #2

REM HEY, MR. TALLY MAN, TALLY ME BANANAS.

1%=0:G0SUB OpenTally

(10/01) 8-13

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

8-14 (10/01)

MoreTallies:

INPUT "Enter Tally ID",MS:IF MS="" OR MS="" THEN GOTO DoneTallies
GOSUB CheckIDString:tallDS=M$

ON ERROR GOTO NewTally

LSET TallyIDS=talIDS:GET #1

REM *** FOUND EXISTING TALLY
MS=STRS(VAL(TallyS)+NetWi#):Width%=10:G0SUB SetToWidth:RSET TallyS=MS$
GOTO PufTally

NewTally:

IF ERRQ)<>6 THEN LPRINT ERR();" ";ERL():END

PRINT "AddNew ";tallDS;"?":GOSUB GetKey:IF CS<>CHRS(8) THEN GOTO MoreTallies
MS=STRS(NetWt#):Width%=10:G0SUB SetToWidth:RSET TallyS=MS

PufTally:
LS(t%*2+7)=tallDS:LS (1%*2+8)=TallyS:REM *** SET LITERALS FOR CUSTOM PRINT
LSET TallyIDS=talIDS:LSET crS=CHRS(13)+CHRS(10):PUT #1

NexiTally:
1%=1%+1:IF 1%<6 THEN GOTO MoreTallies

DoneTallies:

GOSUB PrintHeader:LPRINT "Outbound Truck *;rucklDS;CHRS(10)

LPRINT USING "GROSS_WT____ ######H#H##H#._ 1", VAL(LS(5));Unit$

LPRINT USING "TARE_WT 1 VAL(LS (), UnitS

LPRINT USING "NET_WT 1" VAL(LS(B));UnitS

LPRINT "":i%=0

MoreTallyPrint:

IF i%>=t%*2 THEN LPRINT CHRS(10):CLOSE #1:CustomPrint3%=1:RETURN

i%=i%+2:G0TO MoreTallyPrint

REM TRUCK FILES MAINTENANCE MAIN MENU

MaintenanceStart:

IF OP%=4 THEN GOTO MenuPrintTruck
IF OP%=>5 THEN GOTO MenulListTruck
IF OP%=6 THEN GOTO EditTallyMenu
IF OP%=7 THEN GOTO MenuPrinfTally
IF OP%=8 THEN GOTO MenuSendFiles

Maintenance:
OP%=2:PRINT "Edit Truck File":GOSUB GetKey
IF CS=CHRS(8) THEN GOSUB EditTruckFile:G0TO Maintenance

MenuPrintTruck:
OP%=2:PRINT "Print Truck File":GOSUB GetKey
IF CS=CHRS(8) THEN GOSUB PrintTrucks

MenuListTruck:
OP%=2:PRINT "List Truck IDs":GOSUB GetKey
IF CS=CHRS(8) THEN GOSUB LisfTruckID

Chapter 8
Truck Inbound-Outbound

EdifTallyMenu:
OP%=2:PRINT "Edit Tally File":GOSUB GetKey
IF CS=CHRS(8) THEN GOSUB EditTallyFile:GOTO EditTallyMenu

MenuPrintTally:
OP%=2:PRINT "Print Tally File":GOSUB GetKey
IF CS=CHRS(8) THEN GOSUB PrintTallyList

MenuSendFiles:

OP%=2:PRINT "Send Data Files":GOSUB GetKey
IF CS=CHRS(8) THEN GOSUB SendFiles

GOTO Maintenance

REM EDIT THE TRUCK FILE

EdifTruckFile:

OP%=3:INPUT "Enter Truck ID",M$

GOSUB OpenTruck:ON ERROR GOTO NewTruck:r%=0
IF MS<>"" AND MS<>"" THEN GOTO SearchTruckID

LookNextID:

IF EOF(2) THEN CLOSE #2:PRINT "End Of File":SLEEP 2000:RETURN
r%=r1%-+1:GET #2,r%:PRINT "Truck ";TrkIDS;"?":GOSUB GetKey

IF CS=CHRS(8) THEN truckIDS=TrkIDS:GOTO EditRecord ELSE GOTO LookNextD

SearchTrucklD:
GOSUB CheckIDString:truckiDS=MS:PRINT "Search ";fruckIDS:SLEEP 1000
LSET TrkIDS=truckIDS:GET #2

EditRecord:

PRINT "Edit ";truckIDS;"?":GOSUB GetKey:IF CS="" THEN GOTO DeleteTruck
IF CS<>CHRS(8) THEN GOTO EndTruckEdit

PRINT "Outbound? Y/N",CS:GOSUB GetKey

[F CS="Y" THEN RSET TIPS="Y" ELSE RSET TIPS="N"

GOTO SetTare

DelefeTruck:

PRINT "Delefe ";truckIDS;"?":GOSUB GetKey:IF CS="" THEN GOTO EditRecord
IF CS=CHRS(8) THEN PRINT "Deleting ";truckIDS:SLEEP 1000:DELREC #2
GOTO EndTruckEdit

NewTruck:

IF ERR()<>6 THEN LPRINT ERRQ);" ";ERL():END

PRINT "Add ";truckIDS;"?":GOSUB GetKey:IF CS<>CHRS(8) THEN GOTO EndTruckEdit
PRINT "Adding ";truckIDS :LSET TrkIDS=truckIDS

RSET TWS=" ":RSET TTotS=" ":LSET TTypS="":RSET TIPS="N"

SefTare:

PRINT "Tare Type? P/T":GOSUB GetKey

IF CS=CHRS(4) OR CS="T" THEN RSET TTypS="T":GOSUB GetWgt:GOTO SefTot
IF CS="P" THEN RSET TTypS="P":INPUT "Tare Wt:",Weight#:GOTO SefTot
PRINT "Invalid Type":SLEEP 2000:GOTO SetTare

(10/01) 8-15

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

8-16 (10/01)

SefTot:REM ***** SET TOTAL WEIGHT s+
MS=STRS(Weight#):GOSUB SetToWidth8:RSET TWS=MS

INPUT "Total:", Weight#

MS=STRS (Weight#):Width%=10:G0SUB SefToWidth:RSET TTotS=M$
LSET TrkIDS=truckIDS:LSET cr$S=CHRS(13)+CHRS(10):PUT #2

EndTruckEdit:
CLOSE #2:RETURN

REM EDIT THE Tally ID FILE

EdifTallyFile:

OP%=6:INPUT "Enter Tally ID",M$

GOSUB OpenTally:ON ERROR GOTO MakeNewTally:r%=0
IF MS<>"" AND MS<>"" THEN GOTO SearchTallylD

LookTally:

IF EOF(1) THEN CLOSE #1:PRINT "End Of File":SLEEP 2000:RETURN
r%=r%+1:GET #1,r%:PRINT "Tally *;TallylDS;"?":GOSUB GetKey

IF CS=CHRS(8) THEN tallDS=TallylDS:GOTO EditTallyRecord ELSE GOTO LookTally

SearchTallyID:
GOSUB CheckIDString:tallDS=MS:PRINT "Search ";tallDS:SLEEP 1000
LSET TallyIDS=talIDS:GET #1

EdifTallyRecord:

PRINT "Edit ";tallDS;"?":GOSUB GetKey

IF CS=CHRS(8) THEN GOTO WriteTallyTotal
IF CS<>" " THEN GOTO EndTallyEdit

DeleteTally:

PRINT "Delefe ";talIDS;"?":GOSUB GetKey

IF CS="" THEN GOTO EditTallyRecord

IF C$S=CHRS(8) THEN PRINT "Deleting ";tallDS:SLEEP 1000:DELREC #1
GOTO EndTallyEdit

MakeNewTally:

IF ERRQ)<>6 THEN LPRINT ERR();" ";ERL():END

PRINT "Add ";tallDS;"?":GOSUB GetKey:IF CS<>CHRS(8) THEN GOTO EndTallyEdit
PRINT "Adding ";talIDS:SLEEP 1000:G0TO WriteTallyTotal

WriteTallyTotal:

LSET TallyIDS=talIDS:Input "Total:", Weight#
MS=STRS(Weight#):Width%=10:G0SUB SefToWidth:RSET TallyS=MS$
LSET crS=CHRS(13)+CHRS(10):PUT #1

EndTallyEdit:
CLOSE #1:RETURN

Chapter 8
Truck Inbound-Outbound

REM PRINT THE TRUCK FILE

PrintTrucks:

OP%=4:PRINT "Clear Total? N/Y":GOSUB GetKey:PRINT "Prinfing..."
GOSUB PrintHeader:LPRINT "Truck Report"

LPRINT "Truck ID", TAB(18),"Tare Weight"; TAB(38);"Total"; TAB(47);"Outbound"
LPRINT STRINGS(54,"="):G0SUB OpenTruck:r%=0

WHILE NOT EOF(2)

%=r%+1:GET #2,r%:LPRINT TrkIDS;TAB(15);

IF CS="Y" OR C$S=CHRS(6) THEN RSET TTotS=" 0"

LPRINT USING "########. _1l_1":VAL(TWS);UnitS; TTypS;

LPRINT USING "__####t#H##, 1l 1", VAL(TTotS);UnitS; TIPS

IF CS="Y" OR CS=CHRS(6) THEN PUT #2,1%

WEND

LPRINT r%;" Trucks":PRINT r%;" Trucks":SLEEP 2000:CLOSE #2:RETURN

REM PRINT LIST OF TRUCKS

ListTrucklD:

0OP%=5:GOSUB PrintfHeader

LPRINT "Truck ID List":LPRINT STRINGS(25,"="):G0SUB OpenTruck:r%=0
PrintNexiTruck:

IF NOT EOF(2) THEN 1%=r%+1:GET #2,r%:LPRINT TrkIDS:GOTO PrintNex{Truck
LPRINT r%;" Trucks":PRINT r%;" Trucks":SLEEP 2000:CLOSE #2:RETURN

REM PRINT LIST OF TALLIES

PrintTallyList:

OP%=7:GOSUB PrintHeader

LPRINT "Tally"; TAB(18);"Total":LPRINT STRINGS(25,"="):GOSUB OpenTally:r%=0
PrintNextTally:

IF EOF(1) THEN GOTO PrinfTallyDone

r%=r%+1:GET #1,r%:LPRINT TallylDS;

LPRINT USING "___##########._1":VAL(TallyS);UnitS:GOTO PrintNextTally
PrintTallyDone:

LPRINT r%;" Tallies":PRINT r%;" Tallies":SLEEP 2000:CLOSE #1:RETURN

REM SEND FILES TO HOST USING ZMODEM

SendFiles:

OP%=8:PRINT "Files To Host":GOSUB GetKey:IF CS<>CHRS(8) THEN GOTO
ReceiveFiles

PRINT "Are You Sure?":GOSUB GetKey:IF CS<>CHRS(8) THEN RETURN
PRINT "":SZ "TRUCK":SZ "TALLY":RETURN

ReceiveFiles:

PRINT "Files From Host":GOSUB GetKey:IF CS<>CHRS(8) THEN RETURN
PRINT "Are You Sure?":GOSUB GetKey:IF CS=CHRS(8) THEN RZ ELSE RETURN
PRINT "SORTING FILES":GOSUB OpenTruck:SORTREC #2,TrkIDS:CLOSE #2
GOSUB OpenTally:SORTREC #1,TallylIDS:CLOSE #1:RETURN

(10/01) 8-17

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

8-18 (10/01)

REM GET WEIGHT OF TRUCK
GetWat:

Scl%=1:CS="A"If numScales=1 THEN GOTO CheckMotion

PRINT "Scale? A/B":GOSUB GetKey

IF C$="B" OR CS=CHRS(5) THEN Scl%=2:CS="B" ELSE CS="A"

Select%(Scl%)=1

CheckMotion:

PRINT "Weighing Scale ";CS:SLEEP 1000

IF Motion%(Scl%)=1 THEN PRINT "Scale In Motion":SLEEP 250:GOTO CheckMotion
Weight#=Gross#(Scl%):RETURN

REM OPEN TRUCK FILE

OpenTruck:

OPEN "TRUCK" FOR RANDOM AS #2 LEN=30

FIELD #2,8 AS TrkiDS,8 AS TWS, 1 AS TTypS, 10 AS TTotS, 1 AS TIPS, 2 AS crS
INDEXED #2,TrkIDS:RETURN

REM OPEN TALLY FILE

OpenTally:

OPEN "TALLY" FOR RANDOM AS #1 LEN=20
FIELD #1,8 AS TallylDS,10 AS TallyS,2 AS cr$
INDEXED #1,TallylDS:RETURN

REM Print Report Header

PrintHeader:

LPRINT CHRS(10)+CHRS(10):LPRINT LS(1):LPRINT L$(2)+CHRS(10)
LPRINT DATES; TAB(19); TIMES+CHRS(10):RETURN

REM GET A KEY

GetKey:

REM froff

CS=INKEYS:IF CS<>"" THEN GOTO GetKey

GetKey1:

CS=INKEYS:IF CS="" THEN GOTO GetKey1

REM tron

IF CS>="a" AND CS<="z" THEN CS=CHRS(ASC(CS)-32)
IF CS=CHRS(2) THEN RESTART ELSE RETURN

REM CHECK TERMINATING CHARACTERS ON STRING
REM BLANK FILL ID TO WIDTH 8

REM CAPITALIZE ID

CheckIDString:

CS=RIGHTS(MS, 1):IF CS=CHRS(2) THEN RESTART

IF CS<CHRS(8) THEN MS=LEFTS(MS,LEN(MS)-1)

AddBlank:

Chapter 8
Multiple Ingredient Formulation (Manual Batching)
IF LEN(MS$)<8 THEN MS=MS$+" ":GOTO AddBlank
AS=MS:MS=""
FOR i%=1T0 8
CS=MIDS(AS,i%,1)
IF CS>="a" AND CS<="z" THEN MS=MS+CHRS(ASC(CS)-32) ELSE MS=MS+C$
NEXT i%
RETURN

REM RIGHT SHIFT NUMERIC STRING TO SPECIFIED WIDTH
SefToWidth8:

Width%=8

SefToWidth:

IF LEN(MS)<Width% THEN MS=""+MS:GOTO SetToWidth
IF LEN(MS)>Width% THEN MS=LEFTS(MS, Width%)
RETURN

Multiple Ingredient
Formulation (Manual
Batching)

JagBASIC can be applied to a Mulfiple Ingredient Formulation application (Manual
batching). This example uses various JagBASIC programming fechniques for
operations such as maintaining data files, acquiring weight data, and controlling output
fo the ferminal lower display. PCJagBASIC must process this program before it can be
downloaded and run on a JAGXTREME terminal. PCJagBASIC is a development fool,
which simplifies the development and maintenance of JagBASIC programs. This
program was designed to work with a fwo-scale system.

File Maintenance

The Mulfiple Ingredient Formulation Application uses 2 files for dafa sforage, Material.dat
and Recipe.dat. File maintenance enables the operator fo add, delete, and edit records
of recipes and materials. These files are random-access files with records stored
alphabetically by ID.

The material file has 2 fields, MateriallD and Inventory. The application updafes the
inventory as a material is used. The operafor may update inventory by using the
program to edit the material file.

The recipe file has 5 fields, RecipelD, MateriallD, ScalelD, Amount, and Tolerance. The
Recipe ID is composed of a user assigned name, and a generafed index number. The
index number is assigned by the JagBASIC program and is used to determine the order
in which to add the ingredients. The first ingredient has a Recipe ID of "RecipeName00";
the second ingredient has an ID of "RecipeNameO1", and so on.

(10/01) 8-19

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

In the Recipe file, the MateriallD identifies which material to add fo the batch, and the
ScalelD indicafes which scale to add the material to. The Amount indicafes how much
material to add, and Tolerance is the acceptable amount of error in the delivery.

Material File Recipe File
MateriallD 10 characters RecipelD 12 characters
Inventory 8 characters MateriallD 10 characters
ScalelD 1 characters
Amount 8 characters
Tolerance 8 characters

8-20 (10/01)

In order to create a recipe and run a batch, the operator must first create a list of
materials. The operator must use the select and enter keys on the ferminal to choose
"File_Maint" and then "Material_File" from the menus. The operator may then follow the
prompts fo edit, add, or delete a material from the file. Affer several materials are
created, the operator may creafe a recipe. The select and enfer keys should be used fo
choose "File_Maint" and then "Recipe_File" from the menus. The operator may then
follow the prompts to edit, add, or delete a recipe from the file.

The application also allows the operator to print reports defailing the amount of materials
available or the components of the recipes. Samples of each report follow.

| Materials Report |
| 07-21-2000 08:24:17 |

| ID Inventory |

Chocolate 98.04

Eggs 20
Nutmeg 32.5
Flour 167.78
Water 50.23

| Recipe Report 07-21-2000 08:31:56 |

| Recipe Material ID Scale Amount Tol.l

Cake:
Flour A b 1
Milk B 2 1
Chocolate B 35 1
Eggs A 5
Paste:
Flour B 6 25
\Water B 35 5
OPERATIONS

To begin a batch, the operator should choose "Run_Recipe" from the main menu. Once
a recipe is selected, a confirmation prompt will appear. The operafor should choose "Y"
to run the bafch. If the required materials are not present in sufficient quantity, as
determined by examining the invenfory in the material file, an error message will appear
on the lower display of the terminal and the patch will terminate. A material’s inventory
can be modified by selecting "Edit_Material" under the "File_Maint" and "Material_File"
menus.

Chapter 8

Multiple Ingredient Formulation (Manual Batching)
Once the baich begins, the ID of the first ingredient, along with the quantity remaining fo
be added, will appear on the lower display of the ferminal. This message will begin to
blink once that material is within tolerance. The ferminal’s discrete outputs are also an
indication that the material is within tolerance. Discrete output 1 is on while the material
is out of tolerance and discrefe output 2 is on while the material is within folerance. To
move on to the next ingredient, the operafor must push the enter key on the terminal.
The materials inventory file is updated after each ingredient is added. After the batch is
complefe, an audit trail report is printed.

| Recipe Audit Trail |
| 07-21-2000 09:12:56 |

Recipe: Cake
Material ~ Target Actual

Flour 5 5.13
Milk 4 414
Water 3.5 3.62

125 12.79

SOURCE FILE FOR PCJagBASIC

Defln
DefOut
TableErrorOn

DEFSHR KeySrc#,bas10 : DEFSHR SelectEnable#,bas87
DEFSHR ManualStop#,bas89 : DEFSHR EscapeEnable#,bas86

DIM GWH#(2) : DEFSHR GW/H#(1),wt1 10 : DEFSHR GWH#(2),wi211
DIM NWH#(2) : DEFSHR NW/H#(1),wt111 : DEFSHR NWH#(2),wi211

DIM OnScale%(2) : DEFSHR OnScale%(1),t_6¢0 : DEFSHR OnScale%(2),t_6c¢1
DIM MotionScale%(2) : DEFSHR MotionScale%(1),s_200 :DEFSHR
MotionScale%(2),s_208

DEFSHR TareScale%,t_6b0
DEFSHR ClearTareScale%,t_6b1

MATERIALFILES = "Material.dat"
RECIPEFILES = "Recipe.dat"
AUDITFILES = "Audit.txt"

' The Material file will have 2 fields.
' One for the Material ID, and another for Inventory.
DefTable Materials, "Material.dat"
DefKey MateriallDS,10
DefFId Inventory#
DefEnd

' The Recipe file will have 5 fields. A recipe can be made up

' of 1-99 ingredienfs. The user will enter in a recipe name,

' followed by the details (material name, scale, amount, tol.)

" of the first ingredient. This information is saved under the

' RecipelD of "Name0Q". The next ingredient is saved under the
' Recipe ID of "NameO1", and the process continues.

(10/01) 8-21

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

DefTable Recipes, "Recipe.dat"
DefKey RecipelDS,12
DefFld MateriallDS, 10
DefFld ScalelD$, 1
DefFld Amount#

DefFld Tolerance#

DefEnd

DISPLAY_ON# = 0.5 : DISPLAY_OFF# = 0.05
KeySrc# = 3 : SelectEnable# = O : ManualStop# = O : EscapeEnable# = 0

RUN% =1

Main_Menu:
MENUSELS = "File_Maint"
WHILE RUN% =1
INPUT "AAFile_Maint,Run_Recipe, Reports, Exit_Program'; MENUSELS
IF MENUSELS = "File_Maint" Then Gosub File_Maint
IF MENUSELS = "Run_Recipe" Then Gosub Run_Recipe
IF MENUSELS = "Reports" Then Gosub Reports
IF MENUSELS = "Exit_Program" THEN RUN% = 0
WEND
KeySrc# = 2 : SelectEnable# = 1 : ManualStop# = 1 : EscaleEnable# = 1
END

File_Maint:
MENUSELS = "Material_File"
WHILE RUN% =1
INPUT "AAMaterial_File, Recipe_File, Exit_File_Maint"; MENUSELS
IF MENUSELS = "Material_File" Then Gosub Mat_File_Menu
IF MENUSELS = "Recipe_File" Then Gosub Recipe_File_Menu
IF MENUSELS = "Exit_File_Maint" THEN RUN% = O
WEND
RUN% =1
MENUSELS = "File_Maint"
RETURN

Mat_File_Menu:
MENUSELS = "Edit_Maferial"
WHILE RUN% =1
INPUT "AAEdit_Material, Add_Material, Delete_Material, Exit_Mat_File"; MENUSELS
IF MENUSELS = "Edit_Material" Then Gosub Edit_Material
IF MENUSELS = "Add_Material" Then Gosub Add_Material
IF MENUSELS = "Delete_Material" Then Gosub Delete_Material
IF MENUSELS = "Exit_Mat_File" THEN RUN% = 0
WEND
MENUSELS = "Material_File"
RUN% =1
RETURN

Edit_Material:

GOSUB Fill_Material_Array

IF MaterialString$ = "-EMPTY-" THEN
PRINT "--No Materials--" : SLEEP 1000
RETURN

ENDIF

IF MaterialCount% > 1 THEN
Menu$ = "AEdit A"+MaterialString$
MaterialDS = "
INPUT Menu$; MaterialDS

8-22 (10/01)

Chapter 8
Multiple Ingredient Formulation (Manual Batching)
ELSE
MateriallD$ = MaterialString$
ENDIF
PRINT "-Edit ";MateriallDS : SLEEP 1000
REM ' retrieve material and save in femp record
REM ' then delete material. If edit fails, restore material.
FetchFrom Materials
Temp$S = RTRIMS(MateriallDS)
Temp# = Inventory#
DeleteFrom Materials

INPUT "AID: A 1" MateriallDS

If MateriallDS = "" Then
PRINT "Mat. Not Changed" : SLEEP 2000
MateriallDS = Temp$: Inventory# = Temp#
StoreTo Materials
RETURN

Endlf

FetchFrom Materials

[fTableError 6 Then
REM ' record does not exist
INPUT "Alnvntry:A###### ##", Invenfory#
StoreTo Materials
PRINT "Material Edited" : SLEEP 2000

ELSE
PRINT "--Mat. Exists--" : SLEEP 1000
PRINT "-Edit Canceled-" : SLEEP 1000
MateriallDS = Temp$: Inventory# = Temp#
StoreTo Materials

Endif

RETURN

Add_Material:
MateriallD$ = "
INPUT "AID: A i, MateriallDS
If MateriallDS = "" Then
PRINT "-Mat. Not Added-" : SLEEP 2000
RETURN
EndlIf

If INSTR(MateriallD$," ") <> O THEN
REM ' do not allow spaces in Material name
Print "-lllegal Spaces-" : SLEEP 1000
GOTO Add_Material

ENDIF

PRINT "Searching..."
FetchFrom Materials

[fTableError 6 Then
REM ' Record does nof exist
Inventory# = 0
INPUT "Alnvntry: s ##", Invenfory#
StoreTo Materials
PRINT "-Material Added-" : SLEEP 2000
ELSE
REM 'can't add a record that already exists
PRINT "--Mat. Exisfs--" : SLEEP 2000

(10/01) 8-23

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

ENDIF
RETURN

Delete_Material:

GOSUB Fill_Material_Array

IF MaterialString$ = "-EMPTY-" THEN
PRINT "--No Materials--" : SLEEP 1000
RETURN

ENDIF

IF MaterialCount% > 1 THEN
Menu$ = "ADel. A"+MaterialString$
INPUT Menu$;MateriallD$S

ELSE
MateriallD$ = MaterialString$

ENDIF

Menu$ = "ADel."+MateriallDS+"AY,N"
ANSS - ||N||
INPUT Menu$;ANSS

IF ANSS = "N" THEN RETURN

DeleteFrom Materials
PRINT "--Mat. Deleted--" : Sleep 2000
RETURN

Recipe_File_Menu:
MENUSELS = "Edit_Recipe"
WHILE RUN% =1
INPUT "AAEdit_Recipe,Add_Recipe, Delete_Recipe, Exit_Recipe_File";MENUSELS
IF MENUSELS = "Edit_Recipe" Then Gosub Edit_Recipe
IF MENUSELS = "Add_Recipe" Then Gosub Add_Recipe
IF MENUSELS = "Delete_Recipe" Then Gosub Delete_Recipe
IF MENUSELS = "Exit_Recipe_File" THEN RUN% =0
WEND
MENUSELS = "Recipe_File" : RUN% = 1
RETURN

Edit_Recipe:
GOSUB Fill_Recipe_Array
GOSUB Fill_Material_Array
If RecipeString$ = "-EMPTY-" THEN
Print "-- No Recipes --" : SLEEP 1000
RETURN
ENDIF
IF RecipeCount% > 1 THEN
Menu$ = "AEdit A"+RecipeString$S
RecipeHead$ ="
INPUT Menu$;RecipeHead$
ELSE
RecipeHead$ = RecipeString$
Print "Edit ";RecipeHead$:SLEEP 1000
ENDIF

RecipelDS = RecipeHeadS + "00"
Tracker% = 0 : Done% = 0
While Done%=0
FetchFrom Recipes
MateriallD§ = RTRIMS(MateriallDS)
[fTableError 6 Then
REM ' Record does not exist

8-24 (10/01)

Chapter 8
Multiple Ingredient Formulation (Manual Batching)
REM ' set defaults for Get_Material_Info
MateriallD$ = " : ScalelD$ = ""
Amount# = O : Tolerance# =0
ENDIF
GOSUB Get_Material_Info
StoreTo Recipes

ANSS = "N"
INPUT "AMore AY,N";ANSS
IF ANSS = "N" THEN Done%=1
GOSUB Gef_Next_Ing
Wend

Done%=0
While Done%=0
FetchFrom Recipes
[fTableError 6 Then
REM ' record does not exist
Done%=1
Else
DeleteFrom Recipes
GOSUB Gef_Next_Ing
Endif
Wend
RETURN

Add_Recipe:
RecipeHead$ ="
INPUT "AID: A ", RecipeHead$
If RecipeHead$ = "" Then
PRINT "Recip. Not Added" : SLEEP 2000
RETURN
EndlIf

If INSTR(RecipeHead$," ") <> 0 THEN
REM ' don't allow spaces in recipe name
Print "-lllegal Spaces-" : SLEEP 1000
GOTO Add_Recipe

ENDIF

Tracker% = 0
RecipelDS = RecipeHead$ + "00"
PRINT "Searching..."
FetchFrom Recipes
[fTableError 6 Then
GOSUB Fill_Material_Array
Done%=0
While Done%=0
ScalelDS = "A"
Amount# = O : Tolerance# = 0
GOSUB Get_Material_Info
StoreTo Recipes
ANSS = "N"
INPUT "AMore AY,N";ANSS
MaterialDS = "
IF ANSS = "N" THEN
Done%=1
ELSE
GOSUB Gef_Next_Ing
ENDIF
Wend

(10/01) 8-25

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

8-26 (10/01)

ELSE
PRINT "-Recipe Exists-" : SLEEP 2000
ENDIF

RETURN

Delete_Recipe:

GOSUB Fill_Recipe_Array

If RecipeString$ = "-EMPTY-" THEN
Print "-- No Recipes --" : SLEEP 1000
RETURN

ENDIF

IF RecipeCount% > 1 THEN
Menu$ = "ADel. A"+RecipeString$
RecipeHead$ ="
INPUT Menu$;RecipeHead$

ELSE
RecipeHead$ = RecipeString$

ENDIF

Menu$ = "ADel."+RecipeHeadS+"AY,N"
ANSS — ||N||
INPUT Menu$;ANSS

IF ANSS = "N" THEN RETURN

Done% = 0 : Tracker% = 0
RecipelDS = RecipeHeadS + "00"
DeleteFrom Recipes
While Done%=0
GOSUB Gef_Next_Ing
FetchFrom Recipes
[fTableError 6 Then
REM ' file not found, sef flag to exit loop
Done% =1
ELSE
REM ' delete record
DeleteFrom Recipes
Endlf
Wend
PRINT "-Recipe Deleted-" : Sleep 2000
RETURN

Run_Recipe:

GOSUB Fill_Recipe_Array

If RecipeString$ = "-EMPTY-" THEN
Print "-- No Recipes --" : SLEEP 1000
RETURN

ENDIF

IF RecipeCount% > 1 THEN
Menu$ = "ARun A"+RecipeString$
RecipeHead$ ="
INPUT Menu$;RecipeHead$

ELSE
RecipeHead$ = RecipeString$

ENDIF

Menu$ = "ARun "+RecipeHeadS+"AY,N"
ANSS - ||N||
INPUT Menu$;ANSS

Chapter 8
Multiple Ingredient Formulation (Manual Batching)
IF ANSS = "N" THEN
PRINT " --Aborted-- " : Sleep 1000
RETURN
ENDIF

GOSUB Check_Inventory REM 'Set AbortRecipe%=1 if Inventory low
IF AbortRecipe% = 1 Then

RETURN
ENDIF

REM 'Create file for new audit frail
OPEN AUDITFILES FOR OUTPUT AS #3
CLOSE #3

RecipelDS = RecipeHeadS + "00"
ACC_TOTAL# = 0.0 : EXP_TOTAL# = 0.0
AuditRecordS = "" : Tracker% = 0
FetchFrom Recipes

RUN% =1
While RUN% = 1
TempS= STRS(Amount#)
AuditRecord$ = MateriallDS + " " + PADLS(TempS,8," ")

REM ' select scale to set focus on A or B
Index% = 2

If ScalelD$ = "A" Then Index% = 1
OnScale%(Index%) = 1

While OnScale%(Index%) = 1

Wend

TareScale% = 1
While TareScale% = 1
Wend

Done% =0
OldTime# = TIMER()
Timelndex# = DISPLAY_ON#

While Done% = 0
REM ' code to blink the display
If Timelndex# = DISPLAY_OFF# THEN
Message$ ="
ELSE
Message$S = MateriallDS + " * + STRS(Amount# - NWt#(Index%))
ENDIF
Print Message$

Target# = ABS(NWi#(Index%) - Amount#)
IF Target# < Tolerance# OR Target# = Tolerance# THEN
REM ' code to set timer for display blink
NewTime# = TIMER()
If NewTime# - OldTime# > Timelndex# THEN
If Timelndex# = DISPLAY_ON# THEN Timelndex# = DISPLAY_OFF# ELSE
Timelndex# = DISPLAY_ON#
OldTime# = TIMERQ
ENDIF
SwitchON 2
SwitchOFF 1
ELSE
Timelndex# = DISPLAY_ON#

(10/01) 8-27

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

SwitchON 1
SwitchOFF 2
ENDIF

Key$S = INKEYS

If Key$ = CHRS(8) THEN
Done% =1
While MotionScale% (Index%) = 1
Wend

ENDIF

Wend

Delivered# = NWi#(Index%)
DeliveredS = STRS(Delivered#)
DeliveredS = PADLS(DeliveredsS,8," ")

AuditRecord$ = AuditRecordS + Delivered$
OPEN AUDITFILES FOR APPEND AS #3
WRITE #3,AuditRecord$

CLOSE #3

ACC_TOTAL# = ACC_TOTAL# + Delivered#
EXP_TOTAL# = EXP_TOTAL# + Amount#

REM ' adjust the inventory of the material
GOSUB Adjust_Inventory
GOSUB Gef_Next_Ing
FetchFrom Recipes
[fTableError 6 Then
RUN%=0
Endif

Wend
SwitchOFF 1
SwitchOFF 2

REM ' print audit trail
PRINT "Prinfing..."
LPRINT " !
LPRINT "I";TAB(6),"Recipe Audit Trail"; TAB(32);,"I"
LPRINT "I";TAB(4),DATES; TAB(18); TIMES; TAB(32);"I"
LPRINT " !
LPRINT TAB(4);"Recipe:"; TAB(12);RecipeHead$
LPRINT TAB(4);"Material"; TAB(18);"Target"; TAB(26);"Actual"
LPRINT " !
OPEN AUDITFILES FOR INPUT AS #3
While EOF(3) =0

INPUT #3,AuditRecord$S

LPRINT TAB(4);AuditRecord$
Wend
CLOSE #3
LPRINT " !
LPRINT TAB(18),EXP_TOTAL#;TAB(26);ACC_TOTAL#
RUN% =1
KILL "AUDIT.TXT"

RETURN

Check_Inventory:
AbortRecipe% = 0 : Tracker% = 0
RecipelDS = RecipeHeadS + "00"

8-28 (10/01)

Chapter 8
Multiple Ingredient Formulation (Manual Batching)

InLoop% = 1
While InLoop% = 1
FetchFrom Recipes
IfTableError 6 Then
REM ' End of Recipe. Stop checking inventory and Materials
InLoop% =0
ELSE

FetchFrom Materials
IfTableError 6 Then
REM ' Material doesn't exist. Abort Recipe.
Message$ = "-- "+MaterialIDS+" --"
Print "--No Such Mat.--" : Sleep 1000
Print Message$: Sleep 1000
InLoop% = 0 : AbortRecipe% = 1
Elself Inventory# < Amount# Then
REM ' Not enough material. Abort Recipe.
Message$ = "-- "+MaterialIDS+" --"
Print "-Low Invenfory-" : Sleep 1000
Print Message$: Sleep 1000
InLoop% = 0 : AbortRecipe% = 1
ENDIF
GOSUB Gef_Next_Ing
ENDIF
Wend
RETURN

Adjust_Inventory:
FetchFrom Materials
Inventory# = Inventory# - Delivered#
StoreTo Materials

RETURN

Reports:
MENUSELS = "Material_Report"
WHILE RUN% =1
INPUT "AAMaterial_Report,Recipe_Report, Exit_Reports"; MENUSELS
IF MENUSELS = "Material_Report" Then Gosub Material_Report
IF MENUSELS = "Recipe_Report" Then Gosub Recipe_Report
IF MENUSELS = "Exit_Reports" THEN RUN% = 0
WEND
RUN% =1
MENUSELS = "Reports"
RETURN

Material_Report:
REM ' Prints the names and inventories of all materials in material file
Print "Printing..."
LPRINT " !
LPRINT "I";TAB(6),"Materials Report"; TAB(30);"l"
LPRINT "I";TAB(4),DATES; TAB(18);TIMES; TAB(30);"I"
LPRINT " !
LPRINT "I";TAB(5);"ID"; TAB(15),"Inventory", TAB(30),"I"
LPRINT " !
OPEN MATERIALFILES FOR RANDOM AS #1 LEN = 18
FIELD #1,10 as MateriallDz$,8 as Inventory$
INDEXED #1,MateriallDz$S
%=1

(10/01) 8-29

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

While EOF(1) =0
GET #1,i%
1%=i%+1
Inventory#=cvd(InventoryS)
LPRINT TAB(5); MateriallDz$; TAB(16);Inventory#
Wend
LPRINT * "
CLOSE #1
RETURN

Recipe_Report:
REM ' Prints the composition of all recipes in the recipe file
Print "Printing..."
LPRINT " "
LPRINT "I";TAB(6);"Recipe Report';TAB(22);DATES; TAB(33); TIMES; TAB(50);""
LPRINT " "
LPRINT "I";TAB(3);"Recipe"; TAB(14);"Material

ID";TAB(28),"Scale"; TAB(35);"Amount"; TAB(46),"Tol.I"
LPRINT " !
OPEN RECIPEFILES FOR RANDOM AS #2 LEN = 39
FIELD #2,12 as RecipelDzS, 10 as MateriallDzS, 1 as ScalelDzS$,8 as Amount$,8 as

Tolerance$
INDEXED #2,RecipelDz$
%=1
While EOF(2) = 0
Get #2,i%

KeyL% = INSTR(RecipelDzS$,"00") - 1
CurrHead$ = LEFTS(RecipelDzS$, KeyL%)
LPrint " ";CurrHeads;":"
ThisRecipe% = 1
While EOF(2) = 0 AND ThisRecipe% = 1
Get #2,i%
Amount#=cvd(Amount$):Tolerance#=cvd(Tolerance$)
ThisHead$ = LEFTS(RecipelDz$, KeyL%)
IF ThisHead$ = CurrHead$ Then
LPRINT
TAB(14);MateriallDzS;TAB(30);ScalelDzS; TAB(36);Amount#; TAB(47); Tolerance#
1%=1%+1
ELSE
ThisRecipe%=0
ENDIF
Wend
\Wend
LPRINT " "
Close #2
RETURN

Get_Next_Ing:
REM ' Determines value of RecipelDS, the next ingredient in a recipe
Tracker% = Tracker% + 1
Temp$S = STRS(Tracker%)
Temp$ = LTRIMS(Temp$)
IF LEN(Temp$)<2 THEN Temp$ = "0"+Temp$
RecipelDS = RecipeHeadS+Temp$S
Return

Get_Material_Info:
REM ' This routine collects information about an ingredient in a recipe.
REM ' This information includes Name, Scale, Amount and Tolerance.
Temp% = Done%
Menu$ = "AMat.= A"+MaterialString$

8-30 (10/01)

Chapter 8
Multiple Ingredient Formulation (Manual Batching)
INPUT Menu$;MateriallD$S
INPUT "AScale AA,B";ScalelD$
Done% =0
While Done%=0
INPUT "AAmount: A###### ##", Amount#
[f Amount# = O Then
Print "-Invalid Amount-" : Sleep 1000
ELSE
Done%=1
Endif
Wend
Done%=0
While Done%=0
INPUT "ATolerance: A#### . #4#" Tolerance#
If Tolerance# = O Then
Print "--Invalid Tol.--" : Sleep 1000
ELSE
Done%=1
Endif
Wend
Done% = Temp%
RETURN

Fill_Material_Array:
REM ' Creates a list of materials seperafed by commas in MaterialString$
REM ' This list is used to provide users with a list to choose from
OPEN MATERIALFILES FOR RANDOM AS #1 LEN = 18
FIELD #1,10 as MateriallDz$,8 as Inventory$
%=1
MaterialCount% = O : MaterialString$ =""
WHILE EOF(1)=0
GET #1
TempString$S = RTRIMS(MateriallDzS)
IF TempString$ <> "" Then
MaterialString$ = MaterialString$ + TempString$ +","
% = i1%+1
MaterialCount% = MaterialCount% + 1
Endlf
WEND
CLOSE #1
IF MaterialString$ = "* THEN
MaterialString$ = "-EMPTY-"
ELSE
REM ‘remove extra comma
i% = LEN(MaterialString$) - 1
MaterialString$ = LeftS(MaterialString$,i%)
ENDIF
RETURN

Fill_Recipe_Array:
REM ' Creates a list of recipes seperated by commas in RecipeString$
REM ' This list is used to provide users with a list to choose from
OPEN RECIPEFILES FOR RANDOM AS #2 LEN = 39
field #2,12 as RecipelDzS, 10 as MateriallDzS$, 1 as ScalelDz$,8 as Amount$,8 as
Tolerance$

RecipeCount% = O : RecipeString$ =""
WHILE EOF(2) =0

GET #2

TempSiring$S = RTRIMS(RecipelDzS)

IF TempString$ <> "" Then

IF RIGHTS(TempString$,2) = "00" THEN

(10/01) 8-31

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

size% = LEN(TempString$) - 2

TempString$S = LEFTS(TempString$, size%)
RecipeString$ = RecipeString$ + TempString$ +","
RecipeCount% = RecipeCount% + 1

Endif
EndlIf
WEND
CLOSE #2
i% = LEN(RecipeString$)
Ifi% = O THEN
RecipeString$ = "-EMPTY-"
ELSE
i% = i%-1
RecipeString$ = LeftS(RecipeString$,i%) ‘remove extra comma
ENDIF
RETURN

Parts Counting

8-32 (10/01)

This example demonstrates how you can access the fine gross, net, and tare weights in
shared data. This application is particularly useful for parts counting. It gives the highest
internal resolufion of the weights in double floating point format. The applicable fields
are:

o Fine Gross Weight /wt117
o Fine Nef Weight /w118
o Fine Tare Weight /ws104

The following code executes the parts counting application.

5 DEFSHR Discrefeln,p_100

10 DEFSHR TareA,t_690

20 DEFSHR TareAerr,s_290

30 DEFSHR DiscreteOut,p_503

40 DEFSHR ClearTareA,t_691

50 DEFSHR MotionA,s_200

55 DEFSHR NetWt,wt118

56 DEFSHR GrossWt,wt117

57 DEFSHR TareWt,ws104

60 PRINT "Place Container"

70 IF Discreteln=0 THEN GOTO 70
75 PRINT "Taring Container"

80 SLEEP 3000

90 TareA=1

100 IF TareA=1 THEN GOTO 100
110 IF TareAerr=0 THEN GOTO 160
120 PRINT "Tare Failed"

130 SLEEP 1000

150 GOTO 90

160 PRINT "Place 10 Parts"

170 IF Discreteln=0 THEN GOTO 170
180 PRINT "Weighing Sample"

190 IF MotionA=1 THEN GOTO 190
200 sampleWt#=NetW#/10.0

205 LPRINT "gross weight=",GrossWt;" tare weight=";TareWt
206 LPRINT "nef weight=";NetWt;" piece weight=";sampleWt#

210 SLEEP 1000

220 PRINT "Place All Parts"

230 IF Discreteln=0 THEN GOTO 230
240 PRINT "Weighing Parts"

250 IF MotfionA=1 THEN GOTO 250
260 parts%=cint(NetWi/sampleWi#)
265 LPRINT "fotal parts weight=";NetWt;" number parts=";parts%
266 LPRINT ""

270 SLEEP 1000

280 PRINT "Num Parts=";parts%
290 SLEEP 3000

300 IF NetWt > 0.0 THEN GOTO 300
310 PRINT "Completed"

320 SLEEP 3000

330 ClearTareA=1

340 IF ClearTareA=1 GOTO 340

350 GOTO 60

Chapter 8
Parts Counting

(10/01) 8-33

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

Printer Templates

8-34 (10/01)

You can read and write printer femplates from JagBASIC. This sample program
demonstrafes reading femplates from JAGXTREME Shared Data and saving them in a
sequential file.

1 REM This is a sample program for reading templafes from JagBASIC
2 REM and saving it in a files called femplat1.daf thru templatb.dat.
3 REM Dimension an array of sirings large enough to hold the femplate,
4 REM and "DEFSHR" the first element of the array to the femplate.
5 REM The maximum siring size in JagBASIC is 80 byfes.

6 REM The maximum femplafe size is 400 bytes.

7 REM Reading of shared data is done when you access the first

8 REM element, so read the first element first.

100 DIM go%(5),7$(6)

120 g0%(1)=300:90%(2)=400:90%(3)=500:90%(4)=600:90%(5)=700
130 INPUT "ASave Templafe? ~1,2,3,4,5",¢S

140 i%=asc(cS)-48

150 swifchsub go%(i%)

160 FOR i%=110 6

170 IF len(TS(i%))<>0 THEN write #1,TS(i%)

180 NEXT i%

190 CLOSE #1

200 END

300 OPEN "TEMPLAT1.DAT" FOR OUTPUT AS#1

310 DEFSHR TS(1),PTPO1

320 RETURN

400 OPEN "TEMPLAT2.DAT" FOR OUTPUT AS#1

410 DEFSHR TS(1),PTP02

420 RETURN

500 OPEN "TEMPLAT3.DAT" FOR OUTPUT AS#1

510 DEFSHR TS(1),PTPO3

520 RETURN

600 OPEN "TEMPLAT4.DAT" FOR OUTPUT AS#1

610 DEFSHR TS(1),PTP04

620 RETURN

700 open "TEMPLAT5.DAT" FOR OUTPUT AS#1

710 DEFSHR TS(1),PTP05

720 refurn

In the JAGXTREME terminal, you can read and write printer femplafes from JagBASIC.
This sample program demonstrates loading printer templates from a sequential file and
writing them info JAGXTREME Shared Data.

1 REM This is a sample program for writing printer templates

2 REM that are saved a files called templat1.dat thru tempat6.dat.

3 REM Dimension an array of sfrings large enough to hold the template,

4 REM and "DEFSHR" the first element of the array to the femplate.

5 REM The maximum siring size in JagBASIC is 80 byfes.

6 REM The maximum femplafe size is 400 bytes.

7 REM Writing of shared data templates is done when you access the first

8 REM element, so write the first element last.

100 DIM go%(5),TS(6),bufS(6)

120 go%(1)=300:g0%(2)=400:90%(3)=500:90%(4)=600:90%(5)=700

130 INPUT "ALoad Template? A1,2,3,4,5",¢S

140 i%=ASCc(cS)-48

150 SWITCHSUB g0%(i%)

Chapter 8
Printer Templates
160 FOR i%=1 10 6
170 IF NOT EOF(1) THEN INPUT#1,BUFS(i%):last%=i%
180 NEXT i%
190 FOR i%=last% to 1 step -1
200 TS(i%)=bufS(1%)
210 NEXT i%
220 CLOSE #1
230 END
300 OPEN "TEMPLAT1.DAT" FOR INPUT AS #1
310 DEFSHR TS(1),PTPO1
320 RETURN
400 open "TEMPLAT2.DAT" FOR INPUT AS #1
410 DEFSHR TS(1),PTP02
420 RETURN
500 OPEN "TEMPLAT3.DAT" FOR INPUT AS #1
510 DEFSHR T$(1),PTPO3
520 RETURN
600 OPEN "TEMPLAT4.DAT" FOR INPUT AS #1
610 DEFSHR TS(1),PTP04
620 RETURN
700 OPEN "TEMPLAT5.DAT" FOR INPUT AS #1
710 DEFSHR TS(1),PTP05
720 RETURN

You can read and write prinfer templates from JagBASIC. This sample program
demonstrafes creating a printer femplates in JagBASIC and writing it fo JAGXTREME
Shared Data.

1 REM This is a sample program for creating a printer femplate.
2 REM
10 REM These are some template format samples:
11 REM
12 REM /D=40
13REM | |
14 REM | +--> Repeat Occurrences
15 REM +-----> Character Value
16 REM
17 REM will print...
18 REM
19 REM /n3 will print... three LF/CR characters.
20 REM
21 REM /EO signifies the end of the template.
20 REM
22 REM /jag19Y/L15/!
23 REM \ /11
24 REM [1
25REM | | +-> Max Length
26 REM | |
27 REM | +--> Justify (R)ight
I
I

28 REM (L)eft or (C)enter

29 REM

30 REM 4----me- > Field Path Name

31 REM

32 REM /wit101 will print...

33 REM /wi101 field in default format, left justified, default length.
34 REM

(10/01) 8-35

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

35 REM /wi201/R will print...

36 REM /wi201 field right justified, default length.
37 REM

38 REM /wit202/C040 will print...

39 REM /wi202 field centered in a 40 byte area.
40 REM

100 DIM yS(5)

120 DEFSHR yS(1),ptp04

130 yS(3)="/wt103 /ws109!/n1/Net Weight: /wt102 /wt103!/n3//EQ"
140 y$(2)="Gross Weight: /wt101 /wt103!/n1/Tare Weight: /Aws102 !"
150 yS(1)="/jag19Y/L15/\/jag20!/L15///cs118!/R10//n1//D=40//n1/"

160 LPRINT "done"

JOG Example

8-36 (10/01)

This is a program for using Jog Setpoints. Jog setpoints are based on time rather than
weight. They are typically used when the flow of material is very fast compared to the
amount of material that needs to be weighed. For example, they can be used af the end
of an order fo add a small amount of material fo bring an order into its weight tolerance.

REM DEFSHR's

REM Define the jog fable.

REM You can have up fo 10 jog weights and corresponding
REM jog times in the Jog table. The jog setpoint

REM interpolates between the next higher and next lower
REM jog weight to determine a specific jog time.

REM The Jog Table is in Shared Data Variables clvO1-clv20.
REM The values are floating point, stored in string format.
REM The Jog Weights are in clvO1-clv10 in ascending order.
REM You can prematurely end the fable with a "0" entry.
REM The corresponding jog times are in clv11-clv20.
DIM jogWtS(10)

DIM jogTmS(10)

DEFSHR jogWtS(1),clvO1

DEFSHR jogW1$(2),clv02

DEFSHR jogW1S(3),cIv03

DEFSHR jogWitS(4),clv04

DEFSHR jogWtS(5),clvO5

DEFSHR jogW{S(6),clv06

DEFSHR jogWtS(7),clv07

DEFSHR jogW1S$(8),clv08

DEFSHR jogW1$(9),clv09

DEFSHR jogWiS(10),clv10

DEFSHR jogTmS(1),clv11

DEFSHR jogTmS(2),clv12

DEFSHR jogTmS(3),clv13

DEFSHR jogTmS(4),clv14

DEFSHR jogTmS$(5),clv15

DEFSHR jogTmS(6),clv16

DEFSHR jogTmS(7),clv17

DEFSHR jogTm$(8),clv18

DEFSHR jogTm$(9),clv19

DEFSHR jogTm$(10),clv20

Chapter 8
JOG Example

REM gate discrete inputs
DEFSHR FillGateOpened%,p_100
DEFSHR DischargeOpened%,p_103

REM discrete outputs to gates
DEFSHR OpenfFill%,p_501
DEFSHR OpenDischarge%,p_503

REM scale DEFSHR's
DEFSHR ScaleWeight#,wt110
DEFSHR ScaleMotion%,s_200

REM jog setpoint DEFSHR's
DEFSHR spen%,sp102
DEFSHR sptar%,sp103
DEFSHR coin#,sp105
DEFSHR lafch%,sp188
DEFSHR setsp%,t_698

REM Initialization Logic
REM close the gates
spen%=0:setsp%=1
OpenFill%=0:0penDischarge%=0

REM initialize ladder logic

REM "t_61c" starts the sefpoint jog timer.

REM Move the "fill gafe opened" input to "t_61c".

REM Move the "setpoint feeding output" fo "open fill gate".
NEWLADDER

RUNGMOV p_100,i_61¢

RUNGMOV s_210,p_500

REM Main Menu

MainMenu:

mS="Learn"

input "AMenu” Learn,Jog, Exit',m$

IF mS="Learn" THEN GOSUB LearnMode
IF mS="Jog" THEN GOSUB JogMode

IF mS="Exit" THEN End

GOTO MainMenu

REM Setting up a Learn Setpoint

REM Set the jog time in the coincidence value for the setpoint.
REM You can determine the weight associated with the jog weight
REM by reading the gross weight before and after the setpoint.
REM The Learn sefpoint is latched so you need to

REM reset the latch before starting the setpoint.

LearnSetpoint:

spen%=1

(10/01) 8-37

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

8-38 (10/01)

sptar%="L"
coin#=JogTime#
latch%=0
setsp%=1
RETRUN

REM Sefting up a Jog Setpoint

REM Set the jog weight in the coincidence value for the setpoint.
REM The jog setfpoint logic uses the Jog Tables to determine
REM the amount of time to hold its feeding output open.
REM The Jog setpoint is lafched so you need to

REM reset the latch before starting the setpoint.

JogSetpoint:

spen%=1

sptar%="J"

coin#=JogWeight#

latch%=0

setspP%=1

return

REM Learn Mode Logic

LearnMode:

MinJogTime%=100

input "AMin Jog ms.A###HE"; MinJogTime%
MaxJogTime%=3000

inpuf "AMax Jog ms.A####";MaxJogTime%

REM set jog table times
Timelncrement%=(MaxJogTime%-MinJogTime%)/9
jogTmS(1)="100":jogTmS(10)=strS(MaxJogTime%)

for TablePos%=2 to 9
jogTmS(TablePos%)=strS(val(jogTmS(TablePos%- 1))+Timelncrement%)
next TablePos%

REM build jog table weights

for TablePos%=1 to 10

CheckReady:

mS="Yes"

n$="AJog "+strS(TablePos%)+"~ Yes,No, Exit"
input n$;m$

IF mS="No" THEN GOTO CheckReady

IF mS="Exit" THEN End

GOSUB WaitFillGateClosed: GOSUB WaitDischargeClosed:GOSUB WaitMotion
TareWeight#=ScaleWeight#
JogTime#=val(jogTmS(TablePos%))

GOSUB LearnSetpoint

REM wait until setpoint logic opens then closes fill gate
GOSUB WaitFillcateOpened:GOSUB WaitFillGateClosed
REM wait for scale motion to settle

print "settling"

SLEEP 5000:G0SUB WaitMotion

Chapter 8
JOG Example
REM set jog table weights
LearnedWi#=ScaleWeight#-TareWeight#
GOSUB CheckDischargeScale
jogWiS(TablePos%)=strS(LearnedWt#)
next TablePos%

REM print jog fable

FOR TablePos%% =110 10

LPRINT jogTmS(TablePos%),jogWiS(TablePos%)
NEXTTablePos%%

GOTO MainMenu

REM Jog Mode Logic

JogMode:

JogWeight#=0

input "A\Weight #####", JogWeight#

GOSUB WaitFillGateClosed: GOSUB WaitDischargeClosed:GOSUB WaitMotion
TareWeight#=ScaleWeight#

GOSUB JogSetpoint

REM wait until setpoint logic opens then closes fill gate
GOSUB WaitFillcateOpened:GOSUB WaitFillGateClosed
REM wait for scale motion fo seftle

print "settling"

SLEEP 5000:G0SUB WaitMotion

print "Wt =" + strS(ScaleWeight#-TareWeight#)
WaitJogModeKey:

mS=inkeyS:IF mS="" THEN GOTO WaitJogModeKey
GOSUB CheckDischargeScale

return

REM Gate Open/Close Routines
WaitFillGateOpened:

IF FillGateOpened%=0 THEN GOTO WaitFillGateOpened
return

WaitFillGateClosed:
IF FillGateOpened%=1 THEN print "Jogging":GOTO WaitFillGateClosed
return

CheckDischargeScale:

mS="Yes"

input "ADischarge” Yes,No";mS

IF mS="No" THEN return

OpenDischarge%=1

print "Discharging"

WaitScaleEmpty:

IF ScaleWeight#>20.0 THEN GOTO WaitScaleEmpty
OpenDischarge%=0

(10/01) 8-39

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

WaitDischargeClosed:
IF DischargeOpened%=1 THEN print "Closing Discharge":GOTO WaitDischargeClosed
return

REM Motion Routine

WaitMotion:

IF ScaleMotion%=1 THEN print "Motion":GOTO WaitMotion
RETURN

JagBASIC SMTP Client
Program

8-40 (10/01)

The example program below illustrates how a JAGXTREME terminal can send email
using Simple Mail Transfer Profocol (SMTP). In this example, the terminal acts as the
client. It establishes a connection with the SMTP server, sends an email message,
terminates the connection with the server, and then loops back to the beginning of the
program. A server utilizing SMTP must be present on the network for email to be sent
and received. The IP address on the third line below "CONNT:" must be replaced with
the IP address of the machine on which the SMTP server resides. The JagBASIC
preprocessor must be used to prepare the program to run on the terminal.

REM Send Email using SMTP
crlf§ = CHRS(13) + CHRS(10)
IfS = CHRS(10)

cr$ = CHRS(13)

REM Establish Connection
CONNZ2:

sock%=socket()

IF sock%=0 THEN print "No Socket Free":SLEEP 2000: GOTO CONN2
CONNT:

stat% = sockopt(sock%,-1)

REM connect must be called with server's IP address

stat% = connect(sock%,"146.207.104.023",25)

IF stat% = -1 THEN print "connecting":sleep200:GOTO CONN1

IF stat% = O THEN print "trying connect":stat%=sockcls(sock%):SLEEP

2000:G0TO CONN2
PRINT "connect success":SLEEP 200

REM Wait for Service Ready (220)

begin_time# = TIMER(Q

cmd%=0

WHILE cmd% <> 1 and TIMERQ)-begin_fime# < 2.0
revstrS=RECVS (sock%, 160)
GOSUB INTERP_CMD

WEND

IF cmd% <> 1 THEN GOTO TIME_EXP

PRINT "Service Ready"

REM Send HELO

Chapter 8
JagBASIC SMTP Client Program
sndstr$ = "HELO terminal"+crlfS:len%=Ilen(sndstr$)
stat%=send(sock %, sndstrS)
IF stat%<>len% THEN PRINT "send failed": SLEEP 2000: GOTO ENDPRG

REM Wait for OK
GOSUB WAIT_FOR_OK

REM Send MAIL From:.......
sndstrS = "MAIL From:<jaguar@mtf.com>"+crlfS:len%=len(sndstr$)
stat%=send(sock%,sndstrS)

REM Wait for OK
GOSUB WAIT_FOR_OK

REM Send RCPT To..............
sndstrS = "RCPT To:<ScaleAdmin@mt.com>"+crlfS:len%=len(sndstrS)
stat%=send(sock%,sndstrS)

REM Wait for OK
GOSUB WAIT_FOR_OK

REM Send DATA
sndstrS = "DATA"+crlfS:len%=len(sndstrS)
stat%=send(sock%,sndstrS)

REM Wait for Start Mail Input (354)
cmd%=0
WHILE cmd% <> 3
revsirS=RECVS(sock%, 160)
GOSUB INTERP_CMD
WEND
PRINT "Begin Mail frans"

REM Send Message Body
sndstr$ = "Subject: Automated Email Alert!"+crlf$
sndstrS = sndstr$ + "Mettler Toledo JAGXTREME"+crlf$
len%=len(sndstrS)
stat%=send(sock%,sndstrS)

sndstrS = "This is a test."+crlfS+"Hello World!"+crlfS
len%=len(sndstrS)
stat%=send(sock%,sndstrS)

REM Send <crlf>.<crlf> to ferminate message.
sndstrS = crlfS+"."+crifS
len%=len(sndstrS)
stat%=send(sock%, sndstrS)

REM Wait for OK
GOSUB WAIT_FOR_OK

REM Send QUIT to terminate connection
sndstrS = "QUIT"+crlfS:len%=len(sndstrS)
stat%=send(sock%, sndstrS)

REM Wait for Goodbye (221)

(10/01) 8-41

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

VISUAL BASIC SMTP Server
Program

8-42 (10/01)

cmd%=0

WHILE cmd% <> 4
revstrS=RECVS(sock%, 160)
GOSUB INTERP_CMD

WEND

PRINT "Goodbye received":SLEEP 500

GOTO ENDPRG

INTERP_CMD:
cmd%=0
a$ = LEFTS(revstrS, 3)
IF $="220" THEN cmd% = 1 : REM Service Ready
IF a$="250" THEN cmd% = 2 : REM OK
IF a$="354" THEN cmd% = 3 : REM Start Mail Input
IF a$S="221" THEN cmd% = 4 : REM Closing Connection
IF a$ = CHRS(13) THEN cmd% = 8
IF a$ = CHRS(10) THEN cmd% = 9
return

WAIT_FOR_OK:

RETRY:
revsirS=RECVS (sock%, 160)
IF rcvstrS="" THEN GOTO RETRY
GOSUB INTERP_CMD
IF cmd%<>2 THEN PRINT "No OK received";cmd%:SLEEP 2000:print rcvstrS
IF cmd%<>2 THEN SLEEP 2000:GOTO ENDPRG
return

TIME_EXP:
print “connect. expired"
SLEEP 500

ENDPRG:
print "closing socket"
SLEEP 500
stat%=sockcls(sock%)
SLEEP 10000 : REM wait 10 seconds before looping back
GOTO CONN2 : REM loop back and send message again

END

An SMTP server program can be writfen if one does not exist. The sample program
below is written in Microsoft Visual Basic 6.0 and illustrates a simple server program.
This server program can receive email messages from devices using SMTP and store
them as text files in the subdirectory "\mail" off the installation directory. The messages
are stored with the default name "MAIL###.TXT", where the #'s are replaced with
numbers. The contenfs of a message can be viewed by clicking ifs name in the file list
box. The selected message can be printed fo the default printer or deleted from the
directory by clicking the "Print" or "Delete" buftons respectively. Following is a listing of
the source code and a property fable that can be used to generafe the sample SMTP
server application.

Chapter 8
JagBASIC SMTP Client Program

Private intMax As Long

Dim PATH As String

Const MAXMSG = 150

Dim PathandName As String
Dim messageTxt(500) As String
Dim CRLF As String

Function FileExists(p As String) As Long
If Dir(p) <> "" Then
FileExists = 1 ' Return 1 indicating file exists.
Else
FileExists =0 ' Return O indicafing file does not exist.
End If
End Function

Private Sub cmdDelete_Click()
Dim Message As String
Dim ButtonsAndicons As Integer
Dim Title As String
Dim Response As Integer

‘Delefe message if one has been selected

If PathandName <> "" Then
Message = "Delete EMail Message?"
ButfonsAndlicons = vbYesNo + vbQuestion
Title = "Delete Message?"

Response = MsgBox(Message, ButtonsAndicons, Title)

If Response = vbYes Then
FileThere = FileExists(PathandName) 'Check that file exists
If FileThere Then
Kill PathandName 'Delete the file
txtMailText. Text = " ‘clear fext in message box
PathandName = "
End If
flstFileBox.Refresh 'update the file list box
End If

End If
End Sub

Private Sub cmdExit_Click()
Beep
End

End Sub

Private Sub emdPrint_Click()
'Print the text box's confents fo the default prinfer.
Printer.Font.Name = "Courier"
Prinfer.Font.Size = 12
Printer.Print txtMailText. Text
Printer.EndDoc
End Sub

(10/01) 8-43

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

Private Sub flstFileBox_Click()
" When the user clicks on a message displayed in the file list box,
" display the text of that message on the screen.
If flstFileBox.FileName <> "" Then
PathandName = PATH + flstFileBox.FileName
FileThere = FileExists(PathandName) 'Check if file exists

If FileThere Then
FileNum = FreeFile

'get date and fime file was received/modified
FileLastModified = CStr(FileDateTime(PathandName))
Open PathandName For Input As FileNum
txtMailText.Text =" --" + flstFileBox.FileName + " *
txtMailText. Text =txiMailText. Text + FileLastModified + "--" + CRLF
txtMailText. Text = txtMailText.Text + Input(LOF(FileNum), FileNum)
Close FileNum
Else
‘The file did not exist.
‘Update the list of files and clear the text box.
flstFileBox.Refresh
ixiMailText. Text = "
End If
End If
End Sub

Private Sub Form_Load()
On Error Resume Next
MKDir "MAIL"

PATH = CurDir + "\MAIL\"

flstFileBox.PATH = PATH

PathandName = "

intMax = 0

tcpServer(0).LocalPort = 25

tcpServer(0).Listen

CRLF = Chr(13) + Chr(10)
End Sub

Private Sub fcpServer_Close(Index As Integer)
tcpServer(Index).Close
End Sub

Private Sub tcpServer_ConnectionRequest _
(Index As Infeger, ByVal requestiD As Long)
If Index = O And flstFileBox.ListCount < MAXMSG Then
intMax = intMax + 1
Load tcpServer(intMax)
tcpServer(intMax).LocalPort = 25
tcpServer(intMax).Accept requestiD
tcpServer(intMax).SendData "220 s-jcr1.sjcr1.com” + CRLF
End If
End Sub

Private Sub fcpServer_DataArrival(Index As Integer, ByVal byfesTotal As Long)
'Look for SMTP commands. If one is present, begin dialog and save
'received information.

8-44 (10/01)

Chapter 8
JagBASIC SMTP Client Program
Dim strDatfa As String
fcpServer(Index).GetData strData
tmpstr = Left(strData, 4)
Length = Len(strData)

Select Case tmpstr
Case "HELO"
messageTxt(Index)="SENDER DOMAIN: "+ Mid(strData,6,Length - 5)
fcpServer(Index).SendData "250 s-jcr1.sjcr1.com" + CRLF
Case "MAIL"
messageTxt(Index) = messageTxi(Index) + "FROM: " + Mid(sirDafa, 11,
Length - 12) + " " + fcpServer(Index).RemoteHostlP + CRLF
strSend = "250 OK" + CRLF
tcpServer(Index).SendData (strSend)
Case "RCPT"
messageTxi(Index)=messageTxi(Index)+"T0: "+Mid(strData,9,Length-8)
strSend = "250 OK" + CRLF
tcpServer(Index).SendData (strSend)
Case "DATA"
strSend = "354 Start mail input" + CRLF
tcpServer(Index).SendData (strSend)
Case "QUIT"
strSend = "221 Closing Connection" + CRLF
tcpServer(Index).SendData (strSend)
If flstFileBox.ListCount = MAXMSG Then
WMessage ="Mailbox full. Delefe old messages to make room."
BuffonsAndicons = vbOKOnly
Beep
junk = MsgBox(WMessage, ButtonsAndicons, "Mailbox Fulll")
End If
Case Else
position = InStr(strData, CRLF + "." + CRLF)
If position <> 0 Then
messageTxf(Index)=messageTxt(Index)+Mid(strData, 1,position-1)
strSend = "250 OK" + CRLF
tcpServer(Index).SendData (strSend)
strSmall = Mid(strData, 1, position - 1)

'Received complefe message, search for next available
file name and save message.
msgcounter = 0: foundname = 0
Do While msgcounter < MAXMSG
msgcountfer = msgcounter + 1
numstr = CStr(msgcounter)
numsir = Format(numsitr, "000")
mailname = "MAIL" + numstr + ".TXT"
inlist = 0: countit=0
Do While countit < flstFileBox.ListCount
If mailname = flstFileBox.List(countit) Then
inlist =1
Exit Do
End If
countit = countif + 1
Loop
If inlist = O Then
foundname =1

(10/01) 8-45

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

8-46 (10/01)

Exit Do

End If

Loop

If foundname = 1 Then
mailname = PATH + mailname
FileNum = FreeFile
Open mailname For Output As FileNum
Write #FileNum, messageTxi(Index)
Close FileNum

End If

flstFileBox.Refresh

Else

messageTxi(Index) = messageTxt(Index) + sirData

End If
End Select

End Sub

Object Property Setting

Form Name frmSample
Caption Sample SMTP Server

Command Button Name cmdDelete
Caption D&elete

Command Button Name cmdPrint
Caption &Print

Command Button Name cmdExit
Caption E&xit

File List Box Name flstFileBox
Pattern * Ixt

Winsock Name tcpServer
Protocol SckTCPProt
Index 0

Text Box Name txtMailText
ScrollBars Both
Text (empty)
MultiLine True

Common Errors

Error Codes

Chapter 9: Error Codes and Messages
Common Errors

Error Codes and Messages

This section discusses error messages that may be output fo the LPRINT device during
debugging or program execution. The JAGXTREME terminal lower display will show the
Error Number Code and Line Number, with the error message being output fo the LPRINT
device (a printer or a PC running a communication or ferminal emulation program). For
example, the error Unknown Command would show up on the JAGXTREME terminal
display as: £26 L 71070. The message output fo the LPRINT device should show as:

ERROR in line O: Unknown command.

Some common errors and troubleshooting tips are as follows:

¢ For Upload/Download problems, set the JAGXTREME terminal in Diagnostic Test
mode. This tests the fransmit and receive lines from the PC fo the JAGXTREME
terminal.

o |f a file downloads OK to the JAGXTREME terminal, but will not load (E2LO error),
check for blank lines and no line numbers.

The following is a listing of possible error codes and messages in JagBASIC

Error Code Error Message Description Problem Cause Remedy
0 File open failed JagBASIC JagBASIC attempted to open | Correct the JagBASIC program.
programming error. | a nonexistent RAMDISK file
or serial communications
device.
1 Memotry find fail | JagBASIC JagBASIC exceeded the Reduce lines. Eliminate
programming error. | memory limits of the system. | unnecessary spaces in program.
Reduce variables. Reduce size of
arrays. When chaining JagBASIC
programs, chain in the largest
program first to reduce memory
fragmentation.
2 Line # invalid JagBASIC JagBASIC contains a line Correct the JagBASIC program.
programming error. | number greater than 30000
or is a duplicate of an
existing line number.

(10/01) 9-1

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

Error Code Error Message Description Problem Cause Remedy

3 Resource in use | JagBASIC JagBASIC tried to access a Correct JagBASIC application. To

programming error. | system resource in use by share remote serial ports
another JAGXTREME terminal | between multiple JagBASIC
task. JagBASIC cannot open | applications, develop sharing
a serial port that has been logic that checks for this specific
assigned to a serial port error code.
connection in setup. When
two or more JagBASIC
applications share a remote
serial port, only one can have
the port open at a time.

4 LOAD:no Operator error. The LOAD command does Correct the command.

filename not contain a file name.

5 No line number | JagBASIC The program line does not Correct the JagBASIC program.
programming error. | have a line number.

6 Record not found | JagBASIC A record specified in a GET There should be an ON ERROR
programming error. | statement for an indexed statement in the JagBASIC

sequential file could not be | program to handle these
found in the file. potential situations.
7 RETURN no JagBASIC RETURN statement is present | Correct the JagBASIC program.
GOSuUB programming error. | without required GOSUB.

8 Incomplete line | JagBASIC JagBASIC program contains | Correct the JagBASIC program.
programming error. | a line that does not have the

full syntax required for a line.

9 ON no GOSUB JagBASIC ON statement is present Correct the JagBASIC program.
programming error. | without required GOSUB.

10 Value out range | JagBASIC The JagBASIC statement is | Correct the JagBASIC program.
programming error. | referring to a value out of the

range of acceptable values.

11 Syntax error JagBASIC The JagBASIC program has a | Correct the JagBASIC program.
programming error. | syntax error.

12 Invalid device # | JagBASIC The JagBASIC program is Correct the JagBASIC program.
programming error. | referencing a device # that is

not open.

13 Device error JagBASIC The JagBASIC program has | Correct JagBASIC program.
programming error. | referred to an illegal device

or a device that is not open.

14 Command error | An error occurred in | You tried to access a file that | Use the DIR command from the
trying fo access a does not exist or the file JagBASIC Interpreter to verify the
file from the system has been corrupted. | directory of the RAMDISK. If the
RAMDISK. file system has been corrupted,

re-initialize it from the JagBASIC
setup menus and rebuild it from
the backup files you are
maintaining on a PC.

9-2 (10/01)

Chapter 9: Error Codes and Messages

Error Codes

Error Code Error Message Description Problem Cause Remedy
14 Command error | An error occurred in | You tried to access a file that | Use the DIR command from the
frying to access a does not exist or the file JagBASIC Interpreter to verify the
file from the system has been corrupted. | directory of the RAMDISK. If the
RAMDISK. file system has been corrupted,
re-initialize it from the JagBASIC
setup menus and rebuild it from
the backup files you are
maintaining on a PC.
15 Chain Context JagBASIC A chain statement inside a Chain only from top level of
programming error. | subroutine, for-next, while JagBASIC program.
loop, or if statement.
16 Event def error JagBASIC Programming error in Correct the JagBASIC program.
programming error. | defining an event.
17 Type mismatch JagBASIC JagBASIC statement is using | Correct the JagBASIC program.
programming error. | an invalid data type or is
relating two incompatible
data types.
18 DIM not array JagBASIC JagBASIC program has Correct the JagBASIC program.
programming error. | attempted to dimension a
variable that is not an array.
19 Out of data JagBASIC JagBASIC program has Correct the JagBASIC program.
programming error. | issued more READ
commands to initialize
system variables than data
specified in DATA
statements.
20 Overflow JagBASIC A JagBASIC program causes | Correct the JagBASIC program.
programming error. | an overflow error by
exceeding certain system
limits. The maximum size of
the GOSUB stack, the FOR-
NEXT stack, and the WHILE-
WEND stack is 9 entries
each. If you try to nest
subroutines more than 9
entries deep, you get an
overflow error. Overflow
errors can also be caused by
syntax errors.
21 NEXT without FOR | JagBASIC There is a NEXT statement Correct the JagBASIC program.
programming error. | without the required FOR
statement.
22 Undefined funct. | JagBASIC The JagBASIC statement is | Correct the JagBASIC program.

programming error.

referring to an undefined
function.

(10/01) 9-3

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

Error Code Error Message Description Problem Cause Remedy
23 Divide by zero JagBASIC JagBASIC program Correct the JagBASIC program.
programming error. | attempted to divide a number
by zero.
24 Can’t redim. var | JagBASIC Once a JagBASIC application | Correct JagBASIC program.
programming error. | has declared a variable or an
array, it cannot later be
redimensioned to a different
size array.
25 OPTION BASE- JagBASIC The JagBASIC program must | Correct the JagBASIC program.
>DIM programming error. | define the OPTION BASE
before dimensioning an
array.
26 lllegal Command | JagBASIC The JagBASIC program has | Correct the JagBASIC program.
programming error. | issued a command that is
not a legal command.
27 Too many JagBASIC JagBASIC arrays can have at | Correct the JagBASIC program.
dimens. programming error. | most three dimensions.
28 Invalid SD name | JagBASIC The JagBASIC program is Correct the JagBASIC program.
programming error. | referencing an invalid Shared
Data name.
29 Program too big | JagBASIC The program exceeds 300 For the first problem, separate
programming error. | text lines or 15 KB. the program into smaller files
program at the JAGXTREME | be chained fogether. When
terminal when the temporary | Chaining, always start execution
memory fragmentation.
For the second problem, save the
current program and re-load it.
This will cause a larger temporary
program buffer to be allocated.
30 Line too big JagBASIC A JagBASIC line is greater Correct the JagBASIC program.
programming error. | than 80 characters.
31 SD string > max. | JagBASIC JagBASIC can only access Correct the JagBASIC program.
programming error. | shared data fields whose
length is less than the
maximum JagBASIC string
size of 80 bytes.
32 No Remote JagBASIC The program is attempting to | To access a serial device, you
Access programming error. | access a device that is must remove all continuous
already in use by a serial output or input connections to
connection or by another the serial device in setup. To
JagBASIC program in the share a device among JagBASIC
JAGXTREME terminal cluster. | programs, you must setup a
scheme where only one program
has the device open at a time.
9-4 (10/01)

Chapter 10: ASCII/HEX Code Chart

10 ASCIVHEX Code Chart

Char. Dec. Hex. Char. Dec. Hex. Char. Dec. Hex. Char. Dec. Hex.
NUL 0 00 SP 32 20 @ 64 40) 96 60
SOH 1 01 ! 33 21 A 65 41 o 97 61
STX 2 02 " 34 22 B 66 42 b 98 62
ETX 3 03 # 35 23 C 67 43 c 99 63
EOT 4 04 S 36 24 D 68 44 d 100 64
ENQ 5 05 % 37 25 E 69 45 e 101 65
ACK 6 06 & 38 26 F 70 46 f 102 66
BEL 7 07 ' 39 27 G 71 47 g 103 67
BS 8 08 (40 28 H 72 48 h 104 68
HT 9 09) 41 29 I 73 49 [105 69
LF 10 0A * 42 2A J 74 4A i 106 6A
T 11 0B + 43 2B K 75 4B k 107 6B
FF 12 0C , 44 2C L 76 4C I 108 6C
CR 13 0D - 45 2D M 77 4D m 109 6D
SO 14 OE . 46 2E N 78 4E n 110 6E
Sl 15 OF / 47 2F 0 79 4F 0 111 6F
DLE 16 10 0 48 30 P 80 50 p 112 70
DC1 17 11 1 49 31 Q 81 51 q 113 71
DC2 18 12 2 50 32 R 82 52 r 114 72
DC3 19 13 3 51 33 S 83 53 S 115 73
DC4 20 14 4 52 34 T 84 b4 t 116 74
NAK 21 15 5 53 35 U 85 b5 u 117 75
SYN 22 16 6 b4 36 V 86 56 v 118 76
ETB 23 17 7 bb 37 W 87 57 w 119 77
CAN 24 18 8 56 38 X 88 58 X 120 78
EM 25 19 9 57 39 Y 89 59 y 121 79
SUB 26 1A : 58 3A Z 90 BA z 122 7A
ESC 27 1B ; 59 3B [91 5B { 123 7B
FS 28 1C < 60 3C \ 92 5C I 124 7C
GS 29 1D = 61 3D] 93 5D 1 125 7D
RS 30 1E > 62 3E A 94 bE ~ 126 7E
us 31 1F ? 63 3F _ 95 bF DEL 127 7F

(10-01) 10-1

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

NOTES

10-2 (10-01)

11

Chapter 11: Appendix 1

Appendix 1

JagBASIC Commands
This appendix provides a quick alphabetic reference fo all JagBASIC commands.
Command Usage Page
ABS() Returns the absolute value of a number. 5-30, 5-31
ACCEPT Allows JagBASIC application fo accept new connection requests that 5-97, 5-99
remote clients are initiating.
AND A logical operator in a decision statement which establishes two sets 5-20
of criteria to be met.
ASC() Returns the ASCII or extended code value for the first character in a 5-36, 5-37
sfring expression.
ATNQO Returns the arctangent of a specified numeric expression in radians. 5-30, 5-31
BEEP Sounds the beeper fone for the specified milliseconds. 5-45, 5-46
BREAK Stops execution of program at line number 5-3
CHAIN Dynamically loads another program file for execution and begins 5-20, 5-21
executing the program.
CHAINCALL Operates the same as a CHAIN command except that it remembers 5-20, 5-21
the currenf program name and line number of the program that is
initiating the chaining.
CHAINRET Operates the same as a CHAIN command except that is refurns 5-20, b-22
control from the chained program to the chaining program af the next
line after the CHAINCALL.
CHRS() Returns the single-character string corresponding to the specified 5-36, 5-37
ASCII code.
CINT Rounds a numeric expression to the closest integer. 5-30, 5-31
CKSUMS Generates a checksum and refurns as a string. 5-53
CLEAR Closes all files, releases file buffers, clears all common variables, sets 5-3, 5-4
numeric variables and arrays to zero and sets string variables to null.
CLKTICK Returns a double float number that is the number of clock ficks that 5-92
have occurred since the last power up of the ferminal.
CLOSE Closes a file or serial port. 5-53, b-54,
5-65, 5-66
CLREVENT Clears oufstanding event triggers. 5-80, 5-82
COMBITS Returns the state of the input modem signals on the COM3 serial port. 5-53, 5-b4,
5-82, b-86
COMMON Defines global variables that can be shared between chained 5-11, 5-12
programs.
CONNECT Initiates a TCP/IP connection to a remote host. 5-97, 5-99

(10/01) 11-1

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

11-2 (10/01)

Command Usage Page
CO0S() Returns the cosine of a specified angle expressed in radians. 5-30, 5-32
CRCS Generates CRC and refurns as a string. 5-563, 5-54
CSNG(Converts a numeric expression to a single-precision value. 5-30, 5-32
CVI, CVS, Convert siring variable types fo numeric variable types. 5-65, 5-67
CvD
DATA Specifies values to be read by READ statements. 5-11, 5-12
DATES Sefs or returns the JAGXTREME sysfem date. 5-92, 5-93
DEFSHR Allocates a shared data event. 5-80, 5-83
EVENT
DEFSHR Allows a program fo access the JAGXTREME terminal shared 5-11, 6-13

dafabase.
DELETE Deletes a specific program line or a range of lines. 5-3, 5-4
DELEVENT Deallocates an event. 5-80, 5-83
DELREC Delefes a record from the indexed sequential file. 5-65, 5-67
DIM Declares an array, where subscripts are the dimensions of the array. 5-11, 5-16
DIR Displays the RAMDISK directory on the LPRINT device. 5-3, 5-4
DISABLE Disables asynchronous event friggers. 5-80, 5-83
ENABLE Re-enables asynchronous event triggers after a critical section of 5-80, 5-83
code.
END Ends a program and closes all files. 5-3, b-4
EOF() Tests for the end of a file. 5-68, 5-69
ERASE Frees the memory used by an array. 5-3, 6-b
ERL() Returns the line number where the error occurred, or the closest line 5-95
number before the line where the error occurred.
ERR() Returns the runtime error code for the most recent error. 5-95
ERROR Simulates an occurrence of an error. 5-95
EVENT Allocates a keyboard event or timer event. 5-80, 5-84
EVENTON Returns the state of the event. 5-80, 5-83
EXP() Returns e raised to a specified power, where e is the base of natural 5-30, 5-32
logarithms.
FIELD Defines the structure of records to be used in indexed-sequential and 5-65, 5-68
random-access file buffers.
FLUSH Discards received data in the BIOS serial input buffer. 5-53, 5-56
FOR NEXT Repeats a section of the program the specified number of times. 5-20, 5-23
GET Reads a record from the random-access or indexed-sequential file. 5-65, 5-69
GOSUB Branches fo a specified line number with intent o return to the next 5-20, 5-23
line.
GOTO Branches unconditionally to the specified line number. 5-20, 5-24
HEXS() Returns a hexadecimal string representation of a number. 5-36, 5-37
IF THEN Executes the sub-statement depending on specified conditions. 5-20, 5-24
INDEXED Identifies a file as an indexed-sequential file and which field in the 5-65, b-70

record is the index key.

Chapter 11: Appendix 1

Command Usage Page
INKEYS Returns a single keystroke from either the keyboard or keypad as a 5-45, 5-47
string.
INPUT Reads inpuf from the keyboard, serial port, or a file. 5-45, b-47,
5-53, 5-56,
5-65, 5-71,
5-80, 5-85
INSTR Returns the position of the first occurrence of a string in another string. 5-36, 5-38
INTO Returns the largest infeger less than or equal to a numeric expression. 5-30, 5-33
IPD Converts a double float representation of an IP address to a dotted 5-97,
string representation of an IP address 5-101
IPS Converts the dotted string representation of an IP address fo a double 5-97, 5-
for storage in Shared Data. 101
JULDATE Converts a dafe-time string: "mm-dd-yyyyHH:MM:SS" fo a double 5-92, 5-93
precision Julian date.
KEYSRC Reports latest keystroke read by JagBASIC through INPUT or INKEYS 5-45, 5-50
commands.
KILL Deletes the specified file from the JAGXTREME RAMDISK. 5-3, 5-5
LCASES Convert a string fo lower case. 5-36
LEFTS() Returns a specified number of leffmost characters in a siring. 5-36, 5-38
LENQ) Returns the number of characters in a string or the number of bytes 5-36, 5-39
required fo sfore a variable.
LET Assigns the value of an expression to a variable. b-11, 5-17
LINE INPUT Reads sequentially all characters of an entire line (up to 80 5-65, b-71
characters) without delimiters from a sequential file up to the next
carriage return into a string variable.
LIST Lists all or part of a program to the LPRINT device. 5-3, 5-b
LISTEN Initializes TCP/IP to begin queuing the connection requests for the 5-97, 5-101
host port.
LOAD Loads a file (filename.bas) from the RAMDISK into memory. 5-3, 5-6
LOC(O Returns the current position within a file. 5-65, b-71
LOF() Returns the length of a file. 5-65, 5-71
LOG Returns the natural logarithm of a numeric expression. 5-30, 5-33
LPRINT Outputs datfa to a JAGXTREME LPRINT serial port device. 5-63, 5-57
LPRINT Prints formatted output on the LPRINT device. 5-b3, 5-58
USING
LSET Moves data info a random-access file buffer (in preparation for a PUT 5-71, b-74
statement) and left-justifies the value of a string variable.
LTRIMS Removes spaces at the beginning of a string. 5-36, 5-39
MIDS() Returns part of a siring. 5-36, 5-39
MSETS Inserts one string info another string at a specified position. Overwrites 5-36, 5-40
the existing characters so the length of the string remains the same.
MKIS, MKSS, Convert numbers fo numeric sirings that can be stored in FIELD 5-65, b-73
MKD$ statement sfring variables.

(10/01) 11-3

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

11-4 (10/01)

Command Usage Page
NEW Clears the current program and all variables from memory. 5-6
NEWLADDER Clears the ladder that is used by the ladder logic processor in the 5-80, 5-86,

JAGXTREME operating system. 5-88
NEXTLINE Displays next line number to execufe or sets a *new” next line 5-3, 5-6
NEW Clears the current program and all variables from memory. 5-3, 5-6
0CTS() Returns an octal string representation of a number. 5-36, 5-40
ON ERROR Enables error handling and, when a run fime error occurs, directs 5-95, 5-96
GOSUB your program to an error handling routine.
ON ERROR Enables error handling and, when an error occurs, directs your 5-95, 5-977
GOTO program to an error handling routine.
ON EVENT Enables you fo asynchronously monifor an event. Defines the Event 5-81, 5-86,
GOSuUB Service Routine. 5-89
OPEN Accesses a file or prepares a serial port for use as a file device. 5-53, 5-59,
5-65, 5-73
OPTION Declares the minimum value (O or 1) for array subscripts. 5-11, b-17
BASE
OR Used as a logical operator in a decision statement to establish two 5-20, 5-25
possible conditions, of which only one needs fo be met.
PADCS Add pad characters fo beginning and end of a siring 5-36, 5-41
PADLS Add pad characters fo beginning of a string 5-36, 5-41
PADRS Add pad characters fo end of a string 5-36, b-42
PRINT Writes dafa to the lower display, to a sequential file, or outputs data fo 5-45, 5-50,
the specified serial port. 5-63, b-61,
5-66, 5-74
PRINT # Outputs datfa to a sequential file, or outputs data to the specified serial 5-53, 5-63,
port. 5-66, b-76
PRINT USING Writes formatted output to the JAGXTREME display or to a file. 5-45, 5-50,
5-53, 5-61,
5-66, 5-74
PUT Writes a record to a random-access file or an indexed-sequential file. 5-66, b-76
RANDOMIZE Initializes the random-number generator. 5-30, 5-33
READ Reads values from a DATA statement and assigns them fo variables. 5-11, 5-18
RECVS Allows the JagBASIC fo receive data over an established connection. 5-97, 5-101,
5-103
REM Allows adding any comments or reference remarks to the code listing. 5-3, 6-7
RESETJAG Re-initialize JAGXTREME by forcing power-up cycle. 5-20, 5-26
RESETKEYS Sets the JagBASIC keyboard parameters back fo a known state. 5-3, 5-6
RESTART Clears the JagBASIC execution stacks and sends program control to 5-20, 5-26
the first line of the current program.
RESTORE Allows DATA stafements to be reread from a specified line. 5-11, 5-18
RETURN Used in conjunction with GOSUB, indicates that the subroutine is 5-20, b-26
complete.
RIGHTS() Returns a specified number of rightmost characters in a string. 5-36, 5-42

Chapter 11: Appendix 1

Command Usage Page
RND Returns a single-precision random number between O and 1. 5-30, 5-33
RSET Moves data info a random-access file buffer (in preparation for a PUT 5-66, 5-77
statement) and right-justifies the value of a siring variable.

RTRIMS Remove spaces from the end of a string. 5-36, 5-42

RUN Executes the current file in memory. 5-3, 5-7

RUNGAND Adds a ladder rung and takes two inputs AND’s them together, and 5-80, 5-87
outpufs the value.

RUNGANDNT Adds a ladder rung and takes two inputs AND’s them together, and 5-80, 5-88
outputs the inverse value.

RUNGMOV Adds a new rung fo the ladder and commands the ladder logic 5-81, 5-88
processor fo confinually move the value of one shared data variable
into another.

RUNGMVNOT | Adds a new rung to the ladder and commands the ladder logic 5-81, 5-88
processor fo continually move the “not” or opposite value of one
shared data variable into another.

RUNGOR Adds a ladder rung and takes two inputs OR’s them together, and 5-81, 5-89
outputs the value.

RUNGORNT Adds a ladder rung and takes two inputs OR’s them together, and 5-81, 5-89
outputs the inverse value.

RZ Initiates a ZMODEM file receive over serial port 1 info the RAMDISK file 5-3, 5-7
system.

SAVE Saves the current BASIC program in memory to the RAMDISK with the 5-3, 6-7
specified file name.

SEND Allows the JagBASIC to send data over an established connection. 5-97, 5-102

SGN Returns a value indicating the sign of a numeric expression. 5-30, 5-34

SHOW Displays the last line executed, the variable name and current value 5-3, 5-8

SINQ) Returns the sine of a specified angle expressed in radians. 5-30, 5-34

SLEEP Suspends program execution for the of specified number of 5-92, 5-94
milliseconds.

SOCKET Creates a socket for a subsequent CONNECT command, which 5-97, 5-103
initiates a connection fo a remote host using this socket.

SOCKCLS Allows the JagBASIC application fo close an established TCP/IP 5-97, 5-103
connection.

SOCKOPT Makes a TCP/IP socket blocking or non-blocking. 5-97, 5-104

SORTREC Identifies the file as an indexed sequential file and soris records in the 5-6, 5-78
file.

SPACES() Returns a string of spaces. 5-36, 5-43

SPC() Skips a specified number of spaces in a PRINT or LPRINT statement. 5-63, 5-63

SQR() Returns the square root of a numeric expression. 5-30, 5-34

STARTIME Starts the timer, which specifies the length of the timer in milliseconds. 5-81, 5-90

STEP Executes next line number affer BREAK 5-3, 5-8

STOP Terminates program execution and returns to command level. 5-3, 5-8

(10/01) 11-5

METTLER TOLEDO JagBASIC Programmer’s Guide for JAGXTREME Terminals

Command Usage Page
STOPTIME Stops a running timer. 5-81, 5-90
STRS Returns a string representation of a number. 5-36, 5-43
STRINGS() Returns a string of a specified length made up of a repeating 5-36, 5-43
character.

SWAP Exchanges the values of two variables that are variables of the same 5-11, 5-19
data type.

SWITCHSUB Performs a GOSUB call to the line specified in the variable. 5-20, 5-26

SWITCHTO Performs a GOTO operation to the line specified in the variable. 5-20, 5-28

SZ Initiates a ZMODEM file transfer over serial port 1 from the RAMDISK. 5-3, 5-9

TAB Advances to the specified print position. 5-63, b-64

TANQ Returns the tangent of a specified angle expressed in radians. 5-30, 5-34

TIMEDATS Converts a double precision floating point Julian date number to a 5-92, 5-94
sfring: "mm-dd-yyyyJJ:MM:SS"

TIMER Returns a double precision floating point number that contains the 5-92, 56-94
elapsed time in seconds since 00:00:00 GMT, January 1, 1970.

TIMES Sefs or returns the JAGXTREME sysfem time. 5-92, 5-95

TRON, TROFF Enables and disables tracing of program statements. 5-3, 6-9

UCASES Convert a siring to upper case characters. 5-36, b-44

VAL() Converts a string representation of a number to a number. 5-36, 5-44

VARS Prints a list of all variables fo the LPRINT device. 5-3, 5-10

WAITEVENT Suspends program execution unfil an event trigger causes program 5-81, 5-91
execution fo resume.

WATCH Monifors variable during execution 5-3, 5-10

WHILE Repeats a section of the program until a specified logical condition is 5-20, 5-28

WEND frue.

WIDTH Assigns an outpuf line width to the LPRINT device or a file. 5-53, 5-64

WIDTHIN Allows you fo dynamically reassign serial input length, as it is defined 5-63, b-64
in OPEN.

WRITE # Writes data to the LPRINT device or to a sequential file. 5-66, 5-79

XOR Used as a logical operator in a decision statement to establish two 5-20, 5-28

possible conditions, only one of which can be met.

11-6 (10/01)

METTLER TOLEDO

1900 Polaris Parkway

Columbus, Ohio 43240

Phone: (US and Canada) (800) 786-0038
(614) 438-4511

(All Other Countries) (614) 438-4888

www.mt.com

16384600A
(10/01)

METTLER TOLEDO® is a registered Trademark of Mettler-Toledo, Inc.
©2001 Mettler-Toledo, Inc.
Printed in U.S.A.

16384600A

	JAGBASIC 1 TM 10-01.pdf
	Introduction

	JAGBASIC 2 TM 10-01.pdf
	Shared Data

	JAGBASIC 3 TM 10-01.pdf
	Setup

	JAGBASIC 4 TM 10-01.pdf
	Programming Fundamentals

	JAGBASIC 5 TM 10-01.pdf
	JagBASIC Commands

	JAGBASIC 6 TM 10-01.pdf
	Shared Data Variables

	JAGBASIC 7 TM 10-01.pdf
	Global Discrete I/O Data

	JAGBASIC 8 TM 10-01.pdf
	Sample Application Programs

	JAGBASIC 9 TM 10-01.pdf
	Error Codes and Messages

	JAGBASIC 10 TM 10-01.pdf
	ASCII/HEX Code Chart

	JAGBASIC 11 TM 10-01.pdf
	Appendix 1

