
B14839600A
(3/99)

JagBASICJagBASIC
for JJAGUARAGUAR
Industrial
Terminal
Programmer’s Guide



©Mettler-Toledo, Inc. 1999

No part of this manual may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying and recording, for any purpose without the express written
permission of Mettler-Toledo, Inc.

U.S. Government Restricted Rights: This documentation is furnished with Restricted Rights.

INTRODUCTION

This publication is provided solely as a guide for individuals who have received Technical Training in
servicing the METTLER TOLEDO product.

Information regarding METTLER TOLEDO Technical Training may be obtained by writing to:

METTLER TOLEDO
1900 Polaris Parkway

 Columbus, Ohio 43240
(614) 438-4400

FCC Notice

This device complies with Part 15 of the FCC Rules and the Radio Interference Requirements of the
Canadian Department of Communications. Operation is subject to the following conditions: (1) this
device may not cause harmful interference, and (2) this device must accept any interference received,
including interference that may cause undesired operation.

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant
to Part 15 of FCC Rules. These limits are designed to provide reasonable protection against harmful
interference when the equipment is operated in a commercial environment. This equipment generates,
uses, and can radiate radio frequency energy and, if not installed and used in accordance with the
instruction manual, may cause harmful interference to radio communications. Operation of this
equipment in a residential area is likely to cause harmful interference in which case the user will be
required to correct the interference at his own expense.

METTLER TOLEDO RESERVES THE RIGHT TO MAKE REFINEMENTS OR
CHANGES WITHOUT NOTICE.

PRECAUTIONS

 WARNING
DISCONNECT ALL POWER TO THIS UNIT BEFORE
INSTALLING, SERVICING, CLEANING, OR REMOVING
THE FUSE. FAILURE TO DO SO COULD RESULT IN
BODILY HARM AND/OR PROPERTY DAMAGE.

 CAUTION
OBSERVE PRECAUTIONS FOR HANDLING
ELECTROSTATIC SENSITIVE DEVICES.

 WARNING
PERMIT ONLY QUALIFIED PERSONNEL TO SERVICE THIS
EQUIPMENT. EXERCISE CARE WHEN MAKING CHECKS,
TESTS AND ADJUSTMENTS THAT MUST BE MADE WITH
POWER ON. FAILING TO OBSERVE THESE PRECAUTIONS
CAN RESULT IN BODILY HARM OR EQUIPMENT
DAMAGE.

 WARNING
FOR CONTINUED PROTECTION AGAINST SHOCK
HAZARD, CONNECT TO PROPERLY GROUNDED OUTLET
ONLY. DO NOT REMOVE THE GROUND PRONG.

 CAUTION
BEFORE CONNECTING OR DISCONNECTING ANY INTERNAL ELECTRONIC
COMPONENTS OR INTERCONNECTING WIRING BETWEEN ELECTRONIC
EQUIPMENT, ALWAYS REMOVE POWER AND WAIT AT LEAST THIRTY (30)
SECONDS BEFORE ANY CONNECTIONS OR DISCONNECTION’S ARE MADE.
FAILURE TO OBSERVE THESE PRECAUTIONS COULD RESULT IN DAMAGE TO OR
DESTRUCTION OF THE EQUIPMENT, OR BODILY HARM.

READ this manual BEFORE
operating or servicing this
equipment.

FOLLOW these instructions
carefully.

SAVE this manual for future
reference.

DO NOT allow untrained
personnel to operate, clean,
inspect, maintain, service, or
tamper with this equipment.

ALWAYS DISCONNECT this
equipment from the power
source before cleaning or
performing maintenance.

CALL METTLER TOLEDO for parts,
information, and service.

CONTENTS

1 Introduction ..1-1
Overview.. 1-1
Integration ... 1-1
Program Execution ... 1-2
JAGUAR Terminal Operating Environment and Shared Data ... 1-2
Shared Data Types.. 1-4

2 Specifications...2-1
JAGUAR Terminal Compatibility .. 2-1
JagBASIC Language.. 2-1
Program Editor ... 2-1
PC File Exchange.. 2-1
PC Program Development ... 2-1
File Specifications .. 2-2
Standards Compliance .. 2-2
Ordering Information... 2-2

3 Installation ...3-1
Factory Installed JagBASIC ... 3-1
Field Installed JagBASIC Upgrade ... 3-1
JAGUAR Terminal Setup.. 3-2
Connecting the JAGUAR Terminal to a PC .. 3-4

4 Programming Fundamentals...4-1
JagBASIC Files... 4-1
Data Files... 4-2
Operator and Program Controls ... 4-2
Using the JAGUAR Terminal BASIC Interpreter ... 4-3
Using a Personal Computer... 4-3
Using the JagBASIC Preprocessor ... 4-6
Serial Terminal Support .. 4-9

5 JagBASIC Commands ...5-1
Interpreter Commands .. 5-2
Variable Commands ... 5-9
Flow Control and Operator Commands ... 5-17
Math Commands .. 5-27
String Commands ... 5-33
Simple I/O Commands .. 5-43
Serial I/O Commands.. 5-50
File Commands .. 5-64
Real-time Process Control Commands ... 5-78

Timing Commands.. 5-90
Error Trapping Commands... 5-92

6 Shared Data Variables ..6-1
Shared Data Heap Elements .. 6-2
Shared Data Static RAM Elements ... 6-4
Shared Data EEPROM Elements ... 6-15

7 Global Discrete I/O Data..7-1
Level-Sensitive, Logical Discrete I/O Data .. 7-1
Edge-Sensitive, Logical Discrete I/O Data... 7-7
Physical Discrete I/O Data... 7-11

8 Sample Application Programs...8-1
Display Scale A Weight... 8-1
Display/Toggle Scale A and Scale B ... 8-2
Random Access Files .. 8-3
Continuous Output .. 8-3
Setpoint Display ... 8-4
Filling .. 8-5
Simple Truck In-Out .. 8-7
Truck Inbound-Outbound.. 8-9
Multiple Ingredient Formulation (Manual Batching) .. 8-18
Parts Counting.. 8-28
Printer Templates ... 8-29
JOG Example ... 8-31

9 Error Codes and Messages...9-1
Common Errors .. 9-1
Error Codes.. 9-1

10 ASCII/HEX Code Chart...10-1

11 Appendix 1...11-1
JagBASIC Commands ... 11-1

Chapter 1: Introduction
Overview

(3/99) 1-1

1 Introduction

Overview
JagBASIC is a tool for customizing the JAGUAR industrial scale terminal, allowing you
to gain the greatest possible advantage from its power and flexibility. JagBASIC
provides the means for creating custom operator interaction for data input using the
JAGUAR terminal’s 16-character lower display, keypad, and external keyboard. Serially
connected display devices, as well as the terminal display, may be used to
communicate messages to the operator.

When using the file names of file1.bas through file9.bas, any of nine programs may be
started by the operator by pressing the Function key followed by the program number.
This provides a simple way to manage multiple programs as separate modes of
operation, allowing larger applications to be divided into smaller, more manageable
programs. The file1.bas program may be designated to automatically start on power-
up. Other file names can be used but must be called up using the LOAD command, or
chained from the main program.

Program Development
Small JagBASIC programs may be entered and edited on the JAGUAR terminal with an
external keyboard using the lower display. This allows simple programs to be quickly
entered or modifications to larger programs to be made in the field without additional
equipment. A personal computer (PC) is recommended when creating larger
programs. A PC can be directly connected to the JAGUAR terminal through a serial port.
The PC, running a terminal emulator, acts as a monitor and keyboard for the JAGUAR
terminal. Using Zmodem protocol, files can be transferred between the PC and the
JAGUAR terminal.

Integration
JagBASIC is highly integrated into the operating environment of the JAGUAR terminal.
JagBASIC programs reside with the standard JAGUAR terminal program. The JagBASIC
interpreter runs as a separate task using JAGUAR terminal’s multi-tasking operating
system. This allows the custom JagBASIC program to interact with the other JAGUAR
terminal tasks and resources using JAGUAR terminal’s exclusive shared memory
design. All shared memory in the JAGUAR terminal may be accessed by the JagBASIC
program using this simple construction.

Program Execution
JagBASIC programs are stored as a source file then interpreted in the JAGUAR terminal.
Source file storage allows you to edit the program on the JAGUAR terminal and
provides the security of having the source available even if a PC stored copy is not
available. The source files may be retrieved from the JAGUAR terminal for archiving,

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)1-2

modification, or duplication. The JagBASIC interpreter was designed to provide a more
secure operating environment where the program is restricted from accessing and
possibly corrupting the standard functions of the JAGUAR terminal. Access to JagBASIC
can be password-protected to limit access to the source code, or the operator may be
given access to all of the standard JAGUAR terminal functions as well as the custom
functions provided by the JagBASIC program.

JAGUAR Terminal
Operating Environment
and Shared Data

Three concepts are fundamental to the way the JAGUAR terminal handles data within
the terminal’s operating system: Shared Data, Shared Data Callbacks, and an Event
Driven Ladder Logic Engine. They enable the Jaguar terminal to:

• Handle a multitude of actions virtually concurrently,

• Provide fast reaction to internal and external instructions, and

• Provide users with maximum flexibility to meet their application demands.

Shared Data Database
Central to the JAGUAR terminal’s open architecture is the implementation of a Shared
Data Database. This central table of variables tracks virtually every data value used
within the terminal. Variables containing values corresponding to weight information,
setup and calibration parameters, user input literals, prompts and responses, printer
templates and setpoint information are all stored in this central table. The status of
physical and logical discrete inputs and outputs as well as the “mappings” of serial
and discrete I/O connections are also stored. The JAGUAR terminal accesses and uses
this database as a central depository for information used in all functions related to:

• Weighing and process control.

• Communication with external printers.

• Personal computer hosts.

• PLCs.

• Applications written in the JagBASIC programming language.

Shared Data Callbacks

The JAGUAR terminal couples this centralized database concept with Shared Data
Callbacks. Each operating system task has the shared data variables it uses “mapped”
directly to it. Whenever a task requires a specific variable or group of variables, their
values can be found in the Shared Data Table.

Every time a shared data variable is changed, all operating system tasks which use
this variable are identified and notified that a change has occurred using the Shared
Data Callback. Whenever a particular task is notified of a change, the task is executed,
updating any other affected variables and those related tasks.

For example, if a logical 1 is written to the discrete logical variable associated with the
pushbutton tare command, the scale task is notified and the process of initiating a tare

Chapter 1: Introduction
Shared Data Types

(3/99) 1-3

undertaken. This will affect the shared data variables associated with the displayed
weight, the tare weight, and the net weight (among others). Changes in these variables
will initiate other tasks and affect other variables (e.g. the variable associated with
whether or not a net weight is being displayed). This automatic processing of tasks
greatly simplifies interfacing the JAGUAR terminal to external controls such as a PLC, or
to an internal JagBASIC program.

Event Driven Ladder Logic
Engine

In traditional ladder logic circuits, an “engine” continually cycles through the “rungs” of
the ladder, allowing any changes in the “coils” to cause a change in the “contacts.”
Wherever an input is changed, the corresponding output is potentially changed to
reflect the change in input. The JAGUAR terminal uses the Event Driven Ladder Logic
Engine concept to scan for changes in shared data variables (“coils” or inputs) and to
make resulting changes in other shared data variables, the JAGUAR terminal outputs or
displays (“contacts” or outputs).

The JAGUAR terminal ladder logic creates a “smart” ladder logic engine. The JAGUAR
terminal’s engine only runs when an event occurs. The event or triggering mechanism
could be a change in a shared data variable, a JAGUAR terminal message, or the
result of some type of physical input. Once the ladder logic engine is run, the changes
cause an “output engine” to run and make changes in shared data variables, physical
outputs, and/or JAGUAR terminal messages. These may, in turn, cause further
“cycling” of the ladder logic engine and result in further changes.

Shared Data Types
There are four types of Shared Data Variables.

• The first holds the values associated with different scale parameters such as
displayed weight and tare weight. These variables function like fields in a
database. The fields stored include setpoint values, time and date information, and
user programmed literals and prompts. The actual values stored in these variables
may be strings, integers, or double precision floating point numbers. Besides
these values, status or source information may be stored.

• The second type of variable is a level-sensitive logical variable. These values store
a logical 1 or 0 as an integer in a bit field within shared data. These particular
variables are known as “level-sensitive” because they generate a callback when
either a 0 or a 1 is written to the field. These variables indicate the status of a
particular scale condition, such as whether a particular scale is in motion or over
capacity, or whether or not a particular setpoint is feeding or a weight is within a
setpoint tolerance. By reading the values of these variables, the programmer can
determine the status of a particular trait of the terminal without having to use an
actual terminal discrete output.

• The third variable type is an edge-sensitive logical variable. A logical 1 or 0 is
stored as an integer in a shared data bit field. These variables differ from those
above in that they trigger a callback when a 1 is written to the field. When the
“triggered” task is complete, a 0 is automatically written (by the JAGUAR terminal)
back to the field. In terms of some of the operations of the terminal, a 1 written to
one of these variables would be like pressing a button on the JAGUAR terminal
front panel. By using these variables, the programmer could initiate a scale task in
the same way as if a push button were pressed or a discrete input were used.

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)1-4

• The last variable type indicates the status of the physical discrete inputs and
outputs found on the Controller and Multi-Function Boards. The stored logical 1s or
0s correspond to whether a physical discrete input or output is true or false, on or
off. It may be useful to use these variables to initiate further actions within a
program in conjunction with an external event tied to a physical input or output.

Chapter 2: Specifications
JAGUAR Terminal Compatibility

(3/99) 2-1

2 Specifications

JAGUAR Terminal
Compatibility

JagBASIC is a software option that may be ordered installed at the factory or as a kit for
upgrading all standard JAGUAR terminals. JagBASIC will operate in JAGUAR terminals
configured for any type of scale, including Mettler-Toledo’s DigiTOL bench/portable
scales, high precision scales, floor scales, truck scales, or industry standard analog
load cell scales such as tank or hopper weighing systems. JagBASIC will even co-exist
and communicate through shared memory with PLC Interfaces.

JagBASIC Language
The JagBASIC language is a standard BASIC programming language with more than
120 standard BASIC statements and functions plus extensions for special JAGUAR
terminal operations. The language provides functionality to perform many tasks
including operator interaction, serial input and output, discrete input and output, scale
data exchange, string manipulation, arithmetical and relational operations, and open,
close, read (get) and write (put) file operations.

Program Editor
JagBASIC includes a simple line editor that uses the JAGUAR terminal lower display.
When the “BasTerminal” is selected in the serial port setup menu, a remote PC with a
terminal emulator program interfaces with the line editor. This editor permits creation
and modification of JagBASIC programs.

PC File Exchange
JagBASIC programs and data files are stored in the JAGUAR terminal in a DOS file
compatible RAMDISK. A Zmodem communications utility in the JAGUAR terminal and
PC permit these files to be sent between a JAGUAR terminal and a PC.

PC Program
Development

JagBASIC programs may be written on a PC using PC-DOS or MS-DOS operating
systems. The program can be created using a standard text editor, then sent to the

METTLER TOLEDO JagBasic Programmer’s Guide

(3/99)2-2

JAGUAR terminal using the PC’s RS232 Serial Port for execution using any standard
terminal emulator that supports Zmodem file transfer protocol. A Windows or DOS text
editor may be used. The programs may also be retrieved from the JAGUAR terminal to
a PC to permit editing.

File Specifications
The JAGUAR terminal file system is PC-DOS or MS-DOS compatible, battery-backed
RAMDISK with a capacity of 64 KB for program and data files. The maximum number
of files is 31. Individual program files have a limit of 300 lines of code or 15 KB.
Individual lines of code have a maximum length of 80 characters per line. The
maximum number of variables is 90. In Release “T,” program files have a limit of 400
lines, 18 KB, and 130 variables.

Standards Compliance
JagBASIC is based on the American National Standards Institute (ANSI) standard for
minimal BASIC (ANSI X3.60-1978) with extensions and integration into the JAGUAR
terminal operating environment by Mettler-Toledo. Programmers who are familiar with
BASIC can quickly become proficient in using JagBASIC.

Ordering Information
METTLER TOLEDO JAGUAR terminals may be purchased with JagBASIC as a standard
factory-installed feature. To order a JAGUAR terminal with JagBASIC, replace the
eighth character of the JAGUAR terminal model number with a 1. For example:

JTGA1160000 specifies a JAGUAR terminal with a general purpose enclosure, two
analog load cell interfaces, and an Allen-Bradley interface.

JTGA1161000 specifies the same JAGUAR terminal except with JagBASIC.

Upgrade Kit
The Upgrade Kit for JagBASIC can be ordered as model number 09170231000 to
upgrade an existing JAGUAR terminal. The kit includes a factory programmed EEPROM,
plus instructions on how to install it in a socket on the JAGUAR Controller Board. This
kit must be ordered for each JAGUAR terminal to be upgraded. JagBASIC requires
revision G or later JAGUAR terminal software. If the JAGUAR terminal being upgraded
has an earlier version of software, you must first upgrade the JAGUAR terminal
software. You can do this by ordering JAGUAR terminal software upgrade kit model
number 09170391000.

Programmer’s Kit
The Programmer’s Kit can be ordered as model number 09170230000. This kit
includes the utility needed to send and receive files between a JAGUAR terminal and a
PC, sample source code, the Programmer’s Guide, and a JAGUAR terminal to PC DB9
cable.

Read about upgrade hardware
requirements in Chapter 3
before ordering the kit. Certain
PCB’s may need upgrading
before JagBASIC and “G”
revision software or higher can
be installed.

Chapter 3: Installation
Factory Installed JagBASIC

(3/99) 3-1

3 Installation
If JagBASIC was ordered factory-installed on the JAGUAR terminal, you do not need to
install it. If you purchased JagBASIC as an upgrade kit, you must install a JagBASIC IC
on the JAGUAR Controller Board. The Controller PCB software version must be revision
“G” or later to use JagBASIC. If not, new software must be flashed into the JAGUAR
terminal. Many of the JagBASIC programming features described in this manual are
only available with software revision “M” or later. A few are available only with Revision
“T”.

Factory Installed
JagBASIC

You can determine if the JAGUAR terminal has factory installed JagBASIC by the model
number as described in Chapter 2, Ordering Information.

Field Installed
JagBASIC Upgrade

The JagBASIC upgrade kit includes the instructions for installation of the upgrade.
Before you begin the upgrade, verify if the JAGUAR terminal to be upgraded is
compatible. Units manufactured prior to January 1, 1995 may need to be upgraded by
replacing the Controller Board. The Controller Board (P/N 14849200A) must be
revision “C” or later. The Power Supply must be an “A” revision or later.

The following method may be used to determine if the Controller Board hardware
upgrade must be done:

1. Power-up the JAGUAR terminal.

2. All of the display segments on the upper display will light up.

3. Only the middle segment will light up as a series of dashes (-------).

4. When the dashes are displayed, if there is an illuminated dot on the lower right of
the upper display, you must upgrade the controller board to install JagBASIC.

If you must upgrade the Controller Board, contact your local METTLER TOLEDO
authorized distributor or service center.

Follow the step-by-step instructions provided with the Upgrade Kit. The upgrade entails
changing a socketed IC on the Controller Board and downloading new software into the
flash memory of the JAGUAR terminal. JagBASIC is available with JAGUAR terminal
software revision “G” or higher.

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)3-2

JAGUAR Terminal
Setup

JAGUAR terminals that have JagBASIC installed have an added program block for
configuration of JagBASIC. The program block, called Config JagBASIC, is located in
the top level configuration menu. To access the block, press the Function key and then
SELECT until Enter Setup? is displayed, then press ENTER. Press the SELECT key until
Config JagBASIC is displayed, then press ENTER. The first sub-block is the password
security block. Password security is available to allow the JagBASIC programs to be
protected from unauthorized changes. Enter the password at the “Passwd?” prompt,
then press ENTER (or just press ENTER if no password has been previously
configured.) Entry of an incorrect password will cause the JAGUAR terminal to display
the message “Access Denied.”

Following are the Config JagBASIC sub-blocks:

Keyboard—Permits designation of the keyboard input device that will pass characters
to a JagBASIC program when an INPUT or INKEY statement is executed and the device
that will be used for BASIC command line mode. Press ENTER to access the sub-block
then SELECT to choose:

• None—No keyboard input is required. This would be used with programs that
monitor other I/O then act in the background without operator intervention.

• Keypad—If the JAGUAR terminal keypad will be used for operator input to
JagBASIC.

• Kboard—External QWERTY keyboard or remote PC with terminal emulator
attached to the JAGUAR terminal will be used for operator input to JagBASIC.

• Both—Both the JAGUAR terminal keypad and an external keyboard will input to
JagBASIC.

Display—Permits designation of the display output device that will be used by a
JagBASIC program when a PRINT statement is executed. Press ENTER to access the
sub-block then SELECT to choose:

• None—No display output device is to be used.

• JAGUAR terminal—The JAGUAR terminal lower display is to be used. This display
will also be used for standard JAGUAR terminal functions.

Autostart—Enables or disables the automatic start up of the file1.bas JagBASIC
program on power up. Press ENTER to access the sub-block then SELECT to choose
Autostart? Yes or No. If you select the automatic program start feature JagBASIC will
automatically start file1.bas program on power up and when you exit setup.

Manual Start—Enables or disables the manual mode startup of JagBASIC programs by
pressing the Function Key. Selecting keys 1 to 9 then relates to file1.bas through
file9.bas.

Send RAM Files—This sub-block works in conjunction with the JagBASIC send and
receive program installed in a PC. Press ENTER to access the sub-block then SELECT
to choose:

• Files to PC?

Yes or No—If you choose Yes, the JAGUAR terminal will prompt with Are You
Sure? You must then choose Yes to place the JAGUAR terminal in the mode to
transmit its RAMDISK files to a PC. If you choose No, you will be prompted with:

Selecting both will disable keyboard
input to the standard JAGUAR functions
including entry into Setup. To regain
entry into Setup, power down the
JAGUAR, short Test Jumper W11, then
power up. Change to “Kboard” setting.
Exit Setup, power down, and remove
jumper when done. The test jumper
W11 reassigns both keyboards to the
standard JAGUAR functions. Use an
anti-static strap when touching the
controller PCB.

Chapter 3: Installation
Connecting the JAGUAR Terminal to a PC

(3/99) 3-3

• Files From PC?

Press Yes followed by Are You Sure? selection of this prompt will place the
JAGUAR terminal in a mode to receive files from a PC. The JAGUAR terminal will
display “Recving from PC.”

The file transfer is initiated from the PC. Refer to Chapter 4 Programming
Fundamentals for details of this operation. If communication with the PC is not
established, the JAGUAR terminal will time out and return to the sub-block.

Init RAM Disk?—This sub-block allows you to delete all files in the JAGUAR terminal’s
RAMDISK. Press ENTER to access the sub-block. The JAGUAR terminal will then prompt
with Are You Sure? You must then choose Yes to delete the RAMDISK files. Use caution
when selecting this option since the files cannot be recovered once they are deleted!

Password Maint—This sub-block allows a security password to be configured for the
JagBASIC programs. Press ENTER to access the sub-block. The JAGUAR terminal will
then prompt with Passwd? Enter the desired password, up to eight characters, followed
by ENTER. Record the password in a secure place, and give it to all persons who need
access to the Config JagBASIC program block. After exiting the program block this time,
you will need this password to re-enter the block.

Reset to Factory?—This sub-block allows you to reset the Config JagBASIC program
block parameters to their factory settings.

Connecting the
JAGUAR Terminal to a
PC

Refer to the following diagrams for proper cable connections to the JAGUAR terminal’s
serial ports COM1 and COM2. COM1 and COM2 are located on the Controller board,
which is positioned in the top slot.

Figure 3-1: JAGUAR Terminal Controller PCB Rear View

The COM1 and COM2 terminal strips will accommodate wire sizes ranging from 23 to
16 AWG. The terminal strips may be removed to facilitate wiring. Removal of the
terminal strips also permits easier viewing of the terminal designations printed on the
board back plate.

Make sure the password is written
down in a secure place. If the
password is lost, the only way to re-
enter the JagBASIC Configuration menu
is by performing a Master Reset which
will erase all configuration data in the
JAGUAR and set all values to factory
defaults!

YOU WILL ALSO LOSE ANY
JAGBASIC FILES STORED ON THE
RAMDISK WHEN A MASTER RESET
IS PERFORMED. DO NOT DO A
MASTER RESET UNLESS YOU CAN
RELOAD THE JAGBASIC FILES!

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)3-4

The following diagram and table describe COM1 (or COM2) pin-to-pin cable
connections using an RS-232 cable to a PC serial port. The maximum recommended
cable length for RS-232 communications is 50 feet.

JAGUAR
COM 1

PC Serial
Port DB-9

PC Serial
Port DB-25

TXDA 2 REC 3 REC

RXDA 3 TR 2 TR

GND 5 SGnd 7 SGnd

CLTX+ 7 RTS 4 RTS

CLRX+ 8 CTS 5 CTS

CLRX- 4 DTR 6DSR

1 DCD 8 DCD

6 DSR 20 DTR

Figure 3-2: RS232 Connections to JAGUAR Terminal and PC Serial Port

The PC cable can be used for five
different applications:
1. Flashing new software into the

JAGUAR terminal through COM2.
2. JagBASIC file transfer through

COM1.
3. LPRINT device output to a terminal

emulation program or
communications program to receive
data sent using LPRINT, L|ST, VARS,
etc. Output from the JAGUAR
terminal will be sent to the first port
configured for demand output.

4. BasTerminal device that allows a PC
terminal emulator to act as a
program development interface for
JagBASIC.

5. JagBASIC program interface directly
to serial ports for input and output.

Chapter 4: Programming Fundamentals
JagBASIC Files

(3/99) 4-1

4 Programming Fundamentals

JagBASIC Files
JagBASIC program files are stored in the JAGUAR terminal’s battery backed RAMDISK
file system. This file system is equivalent to the file system on a PC.

Naming Conventions
JagBASIC enables you to run nine program files using the function key followed by a
digit. The files are named as follows:

• file1.bas

• file2.bas

• file3.bas

• file4.bas

• file5.bas

• file6.bas

• file7.bas

• file8.bas

• file9.bas

Throughout the documentation, these files are referred to as filex.bas files. When using
other names, the names must follow the MS-DOS file name conventions -- an 8-
character prefix and 3-character suffix (normally .bas). Characters A-Z and 0-9 can be
used. Some characters are reserved and cannot be used in file names, such as #, ^,
%, *, (,), {, }, [,]. These files can only be called up and run using the BASIC
interpreter commands RUN or LOAD, or called from within another program using the
CHAIN command. See Chapter 5, JagBASIC Commands, for more information.

Program Size
In Rel. M, the maximum size for a JagBASIC program is 300 text lines and 15KB total
size. Longer applications must be broken up into smaller modules, which may be run
independently or chained together. The maximum number of variables is 90. In Rel. T,
the maximum sizes are 400 lines, 18 kb, and 130 variables.

Line Numbers
JagBASIC requires the use of line numbers for every line of the BASIC program.
Programs that start line numbering at 1 and are numbered sequentially (1, 2, 3, 4,
etc.) execute most efficiently on the JAGUAR terminal. The largest line number permitted
is 30,000. The JagBASIC preprocessor supports symbolic labels and automatically
numbers the program lines.

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)4-2

Line Length
Line lengths are limited to 80 characters per line.

Multiple Statements on a
Line

Unless noted, you can put multiple statements on a line if they are separated by a
colon (:). The program will be more legible if only single statements are placed on a
line.

Data Files
You can use data file numbers from 0 to 7 with JagBASIC. File sizes are limited by the
available space in the JAGUAR terminal RAMDISK (64KB for both BASIC programs and
data files). Due to the overhead of the DOS file system, the largest single file is
approximately 60 kb.

Operator and Program
Controls

Automatic Startup
Selecting Automatic Startup in the JagBASIC configuration allows a hands-off, power-on
startup of the JAGUAR terminal. When Automatic Startup is selected, the file1.bas
program runs at startup and on exit from setup mode.

Starting JagBASIC
Programs

The nine JagBASIC programs file1.bas through file9.bas may be started by pressing
the Function key followed by the program number. For example, to run file3.bas, press
the Function key then the number 3. This provides a simple way of managing multiple
programs as separate modes of operation and allows larger applications to be divided
into more manageable programs.

Stopping JagBASIC
Programs

A program may be stopped at any time by pressing the ESC key twice, as long as this
function has not been disabled by the JagBASIC code.

Chapter 4: Programming Fundamentals
Using the JAGUAR Terminal BASIC Interpreter

(3/99) 4-3

Switching the Display
between JagBASIC and
JAGUAR Terminal

While a JagBASIC program is running, press the ESC key once to assign the lower
JagBASIC display back to the JAGUAR terminal scale. JagBASIC will continue to run;
only the display is changed. To return to the JagBASIC display, press SELECT.

Securing a JagBASIC
Program

JagBASIC programs can be secured so that a user cannot alter or illegally procure a
program. To secure a program:

1. Set the password in the JagBASIC Setup menus.

2. Set AutoStart=Y in the Setup menus.

3. Within the JagBASIC program, set Manual Stop Enable(bas89)=0. This prevents a
user from stopping the program.

4. Name your startup program file1.bas.

Using the JAGUAR
Terminal BASIC
Interpreter

You may use a PC terminal emulator, the JAGUAR terminal’s display, and an external
keyboard to create and edit JagBASIC programs. Programs are entered at the JagBASIC
interpreter prompt. With JagBASIC enabled and no programs running, press the ESC
key to display the interpreter “BASIC:” prompt. From this prompt you may start typing
lines of BASIC or type in a BASIC command. Entering a line of code to the interpreter
without a line number will cause the interpreter to execute the line immediately.

Using a Personal
Computer

You may use a personal computer (PC) to create and edit the JagBASIC program file
using either a DOS or Windows text editor. Files must use standard DOS attributes,
such as date, time, length, and reserved characters.

When you have completed writing the program in the text editor, send the text file to the
JAGUAR terminal COM1 Serial Port using one of the following:

• A communications program such as RIPterm©

• HyperTerminal if using Windows 95.

• Procomm Plus for Windows

To disable the stop program (press ESC
twice) and switch display (press SELECT)
functionalities, write to the shared data
variables /bas86, /bas89, and /bas87,
respectively, in the program file.

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)4-4

The text file will be stored in the RAMDISK. The file transfer uses standard Zmodem file
transfer protocol.

The JagBASIC RZ command initiates receiving files at the JAGUAR terminal from the PC
using the ZMODEM protocol over the BasTerminal serial communication line. The
JagBASIC SZ command initiates sending files from the JAGUAR terminal to the PC. If
you want to use the RZ and SZ commands from the BasTerminal, you need to set up
the serial communications to use the “8-bit, No Parity” data format. SZ and RZ are
discussed in Chapter 5.

File Transfers
For file transfers, setup the PC for 8-bit, No Parity, 1 Stop Bit. These settings are
independent of the serial port settings in the JAGUAR terminal. The file names will be
displayed on the JAGUAR terminal lower display as they are transferred. Always start
the file transfer process on the PC, then on the JAGUAR terminal.

Sending Files to the
JAGUAR Terminal

The JAGUAR terminal is capable of receiving files using standard Zmodem file transfer
protocol.

To send files to the JAGUAR terminal from your PC:

1. Set the password in the JagBASIC Setup menus (optional).

2. Select Zmodem protocol at the PC communications utility.

3. Type in or select the file, but do not start the transfer.

4. Set up the JAGUAR terminal for receiving files.

• If you have a PC console for JagBASIC, type “RZ” at the JagBASIC interpreter
prompt and then press ENTER. Proceed to step 8. You do not need to
complete step 9.

• If you do not have a PC console for JagBASIC, press the Function key. Press
SELECT until Enter Setup? displays and then press ENTER. Proceed to step 5.

5. Press SELECT until Config JagBASIC displays, then press ENTER.

6. When Passwd? displays, enter the password. If no password has been
programmed, just press ENTER.

7. Press SELECT until Send RAM Files displays, then press ENTER. Press ENTER
again when Files To PC? N displays. When Files From PC? N displays, press
SELECT to change the prompt to Y, then press ENTER again.

8. Start the communications program file transfer.

• If using RIPterm, press the PageUp key, select Zmodem then type in the file
name.

• If using HyperTerminal, click Transfer, Send File, then type in the file name, or
use browse to locate the file. When the file has been selected, click OK.

9. When the PC file transfer has been started, press ENTER on the JAGUAR terminal
keyboard to start the transfer. As the files are sent to the JAGUAR terminal, the file
names will display on the lower JAGUAR terminal display.

Setup the JAGUAR Serial Port to
9600,8N1 to match the file transfer
fixed settings of 9600,8,N,1. This
enables you to upload and download
files, plus receive output into your
communications program without
requiring any parameter changes.

The JAGUAR will always use
9600,8,N,1 for file transfer, overriding
the serial port defaults.

Chapter 4: Programming Fundamentals
Using the JagBASIC Preprocessor

(3/99) 4-5

Receiving Files from the
JAGUAR Terminal

The PC receives all files currently residing in the JAGUAR terminal RAMDISK, including
BASIC files and any data files that exist.

To set up the JAGUAR terminal to send files to the PC:

1. If you have a PC console for JagBASIC, type “SZ” at the JagBASIC interpreter
prompt and then press ENTER. Perform step 5; however, you do not need to press
ENTER in step 5.

Or, if you do not have a PC console for JagBASIC, press the Function key, then
SELECT until Enter Setup? Displays. Then press ENTER.

2. Press SELECT until Config JagBASIC displays, then press ENTER.

3. When Passwd? displays, enter the password, or if no password has been
programmed, just press ENTER.

4. Press SELECT until Send RAM Files displays, then press ENTER. When Files To
PC? N displays, press SELECT to change the prompt to Y, then press ENTER again
to display Are You Sure? N. Press SELECT to change the N to Y.

5. If the autodownload function is not enabled in your communications software, start
the download in the PC software program, then press ENTER on the JAGUAR
terminal keyboard to start the transfer.

Using the JagBASIC
Preprocessor

The JagBASIC preprocessor can translate from the free line format permitted in PC
BASIC to the strict line numbering format required by JagBASIC, strip out memory
consuming comments (REM statements), and warn of JagBASIC constraint violations.
The JagBASIC preprocessor is available as part of the JagBASIC programmers kit.

User Environment
The JagBASIC preprocessor is a DOS-based, command line oriented utility. It is
invoked with command line arguments as follows:

jbpp infile outfile (option)

infile Input text file, with free format statement labels.

outfile Output text file, with JagBASIC line numbering, and error messages.

option Any of a combination of command line options, including the following:

-R Pass through all REM statements from the infile to the outfile. Default is
eliminate REM statements from the output file.

-NXXX Start statement numbering with XXX. Default starting number is 100.

-IYYY Increment statement numbering by YYY. Default increment step is 10.

-W Do not compress white space within a statement. Default is to compress
multiple consecutive space (or tab) characters to a single space (or tab)
character.

Set the JAGUAR Serial Port to 9600, 8N1 to
match the file transfer fixed settings of
9600,8,N,1. This enables you to upload
and download files, plus receive output into
your communications program without
requiring any parameter changes. The
JAGUAR will always use 9600,8,N,1 for file
transfer, overriding the serial port defaults.

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)4-6

The output file is suitable to be downloaded to a JagBASIC enabled JAGUAR terminal.

Example: jbpp bulkway.bas filel.bas -N1 -I1.

Run Time Operation
The primary purpose of the preprocessor is to add line numbers to all statements and
to replace symbolic labels with numeric labels. Two passes through the input file are
required. The first creates a list of symbolic labels. The second adds line numbers and
performs error checking on the resulting output file. Symbolic labels are typically
identified as the first single word on a line that is followed by a colon. In the following
example, the “begin” is a symbolic label.

Example 1:if x = 1 then goto begin
y = 1
begin:

Example 2:gosub CheckMotion
.
.
CheckMotion:
return

The JagBASIC preprocessor also identifies symbols that are preceded by an “xx” as
symbolic labels. This allows the JagBASIC program to build state tables within the
program. For example, the symbols in the following data statement are interpreted as
symbolic labels.

Example:
FillCycle:
.
.
CloseGates:
.
.
CaptureGross:
.
.
RecordGross:
.
.
data xx FillCycle, xx CloseGates, xx CatureGross, xx RecordGross

Line Number Substitution
Label numbering normally uses 100 as the first statement in the JagBASIC program
and increments statement numbers by 10. Both defaults can be overridden using
optional command line arguments. One or more blank lines encountered in the source
file causes the next line number to be adjusted upward to the next nearest module 100.
Line numbers encountered in the input file are treated just like other symbolic labels
and are substituted accordingly.

Programs execute most efficiently if 1 is set as the first line number and subsequent
line numbers are incremented by 1.

White Space, Blank Line, and Comment Handling
Multiple consecutive space (or tab) characters encountered within an input file
statement are compressed to a single space (or tab) character unless the user
specified otherwise via optional command line argument. One or more consecutive

Chapter 4: Programming Fundamentals
Using the JagBASIC Preprocessor

(3/99) 4-7

blank lines encountered in the input file are output as a single blank line in the output
file. Remarks (REM statements) are eliminated unless instructed otherwise by the user
via an optional command line switch.

Error Checking
Several JagBASIC specific error conditions are checked in the preprocessor. In each
case, an error message is added to the output file on a new line following the line
containing the error. The error message is also output to the console. A count of total
errors is provided on the console and at the end of the output file at the completion of
the preprocessor. No error count message is added to the output file if no errors are
detected.

Exceeding the maximum number of lines or maximum program size are fatal errors.
Preprocessor operation stops at the first occurrence of a fatal error condition. Errors
checked include:

• Statement length exceeds maximum (80 characters).

• In rev M: total number of lines exceeds maximum (300 lines) or program size
exceeds maximum (15000 bytes).

• In rev T: total number of lines exceeds maximum (400 lines) or program exceeds
maximum (18000 bytes).

General Error Messages
The preprocessor can return the following general error messages:

"**Error** Label Not Found! Input File Line #"

—When a GOTO or GOSUB is followed by a label, the label should appear in the
JagBASIC file.

"**Error** Maximum Char. Per Line(80) Reached! Input File Line #"

—The maximum characters per line is 80 characters.

"**Error** Duplicate Label Found! Input File Line #"

—A label was previously found in the document. The second label is ignored.

Fatal Error Messages
The preprocessor can return the following fatal errors. The preprocessor terminates
when the first fatal error is encountered.

"**Error** No Label! Input File Line #"

—When a GOTO or GOSUB is present a label must follow the GOTO or GOSUB.

"**Error** Maximum Line #(30000) Reached! Input File Line #"

—The maximum line number is 30,000.

"**Error** Maximum Number Of Output Lines Reached(300)! Input File Line #"

—The maximum number of lines allowed in the output file is 300.

"**Error** Maximum Output File Size Reached(15000 Bytes)!"

—The maximum byte size of the output file is 15,000 bytes.

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)4-8

Serial Terminal
Support

JagBASIC supports a serial terminal, such as a dumb terminal or a PC running a
terminal emulator, as a console for JagBASIC program development and debugging.
You can type commands at the serial terminal keyboard and view the typed
commands on the serial terminal display. The serial terminal must be attached to a
serial port on the local JAGUAR terminal. BasTerminal must be assigned to the serial
port in the Serial Config menus.

Configuring BasTerminal
The Configure Serial menus allow you to setup the JagBASIC keyboard input from a
serial port. Select the appropriate port and assign the BasTerminal connection. Input
characters from the serial port are routed to JagBASIC. This connection is for keyboard
input to the JagBASIC interpreter. The BASIC interpreter displays the “BASIC:” prompt
and input keystrokes to the BasTerminal. You must assign the keyboard to JagBASIC in
the JagBASIC setup menus. To transfer files from the PC to JagBASIC, use 8 bits, no
parity.

TPRINT Command
You can output messages to the BasTerminal from a BASIC application using the
TPRINT command. It has the same syntax as the PRINT and LPRINT commands. See
Chapter 5 for more information.

This is a simple program for entering data and echoing it to BasTerminal using the
INKEY$ function and TPRINT.

10 print "enter line"
30 c$=inkey$
40 if c$="" then goto 30
50 if c$=chr$(08) then goto 90
60 tprint c$;
70 x$=x$+c$
80 goto 30
90 tprint ""
100 tprint "input line= ";x$
110 goto 10

Configuring LPRINT Device
The LPRINT device is the first demand print port assigned to Scale A in the serial setup
menus. In a typical development setup, both BasTerminal and LPRINT device would be
assigned to Com Port 1. Com Port 1 is also the default Zmodem file transfer port.

Special Keys
BasTerminal translates the following standard serial input keys to these JAGUAR
terminal internal key values. You can use the following keys on a standard serial
keyboard to simulate the function keys on the JAGUAR keypad.

Serial Input Character Jaguar Character (Hex Value)

Back Space (0x08) is translated to Delete (0x7f)

Chapter 4: Programming Fundamentals
Serial Terminal Support

(3/99) 4-9

Tab (0x09) is translated to Select (0x05)
Escape (0x1b) is translated to Escape (0x02)
Enter (0x0d) is translated to Enter (0x08)
Ctrl+A (0x01) is translated to Function (0x01)
Ctrl+B (0x02) is translated to Escape (0x02)
Ctrl+C (0x03) is translated to Memory (0x03)
Ctrl+D (0x04) is translated to Tare (0x04)
Ctrl+E (0x05) is translated to Select (0x05)
Ctrl+F (0x06) is translated to Clear (0x06)
Ctrl+G (0x07) is translated to Zero (0x07)
Ctrl+H (0x08) is translated to Enter (0x08)

Chapter 5: JagBASIC Commands
Interpreter Commands

(3/99) 5-1

3/99

5 JagBASIC Commands
The JagBASIC commands are broken into 11 groups:

• Interpreter Commands—perform file and program maintenance functions, transfer
files, and aid in debugging.

• Variable Commands—assign values to variables, define global variables,
exchange variable values, access the JAGUAR terminal shared database, declare
arrays, read values from a DATA statement and assign them to variables, and
allow DATA statements to be reread from a specified line.

• Flow Control and Operator Commands—repeat a section of the program; branch
to a specified line number; execute a sub-statement depending on specified
conditions; provide logical operators for use in decision statements; clear the
JagBASIC execution stacks; send program control to the first line of the current
program, and branch to a location specified by a variable’s value.

• Math Commands—execute trigonometric, logarithmic and exponential,
conversion, rounding and truncation, random number generating, and other
arithmetic operations.

• String Commands—extract part of a string, convert decimal numbers to
hexadecimal or octal numbers, convert a character to ASCII code and the reverse,
create "filler" strings, count the number of characters in a string or the number of
bytes required to store a variable, display the string representation of a number,
locate one string within another string, and interpret the string entered by the user
as though it were a number.

• Simple I/O Commands—sound the JAGUAR terminal beeper on a specified input
or output, generate prompts, accept user input from the keyboard, check for key
presses, and format your output with tabs and spaces.

• Serial I/O Commands—access files; open or close a serial port; flush received
data in the BIOS serial input buffer; read input from the keyboard or serial port;
output data to a JAGUAR terminal serial COMx port; print formatted output on the
LPRINT device; output data to the specified serial port; and assign an output line
width to the LPRINT device or a file.

• File Commands—open and close a file; convert strings to numbers and the
reverse; read, write, and delete records from the indexed sequential file; test for the
end of a file; allocate space for variables in a random-access file buffer; identify
files as indexed sequential files; identify which field in a record is the index key;
read and write to a sequential file; get records from and put records in an indexed
file; read all characters of an entire line; return the current position within a file;
and move data into a random-access file buffer.

• Real-Time Process Control Commands—allocate and de-allocate events;
suspend program execution until an event trigger causes program execution to
resume; clear outstanding event triggers; disable asynchronous event triggers; re-
enable asynchronous event triggers after a critical section of code; return the state
of an event; enable you to asynchronously monitor an event; and enable ladder
logic rungs.

• Timing Commands—set or return the JAGUAR terminal system date and time;
suspend program execution for the of specified number of milliseconds; start and

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-2

stop the timer; and return a double precision floating point number that contains
the elapsed time in seconds.

• Error Trapping Commands—return the runtime error code for the most recent error;
return the line number where the error occurred, or the closest line number before
the line where the error occurred; simulate an occurrence of an error; and enable
error handling and, when an error occurs, directs your program to an error
handling routine.

Each group contains examples and information on the command's usage and syntax.
Some commands are discussed in two places in the chapter since they apply to more
than one area. JagBASIC syntax and program examples use the following conventions:

• Commands are not case-sensitive.

• Square brackets [] signify optional information.

• Divider bars | signify the available choices.

Interpreter Commands
JagBASIC programs can be entered in the JagBASIC interpreter. The interpreter provides
a secure operating environment where programs are restricted from accessing and
corrupting the JAGUAR terminal’s standard functions. Interpreter commands are typed
at the "BASIC:" prompt to perform a function. With JagBASIC enabled and no programs
running, press ESC to get the BASIC: prompt. From here, start typing lines of JagBASIC
or a JagBASIC command.

The interpreter’s program and file maintenance commands enable you to:

• Close all files, release file buffers, clear all common variables, set numeric
variables and arrays to zero, and set string variables to null.

• End a program and close all files.
• Delete a specific program line or a range of lines.
• Display the RAMDISK directory on the LPRINT device.
• Free the memory used by an array.
• Load and delete files from the RAMDISK.
• Save the current BASIC program to the RAMDISK with the specified file name.
• List all variables, or all or part of the program, to the LPRINT device.
• Clear the current program and all variables from memory.
• Execute the current file in memory.
• Terminate program execution and return to command level.
• Add comments or reference remarks to the code listing.
• Trace program execution for debugging purposes.
• Initiate a Zmodem file receive or transfer between serial port 1 and the RAMDISK.

Chapter 5: JagBASIC Commands
Interpreter Commands

(3/99) 5-3

This section discusses the following JagBASIC interpreter commands:

Command Usage

CLEAR Closes files, releases file buffers, clears common variables, sets
numeric variables and arrays to 0,sets string variables to null.

DELETE Deletes a specific program line or a range of lines.

DIR Prints the RAMDISK directory on the LPRINT device.

END Ends a program and closes all files.

ERASE Frees the memory used by an array.

KILL Deletes the specified file from the JAGUAR terminal RAMDISK.

LIST Lists all or part of a program to the LPRINT device.

LOAD Loads a file (filename.bas) from the RAMDISK into memory.

NEW Clears the current program and all variables from memory.

REM Enables you to add any comments or reference remarks to the
code listing.

RUN Executes the current file in memory.

RZ Initiates a Zmodem file receive over serial port 1 into the RAMDISK
file system.

SAVE Saves the current BASIC program in memory to the RAMDISK with
the specified file name.

STOP Terminates program execution; returns to command level.

SZ Initiates a Zmodem file transfer over serial port 1 from the
RAMDISK.

TRON TROFF Enables and disables tracing of program statements.

VARS Prints a list of all variables to the LPRINT device.

CLEAR
Usage
Closes all files, releases file buffers, clears all common variables, sets numeric
variables and arrays to zero, and sets string variables to null. Used to reinitialize all
variables to zero or to null.

Syntax
CLEAR

Example
CLEAR

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-4

DELETE
Usage
Deletes a specific program line or a range of lines.

Syntax
DELETE line[-line]

line The number of the line in the program that you want to delete. If a
range of lines is deleted, the first, the last, and all lines inclusive in
the range are deleted.

Example 1
DELETE 40

Example 2
DELETE 40-100

DIR
Usage
Prints the RAMDISK directory on the LPRINT device.

Syntax
DIR

Example
DIR

END
Usage
Ends a program and closes all files. If a program contains subroutines, an END
statement should be placed between the main program and the first subroutine to
prevent you from inadvertently running the subroutine. An END statement is executed
implicitly at the end of every program.

Syntax
END

Example 1
10 PRINT "Program Over."
20 END

Example 2
520 IF K>1000 THEN END ELSE GOTO 20

Chapter 5: JagBASIC Commands
Interpreter Commands

(3/99) 5-5

ERASE
Usage
Frees the memory used by an array. Arrays may be redimensioned after they are
erased so the memory space allocated may be used for other purposes.

Syntax
ERASE array name [,array name]...

array name The name of the array that you want to erase from
memory.

Example
200 DIM B(250)

.

.

.

450 ERASE B

KILL
Usage
Deletes the specified file from the JAGUAR terminal RAMDISK and frees the space it
occupied.

Syntax
KILL "filename.bas"

filename.bas The name of the file that you want to delete.

Example 1
KILL “file4.bas”

Example 2
10 KILL “data2.bas”

LIST
Usage
Lists all or part of a program to the LPRINT device.

Syntax
LIST [startline-endline]

Range of line numbers that you want to list to the LPRINT device.
Startline is the first line to print and endline is the last line to print.
If startline and endline are not specified, the entire program will be
listed.

Example 1
LIST

Example 2
LIST 10-20

Startline
endline

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-6

LOAD
Usage
Loads a file from the RAMDISK into memory. LOAD closes all open files and deletes all
variables residing in memory before loading the new file.

Syntax
LOAD “filename.bas”

filename.bas The name of the file that you want to load into memory. If the
extension and end quotes are omitted, .bas is assumed.

Example 1
LOAD “file1.bas”

Example 2
LOAD “TEST

NEW
Usage
Clears the current program and all variables from memory.

Syntax
NEW

Example
NEW

REM
Usage
Enables you to add comments or reference remarks to the program code. This
information is non-executable and is typically used to describe or explain the program
operation. The JagBASIC preprocessor deletes all REM statements in building the
executable JagBASIC program.

Syntax
REM comment

comment Text in any combination of characters.

Example
10 REM This is a comment.

RUN
Usage
Executes the current file in memory. If no program is resident in memory when RUN is
executed, JagBASIC returns to the command prompt.

Syntax
RUN [“filename.bas”]

filename.bas The name of the file that you want to execute. All open files will be
closed and the new program loaded into memory and executed. If
a filename is not specified, the current open program is executed.

Chapter 5: JagBASIC Commands
Interpreter Commands

(3/99) 5-7

Example
RUN “test.bas”

RZ
Usage
Initiates receiving files into the JAGUAR terminal's RAMDISK file system from the PC
using ZMODEM protocol over serial port 1.

Syntax
RZ

Example
RZ

SAVE
Usage
Saves the current BASIC program in memory to the RAMDISK with the specified file
name.

Syntax
SAVE “filename.bas”

filename.bas Name under which you want to save the current BASIC program.

Example
SAVE “file1.bas”

STOP
Usage
Terminates program execution and returns to the command level. STOP may be used
anywhere in a program to terminate execution. When STOP is encountered, JAGUAR
terminal displays the message: "end pgm."

Syntax
STOP

Example
10 INPUT A, B, C

20 PRINT A, B, C
30 STOP

SZ
Usage
Initiates sending files from the JAGUAR terminal's RAMDISK to the PC using a Zmodem
file transfer over serial port 1.

Syntax
SZ ["filename"]

filename The name of the file to be transmitted. If you do not specify a file
name, Zmodem transmits all files in the RAMDISK.

Example
SZ "file1.bas"

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-8

TRON, TROFF
Usage
Enables and disables tracing of program statements. TRON and TROFF can be used to
help debug the program.

• TRON (Trace On) enables a trace flag that prints each line number of the program
as it executes. The numbers appear enclosed in brackets. The output will use the
LPRINT device.

• TROFF (Trace Off) disables the trace flag.

Syntax
TRON
TROFF

Example
10 B=10
20 FOR C=1 to 2
30 D=B +10
40 PRINT B;C;D
50 B=B + 10
60 NEXT
70 END
TRON
RUN
[10] [20] [30] [40] 1 10 20
[50] [60] [30] [40] 2 20 30
[50] [60] [70]
TROFF

VARS
Usage
Prints a list of all variables to the LPRINT device.

Syntax
VARS

Example
variable <sb> INTEGER val: <0>
variable <sa> INTEGER val: <0>
variable <w2> STRING val: < 100.00>
variable <w1> STRING val: < 200.2>
4 variables 90 max

Variable Commands
JagBASIC enables you to represent two fundamental kinds of data: strings and
numbers. Number data is further divided into “types.” JagBASIC has three numeric data
types and one string type.

• Integer (A%)—a numeric variable representing a whole number between
-32768 and +32767.

• Single precision (A!)—a numeric variable in 32-bit floating point notation between
3.4E-38 to 3.4E+38.

Chapter 5: JagBASIC Commands
Variable Commands

(3/99) 5-9

• Double precision (A#)—a numeric variable in 64-bit floating point notation
between 1.7E-308 to 1.7E+308.

• Variable length string (A$)—a list of characters terminated by a 0. The maximum
length string is 80 bytes.

JagBASIC enables you to assign descriptive names to data values, called variables.
Variable names can contain up to 16 characters and must begin with a letter. Valid
characters are A-Z and 0-9. Variables are case sensitive, for example A$ and a$ are
different variables. The last character of the variable name specifies the data type (%, !,
#, or $). The maximum number of variables is 90 in rev. M. An array of variables
counts as 1. In REV. T the maximum numbers of variables is 130.

JAGUAR terminals use a mechanism called shared data for the various program
threads to share variable data. The link to shared data from JagBASIC is implemented
with a unique JagBASIC function.

DEFSHR ABC,fieldname

ABC The internal reference (variable) in BASIC for a variable in shared data with
a specified fieldname.

fieldname Any JAGUAR terminal shared data variable name as listed in Chapter 6 or
7.

Assignments to shared data appear the same as standard variables, i.e.,

ABC = SQR(XYZ!)

Shared data inputs to expressions or functions also appear the same, i.e.,

XYZ! = ATAN(ABC)

Shared data long integers are converted to double precision type in JagBASIC when
reading or writing to shared data. A long integer is a four-byte (32-bit) signed number.
Bit fields in shared data are converted to integers.

JagBASIC provides a simple structure to manipulate lists of data -- the array. An array
is a collection of values stored in elements that are accessed by indexing into an array.
It can hold only one type of variable. Arrays function as data storage and retrieval tools
in memory, just as files function as data storage and retrieval tools on disk. Arrays are
used as tools for organizing and processing data. An array enables you to create a set
of variables with a common name. Declaring the name and type of an array and
setting the number of elements and their arrangement in the array is referred to as
defining, or dimensioning, the array. Arrays may have up to three dimensions.
JagBASIC provides several data commands.

Data variables defined in the program
are saved in the JagBASIC interpreter
until the JAGUAR terminal is powered
down, the NEW command is issued,
or a new program is loaded using the
LOAD command.

Variable names of 8 characters or less
make the most efficient use of memory.

JagBASIC does not support using
array variables as an index into
an array.

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-10

Command Usage

COMMON Defines global variables that can be shared between chained
programs.

DATA Specifies values to be read by READ statements.

DEFSHR Allows a program to access the JAGUAR terminal shared da-
tabase.

DIM Declares an array, where subscripts are the dimensions of the
array.

LET Assigns the value of an expression to a variable.

OPTION BASE Declares the minimum value for array subscripts.

READ Reads values from a DATA statement and assigns them to
variables.

RESTORE Allows DATA statements to be reread from a specified line.

SWAP Exchanges the values of two variables that are variables of the
same data type.

TIPS
The LET command is optional and its use is not recommended. The following two
statements are equivalent: LET X=1 and X=1.

COMMON
Usage
Defines global variables that can be shared between chained programs.

By default variable names in a program module are available only in that program
module. COMMON extends the scope of listed variables to other chained programs.

Syntax
COMMON variablelist

variablelist One or more variables to be shared.

Example
COMMON a$,pi#

DATA

Usage
Specifies values to be read by READ statements. DATA statements contain lists of
values separated by commas. The first READ statement in a program reads the first
value in the DATA list. The second READ statement reads the second value in the DATA
list, and so on. JagBASIC tracks the next value to be read.

Syntax
DATA constant[,constant]...

Chapter 5: JagBASIC Commands
Variable Commands

(3/99) 5-11

constant One or more numeric or string constants specifying the data to be
read. String constants containing commas, colons, or leading or
trailing spaces are enclosed in quotation marks ("").

Example
10 DIM item$(5), number(5,3)
20 FOR k% = 1 to 5
30 READ item$(k%)
33 FOR j% = 1 to 3
35 READ number(k%,j%)
36 NEXT j%
40 NEXT k%
45 FOR j% = 1 to 3
60 FOR k% = 1 to 5
70 LPRINT item$(k%), number(k%,j%)
80 NEXT k%
85 Next j%
90 DATA hammers,4,5,6,umbrellas,2,3,4,wood_stoves,1,2
100 DATA bags_of_salt,4,5,6,needle_nose_pliers,2,3,4
110 END

Output: hammers 4
umbrellas 2
wood_stoves 1
bags_of_salt 4
needle_nose_pliers 2
hammers 5
umbrellas 3
wood_stoves 2
bags_of_salt 5
needle_nose_pliers 3
hammers 6
umbrellas 4
wood_stoves 3
bags_of_salt 6
needle_nose_pliers 4

DEFSHR

Usage
Allows a program to access the JAGUAR terminal shared database. Any read or write to
the variable name automatically refers to the associated field within the shared
database. JagBASIC automatically determines the variable type from the shared file
name. The shared file name overrides the variable name suffix.

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-12

Once the DEFSHR command is executed for a variable, the shared data variable may
be read or written using JagBASIC’s variable name for it. The variable type (string,
float, integer) must match the shared data type; otherwise a syntax error is indicated.
No type conversion is performed.

Syntax

DEFSHR variablename,sharedfilename

variablename The name of the variable.

sharedfilename The name of the shared data file.

Example
This program displays the gross weight of the scale not selected in the lower JAGUAR
terminal display using the “print” command. The “a” and “b” keys on the JAGUAR
terminal keyboard enable you to switch between Scale A and Scale B.

1 REM w1=gross weight Scale A, w2=gross weight scale B.
2 REM sa is the discrete event to select scale A.
3 REM sb is the discrete event to select scale B.
4 REM Display the gross weight of the scale not selected in
5 REM the lower JAGUAR terminal display using the "print" command.
6 REM Switch between Scale A and Scale B using the
7 REM "a" and "b" keys on the JAGUAR terminal keyboard.
10 DEFSHR w1,wt101
20 DEFSHR w2,wt201
30 DEFSHR sa,t_6c0
40 defshr sb,t_6c1
50 sa=1
60 PRINT " wa= ";w2
70 IF INKEY$ = "b" THEN GOTO 100
80 GOTO 60
100 sb=1
110 PRINT " wb= ";w1
120 IF INKEY$ = "a" THEN GOTO 50
130 GOTO 110
140 END

SYNTAX
DEFSHR var, SDname

Shared Data

wt101

JagBASIC

gross$

Chapter 5: JagBASIC Commands

(3/99) 5-13

DEFSHR Arrays
You may use single dimension or multidimensional arrays of DEFSHRs. JagBASIC
allows you to setup an array of DEFSHRs so that you can index into an array of shared
data variables. This feature reduces the amount of JagBASIC code needed for
accessing multiple scales, setpoints, discrete input variables, discrete output variables,
and literals. You must use the dimension statement to define the array type and array
size. Then, you use the DEFSHR statement to assign a shared data variable to each
element of the array. The type of each shared data variable must be the same type as
the array.

Example 1
5 REM ARRAY OF SHARED DATA LITERALS
10 DIM a$(5)
20 DEFSHR a$(1),lit01
30 DEFSHR a$(2),lit02
40 DEFSHR a$(3),lit03
50 DEFSHR a$(4),lit04
60 DEFSHR a$(5),lit05
70 FOR i% = 1 to 5
80 LPRINT "literal";i%;" = ";a$(i%)
90 NEXT i%
100 END

Example 2
5 REM ARRAY OF SETPOINT COINCIDENCE VALUES
10 DIM setpoint#(4)
20 DEFSHR setpoint#(1),sp105
30 DEFSHR setpoint#(2),sp305
40 DEFSHR setpoint#(3),sp505
50 DEFSHR setpoint#(4),sp705
60 FOR i% = 1 to 4
70 setpoint#(i%)=2.0*i%
80 NEXT i%
90 END

Example 3
5 REM ARRAY OF DISCRETE OUTPUTS
10 DIM do%(12)
20 DEFSHR do%(1),p_500
30 DEFSHR do%(2),p_501
40 DEFSHR do%(3),p_502
50 DEFSHR do%(4),p_503
60 DEFSHR do%(5),p_508
70 DEFSHR do%(6),p_509
80 DEFSHR do%(7),p_50a
90 DEFSHR do%(8),p_50b
100 DEFSHR do%(9),p_50c
110 DEFSHR do%(10),p_50d
120 DEFSHR do%(11),p_50e
130 DEFSHR do%(12),p_50f
140 FOR j% = 1 to 10
150 FOR i% = 1 to 12
160 do%(i%)=1
170 SLEEP 1000
180 do%(i%)=0
190 NEXT i%
200 NEXT j%

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-14

DEFSHR Links to Remote Shared Data
JagBASIC programs can access shared data variables located in remote JAGUAR
terminals in a cluster. The node location and name of the remote data variable is
specified in a DEFSHR statement. When there is no node specified in the DEFSHR
command, JagBASIC assumes that the request is for the local node.

• defshr a$,j2/wt101 creates a remote link to gross weight shared data variable
wt101 in JAGUAR terminal node j2.

• defshr b$,wt101 creates a local link to gross weight shared data variable wt101.

Once the link has been established, use the normal JagBASIC syntax to access the
remote variable. The program should take into account that the remote JAGUAR
terminal may not be online when you attempt to access it. Use an ON ERROR GOTO or
ON ERROR GOSUB statement to handle these offline errors.

The program should also take into account that there is a short time delay when it
accesses the remote shared data variable. When the BASIC application uses the same
remote variable more than once in a series of calculations, it should access it only
once and store the value in a local BASIC variable. Then, the BASIC application can use
the local BASIC variable in the subsequent calculations. This procedure will streamline
the execution speed of the program.

Example
10 rem SUM GROSS WEIGHT IN A CLUSTER
20 on error gosub 1000
30 dim w#(4,2)
40 defshr w#(1,1),j1/wt110
50 defshr w#(1,2),j1/wt210
60 defshr w#(2,1),j2/wt110
70 defshr w#(2,2),j2/wt210
80 defshr w#(3,1),j3/wt110
90 defshr w#(3,2),j3/wt210
100 defshr w#(4,1),j4/wt110
110 defshr w#(4,2),j4/wt210
120 sum#=0

130 for i% = 1 to 4
140 for j% = 1 to 2
150 sum#=sum#+w#(i%,j%)
160 next j%
170 next i%
180 print using "total_+#####.##";sum#
190 tprint using "total_+#####.##";sum#
200 goto 120
1000 if err()<>32 or erl()<>150 then end
1010 print "JAGUAR ";i%;" offline"
1020 if inkey$ = "" then goto 1020
1030 return

DIM

Usage
Declares the name, size and type of an array and allocates storage for it. An array is a
variable containing a series of values that are referred to with one name. The number
in parentheses following the array name defines the number of individual variables in
the array. A JagBASIC array can have up to three dimensions.

Chapter 5: JagBASIC Commands

(3/99) 5-15

Syntax
DIM variable[(subscripts)] [,variable[(subscripts)]]

variable Name of an array.

subscript Used in conjunction with variable; defines dimensions of array.

Example
10 DIM item$(5), number(5,3)
20 FOR k% = 1 to 5
30 READ item$(k%)
33 FOR j% = 1 to 3
35 READ number(k%,j%)
36 NEXT j%
40 NEXT k%
45 FOR j% = 1 to 3
50 PRINT "You have these items:"
60 FOR k% = 1 to 5
70 PRINT item$(k%), number(k%,j%)
80 NEXT k%
85 NEXT j%
90 DATA hammers,4,5,6,umbrellas,2,3,4
95 DATA wood_stoves,1,2,3
100 DATA bags_of_salt,4,5,6,pliers,2,3,4
110 END

LET

Usage
Assigns the value of an expression to a variable. Use of the keyword LET is optional.
This command is used to initialize variables or to change their current value. The
command word LET is optional and its use is not recommended.

Syntax
[LET] variable=expression

variable The variable name.

expression The value that you want to assign to the variable name.

Example 1
10 LET A$ = “JAGUAR”

Example 2
20 B$ = “JagBASIC”

OPTION BASE

Usage
Declares the minimum value for array subscripts. Subscripts are the numbers which
can be used to access the elements of an array. OPTION BASE gives an error if the
base value is changed. The default subscript base is 1.

Array variables “can not” be used as
part of any serial input statement,.

Example of illegal operation:

10 open “com1:xpr len10 trm13
 tmo100” for input as #1
20 Input #1, data$(x)

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-16

Syntax
OPTION BASE {0 | 1}

0 Sets the lowest value any array subscript can have to 0.

1 Sets the lowest value any array subscript can have to 1. This is
the default setting.

Example 1
OPTION BASE 1

Example 2
OPTION BASE 0

READ

Usage
Reads values from a DATA statement and assigns them to variables. Values are
always read in the order in which they appear in the DATA statements.

Syntax
READ variablelist

variablelist One or more variables, separated by commas.

Example
70 DIM A(10)
80 FOR I=1 TO 10
90 READ A(I)
100 NEXT I
110 DATA 3.10,5.20,6.10,7.20,8.10
120 DATA 5.30,6.30,7.30,8.30,9.30

RESTORE

Usage
Allows DATA statements to be reread from a specified line. Enables a program to read
data selectively based on a particular condition.

Syntax
RESTORE [line]

line The line number of a DATA statement. If line is omitted, the next
READ accesses the first item in the first DATA statement.

Example
10 READ A,B,C
20 RESTORE
30 READ D,E,F
40 DATA 57,58,59

Chapter 5: JagBASIC Commands
Flow Control and Operator Commands

(3/99) 5-17

SWAP
Usage
Exchanges the values of two variables, if the variables are the same data type.

Syntax
SWAP variable1, variable2

variable1 One of the variables whose value you want to exchange.

variable2 One of the variables whose value you want to exchange.

Example
10 a% = 1: b% = 2
20 PRINT "Before: "; a%, b%
30 SWAP a%, b%
40 PRINT "After: "; a%, b%

Output: Before 1,2
After 2,1

Flow Control and
Operator Commands

Few programs will run straight through the program code from the first statement to the
last in sequence. Usually at some point, you will need to branch to a different piece of
code or repeat a section multiple times. In addition, identical tasks that are used in
several places can be made into a subroutine to save code space. This section
provides details on how JagBASIC allows you to control the sequence of program
execution.

Branching directs control of the code away from the next sequential step. JagBASIC has
two commands that can be used to perform branching: GOTO and GOSUB RETURN.

• GOTO causes the program to jump to a different execution point and continue
sequencing from the line number indicated until the program ends or encounters
another “branching” command.

• GOSUB RETURN causes the program to jump to a different execution point and
then return to the statement following the original branching point once the RETURN
statement is reached.

• IF condition THEN line executes an implied GOSUB call to the appropriate line
depending on the specified condition. The program jumps to a different execution
point and then returns to the statement following the original branching point once
the RETURN statement is reached.

Looping executes the same sequence of statements more than one time. JagBASIC has
two loop commands: FOR NEXT and WHILE WEND.

• The FOR NEXT loop is repeated a fixed number of times as determined in the
statement’s first line.

• The WHILE WEND loop is repeated until a condition has been met.

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-18

Decision and operator commands enable programs to change processing based on
certain criteria. JagBASIC’s fundamental criteria determining statement is the IF
THEN command.

• IF THEN, used in conjunction with the logical operators, AND, OR, and XOR,
enables you to establish specific conditions which must be met in order for a
resulting action to occur.

This section discusses the following flow control and operator commands:

Command Usage

AND A logical operator in a decision statement which establishes two
sets of criteria to be met.

CHAIN Dynamically loads another program file for execution and begins
executing the program.

FOR…NEXT Repeats a section of the program the specified number of times.

GOSUB Branches to a specified line number with intent to return to the next
line.

GOTO Branches unconditionally to the specified line number.

IF…THEN Executes the sub-statement depending on specified conditions.

OR Used as a logical operator in a decision statement to establish two
possible conditions, of which only one needs to be met.

RESETJAG Resets the Jaguar by forcing its execution through the Jaguar
power-up.

RESTART Clears the JagBASIC execution stacks and sends program control
to the first line of the current program.

RETURN Used in conjunction with GOSUB, indicates that the subroutine is
complete.

SWITCHSUB Branches to a line number specified by the value of a variable
with intent to return to the next line.

SWITCHTO Branches unconditionally to the line number specified by the value
of a variable.

WHILE…WEND Repeats a section of the program until a specified logical condition
is true.

XOR Used as a logical operator in a decision statement to establish two
possible conditions, only one of which can be met.

TIPS
JagBASIC does not support commands for breaking out of loops other than their
normal exit point. For this reason programmers may try to branch out of loops. Do not
jump from inside a loop to outside the range of the loop. Always take the normal return
from a GOSUB command. JagBASIC supports nine levels of nesting for GOSUB, FOR-
NEXT, and WHILE-WEND. If you branch out of these structures, the nesting level does
not get reset. Eventually, an overflow error will occur.

Chapter 5: JagBASIC Commands
Flow Control and Operator Commands

(3/99) 5-19

AND

Usage
Used as a logical operator in a decision statement to establish two sets of criteria, both
of which must be met. AND can also be used as a bitwise operator between two
integer expressions.

Syntax
IF condition1 AND condition2 THEN result.

condition1 First condition for decision.

condition2 Second condition for decision.

result Result that will occur if both conditions are met.

Example 1
30 IF A>75 AND B<20 THEN 5000

Example 2
50 A% = (B% AND 1)

CHAIN

Usage
Allows you to program a large application by enabling you to split the application into
smaller program modules.

CHAIN loads another program and transfers control from the current program to
another BASIC program. Variables identified as common variables are accessible by
the chained JagBASIC program. CHAIN commands must be placed in the top level of
the JagBASIC program, not within a GOSUB, IF-THEN-ELSE, WHILE-WEND, or FOR-
NEXT loop.

Syntax
CHAIN “filename.bas”

filename.bas The name of the program in the JAGUAR terminal RAMDISK
directory to which you want to transfer the current program's
controls and variables.

Example
CHAIN "test.bas"

The AND operator has a lower
precedence than assignment
operators. Use parentheses around
the operation to assign its value to a
variable.

For the most efficient memory
utilization, start execution with
the largest program and chain
the smaller programs.

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-20

FOR NEXT

Usage
Repeats the block of statements between the keywords FOR and NEXT the specified
number of times.

Syntax
FOR counter = start TO end [STEP increment]
*
*
*
*
NEXT counter

counter A numeric variable used as the loop counter.

start The initial value of the counter.

end The final value of the counter.

increment The amount the counter is changed each time through the loop. A fractional
value is not allowed. If STEP is not specified, JagBASIC assumes a value of
1.

Example 1
100 FOR j% = 1 TO 15
110 PRINT j%
120 SLEEP 1000
130 NEXT j%

Example 2
100 FOR a% = 1 to 100 STEP 10
110 PRINT a%
120 NEXT a%

GOSUB

Usage
Branches to a subroutine. Used in conjunction with RETURN.

Syntax
GOSUB line
*
*
line *
*
RETURN

line The line number of the subroutine to branch to in the program.

Chapter 5: JagBASIC Commands
Flow Control and Operator Commands

(3/99) 5-21

Example
10 FOR b% = 1 TO 20
20 GOSUB 50
30 NEXT b%
40 END
50 REM Print Subroutine
60 PRINT “b%= “,b%
70 RETURN

GOTO

Usage
Branches unconditionally to a specified line.

Syntax
GOTO line
*
*
*
line *

line The line number to branch to in the program.

Example
10 if inkey$="E" then goto 50
20 goto 10
50 end

IF THEN
Usage
Executes the sub-statement depending on specified conditions. The entire IF statement
must be contained on one line. The condition is any expression that can be evaluated
as true or false. You can have multiple statements in a THEN or ELSE clause as long
as the entire statement is contained on one line.

The IF condition THEN line statement executes an implied GOSUB call to the
appropriate line depending on the specified conditions. Be sure to execute a RETURN
from this implied GOSUB.

Syntax
IF condition THEN statement [ELSE statement]
IF condition THEN GOTO linenumber [ELSE statement]
IF condition THEN line [ELSE line]

Example 1
10 INPUT "SELECTION ? ", i%
20 IF i% = 1 THEN PRINT "OK" ELSE GOTO 50
30 GOTO 10
50 END

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-22

Example 2
10 FOR i% = 1 to 10
20 IF i% < 7 THEN 100 ELSE 120
30 NEXT i%
40 END
100 PRINT " You lose."
115 RETURN
120 PRINT " You win."
130 RETURN

Example 3
NextKey:
m$=inkey$
IF m$=chr$(2) THEN x%=2: GOTO Escape
IF m$=chr$(3) THEN x%=3: GOTO Memory ELSE x%=0: GOTO NextKey
Escape:
PRINT “Escape”; x%: GOTO NextKey
Memory:
PRINT “Memory”; x%: GOTO NextKey

OR
Usage
Used as a logical operator in a decision statement to establish two possible conditions,
of which only one needs to be met. OR can also be used as a bitwise operator between
two integer expressions.

Syntax
IF condition1 OR condition2 THEN result

condition1 First condition for decision.
condition2 Second condition for decision.
result Result that will occur if either condition is met.

Example 1
30 IF A>75 OR B<20 THEN 5000

Example 2

30 IF A>75 OR B<20 THEN GOTO 5000

Example 3

10 B% = (A% or C%)

The OR operator has a lower
precedence than assignment
operators. Use parentheses around
the operation to assign its value to a
variable.

The first example is an implied GOSUB
and requires a RETURN statement
later in the program.

Chapter 5: JagBASIC Commands
Flow Control and Operator Commands

(3/99) 5-23

RESETJAG
Usage
The RESETJAG command re-initializes the Jaguar by forcing execution through the
Jaguar power-up cycle. This command is only available in Jaguar Release T and later.

Syntax
RESETJAG

Example
RESETJAG

RESTART
Usage
Clears the JagBASIC execution stacks and sends program control to the first line of the
current program. This command does not affect the BASIC variables.

Syntax
RESTART

Example
RESTART

RETURN
Usage
Branches back to the line following a GOSUB statement.

Syntax
RETURN

Example
10 GOSUB 1000
*
1000 LPRINT "Hello"
1010 RETURN

SWITCHSUB
Usage
Performs a GOSUB call to the line specified in the variable.

Syntax
SWITCHSUB lineNumber%

lineNumber% is a variable containing the line number to which control is transferred.

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-24

Example 1
110 if a%=1 then j%=1000 else j%=2000
120 switchsub j%
130 REM Main Loop
140 a%=0
150 end
1000 LPRINT "Test complete"
1010 Return
2000 LPRINT “Select Test”
2010 Return

Example 2
Code before running through JagBASIC preprocessor. The JagBASIC preprocessor
resolves labels that are identified by xx to line numbers.

rem table initialization
dim cmd% (18)
j%=1
NextCmd:
Read cmd%(j%)
if j%<18 then j%=j%+1; GOTO NextCmd
*
*
rem call subroutine to process command
ProcessCommand:
Input “^command”; j%
If j%<0 or j%>18 then goto ProcessCommand
switchsub j%
*
SetDischargeCycle:
*
CaptureTare:
*
*
rem command state table
data xx SetDichargeCycle, xx CloseGates, xx CloseGate
data xx WaitForWHGateClose, xxCloseGate, xxWaitUGClose
data xx WaitSettlingTimer, xxWaitNoMotion, xxNoMotion
data xx CaptureTare, xxRecordDraftComplete, xxCheckUpstreamPreact
data xx SetFill cycle, 0,0,0,0,0

SWITCHTO

Usage
Performs a GOTO operation to the line specified in the variable.

Syntax
Switchto lineNumber%

lineNumber% is a variable value that specifies the location to GOTO.

Chapter 5: JagBASIC Commands
Flow Control and Operator Commands

(3/99) 5-25

EXAMPLE
100 if a%=1 then j%=1000
110 if a%=2 then j%=1100
120 if a%=3 then j%=1200
500 Switchto j%
1000 lprint"Test 1"
1010 a%=0
1020 go to 2000
1100 a%=1
1120 GOTO 2000
1200 lprint "Test 3"
1210 a%=2
2000 *

WHILE…WEND

Usage
Executes a series of statements as long as a specified condition is true. If the condition
is false when the WHILE statement is first encountered, the loop is bypassed and not
executed.

Syntax
WHILE condition
.
.
WEND

Example
10 years=0
20 money=10000
30 start=money
40 interest=8.5/100
50 WHILE money <= 2*start
60 PRINT years,money
70 years = years+1
80 money = money+(interest*money)
90 WEND
100 PRINT "In "; years ; " years, you'll have $"; money
110 END

XOR

Usage
Used as a logical operator in a decision statement to establish two possible conditions,
only one of which can be met. Used to guarantee that only one variable is true,
preventing conflicting options from being true. XOR can be used as a bitwise operator
between two integer expressions. The XOR operator has a lower precedence than
assignment operators. Use parentheses around the operation to assign its value to a
variable.

The XOR operator has a lower
precedence than assignment operators.
Use parentheses around the operation
to assign its value to a variable.

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-26

Syntax
IF condition1 XOR condition2 THEN result

condition1 First condition for decision.

condition2 Second condition for decision.

result Result that will occur if only one conditions is met.

Example 1
30 IF A>75 XOR B<20 THEN 5000

Example 2

100 x%=(4 XOR A%)

Precedence Of Operators
JagBASIC has an order of operations that have a predefined precedence when
evaluating expressions. The following are all numeric and conditional operators in
precedence order.

^ Exponent

* Multiply

/ Divide

\ Integer Divide

MOD Modulus

+ Add

- Subtract

= Equals

= Assign

<> Not Equal

< Less Than

> Greater Than

<= Less Than Or Equal

>= Less Than Or Equal

=> Greater Than Or Equal

NOT Not

AND And

OR Or

XOR Exclusive Or

This example is an implied GOSUB
statement.

Chapter 5: JagBASIC Commands
Math Commands

(3/99) 5-27

For example,

60 B=3+4*5

70 Print B

Output: 23

AND, OR, and XOR have lower precedence than an assignment operator. Therefore, if
you need to assign the results of an AND, OR, and XOR operation to a variable, you
must put parentheses around the operation.

Math Commands
JagBASIC provides numerous advanced mathematical commands. Using the
commands listed in this section, you can perform the following types of mathematical
functions:

• Trigonometric commands ATN, COS, SIN, and TAN return the arctangent, sine,
cosine, and tangent. The angle values are expressed in radians. To convert to
degrees, multiply the number of radians by (180/π) or approximately 57.3°.

• Logarithmic and Exponential commands return the natural logarithm and its
complement. Natural logarithms are based on e (approximately 2.718282.)

• Conversion commands convert numbers from one type to another. These
commands enable you to convert a number from its existing format to the format
expected by the function or subroutine. Conversion is implied by the variable’s
data type. For example, a#=1 automatically converts the integer 1 to a double
precision floating point number.

• Rounding and Truncating commands round and truncate numbers.

• Random Number commands generate random numbers.

• Arithmetic Operations commands perform operations such as finding a number’s
absolute value, determining its sign, and finding its square root.

This section discusses the following JagBASIC mathematical commands:

Command Usage
ABS() Returns the absolute value of a number.
ATN() Returns the arctangent of specified numeric expression in radians.
CINT Rounds a numeric expression to the closest integer.
COS() Returns the cosine of a specified angle expressed in radians.
CSNG() Converts a numeric expression to a single-precision value.
EXP() Returns e raised to a specified power, where e is the base of natural

logarithms.
INT() Returns the largest integer less than or equal to a numeric

expression.
LOG Returns the natural logarithm of a numeric expression.
RANDOMIZE Initializes the random-number generator.
RND Returns a single-precision random number between 0 and 1.
SGN Returns a value indicating the sign of a numeric expression.
SIN() Returns the sine of a specified angle expressed in radians.
SQR() Returns the square root of a numeric expression.
TAN() Returns the tangent of a specified angle expressed in radians.

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-28

TIPS
If you specify nonnumeric values with any of the mathematical commands, you will
receive a type mismatch error message.

ABS()
Usage
Returns the absolute value of a number. The absolute value of a number is the
magnitude of the number without regard to sign. Absolute values are always positive
numbers.

Syntax
ABS(numeric-expression)

numeric-expression Any numeric expression.

Example
10 PRINT ABS(45.5-100)

Output: 54.5

ATN()
Usage
Returns the arctangent of a specified numeric expression in radians. The arctangent is
the angle whose tangent is equal to the specified value.

Syntax
ATN(numeric-expression)

numeric-expression Any numeric expression expressed in radians.

Example
10 LPRINT ATN(.75), ATN(.9)

Output (in radians): 0.6435011 0.7328151

CINT
Usage
Rounds a numeric expression to the closest integer. The numeric expression can be
any number in the range -32,768 through 32,767.

For positive numbers

• If the numeric expression contains a fractional part that is less than 0.5, CINT
rounds to the next lower integer.

• If the numeric expression contains a fractional part that is greater than or equal to
0.5, CINT rounds to the next higher integer.

Chapter 5: JagBASIC Commands
Math Commands

(3/99) 5-29

For negative numbers

• If the numeric expression contains a fractional part that is less than 0.5, CINT
rounds to the next higher integer.

• If the numeric expression contains a fractional part that is greater than or equal to
0.5, CINT rounds to the next lower integer.

Syntax
CINT(numeric-expression)

numeric-expression Any numeric expression.

Example
10 PRINT CINT(12.49), CINT(12.51), CINT(12.50), CINT(-12.49)

Output: 12 13 12 -12

COS()

Usage
Returns the cosine of a specified angle expressed in radians.

Syntax
COS(angle)

angle Angle expressed in radians.

Example
40 pi#=3.141592654
50 LPRINT COS(180*pi#/180)

Output: -1

CSNG()

Usage
Converts a numeric expression to a single-precision value.

numeric-expression Any numeric expression.

Syntax
CSNG(numeric-expression)

Example
PRINT CSNG(975.342151523497)

Output: 975.342152

A single precision numeric variable
represents a number of seven or
fewer digits plus an exponent.

A double precision numeric variable
represents a number of eight or more
digits plus an exponent.

Single-precision and double-
precision are also referred to as
floating point variables.

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-30

EXP()

Usage
Returns e raised to a specified power. The natural logarithm base, e, has a value of
approximately 2.71828. The natural logarithm of a number is the power to which the
base e must be raised to obtain the number. EXP is the inverse function of the natural
log function.

Syntax
EXP(numeric-expression)

numeric-expression Any numeric expression.

Example
PRINT EXP(0), EXP(1)

Output: 1 2.718282

INT()

Usage
Returns the integer portion of a specified numeric expression.

• For positive numbers, the fractional part of the numeric expression is truncated,
that is cut-off.

• For negative numbers, the next lower integer is returned.

Rounding does not occur with this command.

Syntax
INT(numeric-expression)

numeric-expression Any numeric expression.

Example
10 PRINT INT(12.54), INT(-99.4)

Output: 12 -100

LOG

Usage
Returns the natural logarithm of a numeric expression. Natural logarithms are based on
e, which is approximately 2.718282. The natural logarithm of a number is the power
to which the base e must be raised to obtain the number.

Syntax
LOG(numeric-expression)

numeric-expression Any positive numeric expression.

Chapter 5: JagBASIC Commands
Math Commands

(3/99) 5-31

Example
10 PRINT LOG(5), LOG(EXP(1))

Output: 0.69897 1

RANDOMIZE, RND

Usage
RANDOMIZE specifies a particular initial value or seed value for the random number
generator. This seed value is used in specifying the random-number series to be used
when the program calls the RND function.

RND returns a single-precision random number between 0 and 1. The same sequence
of random numbers is generated each time the program runs unless the RANDOMIZE
statement was used to specify a different sequence.

RND returns a pseudorandom number which is generated from the seed value using a
formula designed to produce numbers that have no pattern or order and appear to be
random. Each seed actually creates a fixed sequence of numbers. RANDOMIZE
enables you to change the seed value and the sequence generated.

Syntax
RANDOMIZE [seed%]

RND[(n#)]

seed% A number used to initialize the random-number generator.

n# A value that sets how RND generates the next random number.

Example
10 RANDOMIZE
20 FOR game% = 1 to 10
30 die1 = INT(6*RND + 1)
40 die2 = INT(6*RND + 1)
50 dice = die1 + die2
60 PRINT dice;
70 IF dice < 7 THEN GOSUB 100 ELSE GOSUB 120
80 NEXT game%
90 GOTO 150
100 PRINT " You lose."
115 RETURN
120 PRINT " You win."
130 RETURN
150 END

SGN

Usage
Returns a value indicating the sign of a numeric expression. Used to test whether a
value is negative, positive, or zero.

Syntax
SGN(1| 0 | -1)

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-32

1 The expression is positive.

0 The expression is zero.

-1 The expression is negative.

Example
10 PRINT SGN(12), SGN(-15), SGN(0)

Output: 1 -1 0

SIN()
Usage
Returns the sine of a specified angle expressed in radians.

Syntax
SIN(angle)

angle Angle expressed in radians.

Example
10 pi#=3.141592654
20 LPRINT SIN(90*pi#/180)

Output: 1

SQR()
Usage
Returns the square root of a positive numeric expression.

Syntax
SQR(numeric-expression)

numeric-expression Any numeric expression.

Example
10 PRINT SQR(25), SQR(2)

Output: 5 1.414214

TAN()
Usage
Returns the tangent of a specified angle expressed in radians.

Syntax
TAN(angle)

angle Angle expressed in radians.

Chapter 5: JagBASIC Commands
String Commands

(3/99) 5-33

Example
10 pi#=3.141592654
20 LPRINT TAN(45*pi#/180)

Output: 1

String Commands
JagBASIC enables you to form many string expressions. A string is simply a variable
length series of character values. Each byte in a string expression is treated in one of
two ways:

• As an ASCII character with a value in the range 1 to 127. The ASCII character set
includes uppercase and lowercase letters, numbers, punctuation marks,
mathematical symbols, and printer control characters.

• As an extended character in the range 128 through 255.

Strings are terminated by a 0 (null). The maximum length of a string is 80 characters.

To define a string variable, select a name that describes the string's contents, such as
name$ for the name on a mailing label. The dollar sign ($) suffix means that the
variable holds string data. Use an equal sign (=) followed by a string expression to
assign a value to the string. A string expression can be as simple as a single variable
name or as complex as a combination of string literals, variables, functions, and the
plus sign.

Expression Comment

"Tom and Harry" Single literal

Name$ Single variable

RIGHT$(Name$,5) String function

"Smith" + LastName$ Combination expression

JagBASIC's string commands enable you to:

• Extract part of a string.

• Convert decimal numbers (base 10) to hexadecimal (base 16) or octal (base 8)
strings.

• Convert a character to ASCII code and the reverse.

• Create "field" strings, which are used to format and arrange output.

• Count characters in a string or the number of bytes required to store a variable.

• Display the string representation of a number.

• Locate one string within another string.

• Interpret the string entered by the user as though it were a number.

• Insert a string into another string.

• Convert a string to upper case or lower case (Revision “T” only).

• Trim spaces from the beginning or end of a string (Revision “T” only)

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-34

This section discusses the following string commands.

Command Usage

ASC() Returns the ASCII or extended code value for the first character in a
string expression.

CHR$() Returns the single-character string corresponding to the specified ASCII
code.

HEX$() Returns a string containing the hexadecimal value of a number.

INSTR Returns the position of the first occurrence of a string in another string.

LCASE$ Converts a string to a lower case.

LEFT$() Returns a specified number of leftmost characters in a string.

LEN() Returns the number of characters in a string or the number of bytes
required to store a variable.

LTRIM$ Removes spaces from the beginning of a string.

MID$() Returns part of a string.

MSET$() Inserts one string into another string, overwriting the existing
characters.

PADC$ Add pad characters to beginning and end of a string.

PADL$ Adds pad characters to the beginning of a string.

PADR$ Adds pad characters to end of a string

OCT$() Returns an octal string representation of a number.

RIGHT$() Returns a specified number of rightmost characters in a string.

RTRIM$ Removes spaces from the end of a string.

SPACE() Returns a string of spaces.

STR$ Returns a string representation of a number.

STRING$() Returns a string of a specified length made up of a repeating character.

UCASE$ Converts a string to upper case.

VAL() Converts a string representation of a number to a number.

ASC()

Usage
Returns the ASCII or extended code value of the first character in the specified string
expression.

Syntax
ASC(stringexpression$)

stringexpression$ Any string expression.

Chapter 5: JagBASIC Commands
String Commands

(3/99) 5-35

Example
10 PRINT ASC("Quiet")

Output: 81

The ASCII value of a capital Q is 81.

CHR$()

Usage
Returns the single-character string corresponding to the specified ASCII code. Used for
characters not easily entered on the keyboard and placed in a string, such as most
control characters and graphic characters. The CHR$ commands can generate all 255
characters of the ASCII and extended character sets.

Syntax
CHR$(ascii-code%)

ascii-code% ASCII or extended code of the desired character in the range of 1 to
255.

Example
20 PRINT CHR$(65)

Output: A

HEX$()

Usage
Converts a decimal number (base 10) to a hexadecimal number (base 16).

Syntax
HEX$(numeric-expression)

numeric expression Any numeric expression.

Example
10 INPUT x
20 a$ = HEX$(x)
30 PRINT x; "decimal is "; a$; “ hexadecimal”

INSTR

Usage
Returns the position of the first occurrence of a string in another string. Used for
searching text in database fields or for validating user input.

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-36

Syntax
INSTR(string1$,string2$)

string1$ String expression being searched.

string2$ String expression that you want to locate.

Example
10 DIM prglst$(5)
20 prglst$(1)="abcdefgh"
30 prg$="bcd"
40 PRINT INSTR(prglst$(1),prg$)

Output: 2

LCASE$

Usage
Converts a string to lower case.

Syntax
 LCASE$ (stringexpression$)

stringexpression$ Any string expression.

Example
10 a$ = "aBcDe"
20 b$ = lcase$ (a$)

LEFT$()

Usage
Returns the specified number of leftmost characters in a string. If you specify a number
of characters greater than or equal to the string's length, the entire string is returned.

Syntax
LEFT$(stringexpression$,n%)

stringexpression$ Any string expression.

n% Number of characters to return. Range is 0 to 80.

Example
10 a$ = "JAGUAR BASIC"
20 PRINT LEFT$(a$, 6)

Output: JAGUAR

T. Rev only

Chapter 5: JagBASIC Commands
String Commands

(3/99) 5-37

LEN()

Usage
Returns the number of characters in a string or the number of bytes required to store a
variable. Used to obtain the length of a string. If a zero is returned, the string is empty.

Syntax
LEN(stringexpression$)

stringexpression$ Any string expression.

Example
10 A$ = "ABC"
20 WHILE LEN(A$) < 8
50 A$ = A$ + "C"
60 LPRINT A$;" HAS LENGTH "; LEN(A$)
70 WEND
80 END

LTRIM$

Usage
Removes the spaces from the beginning of a string.

Syntax
LTRIM$ (stringexpression$)

stringexpression$ Any string expression.

Example
10 a$ = "12345"
20 b$ = 1trim$(a$)

MSET$()

Usage
Inserts one string into another string at a specified position. Overwrites the existing
characters so that the length of the string remains the same.

Syntax
MSET$() (string 1$, string2$, position %)

string1$ string to be changed

string2$ string to insert

position% Number of character to insert string after

Example
5 a$="123456789"

T. Rev only

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-38

10 b$="abc"
15 a$=MSET$(a$,b$,3)
20 LPRINT "a$"=";a$

Output: a$=123abc789

MID$()

Usage
Returns part of a string. The part of the string returned begins at the specified position
and contains the given number of characters. If the starting position is greater than the
length of the string, a null string is returned. If the number of characters to return is
greater than the length of the string, the entire string is returned.

Syntax
MID$(stringexpr$,start%[,length%])

stringexpr$ Any string expression.

start% The starting character position to read.

length% The number of characters to read.

Example
10 a$ = "Where is Cambridge?"
20 PRINT MID$(a$, 10, 10)

Output: Cambridge?

OCT$()

Usage
Converts a number to an octal string.

Syntax
OCT$(numeric-expression)

numeric expression Any numeric expression.

Example
10 x=8
20 b$ = OCT$(x)
30 PRINT x; "decimal is "; a$; “ octal”

Output: 8 decimal is 10 octal

Chapter 5: JagBASIC Commands
String Commands

(3/99) 5-39

PADC$

Usage
Pad the right side and left side of a string, to a specified string length, with a specified
string character. The input string is centered in the returned string.

Syntax

PADC$(string$, length, padChar$)

string$ The input string to be padded.

length Length of the output string.

padchar$ Character used as the pad character.

PADC$ returns an input string centered in the output string.

Example

a$ = “abc”

b$ = PadC$(a$, 5,”0”)

Result: b$ = “CaBcCC”

PADL$

Usage

Pad the left side of a string, to a specified string length, with a specified string
character.

Syntax

PADL$(string$, length, padChar$)

string$ The input string to be padded.

length Length of the output string.

padchar$ Character used as the pad character.

PADL$ returns an input string right-justified in the output string.

T. Rev only

T. Rev only

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-40

Example

a$ = “aBc”

b$ = PadL$(a$, 5,”0”)

Result: b$ = “00aBc”

b$ = PadL$(a$, 7,”C”)

Result: b$ = “CCCCaBc”

b$ = PadL$(a$, 3,”C”)

Result: b$ = “abc”

PADR$

Usage

Pad the right side of a string, to a specified string length, with a specified string
character.

Syntax

PADR(string$, length, padChar$)

string$ The input string to be padded.

length Length of the output string.

padchar$ Character used as the pad character.

PADR returns an input string left-justified in the output string.

Example

a$ = “aBc”

b$ = PadR$(a$, 5,”0”)

Result: b$ = “aBc00”

b$ = PadL$(a$, 7,”C”)

Result: b$ = “aBaaaa”

T. Rev only

Chapter 5: JagBASIC Commands
String Commands

(3/99) 5-41

RIGHT$()

Usage
Returns the specified number of rightmost characters in a string. If you specify a
number of characters greater than or equal to the string's length, the entire string is
returned.

Syntax
RIGHT$(stringexpression$,n%)

stringexpression$ Any string expression.

n% Number of characters to return. The range is 0 to 80.

Example
10 a$ = "JAGUAR BASIC"
20 PRINT RIGHT$(a$, 5)

Output: BASIC

RTRIM$

Usage
Removes spaces from the end of the string.

Syntax
RTRIM$ (stringexpression$)

stringexpression$ Any string expression.

Example
10 a$ = "Hello Cambridge”
20 b$ = rtrim$ (a$).

SPACE$()

Usage
Returns a string of spaces. Used to indent text.

Syntax
SPACE$(n%)

n% The number of spaces you want in the string. The range is 0 to
80.

T. Rev only

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-42

Example
10 FOR i% = 1 TO 5
20 x$ = SPACE$ (i%)
30 PRINT x$; i%
40 NEXT i%

STRING$()

Usage
Returns a string of a specified length made up of a repeating character. Used to create
underlines, rows of asterisks, etc.

Syntax
STRING$(length%,{ascii-code% | stringexpression$})

length% The length of the string.

ascii-code% The ASCII code of the repeating character.

stringexpression$ The character you want to repeat.

Example
10 PRINT STRING$(5, "-");

Output: -----

STR$

Usage
Returns a string representation of a number. Used to manipulate a number as a string
and to apply string functions to the number for validation and formatting.

Syntax
STR$(numeric-expression)

numeric expression Any numeric expression.

Example
10 NUMBER! = 2.5
20 NUM$ = STR$(NUMBER!)
30 PRINT "XXXXX"
40 PRINT NUM$
50 PRINT LEN (NUM$)

Output: XXXXX, 2.5, 3

UCASE$

Usage
Converts a string to upper case..

T. Rev only

Chapter 5: JagBASIC Commands
Simple I/O Commands

(3/99) 5-43

Syntax
UCASE$(stringexpression$)

stringexpression$ Any string expression.

Example
10 A$ = "good morning, sunshine"
20 A$ = ucase$ (a$)

Result: A$=”GOOD MORNING, SUNSHINE”

VAL()

Usage
Converts a numeric string to a number. Enables a program to accept numeric input as
a string, use various string functions to validate the input, and then convert the input
back to a number for use in calculations.

Syntax
VAL(stringexpression$)

stringexpression$ Any numeric string expression.

Example
10 PRINT VAL("76")

Output: 76

Simple I/O Commands
One of the most important parts of your program is its ability to interface with the
JAGUAR terminal operator. JagBASIC supports several simple input/output commands.
These commands provide an interface between JagBASIC programs and users. These
commands enable your program to

• Sound the JAGUAR terminal beeper on a specified input or output

• Generate prompts

• Accept user input from the keyboard

• Check for key presses

The beeper tone can be used to signify a warning to a user or to provide positive
reinforcement. This simple commands enables your program to interactively interface
with the user through the use of sound.

The INKEY$, INPUT and LINE INPUT commands enable the program to accept
keyboard input.

• INKEY$—command checks to see if a key has been pressed. Program execution
is not interrupted.

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-44

• INPUT—command pauses the program's execution while the user enters numeric
or character data. Data is assigned to one or more variables of the appropriate
type. Program execution resumes when the user presses ENTER.

Character display on the JAGUAR terminal lower display is accomplished through the
PRINT command.

This section discusses the following simple input/output commands.

Command Usage

BEEP Sounds the JAGUAR terminal beeper tone for the specified
milliseconds.

INKEYS Returns a single keystroke from either the keyboard or keypad as a
string.

INPUT Reads input from the keyboard, serial port, or a file.

KEYSRC Reports the source of the latest keystroke read by the JagBASIC
application through an INPUT or INKEY$.

PRINT Writes data to the lower JAGUAR terminal display or to a sequential
file.

PRINT USING Writes formatted output to the JAGUAR terminal display or to a file.

TIPS
In order for JagBASIC to use the numeric keypad, either the operator must assign the
keypad to JagBASIC using the setup menus or the JagBASIC program must assign the
keypad to itself by setting an appropriate value in bas10.

The JagBASIC keyboard input statement supports inputting alphabetic characters using
the numeric keypad and the SELECT key. Before issuing the input statement, the
JagBASIC program must disable the control panel using the SELECT key by setting
bas87 = 0.

A JagBASIC program may read the function keypad using the keyboard input
statement. The function keys operate as follows:

• FUNCTION (01), MEMORY (03), TARE (04), and ZERO (07) keys— Terminate
the input statement. The input statement returns the key value for the terminating
key at the end of the input string.

• ESCAPE (02) key—Terminates the input. To use the ESCAPE key, the JagBASIC
program must disable the control panel using the ESCAPE key setting bas86 = 0.
The input statement appends the ESCAPE key value to the end of the input string.

• SELECT (05) key—Facilitates the entry of alphabetic characters through the
keypad. To use the SELECT key, the JagBASIC program must set bas87 = 0. The
SELECT key selects the alphabetic characters as shown on the keypad overlay. It
does not terminate the input. The input statement does not return a key value for
the SELECT key in the input string.

• CLEAR (06) key—Performs a backspace-erase on the input string. It does not
terminate the input. The input statement does not place the CLEAR key value in the
input string.

Chapter 5: JagBASIC Commands
Simple I/O Commands

(3/99) 5-45

• ENTER (08) key—Terminates the input statement. The input statement does not
return the ENTER key value in the input string.

For example, to get key input data from the keypad, you could use the following
program:

10 defshr escape,bas86
20 defshr select,bas87
30 defshr keyboard,bas10
40 escape=0:rem this enables entry of escape key to JagBASIC
50 select=0:rem this enables entry of alphabetic data to JagBASIC
60 keyboard=1:rem this assigns keypad to JagBASIC
70 input "enter";a$
80 if a$="" then goto 70
90 termchar%=asc(right$(a$,1))
100 if termchar% < 8 then lprint "function key = ";termchar%
110 lprint "input string = ";a$
120 goto 70

JagBASIC has these special function key values for the QWERTY keyboard keys. These
special keys terminate the input.

LEFT_ARROW = 0×09
RIGHT_ARROW = 0×0A
INSERT_KEY = 0×0B
HOME_KEY = 0×0C
END_KEY = 0×0D
DELETE_KEY = 0×0E
UP_ARROW = 0×0F
DOWN_ARROW = 0×10
PAGE_UP = 0×11
PAGE_DOWN = 0×12
F1_KEY = 0×13
F2_KEY = 0×14
F3_KEY = 0×15
F4_KEY = 0×16
F5_KEY = ZERO_KEY = 0×07
F6_KEY = FUNCTION_KEY = 0×01
F7_KEY = SELECT_KEY = 0×05
F8_KEY = CLEAR_KEY = 0×06
F9_KEY = TARE_KEY = 0×04
F10_KEY = MEMORY_KEY = 0×03
F11_KEY = 0×17
F12_KEY = 0×18

BEEP

Usage
Sounds the JAGUAR terminal beeper tone for the specified milliseconds. Used to signal
an error or warn the user of the consequences of an action.

Syntax
BEEP milliseconds

milliseconds The number of milliseconds that you want the tone to sound.

Note: Setting Shared Data
trigger s_60b=1 disables the
QWERTY positioning keys in
the JabBASIC INPUT statement.
Positioning key are key values
0x09 to 0x12.

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-46

Example
10 FOR I% = 1 TO 20
20 BEEP 30
30 SLEEP 100
40 NEXT I%

INKEY$

Usage
Reads a character from the keyboard or keypad. This commands enables your
program to respond to special keys without interrupting program execution. INKEY$
returns a single keystroke from either the keyboard or keypad as a string. As many as
10 keystrokes can be stored in the buffer. If the keystroke was an ASCII character or an
extended character, the string is 1-byte.

If there is no keystroke available in the buffer, INKEY$ returns a null string. If you want
to retrieve a key and determine if it has one of several values, you must save the
keystroke in a JagBASIC variable, as follows:

10 c$=inkey$
20 IF c$=chr$(1) THEN PRINT "function key": GOTO 10
30 IF c$=chr$(2) THEN PRINT "escape key": GOTO 10
40 IF c$="1" THEN PRINT "1 key": GOTO 10
50 IF c$="A" THEN PRINT "A key": GOTO 10
60 IF c$="" THEN PRINT "no keystroke"
70 GOTO 10

Syntax
INKEY$

Example 1
10 PRINT "Press A to exit..."
20 IF INKEY$ = “A” THEN GOTO 50
30 GOTO 20
50 END

Example 2
20 A$=INKEY$
30 IF A$=“A” THEN GOTO 60
40 IF A$ = “B” THEN GOSUB 1000
50 GOTO 20
60 END
1000 PRINT A$
1010 RETURN

INPUT

Usage
Reads data input from the keyboard. The program accepts character input from the
keyboard until the user presses a termination character, such as Enter. The prompt can
tell the user what type of information to enter. There are several prompting options with
the prompt string. The prompt can specify menu selections, default values, and its
appearance on the lower Jaguar display.

Chapter 5: JagBASIC Commands
Simple I/O Commands

(3/99) 5-47

Input reads data from the Jaguar terminal keyboard, the keypad, or both. The
JagBASIC keyboard device must be selected through the setup menus.

Syntax
INPUT [;] ["prompt"{; | ,}] variablelist

prompt An optional literal string that is displayed on the lower JAGUAR
terminal display before the user enters data.

variablelist Comma delimited list of variables to which the input is assigned.

semicolon {;} Causes the question mark to be displayed at the end of the
prompt.

comma {,} Suppresses the question mark at the end of the prompt.

caret {^} When used in the prompt, the prompt will be displayed during
input and identifies menu selections. Individual selections within a
menu selection list may be separated by a comma, colon,
semicolon, or space.

Keyboard Input Example #1
110 LPRINT "(^) keeps prompt on display during key input, (;) generates ?"
120 dim a$(5)
130 a$(3)="^enter"
140 INPUT a$(3);b$
150 LPRINT "input = ";b$

Keyboard Input Example #2
210 LPRINT "Does not keep prompt on display during key input, (,) supresses ?"
220 c$="hello "
230 INPUT c$,b$
240 LPRINT "input = ";b$

Keyboard Input Example #3
310 LPRINT "(^) keeps prompt on display during input, (;) generates ?"
320 INPUT "^hello";b$
330 LPRINT "input = ";b$

Keyboard Input Example #4
410 LPRINT "(,) keeps print message on display only until key input begins"
420 b$="hello"
430 PRINT "enter? ";b$
440 INPUT ,c$
450 LPRINT "input = ";c$

Keyboard Input Example #5
510 LPRINT "Setup an input default, keep prompt on display"
520 LPRINT "Enter key accepts the default, or key in new data"
530 a$(4)="^type ^ default"
540 INPUT a$(4),b$
550 LPRINT "input = ";b$

Keyboard Input Example #6
610 LPRINT "Setup an input default, keep prompt on display"
620 LPRINT "Enter key accepts the default, or key in new data"
630 b$="default"
640 INPUT "^type^"+b$;b$

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-48

650 LPRINT "input = ";b$

Keyboard Input Example #7
710 LPRINT "Select from a list of inputs, keep prompt on display"
720 Lprint "Enter key accepts the selection"
30 LPRINT "Any other key advances to next selection"
40 LPRINT "Input variable contains the default value"
50 b$="no"
60 INPUT "^type^ yes,no,maybe";b$
70 LPRINT "input = ";b$

Keyboard Input Example #8
810 LPRINT "Select from a list of inputs, keep prompt on display"
820 LPRINT "Enter key accepts the selection"
830 LPRINT "Any other key advances to next selection"
840 LPRINT "Input variable contains the default value"
850 b%=4
860 a$(5)="^Number^1,2,3,4,5,6,7,8,9,10"
870 INPUT a$(5);b%
880 LPRINT "input = ";b%

Keyboard Input Example #9
910 LPRINT "Set integer default value with a template"
920 b%=100
930 INPUT "^type^####" ; b%
940 LPRINT "input = ";b%

Keyboard Input Example #10
1010 LPRINT "Set double float value with a template"
1020 b#=100.55
1030 INPUT "^type^ ####.###" ; b#
1040 LPRINT "input = ";b#

Keyboard Input Example #11
1110 LPRINT "Set string value with a template"
1120 a$(1)="happy trails"
1130 INPUT "^enter^ !!!!!!!!!" ; a$(1)
1140 LPRINT "input = ";a$(1)

KEYSRC

Usage
Reports the source of the latest keystroke that has been read by the JagBASIC
application through an INPUT or INKEY$ command.

Syntax
KEYSRC()

Returns:

0 = None so far.
1 = Keypad.
2 = QWERTY Keyboard
3 = Serial Keyboard Input.

Chapter 5: JagBASIC Commands
Simple I/O Commands

(3/99) 5-49

Example
10 C$=inkey$
20 IF c$<>”” AND KEYSRC()=1 THEN PRINT “Keypad Input”
30 GOTO 10

PRINT, PRINT USING

Usage
PRINT writes data to the lower JAGUAR terminal display, to a sequential file, or outputs
data to the specified serial port.

PRINT USING writes formatted output to the JAGUAR terminal display or to a file. A
template is defined that specifies the length and format of each item to be displayed.

Syntax
PRINT [#filenumber%,] expressionlist [{;}]

PRINT [#filenumber%,] USING formatstring$; expressionlist [{;}]

PRINT “expression”

PRINT USING “####.##”, formatstring$

PRINT [#filenumber%], string$

#filenumber% The number of an open sequential file. If the file number is
omitted, PRINT writes to the lower JAGUAR terminal display. If the
filenumber is a Com Port, then PRINT command outputs data to
the specified serial port.

expressionlist List of one or more numeric or string expressions to print.

semicolon {;} Means print immediately after the last value. The absence of a
semicolon {;} means to insert a new line.

formatstring$ A string expression containing characters that format a numeric
expression.

Digit position.

. Decimal point position.

^ Prints in exponential format.

- Space.

+ Sign.

Other characters are printed as literal data in the output.

Use these characters to format string expressions

! Prints corresponding characters of string.

\ \ Prints first n characters of string, where n is the number of blanks between
the slashes.

expression Any character or numeric expression.

string$ Any string expression.

Example
10 netto=10.0

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-50

20 brutto=20.0
30 PRINT USING "netto_#####.## ___brutto_#####.##";netto;brutto
40 a#=123.456789:b#=87.54321:c#=5.555
50 PRINT USING "$###.## __$###.## __$###.##";a#;b#;c#
70 PRINT USING "+###.## __$###.## __+###.##";a#;b#;c#
80 a#= -123.456789
90 PRINT USING "$###.##";a#
100 PRINT USING "+###.##";a#
110 a%=4567:b%=12:c%=1:d%=123
120 PRINT USING "_###";a%
121 PRINT USING "_###";b%
122 PRINT USING "_###";c%
123 PRINT USING "_###";d%
130 PRINT USING "+###.##";a%
140 a%= -4567
150 PRINT USING "#######";a%
151 PRINT USING "######";a%
152 PRINT USING "#####";a%
160 PRINT USING "+###.##";a%
170 a$="abcdefghijklmnopqrstuvwxyz"
180 PRINT USING "!!!!";a$
190 PRINT USING "\ \ __\ \";a$;a$
200 PRINT USING "_^^^^ ___^^^^^";a#;b#

Serial I/O Commands
JagBASIC has an enhanced serial I/O capability, including file-type I/O statements and
remote terminal support.

JagBASIC can read and write to local serial ports. In addition, JagBASIC program may
read and write to serial ports on remote JAGUAR terminals within a cluster. The JAGUAR
terminal routes the serial I/O messages across the Arcnet LAN to the remote JAGUAR
terminal containing the serial port. Remote serial I/O allows sharing of devices, such as
printers or host connections, among all JAGUAR terminals in a cluster.

A JagBASIC application using the remote serial I/O must be prepared to handle "offline"
error situations that do not occur in local serial I/O. You cannot use asynchronous
events with remote serial. All operations are performed synchronously.

JagBASIC's serial input and output commands enable you to:

• Access files or serial ports.
• Close a file or serial port.
• Flush received data in the BIOS serial input buffer.
• Read input from the serial port.
• Output data to a JAGUAR terminal serial COMx port.
• Print formatted output on the LPRINT device.
• Output data to the specified serial port.
• Specify the width of a printed line.
• Format lines of text by inserting specified amounts of space between values.

This section discusses the following serial input/output commands

Command Usage
CKSUM$ Generates the checksum of a string and returns the checksum

in string format.
CLOSE Closes a file or serial port.

In order for JagBASIC to access a
remote serial port, you must set up
the JAGUAR terminal with either a
demand print or custom print
connection. Use the setup menus at
the remote JAGUAR terminal to set
these options.

Chapter 5: JagBASIC Commands
Serial I/O Commands

(3/99) 5-51

COMBITS Reads the Modem input status of Com 3
CRC$ Generates the CRS of a string and returns the CRS in string

format.
FLUSH Discards received data in the BIOS serial input buffer.
INPUT Reads input from the serial port.
LPRINT Outputs data to a JAGUAR terminal serial LPRINT device.
LPRINT USING Prints formatted output on the LPRINT device.
OPEN Accesses a file or serial port.
PRINT Writes data to the lower JAGUAR terminal display, to a se-

quential file, or to a serial port.
PRINT USING Writes formatted output to the JAGUAR terminal display or to a

file.
PRINT # Outputs data to the specified file or serial port.
SPC() Skips a specified number of spaces in a PRINT or LPRINT

statement.
TAB Advances to the specified position
WIDTH Assigns an output line width to the LPRINT device, serial port, or

a file.
WIDTHIN Dynamically assigns input length for serial I/O device.

TIPS
JagBASIC serial file I/O commands cannot be used to access a serial port for which
there is an input or continuous output connection assigned in CONFIG SERIAL setup.

The LPRINT device is serial port configured as the first demand print port for Scale A.

CKSUM$
This function generates the checksum of a string and returns the checksum in string
format. It calculates the checksum by adding the lower 7 bits of each byte in the string
and taking the 2’s complement. It is used for validating sent and received messages.

Syntax
CKSUM$(string1$, [string2$,][string3$,]start%)

string1$ Input string with a maximum length of 80 characters.

string2$ Optional input string with a maximum length of 80 characters.

string3$ Optional input string with a maximum length of 80 characters.

start% Character in the string where checksum starts.

Example
open "com2:xpr null trm13 len40" for output as #1
message$= chr$(2)+"hello world"+chr$(3)
message$= message$+cksum$(message$,1)
print #1,message$;

T. Rev only

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-52

CLOSE

Usage
Closes an open file or serial port. Use CLOSE after all input and output operations for a
file or device are concluded. CLOSE releases the memory space reserved in the buffer
for the open file or serial port.

Syntax

CLOSE #filenumber%

filenumber% The number of an open file.

Example

10 OPEN “com4:cr” FOR OUTPUT AS #2
20 PRINT #2, "HELLO"
30 CLOSE #2

COMBITS

Usage
The COMBITS command allows you to read the status of the four modem input signals
on the COM3 serial port. You must first open the COM3 serial port using the OPEN
command.

Syntax
Combits(filenumber)

filenumber File number used in the OPEN command for the COM3 serial port.

COMBITS returns an integer with the following bit values OR”ed together. The bit value
is set to one.

Example
open "com2:” for output as #1
a%=combits(1)

CRC$

Usage
CRC$ computes a 16bit CRC on the message text and returns a 4-character string that
contains the CRC in ASCII format. The CRC is used primarily with serial
communications to ensure that a message is transmitted without errors. The CRC
calculation is a CCITT method that uses an “exclusive OR” hashing method with a
lookup table. The CRC calculation starts with the first byte and proceeds sequentially to
the last byte of the message text. CRC$ uses the following proocedure to calulate and
return CRC:

1. “Exclusive OR” the high-order byte of the current CRC with the next byte of the
message text.

2. Use the resulting 8-bit value as an index into the lookup table to get the 16-bit
table value.

When a program executes a CLEAR,
END, or RUN statement or its last
statement, JagBASIC closes all open
files and serial ports. Each open file
must be closed by its own CLOSE
command.

T. Rev only

T. Rev only

Chapter 5: JagBASIC Commands
Serial I/O Commands

(3/99) 5-53

3. Shift the low-order byte of the current CRC to the high-order byte and “exclusive
OR” the result with the 16-bit value obtained in step 2. This now becomes the new
current CRC.

4. Go to step 1 and repeat the calculation for each byte of the message.

5. “OR” each 4-bit nibble of the 16-bit CRC with a hex 30 to convert the CRC to four
printable ASCII characters. Start with low-order byte first, and then convert the high
order byte last.

The following table is used for the calculating the CRC.

0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7,
0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF,
0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6,
0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE,
0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485,
0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D,
0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4,
0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC,
0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823,
0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B,
0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12,
0xBDFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A,
0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41,
0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B, 0x8D68, 0x9D49,
0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70,
0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A, 0x9F59, 0x8F78,
0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D, 0xF14E, 0xE16F,
0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C, 0xE37F, 0xF35E,
0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256,
0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F, 0xD52C, 0xC50D,
0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E, 0xC71D, 0xD73C,
0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634,
0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB,
0x 5844 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3,
0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8, 0xABBB, 0xBB9A,
0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92,
0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B, 0x9DE8, 0x8DC9,
0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1,
0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8,
0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0

Syntax
cre$(string$)

string$ Input string with a maximum length of 80 characters.

Example 1
open "com2:xpr null" for output as #1
message$= chr$(2)+"hello world"+chr$(3)
message$= message$+crc$(message$)
print #1,message$;

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-54

Example 2
message$= chr$(2)+"hello world"+chr$(3)
x$=crc$(message$)
message2$=”happy trails to you”
y$=crc$(message2$)
z$=crc$(“a”)
lprint “x$: “;x$
lprint “y$: “;y$
lprint “z$: “;z$

Output
X$: 9==9
Y$: 060?
Z$: 877<

FLUSH

Usage
Discards received data in the BIOS serial input buffer.

Syntax
FLUSH #1

Example
20 FLUSH #1

Chapter 5: JagBASIC Commands
Serial I/O Commands

(3/99) 5-55

INPUT

Usage
Synchronously reads data bytes from the specified serial communication port into
variables until one of the terminating conditions occurs. The terminating conditions are
specified in the OPEN statement. Using the EVENT option, the INPUT statement can also
be used to asynchronously input data from a serial port.

Syntax
INPUT #filenumber, string variable

#filenumber% Open serial I/O device from which you want to read data.

string variable The input data.

Example 1
10 OPEN "com1: tmo5000 len40 trm13 event" for input as #1
30 ON EVENT #1 GOSUB 1000
40 INPUT #1,a$
.
. MAIN PROGRAM
.
50 IF INKEY$<>"x" THEN GOTO 50
60 CLOSE #1
70 END
.
.
1000 LPRINT "serial message";a$
1010 INPUT #1,a$:REM start next input
1020 RETURN

Example 2
10 OPEN "com2: tmo1000 len20 trm13" for input as #1
20 INPUT #1,a$
30 LPRINT "msg="; a$
40 GOTO 20

LPRINT

Usage
Outputs the contents of a numeric or string variables to a JAGUAR terminal serial port.
The first serial port configured as the first demand print connection is used as the
output device. The LPRINT statement is most useful for software debugging and for use
as an application report printer. When used as an aid in debugging software, error
messages are outputted to the LPRINT device.

LPRINT for general serial output is limited by the special handling of three ASCII
character codes as listed below:

The Configure Serial menu allows you to
setup the LPRINT device for JagBASIC.
The LPRINT device is the first demand
print port for Scale A. When you assign
the LPRINT device and the BasTerminal
connection to the same serial port, then
that serial port operates as an interactive
serial port for JagBASIC.

The serial port input can occur
asynchronously with the normal program
operation. The program execution does
not necessarily have to suspend itself
while the serial input operation completes
using the EVENT option.

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-56

Name Hex Code JagBASIC LPRINT Action
repeat 7F Used as an escape character in the "tab to column x"

feature. The character following the repeat character
specifies how many space characters are needed to get
to the desired column.

tab 09 Translates into 1-14 spaces, as required to reach the
next "tab stop".

newline 0A translates into a <cr><lf> combination.

LPRINT sends output directly to an output device. LPRINT enables you to print strings,
numbers, and so on the printer, just as PRINT enables you to display these items on
the lower JAGUAR terminal display.

Syntax
LPRINT expressionlist [{;}]

expressionlist List of one or more numeric or string expressions to print. Items
must be separated by commas or semicolons.

semicolon {;} When used in a list of expressions, the semicolon deter- mines
that the next output is printed immediately after the previous one.
When used at the end of the LPRINT statement the semicolon
determines that the print head does not move to the next line after
printing.

Example
10 LPRINT CHR$(10);"Sample Line Print"

Output: Sample Line Print

LPRINT USING

Usage
Prints formatted output on the LPRINT device and specifies the length and format of
each item printed. LPRINT USING creates a template string that filters and formats your
output. LPRINT USING functions similarly to PRINT USING. PRINT USING is discussed in
the Simple I/O Commands section of this chapter.

Syntax
LPRINT USING formatstring$; expressionlist [{;}]

formatstring$ A string expression containing characters that format a numeric
expression.

Digit position.

. Decimal point position.

^ Exponential format.

+ Sign.

Chapter 5: JagBASIC Commands
Serial I/O Commands

(3/99) 5-57

or a string expression

! Print corresponding characters of string.

\ Print first n characters of string, where n is the number of blanks
between the slashes.

expressionlist List of one or more numeric or string expressions to print.

semicolon {;} When used in a list of expressions, the semicolon deter- mines
that the next output is printed immediately after the previous one.
When used at the end of the LPRINT USING statement, the
semicolon determines that the print head does not move to the
next line after printing.

Example
10 netto=10.0
20 brutto=20.0
30 LPRINT USING "netto_#####.## ___brutto_#####.##";netto;brutto
40 a#=123.456789:b#=87.54321:c#=5.555
50 LPRINT USING "$###.## __$###.## __$###.##";a#;b#;c#
70 LPRINT USING "+###.## __$###.## __+###.##";a#;b#;c#
80 a#= -123.456789
90 LPRINT USING "$###.##";a#
100 LPRINT USING "+###.##";a#
110 a%=4567:b%=12:c%=1:d%=123
120 LPRINT USING "_###";a%
121 LPRINT USING "_###";b%
122 LPRINT USING "_###";c%
123 LPRINT USING "_###";d%
130 LPRINT USING "+###.##";a%
140 a%= -4567
150 LPRINT USING "#######";a%
151 LPRINT USING "######";a%
152 LPRINT USING "#####";a%
160 LPRINT USING "+###.##";a%
170 a$="abcdefghijklmnopqrstuvwxyz"
180 LPRINT USING "!!!!";a$
190 LPRINT USING "\ \ __\ \";a$;a$
200 LPRINT USING "_^^^^ ___^^^^^";a#;b#

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-58

OPEN

Usage
Prepares a serial port for use as a file device. You can access a serial port that you
have set up as a demand print serial connection or a custom print serial connection.
You cannot access a serial port from JagBASIC if it has been set up as a continuous
output connection or as an input connection. If the serial port is on the local JAGUAR
terminal, you can access the serial port even if it is not set up in a connection.

The OPEN command allows you to specify the remote JAGUAR terminal address and
the serial port address on the remote JAGUAR terminal. When it issues the OPEN
command, the JagBASIC program is establishing exclusive access to the remote serial
port as long as it has the serial port open. If another JAGUAR terminal has already
opened the serial port, the JagBASIC program will get an error status back indicating
there is a file-sharing error. In order to effectively share a serial port among several
JAGUAR terminals, you should open the serial port, quickly perform the I/O, and then
close the serial port to make it available to another JAGUAR terminal.

Syntax
OPEN "com1: tmo5000 len40 trm13 cr event" FOR INPUT AS #1
OPEN "j2/com1: tmo5000 len40 trm13 cr" FOR INPUT AS #1
OPEN "com2: null xpr tmo100" FOR INPUT AS #1

com1, com2, com3, and com4 File names which specify the serial port to be
used for communications.

tmo Specifies the time-out value to wait for a serial input message in
decimal milliseconds. The default value is zero milliseconds, or no
time-out value. The maximum time-out value is 30,000
milliseconds.

len Specifies the maximum input length for a serial input message.
 The maximum length is 80 bytes, which is the maximum string

size in JagBASIC. The default length is 80 bytes.

trm Specifies an optional terminating character for the serial input
message. Its value is specified in decimal. When the input
command encounters the terminating character, it returns the
characters up to and including the terminating character in the
serial message as a string variable.

cr Specifies that a carriage return character is to be inserted at the
end of any serial output message.

event Allocates an event which may trigger an event processing routine
when a serial input operation completes.

xpr Selects the "express print" option. Normally, JagBASIC sends
PRINT datato a serial port when either it encounters a "new line"
character in the print data or the print data length exceeds the
WIDTH value. This option causes JagBASIC to send the PRINT
data to the serial port immediately at completion of the PRINT
statement, even when there is no terminating "new line" character.

null Enables the inputting and outputting of NULL (0) characters
through JagBASIC serial I/O. Since the NULL character is a
terminator for JagBASIC strings, you must send and receive a
special sequence of characters for the NULL character. The

You must set up the serial connections
used by the JAGUAR terminal Operating
System with the Configure Serial in the
JAGUAR terminal setup menus. Demand
print and custom print ports can be
shared by JagBASIC and the JAGUAR
terminal Operating System. If you
attempt to open a serial port that is in
the middle of a demand print, for
example, you will get a “No Remote
Access” error. You must handle this
error with an ON ERROR GOTO
statement. Once the demand print is
complete, you will be able to open the
serial port. Similarly, you will not be
able to do a demand print while
JagBASIC has the port open.

Chapter 5: JagBASIC Commands
Serial I/O Commands

(3/99) 5-59

sequence "DLE 0xff" represents the NULL character in the
JagBASIC application. The sequence "DLE DLE" represents a
single DLE character. The following statements transmit a NULL
character embedded in each print statement.

open "com2:null xpr tmo100" for output as #1
print #1,chr$(16)+chr$(255)+"hello"

The following statements transmit a single DLE character
embedded in the print statement.

open "com2:null xpr tmo100" for input as #1
print #1, "hello"+chr$(16)+chr$(16)+"dolly"

The following statements can receive a single NULL character in
the input string.

10 open "com2:null xpr tmo1000" for input as #1
20 input #1,a$
30 if len(a$)=0 then lprint "timeout":goto 20
40 if len(a$)<>2 then goto 20
50 if asc(mid$(a$,1,1))=16 and asc(mid$(a$,2,1))=-1 then lprint "NULL"
60 goto 20

input, output The mode can be either input or output. No matter which is
chosen, you can do input or output to the specified serial device.

#n The internal device number with a value between 0 and 7,
inclusive.

JAGUAR terminal addresses which specify remote JAGUAR
terminal containing the remote serial port.

Example 1
10 ON ERROR GOTO 1000
20 OPEN "COM1: TMO3000 TRM13" FOR INPUT AS #1
30 OPEN "COM4: CR" FOR OUTPUT AS #2
40 FLUSH #1
50 INPUT #1,A$
60 PRINT #2,A$
70 IF INKEY$<>"C" THEN GOTO 50
80 CLOSE #1
90 CLOSE #2
100 END
1000 SLEEP 500
1010 IF ERR()=32 AND ERL()=20 THEN GOTO 20
1020 IF ERR()=32 AND ERL()=30 THEN GOTO 30
1030 PRINT "FATAL ERROR"
1040 SLEEP 2000
1050 END

Example 2
10 OPEN "COM2: TMO5000 TRM13 LEN10 CR" FOR INPUT AS #1
20 FLUSH #1
30 PRINT #1,"SEND SERIAL INPUT"
40 INPUT #1,A$
50 PRINT #1,"SERIAL OUTPUT DATA ";A$
60 GOTO 40

j1, j2, j3, j4, j5,
and J6

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-60

PRINT, PRINT USING

Usage
PRINT writes data to the lower JAGUAR terminal display, to a sequential file, or outputs
data to the specified serial port.

PRINT USING writes formatted output to the JAGUAR terminal display or to a file. A
template is defined that specifies the length and format of each item to be displayed.

Syntax
PRINT [#filenumber%,] expressionlist [{;}]

PRINT [#filenumber%,] USING formatstring$; expressionlist [{;}]

PRINT expression

PRINT USING “####.##”, formatstring$

PRINT [#filenumber%], string$

#filenumber% The number of an open sequential file. If the file number is
omitted, PRINT writes to the lower JAGUAR terminal display. If
the filenumber is a Com Port, then PRINT command outputs
data to the specified serial port.

expressionlist List of one or more numeric or string expressions to print.

semicolon {;} The absence of a semicolon {;} at the end of the line means to
insert a new line.

formatstring$ A string expression containing characters that format a numeric
expression.

Digit position.

. Decimal point position.

^ Prints in exponential format.

- Space.

+ Sign.

Other characters are printed as literal data in the output.

Use these characters to format string expressions

! Prints corresponding characters of string.

\ \ Prints first n characters of string, where n is the number of
blanks between the slashes.

expression Any character or numeric expression.

string$ Any string expression.

Chapter 5: JagBASIC Commands
Serial I/O Commands

(3/99) 5-61

Example
10 netto=10.0
20 brutto=20.0
30 PRINT USING #1 "netto_#####.## ___brutto_#####.##";netto;brutto
40 a#=123.456789:b#=87.54321:c#=5.555
50 PRINT USING #1"$###.## __$###.## __$###.##";a#;b#;c#
70 PRINT USING #1 "+###.## __$###.## __+###.##";a#;b#;c#
80 a#= -123.456789
90 PRINT USING #1 "$###.##";a#
100 PRINT USING #1 "+###.##";a#
110 a%=4567:b%=12:c%=1:d%=123
120 PRINT USING #1 "_###";a%
121 PRINT USING #1"_###";b%
122 PRINT USING #1 "_###";c%
123 PRINT USING #1 "_###";d%
130 PRINT USING #1"+###.##";a%
140 a%= -4567
150 PRINT USING #1 "#######";a%
151 PRINT USING #1"######";a%
152 PRINT USING #1"#####";a%
160 PRINT USING #1"+###.##";a%
170 a$="abcdefghijklmnopqrstuvwxyz"
180 PRINT USING #1"!!!!";a$
190 PRINT USING #1"\ \ __\ \";a$;a$
200 PRINT USING #1"_^^^^ ___^^^^^";a#;b#
210 Close #1

PRINT #

Usage
Outputs unformatted data to the specified serial port.

Syntax
PRINT comport#1,string$

comport# Number of the serial port.

string$ Any string expression.

Example
10 OPEN "COM2: TMO5000 TRM13 LEN10 CR" FOR INPUT AS #1
20 FLUSH #1
30 PRINT #1,"SEND SERIAL INPUT"
40 INPUT #1,A$
50 PRINT #1,"SERIAL OUTPUT DATA ";A$
60 GOTO 40

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-62

SPC()

Usage
Displays the specified number of spaces in a PRINT or LPRINT statement. Use SPC to
format output for readability.

Syntax
SPC(n%)

n% The number of spaces to display. The range is 1 to 80.

Example
10 PRINT "Text1"; SPC(10); "Text2"

Output: Text1 Text2

TAB

Usage
Advances the cursor to the specified position in a PRINT or LPRINT statement. Use a
semicolon (;) to stay on the same line.

Syntax
TAB(n)

(n) Position to advance to the right.

Example
10 LPRINT "COMPANY" TAB(25) "PRODUCT" : PRINT
20 READ A$, B$
30 PRINT A$; TAB(25); B$
40 DATA "METTLER TOLEDO", "JAGBASIC"
RUN

Output:

COMPANY PRODUCT
METTLER TOLEDO JAGBASIC

Chapter 5: JagBASIC Commands
Serial I/O Commands

(3/99) 5-63

WIDTH

Usage
Assigns an output line width to the LPRINT device, serial port, or a file. Used to limit the
line lengths in a file containing a report. Line lengths beyond the established width are
wrapped to the next line. The default width is 80 characters.

Syntax
WIDTH [#filenumber%], columns%

#filenumber% The number of an open file. If #filenumber% is not specified,
WIDTH applies to the LPRINT device.

columns% The desired width in columns.

Example
10 OPEN “COM2:CR” FOR OUTPUT AS #1
20 WIDTH #1, 75

WIDTHIN

Usage
Allows you to dynamically reassign the maximum serial input length, as it is defined in
OPEN.

Syntax
WIDTHIN #filenumber, length%

#filenumber Open serial I/O device.

length% The desired length. The length can be 0 to 80.

Example
10 OPEN "com2: TMO5000 TRM13 LEN10 CR" FOR INPUT AS #1
20 WIDTHIN #1,5
30 INPUT #1, A$
40 LPRINT A$
50 CLOSE #1

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-64

File Commands
JagBASIC commands perform simple operations such as open and close, as well as
complex operations. JagBASIC supports sequential, random, and indexed sequential
files. Sequential files are read and written sequentially. Sequential files can have
variable length records. You can dynamically change the length of a sequential file by
appending records to the end of the file. When you are writing a sequential file, you
should frequently close the file so that the file pointers are permanently updated in the
RAM disk. Otherwise, you can lose data in the event of a power failure.

Random access files are fixed in length. Records are accessed randomly by number or
can be accessed sequentially. Record sizes are fixed in length. You create a random
access file by writing it sequentially when you first create the file. In Jaguar Release T,
the maximum record length for a random access file is 127 characters.

A JagBASIC program can create and access indexed sequential files. Indexed
sequential files contain records stored sequentially based on a logical key within a
random access file. The records have a fixed length. Indexed sequential files provide
keyed access to records within the file. JagBASIC can read, insert, update, or delete
records from the file based on the logical key that is stored as part of the record. The
JagBASIC interpreter performs a binary search of the records in the file to locate a
particular record, providing faster logical access to the records in the file. In Jaguar
Release T, the maximum record length for a random access file is 127 characters.

This section discusses the following JagBASIC file commands:

Command Usage
CLOSE Closes an open file or serial port.
CVI, CVS, CVD Convert strings to numbers.
DELREC Deletes a record from the indexed sequential file.
EOF() Tests for the end of a file.
FIELD Defines the structure of records to be used in indexed-

sequential and random-access file buffers.
GET Reads a record from the random-access or indexed-

sequential file.
INDEXED Identifies a file as an indexed-sequential file and which

field in the record is the index key.
INPUT Reads input from the keyboard, serial port, or a sequential

file.
LINE INPUT# Reads sequentially all characters of an entire line (up to

80 characters) without delimiters from a sequential file up
to the next carriage return into a string variable.

LOC() Returns the current position within a file.
LOF() Returns the length of the file.
LSET Moves data into a random-access file buffer (in prep-

aration for a PUT statement) and left-justifies the value of a
string variable.

MKI$, MKS$, MKD$ Convert numbers to numeric strings that can be stored in
FIELD statement string variables.

OPEN Accesses a file.
PRINT Writes data to the lower JAGUAR terminal display or to a

sequential file.
PRINT USING Writes formatted output to the JAGUAR terminal display or

to a file.
PRINT# Outputs data to the specified serial port or sequential file.

Chapter 5: JagBASIC Commands
File Commands

(3/99) 5-65

Command Usage
PUT Writes a record to the indexed sequential file.
RSET Moves data into a random-access file buffer (in prep-

aration for a PUT statement) and right-justifies the value of
a string variable.

SORTREC Identifies the file as an indexed sequential file and
automatically sorts the records.

WRITE# Writes data to the LPRINT device or to a sequential file.

TIPS
To perform quick file look-ups based on a logical key, use indexed sequential files.

CLOSE

Usage
Closes an open file or serial port. Only one CLOSE command is permitted per program
line.

Syntax
CLOSE #filenumber%

#filenumber% The number of an open file.

Example
10 OPEN “LOG” FOR OUTPUT AS #1
20 WRITE #1, "This is saved to the file."
30 CLOSE #1
40 OPEN “LOG” FOR INPUT AS #1
50 INPUT #1, a$
60 PRINT "Read from file: "; a$
70 CLOSE #1

CVI, CVS, CVD

Usage
Convert string variable types, created by either the MKD$, MKI$, or MKS$ commands,
to numeric variable types. These commands are used after reading the string
representation of a double-precision number in a random-access file that contains
records defined by the FIELD statement. Because you cannot store numeric values in
random-access files, you must convert numbers to strings before storing them and
convert them back to numbers when you read the file.

Command Returns

CVI Integer

CVS Single-precision number

CVD Double-precision number

Each open file must have its own CLOSE
command.

When you are writing a indexed-sequential
or sequential file, you should frequently
close the file to avoid losing data in the
event of a power failure.

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-66

Syntax
CVI(2-byte-numeric-string)

CVS(4-byte-numeric-string)

CVD(8-byte-numeric-string)

2-byte-numeric string 2-byte string variable created by the MKI$ command

4-byte numeric string 4-byte string variable created by the MKS$ command

8-byte-numeric string 8-byte string variable created by the MKD$ command

Example
70 FIELD #4, 4 AS N$, 12 AS B$
80 GET #1

DELREC

Usage
Deletes a record from the indexed sequential file. The JagBASIC program must set the
logical index into the key field of FIELD variables. DELREC searches the file for a record
containing the logical key. If it finds the record, DELREC deletes the record in the FIELD
variables. Otherwise, DELREC generates a "record not found" error.

Syntax
DELREC #file number

#file number The number of the indexed sequential file.

Example
6000 LPRINT "delete some records"
6001 ON ERROR GOSUB 6200
6010 OPEN "testfile" FOR RANDOM AS #1 len=26
6020 field #1,16 as a$,8 as b$, 2 as c$
6030 INDEXED #1,a$
6050 LSET a$=STRING$(16,"A")
6080 DELREC #1
6090 LSET a$=STRING$(16,"Z")
6120 DELREC #1
6130 END
6200 IF ERR()<>6 THEN END
6210 LPRINT "error line ";ERL()
6220 RETURN

Chapter 5: JagBASIC Commands
File Commands

(3/99) 5-67

EOF()

Usage
Tests for the end of a file. Returns true (nonzero) if the end of a file has been reached.
Used to decide whether to continue processing a file.

Syntax
EOF(filenumber%)

filenumber% Number of the file to test.

Example
10 OPEN "TEST.DAT" FOR OUTPUT AS #1
20 FOR i% = 1 TO 10
30 WRITE #1, i%, 2 * i%, 5 * i%
40 NEXT i%
50 CLOSE #1
60 OPEN "TEST.DAT" FOR INPUT AS #1
70 WHILE EOF(1) = 0
80 LINE INPUT #1, a$
90 PRINT a$
100 WEND

FIELD

Usage
Defines the structure of records to be used in indexed-sequential and random-access
file buffers. Records contain various fields. Each field is a location in a record that can
be accessed by a field name.

Syntax
FIELD #filenumber%, fieldwidth% AS stringvariable$ [,fieldwidth% AS stringvariable$]

#filenumber% The number of an open file.

fieldwidth% The number of characters in field.

stringvariable$ A variable that identifies the field and contains field data.

Example
40 OPEN "FILE" FOR RANDOM AS #1 LEN = 80
50 FIELD #1, 30 AS Name$, 50 AS address$

In Release T, the maximum record
length for a random access or indexed-
sequential file is 127 characters. The
maximum size of each field is 80
characters.

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-68

GET

Usage
Reads a record from a random access file by record number into fields defined by the
field statement.

Reads a record from the indexed sequential file into the fields defined by a FIELD
statement. The program must first set a logical index into the key field of the FIELD
variables. GET executes a binary search of the file for a record containing the logical
key. If it finds the record, GET returns the record in the FIELD variables. Otherwise, GET
generates a "record not found" error. You must use an ON ERROR statement to handle
these errors.

Syntax
GET #file number[,record number]

#file number Number of the open or sequential file.

record number For random access files, the number of the record to read. If the
record number is not specified, GET returns the next sequential
record.

For indexed-sequential files, the number is typically not specified.
When it is not specified, GET returns the record specified in the
keyword field of the FIELD statement. The INDEXED or SORTREC
command specifies which field is the keyword field. When the
record number is specified, the GET statement returns the specified
record number. The record number can be variable or a constant.

Example 1
Reading a Random Access File Sequentially

10 OPEN "M" FOR RANDOM AS #1 LEN=21
20 FIELD#1, 5 AS ID$, 16 AS MATNAME$
30 WHILE EOF (1)=0
40 GET #1
50 PRINT ID$; TAB (10); MATNAME$;
60 WEND
70 CLOSE #1
80 END

Example 2
Indexed Sequential File

8000 LPRINT "get some records"
8001 ON ERROR GOSUB 8200
8010 OPEN "testfile" FOR RANDOM AS #1 len=26
8020 field #1,16 as a$,8 as b$, 2 as c$
8030 INDEXED #1,a$
8040 LSET a$=STRING$(15,"A")+"1"
8050 GET #1
8060 LPRINT b$
8070 LSET a$=STRING$(15,"J")+"1"
8080 GET #1
8090 LPRINT b$
8100 END

Chapter 5: JagBASIC Commands
File Commands

(3/99) 5-69

8200 IF ERR()<>6 THEN END
8210 LPRINT "error line ";ERL()
8220 RETURN

Example 3
Reading Indexed Sequential File sequentially

1000 OPEN "testfile" FOR RANDOM AS #2 len=27
1010 field #2, 5 as a$, 10 as b$, 12 as c$
1020 INDEXED #2, b$
1030 r%=0
1040 WHILE NOT EOF(2)
1050 r%=r%+1
1060 GET #2, r%
1070 LPRINT c$
1080 WEND

INDEXED

Usage
Identifies which field in the record is the index key. JagBASIC must first OPEN the file as
a random access file and define the record format using the FIELD command. The
INDEXED command identifies the file as an indexed sequential file.

Syntax
INDEXED #file number,variable name

#file number The opened random access file.

variable name Name of the FIELD variable that is the index key.

Example
1000 LPRINT "create indexed file"
1010 OPEN "testfile" FOR RANDOM AS #1 len=26
1020 field #1,16 as a$,8 as b$, 2 as c$
1030 INDEXED #1,a$
1040 FOR i% = 10 to 1 step -1
1050 LSET a$=STRING$(16,chr$(64+i%))
1055 LSET b$="00000000"
1060 LSET c$=CHR$(13)+CHR$(10): REM LF/CR
1070 PUT #1
1080 NEXT i%
1090 CLOSE #1
2000 LPRINT "print file"
2010 OPEN "testfile" FOR INPUT AS #1
2020 WHILE NOT EOF(1)
2030 LINE INPUT #1,x$
2040 LPRINT x$
2050 WEND

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-70

INPUT #

Usage
Reads input from the keyboard, serial port, or a sequential file. When reading a
sequential file, the file must be “comma-delimited”. That is, Commas between items
and quotation marks around strings in the file are required.

Syntax
INPUT #filenumber%, variablelist

#filenumber% Open sequential file from which you want to read data. When no
filename is specified, INPUT reads data from the keyboard.

variablelist List of variables to which input is assigned.

Example
100 OPEN "LOG" for output as #1
200 WRITE #1, "Write this to the file."
300 CLOSE #1
400 OPEN "LOG" for input as #1
500 INPUT #1, a$
600 PRINT "Read from file:"; a$
700 CLOSE #1

LINE INPUT #

Usage
Reads sequentially all characters of an entire line (up to 80 characters) without
delimiters from a sequential file up to the next carriage return into string variable.

Syntax
LINE INPUT #filenumber%,string$

#filenumber% File.

stringvariable String variable.

string$ String expression.

Example
10 OPEN "log" for input a$ #1
20 WHILE eof(1)=0
30 line input #1, a$
40 wend

Chapter 5: JagBASIC Commands
File Commands

(3/99) 5-71

LOC()

Usage
Returns the current pointer position within a file that shows where the next read or write
operation will take place.

• For random access files, LOC returns the next record number after the last record
read from or written to the file.

• For sequential input or output, LOC returns the current byte position.

Syntax
LOC(filenumber%) #number

filenumber% The number of an open file.

#number The number of records.

Example
200 IF LOC(1)=50 THEN STOP

LOF

Usage
Returns the length of a file.

Syntax
LOF (filenumber%)

Filenumber The number of an open file.

Example
100 OPEN "TEST" FOR INPUT AS #1
200 size# = LOF(1)

LSET

Usage
Moves the value of an expression or variable into a field in a random-access file buffer
in preparation for a PUT statement. LSET left-justifies the value of a string variable in the
field.

Syntax
LSET stringvariable$ = stringexpression$

stringvariable$ Any string variable or a random-access file field defined in a
FIELD statement.

stringexpression$ The left-justified version of string variable$.

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-72

Example
1 OPEN "F" FOR RANDOM AS #1 LEN = 10
2 FIELD #1, 5 AS Ls1$, 5 AS Rs1$
3 LSET Ls1$ = "LSET"
4 RSET Rs1$ = "RSET"
5 PUT #1, 1
6 CLOSE #1

MKI$, MKS$, MKD$
Usage
Convert numbers to numeric strings that can be stored in FIELD statement string
variables. You cannot store numeric values in random-access files. You must convert
numbers to strings before storing them. These commands complement the CVI, CVD,
and CVS commands which convert the strings back to numbers when you read the file.

Function Returns

MKI$ 2-byte string

MKS$ 4-byte string

MKD$ 8-byte string

Syntax
MKI$(integer-expression%)
MKS$(single-precision-expression!)
MKD$(double-precision-expression#)

integer-expression% Any integer number in the range of -32768 to 32767.

single-precision-expression! Single-precision number in the range of 3.4E-38 to
3.4E+38.

double-precision-expression# Double-precision number in the range of 7E-308 to
 7E+308.

OPEN

Usage
Accesses a file. Files can be sequential, random, or indexed-sequential files stored on
the JAGUAR terminal RAMDISK.

Syntax
open file$ [FOR mode] AS #filenumber% [LEN=reclen%]
open file$ [FOR mode] AS #filenumber% [LEN=reclen%]

file$ The name of the file on the RAMDISK.

mode INPUT, OUTPUT, APPEND, or RANDOM.

Sequential files are opened as INPUT, OUTPUT, or APPEND.
Opening a sequential file for OUTPUT creates a new file. Opening a
sequential file for APPEND adds new records to the end of an
existing file. Random Access and Indexed Sequential files must be
opened as RANDOM.

Chapter 5: JagBASIC Commands
File Commands

(3/99) 5-73

filenumber% A number in the range 0 through 7 that identifies the file while it
Is open.

reclen% For random access files and indexed-sequential files, this is the
record length. In Release T, this can be up to 127 characters.

Example
100 OPEN "LOG" FOR OUTPUT AS #1
200 WRITE #1, "write this to the file."
300 CLOSE #1
400 OPEN “LOG” FOR INPUT AS #1
500 INPUT #1, a$
600 PRINT "Read from file: "; a$
700 CLOSE #1

PRINT, PRINT USING #

Usage
PRINT writes data to the lower JAGUAR terminal display, to a sequential file, or outputs
data to the specified serial port.

PRINT USING writes formatted output to the JAGUAR terminal display or to a file. A
template is defined that specifies the length and format of each item to be displayed.

Syntax
PRINT [#filenumber%,] expressionlist [{;}]
PRINT [#filenumber%,] USING formatstring$; expressionlist [{;}]
PRINT “expression”
PRINT USING “####.##”, formatstring$
PRINT [#filenumber%], string$

#filenumber% The number of an open sequential file. If the file number is
omitted, PRINT writes to the lower JAGUAR terminal display. If the
filenumber is a Com Port, then PRINT command outputs data to
the specified serial port.

expressionlist List of one or more numeric or string expressions to print.

semicolon {;} The absence of a semicolon {;} at the end of a line means to
insert a new line.

formatstring$ A string expression containing characters that format a numeric
expression.

Digit position.

. Decimal point position.

^ Prints in exponential format.

- Space.

+ Sign.

Other characters are printed as literal data in the output.

Use these characters to format string expressions

! Print corresponding characters of string.

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-74

\ \ Print first n characters of string, where n is the number of blanks
between the slashes.

expression Any character or numeric expression.

string$ Any string expression.

Example
10 netto=10.0
20 brutto=20.0
30 PRINT USING "netto_#####.## ___brutto_#####.##";netto;brutto
40 a#=123.456789:b#=87.54321:c#=5.555
50 PRINT USING #1"$###.## __$###.## __$###.##";a#;b#;c#
70 PRINT USING "+###.## __$###.## __+###.##";a#;b#;c#
80 a#= -123.456789
90 LPRINT USING #1 "$###.##";a#
100 LPRINT USING #1 "+###.##";a#
110 a%=4567:b%=12:c%=1:d%=123
120 LPRINT USING #1 "_###";a%
121 LPRINT USING #1 "_###";b%
122 LPRINT USING #1 "_###";c%
123 LPRINT USING #1 "_###";d%
130 LPRINT USING #1 "+###.##";a%
140 a%= -4567
150 LPRINT USING #1 "#######";a%
151 LPRINT USING #1 "######";a%
152 LPRINT USING #1 "#####";a%
160 LPRINT USING #1 "+###.##";a%
170 a$="abcdefghijklmnopqrstuvwxyz"
180 LPRINT USING #1 "!!!!";a$
190 PRINT USING #1 "\ \ __\ \";a$;a$
200 PRINT USING #1"_^^^^ ___^^^^^";a#;b#
210 close #1

PRINT #

Usage
Outputs data to the specified serial port or sequential file.

Syntax
print #1,string$

#1 Serial port or file number.

string$ String expression.

Chapter 5: JagBASIC Commands
File Commands

(3/99) 5-75

Example
10 OPEN "LOG" FOR APPEND a$ #1
20 PRINT #1, "hello"
30 CLOSE #1

PUT
Usage
Writes records to a random access file.

Writes a record to the indexed sequential file. The JagBASIC program must first set
values into the FIELD variables, including the logical key variable. PUT searches the file
for a record containing the logical key. If it finds the record, PUT overwrites the existing
record with the new data. If there is no existing record with the same key, PUT inserts a
new record into file in its proper sequential position.

Field variables are cleared after the PUT statement is run.

Syntax
PUT #file number[,record number]

#file number Number of the open, random, or indexed sequential file.

record number Number of the record to write. When a record number is not
specified for random-access files, JagBASIC writes to the record
specified by the indexed field of the field variables. Record number
is not used for indexed-sequential files.

Example 1
Random File

10 OPEN "IDFILE" FOR RANDOM AS #1 LEN = 19
15 rem added line feed, carriage return for
16 rem printing out file with standard editors,
20 FIELD #1,9 AS FID$, 8 AS FWEIGHT$, 2 AS LFCR$
30 FOR X% = 1 TO 10
35 rem re-initialize record image before each "PUT"
40 LSET FID$ = "000000000" : LSET FWEIGHT$ = "00000000"
50 LSET LFCR$=chr$(13)+chr$(10)
60 PUT #1, X%
70 NEXT X%
80 CLOSE #1
230 USEREC%=0
240 FOR REC% = 1 TO 10
250 GET #1, REC%
270 IF FID$ = "000000000" THEN USEREC% = REC% : REC%=10
280 IF EOF(1) = 1 THEN REC% = 10
290 NEXT REC%
300 LSET FWEIGHT$ = "12345.6"
310 LSET FID$="JOE TRUCK"
320 LSET LFCR$=chr$(13)+chr$(10)
330 IF USEREC%<>0 THEN PUT #1, USEREC%
340 CLOSE #1

Field variables are cleared after
the PUT statement.

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-76

Example 2
Indexed-Sequential File

3000 LPRINT "write some records"
3010 OPEN "testfile" FOR RANDOM AS #1 len=26
3020 field #1,16 as a$,8 as b$, 2 as c$
3030 INDEXED #1,a$
3050 LSET a$=STRING$(16,"Z")
3060 LSET b$="11111111"
3070 LSET c$=CHR$(13)+CHR$(10)
3080 PUT #1
3090 LSET a$=STRING$(16,"Y")
3100 LSET b$="11111111"
3110 LSET c$=CHR$(13)+CHR$(10)
3120 PUT #1
3170 CLOSE #1

RSET
Usage
Moves the value of an expression or variable into a specified field in a random-access
file buffer in preparation for a PUT statement. RSET also right-justifies the value of a
string variable in the field variable.

Syntax
RSET stringvariable$ = stringexpression$

stringvariable$ Any string variable or a random-access file field
defined in a FIELD statement.

stringexpression$ The right-justified version of string variable$.

Example
10 OPEN "F" FOR RANDOM AS #1 LEN = 10
20 FIELD #1, 5 AS Ls1$, 5 AS Rs1$
30 LSET Ls1$ = "LSET"
40 RSET Rs1$ = "RSET"
50 PUT #1, 1
60 CLOSE #1

SORTREC

Usage
Identifies the file as an indexed sequential file. Identifies which field is the index field.
Sorts the file records in sequential order by key if necessary.

Syntax
SORTREC #file number,variable name

file number Opened random access file.

variable name The FIELD variable used as the index key.

Chapter 5: JagBASIC Commands
File Commands

(3/99) 5-77

Example
1000 LPRINT "create indexed file"
1010 OPEN "testfile" FOR RANDOM AS #1 len=26
1020 FIELD #1,16 as a$,8 as b$, 2 as c$
1040 FOR i% = 10 to 1 step -1
1050 LSET a$=STRING$(16,chr$(64+i%))

1055 LSET b$="00000000"
1060 LSET c$=CHR$(13)+CHR$(10): REM LF/CR
1070 PUT #1
1080 NEXT i%
1100 SORTREC #1,a$
1110 LSET a$=STRING$(16,"J")
1120 GET #1
1130 LPRINT b$
1140 CLOSE #1
2000 LPRINT "print file"
2010 OPEN "testfile" FOR INPUT AS #1
2020 WHILE NOT EOF(1)
2030 LINE INPUT #1,x$
2040 LPRINT x$
2050 WEND
2060 CLOSE #1

Output: SORTREC sorted the records into sequential order to make the file an indexed
sequential file.

WRITE #

Usage
Outputs delimited data to the sequential file. WRITE inserts commas between items and
quotation marks around strings as they are written. WRITE writes values in a form that
can be read into separate variables by the INPUT statement.

Syntax
WRITE [#filenumber%,] expressionlist

filenumber% The number of an open sequential file. If the file number is
omitted, WRITE writes to the LPRINT device.

expressionlist One or more variables or expressions.

Example
5 ON ERROR GOSUB 80
10 OPEN "log" FOR APPEND AS #1
20 WRITE #1,"write this to log"; "write some more"
30 CLOSE #1
40 OPEN "log" FOR INPUT AS #1
45 WHILE EOF(1) = 0
50 INPUT #1,a$,b$
60 LPRINT "read from log: ";a$,b$
65 WEND

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-78

70 CLOSE #1
75 END
80 a$ = "done"
90 RETURN

Real-time Process
Control Commands

A JagBASIC program can implement "event-driven" processing. A program can
execute a particular command or subroutine based on the occurrence of a specified
event. A JagBASIC program can also build ladder logic rungs. The JAGUAR terminal’s
O/S can then use its ladder logic processor to rapidly evaluate the discrete inputs, the
discrete outputs, and the associated shared data triggers. The maximum number of
rung elements that may be active is 70.

JagBASIC’s real-time process control commands enable you to:

• Allocate and de-allocate events.
• Allocate a keyboard event or timer event.
• Suspend program execution until an event trigger causes program execution to

resume.
• Clear outstanding event triggers.
• Disable asynchronous event triggers.
• Re-enable asynchronous event triggers after a critical section of code.
• Return the state of the event.
• Add a rung to the ladder.
• Clear the ladder.

The JagBASIC program allocates events with event names. A maximum of 16 events
may be active at any one time. The event name is one of the following:

• a shared data variable name;

• the keyword, KEY;

• the file number of an open serial communications file, COM1, COM2, COM3, or
COM4;

• the keyword, TIME.

The JagBASIC program can synchronously monitor an event state or wait for the
"triggering" of any event in the main line of the program. Changes to local shared data
elements, keystrokes, or serial port inputs can trigger events.

Level-sensitive and edge-sensitive discrete shared data fields can trigger events.

Level-sensitive state bit fields trigger events when the JAGUAR terminal O/S writes either
0 or 1 to the field. Applications can use events to monitor when these fields change
values.

Edge-sensitive bit fields only trigger events when a 1 is written to the field. The JAGUAR
terminal O/S, a PLC host, or a PC host can write these bit fields. Applications can set
these discrete shared data bits to issue commands to the JAGUAR terminal O/S. Once
the JAGUAR terminal O/S has processed the command, it sets the discrete bit to 0 to
rearm the bit for another command. Applications do not typically use events to monitor
the state of these bits.

You cannot define an event associated
with a remote shared data field.

Chapter 5: JagBASIC Commands
Real-time Process Control Commands

(3/99) 5-79

The JagBASIC program can "trap" events asynchronously by designating a specific
routine to be executed when the event occurs. The event trapping routines must be
short routines that execute quickly then return execution control to the main line of
executable code. When you CHAIN from one program to another, the JagBASIC
Interpreter automatically clears all events.

This section discusses the following JagBASIC event commands:

Command Usage

CLREVENT Clears outstanding event triggers.
DEFSHR EVENT Allocates a shared data event.
DELEVENT De-allocates an event.
DISABLE Disables asynchronous event triggers.
ENABLE Re-enables asynchronous event triggers after a critical

section of code.
EVENT Allocates a keyboard event or timer event.
EVENTON Returns the state of the event.
INPUT Used in conjunction with event commands to implement

asynchronous serial input.
NEWLADDER Clears ladder used by ladder logic processor in JAG UAR

terminal O/S
RUNGAND Adds a rung which represents the AND value of two

inputs.
RUNGANDNT Adds a rung which represents the inverse of the AND

value at the inputs.
RUNGOR Adds a rung which represents the OR value of two

inputs.
RUNGORNOT Adds a rung which represents the inverse of the OR

value of two inputs.
RUNGMOV Adds a rung to the ladder which moves the value of

SharedData1 to SharedData2.
RUNGMVNOT Adds a rung to the ladder which moves the "NOT" value

of SharedData1 to SharedData2.
ON EVENT GOSUB Enables you to asynchronously monitor an event.
STARTIME Starts the timer, which specifies the length of the timer in

milliseconds.
STOPTIME Stops a running timer.
WAITEVENT Suspends program execution until an event trigger

causes program execution to resume.

TIPS
An application can monitor discrete edge-sensitive fields to start processing when the
Scale has read a new weight from the scale base. Trigger t_688 is for Scale A and
t_689 is for Scale B. Once it has processed the event, the scale application must set
the field back to zero in order to re-enable the trigger for the next event.

Physical discrete input fields are level-sensitive shared data fields that reflect the state
of the physical outputs from the JAGUAR terminal. JagBASIC applications can use
events to monitor the changing state of the physical inputs.

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-80

Physical discrete output fields are level-sensitive shared data fields that reflect the state
of the physical outputs from the JAGUAR terminal. JagBASIC applications interface to
shared data to set the discrete outputs and would not typically use events to monitor
the state of physical discrete outputs.

An application can monitor the rising or falling edge of physical discrete inputs. An
event may be processed on either the rising edge when a physical discrete input
transitions from a 0 to 1 state, or on the falling edge when the physical discrete input
transitions from a 1 to 0 state.

The JAGUAR terminal Ladder Logic processor continually monitors the state of the
physical inputs. It samples the physical discrete inputs once every 55 milliseconds.
The Ladder Logic processor sets the rising or falling edge trigger when it sees a state
transition in the discrete input.

The following discrete edge-sensitive triggers can alert an event on either the rising
edge or falling edge of a discrete input. Once the application processes the event, it
must reset the shared data trigger to 0 to re-enable the next occurrence of the trigger.

DiscreteInputRisingEdge_1 /p_6e0
DiscreteInputRisingEdge_2 /p_6e1
.
.
.
DiscreteInputRisingEdge_12 /p_6ef

DiscreteInputFallingEdge_1 /p_6f0
DiscreteInputFallingEdge_2 /p_6f1
.
.
.
DiscreteInputFallingEdge_12 /p_6ff

The following sample program uses events to monitor the rising edge and falling edge
of discrete input 1. Note that the program resets the triggers to 0 so that they will trigger
again.

10 defshr event re_1,p_6e0
20 defshr event fe_1,p_6f0
30 re_1=0
40 fe_1=0
50 on event re_1 gosub 1000
60 on event fe_1 gosub 2000
70 if inkey$="" then goto 70
80 end
1000 tprint "rising edge"
1010 re_1=0
1020 return
2000 tprint "falling edge"
2010 fe_1=0
2020 return

CLREVENT

Usage
Clears outstanding event triggers. The JagBASIC interpreter automatically clears an
event trigger upon completion of an event trapping routine for that trigger.

Chapter 5: JagBASIC Commands
Real-time Process Control Commands

(3/99) 5-81

Syntax
CLREVENT [event name]

event name Name of the specific event that you want to clear. If no
event name is specified, all event triggers are cleared.

Example
10 CLREVENT SPFEED%
20 CLREVENT TIME
30 CLREVENT KEY
100 CLREVENT

DEFSHR EVENT

Usage
Allocates an event associated with a shared data field. Writing a value to the shared
data field triggers a JagBASIC event.

Syntax
DEFSHR EVENT variable name, shared data field name

variable name The variable name. You cannot define an event for a remote
shared data field.

shared data field name Local shared data field name.

Example
10 DEFSHR EVENT SPFEED%,s_210

DELEVENT

Usage
De-allocates an event.

Syntax
DELEVENT event name

event name Name of the specific event you want to delete. If no name
is

specified, all events are deleted.

Example
500 DELEVENT SPFEED%
510 DELEVENT KEY
530 DELEVENT #1
600 DELEVENT

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-82

DISABLE

Usage
Disables asynchronous event triggers. This command is used to protect critical
sections of code.

Syntax
DISABLE

Example
30 DISABLE

ENABLE

Usage
Re-enables asynchronous event triggers after a critical section of code.

Syntax
ENABLE

Example
50 ENABLE

EVENT
Usage
Allocates a keyboard event or timer event. An event occurs asynchronously from the
normal execution of the JagBASIC program.

The keyboard event triggers an event when there is a key available. Use the INKEY$
function to read the key.

The timer event triggers at the expiration of the timer. Use the STARTIME command to
start the timer.

Syntax
EVENT [KEY] | [TIME]

key Keyboard event.

Time Timer event.

Example 1
10 EVENT key
20 WAITEVENT
30 CLREVENT
40 c$=INKEY$
50 WHILE c$<>""
60 TPRINT c$;
70 c$=INKEY$

Chapter 5: JagBASIC Commands
Real-time Process Control Commands

(3/99) 5-83

80 WEND
90 GOTO 20

Example 2
10 event time
20 on event time gosub 200
30 startime 1000
.
.
200 print “timer expired”
210 return

EVENTON
Usage
Returns the state of the event. A zero value indicates the event is in a "non-triggered"
state. A nonzero value is the "triggered" state. You must put quotation marks around
the event name.

Syntax
EVENTON("event name")

event name Name of the event.

Example
100 IF EVENTON("SPFEED%") THEN PRINT "setpoint event"
110 CLREVENT SPFEED%
120 GOTO 100

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-84

INPUT

Usage
Used in conjunction with the event commands to implement asynchronous serial input,
the INPUT command initiates an input operation from a serial port. This can occur
asynchronously with the normal application operation. Program execution does not
have to be suspended while the serial input operation completes. Upon completion of
the serial input, an event trigger alerts the application that the input is complete. The
application defines the serial input termination conditions on the OPEN statement (a
time-out, reaching a specified input length, or encountering the terminating character in
the input stream). The application can use either synchronous or asynchronous event
processing routines to complete serial input processing.

After receiving an INPUT message and transferring control to the Event Service Routine,
the JagBASIC program must re-prime the input by issuing another INPUT command.

Syntax
INPUT #filenumber, string variable

#filenumber Open sequential file or serial port from which you want to read
data. When no filename is specified, INPUT reads data from the
JAGUAR terminal keyboard, the JAGUAR terminal keypad, or both.
The JagBASIC keyboard device must be selected through the
JAGUAR terminal operator setup menus. Commas between items
and quotation marks around strings in the file are required.

string variable The input data.

Example
10 open "com1:tmo5000 len40 trm13 event" for input as #1
30 on event #1 gosub 1000
40 input #1,a$
.
. MAIN PROGRAM
.
50 if inkey$ <>"x" then goto 50
60 close #1
70 end
.
.
1000 lprint "serial message";a$
1010 input #1, a$: rem start next input
1020 return

Chapter 5: JagBASIC Commands
Real-time Process Control Commands

(3/99) 5-85

NEWLADDER

Usage
Clears the ladder that is used by the ladder logic processor in the JAGUAR terminal
Operating System.

Syntax
NEWLADDER

Example
210 REM Ladder based on setpoint
220 Newladder
230 REM Setpoint1 to Out2
240 RUNGMOV 5_210, p_501

ON EVENT GOSUB

Usage
Enables you to asynchronously monitor an event and define the Event Service Routine.
Upon the occurrence of an asynchronous event, the program execution branches to an
event trapping subroutine.

Event trapping routines must be short routines that execute quickly and then return
execution control to the main line of program code. The execution of an event trapping
subroutine completes without interruption by another asynchronous event. The event
trapping routines can occur between any two lines in the main program. Be careful of
the variables used in these routines. Temporary variables, such as loop counters,
should be unique to the event-trapping routine. Upon exit of the event-trapping routine,
the JagBASIC interpreter automatically clears the event that triggered the execution of
the routine.

Syntax
ON EVENT event name GOSUB line number

Example 1
Monitoring One Setpoint

10 DEFSHR EVENT SPFEED%,s_210
20 ON EVENT SPFEED% GOSUB 1000
.
1000 IF SPFEED%=0 THEN PRINT "SETPOINT REACHED"
1010 RETURN

Example 2
Monitoring Multiple Setpoints

5 REM Turn discrete outputs on or off as setpoint coincidence values change.
10 DIM SPFEED%(4)
20 DEFSHR EVENT SPFEED%(1),s_210
30 DEFSHR EVENT SPFEED%(2),s_214
40 DEFSHR EVENT SPFEED%(3),s_218
50 DEFSHR EVENT SPFEED%(4),s_21c

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-86

60 DIM DOUT(4)
70 DEFSHR DOUT(1),p_500
80 DEFSHR DOUT(2),p_501
90 DEFSHR DOUT(3),p_502
100 DEFSHR DOUT(4),p_503
110 FOR i%= 1 to 4
120 ON EVENT SPFEED%(i%) GOSUB 1000
130 NEXT i%
.
.MAIN PROGRAM
.
1000 CLREVENT
1010 FOR j%=1 to 4
1020 IF SPFEED%(j%)=0 THEN DOUT(j%)= 0 ELSE DOUT(j%)= 1
1030 NEXT j%
1040 RETURN

RUNGAND
Usage
RUNGAND adds a ladder rung to the Jaguar Ladder Logic. The ladder is run every 55
milliseconds in the Jaguar O/S whenever there is a change in the ladder inputs. The
rung inputs are physical discrete inputs or global discrete data from Shared Data. The
outputs are physical discrete outputs or global discrete data in Shared Data. This rung
takes two inputs, AND’s them together, and outputs the value.

Syntax
RUNGAND input1,input2,output

Example
AND a physical discrete input with "Setpoint1 feeding" to generate a physical discrete
output.

rungand p_101,s_210,p_501

RUNGANDNT
Usage
RUNGANDNT adds a ladder rung to the Jaguar Ladder Logic. The ladder is run every
55 milliseconds in the Jaguar O/S whenever there is a change in the ladder inputs.
The rung inputs are physical discrete inputs or global discrete data from Shared Data.
The outputs are physical discrete outputs or global discrete data in Shared Data. This
rung takes two inputs, AND’s them together, and outputs the inverse value.

Syntax
RUNGANDNT input1,input2,output

Example
Take two physical inputs and generate a physical discrete output.

rungandnt p_101,p_102,p_501

Chapter 5: JagBASIC Commands
Real-time Process Control Commands

(3/99) 5-87

RUNGMOV
Usage
RUNGMOV adds a ladder rung to the Jaguar Ladder Logic. The ladder is run every 55
milliseconds in the Jaguar O/S whenever there is a change in the ladder inputs. The
rung inputs are physical discrete inputs or global discrete data from Shared Data. The
outputs are physical discrete outputs or global discrete data in Shared Data. This rung
takes an input and generates an output with the same value.

Syntax
RUNGMOV input,output

Example
Take a tare on Scale B when a physical discrete input is turned on.

rungmov p_103,t_6a0

RUNGMVNOT
Usage
RUNGMVNOT adds a ladder rung to the Jaguar Ladder Logic. The ladder is run every
55 milliseconds in the Jaguar O/S whenever there is a change in the ladder inputs.
The rung inputs are physical discrete inputs or global discrete data from Shared Data.
The outputs are physical discrete outputs or global discrete data in Shared Data. This
rung moves the inverse of the input to the output.

Syntax
RUNGMVNOT input,output

Example
Turn on a physical discrete output when the data from Scale A is invalid.

rungmvnot s_261,p_508

RUNGOR
Usage
RUNGOR adds a ladder rung to the Jaguar Ladder Logic. The ladder is run every 55
milliseconds in the Jaguar O/S whenever there is a change in the ladder inputs. The
rung inputs are physical discrete inputs or global discrete data from Shared Data. The
outputs are physical discrete outputs or global discrete data in Shared Data. This rung
takes two inputs, OR’s them together, and outputs the value.

Syntax
RUNGOR input1,input2,output

Example
Turn on a physical discrete output if Scale A or Scale B is in motion.

rungor s_200,s_208,p_508

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-88

RUNGORNOT

Usage
RUNGORNOT adds a ladder rung to the Jaguar Ladder Logic. The ladder is run every
55 milliseconds in the Jaguar O/S whenever there is a change in the ladder inputs.
The rung inputs are physical discrete inputs or global discrete data from Shared Data.
The outputs are physical discrete outputs or global discrete data in Shared Data. This
rung takes two inputs, OR’s them together, and outputs the inverse value.

Syntax
RUNGORNOT input1,input2,output

Example
Turn on a physical discrete output when either the JagBASIC application turns off a
temporary output or a physical discrete input is turned off. The JagBASIC application
must defshr the s_250 global discrete data and then can toggle its value on or off.

rungornot s_250,p_103,p_502

STARTIME

Usage
Starts the internal timer. The maximum timer value is 65 seconds.

Syntax
STARTIME milliseconds

milliseconds The time in milliseconds to start the internal timer.

Example 1
10 EVENT TIME
20 STARTIME 2000
30 WAITEVENT
40 IF EVENT("time") THEN PRINT "TIMER EXPIRED"
50 CLREVENT
60 GOTO 30

Example 2
10 EVENT TIME
20 ON EVENT TIME GOSUB 1000
30 STARTIME 3000
.
. MAIN PROGRAM
.
1000 PRINT "TIMER EXPIRED"
1010 CLREVENT TIME
1020 RETURN

Chapter 5: JagBASIC Commands
Real-time Process Control Commands

(3/99) 5-89

STOPTIME

Usage
Stops a running timer.

Syntax
STOPTIME

Example
10 EVENT TIME
20 STARTIME 2000
200 STOPTIME

WAITEVENT

Usage
Suspends program execution until an event trigger causes program execution to
resume.

Syntax
WAITEVENT

Example 1
10 DEFSHR EVENT SP%,s_210
20 CLREVENT
30 WAITEVENT
40 IF EVENTON("SP%")=0 THEN GOTO 20
50 IF SP%=0 THEN PRINT "ABOVE SETPOINT" ELSE PRINT "BELOW SETPOINT"
60 GOTO 20

Example 2
10 DIM SPFEED%(4)
20 DEFSHR EVENT SPFEED%(1),s_210
30 DEFSHR EVENT SPFEED%(2),s_214
40 DEFSHR EVENT SPFEED%(3),s_218
50 DEFSHR EVENT SPFEED%(4),s_21c
60 EVENT key
100 DIM DOUT(4)
110 DEFSHR DOUT(1),p_500
120 DEFSHR DOUT(2),p_501
130 DEFSHR DOUT(3),p_502
140 DEFSHR DOUT(4),p_503
200 CLREVENT
210 WAITEVENT
220 FOR i%=1 to 4
230 IF EVENTON("SPFEED%(i%)")=0 THEN GOTO 250
240 IF SPFEED%(i%)=0 THEN DOUT(i%)= 0 ELSE DOUT(i%)= 1
250 NEXT I%
260 c$=INKEY$
270 IF c$<>"" THEN GOSUB 500

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-90

280 GOTO 200
500 REM process keystroke
510 PRINT c$
520 RETURN

Timing Commands
JagBASIC offers several commands that work with date and time. The most
fundamental timing commands, DATE$ and TIME$, simply display the current system
date and time. You can also change the JAGUAR terminal system date and time with
these commands.

Timing commands also enable your program to provide information about when or
how long a certain event took place. These commands can be used to tell when a file
was opened or how long it took to execute a section of code.

The SLEEP command lets you pause the program for a specified number of
milliseconds. This command can be used to provide time for the user to read the
screen. The program will resume execution after the time has elapsed or whenever the
user presses a key.

This section discusses the following JagBASIC timing commands:

Command Usage

DATE$ Sets or returns the JAGUAR terminal system date.
SLEEP Suspends program execution for the of specified number of

milliseconds.
TIMER Returns a double precision floating point number that contains

the elapsed time in seconds since 00:00:00 GMT, January 1,
1970.

TIME$ Sets or returns the JAGUAR terminal system date and time.

TIPS

Time and Date in the JAGUAR
The Shared data variables Jag19 and Jag20 have the date and time formatted as
specified in the JAGUAR terminal setup. These shared data variables are NOT updated
automatically. However, executing either a date$ or time$ command will cause both to
be updated. Here’s a sample clock program:

5 defshr CurTime, Jag20
10 defshr CurDate, Jag19
15 a$=time$
20 print left$(CurDate,6)+" "+CurTime
25 sleep 100
30 go to 15

DATE$

Usage
Sets or returns the JAGUAR terminal system date.

Chapter 5: JagBASIC Commands
Timing Commands

(3/99) 5-91

Syntax
DATE$
DATE$="mm-dd-yyyy"

mm-dd-yyyy Month, day, and year. You do not need to enter a leading zero in
front of single-digit month or day values.

Example
10 a$="10-16-1997"
20 DATE$=a$
30 PRINT DATE$
50 TIME$="10:05:00"
60 PRINT TIME$

SLEEP

Usage
Suspends program execution for the specified number of milliseconds. The JAGUAR
terminal timer interrupts every 27.5 milliseconds, so SLEEP can be set up to this
accuracy. This command is frequently used to pause a program so the user has time
to read the output screen.

Syntax
SLEEP [milliseconds]

milliseconds The number of milliseconds that you want to suspend program
execution.

Example
10 PRINT "Taking a 10 second nap..."
20 SLEEP 10000
30 PRINT "Wake up!"

TIMER

Usage
Returns a double precision floating point number that contains the elapsed time in
seconds since 00:00:00 GMT, January 1, 1970. Used to time the length of specific
operations.

Syntax
TIMER()

Example
10 time#=Timer();
20 SLEEP 1000
30 LPRINT Timer()-time#

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-92

TIME$

Usage
Sets or returns the JAGUAR terminal system time.

Syntax
TIME$
TIME$="hh:mm:ss"

hh:mm:ss Hours, minutes and seconds.

Example
10 a$="10-16-1997"
20 DATE$=a$
30 PRINT DATE$
50 TIME$="10:05:00"
60 PRINT TIME$

Error Trapping
Commands

Despite all of your efforts, errors can occur in your program. JagBASIC offers both error
trapping and error handling commands for runtime errors. Runtime errors can be
difficult to locate because they may occur only when a certain combination of
circumstances occur. Runtime errors can also be caused by circumstances outside of
your programming control, such as looking up nonexistent records in a file or
accessing a remote shared data item when the ARCNet connection is down.

• JagBASIC’s debug commands assist you in finding runtime errors.

• JagBASIC’s error handling commands tell the program what to do if an error
occurs. Only certain errors can be handled at run time.

JagBASIC's error commands can return an error code for the error, return the line
number where the error occurred, or provide error handling instructions. Chapter 9
contains a list of JagBASIC error codes.

This section discusses the following JagBASIC error trapping commands:

Command Usage

ERR() Returns the runtime error code for the most recent error
ERL() Returns the line number where the error occurred, or the

closest line number before the line where the error
occurred

ERROR Simulates an occurrence of an error.
ON ERROR
GOSUB

Enables error handling and, when a run time error
occurs, directs your program to an error handling routine.

Chapter 5: JagBASIC Commands
Error Trapping Commands

(3/99) 5-93

ON ERROR GOTO Enables error handling and, when an error occurs, directs
your program to an error handling routine.

ERR(), ERL(), ERROR
Usage
ERL returns the line number where the error occurred, or the closest line number before
the line where the error occurred. Used as a debugging aid to fix runtime errors in your
program.

ERR returns the runtime error code for the most recent error. Used in error handling
routines to help identify the program and determine whether the program can recover
from the error.

ERROR simulates an occurrence of an error. Used to debug error handling routines.

Syntax
ERL()
ERR()
ERROR number%

number% Error code.

Example
10 ON ERROR GOSUB 1000
20 ERROR 22
30 END
40 IF ERR()=error_code THEN GOSUB 4000
.
1000 LPRINT ERR()
1010 LPRINT ERL()

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)5-94

ON ERROR GOSUB
Usage
Enables error handling and when a run time error occurs the command directs the
program to an error handling routine. If ON ERROR GOSUB is not used, any run time
error ends the program.

Syntax
ON ERROR GOSUB line

line The first line of the error handling routine.

Example
10 ON ERROR GOSUB 1000
20 OPEN “X.DAT” FOR INPUT AS #1
.
.
.
1000 IF ERR()=0 THEN PRINT “FILE ERROR”
1010 PRINT “ERROR ON LINE “; ERL()
1020 RETURN : rem returns to the next line after error

ON ERROR GOTO

Usage
Enables error handling and when an error occurs directs the program to an error
handling routine. If ON ERROR GOTO is not used, any run time error ends the program.

Syntax
ON ERROR GOTO line

line The first line of the error handling routine.

Example
10 on error goto 100
20 defshr w#, j1/wt110
30 defshr x#, j2/wt110
40 defshr y#, j3/wt110
50 sum# = w# + x# + y#
60 print sum#
70 goto 50
100 if err() <> 32 then end
110 print “Jaguar offline”
120 goto 50

The following error can be trapped with
the “on error” command.

File open failed 0
Resource In Use 3
Record not found 6
Device Error 13
Command error 14
Invalid Shared Data Name 28
Shared Data String Too Long 31
No Remote Access 32

The ON ERROR GOTO error handling
routine differs from the ON ERROR GOSUB
routine in that control does not return to
the next line of the program. The ON
ERROR GOTO error routine must explicitly
jump to the next line of the execution.

You must be particularly careful of
processing errors that occur in the middle
of WHILE-WEND loops, FOR-NEXT loops,
and GOSUB routines. These structures
create processing stacks and, if you do
not clear these stacks by properly exiting
these processing structures, you will
eventually get an OVERFLOW error.

Chapter 6: Shared Data Variables
Shared Data Heap Elements

(3/99) 6-1

6 Shared Data Variables
The shared data database is the main data storage area for Jaguar information. This
central variable table keeps track of virtually every data value used by the Jaguar. All
operating system tasks can directly use these shared values.

The Scale threads or Setup is the main shared data source. Other “external” agencies
such as JagBASIC, the Windows API, Save/Restore/Setup Utility, Allen-Bradley interface,
MODBUS Plus interface, or PROFIBUS interface can also read or write to shared data.

External write access to shared data variables is sometimes restricted. The Scale
threads and Setup maintain write access to any variable, but access to Setup itself may
be restricted by the Legal For Trade jumper. If the Legal For Trade jumper is installed,
any shared data variables listed as “External Read Only” can not be written to by
external agencies. If the Legal For Trade jumper is removed, there are no external write
access restrictions. Access restrictions are enforced on a whole block basis only.

See the Jaguar Operating Environment and Shared Data and the Shared Data Types
sections in Chapter 1 for more information.

This chapter lists the various shared data variables. The following abbreviations are
used throughout the chapter.

• UC—Unsigned Character

• C—String Character variables are any ASCII characters with values in the range 1
to 127 or extended characters in the range 128 through 255, terminated by a 0.

• D—Double Float variables are numeric variables in 64-bit double-precision
format.

• L—Long variables are numeric integers representing a number of eight or more
digits.

• US bit—Unsigned Bit variables have a value of 0 or 1.

METTLER TOLEDO JagBASIC Programmer's Guide

(3/99)6-2

Shared Data Heap
Elements

This section lists the shared data heap elements. These variables hold the values
associated with different scale weights and with board configurations.

Scale Weight Shared Data
These variables hold the shared data values associated with scale weight. The fields
are external read only. The ‘n’ listed below in Local Field will be replaced with the
Internal Scale number. In Rel. T, the scale number can be from 1 to 5.

Local Method Local
File Id

Internal
Format

External Format

DisplayedGrossWeight /wtn01 12C 12 alphanumeric, right-justified
DisplayedNetWeight /wtn02 2C 12 alphanumeric, right-justified
DisplayedWeightUnits /wtn03 2C 2 alphanumeric (lbpounds, kgkilograms, grams,

tmetrictons)
DisplayedAuxGrossWeight /wtn04 12C 12 alphanumeric, right-justified
DisplayedAuxNetWeight /wtn05 12C 12 alphanumeric, right-justified
DisplayedAuxWeightUnits /wtn06 6C 6 alphanumeric (lbpounds, kgkilograms, ozounces,

lb-ozpounds & ounces, oztroy ounces, dwtpenny
weights, metric tons, ton, or custom units name)

DisplayedAuxRatePeriod /wtn07 C 1 alphanumeric (No, Sec, Min, Hour)
DisplayedRate /wtn08 12C 12 alphanumeric, right-justified
DisplayedDiagnosticWeight /wtn09 12C 12 alphanumeric, right-justified
LegalGrossWeight /wtn10 D double float weight
LegalNetWeight /wtn11 D double float weight
AuxiliaryGrossWeight /wtn12 D double float weight
AuxiliaryNetWeight /wtn13 D double float weight
AuxiliaryRate /wtn14 D double float weight
ScaleState /wtn15 UC 0=disabled, 1=normal weight processing,

2=diagnostic, 3=calibration, 4=shift adjust.
ContinuousOutputStatusA /wtn16 UC 1 byte, any value.
FineGrossWeight /wtn17 D double float weight
FineNetWeight /wtn18 D double float weight
Weighing Range /wtn19 UC 0= single weighing range, 1=multi-range 1,

2=multi-range 2, 3=multi-range 3

Chapter 6: Shared Data Variables
Shared Data Heap Elements

(3/99) 6-3

Board Configuration Shared
Data

These variables hold the shared data values associated with board configuration.
Board configuration shared data variables are initialized at power up. The fields are
external read only.

Local Method Local
File Id

Internal
Format

External format

Latest keystroke/key source /bd003 2c 2 alphanumeric

EEPROMAutorizationByte /bd004 1C 1 alphanumeric
ConsoleSoftwarePartNo /bd005 12C 12 alphanumeric
Scale1SoftwarePartNo /bd006 12C 12 alphanumeric
Scale2SoftwarePartNo /bd007 12C 12 alphanumeric
Scale3SoftwarePartNo /bd008 12C 12 alphanumeric
Scale4SoftwarePartNo /bd009 12C 12 alphanumeric
Scale5SoftwarePartNo /bd0010 12C 12 alphanumeric
MultiFunctionIOSoftwarePartNo /bd011 12C 12 alphanumeric
PowerCell SoftwarePartNo /bd012 12C 12 alphanumeric
DisplayContents /bd013 17C Reserved for Jaguar O/S Use Only
PowerCellScale-CellErrors /bd016 25C 25 Bytes. There is an error number for

up to 24 power cells. This field has cell
errors for both Scale A, Scale B, Scale C,
and Scale D.

PowerCellScale_CellCounts /bd017 24D 192 Bytes. Each double float contains
the current shift-adjusted counts for
consecutive power cells in a scale. An
external agency can request the current
count for a scale by setting trigger /t_69d
for Scale A, /t_6ad for Scale B to 1,
/t_62d for Scale C, and /t_63d for Scale
D.

ScanTable /bd018 25C Scan Table contains ordered list of
current power cell addresses.

Console /bd085 US bit 1=Yes, 0=No
AnalogBoard1 /bd086 US bit 1=Yes, 0=No
AnalogBoard2 /bd087 US bit 1=Yes, 0=No
AllenBradleyPLC /bd088 US bit 1=Yes, 0=No
PROFIBUS /bd089 US bit 1=Yes, 0=No
Ethernet /bd090 US bit 1=Yes, 0=No
MultiFunctionIO1 /bd091 US bit 1=Yes, 0=No
PowerCell /bd092 US bit 1=Yes, 0=No
ModBus Plus /bd093 US bit 1=Yes, 0=No
AnalogOut /bd094 US bit 1=Yes, 0=No
HighPrec1 /bd095 US bit 1=Yes, 0=No
HighPrec2 /bd096 US bit 1=Yes, 0=No
Multi-FunctionIO2 /bd097 US bit 1=Yes, 0=No

METTLER TOLEDO JagBASIC Programmer's Guide

(3/99)6-4

Shared Data Static
RAM Elements

This section lists the shared data static random access memory elements. These
elements include variables for scale weight, scale calibration parameters, scale tare
weight, setpoints, system values, user literals, user prompts, user variables, cluster
variables, PLC configuration, templates, security, serial port setup, network interface,
network remote nodes, network host workstation nodes, analog output, connections,
ladder logic, and BASIC applications. These fields are preserved when the Jaguar is
powered down.

Scale Weight Stored in
Static RAM Shared Data

These shared data variables hold the values associated with scale weight stored in
static RAM. The fields are external read only. The ‘n’ will be replaced with the
Internal Scale number. In Rel. T, the scale number can be from 1 to 5.

Local Method Local
File Id

Internal
Format

External Format

ScaleModeOut /wsn01 C 1 alphanumeric (GROSS or NET)
DisplayedTareWeight /wsn02 12C 12 alphanumeric, right-justified
DisplayedAuxTareWeight /wsn03 12C 12 alphanumeric, right-justified
FineTareWeight /wsn04 D double float weight
AuxiliaryTareWeight /wsn05 D double float weight
CurrentUnits /wsn06 UC 1=Primary, 2=Secondary
TareSource /wsn07 UC 1=Pushbutton, 2=Keyboard, 3=Autotare
CurrentZeroCounts /wsn08 D Double PB&AZM current zero counts
TareSourceString /wsn09 2C “PT”=keyboard tare, else “T”
DisplayedStoredWeight /wsn10 12C 12 A/N, right justified
Stored Weight /wsn11 D double float weight
LegalTareWeight /wsn12 D double float weight
LastScaleError /wsn13 41C Date – time - error message
NumberScaleErrors /wsn14 F Errors since calibration or reset

Chapter 6: Shared Data Variables
Shared Data Static RAM Elements

(3/99) 6-5

Scale Calibration
Parameters Stored in Static
RAM

These shared data variables hold the values associated with scale calibration
parameters stored in static RAM. The fields are external read only. The ‘n’ will be
replaced with the Internal Scale number.

Local Method Local
File Id

Internal
Format

External Format

AuxiliaryDisplayUnits /csn01 UC 1=pounds, 2=kilograms, 3=grams, 4=ounces, 5=pounds
& ounces, 6=troy ounces, 7=penny weights, 8=metric
tons, 9=tons, 10=custom units

CustomUnitsName /csn02 6C 6 alphanumeric
CustomUnitsConversionFactor /csn03 D double float
RateIntegrationPeriod /csn04 C 1 alphanumeric (No, Sec, Min, Hour)
RateSampleTime /csn05 UC seconds
RateDisplayFrequency /csn06 UC 0=every second,1=every five seconds,2=every half second
IDNET Higher Precision /csn08 UC 0=Normal 1=Higher
PowerUpTimer /csn09 UC 2 alphanumeric, right-justified (in minutes)
LowPassFilterCornerFrequency /csn10 D double float (0.1 Hz to 9.9 Hz in steps of 0.1 Hz)
NotchFilterFrequency /csn11 D double float (0.1 Hz to 9.9 Hz in steps of 0.1 Hz)
CombFilterFrequency /csn12 D double float (0.1 Hz to 9.9 Hz in steps of 0.1 Hz)
PrintThreshold /csn13 D double float weight
PrintResetThreshold /csn14 D double float weight
DisplayUpdateFrequency /csn15 D double float hertz
CustomContinuousOutUpdateFreq /csn16 D double float hertz
LowPassFilterPoles /csn17 US bit unsigned integer.
ScaleID /csn18 8C 8 bytes text string.
AveragingFilterOrder /csn19 US bit unsigned integer.
CombFilterOrder /csn20 US bit unsigned integer.
ScaleType /csn21 C 1 alphanumeric (Analog Load Cells, Power Digital Load

Cells, IHigh Precision, Single cell DigiTOL, Power Module
DigiTOL, UltraResHigh, or UltraResLow)

ScaleLocation /csn22 UC 0=first unit, 1=second unit (board or COM: port)
IDNetVibrationAdaptor /csn23 C ‘0’ - ‘9’ (specific to Precision Base)
IDNetWeighingProcessAdaptor /csn24 C ‘0’ - ‘9’ (specific to Precision Base)
IDNetAutomaticStabilityDetection /csn25 C ‘0’ - ‘9’ (specific to Precision Base)
IDNetAutoZeroSetting /csn26 C ‘0’=“Off”, ‘1’=“On”
IDNetSoftwarePartNum /csn27 11C xxxx-x-xxxx string from Precision Base
IDNetIdentcode /csn28 2C ‘’ to ‘99’ calibration count from Precision Base
ScalesInSummingScale /csn29 UC Add Scale to Summing Scale, 0=No, 1=Yes
CalibrationDate /csn30 11C 11 alphanumeric
FillnoiseFilterEnable /csn85 US bit 1=True, 0=False
AutoPrint /csn86 US bit 1=True, 0=False
NoMotionBeforePrint /csn87 US bit 1=True, 0=False
DisplayRate /csn88 US bit 1=True, 0=False
DisplayAuxiliaryUnits /csn89 US bit 1=True, 0=False
UnitsSwitchEnable /csn90 US bit 1=True, 0=False
PrintInterlockEnable /csn91 US bit 1=True, 0=False
Do_IDNET_TareInJag /csn92 US bit 1=True, 0=False
ProcessApplication /csn93 US bit 1=True, 0=False

METTLER TOLEDO JagBASIC Programmer's Guide

(3/99)6-6

Scale Tare Shared Data
These shared data variables hold the values associated with scale tare weight. The
fields are external read only. The ‘n’ will be replaced with the Internal Scale number. In
Rel. T, the scale number can be from 1 to 5.

Local Method Local
File Id

Internal
Format

External Format

AutoTareThreshold /trn01 double double float weight
AutoTareResetThreshold /trn02 double double float weight
AutoClearTareThreshold /trn03 double double float weight
TareEnabled /trn85 US bit 1=True, 0=False
PushbuttonTare /trn86 US bit 1=True, 0=False
KeyboardTare /trn87 US bit 1=True, 0=False
AutoTare /trn88 US bit 1=True, 0=False
AutoTareCheckMotion /trn89 US bit 1=True, 0=False
AutoClearTare /trn90 US bit 1=True, 0=False
AutoClearTareAfterPrint /trn91 US bit 1=True, 0=False
AutoClearTareMotion /trn92 US bit 1=True, 0=False
TareInterlock /trn93 US bit 1=True, 0=False
DisplayTare /trn94 US bit 1=True, 0=False
NetSignCorrection /trn96 US bit 1=True, 0=False

Setpoint Shared Data
These shared data variables hold the values associated with setpoints. Although the
JAGUAR terminal’s setpoints are numbered 1-12, they are referenced with an internal
setpoint number 1-C, where A=10, B=11, and C=12. The fields are external read/write.
The “n” will be replaced with the Internal Setpoint number (1-C).

The Setpoint Target Variable (spn03) can be used to select the type of setpoint
operation required:

Gross = gross setpoint without auto preact adj

H = gross setpoint with auto preact adj

Jog = Jog Setpoint

Learn = Learn Jog Setpoint

Net = net setpoint without auto preact adj

M = net setpoint with auto preact adj

Displayed = displayed setpoint

Rate = rate setpoint

The operation of Setpoint Preact Value (spn06) will vary depending on the selection of
the Setpoint Target Variable (spn03). If G, N, or D is selected, the Setpoint Preact Value
(spn06) is a double float weight value, and there is no auto preact adjustment. If H or
M is selected, the Setpoint Preact Value (spn06) is a double float seconds value, and
auto preact adjust is enabled. As the scale is used for weighments, the JAGUAR
terminal operating system will adjust the time value stored in this field. When R is
selected, there is no associated preact value.

The following four fields are secondary inputs to a single setpoint that has auto-
adjusting preacts based on flow rates. When the flow rate is greater than threshold 3,

Chapter 6: Shared Data Variables
Shared Data Static RAM Elements

(3/99) 6-7

preact 3 is used. When the flow rate is greater than threshold 2, preact 2 is used.
Threshold 3 is the higher threshold rate. Threshold 2 is the lower threshold rate. If the
flow rate is below both thresholds, the standard preact is used.

Local Method Local
File Id

Internal
Format

External Format

AutoAdjustSetpointThreshold2 /spc08 D double float weight
AutoAdjustSetpointPreact2 /spc06 D double float weight
AutoAdjustSetpointThreshold3 /spb08 D double float weight
AutoAdjustSetpointPreact3 /spb06 D double float weight

Latching of the setpoint is controlled by Setpoint Latching (spn87). When an external
agency enables “Feed Latching”, the JAGUAR O/S sets the Setpoint Latched=1 and the
Setpoint Feeding=0 condition again until the external agency resets the Setpoint
Latched=0. The external agency must reset Setpoint Latched=0 before starting a new
setpoint. Any time you wish to change a setpoint value, setting, or latch, Restart
Setpoints A (t_698) or Restart Setpoints B (t_6a8) must be triggered by setting its
value equal to 1 in order to instruct the JAGUAR O/S to use the new setpoint settings.

Jog Tables for the Jog setpoints are contained in the Cluster Variable fields. The fields
contain numbers in string format. Cluster variables 1-10 are the weight values. Cluster
Variables 11-20 are the timer values associated with each of the weight values. The
weight and timer values must be ordered in ascending order. A weight value of 0
indicates the termination of the table values.

Local Method Local
File Id

Internal
Format

External Format

SetpointName /spn01 8C 8 alphanumeric
SetpointEnbleButton /spn02 UC alphanumeric (0=disabled; Scale A=1, Scale B= 2,

Scale C= 3, Scale D= 4, Scale E= 5)
SetpointTargetVariable /spn03 C 1 alphanumeric (G,H,N,M,D,R,L or J)
SetpointCoincidenceValue /spn05 D double float weight; For learn Jog setpoints, this

field contains a time value in seconds
SetpointPreactValue /spn06 D double float weight or double float seconds
SetpointDribbleValue /spn08 D double float weight
SetpointToleranceValue /spn10 D double float weight
SetpointFillOrDischarge /spn86 US bit 1=Discharge, 0=Fill
SetpointLatching /spn87 US bit 1=Feed Latching Enabled, 0=Feed Latching

Disabled
SetpointLatched /spn88 US bit 1=Latched, 0=Unlatched

METTLER TOLEDO JagBASIC Programmer's Guide

(3/99)6-8

System Shared Data
These shared data variables hold the values associated with system data, such as the
system date and time. The fields are external read only.

Local Method Local
File Id

Internal
Format

External Format

Current Selected Scale /jag01 2C First Char= L or n, 2nd=A or B
ARCNET Node Address /jag02 UC 8 bit address
Market /jag04 C 1 alphanumeric (USA, European Community,

Australia, Canada)
DateFormat /jag05 UC 1 byte integer
TimeFormat /jag06 UC 1 byte integer
JulianDate /jag07 8C 8 alphanumeric
JulianTime /jag08 8C 8 alphanumeric
Consecutive Number /jag09 L long integer counter
Error Message /jag10 41C Date – time – error message
SoftwareID /jag11 12C 12 alphanumeric
SoftwareSerialNumber /jag12 12C 12 alphanumeric
BRAMVersionNumber /jag14 L 4 byte integer
NumberOfInternalScales /jag15 UC 1 byte unsigned integer
DateSeparator /jag16 C 1 byte character
TimeSeparator /jag17 C 1 byte character
ConsecutiveNumberDest /jag18 10C Size of J_FNAME + 1
CurrentDate /jag19 11C 11 alphanumeric
TimeOfDay /jag20 11C 11 alphanumeric
WeekDay /jag21 10C 10 alphanumeric
ConsecutiveNumberPreset /jag22 L CN Preset value
CharacterSet /jag23 UC 0=USA, 1=France, 2=England, 3=Germany, 4=Den

mark-I, 5=Sweden, 6=Italy, 7=Spain-I, 8=Japan,
9=Nor way, 10=Denbmark-II, 11=Spain-II,
12=Latin America

Language /jag24 UC 0=English, 1=French, 2=German, 4=Spanish
Keyboard /jag25 UC 0=English, 1=French, 2=German, 4=Spanish
Disable Memory Key /jag91 US bit 1=True, 0=False
Error Log Reset Time /jag26 24C Date-Time
KeyBeeperEnable /jag85 US bit 1=On, 0=Off
AlarmBeeperEnable /jag86 US bit 1=On, 0=Off
LegalForTrade /jag88 US bit 1=True, 0=False
ConsecutiveNumberEnable /jag89 US bit 1=True, 0=False
ConsecutiveNumberPresetEnable /jag90 US bit 1=True, 0=False
Disable Memory Key /jag91 US bit 1=True, 0=False

User Literals Shared Data
These shared data variables hold the values associated with user literal data. The fields
are external read/write.

Local Method Local
File Id

Internal
Format

External Format

User Literal 1 /lit01 40C 40 alphanumeric
User Literal 2 /lit02 40C 40 alphanumeric
User Literal 20 /lit20 40C 40 alphanumeric

Chapter 6: Shared Data Variables
Shared Data Static RAM Elements

(3/99) 6-9

User Prompts Shared Data
These shared data variables hold the values associated with user prompts. The fields
are external read/write.

Local Method Local
File Id

Internal
Format

External Format

User Prompt 1 /pmt01 16C 16 alphanumeric
User Prompt 2 /pmt02 16C 16 alphanumeric
User Prompt 20 /pmt20 16C 16 alphanumeric

User Variables Shared Data
These shared data variables hold the values associated with user variable data. The
fields are external read/write.

Local Method Local
File Id

Internal
Format

External Format

User Variable 1 /var01 47C USER_VARIABLE structure
User Variable 2 /var02 47C USER_VARIABLE structure
User Variable 20 /var20 47C USER_VARIABLE structure
VariablesInUse /var81 UC Number 0-20
PromptLoopingMode /var82 UC 0=No Loop, 1=Loop

Cluster Variable Shared
Data

These shared data variables hold the values associated with cluster variable data. The
fields are external read/write. Cluster Variable fields may contain Jog Tables for the
Jog setpoints. The fields have numbers in string format. Cluster variables 1-10 are the
weight values. Cluster Variables 11-20 are the associated timer values.

Local Method Local
File Id

Internal
Format

External Format

Cluster Variable 1 /clv01 40C 40 alphanumeric
Cluster Variable 2 /clv02 40C 40 alphanumeric
Cluster Variable 20 /clv20 40C 40 alphanumeric

Template Shared Data
These variables hold the values associated with template shared data. The fields are
external read only.

Local Method Local
File Id

Internal
Format

External Format

Printer Template 1 /ptp01 409C 400 a/n grammar + 8 a/n template name + null
Printer Template 2 /ptp02 409C 400 a/n grammar + 8 a/n template name + null
Printer Template 3 /ptp03 409C 400 a/n grammar + 8 a/n template name + null
Printer Template 4 /ptp04 409C 400 a/n grammar + 8 a/n template name + null
Printer Template 5 /ptp05 409C 400 a/n grammar + 8 a/n template name + null

METTLER TOLEDO JagBASIC Programmer's Guide

(3/99)6-10

Serial Port Setup Shared
Data

These variables hold the values associated with serial port setup shared data, such as
the transmit and receive baud rates. The fields are external read only. The ‘n’ will be
replaced with the Internal Scale number.

Local Method Local
File Id

Internal
Format

External Format

InterfaceType: /srn01 UC 0=RS232, 1=RS422, 2=RS485
XmitBaudRate /srn02 UC 0=300, 1=600, 2=1200, 3=2400, 4=4800, 5=9600,

6=19200, 7=38400, 8=57600, 9=76800, 10=115200.
Parity /srn04 UC Same as BIOS values. 0=even, 16=odd, 64=none
FlowControl /srn05 UC Same as BIOS values. 0=none, 1=Xon/Xoff, 2=RS232.
Data Bits /srn07 UC Same as BIOS values. 8=7 bits, 12=8 bits
Stop Bits /srn08 UC Same as BIOS values. 1=1, 2=1.5, 3=2
Checksum /srn85 US bit 1=On, 0=Off

Network Interface Shared
Data

These variables hold the values associated with network interface shared data.

Local Method Local
File Id

Internal For
mat

External Format

NetworkConsole /net91 US bit 1=True, 0=False

Network Remote Node
Shared Data

These variables hold the values associated with network shared data. The fields are
external read only. The ‘n’ will be replaced with a remote node index number (1-6).

Local Method Local
Field

Internal
For mat

External Format

RemoteConnectionEnabled /rmn87 US bit 1=True, 0=False

Network Host Workstation
Node Shared Data

These variables hold the values associated with network host workstation node shared
data. The fields are external read only. The ‘n’ will be replaced with a remote node
index number (1-3).

Local Method Local
File Id

Internal
Format

External Format

RemoteConnectionEnabled /rwn87 US bit 1=True, 0=False

Chapter 6: Shared Data Variables
Shared Data Static RAM Elements

(3/99) 6-11

PLC Configuration on
Shared Data

These variables hold the values associated with PLC configuration shared data, such
as the number of scales. The fields are external read only.

Local Method Local
File Id

Internal
Format

External Format

RackAddress /abc01 UC Allen-Bradley 0-59, PROFIBUS station ID 1-127,
MODBUS Plus 1-63.

AllenBradleyStartingQuarter /abc02 UC 1-4
AllenBradleyDataRate /abc03 UC 0=57.6k, 1=115.2k, 2=230.4k
NbrOfScales /abc05 UC 1-4
DiscreteDataFormat /abc06 UC 0=Integer Weight, 1=Increments, 2=Extended Weight,

4=Floating Point
InputRotation /abc07 10C 10 character string
AllenBradleyLastRack /abc85 US bit 1=Yes, 0=No
BlockTransferEnable /abc86 US bit 1=Yes, 0=No
ModbusPlusGlobalsEnable /abc87 US bit 1=Yes, 0=No
PLC_ControlsScaleASetpoints /abc88 US bit 1=Yes, 0=No
PLC_ControlsScaleBSetpoints /abc89 US bit 1=Yes, 0=No

PLC Scale Configuration
Shared Data

These variables hold the values associated with PLC configuration shared data, such
as the scale location. The fields are external read only. The ‘n’ will be replaced with a
scale index number.

Local Method Local
File Id

Internal
Format

External Format

TerminalNodeName /abn01 2C 2 alphanumeric (J1, J2, J3, J4, J5, J6)
ScaleSelection /abn02 UC 1 byte unsigned integer
ScaleLocation /abn85 US bit 0=Local, 1=Remote

METTLER TOLEDO JagBASIC Programmer's Guide

(3/99)6-12

Analog Output Shared Data
These variables hold the values associated with analog output shared data. The fields
are external read only. The ‘n’ will be replaced with a channel index number.

Local Method Local
File Id

Internal
Format

External Format

AnalogOutSourceData /aon01 C G=Gross Weight Scale 1, H=Gross Weight Scale
2, I=Gross Weight Scale 3, J=Gross Weight Scale
4, K=Gross Weight Scale 5, L=Net Weight Scale
1, M=Net Weight Scale 2, N=Net Weight Scale 3,
O=Net Weight Scale 4, P=Net Weight Scale 5,
Q=Rate Scale 1, R=Rate Scale 2, S=Rate Scale 3,
T=Rate Scale 4, U=Rate Scale 5, B=JagBasic
Scale 1, C=JagBasic Scale 2, D=JagBasic Scale
3, E=JagBasic Scale 4, F=JagBasic Scale 5.

AnalogOutZeroTrim /aon02 D Zero Adjustment Offset
AnalogOutSpanTrim /aon03 D Full Scale Adjustment Offset
AnalogOutZeroPreset /aon04 D Zero Adjustmetn Preset Value
AnalogOutSpanPreset /aon04 D Full Scale Adjustment Present Value

Ladder Logic Data
These variables hold the values associated with ladder logic shared data. The fields
are external read only.

Local Method Local
File Id

Internal
Format

External Format

LadderRungCounter /lad01 US Number ‘n’ of rungs in ladder
LadderRungs /lad02 600C Ladder, containing ‘n’ rungs

BASIC Application Shared
Data

These variables hold the values associated with BASIC application shared data. The
fields are external read/write.

Local Method Local
File Id

Internal
Format

External Format

Program 1 /bas01 20C 19 Alphanumeric characters + 0
Program 2 /bas02 20C 19 Alphanumeric characters + 0
Program 3 /bas03 20C 19 Alphanumeric characters + 0
Program 4 /bas04 20C 19 Alphanumeric characters + 0
Program 5 /bas05 20C 19 Alphanumeric characters + 0
Program 6 /bas06 20C 19 Alphanumeric characters + 0
Program 7 /bas07 20C 19 Alphanumeric characters + 0
Program 8 /bas08 20C 19 Alphanumeric characters + 0
Program 9 /bas09 20C 19 Alphanumeric characters + 0
KeyboardSource /bas10 UC 0=None, 1=Keypad, 2=Keyboard, 3=Both

Chapter 6: Shared Data Variables
Shared Data Static RAM Elements

(3/99) 6-13

Local Method Local
File Id

Internal
Format

External Format

DisplayDestination /bas11 UC 0=None, 1=Lower Display, 2=Serial Port
ProgrammableTareWeightScaleA /bas12 D double float weight
ProgrammableTareWeightScaleB /bas13 D double float weight
JagBASIC applications use these fields to communicate custom fields with a PLC. Scale A and Scale B have unique
shared data field names. The floating point and string fields are each four bytes long. The PLC and the JagBASIC
application define the meaning of the fields. The Jaguar sends the PLC input fields designated as “Real-Time” to the PLC
at every weight update. It sends or receives the other fields only when the PLC specifically requests them.
You can also use these shared data variables as sources for Analog Output channel 1, channel 2, or both channels. The
JagBASIC source variable for channel 1 is floating point variable /bas18. The JagBASIC source variable for channel 2 is
floating point variable /bas20. You can use a JagBASIC source for one channel and scale source for the other channel.
CustomOutput_A1_FromPLC /bas14 F Float. Defined by user. Scale A. Custom Output 1 to

Scale A from PLC.
CustomOutput_A2_FromPLC /bas15 4C String. Defined by user. Scale A. Custom Output 2

to Scale A from PLC.
CustomOutput_A3_FromPLC /bas16 F Float. Defined by user. Scale A. Custom Output 3 to

Scale A from PLC.
CustomOutput_A4_FromPLC /bas17 4C String. Defined by user. Scale A. Custom Output 4

to Scale A from PLC.
CustomInput_A1_ToPLC /bas18 F Float. Defined by user. Scale A. Real-Time. Custom

Input 1 from Scale A to PLC.
CustomInput_A2_ToPLC /bas19 4C String. Defined by user. Scale A. Real-Time.

Custom Input 2 from Scale A to PLC.
CustomInput_A3_ToPLC /bas20 F Float. Defined by user. Scale A. Custom Input 3

from Scale A to PLC.
CustomInput_A4_ToPLC /bas21 4C String. Defined by user. Scale A. Custom Input 4

from Scale A to PLC.
CustomOutput_B1_FromPLC /bas22 F Float. Defined by user. Scale B. Custom Output 1 to

Scale B from PLC.
CustomOutput_B2_FromPLC /bas23 4C String. Defined by user. Scale B. Custom Output 2

to Scale B from PLC.
CustomOutput_B3_FromPLC /bas24 F Float. Defined by user. Scale B. Custom Output 3 to

Scale B from PLC.
CustomOutput_B4_FromPLC /bas25 4C String. Defined by user. Scale B. Custom Output 4

to Scale B from PLC.
CustomInput_B1_ToPLC /bas26 F Float. Defined by user. Scale B. Real-Time. Custom

Input 1 from Scale B to PLC.
CustomInput_B2_ToPLC /bas27 4C String. Defined by user. Scale B. Real-Time.

Custom Input 2 from Scale B to PLC.
CustomInput_B3_ToPLC /bas28 F Float. Defined by user. Scale B. Custom Input 3

from Scale B to PLC.
CustomInput_B4_ToPLC /bas29 4C String. Defined by user. Scale B. Custom Input 4

from Scale B to PLC.
CustomOutput_C1_FromPLC /bas30 F Float. Defined by user. Scale C.
CustomOutput_C2_FromPLC /bas31 4C String. Defined by user. Scale C.
CustomOutput_C3_FromPLC /bas32 F Float. Defined by user. Scale C.

METTLER TOLEDO JagBASIC Programmer's Guide

(3/99)6-14

Local Method Local
File Id

Internal
Format

External Format

CustomOutput_C4_FromPLC /bas33 4C String. Defined by user. Scale C.
CustomInput_C1_ToPLC /bas34 F Float. Defined by user. Scale C. High Speed.
CustomInput_C2_ToPLC /bas35 4C String. Defined by user. Scale C. High Speed.
CustomInput_C3_ToPLC /bas36 F Float. Defined by user. Scale C.
CustomInput_C4_ToPLC /bas37 4C String. Defined by user. Scale C.
CustomOutput_D1_FromPLC /bas38 F Float. Defined by user. Scale D.
CustomOutput_D2_FromPLC /bas39 4C String. Defined by user. Scale D.
CustomOutput_D3_FromPLC /bas40 F Float. Defined by user. Scale D.
CustomOutput_D4_FromPLC /bas41 4C String. Defined by user. Scale D.
CustomInput_D1_ToPLC /bas42 F Float. Defined by user. Scale D. High Speed.
CustomInput_D2_ToPLC /bas42 4C String. Defined by user. Scale D. High Speed.
CustomInput_D3_ToPLC /bas44 F Float. Defined by user. Scale D.
CustomInput_D4_ToPLC /bas45 4C String. Defined by user. Scale D.
CustomOutput_E1_FromPLC /bas46 F Float. Defined by user. Scale E.
CustomOutput_E2_FromPLC /bas47 4C String. Defined by user. Scale E.
CustomOutput_E3_FromPLC /bas48 F Float. Defined by user. Scale E.
CustomOutput_E4_FromPLC /bas49 4C String. Defined by user. Scale E.
CustomInput_E1_ToPLC /bas50 F Float. Defined by user. Scale E. High Speed.
CustomInput_E2_ToPLC /bas51 4C String. Defined by user. Scale E. High Speed.
CustomInput_E3_ToPLC /bas52 F Float. Defined by user. Scale E.
CustomInput_E4_ToPLC /bas53 4C String. Defined by user. Scale E.
ProgrammableTareWeightScaleC /bas54 D double float weight
ProgrammableTareWeightScaleD /bas55 D double float weight
ProgrammableTareWeightScaleE /bas56 D double float weight
AutoStartEnabled /bas85 US bit 1=True, 0=False
EscapeEnabled /bas86 US bit 1=True, 0=False
SelectEnabled /bas87 US bit 1=True, 0=False
ManualStartEnabled /bas88 US bit 1=True, 0=False
ManualStopEnabled /bas89 US bit 1=True, 0=False

Power Cell Log
The fields are external read only.

Local Method Local
File Id

Internal
Format

External Format

NumberErrors_Cell 1-24 /pce01 24D 192 bytes. One double float entry for each cell.
Calibrated Zero Count-Cell 1-24 /pce02 24D 192 bytes. One double float entry for each cell.
Current Zero Counts_Cell 1-24 /pce03 20C 192 bytes. One double float entry for each cell.

Chapter 6: Shared Data Variables
Shared Data EEPROM Elements

(3/99) 6-15

Shared Data EEPROM
Elements

This section lists the shared data EEPROM elements. These variables hold the values
associated with different erasable programmable read only memory elements.

Scale Calibration
Parameters Stored in
EEPROM

These shared data variables hold the values associated with scale calibration
parameters stored in the EEPROM. The fields are external read only. The ‘n’ will be
replaced with the Internal Scale number. In Rel.T, the scale number can be from 1 to 5.
The Scale 5 parameters, or summing scale parameters are stored in BRAM rather than
EEPROM.

Local Method Local
File Id

Internal
Format

External Format

AddressOfFirstLoadCell /cen01 UC Power Cell starting address
NumberLoadCells /cen02 UC unsigned 0-255
PrimaryUnits /cen03 UC 1 alphanumeric (1=pounds, 2=kilograms, 3=grams, or

4= metric tons)
PrimaryNumberRanges /cen04 UC 1 alphanumeric
PrimaryLowIncrementSize /cen05 D double float weight
PrimaryMidIncrementSize /cen06 D double float weight
PrimaryHighIncrementSize /cen07 D double float weight
PrimaryLowMidThreshold /cen08 D double float weight
PrimaryMidHighThreshold /cen09 D double float weight
PrimaryScaleCapacity /cen10 D double float weight
SecondaryUnits /cen11 UC 1 alphanumeric (1=pounds, 2=kilograms, 3=grams, or

4= metric tons)
SecondaryNumberRanges /cen12 UC 1 alphanumeric
SecondaryLowIncrementSize /cen13 D double float weight
SecondaryMidIncrementSize /cen14 D double float weight
SecondaryHighIncrementSize /cen15 D double float weight
SecondaryLowMidThreshold /cen16 D double float weight
SecondaryMidHighThreshold /cen17 D double float weight
SecondaryScaleCapacity /cen18 D double float weight
CalibrationUnits /cen19 UC 1 alphanumeric (1=primary or 2=secondary)
ZeroCalibrationCounts /cen20 L integer
HighCalibrationCounts /cen21 L integer
HighCalibrationWeight /cen22 D double float weight
MidCalibrationCounts /cen23 L integer
MidCalibrationWeight /cen24 D double float weight
GravityAdjust /cen25 D double float
MotionStabilitySensitivityinD /cen26 F float divisions

METTLER TOLEDO JagBASIC Programmer's Guide

(3/99)6-16

MotionStabilityTimePeriod /cen27 UC (1=3 sec, ..., 7=10sec)
ScaleSerialNumber /cen28 12C 12 alphanumeric
CalibrationCounter1 /cen29 UC 1 byte unsigned binary
CalibrationCounter2 /cen30 UC 1 byte unsigned binary
AtoD Update Rate /cen31 UC Conversions / Second (1-255)
OverCapacityDivisions /cen32 UC number of divisions (1-255)
LinearityCorrectionEnable /cen85 US bit 1=True, 0=False
OverCapacityBlanking /cen86 US bit 1=True, 0=False
MultirangeMode /cen87 US bit 1=Auto, 0=Manual
Shift Adjust Mode /cen88 US bit 0=Cell, 1=Pair

EEPROM Version
Identification

These shared data variables hold the values associated with EEPROM version
identification. The fields are external read only.

Local Method Local
File Id

Internal
Format

External Format

EEPROMVersionId (Scale A) /ee101 L Long Integer (32 bits)
EEPROMVersionId (Scale B) /ee201 L Long Integer (32 bits)

Shift Adjust Variables
These variables hold the values associated with shift adjust shared data. The fields are
external read only. The ‘n’ will be replaced with the Internal Scale number.

Local Method Local
File Id

Internal
Format

External Format

Cell #1 Shift Constants /san01 L Long Integer (32 bits) Normalized
Cell #16 Shift Constants /san16 L Long Integer (32 bits) Normalized

Expanded Shift Adjust
Variables

These variables hold the values associated with expanded shift adjust shared data. The
fields are external read only. The ‘n’ will be replaced with the Internal Scale number.

Local Method Local Fileid Internal
For mat

External Format

Cell #17 Shift Constants /sxn17 L Long Integer (32 bits) Normalized
Cell #24 Shift Constants /sxn24 L Long Integer (32 bits) Normalized

Chapter 6: Shared Data Variables
Shared Data EEPROM Elements

(3/99) 6-17

Scale Zero Shared Data
These variables hold the values associated with scale zero shared data. The fields
are external read only. The ‘n’ will be replaced with the Internal Scale number.

Local Method Local
File Id

Internal
Format

External Format

PowerUpZeroCapturePosRange /zrn01 UC percent capacity (0-99)
PowerUpZeroCaptureNegRange /zrn02 UC percent capacity (0-99)
PushbuttonZeroPosRange /zrn03 UC percent capacity (0-99)
PushbuttonZeroNegRange /zrn04 UC percent capacity (0-99)
AutoZeroMaintWindow /zrn05 F floatnumber of divisions
BehindZeroDivisions /zrn06 UC 0-99 divisions
PushbuttonZero /zrn85 US bit 1=True, 0=False
AutoZeroGross /zrn86 US bit 1=True, 0=False
AutoZeroGross_Net /zrn87 US bit 1=True, 0=False
ZeroIndicationGross /zrn88 US bit 1=True, 0=False
ZeroIndicationGross_Net /zrn89 US bit 1=True, 0=False

METTLER TOLEDO JagBASIC Programmer's Guide

(3/99)6-18

Notes

Chapter 7: Global Discrete I/O Data
Level-Sensitive, Logical Discrete I/O Data

(3/99) 7-1

7 Global Discrete I/O Data
Global Discrete I/O data has bit fields representing physical discrete I/O and logical I/O
bits. The logical I/O may be either level-sensitive states or edge- sensitive events.
Global Discrete I/O is transitory data in that it is not saved during a power-down. It is
initialized to zero and then regenerated on power-up. These bit fields are the “contacts”
and “coils” for the ladder logic processor.

Level-Sensitive,
Logical Discrete I/O
Data

Level-sensitive fields can generate callbacks when either a 0 or a 1 is written to the
field. Field names starting with s_2 are input contacts to the ladder processor. Field
names starting with s_6 are coils for the ladder processor.

For all level-sensitive logical I/O data the following apply:

Internal Format External Format Condition
G US Bit 1 = True, 0 = False

 Description Local Field Comments
JAGUAR terminal O/S sets the following fields to reflect the status of Scale A and
ScaleB.
MotionOut_A /s_200 Read only
CenterOfZero_A /s_201 Read only
OverCapacity_A /s_202 Read only
UnderZero_A /s_203 Read only
NetMode_A /s_204 Read only
ScaleCriticalError_A /s_205 Read only
StoredWeightMode_A /s_206 Read only
ScaleSelected_A /s_207 Read only
IDNET_In_Motion_Error_A /s_260 Reserved for Jaguar

O/S Use Only.
WeightDataOK_A /s_261 Read Only
RateSetpointOK_A /s_262 Read Only
Jaguar O/S sets the following fields to report on the status of Scale B
MotionOut_B /s_208 Read only
CenterOfZero_B /s_209 Read only
OverCapacity_B /s_20a Read only
UnderZero_B /s_20b Read only
NetMode_B /s_20c Read only
ScaleCriticalError_B /s_20d Read only
StoredWeightMode_B /s_20e Read only
ScaleSelected_B /s_20f Read only
IDNET_In_Motion_Error_B /s_268 Reserved for Jaguar

O/S Use Only.

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)7-2

 Description Local Field Comments
WeightDataOK_B /s_269 Read Only
RateSetpointOK_B /s_26a Read Only
The Jaguar O/S sets the following fields to report status of Scale C.
MotionOut_C /s_270 Read only
CenterOfZero_C /s_271 Read only
OverCapacity_C /s_272 Read only
UnderZero_C /s_273 Read only
NetMode_C /s_274 Read only
ScaleCriticalError_C /s_275 Read only
StoredWeightMode_C /s_276 Read only
ScaleSelected_C /s_277 Read only
IDNET_In_Motion_Error_C /s_278 Reserved for Jaguar

O/S Use Only.
WeightDataOK_C /s_279 Read Only
RateSetpointOK_C /s_27a Read Only
The Jaguar O/S sets the following fields to report status of Scale D.
MotionOut_D /s_280 Read only
CenterOfZero_D /s_281 Read only
OverCapacity_D /s_282 Read only
UnderZero_D /s_283 Read only
NetMode_D /s_284 Read only
ScaleCriticalError_D /s_285 Read only
StoredWeightMode_D /s_286 Read only
ScaleSelected_D /s_287 Read only
IDNET_In_Motion_Error_D /s_288 Reserved for Jaguar

O/S Use Only.
WeightDataOK_D /s_289 Read Only
RateSetpointOK_D /s_28a Read Only
The Jaguar O/S sets the following fields to report status of Scale E.
(Summing Scale)
MotionOut_E /s_2f0 Read only
CenterOfZero_E /s_2f1 Read only
OverCapacity_E /s_2f2 Read only
UnderZero_E /s_2f3 Read only
NetMode_E /s_2f4 Read only
ScaleCriticalError_E /s_2f5 Read only
StoredWeightMode_E /s_2f6 Read only
ScaleSelected_E /s_2f7 Read only
IDNET_In_Motion_Error_E /s_2f8 Reserved for Jaguar

O/S Use Only.
WeightDataOK_E /s_2f9 Read Only
RateSetpointOK_E /s_2fa Read Only
Jaguar O/S sets the following fields to reflect the status of Setpoints 1-12.

SetpointFeeding_1 /s_210 Read only
SetpointFastFeeding_1 /s_211 Read only
SetpointWithinTolerance_1 /s_212 Read only
SetpointFeeding_2 /s_214 Read only
SetpointFastFeeding_2 /s_215 Read only
SetpointWithinTolerance_2 /s_216 Read only
SetpointFeeding_3 /s_218 Read only
SetpointFastFeeding_3 /s_219 Read only

Chapter 7: Global Discrete I/O Data
Level-Sensitive, Logical Discrete I/O Data

(3/99) 7-3

 Description Local Field Comments
SetpointWithinTolerance_3 /s_21a Read only
SetpointFeeding_4 /s_21c Read only
SetpointFastFeeding_4 /s_21d Read only
SetpointWithinTolerance_4 /s_21e Read only
SetpointFeeding_5 /s_220 Read only
SetpointFastFeeding_5 /s_221 Read only
SetpointWithinTolerance_5 /s_222 Read only
SetpointFeeding_6 /s_224 Read only
SetpointFastFeeding_6 /s_225 Read only
SetpointWithinTolerance_6 /s_226 Read only
SetpointFeeding_7 /s_228 Read only
SetpointFastFeeding_7 /s_229 Read only
SetpointWithinTolerance_7 /s_22a Read only
SetpointFeeding_8 /s_22c Read only
SetpointFastFeeding_8 /s_22d Read only
SetpointWithinTolerance_8 /s_22e Read only
SetpointFeeding_9 /s_230 Read only
SetpointFastFeeding_9 /s_231 Read only
SetpointWithinTolerance_9 /s_232 Read only
SetpointFeeding_10 /s_234 Read only
SetpointFastFeeding_10 /s_235 Read only
SetpointWithinTolerance_10 /s_236 Read only
SetpointFeeding_11 /s_238 Default is ZERO TOL A.

Read only
SetpointFastFeeding_11 /s_239 Read only
SetpointWithinTolerance_11 /s_23a Read only
SetpointFeeding_12 /s_23c Default is ZERO TOL B.

Read only
SetpointFastFeeding_12 /s_23d Read only
SetpointWithinTolerance_12 /s_23e Read only
JAGUAR terminal O/S sets the following fields to give the status of the ARC NET
connections.

NodeOnLine_1 /s_241 Read only
NodeOnLine_2 /s_242 Read only
NodeOnLine_3 /s_243 Read only
NodeOnLine_4 /s_244 Read only
NodeOnLine_5 /s_245 Read only
NodeOnLine_6 /s_246 Read only
HostOnLine_3 /s_24d Read only
HostOnLine_2 /s_24e Read only
HostOnLine_1 /s_24f Read only

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)7-4

Description Local
Field

Comments

JagBASIC applications can set the following four discrete bit fields to send real-time
status data to a PLC.

PLC_CustomStatus1_Scale_A /s_250 Read/Write. Custom Real-
Time Status 1 from Scale A to
PLC.

PLC_CustomStatus2_Scale_A /s_251 Read/Write. Custom Real-
Time Status 2 from Scale A to
PLC.

PLC_CustomStatus1_Scale_B /s_252 Read/Write. Custom Real-
Time Status 1 from Scale B to
PLC.

PLC_CustomStatus2_Scale_B /s_253 Read/Write. Custom Real-
Time Status 2 from Scale B to
PLC.

PLC_CustomStatus1_Scale_C /s_254 Read/Write. Custom Real-
Time Status 1 from Scale C to
PLC.

PLC_CustomStatus2_Scale_C /s_255 Read/Write. Custom Real-
Time Status 2 from Scale C to
PLC.

PLC_CustomStatus1_Scale_D /s_256 Read/Write. Custom Real-
Time Status 1 from Scale D to
PLC.

PLC_CustomStatus2_Scale_D /s_257 Read/Write. Custom Real-
Time Status 2 from Scale D to
PLC.

PLC_CustomStatus1_Scale_E /s_258 Read/Write. Custom Real-
Time Status 1 from Scale E to
PLC.

PLC_CustomStatus2_Scale_E /s_259 Read/Write. Custom Real-
Time Status 2 from Scale E to
PLC.

Jaguar O/S sets the following fields to report success (=0) or error (=1) when an
external agency uses a corresponding discrete field to trigger a command in the
Jaguar O/S.

Command Staus Bits for Scale A
TareScaleError_A /s_290 Read only
ClearTareScaleError_A /s_291 Read only
PrintScaleError_A /s_292 Read only
ZeroScaleError_A /s_293 Read only
SwitchToPrimUnitsError_A /s_294 Read only
SwitchToSecondUnitsError_A /s_295 Read only
SwitchToOtherUnitsError_A /s_296 Read only
ApplySetupError_A /s_297 Read only
RestartSetpointsError_A /s_298 Read only

Chapter 7: Global Discrete I/O Data
Level-Sensitive, Logical Discrete I/O Data

(3/99) 7-5

Description Local
Field

Comments

RestartRateCalculationError_A /s_299 Read only
RestartFilterError_A /s_29a Read only
RestartSetpointCoincidenceError_A /s_29b Read only
DisableScaleError_A /s_29c Read only
CapturePowerCellCountError_A /t_29d Read Only
WriteCal.ToEEPromErrorA /t_29e Read Only

Command Staus Bits for Scale B
TareScaleError_B /s_2a0 Read only
ClearTareScaleError_B /s_2a1 Read only
PrintScaleError_B /s_2a2 Read only
ZeroScaleError_B /s_2a3 Read only
SwitchToPrimUnitsError_B /s_2a4 Read only
SwitchToSecondUnitsError_B /s_2a5 Read only
SwitchToOtherUnitsError_B /s_2a6 Read only
ApplySetupError_B /s_2a7 Read only
RestartSetpointsError_B /s_2a8 Read only
RestartRateCalculationError_B /s_2a9 Read only
RestartFilterError_B /s_2aa Read only
RestartSetpointCoincidenceError_B /s_2ab Read only
DisableScaleError_B /s_2ac Read only

CapturePowerCellCountError_B /t_2ad Read Only
WriteCal.ToEEPromErrorB /t_2ae Read Only

Command Staus Bits for Selected Scale
TareScaleError_SelectedScale /s_2b0 Read only
ClearTareScaleError_SelectedScale /s_2b1 Read only
PrintScaleError_SelectedScale /s_2b2 Read only
ZeroScaleError_SelectedScale /s_2b3 Read only
SwitchToPrimUnitsError_SelScl /s_2b4 Read only
SwitchToSecondUnitsError_SelScl /s_2b5 Read only
SwitchToOtherUnitsError_SelScl /s_2b6 Read only

Command Staus Bits for Custom Print
CustomPrintError_1 /s_2b7 Read only
CustomPrintError_2 /s_2b8 Read only
CustomPrintError_3 /s_2b9 Read only
CustomPrintError_4 /s_2ba Read only
CustomPrintError_5 /s_2bb Read only

Command Status Bits for Scale C
JagBasicEnabled /2_sbf Read only
TareScaleError_C /s_2c0 Read only
ClearTareScaleError_C /s_2c1 Read only
PrintScaleError_C /s_2c2 Read only
ZeroScaleError_C /s_2c3 Read only
SwitchToPrimUnitsError_C /s_2c4 Read only
SwitchToSecondUnitsError_C /s_2c5 Read only

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)7-6

Description Local
Field

Comments

SwitchToOtherUnitsError_C /s_2c6 Read only
ApplySetupError_C /s_2c7 Read only
RestartSetpointsError_C /s_2c8 Read only
RestartRateCalculationError_C /s_2c9 Read only
RestartFilterError_C /s_2ca Read only
RestartSetpointCoincidenceError_C /s_2cb Read only
DisableScaleError_C /s_2cc Read only
CapturePowerCellCountError_C /t_2cd Read Only
WriteCal.ToEEPromErrorC /t_2ce Read Only

Command Status Bits for Scale D
TareScaleError_D /s_2d0 Read only
ClearTareScaleError_D /s_2d1 Read only
PrintScaleError_D /s_2d2 Read only
ZeroScaleError_D /s_2d3 Read only
SwitchToPrimUnitsError_D /s_2d4 Read only
SwitchToSecondUnitsError_D /s_2d5 Read only
SwitchToOtherUnitsError_D /s_2d6 Read only
ApplySetupError_D /s_2d7 Read only
RestartSetpointsError_D /s_2d8 Read only
RestartRateCalculationError_D /s_2d9 Read only
RestartFilterError_D /s_2da Read only
RestartSetpointCoincidenceError_D /s_2db Read only
DisableScaleError_D /s_2dc Read only
CapturePowerCellCountError_D /t_2dd Read Only
WriteCal.ToEEPromErrorD /t_2de Read Only

Command Status Bits for Scale E
TareScaleError_E /s_2e0 Read only
ClearTareScaleError_E /s_2e1 Read only
PrintScaleError_E /s_2e2 Read only
ZeroScaleError_E /s_2e3 Read only
SwitchToPrimUnitsError_E /s_2e4 Read only
SwitchToSecondUnitsError_E /s_2e5 Read only
SwitchToOtherUnitsError_E /s_2e6 Read only
ApplySetupError_E /s_2e7 Read only
RestartSetpointsError_E /s_2e8 Read only
RestartRateCalculationError_E /s_2e9 Read only
RestartFilterError_E /s_2ea Read only
RestartSetpointCoincidenceError_E /s_2eb Read only
DisableScaleError_E /s_2ec Read only
CapturePowerCellCountError_E /t_2ed Read Only
WriteCal.ToEEPromErrorE /t_2ee Read Only

Chapter 7: Global Discrete I/O Data
Edge-Sensitive, Logical Discrete I/O Data

(3/99) 7-7

Rel. M Statuses
SelectScaleError_A /s_2c0 Read only Rel. M
SelectScaleError_B /s_2c1 Read only Rel. M
SelectOtherScaleError /s_2c2 Read only Rel. M
DemandCustomPrintError_1 /s_2c3 Read only Rel. M
DemandCustomPrintError_2 /s_2c4 Read only Rel. M
DemandCustomPrintError_3 /s_2c5 Read only Rel. M
DemandCustomPrintError_4 /s_2c6 Read only Rel. M
DemandCustomPrintError_5 /s_2c7 Read only Rel. M
JagBASICEnabled /s_2d0 Read only Rel. M

Miscellaneous Triggers
MasterControlRelay /s_600 Shuts down all I/O.

Read/Write
DisableErrorDisplay /s_603 Read/Write
DisableNumericDisplay /s_604 Read/Write
Disable Setup /s_609 Read/Write
Disable Keypag /s_60a Read/Write
Disable Qwerty PG keys postioning,
(home, end, etc…)

/s_60b Read/Write

Edge-Sensitive, Logical
Discrete I/O Data

Edge-sensitive bit fields only trigger events when a 1 is written to the field. They are
ladder logic coils. If an error occurs in the event, the task writes a 1 into the
corresponding error bit. If the event is successful, it writes a 0 on completion.

For all edge-sensitive logical discrete I/O data the following apply:

Internal Format External Format Condition

G US bit 1 = Trigger, 0 = Complete

Fields are external read/write.

Description Local Field

Jaguar O/S sets the following fields to indicate when the Jaguar has calculated
a new weight value. A JagBASIC application can use events to monitor these
fields. It must set the field to 0 before the same event will trigger again.

WeightUpdated_A /t_688
WeightUpdated_B /t_689
WeightUpdated_C /t_613
WeightUpdated_D /t_614
WeightUpdated_E /t_615

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)7-8

Description Local Field

Jaguar O/S sets these discrete fields =1 whenever it installs a new setpoint. A
JagBASIC application can use events to monitor these fields. It must set the
field to 0 before the same event will trigger again.

SetpointInstalled_A /t_68c
SetpointInstalled_B /t_68d
SetpointInstalled_C /t_616
SetpointInstalled_D /t_617
SetpointInstalled_E /t_618
CalibrationComplete_A /t_68e
CalibrationComplete_B /t_68f
CalibrationComplete_C /t_619
CalibrationComplete_D /t_61a
CalibrationComplete_E /t_61b
External agencies can set the following fields to trigger a command within the
Jaguar O/S. The Jaguar O/S sets the field to 0 when it is done processing the
command. It will also set a corresponding error bit to indicate when there is an
error in processing the command.

Triggers for Scale A
TareScale_A /t_690
ClearTareScale_A /t_691
PrintScale_A /t_692
ZeroScale_A /t_693
SwitchToPrimaryUnits_A /t_694
SwitchToSecondUnits_A /t_695
SwitchToOtherUnits_A /t_696
ApplySetup_A /t_697
RestartSetpoints_A /t_698
RestartRateCalculation_A /t_699
RestartFilter_A /t_69a
ResetSetpointCoincidence_A /t_69b
DisableScale_A /t_69c
CapturePowerCellCounts_A /t_69d
WriteCalibrationToEEProm_A /t_69e

Triggers for Scale B
TareScale_B /t_6a0
ClearTareScale_B /t_6a1
PrintScale_B /t_6a2
ZeroScale_B /t_6a3
SwitchToPrimaryUnits_B /t_6a4
SwitchToSecondUnits_B /t_6a5
SwitchToOtherUnits_B /t_6a6
ApplySetup_B /t_6a7
RestartSetpoints_B /t_6a8
RestartRateCalculation_B /t_6a9
RestartFilter_B /t_6aa

Chapter 7: Global Discrete I/O Data
Edge-Sensitive, Logical Discrete I/O Data

(3/99) 7-9

Description Local Field
ResetSetpointCoincidence_B /t_6ab
DisableScale_B /t_6ac
CapturePowerCellCounts_B /t_6ad
WriteCalibrationToEEProm_B /t_6ae

Triggers for Scale C
TareScale_C /t_620
ClearTareScale_ C /t_621
PrintScale_C /t_622
ZeroScale_C /t_623
SwitchToPrimaryUnits_C /t_624
SwitchToSecondUnits_C /t_625
SwitchToOtherUnits_C /t_626
ApplySetup_C /t_627
RestartSetpoints_C /t_628
RestartRateCalculation_C /t_629
RestartFilter_C /t_62a
ResetSetpointCoincidence_C /t_62b
DisableScale_C /t_62c
CapturePowerCellCounts_C /t_62d
WriteCalibrationToEEProm_C /t_62e

Triggers for Scale D
TareScale_D /t_630
ClearTareScale_D /t_631
PrintScale_D /t_632
ZeroScale_D /t_633
SwitchToPrimaryUnits_D /t_634
SwitchToSecondUnits_D /t_635
SwitchToOtherUnits_D /t_636
ApplySetup_D /t_637
RestartSetpoints_D /t_638
RestartRateCalculation_D /t_639
RestartFilter_D /t_63a
ResetSetpointCoincidence_D /t_63b
DisableScale_D /t_63c
CapturePowerCellCounts_D /t_63d
WriteCalibrationToEEProm_D /t_63e

Triggers for Scale E
TareScale_E /t_640
ClearTareScale_E /t_641
PrintScale_E /t_642
ZeroScale_E /t_643
SwitchToPrimaryUnits_E /t_644
SwitchToSecondUnits_E /t_645
SwitchToOtherUnits_E /t_646
ApplySetup_E /t_647

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)7-10

Description Local Field
RestartSetpoints_E /t_648
RestartRateCalculation_E /t_649
RestartFilter_E /t_64a
ResetSetpointCoincidence_E /t_64b
DisableScale_E /t_64c
CapturePowerCellCounts_E /t_64d
WriteCalibrationToEEProm_E /t_64e

Triggers for Selected Scale
TareScale_SelectedScale /t_6b0
ClearTareScale_SelectedScale /t_6b1
PrintScale_SelectedScale /t_6b2
ZeroScale_SelectedScale /t_6b3
SwitchToPrimaryUnits_SelScl /t_6b4
SwitchToSecondUnits_SelScl /t_6b5
SwitchToOtherUnits_SelScl /t_6b6
SelectScale_A /t_6c0
SelectScale_B /t_6c1
SelectScale_C /t_650
SelectScale_D /t_651
SelectScale_E /t_652
SelectOtherScale /t_6c2

Custom Print Triggers
DemandCustomPrint_1* /t_6c3
DemandCustomPrint_2* /t_6c4
DemandCustomPrint_3* /t_6c5
DemandCustomPrint_4* /t_6c6
DemandCustomPrint_5* /t_6c7
A PC Host sets the following four discrete bit fields to send real-time com mands
to a JagBASIC application.

CustomCommand1 /t_6cc
CustomCommand2 /t_6cd
CustomCommand3 /t_6ce
CustomCommand4 /t_6cf
Jaguar O/S sets these fields =1 whenever it detects a rising or falling edge in the
discrete inputs. A JagBASIC application can use events to monitor these fields. It
must set the field to 0 before the same event will trigger again.

DiscreteInputRisingEdge_1 /p_6e0
DiscreteInputRisingEdge_2 /p_6e1
DiscreteInputRisingEdge_3 /p_6e2
DiscreteInputRisingEdge_4 /p_6e3
DiscreteInputRisingEdge_5 /p_6e8
DiscreteInputRisingEdge_6 /p_6e9
DiscreteInputRisingEdge_7 /p_6ea
DiscreteInputRisingEdge_8 /p_6eb
DiscreteInputRisingEdge_9 /p_6ec

*Enable Custom Print in Serial Setup to
enable JagBASIC to print using Demand
Custom Print.

Chapter 7: Global Discrete I/O Data
Physical Discrete I/O Data

(3/99) 7-11

Description Local Field
DiscreteInputRisingEdge_10 /p_6ed
DiscreteInputRisingEdge_11 /p_6ee
DiscreteInputRisingEdge_12 /p_6ef
DiscreteInputFallingEdge_1 /p_6f0
DiscreteInputFallingEdge_2 /p_6f1
DiscreteInputFallingEdge_3 /p_6f2
DiscreteInputFallingEdge_4 /p_6f3
DiscreteInputFallingEdge_5 /p_6f8
DiscreteInputFallingEdge_6 /p_6f9
DiscreteInputFallingEdge_7 /p_6fa
DiscreteInputFallingEdge_8 /p_6fb
DiscreteInputFallingEdge_9 /p_6fc
DiscreteInputFallingEdge_10 /p_6fd
DiscreteInputFallingEdge_11 /p_6fe
DiscreteInputFallingEdge_12 /p_6ff

Physical Discrete I/O
Data

Physical discrete input and output data is stored on the Controller and Multi-Function
Boards. The stored logical 1s or 0s correspond to whether a physical discrete input or
output is true or false, On or Off.

For all physical discrete I/O data the following apply:

Internal Format External Format Condition

G US bit 1 = Trigger, 0 = Complete

Description Local Field Comment

PhysicalDiscreteInput_1 /p_100 Read only
PhysicalDiscreteInput_2 /p_101 Read only
PhysicalDiscreteInput_3 /p_102 Read only
PhysicalDiscreteInput_4 /p_103 Read only
PhysicalDiscreteInput_5 /p_108 Read only
PhysicalDiscreteInput_6 /p_109 Read only
PhysicalDiscreteInput_7 /p_10a Read only
PhysicalDiscreteInput_8 /p_10b Read only
PhysicalDiscreteInput_9 /p_10c Read only
PhysicalDiscreteInput_10 /p_10d Read only
PhysicalDiscreteInput_11 /p_10e Read only
PhysicalDiscreteInput_12 /p_10f Read only
PhysicalDiscreteOutput_1 /p_500 Read/Write
PhysicalDiscreteOutput_2 /p_501 Read/Write
PhysicalDiscreteOutput_3 /p_502 Read/Write

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)7-12

Description Local Field Comment

PhysicalDiscreteOutput_4 /p_503 Read/Write
PhysicalDiscreteOutput_5 /p_508 Read/Write
PhysicalDiscreteOutput_6 /p_509 Read/Write
PhysicalDiscreteOutput_7 /p_50a Read/Write
PhysicalDiscreteOutput_8 /p_50b Read/Write
PhysicalDiscreteOutput_9 /p_50c Read/Write
PhysicalDiscreteOutput_10 /p_50d Read/Write
PhysicalDiscreteOutput_11 /p_50e Read/Write
PhysicalDiscreteOutput_12 /p_50f Read/Write

Chapter 8: Sample Application Programs
Display Scale A Weight

(3/99) 8-1

8 Sample Application Programs

 WARNING
Permit only qualified personnel to service this
equipment. Exercise care when making checks, tests
and adjustments that must be made with power on.
Failing to observe these precautions can result in bodily
harm or property damage.

 CAUTION
These programs are only intended to demonstrate the programming flexibility of
JagBASIC. They may not apply to your specific application! Only permit qualified
personnel to create JagBASIC programs.

This section contains examples of application programs that can be used as starting
points in creating your own JagBASIC programs. They include examples of programs
which:

• Display the weight of Scale A.

• Display/toggle Scale A and Scale B.

• Clear random access files.

• Generate continuous output.

• Display the setpoint value.

• Weigh inbound/outbound trucks.

• Perform manual batching.

• Count parts.

Display Scale A Weight
Only a few lines of code are required to create a JagBASIC program. For example, this
short program displays Scale A on the lower Jaguar terminal display.

10 DEFSHR gross$,wt101
20 PRINT " W =";gross$
30 GOTO 20
40 END

This program can be created in one of the following ways:

• Typed in on the Jaguar terminal.

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)8-2

• Created in a text editor on a PC and downloaded to the Jaguar terminal using the
program download command SZ.

• Created in a text editor on a PC and downloaded with a communication program
supporting Zmodem.

You can then perform the following operations on the program:

• To execute the program, assuming the program was typed in on the Jaguar
terminal, type RUN at the BASIC: prompt. The weight from Scale A should display
on the lower Jaguar terminal display.

• To end the program, press the ESC key on either the keyboard or keypad.

• To save the program, type: save “filex.bas”, where x is a number from 1 to 9. For
this example, we will save the program as "file1.bas".

• To call up the program file, type load “file1.bas”.To run this program (or any
program named file1.bas) automatically on power-up, set Autostart to Yes in the
JagBASIC setup. When this feature is set to Yes, each time the Jaguar is powered
up, the file named file1.bas (if resident in the RAMDISK) will be automatically
loaded and run.

To manually load and run finished programs, set the Manual Start feature to Yes in the
JagBASIC setup. When this feature is enabled, pressing the FUNCTION key on the
Jaguar keypad displays the prompt: Run Program #? To execute the desired program,
press key 1 for file1.bas, press key 2 for file2.bas, press key 3 for file3.bas, and so on
up to key 9 for file9.bas.

Display/Toggle
Scale A and Scale B

This example displays and toggles the weight from Scale A or B on the upper and
lower Jaguar displays. The programming keyboard is used to toggle the weight
display.

• When A is pressed, the upper display shows the weight from Scale A and the
lower display shows the weight from Scale B.

• When B is pressed, the upper display shows the weight from Scale B and the
lower shows Scale A.

The weight is obtained from pulling the rightmost 8 characters from the standard 12
character strings wt101 and wt102.

10 defshr w1$,wt101
20 defshr w2$,wt201
30 defshr sa,t_6c0
40 defshr sb,t_6c1
50 sa=1
60 print "Scale B=";right$(w2$,8)
70 if inkey$ = "b" then goto 100
80 goto 60
100 sb=1
110 print "Scale A=";right$(w1$,8)
120 if inkey$ = "a" then goto 50
130 goto 110
140 end

Chapter 8: Sample Application Programs
Random Access Files

(3/99) 8-3

Random Access Files
The following code segment clears a random access file to standard default ID values.
Note that the JagBASIC code must re-initialize the entire output record before each
"PUT" command.

10 OPEN "IDFILE" FOR RANDOM AS #1 LEN = 19
15 rem added line feed, carriage return for
16 rem printing out file with standard editors,
20 FIELD #1,9 AS FID$, 8 AS FWEIGHT$, 2 AS LFCR$
30 FOR X% = 1 TO 10
35 rem re-initialize record image before each "PUT"
40 LSET FID$ = "000000000" : LSET FWEIGHT$ = "00000000"
50 LSET LFCR$=chr$(13)+chr$(10)
60 PUT #1, X%
70 NEXT X%
80 CLOSE #1

The following code segment sequentially searches the random access file for an empty
record in which it writes a new ID-WEIGHT record.

210 OPEN "IDFILE" FOR RANDOM AS #1 LEN = 19
220 FIELD #1, 9 AS FID$, 8 AS FWEIGHT$, 2 AS LFCR$
230 USEREC%=0
240 FOR REC% = 1 TO 10
250 GET #1, REC%
270 IF FID$ = "000000000" THEN USEREC% = REC% : REC%=10
280 IF EOF(1) = 1 THEN REC% = 10
290 NEXT REC%
300 LSET FWEIGHT$ = "12345.6"
310 LSET FID$="JOE TRUCK"
320 LSET LFCR$=chr$(13)+chr$(10)
330 IF USEREC%<>0 THEN PUT #1, USEREC%
340 CLOSE #1

Continuous Output
This JagBASIC program generates the standard METTLER TOLEDO continuous output
for the currently selected scale, either Scale A or Scale B.

15 REM Preformatted Status Word A:
20 defshr sw1a,wt116
30 defshr sw2a,wt216
35 REM Weight units "lb", "kg" or " g":
40 defshr unitA$,wt103
50 defshr unitB$,wt203
55 REM Motion status
60 defshr motionA,s_200
70 defshr motionB,s_208
75 REM Net mode (1 = net, 0 = gross):
80 defshr netA,s_204
90 defshr netB,s_20c
95 REM Overcapacity status (1 = Overcapacity, 0 = not Overcapacity):
100 defshr overA,s_202
110 defshr overB,s_20a
115 REM Under zero status (1 = Underzero, 0 = not Underzero):
120 defshr underA,s_203

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)8-4

130 defshr underB,s_20b
135 REM Displayable net weight (with embedded decimal point)
140 defshr netwtA$,wt102
150 defshr netwtB$,wt202
155 REM Displayable tare weight (with embedded decimal point)
160 defshr tarewtA$,ws102
170 defshr tarewtB$,ws202
175 REM Selected scale
180 defshr selectedScale,jag01
190 REM "width -1" suppresses LF/CR being appended LPRINT line
191 width -1
192 REM Define ASCII STX:
193 start$ = chr$(02)
194 REM Define ASCII CR:
195 end$ = chr$(13)
196 REM Check for selected scale here:
197 REM (Program loops back to here)
198 REM Clear status word B bits:
200 b% = 0
210 if selectedScale = "LB" then goto 2000
1000 if netA=1 then b%=1
1020 if negA=1 then b%=b%+2
1030 if overA=1 or underA = 1 then b%=b%+4
1040 if motionA=1 then b%=b%+8
1050 if unitA$="kg" then b%=b%+16
1070 statusBytes$=string$(1,sw1a)+chr$(32+b%)+chr$(32)
1080 lprint start$+statusBytes$+right$(netwtA$,6)+right$(tarewtA$,6)+end$
1100 goto 200
2000 if netB=1 then b%=1
2030 if negB=1 then b%=b%+2
2040 if overB=1 or underB=1 then b%=b%+4
2050 if motionB=1 then b%=b%+8
2060 if unitB$="kg" then b%=b%+16
3070 statusBytes$=string$(1,sw2a)+chr$(32+b%)+chr$(32)
3090 lprint start$+statusBytes$+right$(netwtB$,6)+right$(tarewtB$,6)+end$
3100 goto 200
9999 end

Setpoint Display
This JagBASIC program displays the setpoint value for the selected scale on the Jaguar
terminal lower display. Scale A uses Setpoint 1 and Scale B uses Setpoint 3. This
program allows an operator on the factory floor to monitor the setpoint values for doing
"hand-adds" where a remote PLC changes the setpoint values.

10 defshr stopEnable%,bas89
20 stopEnable%=0
30 defshr numScales%,jag15
40 rem INITIALIZE ONE SCALE
50 defshr sp1#,sp105
60 defshr units1%,ce103
70 dim units$(3)
80 units$(1)=" lb":units$(2)=" kg":units$(3)=" g"
90 u1$=units$(units1%)
100 if numScales%=2 then goto 300
200 rem LOOP FOR ONE SCALE
210 sleep 900
220 print "A ";sp1#;u1$
230 goto 210

Chapter 8: Sample Application Programs
Filling

(3/99) 8-5

300 rem INITIALIZE TWO SCALES
310 defshr scaleID$,jag01
320 defshr sp3#,sp305
330 defshr units2%,ce203
340 u2$=units$(units2%)
400 rem LOOP FOR TWO SCALES
410 sleep 900
420 if scaleID$="LB" then goto 450
430 print "A ";sp1#;u1$
440 goto 410
450 print "B ";sp3#;u2$
460 goto 410

Rate Calculation without
the Rate Display

This is a sample JagBASIC program for setting up the rate without the rate display. This
JagBASIC setup uses less of the Jaguar terminal’s processing power than the standard
control panel setup which always enables the rate display. The lower display is not
constantly updated with new rate information, so it can be used for displaying more
critical information.

5 DEFSHR ratedisp,cs188:DEFSHR auxdisp,cs189:ratedisp=0:auxdisp=0
10 DEFSHR auxunit,cs101:DEFSHR period,cs104
20 DEFSHR sample,cs105:DEFSHR freq,cs106:DEFSHR setup,t_697
30 auxunit=1:rem pounds
40 period="S":rem per second
50 sample=3:rem sample time
60 freq=1:rem interval every one second
70 setup=1:rem apply setup
80 end

Filling
This JagBASIC program is used for filling applications.

1 REM Example Filling Application
7 defshr StopEnabled,bas89
8 defshr SPfeeding,s_210
9 defshr SPtolerance,s_212
12 defshr DiscreteIn,p_100
13 defshr TareA,t_690
14 defshr TareAerr,s_290
15 defshr DiscreteOut,p_503
16 defshr NetWt,wt111
17 defshr ClearTareA,t_691
18 defshr MotionA,s_200
20 StopEnabled=0
60 print "Place Container"
70 if DiscreteIn=0 then goto 70
75 Print "Taring Container"
77 sleep 3000
90 TareA=1
100 if TareA=1 then goto 100
120 if TareAerr=0 then goto 155

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)8-6

125 print "Tare Failed"
130 sleep 1000
150 goto 90
155 print "Fill Container"
160 if MotionA=0 then goto 160
170 sleep 3000
180 sleep 200
190 if SPfeeding=0 and SPtolerance=0 then print "Too Much Fill"
192 if SPfeeding=1 and SPtolerance=0 then print "More Fill"
193 if SPtolerance=1 then print "Fill In Tolerance"
194 if SPtolerance=1 and MotionA=0 then goto 200
195 goto 180
200 Print "Filling Complete"
220 sleep 3000
230 print "Remove Container"
240 DiscreteOut=1
260 if NetWt > 0.0 then goto 260
270 DiscreteOut=0
280 print "Completed"
290 sleep 3000
293 ClearTareA=1
294 if ClearTareA=1 goto 294
300 goto 60

Rate-based Setpoint
Auto-Preact

A Release M.2 JagBASIC application can set up an Auto-Preact setpoint. In an Auto-
Preact setpoint, the preact weight is automatically adjusted based on the rate that
material is being filled or discharged from a hopper and an auto-preact time value.
Whenever the Jaguar terminal calculates a new rate value, it adjusts the preact weight
for the setpoint based on the rate and the auto-preact time value.

Auto-preact time value is the number of seconds it takes for the gate to close and the
filling to complete once the Jaguar terminal detects that coincidence weight - preact
weight has been reached. The auto-preact time is stored in shared data variable
"spn06", where "n" is the number of the setpoint. The Jaguar terminal automatically
learns the best auto-preact time by adjusting the value based on the error weight in
each trial. Once a setpoint reaches coincidence value, the Jaguar calculates the
difference between the setpoint coincidence value and the actual weight in the weigh
hopper once the hopper reaches a "no motion" state. This difference is the error for the
last trial. The Jaguar adjusts the auto-preact time by a value proportional to the error in
the last trial and the sum of the errors over all trials.

To setup the auto-preact, the JagBASIC application must set the setpoint target to either
"H" for a gross weight setpoint or "M" for net weight setpoint. You should initialize the
auto-preact time value to your best guess of the preact time to minimize the number of
trials it takes for the Jaguar terminal to learn and adjust to the best preact time. The
other fields of the auto-preact setpoint are the same as in a standard setpoint.

With the JagBASIC ladder commands, you can use the setpoint feeding output to
generate a discrete output for opening and closing a feed gate.

Example
REM // ***
REM // Setup Rate
REM // ***
defshr unit$,wt103
defshr rateDisplay%,cs188

Chapter 8: Sample Application Programs
Simple Truck In-Out

(3/99) 8-7

defshr auxDisplay%,cs189
defshr rateUnit%,cs101
defshr period$,cs104
defshr sample%,cs105
defshr freq%,cs106
defshr setup%,t_697
if unit$="lb" then rateUnit%=1 else rateUnit%=2
period$="S":rate = weight units per second
sample%=2:rem rate averaged over last two seconds
freq%=2:rem rate calculation frequency 1=1 sec;2=5 sec;2=half-second
rateDisplay%=0:auxDisplay%=0:rem turn-off rate display
setup%=1

REM ***
REM Setpoint #1
REM Filling Setpoint using Auto preact
REM ***
DEFSHR coincidence#,sp105
DEFSHR autopreact#,sp106
DEFSHR target,sp103
DEFSHR filling%,sp186
DEFSHR enable%,sp102
DEFSHR latching%,sp187
DEFSHR latched%,sp188
enable%=1
latching%=1
filling%=0
target$=”H”
latched%=0
coincidence#=1000.0:rem weight
autopreact#=1.2:rem seconds
newladder
rungmov s_210,p_500
DEFSHR setpoint%,t_698
setpoint%=1

Simple Truck In-Out
This JagBASIC program is used for a simple truck inbound/outbound application.

10 defshr gross#,wt110:rem gross weight
20 defshr unit$,wt103:rem weight units
30 defshr stopEnable%,bas89
40 defshr keyboards%,bas10
50 defshr motion%,s_200
60 stopEnable%=0
70 keyboards%=3
80 password$="555555"
100 rem main menu
110 print "IN = 1 OUT = 4"
120 gosub 3000
130 if k$="1" then goto 1000
140 if k$="4" then goto 2000
150 if k$="7" then goto 5000
160 if k$="8" then goto 6000
170 if k$="9" then goto 7000
180 goto 120
1000 print "Inbound?"

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)8-8

1005 gosub 3000
1006 if k$<>chr$(8) then goto 100
1010 if gross#<10.0 then print "SCALE EMPTY":goto 1180
1020 print "Register #"
1030 open "inbound.dat" for random as #1 len=10
1040 field #1,8 as inwght$,2 as lfcr$
1050 reg%=999
1060 for x% = 1 to 50
1070 get #1,x%
1080 if inwght$="00000000" then reg%=x%: x%=50
1090 next x%
1100 if reg%=999 then print "Memory Full":goto 1170
1105 if motion%=1 then print "Scale In Motion"
1106 if motion%=1 then goto 1106
1110 lset lfcr$=chr$(13)+chr$(10)
1120 rset inwght$=mkd$(gross#)
1130 lprint "Register # ";reg%
1140 lprint date$;" ";time$;" ";gross#;" ";units$;" IN"
1150 print "Register # ";reg%
1160 put #1,reg%
1170 close #1
1180 gosub 3000
1190 goto 100
2000 print "Outbound?"
2005 gosub 3000
2006 if k$<>chr$(8) then goto 100
2010 input "Enter Register",reg%
2030 if reg%<1 or reg%>50 then goto 2010
2040 print "Register # ";reg%
2045 sleep 1000
2050 open "inbound.dat" for random as #1 len=10
2060 field #1,8 as inwght$,2 as lfcr$
2070 get #1,reg%
2080 if inwght$="00000000" then print "Register Empty":close #1:goto 2220
2090 in#=cvd(inwght$)
2100 lset lfcr$=chr$(13)+chr$(10)
2110 rset inwght$="00000000"
2120 put #1,reg%
2130 close #1
2135 if motion%=1 then print "Scale In Motion"
2136 if motion%=1 then goto 2136
2140 if in#>gross# then finalGross#=in#:tare#=gross#:goto 2160
2150 tare#=in#:finalGross#=gross#
2160 net#=finalGross#-tare#
2170 print using "NET__######.#_!!";net#;unit$
2180 lprint DATE$+" "+TIME$
2190 lprint using "NET____######.#_!!";net#;unit$
2200 lprint using "GROSS__######.#_!!";finalGross#;unit$
2210 lprint using "TARE___######.#_!!";tare#;unit$
2220 gosub 3000
2230 goto 100
3000 rem get key
3010 k$=inkey$
3020 if k$="" then goto 3010
3030 return
5000 print "View Regs?"
5005 gosub 3000
5010 if k$<>chr$(8) then goto 100
5020 input "Enter Password";pw$
5030 if password$<>pw$ then goto 100
5040 open "inbound.dat" for random as #1 len=10

Chapter 8: Sample Application Programs
Truck Inbound-Outbound

(3/99) 8-9

5050 field #1,8 as inwght$,2 as lfcr$
5060 print "Printout? Y=3"
5065 gosub 3000
5080 if k$="3" then lprint "Reg Stored Weight"
5090 for x%=1 to 50
5100 get #1,x%
5110 if inwght$="00000000" then goto 5150
5120 print using "##__######.#";x%;cvd(inwght$)
5130 if k$="3" then lprint using "##__######.#";x%;cvd(inwght$)
5140 sleep 1000
5150 next x%
5160 close #1
5170 goto 100
6000 print "Reset Regs?"
6005 gosub 3000
6010 if k$<>chr$(8) then goto 100
6020 input "Enter Password"; pw$
6030 if password$<>pw$ then goto 100
6040 open "inbound.dat" for output as #1
6050 for x%=1 to 50
6060 print #1,"00000000"
6070 next x%
6080 close #1
6090 print "Reset Complete"
6100 sleep 2000
6110 goto 100
7000 print "Exit?"
7005 gosub 3000
7010 if k$<>chr$(8) then goto 100
7020 input "Enter Password";pw$
7030 if password$<>pw$ then goto 100
7040 keyboards%=0
7050 end

Truck Inbound-
Outbound

This application records the weight of a truck when it arrives at a plant, calculates the
net weight of the truck when it leaves the plant, and updates tallies as directed by the
operator. It uses up to two scales connected to a Jaguar terminal. Typical uses of this
application are to record and tally the amount of:

• Asphalt loaded at an asphalt plant.

• Grain delivered to a grain elevator.

• Trash delivered to a trash dump.

This application uses the JagBASIC preprocessor, which uses the program source code
listed here as input and generates the output file which runs on the Jaguar terminal.

Printing Tickets
This application prints a ticket after each truck inbound or outbound processing
operation using the Demand Custom Print #3 connection. The operator must assign a
serial port to this connection using the "CONFIG SERIAL" menu in the Jaguar terminal

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)8-10

setup menus. The operator must also use the "CONFIG TEMPLATE" menu to setup the
ticket format. This application sets the print literals as follows:

Literal 1 Header 1. Set up using Memory Key.
Literal 2 Header 2. Set up using Memory Key.
Literal 3 Net Weight.
Literal 4 Tare Weight.
Literal 5 Gross Weight.
Literal 6 Truck ID.
Literal 7 Tally 1 ID.
Literal 8 Tally 1 Weight Value.
Literal 9 Tally 2 ID.
Literal 10 Tally 2 Weight Value.
Literal 11 Tally 3 ID.
Literal 12 Tally 3 Weight Value.
Literal 13 Tally 4 ID.
Literal 14 Tally 4 Weight Value.
Literal 15 Tally 5 ID.
Literal 16 Tally 5 Weight Value.
Literal 17 Tally 6 ID.
Literal 18 Tally 6 Weight Value.

Processing Modes
This application has two processing modes: File Maintenance and Truck
Inbound/Outbound. The operator uses the Esc key to switch between them.

File Maintenance Processing
The application maintains two files: the Truck File and the Tally File. The number of
records stored in each file is limited to 1000 records since the Jaguar RAM disk is 64K
bytes. These files are random-access files with the records stored alphabetically by ID.
The application quickly retrieves records from the files through a binary search. In File
Maintenance processing, the operator can perform the following operations:

• Edit the Truck File

• Print the Contents of the Truck File

• List the Truck IDs

• Edit the Tally File

• Print the Contents of the Tally File

Truck File
The Truck File has one record for each truck. The application weight units are the same
as the scale's primary calibration units. The application does not support unit
switching. Each record in the Truck File is 26 bytes long and has the following format:

Truck ID 8 characters
Tare Weight in ASCII 6 characters
Total Weight in ASCII 8 characters
Tare Type P/T 1 character
Truck In Plant Y/N 1 character
Line Feed/Carriage Return 2 characters

Chapter 8: Sample Application Programs
Truck Inbound-Outbound

(3/99) 8-11

26 characters

The Total Weight is the sum of the truck's net weights in all its trips to the plant. The
truck's Tare Type is either "P" or "T".

• "P" indicates that the operator entered the tare through the keyboard.

• "T" indicates that the operator entered the tare by weighing the truck on the scale.

Tally File
The Tally File has one record for each tally that the operator records. Each record in the
Tally File is 20 bytes long and has the following format:

Tally ID 8 characters

Tally Weight in ASCII 10 characters

Line Feed/Carriage Return 2 characters

20 characters

Truck Inbound/Outbound Processing
In truck inbound processing, the application prompts the operator to enter the truck ID.
If the truck ID does not exist in the Truck File, the application creates a new record in
the file. The application records the inbound weight of the truck in the Truck File. The
application sets the values in Literals 5 and 6; and blanks Literals 3, 4 and 7 through
18. The application issues the command to print a ticket through the Demand Custom
Print #3 connection.

In truck outbound processing, the application prompts the operator to enter the truck ID.
The application retrieves the inbound weight of the truck from the Truck File and
calculates the net weight of the truck. The application prompts the user to enter up to
six tally IDs and adds the net weight to each tally. The application sets the print literals
and issues the command to print the ticket.

Operations Program
This program code executes the steps needed to carry out the inbound/outbound
application.

REM **
REM TRUCK IN/OUT PROGRAM
REM **
IF OP%=0 THEN GOTO Initialize
IF OP%=2 THEN GOTO TruckInOutStart ELSE GOTO MaintenanceStart
Initialize:
DIM Gross#(2):Defshr Gross#(1),wt110:Defshr Gross#(2),wt210
DIM Motion%(2):Defshr Motion%(1),s_200:Defshr Motion%(2),s_208
DIM Select%(2):Defshr Select%(1),t_6c0:Defshr Select%(2),t_6c1
DIM Zero%(2):Defshr Zero%(1),t_693:Defshr Zero%(2),t_6a3
Defshr Unit$,wt103
Defshr stopEnable%,bas89:stopEnable%=1
Defshr selKey,bas87:selKey=0:Defshr escKey,bas86:escKey=0
Defshr numScales,jag15:Defshr CustomPrint3%,t_6c5

DIM L$(18):Defshr L$(1),lit01:Defshr L$(2),lit02:Defshr L$(3),lit03
Defshr L$(4),lit04:Defshr L$(5),lit05:Defshr L$(6),lit06

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)8-12

Defshr L$(7),lit07:Defshr L$(8),lit08:Defshr L$(9),lit09
Defshr L$(10),lit10:Defshr L$(11),lit11:Defshr L$(12),lit12
Defshr L$(13),lit13:Defshr L$(14),lit14:Defshr L$(15),lit15
Defshr L$(16),lit16:Defshr L$(17),lit17:Defshr L$(18),lit18

REM **
REM **
REM TRUCK INBOUND/OUTBOUND OPERATIONS
REM **
REM **
TruckInOutStart:
OP%=1:Scl%=1:Select%(1)=1
NextTruck:
rem troff
for i%=3 to 18
L$(i%)=" "
next i%
rem tron
CustomPrint3%=0

INPUT "Truck";M$
REM ***** ZERO SCALE *****
IF M$=CHR$(7) THEN Zero%(Scl%)=1:GOTO NextTruck
REM ***** PROCESS TRUCK *****
IF M$<>CHR$(1) THEN GOSUB ProcessTruck:GOTO NextTruck
REM ***** SELECT SCALE *****
IF numScales=1 THEN GOTO NextTruck
IF Scl%=1 THEN Scl%=2 ELSE Scl%=1
Select%(Scl%)=1:GOTO NextTruck

REM **
REM PROCESS TRUCK
REM **
ProcessTruck:
IF M$="" THEN RETURN
GOSUB CheckIDString:truckID$=M$:L$(6)=M$
GOSUB GetWgt:M$=STR$(Weight#):GOSUB SetToWidth8:L$(5)=M$

GOSUB OpenTruck:LSET TrkID$=truckID$:ON ERROR GOTO NewInboundTruck:GET #2
IF TIP$="Y" THEN GOTO OutboundTruck

REM **
REM PROCESS INBOUND TRUCK
REM **
InboundTruck:
PRINT "InBound ";truckID$:SLEEP 1000
IF TTyp$="P" THEN L$(5)=TW$ ELSE RSET TW$=RIGHT$(L$(5),8)
GOTO DoneInbound

REM **
REM NEW INBOUND TRUCK ID
REM **
NewInboundTruck:
IF ERR()<>6 THEN LPRINT ERR();" ";ERL():END
PRINT "New ID ";truckID$;"?":GOSUB GetKey
IF C$<>CHR$(8) THEN CLOSE #2:RETURN
RSET TW$=RIGHT$(L$(5),8)
LSET TTyp$="T":LSET TrkID$=truckID$:RSET TTot$=" 0"

DoneInbound:
RSET TIP$="Y":LSET cr$=chr$(13)+chr$(10):PUT #2

Chapter 8: Sample Application Programs
Truck Inbound-Outbound

(3/99) 8-13

GOSUB PrintHeader:LPRINT "Inbound Truck ";truckID$
LPRINT USING "GROSS_WT____##########._!!";VAL(L$(5));Unit$:LPRINT ""
CustomPrint3%=1:CLOSE #2:RETURN

REM **
REM PROCESS OUTBOUND TRUCK
REM **
OutboundTruck:
NetWt#=Weight#-VAL(TW$):M$=STR$(NetWt#):Width%=8:GOSUB SetToWidth:L$(3)=M$
M$=TW$:GOSUB SetToWidth8:L$(4)=M$
Weight#=NetWt#+VAL(TTot$)
M$=STR$(Weight#):Width%=10:GOSUB SetToWidth:RSET TTot$=M$
RSET TIP$="N":LSET cr$=chr$(13)+chr$(10):PUT #2:CLOSE #2

REM **
REM HEY, MR. TALLY MAN, TALLY ME BANANAS.
REM **
t%=0:GOSUB OpenTally

MoreTallies:
INPUT "Enter Tally ID",M$:IF M$=" " OR M$="" THEN GOTO DoneTallies
GOSUB CheckIDString:talID$=M$
ON ERROR GOTO NewTally
LSET TallyID$=talID$:GET #1

REM *** FOUND EXISTING TALLY
M$=STR$(VAL(Tally$)+NetWt#):Width%=10:GOSUB SetToWidth:RSET Tally$=M$
GOTO PutTally

NewTally:
IF ERR()<>6 THEN LPRINT ERR();" ";ERL():END
PRINT "AddNew ";talID$;"?":GOSUB GetKey:IF C$<>CHR$(8) THEN GOTO MoreTallies
M$=STR$(NetWt#):Width%=10:GOSUB SetToWidth:RSET Tally$=M$

PutTally:
L$(t%*2+7)=talID$:L$(t%*2+8)=Tally$:REM *** SET LITERALS FOR CUSTOM PRINT
LSET TallyID$=talID$:LSET cr$=chr$(13)+chr$(10):PUT #1

NextTally:
t%=t%+1:IF t%<6 THEN GOTO MoreTallies

DoneTallies:
GOSUB PrintHeader:LPRINT "Outbound Truck ";truckID$;CHR$(10)
LPRINT USING "GROSS_WT____##########._!!";VAL(L$(5));Unit$
LPRINT USING "TARE_WT_____##########._!!";VAL(L$(4));Unit$
LPRINT USING "NET_WT______##########._!!";VAL(L$(3));Unit$
LPRINT "":i%=0
MoreTallyPrint:
IF i%>=t%*2 THEN LPRINT CHR$(10):CLOSE #1:CustomPrint3%=1:RETURN
LPRINT USING "!!!!!!!!__############._!!";L$(i%+7);VAL(L$(i%+8));Unit$
i%=i%+2:GOTO MoreTallyPrint

REM **
REM **
REM TRUCK FILES MAINTENANCE MAIN MENU
REM **
REM **
MaintenanceStart:
IF OP%=4 THEN GOTO MenuPrintTruck
IF OP%=5 THEN GOTO MenuListTruck

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)8-14

IF OP%=6 THEN GOTO EditTallyMenu
IF OP%=7 THEN GOTO MenuPrintTally
IF OP%=8 THEN GOTO MenuSendFiles

Maintenance:
OP%=2:PRINT "Edit Truck File":GOSUB GetKey
IF C$=CHR$(8) THEN GOSUB EditTruckFile:GOTO Maintenance

MenuPrintTruck:
OP%=2:PRINT "Print Truck File":GOSUB GetKey
IF C$=CHR$(8) THEN GOSUB PrintTrucks

MenuListTruck:
OP%=2:PRINT "List Truck IDs":GOSUB GetKey
IF C$=CHR$(8) THEN GOSUB ListTruckID

EditTallyMenu:
OP%=2:PRINT "Edit Tally File":GOSUB GetKey
IF C$=CHR$(8) THEN GOSUB EditTallyFile:GOTO EditTallyMenu

MenuPrintTally:
OP%=2:PRINT "Print Tally File":GOSUB GetKey
IF C$=CHR$(8) THEN GOSUB PrintTallyList

MenuSendFiles:
OP%=2:PRINT "Send Data Files":GOSUB GetKey
IF C$=CHR$(8) THEN GOSUB SendFiles
GOTO Maintenance

REM **
REM EDIT THE TRUCK FILE
REM **
EditTruckFile:
OP%=3:INPUT "Enter Truck ID",M$
GOSUB OpenTruck:ON ERROR GOTO NewTruck:r%=0
IF M$<>" " AND M$<>"" THEN GOTO SearchTruckID

LookNextID:
IF EOF(2) THEN CLOSE #2:PRINT "End Of File":SLEEP 2000:RETURN
r%=r%+1:GET #2,r%:PRINT "Truck ";TrkID$;"?":GOSUB GetKey
IF C$=CHR$(8) THEN truckID$=TrkID$:GOTO EditRecord ELSE GOTO LookNextID

SearchTruckID:
GOSUB CheckIDString:truckID$=M$:PRINT "Search ";truckID$:SLEEP 1000
LSET TrkID$=truckID$:GET #2

EditRecord:
PRINT "Edit ";truckID$;"?":GOSUB GetKey:IF C$=" " THEN GOTO DeleteTruck
IF C$<>CHR$(8) THEN GOTO EndTruckEdit
PRINT "Outbound? Y/N",C$:GOSUB GetKey
IF C$="Y" THEN RSET TIP$="Y" ELSE RSET TIP$="N"
GOTO SetTare

DeleteTruck:
PRINT "Delete ";truckID$;"?":GOSUB GetKey:IF C$=" " THEN GOTO EditRecord
IF C$=CHR$(8) THEN PRINT "Deleting ";truckID$:SLEEP 1000:DELREC #2
GOTO EndTruckEdit

NewTruck:
IF ERR()<>6 THEN LPRINT ERR();" ";ERL():END
PRINT "Add ";truckID$;"?":GOSUB GetKey:IF C$<>CHR$(8) THEN GOTO EndTruckEdit

Chapter 8: Sample Application Programs
Truck Inbound-Outbound

(3/99) 8-15

PRINT "Adding ";truckID$:LSET TrkID$=truckID$
RSET TW$=" ":RSET TTot$=" ":LSET TTyp$=" ":RSET TIP$="N"

SetTare:
PRINT "Tare Type? P/T":GOSUB GetKey
IF C$=CHR$(4) OR C$="T" THEN RSET TTyp$="T":GOSUB GetWgt:GOTO SetTot
IF C$="P" THEN RSET TTyp$="P":INPUT "Tare Wt:",Weight#:GOTO SetTot
PRINT "Invalid Type":SLEEP 2000:GOTO SetTare

SetTot:REM ***** SET TOTAL WEIGHT ******
M$=STR$(Weight#):GOSUB SetToWidth8:RSET TW$=M$
INPUT "Total:",Weight#
M$=STR$(Weight#):Width%=10:GOSUB SetToWidth:RSET TTot$=M$
LSET TrkID$=truckID$:LSET cr$=chr$(13)+chr$(10):PUT #2

EndTruckEdit:
CLOSE #2:RETURN

REM **
REM EDIT THE Tally ID FILE
REM **
EditTallyFile:
OP%=6:INPUT "Enter Tally ID",M$
GOSUB OpenTally:ON ERROR GOTO MakeNewTally:r%=0
IF M$<>" " AND M$<>"" THEN GOTO SearchTallyID

LookTally:
IF EOF(1) THEN CLOSE #1:PRINT "End Of File":SLEEP 2000:RETURN
r%=r%+1:GET #1,r%:PRINT "Tally ";TallyID$;"?":GOSUB GetKey
IF C$=CHR$(8) THEN talID$=TallyID$:GOTO EditTallyRecord ELSE GOTO LookTally

SearchTallyID:
GOSUB CheckIDString:talID$=M$:PRINT "Search ";talID$:SLEEP 1000
LSET TallyID$=talID$:GET #1

EditTallyRecord:
PRINT "Edit ";talID$;"?":GOSUB GetKey
IF C$=CHR$(8) THEN GOTO WriteTallyTotal
IF C$<>" " THEN GOTO EndTallyEdit

DeleteTally:
PRINT "Delete ";talID$;"?":GOSUB GetKey
IF C$=" " THEN GOTO EditTallyRecord
IF C$=CHR$(8) THEN PRINT "Deleting ";talID$:SLEEP 1000:DELREC #1
GOTO EndTallyEdit

MakeNewTally:
IF ERR()<>6 THEN LPRINT ERR();" ";ERL():END
PRINT "Add ";talID$;"?":GOSUB GetKey:IF C$<>CHR$(8) THEN GOTO EndTallyEdit
PRINT "Adding ";talID$:SLEEP 1000:GOTO WriteTallyTotal

WriteTallyTotal:
LSET TallyID$=talID$:Input "Total:",Weight#
M$=STR$(Weight#):Width%=10:GOSUB SetToWidth:RSET Tally$=M$
LSET cr$=chr$(13)+chr$(10):PUT #1

EndTallyEdit:
CLOSE #1:RETURN

REM **
REM PRINT THE TRUCK FILE

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)8-16

REM **
PrintTrucks:
OP%=4:PRINT "Clear Total? N/Y":GOSUB GetKey:PRINT "Printing..."
GOSUB PrintHeader:LPRINT "Truck Report"
LPRINT "Truck ID";TAB(18);"Tare Weight";TAB(38);"Total";TAB(47);"Outbound"
LPRINT STRING$(54,"="):GOSUB OpenTruck:r%=0
WHILE NOT EOF(2)
r%=r%+1:GET #2,r%:LPRINT TrkID$;TAB(15);
IF C$="Y" OR C$=CHR$(6) THEN RSET TTot$=" 0"
LPRINT USING "########._!!_!";VAL(TW$);Unit$;TTyp$;
LPRINT USING "__##########._!!____!";VAL(TTot$);Unit$;TIP$
IF C$="Y" OR C$=CHR$(6) THEN PUT #2,r%
WEND
LPRINT r%;" Trucks":PRINT r%;" Trucks":SLEEP 2000:CLOSE #2:RETURN

REM **
REM PRINT LIST OF TRUCKS
REM **
ListTruckID:
OP%=5:GOSUB PrintHeader
LPRINT "Truck ID List":LPRINT STRING$(25,"="):GOSUB OpenTruck:r%=0
PrintNextTruck:
IF NOT EOF(2) THEN r%=r%+1:GET #2,r%:LPRINT TrkID$:GOTO PrintNextTruck
LPRINT r%;" Trucks":PRINT r%;" Trucks":SLEEP 2000:CLOSE #2:RETURN

REM **
REM PRINT LIST OF TALLIES
REM **
PrintTallyList:
OP%=7:GOSUB PrintHeader
LPRINT "Tally";TAB(18);"Total":LPRINT STRING$(25,"="):GOSUB OpenTally:r%=0
PrintNextTally:
IF EOF(1) THEN GOTO PrintTallyDone
r%=r%+1:GET #1,r%:LPRINT TallyID$;
LPRINT USING "___##########._!!";VAL(Tally$);Unit$:GOTO PrintNextTally
PrintTallyDone:
LPRINT r%;" Tallies":PRINT r%;" Tallies":SLEEP 2000:CLOSE #1:RETURN

REM **
REM SEND FILES TO HOST USING ZMODEM
REM **
SendFiles:
OP%=8:PRINT "Files To Host":GOSUB GetKey:IF C$<>CHR$(8) THEN GOTO ReceiveFiles
PRINT "Are You Sure?":GOSUB GetKey:IF C$<>CHR$(8) THEN RETURN
PRINT "":SZ "TRUCK":SZ "TALLY":RETURN
ReceiveFiles:
PRINT "Files From Host":GOSUB GetKey:IF C$<>CHR$(8) THEN RETURN
PRINT "Are You Sure?":GOSUB GetKey:IF C$=CHR$(8) THEN RZ ELSE RETURN
PRINT "SORTING FILES":GOSUB OpenTruck:SORTREC #2,TrkID$:CLOSE #2
GOSUB OpenTally:SORTREC #1,TallyID$:CLOSE #1:RETURN

REM **
REM GET WEIGHT OF TRUCK
REM **
GetWgt:
Scl%=1:C$="A":If numScales=1 THEN GOTO CheckMotion
PRINT "Scale? A/B":GOSUB GetKey
IF C$="B" OR C$=CHR$(5) THEN Scl%=2:C$="B" ELSE C$="A"
Select%(Scl%)=1
CheckMotion:
PRINT "Weighing Scale ";C$:SLEEP 1000

Chapter 8: Sample Application Programs
Truck Inbound-Outbound

(3/99) 8-17

IF Motion%(Scl%)=1 THEN PRINT "Scale In Motion":SLEEP 250:GOTO CheckMotion
Weight#=Gross#(Scl%):RETURN

REM **
REM OPEN TRUCK FILE
REM **
OpenTruck:
OPEN "TRUCK" FOR RANDOM AS #2 LEN=30
FIELD #2,8 AS TrkID$,8 AS TW$,1 AS TTyp$,10 AS TTot$,1 AS TIP$,2 AS cr$
INDEXED #2,TrkID$:RETURN

REM **
REM OPEN TALLY FILE
REM **
OpenTally:
OPEN "TALLY" FOR RANDOM AS #1 LEN=20
FIELD #1,8 AS TallyID$,10 AS Tally$,2 AS cr$
INDEXED #1,TallyID$:RETURN

REM **
REM Print Report Header
REM **
PrintHeader:
LPRINT chr$(10)+chr$(10):LPRINT L$(1):LPRINT L$(2)+chr$(10)
LPRINT DATE$;TAB(19);TIME$+chr$(10):RETURN

REM **
REM GET A KEY
REM **
GetKey:
rem troff
C$=INKEY$:IF C$<>"" THEN GOTO GetKey
GetKey1:
C$=INKEY$:IF C$="" THEN GOTO GetKey1
rem tron
IF C$>="a" AND C$<="z" THEN C$=CHR$(ASC(C$)-32)
IF C$=CHR$(2) THEN RESTART ELSE RETURN

REM **
REM CHECK TERMINATING CHARACTERS ON STRING
REM BLANK FILL ID TO WIDTH 8
REM CAPITALIZE ID
REM **
CheckIDString:
C$=RIGHT$(M$,1):IF C$=CHR$(2) THEN RESTART
IF C$<CHR$(8) THEN M$=LEFT$(M$,LEN(M$)-1)
AddBlank:
IF LEN(M$)<8 THEN M$=M$+" ":GOTO AddBlank
A$=M$:M$=""
FOR i%=1 TO 8
C$=MID$(A$,i%,1)
IF C$>="a" AND C$<="z" THEN M$=M$+CHR$(ASC(C$)-32) ELSE M$=M$+C$
NEXT i%
RETURN

REM **
REM RIGHT SHIFT NUMERIC STRING TO SPECIFIED WIDTH
REM **
SetToWidth8:
Width%=8
SetToWidth:

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)8-18

IF LEN(M$)<Width% THEN M$=" "+M$:GOTO SetToWidth
IF LEN(M$)>Width% THEN M$=LEFT$(M$,Width%)
RETURN

Multiple Ingredient
Formulation
(Manual Batching)

JagBASIC can be applied to a Multiple Ingredient Formulation application (manual
batching). This example uses various JagBASIC programming techniques for
operations such as maintaining data files, acquiring weight data, and controlling output
to the Jaguar lower display. The application is divided into two program areas:
Operation and File Maintenance.

Operation
The operator is prompted for the recipe, then shown the amount of each material
remaining to be added. The first controller board discrete output is on while the material
is out of tolerance; the second is on when the material is within tolerance. The
materials inventory file is updated after each ingredient is added. An audit trail report is
printed formatted as follows:

Recipe: CAKE 09/06/96 09:31
Material Actual Target
=================================
FLOUR 675.1 675
SUGAR 201 200
NUTMG 30 30
=================================
Total: 906.1 905

Normal Operation

Enter Recipe 1

Weigh Empty
Container

Display Scale,
Material ID, Target

Amount

Display blinks if
within tolerance

Audit Trail Printed

Is ID in
Recipe file?

NoYes

ENTER

FILL

ENTER

Operations Flow Chart

Chapter 8: Sample Application Programs
Multiple Ingredient Formulation (Manual Batching)

(3/99) 8-19

Operations Program
The following code executes the multiple ingredient application's operation as
described above.

191 MaxRecords% = 200
192 Defshr GWtA!, wt110
193 Defshr GWtB!, wt210
194 Defshr Input1!, p_100
195 Defshr Output1!, p_500
196 Defshr Output2!, p_501
200 Defshr Alarm%, t_685
1010 PRINT "Recipe? "
1020 GOSUB 7010
1025 IF C$ = "`" OR C$ = " " OR C$ = "#" THEN GOTO 9999
1040 PRINT "Searching.... ": RID$ = C$
1060 OPEN "RECIPES" FOR RANDOM AS #1 LEN = 30
1070 FIELD #1, 8 AS RecID$, 5 AS MatID$, 1 AS Scale$, 8 AS Amnt$, 8 AS Tol$
1080 Sum! = 0!: SumT! = 0
1090 F$ = "N"
1110 WHILE EOF(1) = 0 AND F$ = "N"
1120 GET #1
1130 IF RecID$ = RID$ THEN F$ = "Y"
1140 WEND
1150 IF F$ = "Y" THEN GOTO 1210
1160 CLOSE #1
1170 IF (Sum! = 0) THEN M$ = "Recipe Not Found": GOSUB 8010: GOTO 1010
1180 LPRINT "====================================="
1190 LPRINT "Total: "; Sum!;" ";SumT!
1200 GOTO 1010
1210 MaterialID$ = MatID$
1220 ScaleID$ = Scale$
1230 Amount$ = Amnt$
1240 T$ = Tol$
1250 Tol! = VAL(T$)
1300 IF (Sum! > 0) THEN GOTO 1580
1310 LPRINT "Recipe: "; RID$; " "; DATE$; " "; TIME$
1315 LPRINT "Material Actual Target"
1320 LPRINT "======================================"
1330 PRINT "Weigh Empty in "; Scale$
1340 GOSUB 8210
1350 IF C$ <> "#" THEN CLOSE #1: GOTO 1010
1360 IF ScaleID$ = "A" THEN GWt! = GWtA! ELSE GWt! = GWtB!
1370 InitialWt! = GWt!
1580 OldGWt! = GWt!
1590 Amount! = GWt! + VAL(Amount$)
1595 Output1! = 1: Output2! = 0: Input1! = 0
1600 GOSUB 1730
1610 IF C$ = "`" THEN CLOSE #1: GOTO 1010
1620 IF ScaleID$ = "A" THEN GWt! = GWtA! ELSE GWt! = GWtB!
1630 Total$ = STR$(GWt! - OldGWt!)
1640 IF LEN(Total$) < 8 THEN Total$ = " " + Total$: GOTO 1640
1650 LPRINT MaterialID$; TAB(13); Total$; TAB(26); Amnt$
1660 Sum! = GWt! - InitialWt!
1670 SumT! = SumT! + VAL(Amnt$)
1680 GOSUB 2010
1690 GOTO 1090

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)8-20

1730 IF ScaleID$ = "B" THEN GOTO 1825
1735 GOSUB 9000
1740 WHILE INKEY$ <> CHR$(8)
1750 Rem! = Amount! - GWtA!
1760 IF (Output2! = 1) THEN PRINT " "
1770 PRINT ScaleID$; " "; MaterialID$; " "; Rem!;" "
1790 IF Rem! < Tol! THEN Output1! = 0: Output2! = 1: Alarm% = 1
1810 WEND
1820 RETURN
1825 GOSUB 9000
1830 WHILE INKEY$ <> CHR$(8)
1840 Rem! = Amount! - GWtB!
1850 IF (Output2! = 1) THEN PRINT " "
1860 PRINT ScaleID$; " "; MaterialID$; " "; Rem!;" "
1880 IF Rem! < Tol! THEN Output1! = 0: Output2! = 1: Alarm% = 1
1890 WEND
1900 RETURN
2010 GOSUB 8110
2020 IF F$ = "N" THEN RETURN
2080 OPEN "MATERIAL" FOR RANDOM AS #2 LEN = 37
2090 FIELD #2, 5 AS MATRLID$, 16 AS MatName$, 8 AS Inv$, 8 AS MatUsage$
2095 GET #2, Rec2%
2100 I! = VAL(Inv$) - (GWt! - OldGWt!)
2110 Usage! = VAL(MatUsage$) + (GWt! - OldGWt!)
2112 I$ = STR$(I!)
2114 IF LEN(I$) < 8 THEN I$ = " " + I$: GOTO 2114
2116 Usage$ = STR$(Usage!)
2118 IF LEN(Usage$) < 8 THEN Usage$ = " " + Usage$: GOTO 2118
2120 RSET Inv$ = I$
2130 RSET MatUsage$ = Usage$
2140 PUT #2, Rec2%: CLOSE #2: RETURN
7010 C$ = "": M$ = ""
7015 WHILE C$ = ""
7020 C$ = INKEY$
7025 WEND
7030 IF C$ = CHR$(8) THEN C$ = "#": RETURN
7040 IF C$ = "`" OR C$ = " " OR C$ = CHR$(4) THEN RETURN
7100 WHILE C$ <> CHR$(8)
7105 IF C$ = CHR$(6) THEN M$ = LEFT$(M$, LEN(M$) -1): GOTO 7170
7110 IF C$ < " " OR C$ > "z" THEN GOTO 7180
7120 IF C$ > "`" THEN C$ = CHR$(ASC(C$) - 32)
7160 M$ = M$ + C$
7170 PRINT M$;" "
7180 C$ = INKEY$
7200 WEND
7220 C$ = M$
7240 IF LEN(C$) > 8 THEN C$ = LEFT$(C$, 8): RETURN
7250 IF LEN(C$) = 8 THEN RETURN
7270 C$ = C$ + " "
7280 GOTO 7250
8010 PRINT M$: L% = 1
8012 WHILE L% < 10 AND INKEY$ = ""
8015 L% = L% + 1
8020 WEND
8030 RETURN
8110 PRINT "Updating Invntry"
8111 OPEN "MATERIAL" FOR RANDOM AS #2 LEN = 37
8112 FIELD #2, 5 AS MATRLID$, 16 AS MatName$, 8 AS Inv$, 8 AS MatUsage$
8120 F$ = "N"
8125 IF LEN(MaterialID$) < 5 THEN MaterialID$ = MaterialID$ + " ": GOTO 8125
8130 WHILE 0 = EOF(2) AND F$ = "N"

Chapter 8: Sample Application Programs
Multiple Ingredient Formulation (Manual Batching)

(3/99) 8-21

8140 GET #2
8150 IF MATRLID$ = MaterialID$ THEN F$ = "Y": Rec2% = LOC(2)
8160 WEND
8165 IF Rec2% > 0 THEN Rec2% = Rec2% - 1
8170 IF F$ = "N" THEN M$ = "Unknown Material": GOSUB 8010
8180 CLOSE #2: RETURN
8210 C$ = "~"
8220 WHILE C$ <> "`" AND C$ <> " " AND C$ <> "#"
8230 C$ = INKEY$
8260 IF C$ = CHR$(8) THEN C$ = "#"
8270 WEND
8280 RETURN
9000 PRINT " ": RETURN
9999 END

File Maintenance
The Multiple Ingredient Formulation Application uses two files for data maintenance:
Materials and Recipes. File Maintenance enables the operator to create, delete, and
update records of recipes and materials. It also allows the operator to print reports
detailing an individual recipe, the current recipes on file, or the amount of materials
available.

Select
Edit Material File
Edit Recipe File
Material Report
Recipe Report

Print Recipe Report

Edit Recipe File

No

File Maintenance Flow Chart

File Maintenance

Add Recipe?

Is ID in
Recipe file?

No

Yes

Enter Material ID

Enter Scale ID

Enter Amount

Enter Tolerance

Select
Edit

Add Record
Delete

Return

Yes

Edit Recipe?

Enter Recipe ID

Select Record

Edit Material ID

Edit Scale ID

Edit Amount

Edit Tolerance

Delete Recipe?

All Records? Y/N

Enter Record ID

Return

Return

Return

Material Report Recipe Report Recipe Report

Clear Usage? Y/N Enter Recipe ID

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)8-22

Edit Material File
When the operator selects Edit Material File, the operator is prompted to enter a
Material ID. If the ID is not found, the operator can add it to the file. If the ID is found,
the operator can choose to edit or delete the material.

Edit Recipes
When the operator selects Edit Recipes, the operator is prompted for the Recipe ID. If
not found, the operator may add multiple records with the Record ID for each
ingredient. An error message will appear if the material is not currently in the Material
Inventory file. If the recipe ID is found, the operator has the option of editing the existing
records, adding a new record, deleting a record, or deleting all records for that recipe.

Material Report
When the operator selects Material Report, a list of materials is printed.

Edit Materials Flow Chart

Enter Material ID

Edit Material File

ENTER

Add Material

Enter Material ID

Enter Name

Enter Inventory

Enter Usage

Select
Edit

Delete

Is ID in
Materials file?

NoYes

Return

Delete Material?

ENTER

Edit Material?

Select Material

Edit Material

Edit Name

Edit Inventory

Edit Usage

ENTER

Chapter 8: Sample Application Programs
Multiple Ingredient Formulation (Manual Batching)

(3/99) 8-23

Recipe Report
When the operator selects Recipe Report, the operator is prompted with "Enter Recipe
ID". If the ID is not found, [MT- What happens?]. If the ID is found, a report is printed.

Print Recipe List
When the operator selects Recipe List, a list of available recipes is printed.

File Maintenance Program
The File Maintenance program maintains the formula and material files.

191 MaxIDs% = 200
3100 PRINT "Edit Materials ": GOSUB 8210
3120 IF C$ = "`" THEN GOTO 9999
3140 IF C$ = "#" THEN GOSUB 3895: GOTO 3100
3170 PRINT "Material Report ": GOSUB 8210
3190 IF C$ = "`" THEN GOTO 9999
3210 IF C$ = "#" THEN GOSUB 3710
3240 PRINT "Edit Recipes ": GOSUB 8210
3260 IF C$ = "`" THEN GOTO 9999
3280 IF C$ = "#" THEN GOSUB 4310: GOTO 3240
3310 PRINT "Recipe Report ": GOSUB 8210
3330 IF C$ = "`" THEN GOTO 9999
3350 IF C$ = "#" THEN GOSUB 6010: GOTO 3310
3380 PRINT "Recipe List ": GOSUB 8210
3400 IF C$ = "`" THEN GOTO 9999
3420 IF C$ = "#" THEN GOSUB 6310
3450 GOTO 3100
3710 OPEN "MATERIAL" FOR RANDOM AS #2 LEN = 37
3712 FIELD #2, 5 AS MatID$, 16 AS MatName$, 8 AS In$, 8 AS MatUsage$
3722 PRINT "Clear Usage? Y/N": GOSUB 8210: PRINT "Printing.. "
3718 IF C$ <> "Y" AND C$ <> "y" THEN C$ = "N"
3725 LPRINT
3730 LPRINT "Materials Report "; DATE$; " "; TIME$
3731 LPRINT "======================================"
3739 Rec2% = 1
3740 WHILE (0 = EOF(2))
3741 GET #2
3745 IF MatID$ < "A " THEN GOTO 3780
3750 LPRINT MatID$; TAB(10); MatName$; TAB(35); In$; TAB(45); MatUsage$
3755 IF C$ = "N" THEN GOTO 3780
3760 RSET MatUsage$ = " 0.0"
3770 IF (0 = EOF(2)) THEN PUT #2, Rec2%
3780 Rec2% = Rec2% + 1
3790 WEND
3800 CLOSE #2: RETURN
3895 PRINT "Material? ": Width% = 5: F$ = "A": GOSUB 7010
3899 IF C$ = "`" OR C$ = " " OR C$ = "#" THEN RETURN
3900 MaterialID$ = C$: GOSUB 8110
3919 IF F$ = "N" THEN GOSUB 3990: GOTO 3895
3920 OPEN "MATERIAL" FOR RANDOM AS #2 LEN = 37
3923 FIELD #2, 5 AS MatID$, 16 AS MatName$, 8 AS In$, 8 AS MatUsage$
3926 PRINT "Edit the Record "
3929 GOSUB 8210
3932 IF C$ = " " THEN CLOSE #2: GOTO 3972
3935 IF C$ = "`" THEN CLOSE #2: RETURN
3938 IF (0 = EOF(2)) THEN GET #2, Rec2%

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)8-24

3941 IF MatID$ < " " THEN Rec2% = 1: GET #2, Rec2%
3944 GOSUB 9000: PRINT "Change ID "; MatID$
3947 Width% = 5: F$ = "A": GOSUB 7010
3950 IF C$ = " " OR C$ = "#" THEN GOTO 3962
3953 IF C$ = "`" THEN CLOSE #2: RETURN
3956 MaterialID$ = C$
3959 LSET MatID$ = MaterialID$$
3962 GOSUB 4080: Rec2% = Rec2% + 1: GOTO 3926
3972 GOSUB 9000: PRINT "Delete "; MaterialID$: GOSUB 8210
3974 IF C$ = "`" THEN RETURN
3975 IF C$ = " " THEN GOTO 3920
3977 OPEN "MATERIAL" FOR RANDOM AS #3 LEN = 37
3978 FIELD #3, 5 AS RecordID$, 32 AS Rest$
3980 TargetID$ = MaterialID$: D$ = "A"
3985 GOSUB 4229: CLOSE #3: RETURN
3990 GOSUB 9000: PRINT "Add "; MaterialID$
4005 GOSUB 8210
4010 IF C$ <> "#" THEN RETURN
4015 OPEN "MATERIAL" FOR RANDOM AS #3 LEN = 37
4020 FIELD #3, 5 AS TID$, 16 AS Rest$
4022 T.ID$ = MaterialID$
4024 Blank$ = " ": GOSUB 8510: CLOSE #3
4030 OPEN "MATERIAL" FOR RANDOM AS #2 LEN = 37
4032 FIELD #2, 5 AS MatID$, 16 AS MatName$, 8 AS In$, 8 AS MatUsage$
4055 Rec2% = Rec%
4060 LSET MatID$ = MaterialID$: LSET MatName$ =" "
4062 LSET In$ = " ": LSET MatUsage$ = " "
4065 GOSUB 4080: CLOSE #2: RETURN
4080 GOSUB 9000: PRINT "Name: "; MatName$
4085 Width% = 16: F$ = "A": GOSUB 7010
4090 IF C$ = " " OR C$ = "#" THEN GOTO 4125
4095 IF C$ = "`" THEN RETURN
4120 LSET MatName$ = C$
4125 GOSUB 9000: PRINT "Invntry:"; In$
4130 F$ = "N": GOSUB 7010
4135 IF C$ = " " OR C$ = "#" THEN GOTO 4170
4140 IF C$ = "`" THEN RETURN
4165 RSET In$ = C$
4170 GOSUB 9000: PRINT "Usage: "; MatUsage$
4175 F$ = "N": GOSUB 7010
4180 IF C$ = " " OR C$ = "#" THEN GOTO 4215
4185 IF C$ = "`" THEN RETURN
4210 RSET MatUsage$ = C$
4215 IF VAL(MatUsage$) < VAL(In$) THEN GOTO 4220
4217 M$ = "Usage Too Big": GOSUB 8010: GOTO 4125
4220 PUT #2, Rec2%: RETURN
4229 PRINT "Deleting.... "
4230 Rec% = 1: Write% = 1: GET #3
4231 WHILE 0 = EOF(3)
4232 IF RecordID$ <> TargetID$ THEN GOTO 4240
4233 IF D$ = "A" THEN GOTO 4250
4235 IF MaterialID$ = LEFT$(Rest$,5) THEN GOTO 4250
4240 PUT #3, Write%
4245 Write% = Write% + 1
4250 Rec% = Rec% + 1
4253 GET #3, Rec%
4255 WEND
4260 LSET RecordID$ = " "
4265 LSET Rest$ = " "
4270 WHILE Write% < Rec%
4275 PUT #3, Write%

Chapter 8: Sample Application Programs
Multiple Ingredient Formulation (Manual Batching)

(3/99) 8-25

4280 Write% = Write% + 1
4285 WEND
4290 RETURN
4310 PRINT "Recipe? "
4320 F$ = "X": GOSUB 7010
4324 IF C$ = "`" OR C$ = " " OR C$ = "#" THEN RETURN
4326 PRINT "Searching.... ": RID$ = C$: F$ = "N"
4335 OPEN "RECIPES" FOR RANDOM AS #1 LEN = 30
4336 FIELD #1, 8 AS RecID$, 5 AS MatID$, 1 AS Scale$, 8 AS Amnt$, 8 AS Tlrnc$
4340 WHILE NOT EOF(1) AND F$ <> "Y"
4360 GET #1
4370 IF RID$ = RecID$ THEN F$ = "Y": Rec% = LOC(1) - 1
4380 WEND
4390 CLOSE #1
4400 IF F$ = "N" THEN GOSUB 4810: RETURN
4420 PRINT "Edit this recipe": GOSUB 8210
4440 IF C$ = " " THEN GOTO 4810
4445 IF C$ = "`" THEN RETURN
4450 OldID$ = RID$
4460 PRINT "Change ID ": F$ = "X": GOSUB 7010
4480 IF C$ = " " OR C$ = "#" THEN GOTO 4520
4490 IF C$ = "`" THEN GOTO 4420
4500 RID$ = C$
4520 OPEN "RECIPES" FOR RANDOM AS #1 LEN = 30
4530 FIELD #1, 8 AS RecID$, 5 AS MatID$, 1 AS Scale$, 8 AS Amnt$, 8 AS Tlrnc$
4540 IF (0 = EOF(1)) THEN GET #1, Rec%
4550 IF RecID$ <> OldID$ THEN CLOSE #1: RETURN
4560 LSET RecID$ = RID$
4570 GOSUB 5005: Rec% = Rec% + 1: GOTO 4540
4600 PRINT "Delete Recipe ": GOSUB 8210
4620 IF C$ = "`" THEN RETURN
4630 IF C$ = " " THEN GOTO 4420
4640 PRINT "All records? Y/N": GOSUB 8210
4650 IF C$ = "y" OR C$ = "Y" THEN D$ = "A": GOTO 4740
4660 PRINT "Which Material? ": D$ = "1": Width% = 5: F$ = "A": GOSUB 7010
4670 IF C$ = " " OR C$ = "#" OR C$ = "`" THEN GOTO 4640
4680 MaterialID$ = C$: GOSUB 8110: IF F$ = "N" THEN GOTO 4660
4740 OPEN "RECIPES" FOR RANDOM AS #3 LEN = 30
4750 FIELD #3, 8 AS RecordID$, 22 AS Rest$
4760 TargetID$ = RID$
4770 GOSUB 4229: CLOSE #3: RETURN
4810 PRINT "Add Record ": GOSUB 8210
4820 IF C$ = "`" THEN RETURN
4830 IF C$ = " " THEN GOTO 4600
4840 OPEN "RECIPES" FOR RANDOM AS #3 LEN = 30
4850 FIELD #3, 8 AS TID$, 22 AS Rest$
4900 Blank$ = " ":T.ID$ = RID$: GOSUB 8510 : CLOSE #3
4920 OPEN "RECIPES" FOR RANDOM AS #1 LEN = 30
4930 FIELD #1, 8 AS RecID$, 5 AS MatID$, 1 AS Scale$, 8 AS Amnt$, 8 AS Tlrnc$
4940 GET #1, Rec%
4950 LSET RecID$ = RID$: LSET MatID$ = " ": LSET Scale$ = " "
4960 LSET Amnt$ = " ": LSET Tlrnc$ = " "
4980 GOSUB 5005: CLOSE #1: GOTO 4810
5005 IF MatID$ = " " THEN PRINT "Material ID? ": GOTO 5010
5008 PRINT "Material: "; MatID$;" "
5010 Width% = 5: F$ = "A": GOSUB 7010
5027 IF C$ = " " OR C$ = "#" THEN GOTO 5050
5028 IF C$ = "`" THEN RETURN
5030 MaterialID$ = C$
5035 GOSUB 8110: IF F$ = "N" THEN GOTO 5005
5040 LSET MatID$ = MaterialID$

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)8-26

5050 PRINT "Scale: "; Scale$;" ": GOSUB 8210
5060 IF C$ = " " OR C$ = "#" THEN GOTO 5090
5065 IF C$ = "`" THEN RETURN
5067 IF C$ = "A" OR C$ = "B" THEN GOTO 5080
5069 IF C$ = "a" THEN C$ = "A" : GOTO 5080
5070 IF C$ = "b" THEN C$ = "B": GOTO 5080
5075 M$ = "Invalid Scale # ":GOSUB 8010: GOTO 5050
5080 LSET Scale$ = C$
5090 GOSUB 9000: PRINT "Amount: "; Amnt$
5095 F$ = "N": GOSUB 7010
5100 IF C$ = " " OR C$ = "#" THEN GOTO 5150
5105 IF C$ = "`" THEN RETURN
5140 RSET Amnt$ = C$
5150 GOSUB 9000: PRINT "Tolrnce:"; Tlrnc$
5160 F$ = "N": GOSUB 7010
5170 IF C$ = " " OR C$ = "#" THEN GOTO 5250
5180 IF C$ = "`" THEN RETURN
5235 RSET Tlrnc$ = C$
5250 IF VAL(Tlrnc$) < VAL(Amnt$) THEN GOTO 5260
5255 M$ = "Tolernce Too Big": GOSUB 8010: GOTO 5090
5260 PUT #1, Rec%: RETURN
6010 PRINT "Recipe? "
6020 F$ = "X": GOSUB 7010: PRINT "Searching.... "
6030 IF C$ = "`" THEN RETURN
6040 RID$ = C$: Rec% = 0
6050 OPEN "RECIPES" FOR RANDOM AS #1 LEN = 30
6060 FIELD #1, 8 AS RecID$, 5 AS MatID$, 1 AS Scale$, 8 AS Amnt$, 8 AS Tlrnc$
6070 WHILE EOF(1) = 0
6080 GET #1
6090 IF RecID$ <> RID$ THEN GOTO 6250
6100 MaterialID$ = MatID$: ScaleID$ = Scale$:Amount$ = Amnt$:Tol$ = Tlrnc$
6140 IF Rec% > 0 THEN GOTO 6240
6145 LPRINT: LPRINT "Recipe Report "; RID$
6160 LPRINT DATE$; " "; TIME$
6170 LPRINT "============================="
6180 Rec% = 1
6240 LPRINT MaterialID$; TAB(8); ScaleID$; TAB(11); Amount$; TAB(21); Tol$
6250 WEND
6255 IF Rec% = 0 THEN M$ = "Not Found! ": GOSUB 8010
6270 CLOSE #1: RETURN
6310 OldID$ = " "
6320 LPRINT: LPRINT "Recipe List "; DATE$; " "; TIME$
6340 LPRINT "==================================="
6350 OPEN "RECIPES" FOR RANDOM AS #1 LEN = 30
6360 FIELD #1, 8 AS RecID$, 5 AS MatID$, 1 AS Scale$, 8 AS Amnt$, 8 AS Tlrnc$
6370 WHILE (0 = EOF(1))
6380 GET #1
6390 IF RecID$ = OldID$ OR RecID$ = " " THEN GOTO 6410
6400 LPRINT RecID$: OldID$ = RecID$
6410 WEND
6420 CLOSE #1: RETURN
7010 C$ = "": M$ = ""
7015 WHILE C$ = ""
7020 C$ = INKEY$
7025 WEND
7030 IF C$ = CHR$(8) THEN C$ = "#": RETURN
7040 IF C$ = "`" OR C$ = " " THEN RETURN
7100 WHILE C$ <> CHR$(8)
7105 IF C$ = CHR$(6) THEN M$ = LEFT$(M$, LEN(M$) -1): GOTO 7170
7110 IF C$ < " " OR C$ > "z" THEN GOTO 7180
7120 IF C$ > "`" THEN C$ = CHR$(ASC(C$) - 32)

Chapter 8: Sample Application Programs
Multiple Ingredient Formulation (Manual Batching)

(3/99) 8-27

7160 M$ = M$ + C$
7170 PRINT M$;" "
7180 C$ = INKEY$
7200 WEND
7220 C$ = M$
7225 IF F$ = "N" THEN C$ = STR$(VAL(C$))
7230 IF F$ = "N" OR F$ = "X" THEN Width% = 8
7240 IF LEN(C$) > Width% THEN C$ = LEFT$(C$, Width%): RETURN
7250 IF LEN(C$) = Width% THEN RETURN
7260 IF F$ = "N" OR F$ = "R" THEN C$ = " " + C$: GOTO 7250
7270 C$ = C$ + " "
7280 GOTO 7250
8010 PRINT M$: L% = 1
8012 WHILE L% < 15 AND INKEY$ = ""
8015 L% = L% + 1
8020 WEND
8030 RETURN
8110 PRINT "Searching.... "
8111 OPEN "MATERIAL" FOR RANDOM AS #2 LEN = 37
8112 FIELD #2, 5 AS MATRLID$, 16 AS MatName$, 8 AS In$, 8 AS MatUsage$
8120 F$ = "N"
8130 WHILE 0 = EOF(2) AND F$ = "N"
8140 GET #2
8150 IF MATRLID$ = MaterialID$ THEN F$ = "Y": Rec2% = LOC(2)
8160 WEND
8165 IF F$ = "Y" THEN Rec2% = Rec2% - 1
8170 IF F$ = "N" THEN M$ = "Unknown Material": GOSUB 8010
8180 CLOSE #2: RETURN
8210 C$ = ""
8220 WHILE C$ = ""
8230 C$ = INKEY$
8240 WEND
8250 IF C$ = CHR$(8) THEN C$ = "#"
8280 RETURN
8510 Rec% = -1: F$ = "N": WriteTo% = 1
8545 WHILE NOT EOF(3)
8550 GET #3
8555 IF F$ = "Y" THEN GOTO 8570
8560 IF TID$ = Blank$ OR TID$ > T.ID$ THEN F$ = "Y":Rec% = LOC(3)
8570 WEND
8571 IF Rec% = -1 THEN Rec% = LOC(3)
8572 IF Rec% > 0 THEN Rec% = Rec% - 1
8573 IF Rec% = 0 THEN Rec% = 1
8575 IF Rec% > MaxIDs% THEN M$ = "File is Full": GOSUB 8010: RETURN
8580 WriteTo% = LOC(3)
8582 IF WriteTo% > 0 THEN WriteTo% = WriteTo% - 1
8585 WHILE WriteTo% > Rec%
8590 GET #3, WriteTo% - 1
8595 IF TID$ <> Blank$ THEN PUT #3, WriteTo%
8600 WriteTo% = WriteTo% - 1
8605 WEND
8607 RETURN
9000 PRINT " ": RETURN
9999 END

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)8-28

Parts Counting
This example demonstrates how you can access the fine gross, net, and tare weights
in shared data. This application is particularly useful for parts counting. It gives the
highest internal resolution of the weights in double floating point format. The applicable
fields are:

• Fine Gross Weight /wt117
• Fine Net Weight /wt118
• Fine Tare Weight /ws104

The following code executes the parts counting application.

5 defshr DiscreteIn,p_100
10 defshr TareA,t_690
20 defshr TareAerr,s_290
30 defshr DiscreteOut,p_503
40 defshr ClearTareA,t_691
50 defshr MotionA,s_200
55 defshr NetWt,wt118
56 defshr GrossWt,wt117
57 defshr TareWt,ws104
60 print "Place Container"
70 if DiscreteIn=0 then goto 70
75 Print "Taring Container"
80 sleep 3000
90 TareA=1
100 if TareA=1 then goto 100
110 if TareAerr=0 then goto 160
120 print "Tare Failed"
130 sleep 1000
150 goto 90
160 print "Place 10 Parts"
170 if DiscreteIn=0 then goto 170
180 Print "Weighing Sample"
190 if MotionA=1 then goto 190
200 sampleWt#=NetWt/10.0
205 lprint "gross weight=";GrossWt;" tare weight=";TareWt
206 lprint "net weight=";NetWt;" piece weight=";sampleWt#
210 sleep 1000
220 print "Place All Parts"
230 if DiscreteIn=0 then goto 230
240 Print "Weighing Parts"
250 if MotionA=1 then goto 250
260 parts%=cint(NetWt/sampleWt#)
265 lprint "total parts weight=";NetWt;" number parts=";parts%
266 lprint ""
270 sleep 1000
280 Print "Num Parts=";parts%
290 sleep 3000
300 if NetWt > 0.0 then goto 300
310 print "Completed"
320 sleep 3000
330 ClearTareA=1
340 if ClearTareA=1 goto 340
350 goto 60

Chapter 8: Sample Application Programs
Printer Templates

(3/99) 8-29

Printer Templates
In Jaguar Rel. T, you can read and write printer templates from JagBASIC. This sample
program demonstrates reading templates from Jaguar Shared Data and saving them in
a sequential file.

1 rem This is a sample program for reading templates from JagBasic
2 rem and saving it in a files called templat1.dat thru templat5.dat.
3 rem Dimension an array of strings large enough to hold the template,
4 rem and "defshr" the first element of the array to the template.
5 rem The maximum string size in JagBasic is 80 bytes.
6 rem The maximum template size is 400 bytes.
7 rem Reading of shared data is done when you access the first
8 rem element, so read the first element first.
100 dim go%(5),T$(6)
120 go%(1)=300:go%(2)=400:go%(3)=500:go%(4)=600:go%(5)=700
130 input "^Save Template? ^1,2,3,4,5",c$
140 i%=asc(c$)-48
150 switchsub go%(i%)
160 for i%=1 to 6
170 if len(T$(i%))<>0 then write #1,T$(i%)
180 next i%
190 close #1
200 end
300 open "TEMPLAT1.DAT" for output as #1
310 defshr T$(1),PTP01
320 return
400 open "TEMPLAT2.DAT" for output as #1
410 defshr T$(1),PTP02
420 return
500 open "TEMPLAT3.DAT" for output as #1
510 defshr T$(1),PTP03
520 return
600 open "TEMPLAT4.DAT" for output as #1
610 defshr T$(1),PTP04
620 return
700 open "TEMPLAT5.DAT" for output as #1
710 defshr T$(1),PTP05
720 return

In Jaguar Rel. T, you can read and write printer templates from JagBASIC. This sample
program demonstrates loading printer templates them from a sequential file and writing
them into Jaguar Shared Data.

1 rem This is a sample program for writing printer templates
2 rem that are saved a files called templat1.dat thru tempat6.dat.
3 rem Dimension an array of strings large enough to hold the template,
4 rem and "defshr" the first element of the array to the template.
5 rem The maximum string size in JagBasic is 80 bytes.
6 rem The maximum template size is 400 bytes.
7 rem Writing of shared data templates is done when you access the first
8 rem element, so write the first element last.
100 dim go%(5),T$(6),buf$(6)
120 go%(1)=300:go%(2)=400:go%(3)=500:go%(4)=600:go%(5)=700
130 input "^Load Template? ^1,2,3,4,5",c$
140 i%=asc(c$)-48
150 switchsub go%(i%)
160 for i%=1 to 6
170 if not eof(1) then input #1,buf$(i%):last%=i%

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)8-30

180 next i%
190 for i%=last% to 1 step -1
200 T$(i%)=buf$(i%)
210 next i%
220 close #1
230 end
300 open "TEMPLAT1.DAT" for input as #1
310 defshr T$(1),PTP01
320 return
400 open "TEMPLAT2.DAT" for input as #1
410 defshr T$(1),PTP02
420 return
500 open "TEMPLAT3.DAT" for input as #1
510 defshr T$(1),PTP03
520 return
600 open "TEMPLAT4.DAT" for input as #1
610 defshr T$(1),PTP04
620 return
700 open "TEMPLAT5.DAT" for input as #1
710 defshr T$(1),PTP05
720 return

In Jaguar Rel. T, you can read and write printer templates from JagBASIC. This sample
program demonstrates creating a printer templates in JagBASIC and writing it to Jaguar
Shared Data.

1 rem This is a sample program for creating a printer template.
2 rem
10 rem These are some template format samples:
11 rem
12 rem /D=40
13 rem | |
14 rem | +--> Repeat Occurrences
15 rem +-----> Character Value
16 rem
17 rem will print... ==
18 rem
19 rem /n3 will print... three LF/CR characters.
20 rem
21 rem /E0 signifies the end of the template.
20 rem
22 rem /jag19!/L15/!
23 rem _____/ | |
24 rem | | |
25 rem | | +-> Max Length
26 rem | |
27 rem | +--> Justify (R)ight
28 rem | (L)eft or (C)enter
29 rem |
30 rem +---------> Field Path Name
31 rem
32 rem /wt101 will print...
33 rem /wt101 field in default format, left justified, default length.
34 rem
35 rem /wt201/R will print...
36 rem /wt201 field right justified, default length.
37 rem
38 rem /wt202/C040 will print...
39 rem /wt202 field centered in a 40 byte area.
40 rem

Chapter 8: Sample Application Programs
JOG Example

(3/99) 8-31

100 dim y$(5)
120 defshr y$(1),ptp04
130 y$(3)="/wt103 !/ws109!/n1/Net Weight: !/wt102 !/wt103!/n3/!/E0"
140 y$(2)="Gross Weight: !/wt101 !/wt103!/n1/Tare Weight: !/ws102 !"
150 y$(1)="!/jag19!/L15/!/jag20!/L15/!/cs118!/R10/!/n1/!/D=40/!/n1/"
160 lprint "done"

JOG Example
This is a program for using Jog Setpoints in Rel. T. Jog setpoints are based on
time rather than weight. They are typically used when the flow of material is very
fast compared to the amount of material that needs to be weighed. For
example, they can be used at the end of an order to add a small amount of
material to bring an order into its weight tolerance.

rem ************************************
rem Defshr's
rem ************************************
rem Define the jog table.
rem You can have up to 10 jog weights and corresponding
rem jog times in the Jog table. The jog setpoint
rem interpolates between the next higher and next lower
rem jog weight to determine a specific jog time.
rem The Jog Table is in Shared Data Variables clv01-clv20.
rem The values are floating point, stored in string format.
rem The Jog Weights are in clv01-clv10 in ascending order.
rem You can prematurely end the table with a "0" entry.
rem The corresponding jog times are in clv11-clv20.
dim jogWt$(10)
dim jogTm$(10)
defshr jogWt$(1),clv01
defshr jogWt$(2),clv02
defshr jogWt$(3),clv03
defshr jogWt$(4),clv04
defshr jogWt$(5),clv05
defshr jogWt$(6),clv06
defshr jogWt$(7),clv07
defshr jogWt$(8),clv08
defshr jogWt$(9),clv09
defshr jogWt$(10),clv10
defshr jogTm$(1),clv11
defshr jogTm$(2),clv12
defshr jogTm$(3),clv13
defshr jogTm$(4),clv14
defshr jogTm$(5),clv15
defshr jogTm$(6),clv16
defshr jogTm$(7),clv17
defshr jogTm$(8),clv18
defshr jogTm$(9),clv19
defshr jogTm$(10),clv20

rem gate discrete inputs
defshr FillGateOpened%,p_100
defshr DischargeOpened%,p_103

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)8-32

rem discrete outputs to gates
defshr OpenFill%,p_501
defshr OpenDischarge%,p_503

rem scale defshr's
defshr ScaleWeight#,wt110
defshr ScaleMotion%,s_200

rem jog setpoint defshr's
defshr spen%,sp102
defshr sptar%,sp103
defshr coin#,sp105
defshr latch%,sp188
defshr setsp%,t_698

rem ************************************
rem Initialization Logic
rem ************************************
rem close the gates
spen%=0:setsp%=1
OpenFill%=0:OpenDischarge%=0

rem initialize ladder logic
rem "t_61c" starts the setpoint jog timer.
rem Move the "fill gate opened" input to "t_61c".
rem Move the "setpoint feeding output" to "open fill gate".
newladder
rungmov p_100,t_61c
rungmov s_210,p_500

rem ************************************
rem Main Menu
rem ************************************
MainMenu:
m$="Learn"
input "^Menu^ Learn,Jog,Exit",m$
if m$="Learn" then gosub LearnMode
if m$="Jog" then gosub JogMode
if m$="Exit" then End
Goto MainMenu

rem ************************************
rem Setting up a Learn Setpoint
rem ************************************
rem Set the jog time in the coincidence value for the setpoint.
rem You can determine the weight associated with the jog weight
rem by reading the gross weight before and after the setpoint.
rem The Learn setpoint is latched so you need to
rem reset the latch before starting the setpoint.
LearnSetpoint:
spen%=1
sptar%="L"
coin#=JogTime#
latch%=0
setsp%=1
return

rem ************************************
rem Setting up a Jog Setpoint
rem ************************************
rem Set the jog weight in the coincidence value for the setpoint.

Chapter 8: Sample Application Programs
JOG Example

(3/99) 8-33

rem The jog setpoint logic uses the Jog Tables to determine
rem the amount of time to hold its feeding output open.
rem The Jog setpoint is latched so you need to
rem reset the latch before starting the setpoint.
JogSetpoint:
spen%=1
sptar%="J"
coin#=JogWeight#
latch%=0
setsp%=1
return

rem ************************************
rem Learn Mode Logic
rem ************************************
LearnMode:
MinJogTime%=100
input "^Min Jog ms.^####";MinJogTime%
MaxJogTime%=3000
input "^Max Jog ms.^####";MaxJogTime%

rem set jog table times
TimeIncrement%=(MaxJogTime%-MinJogTime%)/9
jogTm$(1)="100":jogTm$(10)=str$(MaxJogTime%)
for TablePos%=2 to 9
jogTm$(TablePos%)=str$(val(jogTm$(TablePos%-1))+TimeIncrement%)
next TablePos%

rem build jog table weights
for TablePos%=1 to 10
CheckReady:
m$="Yes"
n$="^Jog "+str$(TablePos%)+"^ Yes,No,Exit"
input n$;m$
if m$="No" then goto CheckReady
if m$="Exit" then End
gosub WaitFillGateClosed:gosub WaitDischargeClosed:gosub WaitMotion
TareWeight#=ScaleWeight#
JogTime#=val(jogTm$(TablePos%))
gosub LearnSetpoint

rem wait until setpoint logic opens then closes fill gate
gosub WaitFillGateOpened:gosub WaitFillGateClosed
rem wait for scale motion to settle
print "settling"
sleep 5000:gosub WaitMotion

rem set jog table weights
LearnedWt#=ScaleWeight#-TareWeight#
gosub CheckDischargeScale
jogWt$(TablePos%)=str$(LearnedWt#)
next TablePos%

rem print jog table
for TablePos%% = 1 to 10
lprint jogTm$(TablePos%),jogWt$(TablePos%)
next TablePos%%

goto MainMenu

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)8-34

rem ************************************
rem Jog Mode Logic
rem ************************************
JogMode:
JogWeight#=0
input "^Weight^#####";JogWeight#
gosub WaitFillGateClosed:gosub WaitDischargeClosed:gosub WaitMotion
TareWeight#=ScaleWeight#
gosub JogSetpoint

rem wait until setpoint logic opens then closes fill gate
gosub WaitFillGateOpened:gosub WaitFillGateClosed
rem wait for scale motion to settle
print "settling"
sleep 5000:gosub WaitMotion

print "Wt =" + str$(ScaleWeight#-TareWeight#)
WaitJogModeKey:
m$=inkey$:if m$="" then goto WaitJogModeKey
gosub CheckDischargeScale
return

rem ************************************
rem Gate Open/Close Routines
rem ************************************
WaitFillGateOpened:
if FillGateOpened%=0 then goto WaitFillGateOpened
return

WaitFillGateClosed:
if FillGateOpened%=1 then print "Jogging":goto WaitFillGateClosed
return

CheckDischargeScale:
m$="Yes"
input "^Discharge^ Yes,No";m$
if m$="No" then return
OpenDischarge%=1
print "Discharging"
WaitScaleEmpty:
if ScaleWeight#>20.0 then goto WaitScaleEmpty
OpenDischarge%=0

WaitDischargeClosed:
if DischargeOpened%=1 then print "Closing Discharge":goto WaitDischargeClosed
return

rem ************************************
rem Motion Routine
rem ************************************
WaitMotion:
if ScaleMotion%=1 then print "Motion":goto WaitMotion
return

Chapter 9: Error Codes and Messages
Common Errors

(3/99) 9-1

9 Error Codes and Messages

This section discusses error messages that may be output to the LPRINT device during
debugging or program execution. The JAGUAR terminal lower display will show the
Error Number Code and Line Number, with the error message being output to the
LPRINT device (a printer or a PC running a communication or terminal emulation
program). For example, the error Unknown Command would show up on the JAGUAR
terminal display as: E26 L 1010. The message output to the LPRINT device should
show as:

ERROR in line 0: Unknown command.

Common Errors
Some common errors and troubleshooting tips are as follows:

• For Upload/Download problems, set the JAGUAR terminal in Diagnostic Test mode.
This tests the transmit and receive lines from the PC to the JAGUAR terminal.

• If a file downloads OK to the JAGUAR terminal, but will not load (E2L0 error), check
for blank lines and no line numbers.

Error Codes
The following is a listing of possible error codes and messages in JagBASIC

Error Code Error Message Description Problem Cause Remedy

0 File open failed JagBASIC
programming error.

JagBASIC attempted to open
a nonexistent RAMDISK file
or serial communications
device.

Correct the JagBASIC program.

1 Memory find fail JagBASIC
programming error.

JagBASIC exceeded the
memory limits of the system.

Reduce lines. Eliminate
unnecessary spaces in program.
Reduce variables. Reduce size of
arrays. When chaining JagBASIC
programs, chain in the largest
program first to reduce memory
fragmentation.

2 Line # invalid JagBASIC
programming error.

JagBASIC contains a line
number greater than 30000
or is a duplicate of an
existing line number.

Correct the JagBASIC program.

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)9-2

Error Code Error Message Description Problem Cause Remedy

3 Resource in use JagBASIC
programming error.

JagBASIC tried to access a
system resource in use by
another JAGUAR terminal
task. JagBASIC cannot open
a serial port that has been
assigned to a serial port
connection in setup. When
two or more JagBASIC
applications share a remote
serial port, only one can
have the port open at a time.

Correct JagBASIC application. To
share remote serial ports
between multiple JagBASIC
applications, develop sharing
logic that checks for this specific
error code.

4 LOAD:no
filename

Operator error. The LOAD command does
not contain a file name.

Correct the command.

5 No line number JagBASIC
programming error.

The program line does not
have a line number.

Correct the JagBASIC program.

6 Record not found JagBASIC
programming error.

A record specified in a GET
statement for an indexed
sequential file could not be
found in the file.

There should be an ON ERROR
statement in the JagBASIC
program to handle these
potential situations.

7 RETURN no
GOSUB

JagBASIC
programming error.

RETURN statement is
present without required
GOSUB.

Correct the JagBASIC program.

8 Incomplete line JagBASIC
programming error.

JagBASIC program contains
a line that does not have the
full syntax required for a line.

Correct the JagBASIC program.

9 ON no GOSUB JagBASIC
programming error.

ON statement is present
without required GOSUB.

Correct the JagBASIC program.

10 Value out range JagBASIC
programming error.

The JagBASIC statement is
referring to a value out of the
range of acceptable values.

Correct the JagBASIC program.

11 Syntax error JagBASIC
programming error.

The JagBASIC program has a
syntax error.

Correct the JagBASIC program.

12 Invalid device # JagBASIC
programming error.

The JagBASIC program is
referencing a device # that is
not open.

Correct the JagBASIC program.

13 Device error JagBASIC
programming error.

The JagBASIC program has
referred to an illegal device
or a device that is not open.

Correct JagBASIC program.

14 Command error An error occurred in
trying to access a
file from the
RAMDISK.

You tried to access a file that
does not exist or the file
system has been corrupted.

Use the DIR command from the
JagBASIC Interpreter to verify
the directory of the RAMDISK. If
the file system has been
corrupted, re-initialize it from the
JagBASIC setup menus and
rebuild it from the backup files
you are maintaining on a PC.

Chapter 9: Error Codes and Messages
Error Codes

(3/99) 9-3

Error Code Error Message Description Problem Cause Remedy

14 Command error An error occurred in
trying to access a
file from the
RAMDISK.

You tried to access a file that
does not exist or the file
system has been corrupted.

Use the DIR command from the
JagBASIC Interpreter to verify
the directory of the RAMDISK. If
the file system has been
corrupted, re-initialize it from the
JagBASIC setup menus and
rebuild it from the backup files
you are maintaining on a PC.

15 Chain Context JagBASIC
programming error.

A chain statement inside a
subroutine, for-next, while
loop, or if statement.

Chain only from top level of
JagBASIC program.

16 Event def error JagBASIC
programming error.

Programming error in
defining an event.

Correct the JagBASIC program.

17 Type mismatch JagBASIC
programming error.

JagBASIC statement is using
an invalid data type or is
relating two incompatible
data types.

Correct the JagBASIC program.

18 DIM not array JagBASIC
programming error.

JagBASIC program has
attempted to dimension a
variable that is not an array.

Correct the JagBASIC program.

19 Out of data JagBASIC
programming error.

JagBASIC program has
issued more READ
commands to initialize
system variables than data
specified in DATA
statements.

Correct the JagBASIC program.

20 Overflow JagBASIC
programming error.

A JagBASIC program causes
an overflow error by
exceeding certain system
limits. The maximum size of
the GOSUB stack, the FOR-
NEXT stack, and the WHILE-
WEND stack is 9 entries
each. If you try to nest
subroutines more than 9
entries deep, you get an
overflow error. Overflow
errors can also be caused by
syntax errors.

Correct the JagBASIC program.

21 NEXT without
FOR

JagBASIC
programming error.

There is a NEXT statement
without the required FOR
statement.

Correct the JagBASIC program.

22 Undefined funct. JagBASIC
programming error.

The JagBASIC statement is
referring to an undefined
function.

Correct the JagBASIC program.

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)9-4

Error Code Error Message Description Problem Cause Remedy

23 Divide by zero JagBASIC
programming error.

JagBASIC program
attempted to divide a
number by zero.

Correct the JagBASIC program.

24 Can’t redim. var JagBASIC
programming error.

Once a JagBASIC application
has declared a variable or an
array, it cannot later be
redimensioned to a different
size array.

Correct JagBASIC program.

25 OPTION BASE-
>DIM

JagBASIC
programming error.

The JagBASIC program must
define the OPTION BASE
before dimensioning an
array.

Correct the JagBASIC program.

26 Illegal Command JagBASIC
programming error.

The JagBASIC program has
issued a command that is
not a legal command.

Correct the JagBASIC program.

27 Too many
dimens.

JagBASIC
programming error.

JagBASIC arrays can have at
most three dimensions.

Correct the JagBASIC program.

28 Invalid SD name JagBASIC
programming error.

The JagBASIC program is
referencing an invalid Shared
Data name.

Correct the JagBASIC program.

29 Program too big JagBASIC
programming error.

The program exceeds 300
text lines or 15 KB.

You are typing in a JagBASIC
program at the JAGUAR
terminal when the temporary
program buffer becomes full.

For the first problem, separate
the program into smaller files
that can be run independently or
be chained together. When
chaining, always start execution
with the largest program to avoid
memory fragmentation.

For the second problem, save
the current program and re-load
it. This will cause a larger
temporary program buffer to be
allocated.

30 Line too big JagBASIC
programming error.

A JagBASIC line is greater
than 80 characters.

Correct the JagBASIC program.

31 SD string > max. JagBASIC
programming error.

JagBASIC can only access
shared data fields whose
length is less than the
maximum JagBASIC string
size of 80 bytes.

Correct the JagBASIC program.

32 No Remote
Access

JagBASIC
programming error.

The program is attempting to
access a device that is
already in use by a serial
connection or by another
JagBASIC program in the
JAGUAR terminal cluster.

To access a serial device, you
must remove all continuous
output or input connections to
the serial device in setup. To
share a device among JagBASIC
programs, you must setup a
scheme where only one program
has the device open at a time.

Chapter 9: Error Codes and Messages
Error Codes

(3/99) 9-5

Chapter 10: ASCII/HEX Code Chart

(3/99) 10-1

10 ASCII/HEX Code Chart

Char. Dec. Hex. Char. Dec. Hex. Char. Dec. Hex. Char. Dec. Hex.
NUL 0 00 SP 32 20 @ 64 40 ` 96 60
SOH 1 01 ! 33 21 A 65 41 a 97 61
STX 2 02 " 34 22 B 66 42 b 98 62
ETX 3 03 # 35 23 C 67 43 c 99 63
EOT 4 04 $ 36 24 D 68 44 d 100 64
ENQ 5 05 % 37 25 E 69 45 e 101 65
ACK 6 06 & 38 26 F 70 46 f 102 66
BEL 7 07 ' 39 27 G 71 47 g 103 67
BS 8 08 (40 28 H 72 48 h 104 68
HT 9 09) 41 29 I 73 49 i 105 69
LF 10 0A * 42 2A J 74 4A j 106 6A
VT 11 0B + 43 2B K 75 4B k 107 6B
FF 12 0C , 44 2C L 76 4C l 108 6C
CR 13 0D - 45 2D M 77 4D m 109 6D
SO 14 0E . 46 2E N 78 4E n 110 6E
SI 15 0F / 47 2F O 79 4F o 111 6F

DLE 16 10 0 48 30 P 80 50 p 112 70
DC1 17 11 1 49 31 Q 81 51 q 113 71
DC2 18 12 2 50 32 R 82 52 r 114 72
DC3 19 13 3 51 33 S 83 53 s 115 73
DC4 20 14 4 52 34 T 84 54 t 116 74
NAK 21 15 5 53 35 U 85 55 u 117 75
SYN 22 16 6 54 36 V 86 56 v 118 76
ETB 23 17 7 55 37 W 87 57 w 119 77
CAN 24 18 8 56 38 X 88 58 x 120 78
EM 25 19 9 57 39 Y 89 59 y 121 79
SUB 26 1A : 58 3A Z 90 5A z 122 7A
ESC 27 1B ; 59 3B [91 5B { 123 7B
FS 28 1C < 60 3C \ 92 5C | 124 7C
GS 29 1D = 61 3D] 93 5D } 125 7D
RS 30 1E > 62 3E ^ 94 5E ~ 126 7E
US 31 1F ? 63 3F _ 95 5F DEL 127 7F

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)10-2

Notes

Chapter 10: ASCII/HEX Code Chart

(3/99) 10-1

10 ASCII/HEX Code Chart

Char. Dec. Hex. Char. Dec. Hex. Char. Dec. Hex. Char. Dec. Hex.
NUL 0 00 SP 32 20 @ 64 40 ` 96 60
SOH 1 01 ! 33 21 A 65 41 a 97 61
STX 2 02 " 34 22 B 66 42 b 98 62
ETX 3 03 # 35 23 C 67 43 c 99 63
EOT 4 04 $ 36 24 D 68 44 d 100 64
ENQ 5 05 % 37 25 E 69 45 e 101 65
ACK 6 06 & 38 26 F 70 46 f 102 66
BEL 7 07 ' 39 27 G 71 47 g 103 67
BS 8 08 (40 28 H 72 48 h 104 68
HT 9 09) 41 29 I 73 49 i 105 69
LF 10 0A * 42 2A J 74 4A j 106 6A
VT 11 0B + 43 2B K 75 4B k 107 6B
FF 12 0C , 44 2C L 76 4C l 108 6C
CR 13 0D - 45 2D M 77 4D m 109 6D
SO 14 0E . 46 2E N 78 4E n 110 6E
SI 15 0F / 47 2F O 79 4F o 111 6F

DLE 16 10 0 48 30 P 80 50 p 112 70
DC1 17 11 1 49 31 Q 81 51 q 113 71
DC2 18 12 2 50 32 R 82 52 r 114 72
DC3 19 13 3 51 33 S 83 53 s 115 73
DC4 20 14 4 52 34 T 84 54 t 116 74
NAK 21 15 5 53 35 U 85 55 u 117 75
SYN 22 16 6 54 36 V 86 56 v 118 76
ETB 23 17 7 55 37 W 87 57 w 119 77
CAN 24 18 8 56 38 X 88 58 x 120 78
EM 25 19 9 57 39 Y 89 59 y 121 79
SUB 26 1A : 58 3A Z 90 5A z 122 7A
ESC 27 1B ; 59 3B [91 5B { 123 7B
FS 28 1C < 60 3C \ 92 5C | 124 7C
GS 29 1D = 61 3D] 93 5D } 125 7D
RS 30 1E > 62 3E ^ 94 5E ~ 126 7E
US 31 1F ? 63 3F _ 95 5F DEL 127 7F

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)10-2

Notes

Chapter 11: Appendix 1

(3/99) 11-1

11 Appendix 1

JagBASIC Commands

This Appendix provides a quick alphabetic reference to all JagBASIC commands.

Command Usage Page

ABS() Returns the absolute value of a number. 5-28

AND A logical operator in a decision statement which
establishes two sets of criteria to be met.

5-19

ASC() Returns the ASCII or extended code value for the first
character in a string expression.

5-34

ATN() Returns the arctangent of a specified numeric
expression in radians.

5-28

BEEP Sounds the Jaguar beeper tone for the specified
milliseconds.

5-46

CHAIN Dynamically loads another program file for
execution and begins executing the program.

5-19

CHR$() Returns the single-character string corresponding to
the specified ASCII code.

5-35

CINT Rounds a numeric expression to the closest integer. 5-28

CKSUM$ Generates a checksum and returns as a string. 5-51

CLEAR Closes all files, releases file buffers, clears all
common variables, sets numeric variables and
arrays to zero and sets string variables to null.

5-3

CLOSE Closes a file or serial port. 5-52

5-65

CLREVENT Clears outstanding event triggers. 5-81

COMBITS Returns the state of the input modem signals on the
COM3 serial port.

5-51

COMMON Defines global variables that can be shared
between chained programs.

5-10

COS() Returns the cosine of a specified angle expressed in
radians.

5-29

CRC$ Generates CRC and returns as a string. 5-53

CSNG() Converts a numeric expression to a single-precision
value.

5-29

CVI, CVS, CVD Convert string variable types to numeric variable
types.

5-65

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)11-2

Command Usage Page

DATA Specifies values to be read by READ statements. 5-10

DATE$ Sets or returns the Jaguar system date. 5-91

DEFSHR EVENT Allocates a shared data event. 5-83

DEFSHR Allows a program to access the JAGUAR terminal
shared database.

5-11

DELETE Deletes a specific program line or a range of lines. 5-4

DELEVENT Deallocates an event. 5-81

DELREC Deletes a record from the indexed sequential file. 5-68

DIM Declares an array, where subscripts are the
dimensions of the array.

5-14

DIR Displays the RAMDISK directory on the LPRINT
device.

5-4

DISABLE Disables asynchronous event triggers. 5-84

ENABLE Re-enables asynchronous event triggers after a
critical section of code.

5-82

END Ends a program and closes all files. 5-4

EOF() Tests for the end of a file. 5-67

ERASE Frees the memory used by an array. 5-5

ERL() Returns the line number where the error occurred,
or the closest line number before the line where the
error occurred.

5-95

ERR() Returns the runtime error code for the most recent
error.

5-95

ERROR Simulates an occurrence of an error. 5-95

EVENT Allocates a keyboard event or timer event. 5-82

EVENTON Returns the state of the event. 5-83

EXP() Returns e raised to a specified power, where e is
the base of natural logarithms.

5-30

FIELD Defines the structure of records to be used in
indexed-sequential and random-access file buffers.

5-67

FLUSH Discards received data in the BIOS serial input
buffer.

5-54

FOR NEXT Repeats a section of the program the specified
number of times.

5-19

GET Reads a record from the random-access or
indexed-sequential file.

5-68

GOSUB Branches to a specified line number with intent to
return to the next line.

5-20

GOTO Branches unconditionally to the specified line
number.

5-22

HEX$() Returns a hexadecimal string representation of a
number.

5-35

Chapter 11: Appendix 1

(3/99) 11-3

Command Usage Page

IF THEN Executes the sub-statement depending on specified
conditions.

5-21

INDEXED Identifies a file as an indexed-sequential file and
which field in the record is the index key.

5-69

INKEY$ Returns a single keystroke from either the keyboard
or keypad as a string.

5-48

INPUT Reads input from the keyboard, serial port, or a file. 5-47

5-55

5-70

5-84

INSTR Returns the position of the first occurrence of a
string in another string.

5-37

INT() Returns the largest integer less than or equal to a
numeric expression.

5-31

KEYSRC Reports latest keystroke read by JagBASIC through
INPUT or INKEY$ commands.

5-49

KILL Deletes the specified file from the Jaguar RAMDISK. 5-5

LCASE$ Convert a string to lower case. 5-34

5-36

LEFT$() Returns a specified number of leftmost characters in
a string.

5-36

LEN() Returns the number of characters in a string or the
number of bytes required to store a variable.

5-38

LET Assigns the value of an expression to a variable. 5-15

LINE INPUT # Reads sequentially all characters of an entire line
(up to 80 characters) without delimiters from a
sequential file up to the next carriage return into a
string variable.

5-70

LIST Lists all or part of a program to the LPRINT device. 5-5

LOAD Loads a file (filename.bas) from the RAMDISK into
memory.

5-6

LOC() Returns the current position within a file. 5-73

LOF Returns the length of a file. 5-71

LOG Returns the natural logarithm of a numeric
expression.

5-31

LPRINT Outputs data to a Jaguar LPRINT serial port device. 5-55

LPRINT USING Prints formatted output on the LPRINT device. 5-56

LSET Moves data into a random-access file buffer (in
preparation for a PUT statement) and left-justifies
the value of a string variable.

5-71

LTRIM$ Removes spaces at the beginning of a string. 5-34

5-37

MID$() Returns part of a string. 5-38

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)11-4

Command Usage Page

MSET$ Inserts one string into another string at a specified
position. Overwrites the existing characters so the
length of the string remains the same.

5-37

MKI$, MKS$,
MKD$

Convert numbers to numeric strings that can be
stored in FIELD statement string variables.

5-72

NEW Clears the current program and all variables from
memory.

5-6

NEWLADDER Clears the ladder that is used by the ladder logic
processor in the Jaguar Operating System.

5-85

OCT$() Returns an octal string representation of a number. 5-38

ON ERROR
GOSUB

Enables error handling and, when a run time error
occurs, directs your program to an error handling
routine.

5-94

ON ERROR
GOTO

Enables error handling and, when an error occurs,
directs your program to an error handling routine.

5-94

ON EVENT
GOSUB

Enables you to asynchronously monitor an event.
Defines the Event Service Routine.

5-85

OPEN Accesses a file or prepares a serial port for use as
a file device.

5-58

OPTION BASE Declares the minimum value (0 or 1) for array
subscripts.

5-15

OR Used as a logical operator in a decision statement
to establish two possible conditions, of which only
one needs to be met.

5-22

PADC$ Add pad characters to beginning and end of a
string

5-34

5-39

PADL$ Add pad characters to beginning of a string 5-34

5-39

PADR$ Add pad characters to end of a string 5-34

5-40

PRINT Writes data to the lower Jaguar display, to a
sequential file, or outputs data to the specified serial
port.

5-49

5-60

5-73

PRINT # Outputs data to a sequential file, or outputs data to
the specified serial port.

5-61

PRINT USING Writes formatted output to the Jaguar display or to
a file.

5-49

5-60

5-73

PUT Writes a record to a random-access file or an
indexed-sequential file.

5-75

RANDOMIZE Initializes the random-number generator. 5-31

READ Reads values from a DATA statement and assigns
them to variables.

5-16

Chapter 11: Appendix 1

(3/99) 11-5

Command Usage Page

REM Allows adding any comments or reference remarks
to the code listing.

5-6

RESETJAG Re-initialize Jaguar by forcing power-up cycle.
(Rel.T and later)

5-22

RESTART Clears the JagBASIC execution stacks and sends
program control to the first line of the current
program.

5-23

RESTORE Allows DATA statements to be reread from a
specified line.

5-16

RETURN Used in conjunction with GOSUB, indicates that the
subroutine is complete.

5-23

RIGHT$() Returns a specified number of rightmost characters
in a string.

5-41

RND Returns a single-precision random number between
0 and 1.

5-31

RSET Moves data into a random-access file buffer (in
preparation for a PUT statement) and right-justifies
the value of a string variable.

5-76

RTRIM$ Remove spaces from the end of a string. 5-34

5-41

RUN Executes the current file in memory. 5-6

RUNGAND Adds a ladder rung and takes two inputs AND’s
them together, and outputs the value.

5-86

RUNGANDNT Adds a ladder rung and takes two inputs AND’s
them together, and outputs the inverse value.

5-86

RUNGMOV Adds a new rung to the ladder and commands the
ladder logic processor to continually move the
value of one shared data variable into another.

5-87

RUNGMVNOT Adds a new rung to the ladder and commands the
ladder logic processor to continually move the “not”
or opposite value of one shared data variable into
another.

5-87

RUNGOR Adds a ladder rung and takes two inputs OR’s them
together, and outputs the value.

5-87

RUNGORNT Adds a ladder rung and takes two inputs OR’s them
together, and outputs the inverse value.

5-88

RZ Initiates a ZMODEM file receive over serial port 1
into the RAMDISK file system.

5-7

SAVE Saves the current BASIC program in memory to the
RAMDISK with the specified file name.

5-7

SGN Returns a value indicating the sign of a numeric
expression.

5-31

SIN() Returns the sine of a specified angle expressed in
radians.

5-32

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)11-6

Command Usage Page

SLEEP Suspends program execution for the of specified
number of milliseconds.

5-91

SORTREC Identifies the file as an indexed sequential file and
sorts records in the file.

5-76

SPACE$() Returns a string of spaces. 5-41

SPC() Skips a specified number of spaces in a PRINT or
LPRINT statement.

5-62

SQR() Returns the square root of a numeric expression. 5-32

STARTIME Starts the timer, which specifies the length of the
timer in milliseconds.

5-88

STOP Terminates program execution and returns to
command level.

5-7

STOPTIME Stops a running timer. 5-88

STR$ Returns a string representation of a number. 5-42

STRING$() Returns a string of a specified length made up of a
repeating character.

5-42

SWAP Exchanges the values of two variables that are
variables of the same data type.

5-17

SWITCHSUB Performs a GOSUB call to the line specified in the
variable.

5-23

SWITCHTO Performs a GOTO operation to the line specified in
the variable.

5-24

SZ Initiates a ZMODEM file transfer over serial port 1
from the RAMDISK.

5-7

TAB Advances to the specified print position. 5-57

TAN() Returns the tangent of a specified angle expressed
in radians.

5-32

TIMER Returns a double precision floating point number
that contains the elapsed time in seconds since
00:00:00 GMT, January 1, 1970.

5-91

TIME$ Sets or returns the Jaguar system time. 5-92

TRON, TROFF Enables and disables tracing of program
statements.

5-8

UCASE$ Convert a string to upper case characters. 5-34

5-43

VAL() Converts a string representation of a number to a
number.

5-43

VARS Prints a list of all variables to the LPRINT device. 5-8

WAITEVENT Suspends program execution until an event trigger
causes program execution to resume.

5-89

WHILE
WEND

Repeats a section of the program until a specified
logical condition is true.

5-25

Chapter 11: Appendix 1

(3/99) 11-7

Command Usage Page

WIDTH Assigns an output line width to the LPRINT device
or a file.

5-63

WIDTHIN Allows you to dynamically reassign serial input
length, as it is defined in OPEN.

5-63

WRITE # Writes data to the LPRINT device or to a sequential
file.

5-77

XOR Used as a logical operator in a decision statement
to establish two possible conditions, only one of
which can be met.

5-25

METTLER TOLEDO JagBASIC Programmer’s Guide

(3/99)11-8

Notes

Index

(3/99) Index-1

Index
A

ABS(), 5-28
Analog Output Shared Data, 6-12
AND, 5-19
ASC(), 5-34
ASCII/HEX Code Chart, 10-1
ATN(), 5-27, 5-28
Autostart Setup, 3-2

B

BASIC Application Shared Data, 6-12
BEEP, 5-46
BOARD CONFIGURATION SHARED DATA, 6-3
Branching, 5-17

C

CHAIN, 5-19
CHR$(), 5-35
CINT, 5-28
CKSUM$, 5-51
CLEAR, 5-3
CLOSE, 5-52, 5-65
CLREVENT, 5-81
Cluster Variable Shared Data, 6-9
COMBITS, 5-51
Commands—open and close a file; convert strings to numbers

and the reverse, 5-1
COMMON, 5-10
COS(), 5-29
CRC$, 5-53
CSNG(), 5-29
CVD, 5-65
CVI, 5-65
CVS, 5-65

D

DATA, 5-10
DATE$, 5-91
DEFSHR, 5-11
DEFSHR Arrays, 5-13
DEFSHR EVENT, 5-79, 5-81
DELETE, 5-4
DELEVENT, 5-81
DELREC, 5-64, 5-66
DIM, 5-14
DIR, 5-3, 5-4
DISABLE, 5-79, 5-82

E

Edge-sensitive bit fields, 7-7
edge-sensitive logical, 1-4

Edge-Sensitive, Logical Discrete I/O Data, 7-7
Edit Material File, 8-22
Edit Recipes, 8-22
ENABLE, 5-82
END, 5-4
EOF(), 5-67
ERASE, 5-5
ERL, 5-93
ERR, 5-93
ERROR, 5-93
Error Codes and Messages, 9-1
Error Trapping Commands, 5-2, 5-92
EVENT, 5-82
EVENTON, 5-83
EXP, 5-27, 5-29

F

Fatal Error Messages, 4-8
FIELD, 5-67

Field Installation, 3-1
file transfer, 3-3
File Transfer Setup, 3-2
FLUSH, 5-54
FOR NEXT, 5-19

G

GET, 5-68
Global Discrete I/O Data, 7-1
GOSUB, 5-20
GOTO, 5-18, 5-21

H

HEX$(), 5-35

I

I/O Commands, 5-43, 5-50
IF THEN, 5-21
INDEXED, 5-69
INKEY$, 5-44, 5-46
INPUT, 5-47, 5-55, 5-70, 5-84
INSTR, 5-34, 5-35
INT, 5-27, 5-30
Interpreter Commands, 5-2

J

Jaguar Compatibility, 2-1

K

Keyboard Setup, 3-2
KEYSRC, 5-49

METTLER TOLEDO JagBASIC Programmer’s Guide

 (3/99)Index-2

KILL, 5-5

L

ladder logic, 1-3
Ladder Logic Data, 6-12
LCASE, 5-34, 5-36
LEFT$(), 5-36
LEN(), 5-34, 5-37
LET, 5-15
Level-sensitive fields, 7-1
level-sensitive logical, 1-4
Level-Sensitive, Logical Discrete I/O Data, 7-1
LINE INPUT #, 5-70
LIST, 5-5
LOAD, 5-6
LOC(), 5-64, 5-71
LOF, 5-71
LOG, 5-27, 5-30
physical discrete I/O bits, 7-1
LPRINT, 5-55
LPRINT USING, 5-56
LSET, 5-71
LTRIM, 5-34, 5-37

M

Material Report, 8-22
MID$(), 5-38
MKD$, 5-72
MKI$, 5-64, 5-72
MKS$, 5-72
MSET$(), 5-37

N

Network Interface Shared Data, 6-10
NEW, 5-6
NEWLADDER, 5-85

O

OCT$(), 5-34, 5-38
ON ERROR GOSUB, 5-94
ON ERROR GOTO, 5-94
ON EVENT GOSUB, 5-85
OPEN, 5-51, 5-58
Operator Commands, 5-17
OPTION BASE, 5-15
OR, 5-18, 5-22

P

PADC$, 5-34, 5-39
PADL$, 5-34, 5-39
PADR$, 5-34, 5-40
Parameters Stored in EEPROM, 6-15
Password Setup, 3-3
Physical Discrete I/O Data, 7-11
physical discrete inputs and outputs, 1-4
PLC Configuration on Shared Data, 6-11
PLC Scale Configuration Shared Data, 6-11

Precedence Of Operators, 5-26
PRINT, 5-44, 5-60
PRINT #, 5-61
Print Recipe List, 8-23
PRINT USING, 5-49, 5-60, 5-73
PUT, 5-75

R

RANDOMIZE, 5-31
READ, 5-10, 5-16
Real-time Process Control Commands, 5-78

Receiving Files From Jaguar, 4-5
Recipe Report, 8-23
REM, 5-6
Reset to Factory, 3-3
Reset to Factory Parameters, 3-3
RESETJAG, 5-22
RESTART, 5-22, 5-23
RESTORE, 5-16
RETURN, 5-23
RIGHT$(), 5-41
RND, 5-31
RSET, 5-76
RTRIM$, 5-34, 5-41
RUN, 5-6
RUNGAND, 5-86
RUNGANDNT, 5-86
RUNGMOV, 5-87
RUNGMVNOT, 5-87
RUNGOR, 5-87
RUNGORNOT, 5-88
RZ, 5-7

S

Sample Application Programs, 8-1
Continuous Output, 8-3
Display Scale A Weight, 8-1
Display/Toggle Scale A and Scale B, 8-2
Jog Setpoints, 8-31
Multiple Ingredient Formulation, 8-18
Parts Counting, 8-28
Printer Templates, 8-29
Random Access Files, 8-3
Setpoint Display, 8-4

SAVE, 5-3, 5-7
Scale Tare Shared Data, 6-6
Scale Weight Shared Data, 6-2
SCALE WEIGHT STORED IN STATIC RAM SHARED DATA, 6-4
Scale Zero Shared Data, 6-17
Serial I/O Commands, 5-1
Serial Port Setup Shared Data, 6-10
Setpoint Shared Data, 6-6
Setup, 3-2
SGN, 5-31
Shared Data, 1-2
Shared Data Callbacks, 1-3
shared data database, 6-1
Shared Data Heap Elements, 6-2
Shared Data Static RAM Elements, 6-4

Index

(3/99) Index-3

SHARED DATA STATIC RAM ELEMENTS, 6-4
Shared Data Variables, 6-1
Shift Adjust Variables, 6-16
Simple I/O Commands, 5-1
SIN(), 5-32
SLEEP, 5-91
SORTREC, 5-76
SPACE$(), 5-41
SPC(), 5-62
SQR(), 5-32
STARTIME, 5-88
STOP, 5-7
STR$, 5-42
String Commands, 5-1
STRING$(), 5-42
SWAP, 5-17
SWITCHSUB, 5-23
SWITCHTO, 5-18, 5-24
System Shared Data, 6-8
SZ, 5-7

T

TAB, 5-62
TAN(), 5-27, 5-32
Template Shared Data, 6-9
TIME$, 5-92
TIMER, 5-91

Timing Commands, 5-1, 5-90
TRON, TROFF, 5-8

U

UCASE, 5-34, 5-43
User Literals Shared Data, 6-8
USER PROMPTS SHARED DATA, 6-9
User Variables Shared Data, 6-9

V

VAL(), 5-43
Variable Commands, 5-9
VARS, 5-8

W

WAITEVENT, 5-89
WHILE, 5-18, 5-25
WIDTH, 5-63
WIDTHIN, 5-63
WRITE #, 5-77

X

XOR, 5-25

METTLER TOLEDO

Publication Evaluation Report
If you find a problem with our documentation, please complete and fax this form to (614) 438-4355

Publication Name: METTLER TOLEDO JagBASIC Programmer’s Guide

Publication Part Number:B14839600A Publication Date: 3/99

PROBLEM(S) TYPE: DESCRIBE PROBLEM(S): INTERNAL USE ONLY
o Technical Accuracy o Text o Illustration

o Completeness o Procedure/step o Illustration o Definition o Info. in manual
What information is o Example o Guideline o Feature
missing? o Explanation o Other (please explain below)

o Info. not in
manual

o Clarity
What is not clear?

o Sequence
What is not in the right
order?

o Other Comments
Use another sheet for
additional comments.

Your Name: Location:

Phone Number: ()

Fax this completed form to METTLER TOLEDO at (614) 438-4355

Mettler-Toledo, Inc. Printed in U.S.A. 14981600A

METTLER TOLEDO
Scales & Systems
1150 Dearborn Drive
Worthington, Ohio 43085

P/N: B14839600A
(3/99)

METTLER TOLEDO® is a registered Trademark of Mettler-Toledo, Inc.
©1999 Mettler-Toledo, Inc.
Printed in U.S.A.

B14839600A

