
SanDisk
 Host Developer’s

Tool Kit User’s Guide
This manual covers both the SDDK-01 (ATA-IDE) and

SDDK-02 (MultiMediaCard) Host Developer’s Tool Kits.

CORPORATE HEADQUARTERS

140 Caspian Court
Sunnyvale, CA 94089-1000

408-542-0500
FAX: 408-542-0503

URL: http://www.sandisk.com

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION2

SanDisk ® Corporation general policy does not recommend the use of its products in life support applications where in a
failure or malfunction of the product may directly threaten life or injury. Per SanDisk Terms and Conditions of Sale, the
user of SanDisk products in life support applications assumes all risk of such use and indemnifies SanDisk against all
damages.

The information in this manual is subject to change without notice.

SanDisk Corporation shall not be liable for technical or editorial errors or omissions contained herein; nor for incidental or
consequential damages resulting from the furnishing, performance, or use of this material.

All parts of the SanDisk Host Developer’s Tool Kit documentation are protected by copyright law and all rights are
reserved. This documentation may not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced to
any electronic medium or machine readable form without prior consent, in writing, from SanDisk Corporation.

SanDisk and the SanDisk logo are registered trademarks of SanDisk Corporation.

Product names mentioned herein are for identification purposes only and may be trademarks and/or registered trademarks
of their respective companies.

© 2000 SanDisk Corporation. All rights reserved.

SanDisk products are covered or licensed under one or more of the following U.S. Patent Nos. 5,070,032; 5,095,344;
5,168,465; 5,172,338; 5,198,380; 5,200,959; 5,268,318; 5,268,870; 5,272,669; 5,418,752; 5,602,987. Other U.S. and
foreign patents awarded and pending.

Lit. No. 20-10-00045 Rev. 3 2/2000 Printed in U.S.A.

Revision History
• Revision 1—initial release.
• Revision 2—general editorial changes, manual reorganized and technical changes to reflect support of the

MultiMediaCard and new Host Developer’s Tool Kit software.
• Revision 3—Long File Name support and other new features added.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 3

Table of Contents
1.0 Overview..7

1.1 Features...7
1.2 Target Applications...7
1.3 Customization..7

2.0 Introduction...8
2.1 Components..8

2.1.1 File System..10
2.1.2 API (Application Programmer's Interface)..10
2.1.3 System Specifics..10

3.0 Source Directories...11
4.0 Porting...14

4.1 Configuration...16
4.1.1 Software Configuration Group..17

4.1.1.1 File System Group...17
4.1.1.2 Peripheral Bus Interface Group..19

4.1.2 Hardware Configuration..22
4.1.2.1 IDE Interface..22
4.1.2.2 PCMCIA Interface...24
4.1.2.3 SPI Interface...26
4.1.2.4 MultiMediaCard Interface..27

4.1.3 System Specific and Compilation Options...28
4.1.4 Examples...29

4.1.4.1 IDE Configuration Options..29
4.1.4.2 PCMCIA Configuration Options...30
4.1.4.3 SPI Configuration Options...31
4.1.4.4 MultiMediaCard Configuration Options..32

4.2 INTERUPT.C — Interrupt Management Functions..33
4.2.1 Porting Requirements..33

4.3 TIMER.C — Timer Management Functions...35
4.3.1 Porting Requirements..35

4.4 CRITERR.C — Critical Error Handler...37
4.4.1 Introduction...37
4.4.2 Unusual Error Conditions..37
4.4.3 Porting Requirements..38
4.4.4 Error Recovery Stratagies...39

4.5 REPORT.C — Error Reporting Functions..40
4.5.1 Porting Requirements..40

4.6 RDWR.C — System Dependent I/O Accessing...40
4.6.1 Porting Requirements..41

5.0 Peripheral Bus Device Driver...42
5.1 Introduction...42
5.2 Configuring the Peripheral Bus Driver...42
5.3 Peripheral Bus Device Driver Public Subroutines..43

6.0 System Internals..45
6.1 Important Data Structures for the FAT File System...46
6.2 System Internals Implementation...48

6.2.1 FAT Management Code...48
6.2.2 Directory Block Management Code...49

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION4

Table of Contents (con’t)
6.2.3 Directory Object Management Code...50

7.0 API Introduction..52
7.1 File System..52

7.1.1 pc_cluster_size..53
7.1.2 pc_diskabort..54
7.1.3 pc_dskclose..55
7.1.4 pc_diskflush..56
7.1.5 pc_format..57
7.1.6 pc_free..58
7.1.7 pc_fstat...59
7.1.8 pc_gdone..61
7.1.9 pc_get_attributes...62
7.1.10 pc_gfirst..63
7.1.11 pc_gnext..64
7.1.12 pc_isdir...65
7.1.13 pc_mfile..66
7.1.14 pc_mpath..67
7.1.15 pc_mkdir...68
7.1.16 pc_mv..69
7.1.17 pc_system_init..70
7.1.18 pc_system_close...71
7.1.19 pc_pwd..72
7.1.20 pc_rmdir..73
7.1.21 pc_set_attributes...74
7.1.22 pc_set_cwd..75
7.1.23 pc_set_default_drive..76
7.1.24 pc_stat..77
7.1.25 pc_unlink...79
7.1.26 po_close...80
7.1.27 po_extend_file..81
7.1.28 po_flush..82
7.1.29 po_lseek..83
7.1.30 po_open...84
7.1.31 po_read...85
7.1.32 po_truncate..86
7.1.33 po_write..87

7.2 Peripheral Bus Interface..88
7.2.1 xxx_init...89
7.2.2 xxx_drive_open...90
7.2.3 xxx_drive_close...91
7.2.4 xxx_read..92
7.2.5 xxx_write..93
7.2.6 xxx_erase...94
7.2.7 xxx_read_serial...95

8.0 Sample Utility Programs..96
8.1 Introduction...96
8.2 CPTOSD..97

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 5

Table of Contents (con’t)
8.3 CPFRSD..98
8.4 SDLS...99
8.5 SDMKD..100
8.6 SDRM...101
8.7 SDRMD..102
8.8 SDCAT...103
8.9 REGRESS..104
8.10 TSTSH..105

9.0 Evaluating the Tool Kit in a PC Environment...109
Source Code License Agreement..111
SanDisk Sales Offices..119

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION6

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 7

1.0 Overview
The Host Developer’s Tool Kit (HDTK) is an integrated solution for managing high-level data on flash
storage devices. The HDTK requires minimal memory resources for both ROM and RAM while
maximizing system performance.

Once integrated into an application or operating system, the HDTK provides full File System
functionality to manage data on storage devices. The HDTK operates on two levels:

• At the top level, the HDTK is a FAT File System, fully compatible with DOS operating
systems. The media is interchangeable between many DOS and Windows operating
environments.

• At the lower level, the HDTK provides different device drivers to interface to the flash media
drivers. HDTK SDDK-01 contains the ATA, IDE drivers and HDTK SDDK-02 contains the
MultiMediaCard, SPI drivers.

Also, in many embedded applications where the File System is not needed, the HDTK can provide a
way to access directly to the Flash storage devices through its low level drivers.

1.1 Features

The Host Developer’s Tool Kit offers these features:

• Full FAT File System interface with API functions such as create, delete, insert, merge files,
sub-directories, file date/time, file attributes and volume labels.

• The FAT File System is optional and can be removed.
• Support for FAT12, FAT16 and FAT32.
• Supports long and short file names.
• Single or multiple socket compatibility.
• Removable or fixed media support.
• Absolute sector access supported.
• Tunable options for different target environments.
• Full functionality on systems where byte access is not permitted.
• Distribution of C source code for specific environment.
• Extensive examples.

1.2 Target Applications

• Customizable to all CPUs
- 8-bit, 16-bit and 32-bit processors supported
- Little-endian and big-endian integer formats supported
- TI DSPs supported

• Customizable to all ANSI-C or C++ compilers
• Customizable to all socket adapters and controllers

- Memory or I/O mapped base supported
- Multiple sockets and multiple adapters supported

• Intel 82365SL or PCMCIA compatible controller supported

1.3 Customization

The HDTK is distributed in C source code format and intended to be customized on the target
application. Documentation and examples are provided to guide all aspects of the customization
process such as:

• Target CPUs
• Compilers
• Peripheral controllers (IDE, PCMCIA, MultiMediaCard, SPI, etc.)
• System hardware such as, interrupts, timer, user interaction
• Parameters and functionality suitable for the target application

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION8

2.0 Introduction
The SanDisk Host Developer’s Tool Kit contains everything developers need to integrate SanDisk
flash data storage products into any platform. The SanDisk Host Developer’s Tool Kit provides a
native FAT (File Allocation Table) File System and a stand alone low level Peripheral Bus device
driver. Platforms with limited software support can take advantage of this drop-in software
component which adds complete disk subsystem functionality to the system. For systems that do not
need the FAT File System, the Peripheral Bus device driver offers complete low level I/O access to the
SanDisk flash products.

2.1 Components

The Host Developer’s Tool Kit includes the following components:

• API (Application Programmer’s Interface)—Similar to POSIX/UNIX/DOS, this easy-to-use
interface links the FAT File System or the Peripheral Bus Interface and the host’s application
software. It manages all aspects of storing and retrieving files, using a SanDisk device driver to
perform low level I/O.

• FAT File System—This fully functional DOS compatible (FAT) file system is contained in a
portable ‘C’ source code library. It is reentrant and provides disk directory management and
high performance file I/O. This File System is optional and can be removed.

• Sample Programs—These clearly demonstrate the use of all APIs. And, because these programs
are more sophisticated than just samples, they can be the basis for application development in
most cases.

• Source Code—Complete, highly portable, ‘C’ source code is provided for the entire Host
Developer’s Tool Kit with a selected peripheral bus.

HDTK SDDK-01 contains:
• ATA Device Driver—Similar to UNIX, but simpler, this device driver handles all low-level

access to SanDisk ATA storage products.

• PCMCIA Software Layer—SanDisk products can be interfaced directly (“True IDE”), or via a
PCMCIA controller. This hardware abstraction layer, which can be optionally included in
system builds, allows any PCMCIA controller to be easily enabled.

HDTK SDDK-02 contains:
• SPI Device driver —This device driver handles all low-level I/O access to SanDisk

SPI/MultiMediaCard storage products.

• MultiMediaCard Device driver —This device driver handles all low-level I/O access to
SanDisk MultiMediaCard storage products.

The Host Developer Tool Kit is designed with the flexibility to be configured as a stand-alone low
level driver or used with the FAT File System. It is divided into these areas:

• FAT File System

• SanDisk Application Programming Interface

• System Specific Section

- System Enhancement Layers

- System Abstraction Layers

- Device Specifics Layers

Figure 2-1 shows how these modules communicate with each other, depicting a high level
architectural view of the HDTK.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 9

System Enhancement Layer
(Pre-Erase, Error Handling ...)

System Abstraction Layer
(Big/Little Endian, 8/16 bit, Timer, Interrupt ...)

Device Specific Layer*
(IDE, PCMCIA, SPI, MultiMediaCard)

SanDisk Application Program Interface
(SanDisk - API)

File Allocation Table
(FAT)

File System

S
ys

te
m

 S
p

ec
if

ic
 S

ec
ti

o
n

S
ys

te
m

 S
p

ec
if

ic
 S

ec
ti

o
n

* SDDK-01 contains the ATA and IDE drivers. SDDK-02 contains the MultiMediaCard and SPI drivers.

File
System
Module

Figure 2-1 HDTK Block Diagram

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION10

2.1.1 File System

The File System module is the highest level that manipulates data on the storage device. It
communicates with the System Specific Section through the software layers contained in the Interface
and Platform modules in Figure 3-1. Because the HDTK is very flexible, designers can remove the FAT
File System from the File System Module and incorporate a different File System for use with the low
level peripheral interface driver.

2.1.2 API (Application Programmer’s Interface)

The API provides a way for an application to communicate with flash devices through defined routines
in the HDTK. This function set provides complete access to the flash device from the high level File
System to the low level hardware driver.

2.1.3 System Specifics

The System Specific Section is divided into three layers. These layers are: Device Specific, System
Abstraction and System Enhancement.

The Device Specific Layer contained in the Interface Module (shown in Figure 3-1) isolates product and
defines mode selections (i.e. PCMCIA, IDE, SPI or MultiMediaCard). The Device Specific Layer
provides the low level device driver that directly accesses to the storage devices. It can access the
platform module to perform system specific tasks.

The System Abstraction Layer contained in the Platform Module (shown in Figure 3-1) hides system
specifics and provides ease of portability into various host target environments (i.e. processors,
compilers). The System Abstraction Layer holds all system specific routines such as interrupts, timer,
error handler, hardware abstraction layer, compilation tools, etc.

The System Enhancement Layer contains added features such as Critical Error Handling, High
Performance Pre-Erase, etc.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 11

3.0 Source Directories
To better understand the HDTK design, the overall structure and software modularity of the HDTK are
presented as a source tree structure. This source tree shows a list of all the files in a general view of the
Host Developer’s Tool Kit.

Interface—
(IDE, PCMCIA,

SPI, MMC)

Samples

HDTK

Header

—SDTYPES.H

—SDCONFIG.H

—SDAPI.H

—PCKERNEL.H

—OEM.H

—DRIVE.H

—IOCONST.C

—IOUTIL.C

—ATADRV.C

—ATA16.C

—ATADRV.H

—PCIC.H

—TRUEIDE.C

—CIS.C

—PCMCIA.C

—PCMCTRL.C

—SDMMC.C

—SDMMC.H

—SPIDRV.C

—SPI.C

—MMCDRV.C

—MMC.C

FAT File
System

—PCDISK.H

—INTRFACE.H

—APIUTIL.C

—BLOCK.C

—CHKMEDIA.C

—DEVIO.C

—DROBJ.C

—ERRCODE.C

—FILESRVC.C

—FLAPI.C

—FLCONST.C

—FLUTIL.C

—FORMAT.C

—FSAPI.C

—LONGFN.C

—LOWL.C

—PCKERNEL.C

—PC_MEMRY.C

—HDTKIDE.C

—HDTKPCM.C

—HDTKSPI.C

—HDTKMMC.C

—SDCAT.C

—SDMKD.C

— --

— --

Platform

—INTERUPT.C

—CRITERR.C

—REPORT.C

—TIMER.C

—RDWR.C

—UTIL.C

—IDEOEM.C

—PCMOEM.C

—PLX9054.H

—CRC.C

—MMCOEM.C

—SPIOEM.C

P
C

M
C

IA
 /

ID
E

*
S

P
I /

 M
u

lt
iM

ed
ia

C
ar

d
*

Docs OEM

—MAKEFILE

—FILE.BLD

—IDE.BLD

—PCMCIA.BLD

—PLATFIDE.BLD

—PLATFPCM.BLD

—MMC.BLD

—SPI.BLD

—PLATFMMC.BLD

—PLATFSPI.BLD

—Documents

—Porting
 Guides P

C
M

C
IA

 /
ID

E
S

P
I /

 M
u

lt
iM

ed
ia

C
ar

d

*SDDK-01 contains the ATA and IDE drivers. SDDK-02 contains the MultiMediaCard and SPI drivers.

P
C

M
C

IA
 /

ID
E

S
P

I /
 M

u
lt

iM
ed

ia
C

ar
d

P
C

M
C

IA
 /

ID
E

*
S

P
I /

 M
u

lt
iM

ed
ia

C
ar

d
*

Figure 3-1 HDTK Source Tree

Note: Underlined file names may need to be modified during the porting process.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION12

The files associated with the directories are described below.

The Header directory consists of several files, they are:

SDTYPES.H Data Type definitions.
SDCONFIG.H Environment tuning configuration options.
SDAPI.H File System and Peripheral Bus API.
PCKERNEL.H Support multitasking routines.
OEM.H OEM specific routines.

The FAT File System directory contains the following files:

PCDISK.H File System data structures and equates
INTRFACE.H Peripheral Bus software layer for File System
FLAPI.C File System API
APIUTIL.C Utility routines to support the File System
BLOCK.C Directory block buffering routines
CHKMEDIA.C Device checking and Configuration
DEVIO.C File I/O software layer to access storage devices
DROBJ.C Object management. (Internal use only.)
FLCONST.C File System constant data variables and structures
FLUTIL.C File System utilities
FORMAT.C High level format service
PCKERNEL.C Supported routines for multitasking environment
PC_MEMRY.C Memory service routines
ERRCODE.C Converts critical errors to internal error codes
FILESRVC.C File structure source code
FSAPI.C User API level source code
LONGFN.C Long file name support routines
LOWL.C Low level file allocation table management

The Platform directory contains the following files:

INTERUPT.C Interrupt service routine. (OEM specific platform.)
CRITERR.C Critical error handler. (OEM specific platform.)
REPORT.C Error reporting routine. (OEM specific platform.)
TIMER.C Timer supported routines. (OEM specific platform.)
RDWR.C Block read/write routines. (OEM specific platform.)
PLX9054.H PLX 9054 PCI controller definitions.
UTIL.C String manipulation and byte order conversion routines.
PCMOEM.C OEM specific low level routines.
IDEOEM.C OEM specific low level routines.
SPIOEM.C OEM specific low level routines.
MMCOEM.C OEM specific low level routines.
CRC.C CRC generation/validation for SPI/MultiMediaCard mode.

The OEM directory contains build instructions (makefiles) and other related information to create object
files and libraries.

The Docs directory includes general documentation and specific porting guides.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 13

The Interface directory contains the following files:

DRIVE.H Peripheral bus interface driver’s structures and data
IOCONST.C Contains all constant variables
IOUTIL.C Shared routines between modules

PCMCIA/IDE Files*-
ATADRV.C Low level ATA driver for IDE and PCMCIA buses shared between the

two interfaces
ATADRV.H Data structures and equates for ATA driver
TRUEIDE.C IDE driver and setup data structure service. (IDE only)
PCMCIA.C PCMCIA driver interface and setup routines. (PCMCIA only)
PCMCTRL.C Device configuration routines. (PCMCIA only)
PCIC.H PCMCIA register definitions and configurations.
ATA16.C ATA low level register access.
CIS.C PCMCIA CIS parsing routines.

MultiMediaCard/SPI Files*-
SDMMC.C Low level SPI driver for MultiMediaCard/SPI buses shared between the

two interfaces
SDMMC.H Data structures and equates for MultiMediaCard/SPI buses
SPIDRV.C SPI driver interface and hardware related routines
SPI.C Data structures for SPI driver
MMCDRV.C MultiMediaCard driver for MultiMediaCard bus
MMC.C Data structures for MultiMediaCard driver

Note: The File System is optional and can be removed from the build. If the File System is removed, there will be
only one file, UTIL.C , remaining from the File System to support the peripheral buses.
The description above shows all Peripheral Buses currently supported by the Host Developer’s Tool Kit, but
not all of these buses will be included in the HDTK development floppy.

The Samples directory includes sample files for different peripheral bus interfaces and File Systems.
They are described below:

PCMCIA/IDE Files*-
HDTKIDE.C IDE interface demonstration without File System
HDTKPCM.C PCMCIA interface demonstration without File System

MultiMediaCard/SPI Files*-
HDTKMMC.C MultiMediaCard interface demonstration without File System
HDTKSPI.C SPI interface demonstration without File System

Common Files-
SDCAT.C Display file content utility
SDMKD.C Make directory utility
SDRMD.C Remove directory utility
SDRM.C Delete file utility
SDLS.C Get hierarchical Directory utility
CPTOSD.C File Copy from host to device utility
CPSDTOSD.C File copy between devices supported by File System
CPFRSD.C File copy from device to host utility
REGRESS.C Disk exercise utility
TSTSH.C Command shell file utility
TSTECC.C ECC test utility
TSTEXT.C File extend utility

* SDDK-01 contains the ATA andIDE drivers. SDDK-02 contains the MultiMediaCard and SPI drivers.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION14

4.0 Porting
This section describes the SanDisk Host Developer’s Tool Kit porting and configuration for flash
PCMCIA ATA, True IDE, SPI or MultiMediaCard mode. It describes how to best configure the Host
Developer’s Tool Kit for your environment and how to port the system specific portions to your
environment. There are several files that need to be ported to the target platform. Most of them are in
the platform module. They are:

• Configuration—SDCONFIG.H contains configuration options.

• Interrupt Management Functions—INTERUPT.C, interrupt service routine for the target
platform.

• Timer Management Functions—TIMER.C contains timer routines to support the run-time driver.

• Critical Error Handler—CRITERR.C, critical error handler.

• Error Reporting—REPORT.C, error reporting routine.

• System Dependent I/O Accessing—RDWR.C, block move data routines.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 15

The block diagram below describes the flow of the porting process.

Setup
SDCONFIG.H

Library File

Options:
 Select Interface (One Item per Compile)
 IDE, PCMCIA, SPI, MultiMediaCard
 Use File System
 Yes, No
 Misc. System Features

Assemble &
Link all Files

Together

Create the Library

Application Build the Application
from the Library

Final Image Final Image

Final—Yes/No?

Yes

No

Debug

Figure 4-1 Sample Flow of Porting Process

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION16

4.1 Configuration

The file SDCONFIG.H contains compilation configuration constants that may be changed to tune
memory utilization and to enable/disable subsections. By modifying constants in this file, you can select
any one of the peripheral bus interfaces (IDE, PCMCIA, SPI or MultiMediaCard), memory or I/O
address configuration, the number of controllers and drives to support (1 or 2), and various other options.

Other specialized configuration options include the enabling of the pre-erase feature. By enabling this,
you direct the File System to pre-erase sectors so that subsequent write operations will be faster.
Because flash memory must be erased before it is written, the performance of normal write operations
includes this erasure overhead. If sectors are pre-erased, the subsequent write operations can take place
with a significant performance improvement.

Pre-erasing is useful when write operations must take place at the highest possible performance.
However, the actual pre-erase operations require just about as much time as normal writes. Thus, you
should only use pre-erasure in areas of system processing where this additional time is not prohibitive.
Pre-erase can be enabled within several areas of the file system including file deletion, the allocation
of contiguous extensions to files, and also during disk formatting. A detailed applications note on Pre-
erase is available from SanDisk.

Other configuration options allow a developer to tailor performance and memory usage. These include
selecting the amount of memory to use for internal buffering and omitting sections of code to reduce the
ROM footprint. After changing any of the values in SDCONFIG.H one must recompile the whole
library.

The configuration options are divided as follows:

• Software Configuration Group

- File System

- Peripheral Bus Interface

• Hardware Configuration Group

- IDE

- PCMCIA

- SPI

- MultiMediaCard

• System Specific and Compilation Group

• Configuration Options

- IDE Configuration Option

- PCMCIA Configuration Option

- SPI Configuration Option

- MultiMediaCard Configuration Option

The following sections describe the configuration groups.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 17

4.1.1 Software Configuration Group

In this configuration, the File System provides features to allow access to the media without knowing
how the low level interface works. This configuration also need not know whether it can work with the
peripheral bus interface directly without the File System. These options are divided into two groups:

• File System Group

• Peripheral Bus Interface Group

4.1.1.1 File System Group

The File System group is enabled or disabled via the USE_FILE_SYSTEM option. When this option is
set (#define USE_FILE_SYSTEM 1), the File System is enabled and included in the build. When it is
zero, the File system is disable and excluded from the executable image.

The following File System group configuration options may be modified:

• USE_FILE_SYSTEM

• RTFS_SHARE

• RTFS_SUBDIRS

• RTFS_WRITE

• NUM_USERS

• NBLKBUFFS

• NUSERFILES

• FAT_BUFFER_SIZE

• EMAXPATH

Each configuration option of the File System group is discussed below in detail.

USE_FILE_SYSTEM This option allows the File System to be included or excluded
from the build. Setting this option to one will enable the File
System. Setting this option to zero will remove the File System
from the build. If this option is zero, all related optional files can
be ignored.

RTFS_SHARE Set this option to zero to disable checking file sharing options
such as open exclusive, open exclusive write, etc. The default
setting is zero (disabled). Disabling RTFS_SHARE saves a small
amount of ROM space.

RTFS_SUBDIRS Set this option to zero to disable sub-directory support. The
default is one (enabled). Setting RTFS_SUBDIRS to zero saves a
small amount of ROM space but eliminates sub-directory support.

RTFS_WRITE Set this option to zero to disable writing support. The default is
one (enabled). Setting RTFS_WRITE to zero saves a small amount
of ROM space but eliminates all write support including file
writes, formatting and sub-directory creation.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION18

NUM_USERS The option determines the number of user contexts provided. Each
user context contains a current working directory and a current
default drive. The default value is one. If this value is increased,
the multitasking support macros and routines in pckernel.h and
pckernel.c must be implemented.

NBLKBUFFS This option determines the number of block buffers for sub-
directory traversal. There must be at least one buffer per drive.
Increasing the number of buffers can increase performance but since
flash ATA read performance is relatively high, it is not
necessary to use a large value for this constant. Each block buffer
requires approximately 530 bytes of RAM.

NUSERFILES This option determines the maximum number of simultaneous files
that may be opened. The default value is 10. Each file requires
approximately 100 bytes of RAM. Reducing this value uses less
RAM, increasing it uses more.

FAT_BUFFER_SIZE Number of memory blocks reserved per drive to buffer the drive’s
file allocation table. Each buffer requires a block of 512 bytes of
RAM. The minimum value is two blocks. The default value for
FAT_BUFFER_SIZE is two. Increasing this value will improve
performance but require more RAM.

EMAXPATH This option defines the maximum path size for path names
passed to API calls. The default value is 128. If you have a
controlled embedded system and do not require such large paths,
this value may be reduced. This will reduce stack requirements a
bit. Note that the API calls do not check the lengths of the string
arguments that are passed to them.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 19

4.1.1.2 Peripheral Bus Interface Group

The Peripheral Bus Interface group consists of six different options. Each option selects a particular
Peripheral Bus. They are listed below.

USE_TRUE_IDE

USE_PCMCIA

USE_SPI

USE_MMC

USE_SPI_EMULATION

USE_MMC_EMULATION

Only one Peripheral Bus interface is selected and enabled at a time. Other bus interfaces should be
disabled. When a bus interface is selected, the referred low level driver is enabled and included into
the build. Other options offer more features that can be added to the low level driver.

USE_TRUE_IDE Set this option to one if you wish to use IDE Mode to access the PC
Card ATA devices. In this mode, the device will behave as a
normal IDE drive. If this value is one, the file TRUEIDE.C is
included and may need to be ported to your environment.

USE_PCMCIA Set this option to one if you wish to use PCMCIA to access the PC
Card ATA devices. If this option is set, the files PCMCIA.C and
PCMCTRL.C are included and the file PCMCTRL.C must be
ported to your environment. One of two hardware protocol
interface modes are available under this serial peripheral
configuration interface. You can use contiguous I/O Mode or
Memory Mode by setting the appropriate value definition
(USE_CONTIG_IO, or USE_MEMMODE).

USE_SPI Set this option to one to use True SPI Mode to access
MultiMediaCard devices. True SPI mode can be found on Motorola
processors such as 68HC11, 68328, PowerPC 821, 860, many TI and
non-TI, 370C Intel family, etc.

USE_MMC Set this option to one to use True MultiMediaCard Mode to access
the MultiMediaCard devices. True MultiMediaCard mode can be
found on platforms that support the MultiMediaCard
specification.

USE_SPI_EMULATION Set this option to one to use SPI Emulation hardware to access the
MultiMediaCard devices. An SPI Emulation hardware device is a
hardware device that emulates SPI signals to access to
MultiMediaCard devices such as Parallel to SPI, Serial to SPI,
etc., to be used on non-SPI systems.

USE_MMC_EMULATION Set this option to one to use MultiMediaCard Emulation
hardware to access MultiMediaCard devices. An
MultiMediaCard Emulation hardware device is a hardware
device that emulates the MultiMediaCard signals to be used on
non-MultiMediaCard systems.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION20

The following Peripheral Bus Interface group configuration options may be modified:

USE_MEMMODE
USE_CONTIG_IO
USE_INTERRUPTS
USE_ONLY_LBA
USE_MULTI
USE_SET_FEATURE
WORD_ACCESS_ONLY
PREERASE_ON_ALLOC
PREERASE_ON_DELETE
PREERASE_ON_FORMAT
USE_PWR_MGMT

USE_MEMMODE Set this option to one to configure the Peripheral Bus Interface in
Memory Mode. Set it to zero to allow the bus interface to operates
in I/O Mode. I/O mode follows the Intel class processor interface
for peripherals.

For ATA devices, the register set will appear in the common
memory space window.

USE_INTERRUPTS Setting this option to zero allows the bus interface to run only in
polled mode. Setting this option to one enables the interrupt
service and the system runs in interrupt mode. When this value is
set to zero, the different constants related to interrupt service are
automatically set to -1 and the interrupt management code in
interupt.c is automatically stubbed out. This is the simplest port
to do providing an easier debug environment. It is advisable to
disable interrupts when you first port the code to your target
system.

USE_CONTIG_IO Set this option to one to access the peripheral bus registers in a
contiguous I/O fashion. Set this option to zero to access the
peripheral bus registers at different locations.

For IDE devices, if this option is set to one, the IDE register set is
defined as 16 contiguous I/O locations. If set to zero, the alternate
status register and drive address register are offset from the IDE
register bank by 0x206 and 0x207 respectively. The latter
configuration is standard for IDE in an IBM-AT class machine but
the contiguous configuration is superior for most embedded
systems.

For other Peripheral Bus interfaces, the USE_CONTIG_IO
option may not be available.

USE_ONLY_LBA Set this option to one to force the device driver to access the
device using LBA (logical block address) mode only. This reduces
code size somewhat and speeds execution. If this constant is zero,
the driver determines at run time whether to use CHS or LBA
mode. LBA mode is always selected if the device supports it.
Because SanDisk products always support LBA mode, it has been
made a compile time option.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 21

USE_MULTI Set this option to one to instruct the driver to perform multi-sector
transfers per interrupt. If the drive supports this mode, it can
reduce the number of interrupts required to complete a transfer.
Turning this option off at compile time reduces code size a bit. The
default is off (0) since SanDisk products all support the MULTI
opcodes but transfer one block per interrupt.

USE_SET_FEATURES For ATA devices, set this option to one to force the Set Features
command to be sent to the ATA device after each power up/reset.
The set performance feature of the Set Features command is used
to adjust the internal clock rate (and subsequent power
utilization) of the ATA device. This is useful for battery operated
environments where regulating overall power consumption is
critical. It allows you to achieve the highest performance of the
ATA device without exceeding the host’s current limit. (See a
SanDisk product manual for detailed information regarding the
Set Feature command.) If this option is used, you should also set
the IDE_FEATURE_SETPERF_VALUE in atadrv.h.

For SPI or MultiMediaCard devices, set this option to one to force
the CRC feature to be sent to the MultiMediaCard device after
each power up/reset. When this feature is enabled, data will be
checked and command CRC information is calculated for every
requested command.

PREERASE_ON_DELETE Setting this value to one will cause all sectors occupied by deleted
files to be pre-erased. This will cause additional processing time
for file deletion (performance is comparable to that of writing all
of the associated sectors), but subsequent write performance is
increased.

PREERASE_ON_ALLOC Setting this value to one will cause all sectors allocated when
extending a file (via the po_extend_file function) to be pre-
erased. This will cause additional processing time (performance
is comparable to that of writing all of the associated sectors), but
subsequent write performance is increased.

PREERASE_ON_FORMAT Setting this value to one will cause all sectors on the volume to be
pre-erased during the format operation. Time to pre-format the
format is increased (performance is comparable to that of writing
all of the associated sectors), but subsequent write performance is
increased.

USE_PWR_MGMT The default value is set to zero. The device will enter sleep mode
after 5 msec of inactivity. Setting this option to a non-zero value
will cause the device to stay in idle for a multiple of 5 msec before
going to sleep mode if there is no disk access activity.

USE_HW_OPTION In Big Endian (Motorola), the 16-bit data bus should be swapped
for the ATA environment. Thus, set this option to one. In the
SPI/MultiMediaCard environment, the Host Developer’s Tool
Kit will force this option to be set to one for internal code
selection.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION22

4.1.2 Hardware Configuration

The following sections include all related hardware information. The four major sections are:

• IDE

• PCMCIA

• SPI

• MultiMediaCard

4.1.2.1 IDE Interface

The IDE interface supports both I/O and Memory Mapped mode and the peripheral bus can be in 8-bit or
16-bit.

In I/O mode, the constants ATA_PRIMARY_IO_ADDRESS and ATA_SECONDARY_IO_ADDRESS
are assumed to be unsigned integers that contain the I/O addresses of the ATA devices. They are placed
in the array named io_mapped_addresses[] in ioconst.c and are used by the peripheral bus driver to
map the I/O space in and by atadrv.c to initialize the controller structure’s I/O address pointer. This
feature is associated with setting USE_MEMMODE to zero.

ATA_PRIMARY_IO_ADDRESS Defines the primary ATA I/O address for your environment.
The variable io_mapped_addresses[0] in ioconst.c is
initialized to this value. The default value is the IDE
standard 0x1F0.

ATA_SECONDARY_IO_ADDRESS Defines the secondary ATA I/O address for your target
environment. The variable io_mapped_addresses[1] in ioconst.c
is initialized to this value. The default value is the IDE
standard 0x170.

Note: If USE_MEMMODE is set to one, ATA_PRIMARY_IO_ADDRESS and ATA_SECONDARY_IO_ADDRESS are
not used.

In Memory Mode, the constants ATA_PRIMARY_MEM_ADDRESS and
ATA_SECONDARY_MEM_ADDRESS are assumed to be unsigned char pointers that contain the
memory address of the ATA device. They are placed in the array mem_mapped_addresses_pointer[] in
ioconst.c and are used by the peripheral bus driver to map the memory space in and by atadrv.c to
initialize the controller structure’s memory address pointer. This feature is associated with
USE_MEMMODE set to one.

ATA_PRIMARY_MEM_ADDRESS Defines the primary ATA memory address for your
environment. The variable mem_mapped_addresses[0] in
ioconst.c is initialized to this value. The default value must
be set.

ATA_SECONDARY_MEM_ADDRESS Defines the secondary ATA memory address for your
environment. The variable mem_mapped_addresses[1] in
ioconst.c is initialized to this value. The default value must
be set.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 23

The IDE bus in either I/O or Memory Mapped Mode supports interrupts. The constant
ATA_PRIMARY_INTERRUPTS and ATA_SECONDARY_INTERRUPT define the interrupt channels.
They are placed in the array named dev_interrupts[] in ioconst.c and are used by the peripheral bus
driver atadrv.c to initialize the controller structure’s information and to setup the interrupt service
routines.

ATA_PRIMARY_INTERRUPT Defines the primary ATA interrupt for your environment.
The variable dev_interrupts[0] in ioconst.c is initialized to
this value. The default value is the IDE standard 14.

ATA_SECONDARY_INTERRUPT Defines the secondary ATA interrupt for your environment.
The variable dev_interrupts[1] in ioconst.c is initialized to
this value. The default value is the IDE standard 15.

Note: Set ATA_PRIMARY_INTERRUPT to -1 to run the primary interface in non-interrupt mode. Set
ATA_SECONDARY_INTERRUPT to -1 to run the secondary interface in non-interrupt mode. See also
USE_INTERRUPTS.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION24

4.1.2.2 PCMCIA Interface

The PCMCIA bus supports both I/O and Memory Mapped Mode. The constant definitions are described
below.

MEM_WINDOW_0 This is the linear address in host space of the memory region
used to access the ATA device CIS in the socket. It is set to 24
bit address. This value is used by the system dependent code
in pcmctrl.c to map the host memory onto the PCMCIA bus.

MEM_ADDRESS_0 This must be a native unsigned char pointer constant that
points to a region located at MEM_WINDOW_0 to access to
the device CIS information and configuration registers. In a
flat model memory environment, MEM_ADDRESS_0 will
equal MEM_WINDOW_0. In segmented architectures or
where a special address region is used to generate 8-bit
accesses to the PCMCIA memory, MEM_ADDRESS_0 will
not equal MEM_WINDOW_0.

MEM_WINDOW_1 This is the linear address in host memory space specifying
the memory region used to access the ATA registers and data
for a selected socket. This value, in multiples of 4 KB, is used
by the system dependent code in pcmctrl.c to map the host
memory onto the PCMCIA bus.

MEM_ADDRESS_1 This must be a native unsigned char pointer constant that
points to a 16 byte region located at the beginning of
MEM_WINDOW_1. If the address line A10 is used, the
block of data is automatically mapped into host memory
space at offset 400H from MEM_WINDOW_1. In a flat
model memory environment, MEM_ADDRESS_1 will equal
MEM_WINDOW_1. In segmented architectures or where a
special address region is used to generate accesses to the
PCMCIA memory, MEM_ADDRESS_1 will not equal
MEM_WINDOW_1.

MEM_WINDOW_2 This is the linear address in host space of the memory region
used to access the ATA registers for a selected socket. See
MEM_WINDOW_1.

MEM_ADDRESS_2 This must be a native unsigned char pointer constant. See
MEM_ADDRESS_1.

MEM_WINDOW_3 This is an alternate choice. It is the linear address in host
space of the memory region used to access the ATA device CIS
information or the ATA registers. See MEM_WINDOW_0 or
MEM_WINDOW_1.

MEM_ADDRESS_3 This must be a native unsigned char pointer constant that
points to the region located at MEM_ADDRESS_0 or
MEM_ADDRESS_1.

MEM_WINDOW_4 This is an alternative choice. It is the linear address in host
space of the memory region used to access the ATA device
registers for a selected socket. See MEM_WINDOW_1.

MEM_ADDRESS_4 This must be a native unsigned char pointer constant. See
MEM_ADDRESS_1.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 25

MEM_WINDOW_5 This is an alternate choice. It is the linear address in host
space of the memory region used to access the 16-bit ATA
registers for socket 1. See MEM_WINDOW_1.

MEM_ADDRESS_5 This must be a native unsigned char pointer constant. See
MEM_ADDRESS_1.

When operating in I/O mode, the constants ATA_PRIMARY_IO_ADDRESS and
ATA_SECONDARY_IO_ADDRESS are assumed to be unsigned integers that contain the I/O addresses
of the PCMCIA devices. They are placed in the array io_mapped_addresses[] in ioconst.c and are used
by the peripheral bus driver to map the I/O space in and by atadrv.c to initialize the controller
structure’s I/O address pointer. This feature is associated with setting USE_MEMMODE to zero.

ATA_PRIMARY_IO_ADDRESS Defines the primary PCMCIA I/O address for the target
environment. The variable io_mapped_addresses[0] in
ioconst.c is initialized to this value. The default value is
the IDE standard 0x380.

ATA_SECONDARY_IO_ADDRESS Defines the secondary PCMCIA I/O address for the target
environment. The variable io_mapped_addresses[1] in
ioconst.c is initialized to this value. The default value is
the IDE standard 0x3A0.

Note: If USE_MEMMODE is set to one, ATA_PRIMARY_IO_ADDRESS and ATA_SECONDARY_IO_ADDRESS are
not used.

The PCMCIA bus in either I/O or Memory Mapped Mode supports interrupts. The constants
ATA_PRIMARY_INTERRUPTS and ATA_SECONDARY_INTERRUPT are the interrupt channels.
They are placed in the array dev_interrupts[] in ioconst.c and are used by the peripheral bus driver
atadrv.c to initialize the controller structure’s information and to setup the interrupt service routines.

ATA_PRIMARY_INTERRUPT Defines the primary PCMCIA interrupt for the target
environment. The variable dev_interrupts[0] in ioconst.c is
initialized to this constant value. When the bus is operated
in Memory Mode, the event management services is enabled
(insertion, removal, battery low, power up). When the bus is
in I/O Mode, the interrupt service is dedicated to the data
handler.

In I/O Mapped Mode, the default value is the IDE standard
10. In Memory Mapped Mode, the default value is ten.

ATA_SECONDARY_INTERRUPT Defines the secondary PCMCIA interrupt for the target
environment. The variable dev_interrupts[1] in ioconst.c is
initialized to this constant value. When the bus is operated
in Memory Mode, the event management services is enabled
(insertion, removal, battery low, power up). When the bus is
in I/O Mode, the interrupt service is dedicated to the data
handler.

In I/O Mapped Mode, the default value is the IDE standard
11. In Memory Mapped Mode, the default value is 11.

Note: Set ATA_PRIMARY_INTERRUPT to -1 to run the primary interface in non-interrupt mode. Set
ATA_SECONDARY_INTERRUPT to -1 to run the secondary interface in non-interrupt mode. See also
USE_INTERRUPTS.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION26

4.1.2.3 SPI Interface

The SPI bus supports both I/O and Memory Mapped Mode.

In I/O mode, the constants SPI_PRIMARY_IO_ADDRESS and SPI_SECONDARY_IO_ADDRESS are
assumed to be unsigned integers that contain the I/O addresses of the SPI devices. They are placed in
the array io_mapped_addresses[] in ioconst.c and are used by the peripheral bus driver to map the I/O
space in and by spidrv.c to initialize the controller structure’s I/O address pointer. This feature is
associated with setting USE_MEMMODE to zero.

SPI_PRIMARY_IO_ADDRESS Defines the primary SPI I/O address. The variable
io_mapped_addresses[0] in ioconst.c is initialized to this
value. The default constant value should be set for the
target environment.

SPI_SECONDARY_IO_ADDRESS Defines the secondary SPI I/O address. The variable
io_mapped_addresses[1] in ioconst.c is initialized to this
value. The default value should be selected for the target
platform.

In Memory Mode, the constants SPI_PRIMARY_MEM_ADDRESS and
SPI_SECONDARY_MEM_ADDRESS are assumed to be unsigned char pointers that contain the
memory addresses of the SPI devices. They are placed in the array mem_mapped_addresses_pointer[]
in ioconst.c and are used by the peripheral bus driver to map the memory space in and by spidrv.c to
initialize the controller structure’s memory address pointer. This feature is associated with
USE_MEMMODE set to one.

SPI_PRIMARY_MEM_ADDRESS Defines the primary SPI memory address for your
environment. The variable mem_mapped_addresses[0] in
ioconst.c is initialized to this value. The default value must
be set for this constant.

SPI_SECONDARY_MEM_ADDRESS Defines the secondary SPI memory address for your
environment. The variable mem_mapped_addresses[1] in
ioconst.c is initialized to this value. The default value must
be set for this constant.

The interrupts are supported by setting SPI_PRIMARY_INTERRUPTS and
SPI_SECONDARY_INTERRUPT. They are placed in the array dev_interrupts[] in ioconst.c and are
used by the peripheral bus driver spidrv.c to initialize the controller structure’s information and to
setup the interrupt service routines.

SPI_PRIMARY_INTERRUPT Defines the primary SPI interrupt for your environment. The
variable dev_interrupts[0] in ioconst.c is initialized to this
value. The default value is the seven.

SPI_SECONDARY_INTERRUPT Defines the secondary SPI interrupt for your environment.
The variable dev_interrupts[1] in ioconst.c is initialized to
this value. The default value is five.

Note: Set SPI_PRIMARY_INTERRUPT to -1 to run the primary interface in non-interrupt mode. Set
SPI_SECONDARY_INTERRUPT to -1 to run the secondary interface in non-interrupt mode. The interrupt
service could also be shared among SPI devices. See also USE_INTERRUPTS.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 27

4.1.2.4 MultiMediaCard Interface

The MultiMediaCard bus supports both I/O and Memory Mapped Mode.

In I/O Mode, the constants MMC_PRIMARY_IO_ADDRESS and MMC_SECONDARY_IO_ADDRESS
are assumed to be unsigned integers that contain the I/O addresses of the MultiMediaCard devices.
They are placed in the array io_mapped_addresses[] in ioconst.c and are used by the peripheral bus
driver to map the I/O space in and by mmcdrv.c to initialize the controller structure’s I/O address
pointer. This feature is associated with setting USE_MEMMODE to zero.

SPI_PRIMARY_IO_ADDRESS Defines the primary MultiMediaCard I/O address. The
variable io_mapped_addresses[0] in ioconst.c is initialized
to this value. The default constant value should be set for
the target environment.

MMC_SECONDARY_IO_ADDRESS Defines the secondary MultiMediaCard I/O address. The
variable io_mapped_addresses[1] in ioconst.c is initialized
to this value. The default value should be selected for the
target platform.

In Memory Mode, the constants MMC_PRIMARY_MEM_ADDRESS and
MMC_SECONDARY_MEM_ADDRESS are assumed to be unsigned char pointers that contain the
memory addresses of the MultiMediaCard devices. They are placed in the array
mem_mapped_addresses_pointer[] in ioconst.c and are used by the peripheral bus driver to map the
memory space in and by mmcdrv.c to initialize the controller structure’s memory address pointer. This
feature is associated with USE_MEMMODE set to one.

MMC_PRIMARY_MEM_ADDRESS Defines the primary MultiMediaCard memory address for
your environment. The variable mem_mapped_addresses[0]
in ioconst.c is initialized to this value. The default value
must be set for this constant.

MMC_SECONDARY_MEM_ADDRESS Defines the secondary MultiMediaCard memory address
for your environment. The variable
mem_mapped_addresses[1] in ioconst.c is initialized to
this value. The default value must be set for this constant.

The interrupts are supported by setting MMC_PRIMARY_INTERRUPTS and
MMC_SECONDARY_INTERRUPT. They are placed in the array dev_interrupts[] in ioconst.c and are
used by the peripheral bus driver mmcdrv.c to initialize the controller structure’s information and to
setup the interrupt service routines.

MMC_PRIMARY_INTERRUPT Defines the primary MultiMediaCard interrupt for your
environment. The variable dev_interrupts[0] in ioconst.c is
initialized to this value. The default value is the seven.

MMC_ SECONDARY _INTERRUPT Defines the secondary MultiMediaCard interrupt for your
environment. The variable dev_interrupts[1] in ioconst.c is
initialized to this value. The default value is five.

Note: Set MMC_PRIMARY_INTERRUPT to -1 to run the primary interface in non-interrupt mode. Set
MMC_SECONDARY_INTERRUPT to -1 to run the secondary interface in non-interrupt mode. The interrupt
service could also be shared among MultiMediaCard devices. See also USE_INTERRUPTS.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION28

4.1.3 System Specific and Compilation Options

All other options for the Peripheral Bus or compiler are system specific. They are:

N_CONTROLLERS
DRIVES_PER_CONTROLLER1
DRIVES_PER_CONTROLLER2
LITTLE_ENDIAN
FAR

N_CONTROLLERS This option defines the number of controllers supported. The
maximum value is two. The default is one. For a system
that has more than two peripheral controllers, a few data
structures in ioconst.c need to be modified to accommodate
the requirements.

DRIVES_PER_CONTROLLER1 This option defines the number of drives supported on the
first controller. The maximum number of flash devices
varies depending on the peripheral controller. The default
is one.

DRIVES_PER_CONTROLLER2 This option defines the number of drives supported on the
second controller. The maximum number of flash devices
varies depending on the peripheral controller. The default
is zero.

LITTLE_ENDIAN You may set this to one if you are running in an Intel little
endian environment. Doing this results in slightly reduced
code size and slightly increased performance. If little
endian is zero, the code will execute in a big endian
environment but data will be converted to little endian in
appropriate places.

FAR Define this as far or _far in segmented Intel environments,
otherwise define it as nothing (for example, #define FAR
far or #define FAR).

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 29

4.1.4 Examples

This section includes several examples that illustrate the use of options in the SDCONFIG.H.

4.1.4.1 IDE Configuration Options

To use the File System with IDE interface, the following options in the SDCONFIG.H should be
configured.

#define USE_FILE_SYSTEM 1 /* FAT File System is enabled */
#define RTFS_SHARE 0 /* File Sharing is disabled */
#define RTFS_SUBDIRS 1 /* Sub-directory is allowed */
#define RTFS_WRITE 1 /* Writing to the device is allowed */
#define NUM_USERS 1 /* Number of users or tasks */
#define NBLKBUFFS 2 /* Number of block buffers */
#define NUSERFILES 10 /* Maximum number of open files */
#define FAT_BUFFER_SIZE 2 /* Size of the FAT buffer in 512 bytes per block */
#define EMAXPATH 128 /* Maximum path length */

#define USE_TRUE_IDE 1 /* IDE interface is enabled */
#define USE_PCMCIA 0 /* PCMCIA interface is disabled */
#define USE_SPI 0 /* SPI interface is disabled */
#define USE_MMC 0 /* MultiMediaCard interface is disabled */
#define USE_SPI_EMULATION 0 /* SPI Emulation mode is disabled */
#define USE_MMC_EMULATION 0 /* MultiMediaCard Emulation mode is disabled */

#define USE_HW_OPTION 0 /* 16-bit data bus not swapped */
#define WORD_ACCESS_ONLY 1 /* 16-bit Data access. */
#define USE_MEMODE 0 /* I/O mapped mode */
#define USE_INTERRUPT 1 /* Interrupt service is enabled */
#define USE_LBA_ONLY 1 /* Use Logical Block Address */
#define USE_SET_FEATURES 0 /* ATA features command is disabled */
#define USE_CONTIG_IO 0 /* I/O register Address range is random */
#define USE_MULTI 0 /* Multiple sector transfer is disabled */
#define PREERASE_ON_ALLOC 0 /* Erase when files are extended */
#define PREERASE_ON_DELETE 0 /* Erase when files are deleted */
#define PREERASE_ON_FORMAT 0 /* Erase when the volume is formatted */
#define LITTLE_ENDIAN 1 /* Use Intel data format type */
#define USE_PWR_MGMT 0 /* Device will perform its own power management */

#if (USE_MEMMODE) /* Memory mapped mode */
#define ATA_PRIMARY_MEM_ADDRESS 0x0F00000/* Primary mem. address */
#define ATA_SECONDARY_IO_ADDRESS 0x0F00000/* Secondary mem. address */

#else /* I/O Mapped mode is enabled */

#define ATA_PRIMARY_IO_ADDRESS 0x170 /* Primary I/O address */
#define ATA_SECONDARY_IO_ADDRESS 0x1F0 /* Secondary I/O address */
#endif

#if (USE_INTERRUPTS)
#define ATA_PRIMARY_INTERRUPT 0xE /* Primary interrupt channel */
#define ATA_SECONDARY_INTERRUPT 0xF /* Secondary interrupt channel */
#else
#define ATA_PRIMARY_INTERRUPT -1 /* Primary interrupt channel */
#define ATA_SECONDARY_INTERRUPT -1 /* Secondary interrupt channel */
#endif

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION30

4.1.4.2 PCMCIA Configuration Options

The PCMCIA options are configured with the File System as follows:

#define USE_FILE_SYSTEM 1 /* FAT File System is enabled */
#define RTFS_SHARE 0 /* File Sharing is disabled */
#define RTFS_SUBDIRS 1 /* Sub-directory is allowed */
#define RTFS_WRITE 1 /* Writing to the device is allowed */
#define NUM_USERS 1 /* Number of users or tasks */
#define NBLKBUFFS 2 /* Number of block buffers */
#define NUSERFILES 10 /* Maximum number of open files */
#define FAT_BUFFER_SIZE 2 /* Size of the FAT buffer in 512 bytes per block */
#define EMAXPATH 128 /* Maximum path length */

#define USE_TRUE_IDE 0 /* IDE interface is disabled */
#define USE_PCMCIA 1 /* PCMCIA interface is enabled */
#define USE_SPI 0 /* SPI interface is disabled */
#define USE_MMC 0 /* MultiMediaCard interface is not disabled */
#define USE_SPI_EMULATION 0 /* SPI Emulation mode is disabled */
#define USE_MMC_EMULATION 0 /* MultiMediaCard Emulation mode is disabled */
#define USE_HW_OPTION 0 /* 16-bit data bus not swapped */
#define WORD_ACCESS_ONLY 1 /* 16-bit Data access */
#define USE_MEMODE 0 /* Memory mapped mode is disabled */
#define USE_INTERRUPT 0 /* No interrupt service. Use polling service. */
#define USE_LBA_ONLY 1 /* Use Logical Block Address */
#define USE_SET_FEATURES 0 /* ATA features command is disabled */
#define USE_CONTIG_IO 1 /* Register Address range is contiguous */
#define USE_MULTI 0 /* Multiple sectors transfer is disabled */
#define PREERASE_ON_ALLOC 0 /* Erase when files are extended */
#define PREERASE_ON_DELETE 0 /* Erase when files are deleted */
#define PREERASE_ON_FORMAT 0 /* Erase when the volume is formatted */
#define LITTLE_ENDIAN 1 /* Use Intel data format type */
#define USE_PWR_MGMT 0 /* Device will perform its own power management */

#define ATA_PRIMARY_IO_ADDRESS 0x380/* Primary memory address */
#define ATA_SECONDARY_IO_ADDRESS 0x3A0/* Secondary memory address */

#if (USE_INTERRUPTS)
#define ATA_PRIMARY_INTERRUPT 0xA /* Primary I/O interrupt */
#define ATA_SECONDARY_INTERRUPT 0xB /* Secondary I/O interrupt */
#else
#define ATA_PRIMARY_INTERRUPT -1 /* No Primary I/O interrupt */
#define ATA_SECONDARY_INTERRUPT -1 /* No Secondary I/O interrupt */
#endif

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 31

4.1.4.3 SPI Configuration Options

When the SPI Interface is selected with the File System, the options in the SDCONFIG.H are set as
follows:

#define USE_FILE_SYSTEM 1 /* FAT File System is enabled */
#define RTFS_SHARE 0 /* File Sharing is disabled */
#define RTFS_SUBDIRS 1 /* Sub-directory is allowed */
#define RTFS_WRITE 1 /* Writing to the device is allowed */
#define NUM_USERS 1 /* Number of users or tasks */
#define NBLKBUFFS 2 /* Number of block buffers */
#define NUSERFILES 10 /* Maximum number of open files */
#define FAT_BUFFER_SIZE 2 /* Size of the FAT buffer in 512 bytes per block */
#define EMAXPATH 128 /* Maximum path length */

#define USE_TRUE_IDE 0 /* IDE interface is disabled */
#define USE_PCMCIA 0 /* PCMCIA interface is disabled */
#define USE_SPI 1 /* SPI interface is enabled */
#define USE_MMC 0 /* MultiMediaCard interface is disabled */
#define USE_SPI_EMULATION 0 /* SPI Emulation mode is disabled */
#define USE_MMC_EMULATION 0 /* MultiMediaCard Emulation mode is disabled */
#define WORD_ACCESS_ONLY 1 /* 16-bit Data Bus is enabled */
#define USE_MEMODE 1 /* Memory Mapped mode is enabled */
#define USE_INTERRUPT 0 /* No interrupt service. Use polling technique */
#define USE_LBA_ONLY 1 /* Use Logical Block Address */
#define USE_SET_FEATURES 1 /* Error Correction Code is enabled */
#define USE_CONTIG_IO 1 /* Memory or I/O Address range is contiguous */
#define USE_MULTI 0 /* Multiple sectors transfer is disabled */
#define PREERASE_ON_ALLOC 0 /* Erase when files are extended */
#define PREERASE_ON_DELETE 0 /* Erase when files are deleted */
#define PREERASE_ON_FORMAT 0 /* Erase when the volume is formatted */
#define LITTLE_ENDIAN 1 /* Use Intel data format type */

#if (USE_INTERRUPTS)
#define SPI_PRIMARY_INTERRUPT 0x7 /* Primary I/O interrupt */
#define SPI_SECONDARY_INTERRUPT 0x5 /* Secondary I/O interrupt */
#else
#define SPI_PRIMARY_INTERRUPT -1 /* No Primary I/O interrupt */
#define SPI_SECONDARY_INTERRUPT -1 /* No Secondary I/O interrupt */
#endif

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION32

4.1.4.4 MultiMediaCard Configuration Options

The MultiMediaCard Interface is configured with the following options:

#define USE_FILE_SYSTEM 1 /* FAT File System is enabled */
#define RTFS_SHARE 0 /* File Sharing is disabled */
#define RTFS_SUBDIRS 1 /* Sub-directory is allowed */
#define RTFS_WRITE 1 /* Writing to the device is allowed */
#define NUM_USERS 1 /* Number of users or tasks */
#define NBLKBUFFS 2 /* Number of block buffers */
#define NUSERFILES 10 /* Maximum number of open files */
#define FAT_BUFFER_SIZE 2 /* Size of the FAT buffer in 512 bytes per block */
#define EMAXPATH 128 /* Maximum path length */

#define USE_TRUE_IDE 0 /* IDE interface is disabled */
#define USE_PCMCIA 0 /* PCMCIA interface is disabled */
#define USE_SPI 0 /* SPI interface is disabled */
#define USE_MMC 1 /* MultiMediaCard interface is enabled */
#define USE_SPI_EMULATION 0 /* SPI Emulation mode is disabled */
#define USE_MMC_EMULATION 0 /* MultiMediaCard Emulation mode is disabled */
#define WORD_ACCESS_ONLY 0 /* 8-bit Data Bus is enabled */
#define USE_MEMODE 1 /* Memory Mapped mode is enabled */
#define USE_INTERRUPT 0 /* No interrupt service. Use polling technique */
#define USE_LBA_ONLY 1 /* Use Logical Block Address */
#define USE_SET_FEATURES 1 /* ECC (Error Correction Code) is enabled */
#define USE_CONTIG_IO 0 /* Memory or I/O address region is random */
#define USE_MULTI 0 /* Multiple sectors transfer is disabled */
#define PREERASE_ON_ALLOC 0 /* Erase when files are extended */
#define PREERASE_ON_DELETE 0 /* Erase when files are deleted */
#define PREERASE_ON_FORMAT 0 /* Erase when the volume is formatted */

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 33

4.2 INTERUPT.C — Interrupt Management Functions

INTERUPT.C provides interrupt services. In many embedded environments, real time interrupts are
needed at all time. The HDTK interrupt model has been designed to meet the real time computing
requirements. The interrupt model is based on the semaphore mechanism for signaling and exchanging
information. When a semaphore operation is performed, it is waiting at the semaphore for a condition
change before proceeding. This semaphore is private to the HDTK but can be easily modified to adapt
to different system environments.

The Host Developer’s Tool Kit can be programmed to use no interrupts. In this case, there are no
integration issues surrounding interrupts, but you lose the ability to react to card removal and re-
insertion events and you lose the ability to allow other tasks to execute while waiting for a data
transfer to complete. Since debugging a non interrupt system is typically easier, it is recommended that
you start without interrupts and turn them on once you have basic functionality.

4.2.1 Porting Requirements

The following functions define the interrupt service for the HDTK.

Those routines are invoked by the Peripheral Bus Interface through the use of macros and defined as
follows:

SDVOID platform_controller_init(INT16 controller_no)
SDVOID platform_controller_close(INT16 controller_no)
SDVOID platform_set_signal(INT16 driveno)
SDVOID platform_clear_signal(INT16 driveno)
SDBOOL platform_wait_for_action(INT16 driveno, COUNT wait_ticks)

SDVOID platform_controller_init(INT16 controller_no)
Sets up system hardware, enables hardware interrupts and installs
interrupt service routines.

This routine must be implemented only if the interrupt service is
preferred. It is given a controller structure which contains the interrupt
number to use and the controller number. This routine must make sure
that the interrupt is hooked so that when an interrupt occurs, the
interrupt service will provide a signaling mechanism so that
platform_wait_for_action() can block at the user level and
platform_set_signal() can be called from the interrupt layer to wake
the blocked thread with a proper signal. In most real time kernel
environments, a simple counting semaphore initialized to zero will
suffice.

SDVOID platform_controller_close(INT16 controller_no)
Removes interrupt service and restores system information.

This routine must be implemented only if the interrupt service is
selected. The interrupt signal is reset to avoid further false alarm
requests and interrupt data structures are clear. System information will
be restored to the original condition.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION34

SDBOOL platform_set_signal(INT16 driveno)
Signals a device interrupt.

This routine must be implemented if interrupts are enabled. It is called
from the interrupt service routines and must create a condition such that
platform_wait_for_action() returns YES. A typical implementation
would increment a counting semaphore.

SDVOID platform_clear_signal(INT16 driveno)
Clears device interrupt signal.

This routine must be implemented only if the interrupt service is
enabled. This routine is invoked at the user level. It is called before a
command is issued and must establish a state such that
platform_wait_for_action() will block until platform_set_signal() is
called by the interrupt service routines.

SDBOOL platform_wait_for_action(INT16 driveno, COUNT wait_ticks)
Waits for an interrupt signal in a specific time.

This routine must be implemented only if the interrupt service is
enabled. It must wait for platform_set_signal() to signal that an
interrupt has occurred. If no signal arrives in wait_ticks, the routine
returns NO to indicate that there is a communication problem with the
media, otherwise it returns YES.

Note: Platform_wait_for_action() must be implemented such that it returns YES if the signal occurs before the
routine is called. A typical implementation would call a counting semaphore timed wait function.

These routines are invoked by the Peripheral Bus Interface through the use of the following macros:

OS_CONTROLLER_INIT platform_controller_init
OS_CONTROLLER_CLOSE platform_controller_close
OS_SET_SIGINAL platform_set_signal
OS_CLEAR_SIGNAL platform_clear_signal
OS_WAIT_FOR_ACTION platform_wait_for_action

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 35

4.3 TIMER.C — Timer Management Functions

Most systems have at least one timer function that is called at a fixed interval. The HDTK makes use of
several system clock timer functions. These functions rely on a system timer being available and the
system hardware architecture. The HDTK does not provide this access in portable C code. Instead,
several function prototypes are defined by the HDTK to form a simple timer service.

4.3.1 Porting Requirements

Those routines are invoked by the File System or the Peripheral Bus Interface through the use of macros
and defined as follows:

ULONG platform_ticks_p_second(SDVOID);
ULONG platform_get_ticks(SDVOID);
platform_delayms(COUNT milliseconds);
oem_getsysdate(UINT16 *date, UINT16 *time);

ULONG platform_get_ticks() Returns the ever-increasing timer tick count.

This routine must be implemented. It must return the current
system tick count. The period of the system tick is unimportant
but the function platform_ticks_p_second() in timer.c must be
changed to match the particular system. The peripheral driver
uses this function to set up a certain time it can remain in a
particular process and generates a time out event to avoid a dead
loop when the time has expired.

ULONG platform_ticks_p_second() Returns the current system clock period ticks per second.

This routine must be implemented. It must return the current
system tick period in ticks per second. This returned value is a
scaled down value of the system timer.

platform_delayms() Returns to the caller after a specific time expired.

This routine must be implemented. Given a certain time, the
main purpose of this routine is to make sure the device comes up
in a stable state during the power down and up cycles or reset.

oem_getsysdate() Returns the current system date and time.

This routine is only for use with the File System. The returned
values by this routine are translated into DOS format. Then, the
translation is written as the date/time values in the directory
entries.

The Date field is combined into a 16-bit Date field and is
encoded with the following format:
 Bit 0-4: Day of month (1-31)
 Bit 5-8: Month (1-12)
 Bit 9-15: Year relative to 1980

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION36

The Time field is combined into a 16-bit Time field and encoded
with the following format:
 Bit 0-4: Second multiply by 2 (0-29)
 Bit 5-10: Minutes (0-59)
 Bit 11-15: Hours (0-23)

Please note that it is not necessary to implement this routine if
the peripheral bus is the only target.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 37

4.4 CRITERR.C — Critical Error Handler

4.4.1 Introduction

For cases where a disk access fails, host platforms need to be notified of the error condition. Many of
these errors are caused by inappropriate end user actions such as prematurely removing or swapping
devices. In such instances, a function, critical_error_handler(), is called with parameters indicating
the drive number and error code. Routines that you supply within the critical error handler can interact
with the user in a platform-specific way, requesting that the device be reinserted. It can then return a
code to the File System, directing it to retry the failed operation. Most platforms have at least some
means of reporting an error to the end user, even if it’s just beeping or flashing an LED. However, if your
system is totally non-interactive, you can hard code return values, directing the File System to always
retry or abort failed operations.

The device I/O layer implemented in devio.c, chkmedia.c and the Peripheral Bus driver calls the
critical error handler when it requires feedback to determine which route to take in an error recovery
process. A sample implementation (criterr.c) is provided which prints the error and some vital
statistics to the console and then queries the console for the recovery route to proceed with. The sample
implementation also demonstrates how to extract vital statistics from the File System such as the
current mounted volume and whether or not buffers have been flushed.

4.4.2 Unusual Error Conditions

In addition to common errors such as “drive not ready” (i.e., ATA device is not properly inserted), it’s
possible (although not likely) that an “ID not found” or ECC error could occur. SanDisk products have
extensive built-in defect management ECC and spare sectors. Thus, unlike rotating disks, any problems
can be dynamically handled by the controller. However, if flash devices are misused under the most
abusive circumstances, it is possible to encounter an error condition.

For example, during a write operation, if the device is prematurely ejected, writing to a particular
sector may not be completed. The critical error handler will be notified of the condition, and if the card
is successfully replaced and the critical error handler directs the File System to retry the operation,
the write can continue successfully. But, if the user does not replace the device, or the system is powered
off at that moment, the sector can be left partially written.

Subsequent reads of the sector may result in either an “ID not found” or an ECC error. The data is lost,
but compounding the problem is the fact this sector must be rewritten to be made useable again (the
device itself is still useable, it’s only the individual sector that’s out of commission). Although this
error scenario is uncommon, the file system error recovery scheme provides a solution. In such cases,
during the failed read operation, the critical error handler will be notified of the error (and the logical
block number of the associated sector). The critical error handler must notify the application so that it
can take appropriate steps to recover; it can then pass a return code to the file system indicating that
the sector should be written with a null record so that it can at least be made useable.

Again, this error condition is rare, but you should add code to the critical error handler to process it if
you anticipate any of the scenarios that could cause this problem.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION38

4.4.3 Porting Requirements

The platform_critical_handler has the following syntax:

INT16 platform_critical_handler (INT16 driveno, INT16 media_status, ULONG sector)
driveno The drive number.
media_status The error to handle.
sector Sector number where error occurred.

The Error may be set with one of the following error numbers:

CRERR_BAD_FORMAT A valid device is in the slot but it does not have a recognizable MS-
DOS partition on it. If critical_error_handler() returns
CRITICAL_ERROR_FORMAT, the recovery code will attempt to
format the device and mount it. If it returns
CRITICAL_ERROR_RETRY, the mount operation will be retried.
If it returns CRITICAL_ERROR_ABORT, the operation will fail.
(The API call will fail.)

CRERR_NO_CARD The device is expected but there is no device in the slot. The error
handler should prompt the user to insert a device and then return
CRITICAL_ERROR_RETRY or it should return
CRITICAL_ERROR_ABORT to force the operation to fail. (The
API call will fail.)

CRERR_CHANGED_CARD The device is installed but its serial number does not match the
serial number of the volume that is currently mounted. The error
handler should prompt the user to re-insert the proper device and
then return CRITICAL_ERROR_RETRY or it should return
CRITICAL_ERROR_ABORT to force the operation to accept the
new device, flush all buffers from the old mount and proceed with
the new device.

Note: The File System does a check media call when it enters all API calls.

If the CRITICAL_ERROR_ABORT condition (remount and
proceed) is detected by an API call such as po_open, pc_mkdir,
pc_rmdir, pc_gfirst etc., the call will proceed on the new volume
without returning a failure to the application. If the application is
executing an API call that can’t proceed without another API call
first executing, such as po_read, po_lseek, po_write, pc_gnext etc.,
the API call will fail.

CRERR_BAD_CARD The device is expected but an unrecognized device type is in the
slot. This is logically equivalent to CRERR_NO_CARD. The error
handler should prompt the user to insert a device and then return
CRITICAL_ERROR_RETRY or it should return
CRITICAL_ERROR_ABORT to force the operation to fail. (The
API call will fail.)

CRERR_CARD_FAILURE A disk I/O error occurred. The device is in a slot and the I/O layer
has become unable to talk to it. If the error handler returns
CRITICAL_ERROR_RETRY, the I/O layer will attempt to reset
the device and retry the operation. If it returns
CRITICAL_ERROR_ABORT, the I/O layer will force the
operation to fail. (The API call will fail.)

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 39

CRERR_ID_ERROR The read operation has encountered an “ID not found” error.

CRERR_ECC_ERROR The read operation has encountered an ECC error.

The critical_error_handler return codes are as follows:

CRITICAL_ERROR_ABORT Always forces a failure return to the upper layer.

CRITICAL_ERROR_RETRY Always forces the I/O layer to retry the current operation.

CRITICAL_ERROR_FORMAT Always forces the I/O layer to format the disk. This return code
can only be used in response to the CRERR_BAD_FORMAT error.

CRITICAL_ERROR_CLEARECC Forces the File System to write a null record to a sector that
caused an “ID not found” or ECC error during a read. This is not
often used.

4.4.4 Error Recovery Strategies

The above paragraphs describe how the critical error handler should react to I/O errors. It is important
to note that the applications layer must also be able to recover. To recover from a
CRITICAL_ERROR_ABORT, the application should either be able to back up to the previous
operation or it should be prepared to discard data. The application might also wish to communicate
with the error handler to change the error recovery logic depending on where in the application thread
it is.

For example, a digital camera has an image stored in memory. It wants to open a file and dump the
image to a disk. To do this, it opens a file, writes to it several times and then closes it. If the card was
removed after the open but before the close, it must be re-inserted or the data will be lost. The strategy
here can be to either instruct the error handler not to allow the abort, or if the abort is accepted, the
application layer must be willing to either discard the image or to back up and open the file again (on a
new device) and then write the data and close.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION40

4.5 REPORT.C — Error Reporting Functions

Most of the time, the flash devices and the host system communicate without user knowledge. The user
only gets involved when the HDTK cannot determine whether to handle an error event such as writing
to the non-existing flash device, data corrupted, or Invalid File system, etc.

The user will be asked to inform the HDTK what it should do next. This error report process should be
coupled tightly with the Critical Error Handler so that all error events are monitored within the
handler.

4.5.1 Porting Requirements

The syntax of the error reporting function is defined as shown below:

SDVOID platform_report_error (INT16 error_number) User interaction.

4.6 RDWR.C — System Dependent I/O Accessing

In many environments, it is possible to perform hardware access through macros. The HDTK offers
several macros, SDREAD_DATA08, SDREAD_DATA16, SDREAD_DATA32, SDWRITE_DATA08,
SDWRITE_DATA16 and SDWRITE_DATA32, to form the basic read/write access to the system
hardware or device registers. The implementation of these macros is shown below:

In an I/O Mapped environment, the following macros are provided:

#define SDREAD_DATA08(X) (inpbyte((UINT16) (X)))
#define SDWRITE_ DATA08(X,Y) outpbyte((UINT16) (X),(UCHAR) (Y))

#if (WORD_ACCESS_ONLY) /* 16-bit interface */

#define SDREAD_DATA16(X) (inpword ((UINT16) (X)))
#define SDWRITE_DATA16(X,Y) outpword ((UINT16) (X), (UINT16) (Y))

#endif

In a Memory Mapped environment, the following macros are provided:

/* Read/Write register access */
#define SDREAD_DATA32(X) *((FPTR32) (X))
#define SDREAD_DATA16(X) *((FPTR16) (X))
#define SDREAD_DATA08(X) *((FPTR08) (X))

#define SDWRITE_DATA32(X, Y) (*((FPTR32) (X)) = (UINT32) (Y))
#define SDWRITE_DATA16(X, Y) (*((FPTR16) (X)) = (UINT16) (Y))
#define SDWRITE_DATA08(X, Y) (*((FPTR08) (X)) = (UINT08) (Y))

Note: The value of X (the address) comes from the register_file_address field in the device_control structure (see
atadrv.h). These value are loaded from the array io_mapped_addresses[] or mem_mapped_addresses[].
(See ioconst.c and the Configuring section of this user’s guide.)

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 41

4.6.1 Porting Requirements

In an I/O Mapped Mode, the following routines must be ported to match your platform.

UINT16 inpword(UINT16 address);
SDVOID outpword(UINT16 address, UINT16 data);
UCHAR inpbyte(UINT16 address);
SDVOID outpbyte(UINT16 address, UCHAR data);

The block data moves improve system performance. They are:

#if (WORD_ACCESS_ONLY)
SDVOID oem_in_words (FPTR16 p, UCOUNT words, FPTR16 dreg);
SDVOID oem_out_words (FPTR16 p, UCOUNT words, FPTR16 dreg);
#else
SDVOID oem_in_words (FPTR p, UCOUNT words, FPTR dreg);
SDVOID oem_out_words (FPTR p, UCOUNT words, FPTR dreg);
#endif

Where:

FPTR16 p: unsigned short SDFAR pointer to data buffer
FPTR p: unsigned char SDFAR pointer to data buffer
UCOUNT words: number of words to transfer
FPTR16 dreg,
FPTR dreg: This pointer has two different meanings:

- For I/O Mapped Mode, this refers to the controller structure
- For Memory Mapped Mode, this refers to the location offset 400h from the base address of the

common memory if the A10 address line is mapped. Otherwise, it is a pointer to the base address of the
common memory.

These routines are defined in the file RDWR.C.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION42

5.0 Peripheral Bus Device Driver
5.1 Introduction

The Peripheral Bus Device Driver is implemented as a storage device driver to support all SanDisk
products. The device driver has been designed to be very portable and should be easily adapted to any
environment that supports either Memory or I/O Mapped peripheral access, interrupt driven or polled
mode.

5.2 Configuring the Peripheral Bus Device Driver

When I/O Mapped Mode is preferred, USE_MEMMODE is set to zero. Two arrays are provided in
ioconst.c. These arrays, io_mapped_addresses[] and dev_interrupts[], house the I/O addresses and
interrupt numbers used by the low level driver software to control the peripheral controllers. The
description of these arrays follows:

const UINT16 io_mapped_addresses[n] I/O base address of register access region
const INT16 dev_interrupts[n] Device interrupt numbers

When Memory Mapped Mode is selected, USE_MEMMODE is set to one. Three arrays are used in
ioconst.c. These arrays are initialized from constant definitions in sdconfig.h. The description of these
arrays is shown below:

const ULONG mem_mapped_addresses[n] Linear base address of register access
region.

const UTINY FAR *mem_mapped_addresses_pointer[n] Pointer in the target memory map to the
linear system address space.

const INT16 dev_interrupts[n] Device interrupt numbers.

Note: Set dev_interrupt[n] to -1 to run that interface in polled mode. Define the constant USE_INTERRUPTS to
zero in sdconfig.h to globally disable device interrupts and eliminate all porting issues related to signaling
and interrupts.

For an example, look at ATA controllers in I/O Mapped Mode. The default configuration is I/O address
0x1F0, interrupt 14 for the primary device and I/O address 0x170, interrupt 15 for the secondary. They
are shown below:

io_mapped_addresses[0] = ATA_PRIMARY_IO_ADDRESS
io_mapped_addresses[1] = ATA_SECONDARY_IO_ADDRESS
dev_interrupts[0] = ATA_PRIMARY_INTERRUPT
dev_interrupts[1] = ATA_SECONDARY_INTERRUPT

When the ATA controller is configured as Memory Mapped Mode, the arrays are initialized with the
constants defined in SDCONFIG.H. They are shown below.

mem_mapped_addresses[0] = ATA_PRIMARY_MEM_ADDRESS
mem_mapped_addresses[1] = ATA_SECONDARY_MEM_ADDRESS
mem_mapped_addresses_pointer[0] = ATA_PRIMARY_MEM_ADDRESS
mem_mapped_addresses_pointer[1] = ATA_SECONDARY_MEM_ADDRESS
dev_interrupts[0] = ATA_PRIMARY_INTERRUPT
dev_interrupts[1] = ATA_SECONDARY_INTERRUPT

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 43

5.3 Peripheral Bus Device Driver Public Subroutines

The device driver in the HDTK supports different peripheral buses such as IDE, PCMCIA, SPI,
MultiMediaCard. The driver has a uniform interface across these buses. Each peripheral bus interface
differs by bus name only. The first three letters of the bus make the bus name. Each peripheral bus name
is defined as follows:

IDE For devices that comply with ATA specifications
PCM For PCMCIA devices
SPI For SPI devices
MMC For MultiMediaCard devices

There are eight functions for each peripheral bus. They are:

xxx_init
xxx_drive_open
xxx_drive_close
xxx_read
xxx_write
xxx_erase
xxx_read_serial

where xxx is the peripheral bus name.

The function prototypes of each peripheral bus are described below.

xxx_init Hardware initialization and data structure configuration.

xxx_drive_open Drive open routine.

This routine is called by devio_open() and by the error recovery code in
devio.c and chkmedia.c. It calls xxx_controller_open() to make sure the
controller is initialized and then resets the drive, performs diagnostics
and retrieves the drive geometry. This routine can be called either on
behalf of a drive mount operation or on behalf of recovery logic that
senses a drive re-insertion or power down cycle.

xxx_drive_close Closes down a drive.

This routine is only called by the PC based demo programs when they
exit. It restores the interrupt management scheme to what it was before
xxx_controller_init() was called.

Note that it is not necessary to implement this function in an embedded
system.

xxx_read Reads blocks of data from the device.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION44

xxx_write Writes blocks of data to the device.

This routine performs block I/O to and from the device. It is called by
devio_read() and devio_write() in devio.c. The controller structure
contains the flag ‘enable_mapping.’ If this flag is set a partition base is
added to the block number. This is the normal case. In special cases such
as reading or writing the partition table, the mapping flag is turned
off.

xxx_erase Pre-erases blocks on the device.

This routine performs a block pre-erase on the device. It is called by
devio_erase() in devio.c. The controller structure contains a the flag
‘enable_mapping.’ If this flag is set, a partition base is added to the
block number. This function is called by the File System when it erases
a file.

xxx_read_serial Gets the drive’s unique serial number.

This routine performs a procedure to read the serial number from the
drive. It is used by the check_media() functions (chkmedia.c) to detect
if a device has been swapped. Beside this serial number, the geometry
of the device is also returned.

For example, if the IDE interface is selected, the bus interface will have the following supported
routines:

ide_init
ide_drive_open
ide_drive_close
ide_read
ide_write
ide_erase
ide_read_serial

If the PCMCIA interface is selected, the bus interface will have the following supported routines:

pcm_init
pcm_drive_open
pcm_drive_close
pmc_read
pcm_write
pcm_erase
pcm_read_serial

The same concept also applies to the SPI and MultiMediaCard interfaces.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 45

6.0 System Internals
The FAT File System is widely accepted in industry and will continue to be supported for many years to
come. To take advantage of this, the HDTK offers a compatible FAT File System that allows the
media to be exchanged among many PC systems. There are many books that describe in detail how the
FAT file system works. Ray Duncan’s Advanced MS-DOS programming is particularly good. A brief
description follows, but a good DOS book is worth reviewing.

The file system consists of a parameter block (block zero) followed by of one or more identical File
Allocation Tables (FATs), the fixed size root directory and the data area. The data area is logically
broken up into clusters. A cluster is simply one or more contiguous sectors.

The FAT works as follows: Each entry in the FAT maps to a cluster in the heap. If the entry is zero, that
cluster is free. If the entry is a special magic number and is unlinked, it marks a bad cluster. Otherwise,
the entry contains the index number of the next cluster in the chain. A special terminator value ends the
chain.

A file or sub-directory consists of a directory entry plus the FAT index number of the beginning of the
chain of clusters for that object.

To access the contents of a file, you simply get the first cluster from the directory entry and read its
content from the heap area, then look in the FAT for the next entry in the chain. If the entry contains a
number less than the end of the file marker, read its contents from the heap and get the next cluster from
the FAT, and so on. Directory entries contain a file name, creation date and time, an attribute byte, a
size and a pointer to the first cluster (if there is one) reserved by the entry.

A sub-directory is a special case of a directory entry. The sub-directory attribute is set in the attribute
byte and its clusters contain more directory entries. Sub-directories can grow by claiming more clusters
from the heap. Every sub-directory contains two special entries ‘.’ and ‘..’. ‘..’ points to the first cluster
in the chain of the directory’s parent and ‘.’ points to the beginning of the sub-directory. The root
directory contains room for a fixed number of directory entries. The number is determined by the format
program and is stored in block zero.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION46

6.1 Important Data Structures for the FAT File System

DDRIVE This structure is initialized when a drive is mounted. It is shared by all tasks.
It contains the location of the FAT, the location of the root sector, the cluster
size, the disk size and several other drive geometry values. DDRIVE structure
also stores running information about the drive, including FAT swapping
information and internal hints about where to put new file blocks and how
much free space is left on the drive. DDRIVE structure is accessed often by low
level routines.

DOSINODE This structure is the exact image of a DOS directory entry. It is used as a
template while scanning directory blocks and as a destination when creating
directory entries. A directory entry can be converted to a FINODE structure and
worked within that form.

FINODE This is the central structure of the Host Developer’s Tool Kit. It contains the
DOSINODE information stored in host byte order plus information about its
own block and block offset (where it resides on the disk). It also contains
several elements that are used to control shared access to the directory entry.
This includes a LOCKOBJ structure, an opencount and a sharing mode flag. All
directory and file access routines eventually access the FINODE structure.
FINODE structures are shared by all tasks. Each in-use directory entry has one
FINODE structure in the shared FINODE pool, no matter how many times it is
being accessed by directory scans, or how many times it is open as a file. The
directory entry that a FINODE structure represents is uniquely determined by a
combination of drive structure pointer, block number and block offset.

DROBJ This is an abstract structure which tasks use to manage access to directories.
Unlike FINODE structures which are shared by all tasks, the DROBJ structure
is private to the task that allocated it and is not shared in any way. It contains
a pointer to the DDRIVE structure for the mounted volume, a pointer to the
FINODE structure of the directory, a pointer to a BLKBUFF structure in the
shared buffer pool, and a BLKINFO structure which is used to track the current
directory location. During directory searches, BLKBUFF structures attach to
the DROBJ as the directory at the FINODE is scanned and then the BLKINFO
structure scans the block. This makes the DROBJ a fully self-sufficient data
structure for scanning operations. Each open file structure points to a DROBJ
structure which represents the file’s directory entry. The file accesses the
entries FINODE through this linkage and it uses the DROBJ when updating
the directory entry on disk.

BLKBUFF This structure controls directory block buffering. It contains a 512 byte block
buffer and control fields. These include the block number, the DDRIVE structure
pointer, a lock flag for disallowing swaps while a buffer is being scanned and a
few flags for monitoring I/O status. All directory accesses are done through
block buffers. File I/O does not use them. BLKBUFFs are shared by all tasks in
the system.

PC_FILE This is the structure that controls file I/O. It contains open flags, a file pointer
and some additional pointers for optimizing file I/O. It also contains a pointer
to a DROBJ which represents the file’s directory entry. A PC_FILE structure is
assigned to each file descriptor in the system.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 47

DSTAT This is the Host Developer’s Tool Kit stat structure. It is loaded by calling
pc_gfirst and pc_gnext. These are equivalent to the DosFindFirst and
DosFindNext functions of DOS. The DSTAT structure contains the found
directory entry’s name, size, datestamp and attributes. The numeric values are
in host byte order.

FILE_SYSTEM_USER This structure contains the current working directory, default drive and current
errno for the current task. In single task environments or in environments where
these properties may be kept global, there is only one of these structures,
otherwise there is one such structure per task. See the Porting and
Configuration chapter for more information.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION48

6.2 System Internals Implementation

The system internals describe the above data structures and discuss how the HDTK Files System is
implemented. The data structures are intended for use with the FAT File System. Please ignore them if
the File System is not included. There are several important implementations that need to be
addressed. They are as follows:

1. FAT Management Code
2 Directory Block Management Code
3. Directory Object Management Code

The underlying algorithms and data structures associated with those implementations are described
below.

6.2.1 FAT Management Code

There are a dozen or so functions that manage the FAT. Most are involved in building up and releasing
chains but a few are specially optimized routines for allocating and finding contiguous blocks. These
routines enhance the performance of the file I/O package. Ultimately, all of these routines call either
pc_faxx to read values from the FAT or pc_pfaxx to write. These two routines then call either
pc_pfgword or pc_pfpword which provide these services through the algorithm.

The FAT swapping/buffer algorithm works as follows: Each time a FAT read or write is requested, the
block offset is calculated where that entry resides and pc_pfswap is called. Pc_pfswap returns a
pointer to a memory block where the disk block is cached, if writing, it also sets the blocks dirty bit so
it will be flushed when pc_flushfat is called. Pc_pfswap uses the FATSWAP structure in the DDRIVE
structure to manage swapping blocks in and out. First, it looks in data_array; if
data_array[block_offset] is non zero, it uses this as an index into the in-memory array of blocks and
returns a pointer to that location. Otherwise, there is a “page fault” condition and it must read the
block in. Assuming steady state, the cache area is already filled, so a block must be replaced. To do
this, all the dirty blocks are flushed and a block is replaced using a simple round robin algorithm. The
replaced block’s entry in data_array is set to zero and the new block is read from disk into the freed
memory block. This memory block’s offset is now placed in data_array[block_offset] and its address is
returned. If it is a write request, the block’s dirty bit is set. The routines that manipulate the FAT must
be protected from re-entry for all this to work. This is done throughout the Host Developer’s Tool Kit.
All FAT manipulation routines are in the file lowl.c .

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 49

6.2.2 Directory Block Management Code

The Host Developer’s Tool Kit uses a directory block buffer pool for all disk operations concerning
directories. This method eliminates excess disk traffic by providing a cache for the most frequently
accessed disk blocks. It also helps in multi-tasking implementations by allowing some API calls to
complete even though there may be an I/O backlog at the device driver. The buffering algorithm is
straight forward. Writes use the write through method. On reads, the buffer pool is searched for the
requested block. If the block is not found, a block is selected to be replaced based on an LRU (least
recently used) algorithm and the claim that the buffer for the block will be read. When available, the
driver initiates the read. There is also a block “alloc” call, this is similar to read but it does not
perform the disk I/O. This call is used when initializing a block during a directory create or extend.
The block returned by a read or alloc call is in a “locked” state, meaning it is excluded as a candidate for
swapping until it is unlocked. This allows scanning and modifying the buffers’ contents directly. There
is also code to manage simultaneous read access to blocks. This code handles both I/O waits and I/O
errors. Simultaneous write access does not occur. All block buffering routines are in the file block.c .

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION50

6.2.3 Directory Object Management Code

This code manages directory scanning, insertion and expansion. There are five basic entry points to this
code: pc_fndnode, pc_get_inode, pc_mknode, pc_rmnode and pc_update_inode. The first two are
concerned with finding directory entries and the latter three are used to create, delete and modify
them. These routines are used heavily by the API calls.

The scanning code works as follows: pc_fndnode, with the help of the string processing routines in
utils.c , parses a path specifier into its drive and path components. It selects the drive to search and the
top of the search tree (either root or cwd) based on these values. This results in a search root DROBJ.
With this in hand it “nibbles” the path string from left to right, each time getting a directory entry
name to search for. It then calls pc_get_inode to find the entry in the directory at DROBJ. Each time an
entry is found, the entry’s DROBJ becomes the new search root. This continues until the path string is
exhausted. The calls to pc_get_inode are bracketed with non-exclusive semaphores to defend against
simultaneous writing to the directory being searched.

The real work is done in pc_get_inode and its subordinate pc_findin. Keep in mind that pc_get_inode is
called often by the API as well. The API calls it when a directory entry is to be modified. To do this,
the directory it resides in (its parent) must be locked. So pc_fndnode is called to find its parent. The
parent’s FINODE structure is then locked and pc_findin is called to find the entry to be changed. After
the change is made, pc_update_inode flushes it to disk and the parent is released. Then, Pc_get_inode
grabs a new DROBJ structure and initializes its BLKINFO portion to point to the first block in the
subdirectory. Special code makes the root directory and subdirectories appear the same even though
their structures are quite different. The DROBJ is now handed off to pc_findin which uses it to search
for the entry. Pc_findin calls the block buffer code to read each block in the directory until it runs out of
blocks or it finds the entry being searched. Each time it reads an entry, it updates the entry index
counter in the DROBJ’s BLKINFO structure. When it hits a block boundary, it clears this counter,
increments the block counter and releases the buffer it was scanning. It then calls the buffer code for a
new block. Special code detects when a cluster boundary has been hit and adjusts the block counters as
needed. If the entry is not found, the routine returns empty handed; otherwise it must make sure that a
FINODE structure exists for this directory entry. First it calls pc_scani to see if the FINODE already
exists. If so, the FINODE’s open count is increased and the DROBJ’s FINODE pointer is linked to it.
Otherwise, the directory entry information is converted from the disk resident form to a similar
internal form and copied to a new FINODE structure. This structure is then put on the shared FINODE
list by pc_marki, so that other instances of pc_findin use this shared copy. The DROBJ now fully
represents the directory entry and may be used for further scanning and directory manipulation. If the
entry is a file, it may be used as the underlying DROBJ for a PC_FILE structure.

When the API functions po_open and pc_mkdir need to create a directory entry, they find the parent
with pc_fndnode, lock it and call pc_mknode to create the new entry. Pc_mknode allocates a DROBJ
and FINODE structure and initializes them. If creating a directory entry, it does some manipulations to
create the ‘.’ and ‘..’ entries. It then calls pc_insert_inode which scans the directory for a deleted or
unused entry (see pc_findin). If an entry is found it calls pc_update_inode to replace it with the new
one. If none was found, it calls the FAT management code to extend the directory chain and copies the
FINODE into the new cluster. (Root directories of course can not be extended.) Finally, the new FINODE
is placed in the shared FINODE pool with pc_marki.

Pc_rmnode is used by pc_rmdir and pc_unlink to remove directories and files respectively. These
routines first find the entry using pc_fndnode and pc_findin, then lock the parent FINODE before
making the call. Pc_rmnode checks the FINODE open count to be sure no one else is accessing it. Then it
calls the FAT management code to free the entry’s cluster chain and marks the entry deleted and calls
pc_update_inode to flush it to disk.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 51

Pc_update_inode uses the DROBJ’s BLKINFO structure and FINODE structure to write a directory
entry to disk. It first reads the appropriate block and then merges the FINODE data into the block,
converting it from host bytes order to Intel byte order. Finally, it writes the block back out. All
directory object code may be found in DROBJ.C .

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION52

7.0 API Introduction
The SanDisk Host Developer’s Tool Kit provides a comprehensive Applications Programmer’s
Interface (API) for accessing and manipulating data on storage devices. The API provides two methods
to achieve this goal:

• FAT File System: The combination of the File System and low level driver to manage data at
high level.

• Peripheral Bus Interface: The low level driver to directly access to the storage device.

7.1 File System

The File System Initialization and Close are two routines that must be called before entering and
exiting the application respectively. The initialization process must be done first before the File
System is used. The routine pc_system_init has to be called first to initialize internal memory buffers
for use by the rest of the routines. The closing process must be done after the File System is used. The
routine pc_system_close has to be called at the end to release internal memory buffers used by the File
System. The API is reentrant so multiple tasks may access the File System simultaneously.

Programmers with experience on DOS, Unix, Posix or any other “normal” operating system should have
very little trouble programming to the API since it is similar to those APIs. The HDTK purposely does
not match the Posix/Unix API. This is because in many cases the Host Developer’s Tool Kit co-resides
with another File System and we did not want to have symbol/constant clashes. If you are doing a large
port that would benefit from full compatibility call SanDisk Applications Engineering at 408-542-0405.

Note: The programs in the samples directory provide a very good framework for using the API. Please use them as
a resource for resolving any questions you might have.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 53

7.1.1 pc_cluster_size

Name:
pc_cluster_size - Return a drive’s cluster size.

Summary:
#include “sdapi.h”
UINT16 pc_cluster_size(INT16 driveno)

Description:
This function will return the cluster size of the mounted device named in the argument.

Returns:
The cluster size or zero if the device is not mounted.

See Also:
po_extend_file

Example:
Given a byte count, calculate by rounding up how many clusters to extend a file by and then extend
the file.

#include “sdapi.h”
UINT16 cluster_size;
UINT16 n_clusters;
cluster_size = pc_cluster_size(0);
n_clusters = (n_to_write + cluster_size - 1) / cluster_size;
po_extend_file (fd, n_clusters, PC_FIRST_FIT, preerase_region);

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION54

7.1.2 pc_diskabort

Name:
pc_diskabort - Abort operations on a disk.

Summary:
#include “sdapi.h”
SDVOID pc_diskabort(INT16 driveno)

Description:
If an application senses that there are problems with a disk, it should call pc_diskabort(“D:”).
This will cause all resources associated with that drive to be freed, but no disk writes will occur.
All file descriptors associated with the drive become invalid.

Returns:
Nothing

Example:
#include “sdapi.h”
if (ask_driver_if_there_is_a_problem(0))
{

pc_diskabort(0);
if (drive_clear_error(0))

pc_dskopen(0);
}

Note: It should not be necessary to call this routine. The card management software in chkmedia.c handles this
function.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 55

7.1.3 pc_dskclose

Name :
pc_dskclose - Flush buffers and free core.

Summary:
#include “sdapi.h”

SDBOOL pc_dskclose(INT16 driveno)

Description:
Given a path name containing a valid drive letter, flush the file allocation table and purge any
buffers or objects associated with the drive. Also, make sure all changed files are flushed to disk.

Returns:
Returns YES if successful.

Example:
#include “sdapi.h”
pc_dskclose(0);

Note: This function is useful when you know that the user will be removing the drive. In practice it is not absolutely
necessary to call this function since the card management code in chkmedia.c will free the resources for
you. See pc_dskflush.c

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION56

7.1.4 pc_diskflush

Name :
pc_diskflush - Flush the FAT and all files on a disk.

Summary:
#include “sdapi.h”
SDBOOL pc_diskflush(INT16 driveno)

Description:
Given a path containing a valid drive letter flush the file allocation table and all changed files
to the disk. After this call returns, the disk image is synchronized with the Host Developer’s Tool
Kit internal view of the volume.

Returns:
YES if the disk flush succeeded otherwise NO

Example:
#include “sdapi.h”

if (!pc_diskflush(0))
printf(“Flush operation failed \n”);

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 57

7.1.5 pc_format

Name:
pc_format - Format the device.

Summary:
#include “sdapi.h”
SDBOOL pc_format (INT16 driveno)

Description:
Given a string containing a valid drive letter, place a standard partition and volume structure on
the drive.

Returns:
Returns yes if the format succeeded, otherwise no.

Example:
#include “sdapi.h”
if (!pc_format (0))

printf (“could not format A: \n”);

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION58

7.1.6 pc_free

Name:
pc_free - Return count of free bytes on a disk.

Summary:
#include “sdapi.h”
ULONG pc_free(INT16 driveno)

Description:
Given a path containing a valid drive letter, count the number of free bytes on the drive.

Note: The first time this routine is called after pc_dskinit it must scan the whole file allocation table to calculate the
number of free clusters, this takes some time. Subsequent calls return immediately with a valid value.

Returns:
The number of bytes available on the disk.

Example:
#include “sdapi.h”

printf (“%lu Bytes Free on A:”, pc_free(0));

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 59

7.1.7 pc_fstat

Name :
pc_fstat - Obtain statistics on an open file.

Summary:
#include “sdapi.h”
INT16 pc_fstat(PCFD file_descriptor, STAT *pstat)

Description:
This routine uses the file descriptor in the first argument and fills in the stat structure as described
here.

st_dev - the entry’s drive number
st_mode - Type of File Supported

S_IFMT type of file mask
S_IFCHR character special (unused)
S_IFDIR directory
S_IFBLK block special (unused)
S_IFREG regular (a “file”)
S_IWRITE Write permitted
S_IREAD Read permitted.

st_rdev - the entry’s drive number
st_size - file size
st_atime - creation date in DATESTR format
st_mtime - creation date in DATESTR format
st_ctime - creation date in DATESTR format
t_blksize - optimal blocksize for I/O (cluster size)
t_blocks - blocks allocated for file
fattributes - the DOS attributes. This is non-standard but supplied if you want to look at

them.

Returns:
Returns zero if all went well otherwise it returns -1 and fs_user->p_errno is set to this value:
PENBADF - Invalid file descriptor

Example:
#include “sdapi.h”
struct stat st;
PCFD fd;

 fd = po_open(“A:\\MYFILE.TXT”, (PO_BINARY|PO_RDONLY), 0);
 if (pc_fstat(fd, &st)==0)
 {
 printf(“DRIVENO: %02d SIZE: %7ld DATE:%02d-%02d-%02d TIME:%02d:%02d\n”,
 st.st_dev,
 st.st_size, /* Size in bytes */
 (st.st_atime.date >> 5) & 0xF, /* Month */
 (st.st_atime.date & 0x1F), /* Day */
 80 +(st.st_atime.date >> 9) & 0xFF, /* Year */
 (st.st_atime.time >> 11) & 0x1F, /* Hour */
 (st.st_atime.time >> 5) & 0x3F); /* Minute */
 printf(“OPTIMAL BLOCK SIZE: %7ld FILE size (BLOCKS): %7ld\n”,
 st.st_blksize, st.st_blocks);
 printf(“MODE BITS :”);
 if (st.st_mode&S_IFDIR)

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION60

 printf(“S_IFDIR”);
 if (st.st_mode&S_IFREG)
 printf(“ | S_IFREG”);
 if (st.st_mode&S_IWRITE)
 printf(“ | S_IWRITE”);
 if (st.st_mode&S_IREAD)
 printf(“ | S_IREAD\n”);
 printf(“\n”);

}

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 61

7.1.8 pc_gdone

Name:
pc_gdone - Free pc_gnext and pc_gfirst resources.

Summary:
#include “sdapi.h”
SDVOID pc_gdone(DSTAT *statobj)

Description:
Given a pointer to a DSTAT structure that was set up by a call to pc_gfirst free internal elements
used by the statobj.

Note: You MUST call this function after you have finished calling pc_gfirst and pc_gnext.

Returns:
Nothing.

Example:
See pc_gnext

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION62

7.1.9 pc_get_attributes

Name :
pc_get_attributes - Get file attributes.

Summary:
#include “sdapi.h”
SDBOOL pc_get_attributes(TEXT *path, UINT16 *p_return);

Description:
Given a file or directory name, returns the directory entry attributes associated with the entry.
One or more of the following values will be or’ed together:
BIT Nemonic
0 ARDONLY
1 AHIDDEN
2 ASYSTEM
3 AVOLUME
4 ADIRENT
5 ARCHIVE

Returns:
Returns YES if successful otherwise it returns NO and fs_user->p_errno is set to this value:
PENOENT

Example:
#include “sdapi.h”

UTINY attribs;
if (pc_get_attributes(“A:\\COMMAND.COM”, &attribs)
{

if (attribs & ARDONLY)
printf(“File is %s\n”, “ARDONLY”);

if (attribs & AHIDDEN)
printf(“File is %s\n”, “AHIDDEN”);

if (attribs & ASYSTEM)
printf(“File is %s\n”, “ASYSTEM”);

if (attribs & AVOLUME)
printf(“File is %s\n”, “AVOLUME”);

if (attribs & ADIRENT)
printf(“File is %s\n”, “ADIRENT”);

if (attribs & ARCHIVE)
printf(“File is %s\n”, “ARCHIVE”);

}

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 63

7.1.10 pc_gfirst

Name:
pc_gfirst - Return the first entry in a directory.

Summary:
#include “sdapi.h”
SDBOOL pc_gfirst(DSTAT *statobj, TEXT *pattern)

Description:
Given a pattern which contains both a path and a search pattern, fills in the structure at statobj
with information about the file and sets up internal parts of statobj to supply appropriate
information for calls to pc_gnext.

Examples of patterns are:
“D:\USR\RELEASE\NETWORK*.C”
“BIN\UU*.*”
“MEMO_?.*”
“*.*”

Note: You must call pc_gdone to free internal resources if pc_gfirst succeeds.

Returns:
YES if a match was found otherwise returns NO.

See Also:
pc_gnext, pc_gdone, and pcls.c in the samples directory.

Example:
See PC_GNEXT

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION64

7.1.11 pc_gnext

Name:
pc_gnext - Return next entry in a directory.

Summary:
#include “sdapi.h”
SDBOOL pc_gnext(DSTAT *statobj)

Description:
Continues with the directory scan started by a call to pc_gfirst.

Returns:
YES if a match was found otherwise returns NO.

See Also:
pc_gnext and pc_gdone in the samples directory.

Example:
#include “sdapi.h”

if (pc_gfirst(&statobj,”A:\\dev*.c”))
{

do
{

/* print file name, extension and size */
printf(“%-8s.%-3s %7ld \n”,statobj.fname, statobj.fext, statobj.fsize);

} while (pc_gnext(&statobj));

/* Call gdone to free up internal resources */
pc_gdone(&statobj);

}

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 65

7.1.12 pc_isdir

Name:
pc_isdir - Test if a path is a directory.

Summary:
#include “sdapi.h”
SDBOOL pc_isdir(TEXT *path)

Description:
This is a simple routine that opens a path and checks if it is a directory, then closes the path. The
program cp2pc in the samples directory uses it to test if a destination is a directory. The same
functionality can be gotten by calling pc_gfirst and testing the DSTAT structure.

Returns:
YES if path points to a valid existing directory, otherwise returns NO.

Example:
#include “sdapi.h”

if (pc_isdir(path))
{

printf(“ This %s is a directory. \n”, path);
}

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION66

7.1.13 pc_mfile

Name:
pc_mfile - Build a complete path from file name and extension.

Summary:
#include “sdapi.h”
TEXT *pc_mfile(TEXT *to, TEXT *filename, TEXT *ext)

Description:
Builds a file from a file name and extension. The file name is stored
into the text string.

Returns:
The file name.

Example:
#include “sdapi.h”

TEXT to[128];
pc_mfile(to, filename, ext);

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 67

7.1.14 pc_mpath

Name
pc_mpath - Build a specific path name.

Summary:
#include “sdapi.h”
TEXT *pc_mpath(TEXT *to, TEXT *path, TEXT *filename)

Description:
Builds a specific path from a file and path name. The resulting name is stored
into the text string.

Returns:
The file name.

Example:
#include “sdapi.h”

TEXT to[128];
pc_mfile(to, filename, ext);

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION68

7.1.15 pc_mkdir

Name:
pc_mkdir - Create a subdirectory.

Summary:
#include “sdapi.h”
SDBOOL pc_mkdir(TEXT *path)

Description:
Creates a sub-directory in the path specified by path. Fails if a file or directory of the same name
already exists or if the directory component (if there is one) of path is not found.

Returns:
Returns YES if the subdirectory was created.
If NO is returned, fs_user->p_errno will be set to one of these values:

PENOENT - Directory not found
PEEXIST - File or directory already exists
PENOSPC - Write failed

Example:
#include “sdapi.h”
pc_mkdir(“\\USR\\LIB\\HEADER\\SYS”);

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 69

7.1.16 pc_mv

Name :
pc_mv - Rename a file or directory.

Summary:
#include “sdapi.h”
SDBOOL pc_mv(TEXT *oldpath, TEXT *newname)

Description:
Renames the file oldpath to newname. Fails if newname is invalid, already exists or oldpath is
not found. Pc_mv does not test if oldpath is a simple file. This makes it possible to rename
directories and volume labels.

Returns:
YES if the file was renamed. Or returns no if oldpath was not found.
If NO is returned, fs_user->p_errno will be set to one of these values:

PENOENT - oldpath not found
PEEXIST - newname already exists
PENOSPC - Write failed

Example:
#include “sdapi.h”
if (!pc_mv(“\\USR\\TXT\\LETTER.TXT”, “LETTER.OLD”))

printf(“Can’t rename LETTER.TXT\n”);

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION70

7.1.17 pc_system_init

Name:
pc_system_init - Initialize internal memory buffers and mount a drive.

Summary:
#include “sdapi.h”
SDBOOL pc_system_init(INT16 driveno);

Description:
Initializes the internal memory, searches for the device, checks for a valid drive to mount the
device.

Returns:
YES if successful.
NO if failure.

Example:
#include “sdapi.h”
if (!pc_system_init(0))
{

printf(“File System initialization failed. \n”);
return(NO);

}

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 71

7.1.18 pc_system_close

Name:
pc_system_close - Release internal memory buffers and dismount a drive.

Summary:
#include “sdapi.h”
SDBOOL pc_system_close(INT16 driveno);

Description:
Clears all File System data structures and unmounts a selected drive.

Returns:
YES if closing is successful.
NO if closing failed.

Example:
#include “sdapi.h”
if (!pc_system_close(0)
{

printf(“Unable to release all internal buffers. \n”);
return(NO);

}

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION72

7.1.19 pc_pwd

Name:
pc_pwd - Return the current working directory.

Summary:
#include “sdapi.h”
SDBOOL pc_pwd(TEXT *drive, TEXT *return_buffer)

Description:
Fills return_buffer with the full path name of the current working directory for the drive specified
in drive. If the drive points to an empty string (““) or an invalid drive letter, the current working
directory for the default drive is returned.

Note: Return buffer must contain enough space to hold the full path.

Returns:
YES if a valid path was returned in return_buffer.
Returns NO if the current working directory could not be found. The failure mode would be due to
either the fact that the drive is not mounted, or an I/O error occurred.

Example:
#include “sdapi.h”
TEXT pwd[EMAXPATH];
if (pc_pwd(“A:”, pwd))

printf (“Working dir is %s\n”, pwd);
else

printf (“Can’t find working directory. \n”);

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 73

7.1.20 pc_rmdir

Name:
pc_rmdir - Delete a directory

Summary:
#include “sdapi.h”
SDBOOL pc_rmdir(TEXT *path)

Description:
Deletes the directory specified in the path. Fails if path is not a directory, is read only or is not

empty.

Returns:
YES if the directory was successfully removed otherwise returns NO.
If NO is returned fs_user->p_errno will be set to one of these values:

PENOENT - Directory not found
PEACCES - Not a directory, not empty or in use
PENOSPC - Write failed

Example:
#include “sdapi.h”
if (!pc_rmdir(“D:\\USR\\TEMP”)

printf(“Can’t delete directory. \n”);

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION74

7.1.21 pc_set_attributes

Name :
pc_set_attributes - Set File Attributes

Summary:
#include “sdapi.h”
SDBOOL pc_set_attributes(TEXT *path, UINT16 attributes);

Description:
Given a file or directory name, sets the directory entry attributes associated with the entry.
One or more of the following values may be or’ed together
BIT Nemonic
0 ARDONLY
1 AHIDDEN
2 ASYSTEM
5 ARCHIVE

Returns:
Returns YES if successful, otherwise returns NO and fs_user->p_errno is set to one of these values:

PENOENT - Couldn’t find the entry
PENOSPC - Write failed

Example:
#include “sdapi.h”
UTINY attribs;

if (pc_get_attributes(“A:\\COMMAND.COM”, &attribs)
{

attribs |= ARDONLY|AHIDDEN
pc_set_attributes(“A:\\COMMAND.COM”, attribs);

}

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 75

7.1.22 pc_set_cwd

Name:
pc_set_cwd - Set current working directory

Summary:
#include “sdapi.h”
SDBOOL pc_set_cwd(TEXT *path)

Description:
Makes the path the current working directory. If the path contains a drive component, the current
working directory is changed for that drive. Otherwise, the current working directory is changed
for the default drive.

Returns:
Returns YES if the current working directory was changed otherwise returns NO.
If NO is returned fs_user->p_errno will be set to this value:

PENOENT - Directory not found

Example:
#include “sdapi.h”
if(!pc_set_cwd(“D:\\USR\\DATA\\FINANCE”))

printf(“Can’t change working directory. \n”);

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION76

7.1.23 pc_set_default_drive

Name:
pc_set_default_drive - Set the default drive

Summary:
#include “sdapi.h”
SDBOOL pc_set_default_drive(INT16 driveno)

Description:
Use this function to set the current default drive that will be used when a path does not contain a
drive letter.

Note: Before this function is called, the default is 0.

Returns:
NO if the drive is invalid or not mounted.

Example:
#include “sdapi.h”
if(!pc_set_default_drive(0))

printf(“Can’t change working drive\n”);

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 77

7.1.24 pc_stat

Name :
pc_stat - Obtain statistics on a path

Summary:
#include “sdapi.h”
INT16 pc_stat(TEXT *path, STAT *pstat)

Description:
This routine searches for the file or directory provided in the first argument.
If found it fills in the stat structure as described here:
st_dev - The entry’s drive number
st_mode - File types

S_IFMT type of file mask
S_IFCHR character special (unused)
S_IFDIR directory
S_IFBLK block special (unused)
S_IFREG regular (a “file”)
S_IWRITE Write permitted
S_IREAD Read permitted.

st_rdev - The entry’s drive number
st_size - file size
st_atime - creation date in DATESTR format
st_mtime - creation date in DATESTR format
st_ctime - creation date in DATESTR format
t_blksize - optimal blocksize for I/O (cluster size)
t_blocks - blocks allocated for file
fattributes - The DOS attributes. This is non-standard but supplied if you want to look at

them

Returns:
Returns zero if successful, otherwise -1 and fs_user->p_errno is set to one of these values:
PENOENT

Example:
#include “sdapi.h”
struct stat st;
if (pc_stat(“A:\\MYFILE.TXT”, &st)==0)
{

printf(“DRIVENO: %02d SIZE: %7ld DATE:%02d-%02d-%02d TIME:%02d:%02d\n”,
 st.st_dev,
 st.st_size, /* Size in bytes */
 (st.st_atime.date >> 5) & 0xF, /* Month */
 (st.st_atime.date & 0x1F), /* Day */
 80 +(st.st_atime.date >> 9) & 0xFF, /* Year */
 (st.st_atime.time >> 11) & 0x1F, /* Hour */
 (st.st_atime.time >> 5) & 0x3F); /* Minute */
 printf(“OPTIMAL BLOCK SIZE: %7ld FILE size (BLOCKS): %7ld\n”,
 st.st_blksize, st.st_blocks);
 printf(“MODE BITS :”);
 if (st.st_mode & S_IFDIR)
 printf(“S_IFDIR”);
 if (st.st_mode & S_IFREG)

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION78

 printf(“ | S_IFREG”);
 if (st.st_mode & S_IWRITE)
 printf(“ | S_IWRITE”);
 if (st.st_mode & S_IREAD)
 printf(“ | S_IREAD \n”);
 printf(“\n”);

}

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 79

7.1.25 pc_unlink

Name:
pc_unlink - Delete a file

Summary:
#include “sdapi.h”
SDBOOL pc_unlink(TEXT *path)

Description:
Deletes the file in name. Fails if not a simple file, if it is open, does not exist or is read only.

Returns:
YES if it successfully deleted the file.
If NO is returned fs_user->p_errno will be set to one of these values:

PENOENT - File not found
PEACCES - Is a directory or an open file
PENOSPC - Write failed

Example:
if (!pc_unlink(“B:\\USR\\TEMP\\TMP001.PRN”))

printf(“Cant delete file \n”)

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION80

7.1.26 po_close

Name:
po_close - Close a file

Summary:
#include “sdapi.h”
INT16 po_close(PCFD fd)

Description:
Closes the file and updates the disk by flushing the directory entry and file allocation table, then
frees all core associated with FD.

Returns:
Zero if all went well otherwise it returns -1.
If -1 is returned, fs_user->p_errno will be set to one of these values:

PENBADF - Invalid file descriptor
PENOSPC - I/O error occurred

See Also:
po_flush

Example:
#include “sdapi.h”
if (po_close(fd) < 0)

printf(“Error closing file:%i\n”,p_errno);

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 81

7.1.27 po_extend_file

Name:
po_extend_file - Contiguous File Extend

Summary:
#include “sdapi.h”
UINT16 po_extend_file(PCFD fd,

UINT16 n_clusters,
INT16 method,
SDBOOL preerase_region)

Description:
Given a file descriptor, n_clusters clusters and method, extends the file and updates the file size. If
n_clusters free contiguous clusters are not available, then the file is not extended and the size in
clusters of the largest contiguous block of free clusters is returned. If the pre-erase region is set, all
allocated sectors are pre-erased.

Note: The file pointer is unchanged.

Method may be one of the following:
PC_FIRST_FIT - The first chain >= n_clusters
PC_BEST_FIT - The smallest chain >= n_clusters
PC_WORST_FIT - The largest chain >= n_clusters

Note: PC_FIRST_FIT is significantly faster than the others.

Returns:
Returns n_clusters if the file was extended. Otherwise it returns the largest free chain available. If
n_clusters is not returned, the file was not extended. 0xFFFF is returned if an error occurred. If the
return value is 0xFFFF, n_clusters fs_user->p_errno will be set with one of the following:

PENBADF - File descriptor invalid or open read only
PENOSPC - I/O failure

Example:
Allocate a 100 Kbyte contiguous file, perform a data collect and write it out.
ULONG ltemp= 102400L;
UINT16 n_clusters;
UINT16 cluster_size;
INT16 i;
UTINY buffer[10240];

cluster_size = pc_cluster_size(“C:);
ltemp += cluster_size - 1;
n_clusters = ltemp / cluster_size;
if(po_extend_file(fd, n_clusters, PC_FIRST_FIT, 0) == n_clusters)
{

for (i = 0; i < 10; i++)
{

collect_10k(buffer);
po_write(fd, buffer, 10240);

}
}

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION82

7.1.28 po_flush

Name:
po_flush - Flush a file to disk

Summary:
#include “sdapi.h”
SDBOOL po_flush(PCFD fd)

Description:
Writes the file’s directory entry to disk and flushes the FAT. After this call completes, the on disk
view of the file is completely consistent with the in memory view. It is a good idea to call this
function periodically if a file is being extended. If a file is not flushed or closed and a power down
occurs, the file size will be wrong on disk and the FAT chains will be lost.

Returns:
Returns YES if flush succeeded.
If NO is returned, fs_user->p_errno will be set to one of these values:

PENBADF - Invalid file descriptor
PENOSPC - I/O error occurred

Example:
#include “sdapi.h”
if (po_flush(fd) < 0)

printf(“Error flushing file:%i\n”,p_errno);

See Also:
pc_dskflush()

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 83

7.1.29 po_lseek

Name:
po_lseek - Move file pointer

Summary:
#include “sdapi.h”
ULONG po_lseek(PCFD fd, INT32 offset, INT16 origin, INT16 *err_flag)

Description:
Moves the file pointer by offset bytes described by origin.
method may have the following values:

PSEEK_SET - Seek from beginning of file
PSEEK_CUR - Seek from the current file pointer
PSEEK_END - Seek from end of file

Attempting to seek beyond end of file puts the file pointer one byte past end of file.

Returns:
The new offset or -1 on error.
If -1 is returned, fs_user->p_errno will be set to one of these values:

PENBADF - File descriptor invalid
PEINVAL - Seek to negative file pointer
err_flag - 0 no error; 1 file not exist; -1 illegal file offset pointer

Example:
#include “sdapi.h”
record = rec_number * rec_size;
if (po_lseek (fd, record , PSEEK_SET, & err_flag) != record)

printf(“Cant find record %ld\n”, record);

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION84

7.1.30 po_open

Name:
po_open - Open a file

Summary:
#include “sdapi.h”
PCFD po_open(TEXT *path, UINT16 flag, UINT16 mode)

Description:
Opens the file for access as specified in a flag. If creating, use mode to set the access permissions.
Flag values are :

PO_BINARY - Ignored
PO_TEXT - Ignored
PO_RDONLY - Open for read only
PO_RDWR - Read/write access allowed.
PO_WRONLY - Open for write only
PO_CREAT - Create the file if it does not exist.
PO_EXCL - If flag has (PO_CREAT|PO_EXCL) and the file

already exists, fail and set fs_user->p_errno
to EEXIST.

PO_TRUNC - Truncate the file if it already exists
PO_NOSHAREANY - Fail if already open, fail if another open is tried.
PO_NOSHAREWRITE - Fail if already open for write. And fail if another

open for write is tried.
Mode values are:

PS_IWRITE - Write permitted
PS_IREAD - Read permitted. (Always true anyway)

Returns:
Returns a non-negative integer to be used as a file descriptor for calling po_read, po_write, po_seek,
po_flush, po_truncate, and po_close otherwise it returns -1 and fs_user->p_errno is set to:

PENOENT - File not found or path to file not found
PEMFILE - No file descriptors available (too many files open)
PEEXIST - Exclusive access requested but file already exists.
PEACCESS - Attempt to open a read only file or a special (directory)file.
PENOSPC - Create failed
PESHARE - Sharing error. Already open exclusive or attempting to open exclusive and

the file is already open.

Example:
#include “sdapi.h”
PCFD fd;
if (fd = po_open(“\\USR\\MYFILE”,

(PO_CREAT|PO_EXCL|PO_WRONLY),
PS_IWRITE) < 0)

printf(“Cant create file error:%i\n”, fs_user->p_errno)

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 85

7.1.31 po_read

Name:
po_read - Read from a file

Summary:
#include “sdapi.h”
UCOUNT po_read(PCFD fd, UCHAR *buf, UCOUNT count)

Description:
Attempts to read count bytes from the file at fd and place the data in buf. The file pointer is
updated.

Returns:
Returns the actual number of bytes read or 0xFFFF on error. If the return value is 0xFFFF fs_user-
>p_errno will be set to one of the following:

ENBADF - File descriptor invalid
PENOSPC - File I/O error

Example:
PCFD fd;
PCFD fd2;
fd = po_open(“FROM.FIL”, PO_RDONLY, 0);
fd2 =po_open(“TO.FIL”, PO_CREAT|PO_WRONLY, PS_IWRITE)
if (fd >= 0 && fd2 >= 0)
{

while (po_read(fd, buff, 512) ==512)
po_write(fd2, buff, 512);

}

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION86

7.1.32 po_truncate

Name:
po_truncate - Truncate a file

Summary:
#include “sdapi.h”
SDBOOL po_truncate(PCFD fd, LONG newsize)

Description:
Truncates the open file at fd to newsize. Any file blocks beyond newsize are freed and the file size is
adjusted. The file pointer is left at the new end of the file.

Returns:
Returns YES if po_truncate succeeded.
If NO is returned, fs_user->p_errno will be set to one of these values:

PENBADF - Invalid file descriptor or open read only
PENOSPC - I/O error occurred
PEINVAL - Newsize is invalid
PESHARE - The file is open with another handle. Truncate is not permitted of the file

is open more then one.

Example:
PCFD fd;
fd = po_open(“DATA.FIL”, PO_RDWR , 0);
if (fd > 0)

po_truncate(fd, 1024L);

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 87

7.1.33 po_write

Name:
po_write - Write to a file

Summary:
#include “sdapi.h”
UCOUNT po_write(PCFD fd, UCHAR *buf, UCOUNT bytes_to_write)

Description:
Attempts to write bytes_to_write from buf to the current file pointer of file at fd. The file pointer
is updated.

Returns:
Returns the number of bytes written or 0xFFFF on error. If the returned value is 0xFFFF, fs_user-
>p_errno will be set with one of the following:

PENBADF - File descriptor invalid or open read only
PENOSPC - Write failed because of no space or an I/O error.

Example:
PCFD fd;
PCFD fd2;
fd = po_open(“FROM.FIL”, PO_RDONLY, 0);
fd2 =po_open(“TO.FIL”, PO_CREAT|PO_WRONLY, PS_IWRITE)
if (fd >= 0 && fd2 >= 0)
{

while (po_read(fd, buff, 512) == 512)
po_write(fd2, buff, 512);

}

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION88

7.2 Peripheral Bus Interface

The bus interface is a generic interface that supports all current SanDisk products (PCMCIA, IDE, ATA)
and the newer products (SPI, MultiMediaCard). The bus interface is very simple and very easy to port
to different storage products. The HDTK currently supports four different bus interfaces IDE, PCMCIA,
SPI and MultiMediaCard. The bus protocol always begins with the first three letter of the bus type.
They are describes as follows.

xxx_init
xxx_drive_open
xxx_drive_close
xxx_read
xxx_write
xxx_erase
xxx_read_serial

where xxx is the bus type.

The following table is the summary of the bus interfaces.

Bus Type xxx
IDE ide

PCMCIA pcm
SPI spi

MultiMediaCard mmc

The bus protocol is described in detail in the following sections.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 89

7.2.1 xxx_init

Name:
xxx_init - Hardware configuration and set up internal information.

Summary:
#include “sdapi.h”
SDBOOL xxx_init(VOID);

Description: Hardware initialization process for a selected bus protocol.

Returns:
YES if successful
NO if failure

Example:
#include “sdapi.h”
if (!xxx_init())
{

printf(“Initialization process failed. \n”);
return(NO);

}

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION90

7.2.2 xxx_drive_open

Name:
xxx_drive_open - Initialize a device

Summary:
#include “sdapi.h”
SDBOOL xxx_drive_open(INT16 driveno);

Description: Initializes the device and sets up internal data structure.

Returns:
YES if successful
NO if failure

Example:
#include “sdapi.h”
INT16 driveno;
driveno = 0;
if (!xxx_drive_open(driveno))
{

printf(“ Failed to initialize the device %d. \n”, driveno);
return(NO);

}

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 91

7.2.3 xxx_drive_close

Name:
xxx_drive_close - Release internal buffer for a selected device

Summary:
#include “sdapi.h”
SDBOOL xxx_drive_close(INT16 driveno);

Description: Closes and releases internal structure on the selected device.

Returns:
YES if successful
NO if failure

Example:
#include “sdapi.h”
INT16 driveno;

driveno = 0;
if (!xxx_drive_close(driveno))
{

printf(“Unable to release the device %d \n”, driveno);
return(NO);

}

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION92

7.2.4 xxx_read

Name:
xxx_read - Read data from a select device

Summary:
#include “sdapi.h”
SDBOOL xxx_read(INT16 driveno, ULONG lba, UCHAR *buffer, UCOUNT no_blocks);

Description: Reads no_blocks data from a selected device beginning at sector LBA and stores
information into buffer.

Returns:
YES if successful
NO if failure

Example:
#include “sdapi.h”
INT16 driveno;
ULONG lba;
UCOUNT number_of_blocks;
UCHAR buffer[1024];
driveno = 0;
lba = 0L;
number_of_blocks = 2;
if (!xxx_read(driveno, lba, buffer, number_of_blocks))
{

printf(“ Failed to read from sector %ld \n”, lba);
return(NO);

}

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 93

7.2.5 xxx_write

Name:
xxx_write - Write data to a selected device

Summary:
#include “sdapi.h”
SDBOOL xxx_write(INT16 driveno, ULONG lba, UCHAR *buffer, UCOUNT no_blocks);

Description: Writes no_blocks of data to a selected device beginning at the sector LBA from the
buffer.

Returns:
YES if successful
NO if failure

Example:
#include “sdapi.h”
INT16 driveno;
ULONG lba;
UCOUNT number_of_blocks;
UCHAR buffer[2048];
driveno = 0;
lba = 1L;
number_of_blocks = 4;
if (!xxx_write(driveno, lba, buffer, number_of_blocks))
{

printf(“ Failed to write to sector %ld \n”, lba);
return(NO);

}

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION94

7.2.6 xxx_erase

Name:
xxx_erase - Erase data to a selected device

Summary:
#include “sdapi.h”
SDBOOL xxx_erase(INT16 driveno, ULONG lba, UCOUNT no_blocks);

Description: Erases no_blocks of data from a selected device beginning at the sector LBA.

Returns:

Example:
#include “sdapi.h”
INT16 driveno;
ULONG lba;
UCOUNT number_of_blocks;
driveno = 0;
lba = 0L;
number_of_blocks = 2;
if (!xxx_erase(driveno, lba, number_of_blocks))
{

printf(“ Failed to erase data beginning at sector %ld \n”, lba);
return(NO);

}

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 95

7.2.7 xxx_read_serial

Name:
xxx_read_serial - Get device geometry

Summary:
#include “sdapi.h”
SDBOOL xxx_read_serial(INT16 driveno, PDRV_GEOMETRY_DESC drv_geometry);

Description: Given a selected device, the device geometry is returned. If the request is not granted,
the drv_geometry fields are set to zero.

Returns:
YES if successful
NO if failure

Example:
#include “sdapi.h”
INT16 driveno;
DRV_GEOMETRY_DESC drv_geometry;
driveno = 0;
if (!xxx_read_serial(driveno, &drv_geometry))
{

printf(“ Failed to get the device %d geometry \n”, driveno);
return(NO);

}

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION96

8.0 Sample Utility Programs
8.1 Introduction

In this section, we provide some useful programs that you may use right out of the box or modify for your
purposes. Even if you don’t use these programs you should definitely study them before using the Host
Developer’s Tool Kit. Every API call is used in these programs and they all work, please take
advantage of them.

Along with the sample programs we have provided a few useful test programs and a tool to aid
conversion of ANSI ‘C’ programs to K&R ‘C’. In this section we took some liberties that were not taken
in the library, namely we do call some ANSI string handling functions without providing portable
versions of all of those functions. There aren’t too many and we hope it is not too much of an
inconvenience. Most of these tools require printf to link. The mini printf in the source directory is
adequate for these programs. The program regress.c is designed to be able to work without printf. This
should be used to test your port on deeply embedded systems. If a console of some sort is available to
you, the program tstsh.c is a very powerful tool for debugging and testing your port.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 97

8.2 CPTOSD

Name:
CPTOSD - Copy host files to the device with specific directory

Summary:
cptosd [-b] file file file ... destpath
-b = binary, don’t convert \n to \n\r

Description:
Copies the file(s) from the host to a PC destination path or filename. If the -b flag is asserted, files
are copied verbatim, otherwise MS-DOS style \n\r combinations are created from \n. If destpath is
a PC directory then the file(s) will be copied to that directory.
If MS-DOS is defined during compilation, binary copy mode is always used.
During compilation the HDTK tests for the MS-DOS predefined macro. If there, it builds for DOS.
Otherwise it builds for UNIX. The UNIX flavor is NeXT mach. Look for #ifdef MS-DOS to find
any portability issues.

Examples:
 DOS

 cptosd \usr*.c A:\usr\pvo\sources
 cptosd *.exe D:\usr\ebs\bin
 cptosd memo.txt C:memo.txt

 UNIX
 cptosd /usr/*.c A:\usr\sources
 cptosd -b *.dat D:\datafile
 cptosd memo.txt C:memo.txt

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION98

8.3 CPFRSD

Name:
CPFRSD - Copy DOS files to a host directory

Summary:
cpfrsd [-b] [-d] file destpath
-b = binary, don’t convert \n\r to \n
-d = the destination path is a directory, not
a full file spec. In this case a path specification will be created. This is not needed if file contains
wildcard characters.

Description:
Copies the file or wildcard expression to the destination path or filename. If the -b flag is asserted
files are copied verbatim, otherwise MS-DOS style \n\r combinations are converted to \n.
If MS-DOS is defined during compilation binary copy mode is always used.
During compilation the HDTK tests for the MS-DOS predefined macro. If there, it builds for DOS.
Otherwise we build for UNIX. The UNIX flavor is NeXT mach. Look for #ifdef MS-DOS to find
any portability issues.

Examples:
DOS

cpfrsd A:\source*.c C:\source
cpfrsd A:\source\main.c C:\source\main.c
cpfrsd -d A:\source\main.c C:\source
cpfrsd A:\source\ma?n.c C:\source

UNIX
cpfrsd “A:\source*.c” C:/source

 cpfrsd A:\source\main.c C:/source/main.c
 cpfrsd -d A:\source\main.c C:/source
 cpfrsd “A:\source\ma?n.c” C:/source

Known Bugs:
The program should take multiple input file specifications, which it does not. The -d flag does not
work. Test on the host to see if the destination is a directory instead of relying on the -d flag. Name .

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 99

8.4 SDLS

Name:
SDLS - Display directory information on the device

Summary:
sdls [path]
Default path is A:*.*

Description:
This program is similar to the DOS DIR command and the UNIX ls commands. It is simpler in that
it does not provide multiple sort and display options. Sdls calculates the free space on the device
and displays it after the display is complete.
This is a simple portable program. A lot of porters start with this program to test their port. The
feedback is very visual and it does not write to the disk.

Note: This program does not always follow the exact conventions that DOS and UNIX follow. It can sometimes be
confusing. If you are testing an initial port, you should first issue the SDLS command on a known file. Leave
wildcard checks until later. Also note that UNIX users should protect wildcards from shell expansion.

Examples:
SDLS C:*.BAT
AUTOEXEC.BAT 452 12-22-92 17:06
 1 File(s) 2611200 Bytes free
SDLS C:\MOUSE*.*
. . 0 <DIR> 06-30-92 13:21
.. . 0 <DIR> 06-30-92 13:21
MOUSE .COM 34295 07-26-91 08:10
MOUSE .SYS 34499 07-26-91 08:10
MWINST .EXE 60856 07-26-91 08:10
MWINST .SCR 9731 07-26-91 08:10
MWINST .CFG 1082 07-26-91 08:11
MTUTOR .EXE 39736 07-26-91 08:11
MTUTOR .SCR 18930 07-26-91 08:11
COMCHECK .EXE 16300 07-26-91 08:11
READ .ME 626 07-26-91 08:11
INSTALL .BAT 1400 07-26-91 08:11
 12 File(s) 2611200 Bytes free

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION100

8.5 SDMKD

Name:
SDMKD - Create a directory on the device

Summary:
sdmkd <path>

Description:
This program is similar to the DOS and UNIX MKDIR commands. It creates a directory.

Examples:
sdmkd a:\usr
sdmkd a:\usr\devt
sdmkd a:\usr\devt\source

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 101

8.6 SDRM

Name:
SDRM - Delete file(s) from a DOS directory

Summary:
sdrm <path>

Description:
This program is similar to the DOS DELETE and UNIX RM commands. It removes file(s) from a
directory.

Examples:
sdrm a:\usr\oldfile.c
sdrm a:\usr\temp*.c
sdrm a:\usr*.tmp

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION102

8.7 SDRMD

Name:
SDRMD - Remove a DOS sub-directory

Summary:
sdrmd <path>

Description:
This program is similar to the DOS and UNIX RMDIR commands. It removes a subdirectory if the
subdirectory is empty.

Examples:
sdrmd a:\usr\subdir
sdrmd a:\usr\subdir\subdir1
sdrmd a:\subdir

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 103

8.8 SDCAT

Name:
SDCAT - Displays a file’s contents

Summary:
sdcat <path>

Description:
This program is similar to the UNIX CAT command. It displays the contents of the specified file.

Example:
sdcat a:\usr\datafile

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION104

8.9 REGRESS

Name:
REGRESS - Stress Test Host Developer’s Tool Kit

Summary:
regress

Description:
This program performs two functions. It calls virtually all of the API routines plus it stress tests the
system for driver bugs and memory leaks. It works by repeatedly opening a disk and then entering
an inner loop which creates a directory and then creates N sub-directories below that. Finally, the
inner loop creates NUSERFILES files, writes to them, reads from them, seeks, truncates, closes,
renames and deletes them. Along the way it checks set current working directory and get working
directory. Finally the inner loop deletes all of the sub-directories it created and compares the
current disk free space to the free space before it started. These should be the same. After the inner
loop completes, the outer loop closes the drive and then reopens it to continue the test.
There are a few functions that do not get tested, they are:
 pc_gfirst
 pc_gnext
 pc_gdone
Not all modes of po_open and po_lseek are tested and your port is not tested in multitasking mode.
You may modify this program and run it in multiple threads if needed.
The following parameters may be changed:
USEPRINTF - Set this to zero to run completely quietly. If this is done you should set a

break point in regress_error to catch errors.
test_drive[] - The drive where the test will occur.
test_dir[] - The directory where the test will occur
INNERLOOP - The Number of times we run the inner loop
OUTERLOOP - The Number of times we run the outer loop
SUBDIRDEPTH- The depth of the tested subdirectories.
NSUBDIRS - The number of subdirectories below test_dir. Must be less then 26. Each of

these directories will have SUBDIRDEPTH subdirectories below it.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 105

8.10 TSTSH

Name:
TSTSH - Interactive Test Shell

Summary:
tstsh

Description:
This program provides an interactive shell for accessing Host Developer’s Tool Kit functions. It
provides a handy and relaxed method for testing your port. The test shell works only with the
device (drive letters for other system devices are not recognized). All commands are summarized
below.

Command Descriptions:
CAT - Display contents of a file

This command displays the contents of a file to the console.

Example:
Cat A:\use\ASCII\budget.txt

CD - Set or display working directory
This command sets the default directory if an argument is supplied,
otherwise it displays the current working directory.

Example:
CD - Display working directory
CD \usr\data - Change working directory

CLOSE - Close a random access file
This command closes a random access file that was opened with RNDOP. See
RNDOP for a discussion of random access files.

Example:
close 1 - Close random access file 1

Note: The disk must already be open. See DSKOPEN.

COPY - Copy a file to another.
This command copies the source file to the destination.

Example:
COPY A:FILE.DAT A:FILE2.DAT

DELETE - Delete a file.
This command will delete a file.

Example:
DELETE A:\FILE001.CHK

DIFF - Compare two files.
This command compares two files and prints whether or not they are the same.

Example:
DIFF A:FILE1.DAT A:FILE2.DAT

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION106

DIR - Print a directory listing.

Example:
Dir *.c

DSKSEL - Set default drive
This command set the default drive so that subsequent commands that do not
explicitly contain a drive letter will refer to this drive.

Example:
DSKSEL D:

FILLFILE - Create a file and fill it with a pattern.
This command creates a file and repeatedly fills it with a pattern. It is especially
useful when you wish to create some test files for copying, deleting, catting, etc. (i.e.,
when you first bring up a ramdisk version).

Example:
Create and fill the file file.dat with the pattern “THIS IS A TEST” 1000 times.
FILLFILE FILE.DAT “THIS IS A TEST” 1000

FORMAT - Format a device.
This command formats the device.

Example:
FORMAT A:

GETATTR - Print a file’s attributes.
This command calls the pc_get_attributes library routine and prints the results.

Example:
GETATTR FILE.DAT

HELP - Display all commands

Example:
HELP

LSTOPEN - Display all open random access files
This command lists all open random access files along with their file handles. This is
especially useful since after the initial OPEN all accesses are done via the handle, and
it is easy to forget which handle goes with which file.

Example:
LSTOPEN

MKDIR - Create a directory
This command creates a directory.

 Example:
MKDIR \USR\NEWDIR

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 107

QUIT - Exit the command shell
This command exits the command shell. You should first issue a close on all files and open
disks.

 Example:
QUIT

READ - Read and display a random access record
This command reads data from the random access file and prints its value to the console.
(See WRITE for how to write data to the file, SEEK for how to seek to a record in the file,
LSTOPEN to list all random access files by handle and, RNDOP for how to open a random
access file.)

 Example:
RNDOP \TEST\FILE 100- open(returns handle=0)
SEEK 0 0
WRITE 0 “This is record zero”
SEEK 0 1
WRITE 0 This is record one”
SEEK 0 0
READ 0 - This will print

 “This is record zero”
CLOSE 0

RENAME - Rename a file
This command will rename a FILE or directory.

 Example:
RENAME C:\TES\JOSUF.TXT JOSEPH.TXT

RMDIR - Remove directory
This command will remove an empty subdirectory.

 Example:
RMDIR \USR\THEDIR

RNDOP - Open a random access file
This routine will open or reopen a file for use by random access file I/O test commands
READ, WRITE and SEEK. It must be given the file name and the record size for the file.
The record size is stored internally and is used to pad write operations to the correct
width. (Record size should not exceed 512). Use CLOSE to close a file that was opened
with RNDOP and LSTOPEN to display all open files. RNDOP does not return the file
handle so use LSTOPEN. Note that the file handles are always returned 0, 1, 2, 3, etc.
Use this knowledge if you want to use random access files in a script.

Example:
RNDOP TESTFIL 200

SEEK - Seek to a record in a random access file.
This command seeks to a record number in a random access file. It takes a file handle and
a record number as an argument.

Example:
See READ for an example

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION108

SETATTR - Change a file’s attributes.
This command calls the pc_set_attributes library routine to change a file’s attributes

Example:
SETATTR FILE:DAT RDONLY*

The following values are valid for the attribute:
RDONLY
HIDDEN
SYSTEM
ANORMAL

STAT - Stat a file and print results.
This command calls the stat library routine and prints the results.

Example:
STAT A:FILE.DAT

WRITE - Write data to a random access file
This command writes data to the current record of a random access file. The data is filled
to the correct width (with spaces) internally. Multi word strings should be quoted.

Example:
See READ.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 109

9.0 Evaluating the Tool Kit in a PC Environment
Since no configuration or porting is necessary to use the Host Developer’s Tool Kit in the typical DOS
environment, using an Intel 365 compatible PCMCIA controller, you can readily experiment with the
system—before you start the port to your target hardware.

To run the tool kit software, perform the following steps:

• Exclude memory regions c800-cfff from use with your memory manager (e.g., in your config.sys
file, add “x=c800-cfff” to the device=emm386.exe statement).

• Remove the PCMCIA drivers from your config.sys file.

Note: The tool kit’s PCMCIA support makes use of IRQ10 for its management interrupt and 380-38F for its I/O
space. Although these shouldn’t cause a conflict in the typical environment, you can alter these in the
\HEADER\SDCONFIG.H file if necessary.

This reference design was developed using Microsoft C. You can easily experiment with the APIs, using
this compiler.

SanDisk Host Developer’s Tool Kit User’s Guide

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION110

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 111

Source Code License Agreement

Source Code License Agreement

112 SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION

Source Code License Agreement

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 113

SOURCE CODE LICENSE AGREEMENT

 This Source Code License Agreement (“Agreement”) is entered into as of
________________ by and between SanDisk Corporation, a Delaware corporation
(“Licensor”) and ___________________________________, a
___________________________ corporation (“Licensee”)

 1. Grant of License. Subject to the terms of this Agreement, Licensor grants
Licensee a non-exclusive, nontransferable, nonsublicensable (except as expressly allowed
herein), royalty-free right (the “License”) to:

(a) use, modify, adapt, and prepare derivative works of the SOFTWARE
(as defined in Attachment A), or have its contractors (who are bound by Section 2 of this
Agreement) do so on its behalf; and

(b) distribute the SOFTWARE and any modifications and derivative works
of the SOFTWARE created by Licensee only in object code form or as integrally incorporated
into Licensee products that use and are compatible with Licensor products. Licensee may
sublicense to third parties distribution rights for such Licensee products provided that any such
sublicense shall not provide source code or source documentation to the third party and
prohibits reverse engineering.

The foregoing License does not allow any sublicense, distribution or disclosure of
source code, source documentation or underlying ideas, algorithms or technology to any third
party (except a contractor described above) in any circumstance or manner and Licensee agrees
that it will not engage in any such sublicensing, disclosure or distribution.

2. Right of First Refusal. As partial consideration for the License granted to
Licensee by Licensor, Licensee hereby grants Licensor the right of first refusal set forth below to
be the exclusive provider all [flash memory cards (“Cards”)] required by Licensee products.
Licensee shall offer Licensor an opportunity to bid on Licensee’s Card requirements. If Licensee
elects not to enter into an agreement to purchase Cards from Licensor and Licensee begins
discussions with third parties with respect to the purchase of Cards, but prior to entering in to
any agreement to purchase Cards from any third party, Licensee shall notify Licensor of the
identity of such party and the terms and conditions the third party has made a bona fide
commitment to sell to Licensee and shall offer Licensor ten (10) days to accept or reject such
terms and conditions. Upon written rejection by Licensor, Licensee may enter into an agreement
with such third party but only on such same terms and conditions.

3. Confidentiality. Except as expressly and unambiguously allowed by this
Agreement, Licensee shall not use or disclose any SOFTWARE or related documentation,
technology, idea, algorithm or information except to the extent Licensee can document that it is
generally available (through no act of Licensee or its agents, contractors or the like) for use and
disclosure by the public without any charge or license. Licensee recognizes and agrees that there
is no adequate remedy at law for a breach of this Section 3, that such a breach would
irreparably harm Licensor and that Licensor would be entitled to equitable relief (including,
without limitations, injunctions) with respect to any such breach or potential breach in
addition to any other remedies

Source Code License Agreement

114 SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION

4. Termination of License. The License is effective until terminated. The License
will terminate automatically if Licensee fails to cure any material breach of this Agreement
within thirty (30)days of receiving notice of such breach. Upon termination, Licensee shall
immediately cease all use of the SOFTWARE and return or destroy all copies of the
SOFTWARE and all portions thereof and so certify to Licensor. Termination is not an exclusive
remedy and all other remedies will be available whether or not the License is terminated.
Except for the License, and except as otherwise expressly provided herein, the terms of the
Agreement shall survive termination.

5. Copyright Notices. Licensee agrees to include the Licensor’s copyright notice
that appears on or in the SOFTWARE on any documentation associated with any Licensee
product that includes the SOFTWARE or any modification or derivative thereof. No other
right or license with respect to any trademark, tradename or other designation is granted under
this Agreement.

 6. Warranty Disclaimer; Limitation of Remedies. THIS SOFTWARE IS
PROVIDED “AS IS” WITH NO WARRANTIES EXPRESSED OR IMPLIED, INCLUDING
WITHOUT LIMITATION WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE OR NON-INFRINGEMENT. LICENSEE BEARS ALL RISK OF
NON-PERFORMANCE, LOSS OF DATA AND OTHER PROBLEMS AND LICENSOR WILL
NOT BE LIABLE UNDER ANY CONTRACT, NEGLIGENCE, STRICT LIABILITY OR OTHER
THEORY FOR ANY DAMAGES INCLUDING, WITHOUT LIMITATION, DIRECT,
INCIDENTAL OR CONSEQUENTIAL DAMAGES OR COST OF PROCUREMENT OF
SUBSTITUTE GOODS, SERVICES OR TECHNOLOGY.

 7. Miscellaneous. The Agreement is not assignable or transferable by Licensee
without the prior written consent of Licensor; any attempt to do so shall be void. Notices under
this Agreement shall be sufficient only if in writing and delivered personally or mailed by
first-class, registered or certified US mail, postage prepaid to the respective addresses of the
parties as set forth in the signature block below (or such other address as a party may
designate). No failure to exercise, and no delay in exercising, on the part of either party, any
privilege, any power or any rights hereunder will operate as a waiver thereof, nor will any
single or partial exercise of any right or power hereunder preclude further exercise of any other
right hereunder. If any part of this Agreement shall be adjudged by any court of competent
jurisdiction to be invalid, such judgement will not affect or nullify the remainder of this
Agreement. This Agreement shall be governed by and construed under the laws of the State of
California and the United States without regard to conflicts of laws provisions thereof. The
prevailing party in any action to enforce this Agreement shall be entitled to recover costs and
expenses including, without limitation, attorney’s fees. Licensee agrees to comply with all
export laws, restrictions, national security controls and regulations of the United States or other
applicable foreign agency or authority, and not to export or re-export, or allow the export or re-
export of any SOFTWARE or any copy or direct product thereof in violation of any such
restrictions, laws or regulations, or to any Group D:1 or E:2 country (or any national of such
country) specified in the then current Supplement No. 1 to Part 740, or, in violation of the
embargo provisions in Part 746, of the U.S. Export Administration Regulations (or any successor
regulations or supplement), except in compliance with and with all licenses and approvals
required under applicable export laws and regulations, including without limitation, those of
the U.S. Department of Commerce. Any waivers or amendments shall be effective only if made
in writing by non-preprinted agreements clearly understood by both parties to be an amendment
or waiver and signed by a representative of both parties.
Both parties agree that this Agreement is the entire agreement and supersedes and cancels all
previous written and oral agreements and communications relating to the subject matter of this
Agreement.

Source Code License Agreement

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 115

LICENSOR SanDisk Corporation LICENSEE

By: By:

Name: Name:

Title: Title:

Date: Date:

Address: Address:

Source Code License Agreement

116 SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION

ATTACHMENT A

SOFTWARE:

The software program set forth below in object and source code form, together
with documentation provided by Licensor.

Product: SanDisk Host Developers Tool Kit , SDDK-01
Includes; SanDisk FAT/File System and ATA driver

Source Code License Agreement

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 117

ATTACHMENT A

SOFTWARE:

The software program set forth below in object and source code form, together
with documentation provided by Licensor.

Product: SanDisk Host Developers Tool Kit, SDDK-02
Includes: SanDisk FAT/File System, MultiMediaCard and SPI drivers

Source Code License Agreement

118 SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 119

SanDisk Sales Offices

SanDisk Worldwide Sales Offices

120 SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION

SanDisk Worldwide Sales Offices

SanDisk Host Developer’s Tool Kit User’s Guide Rev. 3 © 2000 SANDISK CORPORATION 121

SanDisk Worldwide Sales Offices
Americas
SanDisk Corporate Headquarters
140 Caspian Court
Sunnyvale, CA 94089-9820
408-542-0500
FAX 408-542-0503
http://www.sandisk.com

 Sales Offices

Western Region USA
408-542-0730
FAX 408-542-0403

Eastern Region USA & Canada
603-882-0888
FAX 603-882-2207

Central & Southern Region USA
614-760-3700
FAX 614-760-3701

Latin & South America
407-667-4880
FAX 407-667-4834

Europe
SanDisk GmbH
Karlsruher Str. 2C
D-30519 Hannover, Germany
49-511-8759185
FAX 49-511-8759187

SanDisk Northern Europe
Videroegaten 3 B
S-16440 Kista
Sweden
46-(0)8-75084-63
FAX 46-(0)8-75084-26

SanDisk Central Europe
Eutelis Plaz 3
D-40878 Ratingen
Germany
49-2102-999666
FAX 49-2102-999667

Japan
SanDisk K.K.
8F Nisso Bldg. 15
2-17-19 Shin-Yokohama, Kohoku-ku
Yokohama 222-0033, Japan
81-45-474-0181
FAX 81-45-474-0371

Asia/Pacific Rim
89 Queensway, Lippo Center
Tower II, Suite 4104
Admiralty, Hong Kong
852-2712-0501
FAX 852-2712-9385

To order SanDisk products directly from SanDisk,
call 408-542-0595.

