
Performance Motion Devices, Inc.
12 Waltham St.

Lexington, MA 02421

Navigator™ Motion Processor
Programmer’s Reference

Revision 1.2, December 2000

Navigator Motion Processor Programmer’s Reference
ii

NOTICE
This document contains proprietary and confidential information of Performance Motion Devices,
Inc., and is protected by federal copyright law. The contents of this document may not be disclosed
to third parties, translated, copied, or duplicated in any form, in whole or in part, without the express
written permission of PMD.
The information contained in this document is subject to change without notice. No part of this
document may be reproduced or transmitted in any form, by any means, electronic or mechanical,
for any purpose, without the express written permission of PMD.

Copyright 1998, 1999 by Performance Motion Devices, Inc.
Navigator and C-Motion are trademarks of Performance Motion Devices, Inc

Navigator Motion Processor Programmer’s Reference
iii

Warranty
PMD warrants performance of its products to the specifications applicable at the time of sale in
accordance with PMD's standard warranty. Testing and other quality control techniques are utilized
to the extent PMD deems necessary to support this warranty. Specific testing of all parameters of
each device is not necessarily performed, except those mandated by government requirements.
Performance Motion Devices, Inc. (PMD) reserves the right to make changes to its products or to
discontinue any product or service without notice, and advises customers to obtain the latest version
of relevant information to verify, before placing orders, that information being relied on is current
and complete. All products are sold subject to the terms and conditions of sale supplied at the time
of order acknowledgement, including those pertaining to warranty, patent infringement, and
limitation of liability.

Safety Notice
Certain applications using semiconductor products may involve potential risks of death, personal
injury, or severe property or environmental damage. Products are not designed, authorized, or
warranted to be suitable for use in life support devices or systems or other critical applications.
Inclusion of PMD products in such applications is understood to be fully at the customer's risk.
In order to minimize risks associated with the customer's applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent procedural hazards.

Disclaimer
PMD assumes no liability for applications assistance or customer product design. PMD does not
warrant or represent that any license, either express or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right of PMD covering or relating to any
combination, machine, or process in which such products or services might be or are used. PMD's
publication of information regarding any third party's products or services does not constitute PMD's
approval, warranty or endorsement thereof.

Navigator Motion Processor Programmer’s Reference
iv

Related Documents

Navigator Motion Processor User’s Guide (MC2000UG)

How to set up and use all members of the Navigator Motion Processor family.
Navigator Motion Processor Programmer’s Reference (MC2000PR)

Descriptions of all Navigator Motion Processor commands, with coding syntax and examples,
listed alphabetically for quick reference.

Navigator Motion Processor Technical Specifications
Four booklets containing physical and electrical characteristics, timing diagrams, pinouts, and pin
descriptions of each series:

MC2100 series, for brushed servo motion control (MC2100TS);
MC2300 series, for brushless servo motion control (MC2300TS);
MC2400 series, for microstepping motion control (MC2400TS);
MC2500 series, for stepping motion control (MC2500TS).

Navigator Motion Processor Developer’s Kit Manual (DK2000M)
How to install and configure the DK2000 developer’s kit PC board.

Navigator Motion Processor Programmer’s Reference
v

Table of Contents

Warranty.. iii

Safety Notice .. iii

Disclaimer... iii

Related Documents.. iv

Table of Contents.. v

1 The Navigator Family ... 7

2 Instruction Reference .. 9
2.1 How to use this reference ... 9

3 Instruction Summary Tables.. 119
3.1 Descriptions by Functional Category ... 119
3.2 Alphabetical Listing ... 123
3.3 Numeric Listing.. 125

Navigator Motion Processor Programmer’s Reference
vi

Navigator Motion Processor Programmer’s Reference
7

1 The Navigator Family

 MC2100 Series MC2300 Series MC2400 Series MC2500 Series

of axes 4, 2, or 1 4, 2 or 1 4, 2 or 1 4, 2, or 1
Motor type supported Brushed servo Brushless servo Stepping Stepping
Output format Brushed servo

(single phase)
Commutated (6-
step or sinusoidal)

Microstepping Pulse and
direction

Incremental encoder input √√√√ √√√√ √√√√ √√√√
Parallel word device input √√√√ √√√√ √√√√ √√√√
Parallel communication √√√√ √√√√ √√√√ √√√√
Serial communication √√√√ √√√√ √√√√ √√√√
Diagnostic port √√√√ √√√√ √√√√ √√√√
S-curve profiling √√√√ √√√√ √√√√ √√√√
Electronic gearing √√√√ √√√√ √√√√ √√√√
On-the-fly changes √√√√ √√√√ √√√√ √√√√
Directional limit switches √√√√ √√√√ √√√√ √√√√
Programmable bit output √√√√ √√√√ √√√√ √√√√
Software-invertable signals √√√√ √√√√ √√√√ √√√√
PID servo control √√√√ √√√√ - -
Feedforward (accel & vel) √√√√ √√√√ - -
Derivative sampling time √√√√ √√√√ - -
Data trace/diagnostics √√√√ √√√√ √√√√ √√√√
PWM output √√√√ √√√√ √√√√ -
Motion error detection √√√√ √√√√ √√√√ (with encoder) √√√√ (with encoder)
Axis settled indicator √√√√ √√√√ √√√√ (with encoder) √√√√ (with encoder)
DAC-compatible output √√√√ √√√√ √√√√ -
Pulse & direction output - - - √√√√
Index & Home signals √√√√ √√√√ √√√√ √√√√
Position capture √√√√ √√√√ √√√√ √√√√
Analog input √√√√ √√√√ √√√√ √√√√
User-defined I/O √√√√ √√√√ √√√√ √√√√
External RAM support √√√√ √√√√ √√√√ √√√√
Chipset part numbers MC2140 (4 axes)

MC2120 (2 axes)
MC2110 (1 axis)

MC2340 (4 axes)
MC2320 (2 axes)
MC2310 (1 axis)

MC2440 (4 axes)
MC2420 (2 axes)
MC2410 (1 axis)

MC2540 (4 axes)
MC2520 (2 axes)
MC2510 (1 axis)

Developer's Kit p/n's: DK2100 DK2300 DK2400 DK2500

Introduction

This manual describes the format of instructions supported by the Navigator
family of Motion Processors from PMD. These devices are members of PMD’s
second-generation motion processor family, which consists of 12 separate
products organized into 4 series.
Each of these devices are complete chip-based motion processors. They provide trajectory
generation and related motion control functions. Depending on the type of motor controlled they
provide servo loop closure, on-board commutation for brushless motors, and high speed pulse and

Navigator Motion Processor Programmer’s Reference
8

direction outputs. Together these products provide a software-compatible family of dedicated
motion processors that can handle a large variety of system configurations.
Each of these chips utilize a similar architecture, consisting of a high-speed DSP (Digital Signal
Processor) computation unit, along with an ASIC (Application Specific Integrated Circuit). The
computation unit contains special on-board hardware that makes it well suited for the task of motion
control.
Along with similar hardware architecture these chips also share most software commands, so that
software written for one chipset may be re-used with another, even though the type of motor may be
different.
Each chipset consists of two PQFP (Plastic Quad Flat Pack) ICs: a 100-pin Input/Output (I/O)
chip, and a 132-pin Command Processor (CP) chip.
The four different series in the Navigator family are designed for a particular type of motor or
control scheme. Here is a summary description of each series.

Family Summary

MC2100 Series (MC2140, MC2120, MC2110) – This series outputs motor commands in either
Sign/Magnitude PWM or DAC-compatible format for use with brushed servo motors, or with
brushless servo motors having external commutation.

MC2300 Series (MC2340, MC2320, MC2310) – This series outputs sinusoidally commutated
motor signals appropriate for driving brushless motors. Depending on the motor type, the output is a
two-phase or three-phase signal in either PWM or DAC-compatible format.

MC2400 Series (MC2440, MC2420, MC2410) – This series provides microstepping signals for
stepping motors. Two phased signals per axis are generated in either PWM or DAC-compatible
format.

MC2500 Series (MC2540, MC2520, MC2510) – These chipsets provide high-speed pulse and
direction signals for stepping motor systems.

Navigator Motion Processor Programmer’s Reference
9

2 Instruction Reference

2.1 How to use this reference
This document is in two parts: first, a detailed description of all host instructions, and second, a set
of summary tables listing the instructions by functional group, alphabetically by instruction
mnemonic, and numerically by hexadecimal code.
In the reference section, instructions are arranged alphabetically, except that all "Set/Get" pairs (for
example, SetVelocity and GetVelocity) are described together. Each description begins on a new
page; most occupy no more than a page. The page is organized as follows:
Name The instruction mnemonic is shown at the left, its hexadecimal code at the right.
Syntax The instruction mnemonic and its required arguments are shown with all

arguments separated by spaces.
Arguments There are two types of arguments: encoded-field and numeric.
 Encoded-field arguments are packed into a single 16-bit data word, except for

axis, which occupies bits 11-8 of the instruction word. The Name of the
argument is that shown in the generic syntax. Instance mnenomic used to
represent the data value. Encoding is the value assigned to the field for that
instance.

 For numeric arguments, the parameter Value, the Type (signed or unsigned
integer) and Range of acceptable values are given. Numeric arguments may
require one or two data words. For 32-bit arguments, the high-order part is
transmitted first.

Buffered Certain parameters and other data written to the chipset are buffered, that is, they
are not acted upon until the next Update or MultiUpdate command is executed.
These parameters are identified by the word buffered in the instruction heading.

Packet structure This is a graphic representation of the 16-bit words transmitted in the packet: the
instruction, which is identified by its name, followed by 1, 2, or 3 data words. Bit
numbers are shown directly below each word. For each field in a word, only the
high and low bits are shown. For 32-bit numeric data, the high-order bits are
numbered from 31 to 16, the low-order bits from 15 to 0.

 The hex code of the instruction is shown in boldface.
 Argument names are shown in their respective words or fields.
 For data words, the direction of transfer—read or write—is shown at the left of

the word's diagram.
 Unused bits are shaded. In data words and instructions sent (written) to the

motion processor, all unused bits must be 0.
Description Describes what the instruction does and any special information relating to the

instruction.
Restrictions Describes the circumstances in which the instruction is not valid, that is, when it

should not be issued. For example, velocity, acceleration, deceleration, and jerk
parameters may not be issued while an S-curve profile is being executed.

see Refers to related instructions.

Navigator Motion Processor Programmer’s Reference
10

AdjustActualPosition F5h

Syntax AdjustActualPosition axis position

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 Type Range Scaling Units
 position signed 32 bits -231 to 231-1 unity counts|steps

Packet structure AdjustActualPosition

 0 axis F5h
 15 12 11 8 7 0

 First data word
write position (high-order part)

 31 16
 Second data word

write position (low-order part)
 15 0

Description The position specified as the parameter to AdjustActualPosition is summed with

the actual position register (encoder position) for the specified axis. This has the
effect of adding or subtracting an offset to the current actual position. At the same
time, the current commanded position is replaced by the new actual position value
minus the current actual position error. This prevents a servo "bump" when the new
axis position is established. The destination position (see SetPosition) is also
modified by this amount so that no trajectory motion will occur when the update
instruction is issued. In effect, this instruction establishes a new reference position
from which subsequent positions can be calculated. It is commonly used to set a
known reference position after a homing procedure.
Note: On the MC2400 and MC2500 series, the current actual position error is
zeroed.
AdjustActualPosition takes effect immediately, it is not buffered.

Restrictions

see

GetPositionError; GetActualVelocity, Set/GetActualPositionUnits,
Set/GetActualPosition

Navigator Motion Processor Programmer’s Reference
11

ClearInterrupt ACh

Syntax ClearInterrupt

Arguments none

Packet structure ClearInterrupt

 0 ACh
 15 8 7 0

Description ClearInterrupt resets the HostInterrupt signal to its inactive state. If interrupts are

still pending, the HostInterrupt line will return to its active state within one cycle. It
is used after an interrupt has been recognized and processed by the host. This
command does not affect the Event Status Register. If this command is executed
when no interrupts are pending it has no effect.

Restrictions

see GetInterruptAxis, Set/GetInterruptMask

Navigator Motion Processor Programmer’s Reference
12

ClearPositionError buffered 47h

Syntax ClearPositionError axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

Packet structure ClearPositionError

 0 axis 47h
 15 12 11 8 7 0

Description ClearPositionError sets the current profile's commanded position equal to the

actual position (encoder input), thereby clearing the position error for the specified
axis. This command can be used when the axis is at rest, or when it is moving. If
it is used when the axis is moving the host should be aware that the trajectory
destination position (used in trapezoidal and s-curve modes) is not changed by this
command.

Restrictions ClearPositionError is a buffered command. The new value set will not take effect
until the next Update or MultiUpdate instruction is entered.
This command cannot be executed while the chip is performing an s-curve profile.

see GetPositionError, MultiUpdate, Set/GetPositionErrorLimit, Update

Navigator Motion Processor Programmer’s Reference
13

GetActivityStatus A6h

Syntax GetActivityStatus axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

Returned data status see below

Packet structure GetActivityStatus

 0 axis A6h
 15 12 11 8 7 0

 Data
read

 15 13 12 11 10 9 8 7 6 5 3 2 1 0

Description GetActivityStatus reads the 16 bit activity status register for the specified axis.

Each of the bits in this register continuously indicate the state of the chipset
without any action on the part of the host. There is no direct way to set or clear the
state of these bits, since they are controlled by the chip set.
The following table shows the encoding of the data returned by this command.

Name Bit Number Description
Phasing initialized 0 Set to 1 if phasing is initialized

(MC2300/MC2800 series only)
At maximum
velocity

1 Set to 1 when the trajectory is at maximum
velocity. This bit is determined by the
trajectory generator, not the actual encoder
position.

Tracking 2 Set to 1 when the axis is within the
tracking window

Current profile
mode

3-5 Contains trajectory mode encoded as
follows:
bit 5 bit 4 bit 3 Profile Mode
0 0 0 trapezoidal
0 0 1 velocity contouring
0 1 0 s-curve
0 1 1 electronic gear

reserved 6 not used, may be 0 or 1
Axis settled 7 Set to 1 when the axis is settled
Motor on/off 8 Set to 1 when motor mode is on, 0 when

off.
Position capture 9 Set to 1 when a value has been captured

by the high speed position capture
hardware but has not yet been read. The
GetCaptureValue command must be
executed before another capture can occur.

In-motion 10 Set to 1 when the trajectory generator is
executing a profile on the axis.

In positive limit 11 Set to 1 when the positive limit switch is
active

Navigator Motion Processor Programmer’s Reference
14

Name Bit Number Description
In negative limit 12 Set to 1 when the negative limit switch is

active

Profile segment 13-15 Only used during S-curve profile mode.
Contains value of 0 when the profile is at
rest. Contains phase number 1-7 when
profile is in motion.

Restrictions

see GetEventStatus, GetSignalStatus

Navigator Motion Processor Programmer’s Reference
15

GetActualVelocity ADh

Syntax GetActualVelocity axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

Returned data Type Range Scaling Units
 velocity signed 32 bits -231 to 231-1 1/216 counts/cycle

Packet structure GetActualVelocity

 0 axis ADh
 15 12 11 8 7 0

 First data word
read Actual velocity (high-order part)

 31 16
 Second data word

read Actual velocity (low-order part)
 15 0

Description GetActualVelocity reads the current actual velocity for the specified axis. This

value is the result of the last encoder input, so it will be accurate to within one
cycle.
Scaling example: If a value of -1,234,567 is retrieved by the GetActualVelocity
command (high word: 0FFEDh, low word: 2979h) this corresponds to a velocity
of -1,234,567/65,536 or -18.8380 counts/cycle.

Restrictions

see Set/GetActualPosition

Navigator Motion Processor Programmer’s Reference
16

GetCaptureValue 36h

Syntax GetCaptureValue axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

Returned data Type Range Scaling Units
 captured

position
signed 32 bits -231 to 231-1 unity counts

Packet structure GetCaptureValue

 0 axis 36h
 15 12 11 8 7 0

 First data word
read captured position (high-order part)

 31 16
 Second data word

read captured position (low-order part)
 15 0

Description GetCaptureValue returns the contents of the Position Capture Register for the

specified axis. This command also resets the capture hardware to allow another
capture to occur.

Restrictions

see Set/GetCaptureSource

Navigator Motion Processor Programmer’s Reference
17

GetChecksum F8h

Syntax GetChecksum

Returned data Type
 checksum unsigned 32 bits

Packet structure GetChecksum

 0 F8h
 15 8 7 0

 First data word
read Checksum (high-order part)

 31 16
 Second data word

read Checksum (low-order part)
 15 0

Description GetChecksum reads the chips internal 32-bit checksum value. The value should be

12345678 (hex) for a correctly manufactured chipset.

Restrictions

see

Navigator Motion Processor Programmer’s Reference
18

GetCommandedAcceleration A7h

Syntax GetCommandedAcceleration axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

Returned data Type Range Scaling Units
 acceleration signed 32 bits -231 to 231-1 1/216 counts/cycle2

Packet structure GetCommandedAcceleration

 0 axis A7h
 15 12 11 8 7 0

 First data word
read acceleration (high-order part)

 31 16
 Second data word

read acceleration (low-order part)
 15 0

Description GetCommandedAcceleration returns the current commanded acceleration value

for the specified axis. Commanded acceleration is the instantaneous acceleration
value output by the trajectory generator.
Scaling example: If a value of 114,688 is retrieved using this command then this
corresponds to 114,688/65,536 = 1.750 counts/cycle2 acceleration value.

Restrictions This command functions when the profile mode is set to Trapezoidal, S-curve, or
Velocity Contouring. It does not function when the profile mode is set to electronic
gearing.

see GetCommandedPosition, GetCommandedVelocity

Navigator Motion Processor Programmer’s Reference
19

GetCommandedPosition 1Dh

Syntax GetCommandedPosition axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

Returned data Type Range Scaling Units
 position signed 32 bits -231 to 231-1 unity counts

Packet structure GetCommandedPosition

 0 axis 1Dh
 15 12 11 8 7 0

 First data word
read position (high-order part)

 31 16
 Second data word

read position (low-order part)
 15 0

Description GetCommandedPosition returns the current commanded position for the specified

axis. Commanded position is the instantaneous position value output by the
trajectory generator.
This command functions in all profile modes.

Restrictions

see GetCommandedAcceleration, GetCommandedVelocity

Navigator Motion Processor Programmer’s Reference
20

GetCommandedVelocity 1Eh

Syntax GetCommandedVelocity axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

Returned data Type Range Scaling Units
 velocity signed integer -231 to 231-1 1/216 counts/cycle

Packet structure GetCommandedVelocity

 0 axis 1Eh
 15 12 11 8 7 0

 First data word
read velocity (high-order part)

 31 16
 Second data word

read velocity (low-order part)
 15 0

Description GetCommandedVelocity returns the current commanded velocity value for the

specified axis. Commanded velocity is the instantaneous velocity value output by
the trajectory generator.
Scaling example: If a value of -1,234,567 is retrieved using this command (FFEDh
in high word, 2979h in low word) then this corresponds to -1,234,567/65,536 = -
18.8380 counts/cycle velocity value.
This command functions in all profile modes.

Restrictions

see GetCommandedAcceleration, GetCommandedPosition

Navigator Motion Processor Programmer’s Reference
21

GetCurrentMotorCommand 3Ah

Syntax GetCurrentMotorCommand axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

Returned data Type Range Scaling Units
 motor output

command
signed 16 bits -215 to 215-1 100/215 % output

Packet structure GetCurrentMotorCommand

 0 axis 3Ah
 15 12 11 8 7 0

 First data word
read motor output command

 15 0

Description GetCurrentMotorCommand returns the current motor output command for the

specified axis. In closed-loop mode, this is the output of the servo filter; in open-
loop mode it is the contents of the motor output command register.
Scaling example: To convert the retrieved value to units of % of full scale motor
output multiply by 100/32,768. For example if the value -123 is retrieved by the
GetCurrentMotorCommand, this represents -123*100/32,768 or -.3754 % of full
scale output.

Restrictions This command is not available on the MC2500 chipset.

see Set/GetMotorCommand

Navigator Motion Processor Programmer’s Reference
22

GetDerivative (Servo products only) 9Bh

Syntax GetDerivative axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

Returned data Type Range Scaling Units
 derivative signed 16 bits -215 to 215-1 unity counts/cycle

Packet structure GetDerivative

 0 axis 9Bh
 15 12 11 8 7 0

 Data
read derivative

 15 0

Description GetDerivative returns the derivative of the current position error as calculated by

the servo filter. The derivative value is defined as the previous position error
subtracted from the current position error.
See SetDerivativeTime for details on setting the derivative sampling time.

Restrictions This value is available only when the chipset is in closed-loop operation.

This command is not valid on the MC2400 and MC2500.

see GetIntegral, Set/GetDerivativeTime

Navigator Motion Processor Programmer’s Reference
23

GetEventStatus 31h

Syntax GetEventStatus axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

Returned data see below

Packet structure GetEventStatus

 0 axis 31h
 15 12 11 8 7 0

 Data
read

 15 14 13 12 11 10 8 8 7 6 5 4 3 2 1 0

GetEventStatus reads the event register for the specified axis.
The following table shows the encoding of the data returned by this command.

Name Bit(s) Description
Motion complete 0 Set to 1 when motion is completed.

SetMotionCompleteMode determines if this bit
is based on the trajectory generator position
or the encoder position.

Wrap-around 1 Set to 1 when the actual (encoder) position
wraps from maximum allowed position to
minimum or vice versa

Breakpoint 1 2 Set to 1 when breakpoint 1 is triggered
Capture received 3 Set to 1 when a position capture occurs
Motion error 4 Set to 1 when a motion error occurs
In positive limit 5 Set to 1 when the axis enters a positive limit

switch condition
In negative limit 6 Set to 1 when the axis enters a negative limit

switch condition
Instruction error 7 Set to 1 when instruction error occurs
reserved 8-10 Not used, may be 0 or 1.
Commutation error 11 Set to 1 when a commutation error occurs
reserved 12-13 Not used, may be 0 or 1.
Breakpoint 2 14 Set to 1 when breakpoint 2 is triggered
reserved 15 Not used, may be 0 or 1.

Description

Restrictions All of the bits in this status word are set by the chipset and cleared by the host. To

clear these bits use the ResetEventStatus command.

see GetActivityStatus, GetSignalStatus

Navigator Motion Processor Programmer’s Reference
24

GetHostIOError A5h

Syntax GetHostIOError

Arguments none

Returned data Name Instance Encoding
 error code No error

Processor Reset
Invalid instruction
Invalid axis
Invalid parameter
Trace running
reserved
Block out of bounds
Trace buffer zero
Bad serial checksum
Not primary port
Invalid negative value
Invalid parameter change
Invalid move after limit condition
Invalid move into limit

0
1
2
3
4
5
6
7
8
9
Ah
Bh
Ch
Dh
Eh

Packet structure GetHostIOError

 0 A5h
 15 8 7 0

 Data
read error code

 15 4 3 0

Description GetHostIOError returns the code for the last Host I/O error, then resets to 0

both the error and the Host I/O bit in the Status-Read word. Generally this
command is issued only after the Host I/O error bit in the Status-read word
indicates there was an I/O error.

Restrictions

see GetEventStatus

Navigator Motion Processor Programmer’s Reference
25

GetIntegral (Servo products only) 9Ah

Syntax GetIntegral axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

Returned data Type Range Scaling Units
 integral signed 32 bits -231 to 231-1 1/28 count*cycles

Packet structure GetIntegral

 0 axis 9Ah
 15 12 11 8 7 0

 First data word
read Integrated position error (high-order part)

 31 16
 Second data word

read Integrated position error (low-order part)
 15 0

Description GetIntegral returns the current integrated position error of the servo filter for the

specified axis. GetIntegral can be used to monitor loading on the axis, because
changes in the axis loading can be reflected in the value of the integration limit.
Scaling example:
If a constant position error of 100 counts is present for 256 cycles than the total
accumulated integral value will be 100 (100*256/256). Alternatively a returned
value of 1,000 indicates a total stored value of 256,000 count*cycles (1,000*256).

Restrictions The integrated position error is available only when the chipset is in closed-loop
mode (SetMotorMode command).

This command is not valid on the MC2400 and MC2500.

see GetDerivative, Set/GetIntegrationLimit

Navigator Motion Processor Programmer’s Reference
26

GetInterruptAxis E1h

Syntax GetInterruptAxis

Arguments none

Returned data Name Instance Encoding
 axisMask Axis1

Axis2
Axis3
Axis4

1
2
4
8

Packet structure GetInterruptAxis

 0 E1h
 15 8 7 0

 Data
read axisMask

 15 4 3 0

Description GetInterruptAxis returns a field which identifies all axes with pending interrupts.

Axis numbers are assigned to the low-order four bits of the returned word; bits
corresponding to interrupting axes are set to 1. If the host interrupt signal has not
been set, the returned word is 0.

Restrictions

see ClearInterrupt, Set/GetInterruptMask

Navigator Motion Processor Programmer’s Reference
27

GetPhaseCommand (MC2300, MC2400 and MC2800 only) EAh

Syntax GetPhaseCommand axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

Returned data phase PhaseA
PhaseB
PhaseC

0
1
2

 Type Range Scaling Units
 motor

command
signed 16 bit -215 to 215-1 100/215 % output

Packet structure GetPhaseCommand

 0 axis EAh
 15 12 11 8 7 0

 First data word
write 0 phase

 15 3 2 0
 Second data word

read motor command
 15 0

Description GetPhaseCommand returns the value of the current motor output command for

phase A, B, or C of the specified axis. These are the phase values directly output to
the motor after commutation.
Scaling example:
If a value of -4,489 is retrieved (EE77h) for a given axis and phase then this
corresponds to -4,489*100/32,768 = -13.7 % of full-scale output.

Restrictions

see InitializePhase, Set/GetNumberPhases

Navigator Motion Processor Programmer’s Reference
28

GetPositionError 99h

Syntax GetPositionError axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

Returned data Type Range Scaling Units
 position error signed 32 bit -231 to 231-1 unity counts|steps

Packet structure GetPositionError

 0 axis 99h
 15 12 11 8 7 0

 First data word
read position error (high-order part)

 31 16
 Second data word

read position error (low-order part)
 15 0

Description GetPositionError returns the current position error of the specified axis. The error

is the difference between the actual position (encoder position) and the
commanded position (instantaneous output of the trajectory generator). Refer to
the User’s Guide for more information on this command when it is used with the
stepping motor chipsets.

Restrictions

see Set/GetPosition, Set/GetPositionErrorLimit

Navigator Motion Processor Programmer’s Reference
29

GetSignalStatus A4h

Syntax GetSignalStatus axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

Returned data Description Bit Number
 status Encoder A

Encoder B
Encoder Index
Encoder Home
Positive limit
Negative limit
AxisIn
Hall A
Hall B
Hall C
AxisOut
reserved

0
1
2
3
4
5
6
7
8
9
10
11-15

Packet structure GetSignalStatus

 0 axis A4h
 15 12 11 8 7 0

 Data
read

 15 11 10 9 8 7 6 5 4 3 2 1 0

Description GetSignalStatus returns the contents of the signal status register for the specified

axis. The signal status register contains the current value of the various hardware
signals connected to each axis of the chipset. The value read is combined with
the signal sense register (SetSignalSense command) and then returned to the
user. For each bit in the Signal Sense register that is set to 1 the corresponding
bit in the GetSignalStatus command will be inverted, so that a low signal will be
read as 1 and a high signal will be read as a 0. Conversely for each bit in the
signal sense register that is set to 0 the corresponding bit in the GetSignalStatus
command is not inverted, so that a low signal will be read as 0 and a high signal
will be read as a 1.
All of the bits in the GetSignalStatus command are inputs except for AxisOut.
The value read for this bit is equal to the current value output by the axis out
mechanism. See SetAxisOutSource command for more details.

Restrictions

see GetActivityStatus, GetEventStatus

Navigator Motion Processor Programmer’s Reference
30

GetTime 3Eh

Syntax GetTime

Arguments none

Returned data Name Type Range Scaling Units
 current

chipset time
unsigned 32 bit 0 to 232-1 unity cycles

Packet structure GetTime

 0 3Eh
 15 8 7 0

 First data word
read current chipset time (high-order part)

 31 16
 Second data word

read current chipset time (low-order part)
 15 0

Description Returns the number of cycles that have occurred since the processor was last

initialized or reset.

Restrictions

see

Navigator Motion Processor Programmer’s Reference
31

GetTraceCount BBh

Syntax GetTraceCount

Arguments none

Returned data Value Type Range Scaling Units
 trace count unsigned 32 bit 0 to 232-1 unity samples

Packet structure GetTraceCount

 0 BBh
 15 8 7 0

 First data word
read trace count (high-order part)

 31 16
 Second data word

read trace count (low-order part)
 15 0

Description GetTraceCount returns the number of points (variable values) stored in the trace

buffer since the beginning of the trace.

Restrictions

see ReadBuffer, Set/GetTraceStart, Set/GetTraceStop

Navigator Motion Processor Programmer’s Reference
32

GetTraceStatus BAh

Syntax GetTraceStatus

Arguments none

Returned data Name Bit Instance Description
 mask 0 Mode Set to 0 when trace is in one-time mode, 1

when in rolling mode.
 1 Activity Set to 1 when trace is active (currently

tracing) , 0 if trace not active
 2 Data wrap Set to 1 when trace has wrapped, 0 if it has

not wrapped. If 0, the buffer has not yet been
filled and all recorded data are intact. If 1, the
trace has wrapped to the beginning of the
buffer; any previous data may have been
overwritten if not explicitly retrieved by the
host using the ReadBuffer command while the
trace is active.

Packet structure GetTraceStatus

 0 BAh
 15 8 7 0

 First data word
read

 15 3 2 1 0

Description GetTraceStatus returns the current trace status.

Restrictions

see Set/GetTraceStart, Set/GetTraceMode

Navigator Motion Processor Programmer’s Reference
33

GetVersion 8Fh

Syntax GetVersion

Arguments none

Returned data Product information Encoding
 product family Navigator 2
 motor type Servo

Brushless
Microstepping
Pulse & Direction

1
3
4
5

 axes supported 1, 2, or 4
 special attributes 0 to 15
 customization code none

other
0
1 to 255

 major s/w version 0 to 15
 minor s/w version 0 to 15

Packet structure GetVersion

 0 8Fh
 15 8 7 0

 First data word
read product family motor type number of axes special attributes

 15 12 11 8 7 4 3 0
 Second data word

read customization code major s/w version minor s/w version
 15 8 7 4 3 0

Description GetVersion returns product information encoded as shown above.

Restrictions

see

Navigator Motion Processor Programmer’s Reference
34

InitializePhase (MC2300 and MC2800 only) 7Ah

Syntax InitializePhase axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

Packet structure InitializePhase

 0 axis 7Ah
 15 12 11 8 7 0

Description InitializePhase initializes the phase angle for the specified axis using the mode

(Hall-based or Algorithmic) specified by the SetPhaseInitializationMode
command.

Restrictions Warning: If the phase initialization mode has been set to algorithmic then after this
command is sent the motor can move suddenly in an uncontrolled manner.

see GetPhaseCommand, Set/GetNumberPhases

Navigator Motion Processor Programmer’s Reference
35

MultiUpdate 5Bh

Syntax MultiUpdate mask

Arguments Name Instance Encoding
 mask None

Axis1mask
Axis2mask
Axis3mask
Axis4mask

0
1
2
4
8

Packet structure MultiUpdate

 0 5Bh
 15 8 7 0

 Data
write 0 mask

 15 4 3 0

Description MultiUpdate causes an Update to occur on all axes whose corresponding bit is set

to 1 in the mask argument. After this command is executed, and for those axes
which are selected using the mask, all buffered data parameters are copied into the
corresponding run-time registers.
The following instruction is buffered: ClearPositionError.
The following trajectory parameters are buffered: Acceleration, Deceleration,
GearRatio, Jerk, Position, ProfileMode, StartVelocity, StopMode, and Velocity.
The following PID filter parameters are buffered: DerivativeTime, IntegrationLimit,
Kaff, Kd, Ki, Kp, and Kvff.
The following Motor Command parameter is buffered: MotorCommand

Restrictions

see Update

Navigator Motion Processor Programmer’s Reference
36

NoOperation 00h

Syntax NoOperation

Arguments none

Packet structure NoOperation

 0 00h
 15 8 7 0

Description The NoOperation command has no affect on the chipset. It is useful as a “null”

operation to verify communications with the Motion Processor.

Restrictions

see

Navigator Motion Processor Programmer’s Reference
37

ReadAnalog EFh

Syntax ReadAnalog portID

Arguments Name Type Range Scaling Units
 portID unsigned 16 bit 0 to 7 unity -

Returned data value unsigned 16 bit 0 to 216-1 1/216 % input

Packet structure ReadAnalog

 0 EFh
 15 8 7 0

 First data word
write 0 portID

 15 0
 Second data word

read value
 15 0

Description ReadAnalog returns a 16-bit value representing the voltage (read by an on-chip 10

bit A/D) presented to the specified analog input. See User's Guide for more
information on analog input and scaling. The value returned is the result of shifting
the 10-bit value 6 bits left.

Restrictions

see

Navigator Motion Processor Programmer’s Reference
38

ReadBuffer C9h

Syntax ReadBuffer bufferID

Arguments Name Type Range Scaling Units
 bufferID unsigned 16 bit 0 to 31 unity -

Returned data value signed 32 bit -231 to 231-1 unity -

Packet structure ReadBuffer

 0 C9h
 15 8 7 0

 First data word
write 0 bufferID

 15 4 3 0
 Second data word

read buffer contents (high-order part)
 31 16

 Third data word
read buffer contents (low-order part)

 15 0

Description ReadBuffer returns the 32-bit contents of the current location in the specified

buffer. The current location is determined by adding the base address of the buffer
(set by SetBufferStart), to the buffer's Read Index (set by SetBufferReadIndex).
After the contents have been read, the Read Index is incremented by 1; if the result
is equal to the buffer length (set by SetBufferLength), the Index is reset to 0.
Some commands automatically change the read index such as at the completion of
a trace when in rolling mode. Refer to Section 6.4 of the User's Guide for details.

Restrictions

see Set/GetBufferReadIndex, WriteBuffer

Navigator Motion Processor Programmer’s Reference
39

ReadIO 83h

Syntax ReadIO address

Arguments Name Type Range Scaling Units
 address unsigned 8 bit 0 to 255 unity -

Returned data value unsigned 16 bit 0 to 216-1 unity -

Packet structure ReadIO

 0 axis 83h
 15 12 11 8 7 0

 First data word
write 0 address

 15 8 7 0
 Second data word

read data
 15 0

Description ReadIO reads one 16-bit word of data from the device whose address is calculated

by adding 1000h to address. (address is an offset from the base address, 1000h, of
the MC2000’s memory-mapped I/O space.)
The format and interpretation of the 16-bit data word are dependent on the user-
defined device being addressed. User-defined I/O can be used to implement a
number of features including additional parallel I/O, flash memory for non-volatile
configuration information storage, or display devices such as LED arrays.

Restrictions

see WriteIO

Navigator Motion Processor Programmer’s Reference
40

Reset 39h

Syntax Reset

Arguments none

Packet structure Reset

 0 39h
 15 8 7 0

Description Reset restores the chipset to its initial condition, setting all chipset variables to their

default values. These default values are shown in the following table:
 Acceleration

ActualPosition
AutoStopMode
AxisMode
AxisOutSource
Breakpoint 1
Breakpoint 2
BreakpointValue 1
BreakpointValue 2
BufferLength
BufferReadIndex
BufferStart
BufferWriteIndex
CaptureSource
CommutationMode
Deceleration
DerivativeTime
EncoderModulus
EncoderSource
GearMaster
GearRatio
IntegrationLimit
InterruptMask
Jerk
Kaff
Kd
Ki
Kout
Kp
Kvff
LimitMode
MotionCompleteMode

0
0
0
1
0
0
0
0
0
0
0
200h
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
65535
0
0
1
0

MotorBias
MotorCommand
MotorLimit
MotorMode
NumberPhases
OutputMode
PhaseAngle
PhaseCorrectionMode
PhaseCounts
PhaseInitializeMode
PhaseInitializeTime
PhaseOffset
PhasePrescale
Position
PositionErrorLimit
ProfileMode
SampleTime
SettleTime
SettleWindow
SignalSense
Stop
TraceMode
TracePeriod
TraceStart
TraceStop
TraceVariable 1
TraceVariable 2
TraceVariable 3
TraceVariable 4
TrackingWindow
Velocity

0
0
32767
1
see note 1
see note 2
65535
1
0
0
0
65535
0
0
32767
0
see note 3
0
0
0
0
0
1
0
0
0
0
0
0
0
0

Navigator Motion Processor Programmer’s Reference
41

 Notes:

1. The reset value for the number of phases is dependent on the Motion Processor
series, as follows:
MC2100 1
MC2300 3
MC2400 2

2. The reset value for the output mode is dependent on the Motion Processor
series, as follows:
MC2100 1
MC2300 2
MC2400 1

3. The reset value for SampleTime depends on the number of axes and the motion
processor series, as follows:
MC2100 102 x number of axes
MC2300 154 x number of axes
MC2400 154 x number of axes

All axes supported by the motion processor are enabled at reset.
Profile, servo filter, and other axis-specific parameters are reset on all axes.
External-memory buffer parameters are reset for all buffers. BufferStart is reset to
(200h), the lowest user-accessible address.
Axis-specific conditions are reset on all axes. External-memory buffer conditions are
reset on all 16 memory buffers.

Restrictions For the MC2400/MC2500:
AutoStopMode Off
EncoderSource None

see

Navigator Motion Processor Programmer’s Reference
42

ResetEventStatus 34h

Syntax ResetEventStatus axis mask

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 mask Motion complete
Wrap-around
Breakpoint 1
Capture received
Motion error
In positive limit
In negative limit
Instruction error
Commutation error
Breakpoint 2

0001h
0002h
0004h
0008h
0010h
0020h
0040h
0080h
0800h
4000h

Packet structure ResetEventStatus

 0 axis 34h
 15 12 11 8 7 0

 Data
write 0 0 0 0 0 0 mask

 14 11 7 0

Description ResetEventStatus clears (sets to 0) , for the specified axis, each bit in the Event

Status Register that has a value of 0 in the mask sent with this command. All other
Event Status register bits (bits which have a mask value of 1) are unaffected.

Restrictions

see GetEventStatus

Navigator Motion Processor Programmer’s Reference
43

SetAcceleration buffered 90h
GetAcceleration 4Ch

Syntax SetAcceleration axis acceleration
GetAcceleration axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 Type Range Scaling Units
 acceleration unsigned 32 bit 0 to 231-1 1/216 counts/cycle2

Packet structure SetAcceleration

 0 axis 90h
 15 12 11 8 7 0

 First data word
write acceleration (high-order part)

 31 16
 Second data word

write acceleration (low-order part)
 15 0

 GetAcceleration
 0 axis 4Ch

 15 12 11 8 7 0
 First data word

read acceleration (high-order part)
 31 16

 Second data word
read acceleration (low-order part)

 15 0

Description SetAcceleration loads the maximum acceleration buffer register for the specified

axis. This command is used with the Trapezoidal, Velocity Contouring, and S-
curve profiling modes.
GetAcceleration reads the maximum acceleration buffer register set by the previous
SetAcceleration command.
Scaling example: To load a value of 1.750 counts/cycle2 multiply by 65,536 (giving
114,688) and load the resultant number as a 32 bit number, giving 0001 in the high
word and C000h in the low word. Values returned by GetAcceleration must
correspondingly be divided by 65,536 to convert to units of counts/cycle2.

Restrictions SetAcceleration may not be issued while an axis is in motion with the S-curve

profile.
SetAcceleration is not valid in Electronic Gearing profile mode.
SetAcceleration is a buffered command. The value set using this command will
not take effect until the next Update or MultiUpdate instruction.

see Set/GetDeceleration, Set/GetJerk, Set/GetPosition, Set/GetVelocity,
MultiUpdate, Update

Navigator Motion Processor Programmer’s Reference
44

SetActualPosition 4Dh
GetActualPosition 37h

Syntax SetActualPosition axis position
GetActualPosition axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 Type Range Scaling Units
 position signed 32 bits -231 to 231-1 unity counts|steps

Packet structure SetActualPosition

 0 axis 4Dh
 15 12 11 8 7 0

 First data word
write position (high-order part)

 31 16
 Second data word

write position (low-order part)
 15 0

 GetActualPosition
 0 axis 37h

 15 12 11 8 7 0
 First data word

read position (high-order part)
 31 16

 Second data word
read position (low-order part)

 15 0

Description SetActualPosition loads the actual position register (encoder position) for the

specified axis. At the same time, the current commanded position is replaced by the
loaded value minus the current actual position error. This prevents a servo "bump"
when the new axis position is established. The destination position (see SetPosition)
is also modified by this amount so that no trajectory motion will occur when the
update instruction is issued. In effect, this instruction establishes a new reference
position from which subsequent positions can be calculated. It is commonly used to
set a known reference position after a homing procedure.
Note: On the MC2400 and MC2500 series, the position error is zeroed.
SetActualPosition takes effect immediately, it is not buffered.
GetActualPosition reads the contents of the encoder’s actual position register. This
value will be the result of the last encoder input, which will be accurate to within one
cycle (as determined by Set/GetSampleTime).

Restrictions

see

GetPositionError; GetActualVelocity, Set/GetActualPositionUnits,
AdjustActualPosition

Navigator Motion Processor Programmer’s Reference
45

SetActualPositionUnits (MC2400 and MC 2500 only) BEh
GetActualPositionUnits (MC2400 and MC 2500 only) BFh

Syntax SetActualPositionUnits axis mode
GetActualPositionUnits axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 mode Counts
Steps

0
1

Packet structure SetActualPositionUnits

 0 axis BEh
 15 12 11 8 7 0

 Data
write 0 mode

 15 1 0

 GetActualPositionUnits
 0 axis BFh

 15 12 11 8 7 0
 Data

read mode
 15 1 0

Description SetActualPositionUnits determines the units used by the Set/GetActualPosition,

AdjustActualPosition and GetCaptureValue for the specified axis. When set to
Counts position units are in encoder counts. When set to Steps GetActualPosition
position units are in steps.
GetActualPositionUnits returns the mode for the specified axis.

Restrictions This command is only available on the MC2400 and MC2500 series.

see

Set/GetActualPosition, Set/GetEncoderToStepRatio, AdjustActualPosition,
GetCaptureValue

Navigator Motion Processor Programmer’s Reference
46

SetAutoStopMode D2h
GetAutoStopMode D3h

Syntax SetAutoStopMode axis mode
GetAutoStopMode axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 mode Disable
Enable

0
1

Packet structure SetAutoStopMode

 0 axis D2h
 15 12 11 8 7 0

 Data
write 0 mode

 15 0

 GetAutoStopMode
 0 axis D3h

 15 12 11 8 7 0

 Data
read mode

 15 1 0

Description SetAutoStopMode determines the behavior of the specified axis when a motion

error occurs. When auto stop is enabled (SetAutoStopMode Enable), the axis goes
into open-loop mode when a motion error occurs. When Auto-Stop is disabled
(SetAutoStopMode Disable), the axis is not affected by a motion error.
GetAutoStopMode returns the current state of the Auto-Stop mode.

Restrictions

see GetEventStatus

Navigator Motion Processor Programmer’s Reference
47

SetAxisMode 87h
GetAxisMode 88h

Syntax SetAxisMode axis mode
GetAxisMode axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 mode off
on

0
1

Packet structure SetAxisMode

 0 axis 87h
 15 12 11 8 7 0

 Data
write 0 mode

 15 1 0

 GetAxisMode
 0 axis 88h

 15 12 11 8 7 0

 Data
read mode

 15 1 0

Description SetAxisMode enables (On) or disables (Off) the specified axis. A disabled axis will

not respond to profile or other motion commands.
GetAxisMode returns the current status of the specified axis.

Restrictions Disabled axes do not provide encoder feedback. If it is desired that an axis provide
encoder feedback even though no profiling or servo control is to be used, that axis
must be left enabled.

see

Navigator Motion Processor Programmer’s Reference
48

SetAxisOutSource EDh
GetAxisOutSource EEh

Syntax SetAxisOutSource axis sourceAxis bit register
GetAxisOutSource axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 sourceAxis Axis1
Axis2
Axis3
Axis4

0
1
2
3

 bit see below 0 to 15

 register (none)
EventStatus
ActivityStatus
SignalStatus

0
1
2
3

Packet structure SetAxisOutSource

 0 axis EDh
 15 12 11 8 7 0

 Data
write 0 register bit sourceAxis

 15 12 11 8 7 4 3 0

 GetAxisOutSource
 0 axis EEh

 15 12 11 8 7 0

 Data
read register bit sourceAxis

 15 12 11 8 7 4 3 0

Description SetAxisOutSource maps the specified bit of the specified status register of axisn to

the AxisOut pin for the specified axis. The state of the AxisOut pin will thereafter
track the state of bit. If register is absent (encoding of 0), bit is ignored, and the
specified AxisOut pin is, in effect, turned off (inactive).
GetAxisOutSource reads the mapping of the AxisOut pin of axis.

Navigator Motion Processor Programmer’s Reference
49

The table below shows the corresponding value for combinations of bit and
register.

encoding of "bit" register = event status register = activity status register = signal

status
0 Motion Complete Phasing Initialized Encoder A
1 Wrap-around At maximum velocity Encoder B
2 Breakpoint 1 Tracking Encoder index
3 Position capture Home
4 Motion error Positive limit
5 In positive limit Negative limit
6 In negative limit AxisIn
7 Instruction error Axis settled Hall sensor 1
8 Motor on/off Hall sensor 2
9 Position capture Hall sensor 3
0Ah In motion
0Bh Commutation error In positive limit
0Ch In negative limit
0Dh
0Eh Breakpoint 2

0Fh

Restrictions

see SetSignalSense

Navigator Motion Processor Programmer’s Reference
50

SetBreakpoint D4h
GetBreakpoint D5h

Syntax SetBreakpoint axis breakpoint sourceAxis action trigger
GetBreakpoint axis breakpoint

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 breakpoint Breakpoint1
Breakpoint2

0
1

 sourceAxis Axis1
Axis2
Axis3
Axis4

0
1
2
3

 action (none)
Update
AbruptStop
SmoothStop
MotorOff

0
1
2
3
4

 trigger (none)
PositiveCommandedPosition
NegativeCommandedPosition
PositiveActualPosition
NegativeActualPosition
CommandedPositionCrossed
ActualPositionCrossed
Time
EventStatus
ActivityStatus
Signal

0
1
2
3
4
5
6
7
8
9
Ah

Packet structure SetBreakpoint
 0 axis D4h
 15 12 11 8 7 0
 First data word

write 0 breakpoint
 15 1 0
 Second data word

write trigger action sourceAxis
 15 8 7 4 3 0

 GetBreakpoint
 0 axis D5h
 15 12 11 8 7 0
 First data word

write 0 breakpoint
 15 1 0
 Second data word

read trigger action sourceAxis
 15 8 7 4 3 0

Navigator Motion Processor Programmer’s Reference
51

Description SetBreakpoint establishes a breakpoint for the specified axis to be triggered by a
condition or event on sourceAxis, which may be the same as or different from axis.
Up to two concurrent breakpoints can be set for each axis.
The six Position breakpoints and the Time breakpoint are threshold-triggered; the
breakpoint occurs when the indicated value reaches or crosses a threshold. The
Status breakpoints are level-triggered; the breakpoint occurs when a specific bit or
combination of bits in the indicated status register changes state. Thresholds and bit
specifications are both set by the SetBreakpointValue instruction.
action determines what the Navigator does when the breakpoint occurs, as follows:

Action Resultant command sequence
none no action
Update Update axis
AbruptStop SetStop axis, AbruptStop

 Update axis
SmoothStop SetStop axis, SmoothStop

 Update axis
MotorOff SetMotorMode axis, Off

axis is the axis for which the breakpoint has been set.
GetBreakpoint returns the condition, axis, and action for the specified breakpoint
(1 or 2) of the indicated axis.
Two completely separate breakpoints are supported, each of which may have its own
breakpoint type and comparison value. The breakpoint field specifies which
breakpoint the SetBreakpoint and GetBreakpoint commands will address.

Restrictions Before setting a new breakpoint condition (SetBreakpoint command) ALWAYS
load the comparison value first (SetBreakpointValue command). This is because as
soon as the breakpoint condition is set the chipset will start using the breakpoint
value register, and if it is not yet defined the breakpoint will not behave as expected.

see Set/GetBreakpointValue

Navigator Motion Processor Programmer’s Reference
52

SetBreakpointValue D6h
GetBreakpointValue D7h

Syntax SetBreakpointValue axis breakpoint value
GetBreakpointValue axis breakpoint

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 breakpoint Breakpoint1
Breakpoint2

0
1

 Type Range Units
 value PositiveCommandedPosition

NegativeCommandedPosition
PositiveActualPosition
NegativeActualPosition
CommandedPositionCrossed
ActualPositionCrossed
Time
EventStatus
ActivityStatus
SignalStatus

signed 32 bit
signed 32 bit
signed 32 bit
signed 32 bit
signed 32 bit
signed 32 bit
unsigned 32 bit
2 word mask*
2 word mask*
2 word mask*

-231 to 231-1
-231 to 231-1
-231 to 231-1
-231 to 231-1
-231 to 231-1
-231 to 231-1
0 to 232-1
-
-
-

counts
counts
counts
counts
counts
counts
cycles
-
-
-

* see description section below for more details on mask format

Packet structure SetBreakpointValue

 0 axis D6h
 15 12 11 8 7 0

 First data word
write 0 breakpoint

 15 1 0
 Second data word

write value (high-order part)
 31 16

 Third data word
write value (low-order part)

 15 0

 GetBreakpointValue
 0 axis D7h

 15 12 11 8 7 0
 First data word

write 0 breakpoint
 15 1 0

 Second data word
read value (high-order part)

 31 16
 Third data word

read value (low-order part)
 15 0

Navigator Motion Processor Programmer’s Reference
53

Description SetBreakpointValue sets the breakpoint comparison value for the specified axis.

For the position and time breakpoints this is a threshold comparison value.
For level-triggered breakpoints, the high-order part of value is the selection mask,
and the low-order word is the sense mask. For each selection bit that is set to 1, the
corresponding bit of the specified status register is conditioned to cause a breakpoint
when it changes state. The sense-mask bit determines which state causes the break. If
it is 1, the corresponding status-register bit will cause a break when it is set to 1. If it
is 0, the status-register bit will cause a break when it is set to 0.
For example assume it is desired that the breakpoint type will be set to
"EventStatus" and that a breakpoint should be recognized whenever the motion
complete bit (bit 0 of event status register) is set to 1, and the commutation error bit
(bit 11 of event status register) is set to 0. In this situation the high and low words
for value would be high word: 0x801 (hex) and low word: 1.
GetBreakpointValue returns the current breakpoint value for the specified
breakpoint.
Two completely separate breakpoints are supported, each of which may have its own
breakpoint type and comparison value. The breakpoint field specifies which
breakpoint the SetBreakpointValue and GetBreakpointValue commands will
address.

Restrictions Before setting a new breakpoint condition (SetBreakpoint command) ALWAYS
load the comparison value first (SetBreakpointValue command). This is because as
soon as the breakpoint condition is set the chipset will start using the breakpoint
value register, and if it is not yet defined the breakpoint will not behave as expected.

see Set/GetBreakpoint

Navigator Motion Processor Programmer’s Reference
54

SetBufferFunction CAh
GetBufferFunction CBh

Syntax SetBufferFunction axis function bufferID
GetBufferFunction axis function

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 function Position
Velocity
Acceleration
Jerk
Time

0
1
2
3
4

 Name Type Range Scaling Units
 bufferID signed 16 bits -1 to 31 unity -

Packet structure SetBufferFunction
 0 axis CAh
 15 12 11 8 7 0
 First data word

write function
 15 0
 Second data word

write 0 bufferID
 15 5 4 0

 GetBufferFunction
 0 axis CBh
 15 12 11 8 7 0
 First data word

write function
 15 0
 Second data word

read 0 bufferID
 15 5 4 0

Description SetBufferFunction sets the interpretation for data stored in a buffer when an axis is

in External Profile mode. A function will have no associated buffer if the bufferID
parameter is set to -1. This is useful for disabling a function.
GetBufferFunction returns the bufferID for the specified function. If a function has
not been assigned a buffer, the return value is –1.

Restrictions

see Set/GetProfileMode

Navigator Motion Processor Programmer’s Reference
55

SetBufferLength C2h
GetBufferLength C3h

Syntax SetBufferLength bufferID length
GetBufferLength bufferID

Arguments Name Type Range Scaling Units
 bufferID unsigned 16 bits 0 to 31 unity -

 length unsigned 32 bits 1 to 230-1 unity -

Packet structure SetBufferLength

 0 C2h
 15 8 7 0

 First data word
write 0 bufferID

 15 4 0
 Second data word

write length (high-order part)
 31 16

 Third data word
write length (low-order part)

 15 0

 GetBufferLength
 0 C3h

 15 8 7 0
 First data word

write 0 bufferID
 15 4 3 0

 Second data word
read length (high-order part)

 31 16
 Third data word

read length (low-order part)
 15 0

Description SetBufferLength sets the length, in number of 32-bit elements, of the buffer in the

memory block identified by bufferID.
Note: SetBufferLength resets the buffers read and write indexes to 0.
GetBufferLength returns the length of the specified buffer.

Restrictions If the specified length extends beyond the end of addressable memory,
SetBufferLength is not executed, and returns host-I/O error code 7, buffer bound
exceeded.
Note: Setting the buffer length beyond the end of physical memory could
cause the chip set to unexpectedly reset during operation.

see Set/GetBufferReadIndex; Set/GetBufferStart; Set/GetBufferWriteIndex

Navigator Motion Processor Programmer’s Reference
56

SetBufferReadIndex C6h
GetBufferReadIndex C7h

Syntax SetBufferReadIndex bufferID index
GetBufferReadIndex bufferID

Arguments Name Type Range Scaling Units
 bufferID unsigned 16 bits 0 to 31 unity -

 index unsigned 32 bits 0 to buffer

length-1
unity double words

(32 bit)

Packet structure SetBufferReadIndex

 0 C6h
 15 8 7 0

 First data word
write 0 bufferID

 15 4 3 0

 Second data word
write index (high-order part)

 31 16
 Third data word

write index (low-order part)
 15 0

 GetBufferReadIndex
 0 C7h

 15 8 7 0
 First data word

write 0 bufferID
 15 4 3 0

 Second data word
read index (high-order part)

 31 16
 Third data word

read index (low-order part)
 15 0

Description SetBufferReadIndex sets the address of the Read Index for the specified buffer. If

the read index is set to an address beyond the length of the buffer, the command
will not be executed and will return an error.
GetBufferReadIndex returns the current Read Index for the specified buffer.

Restrictions

see Set/GetBufferLength, Set/GetBufferStart, Set/GetBufferWriteIndex

Navigator Motion Processor Programmer’s Reference
57

SetBufferStart C0h
GetBufferStart C1h

Syntax SetBufferStart bufferID address
GetBufferStart bufferID

Arguments Name Type Range Scaling Units
 bufferID unsigned 16 bit 0 to 31 unity -

 address unsigned 32 bit 29 to 231-1 unity double words

(32 bit)

Packet structure SetBufferStart

 0 C0h
 15 8 7 0

 First data word
write 0 bufferID

 15 4 3 0
 Second data word

write address (high-order part)
 31 16

 Third data word
write address (low-order part)

 15 0

 GetBufferStart
 0 C1h

 15 8 7 0
 First data word

write 0 bufferID
 15 4 3 0

 Second data word
read address (high-order part)

 31 16
 Third data word

read address (low-order part)
 15 0

Description SetBufferStart sets the starting address for the specified buffer. The buffer start

address must be 200h or greater.
Note: SetBufferStart resets the buffers read and write indexes to 0.
GetBufferStart returns the starting address for the specified buffer.

Restrictions If the specified length extends beyond the end of addressable memory,
SetBufferStart is not executed, and returns host-I/O error code 7, buffer bound
exceeded.
Note: Setting the buffer start beyond the end of physical memory could
cause the chip set to unexpectedly reset during operation.

see Set/GetBufferLength, Set/GetReadIndex, Set/GetBufferWriteIndex

Navigator Motion Processor Programmer’s Reference
58

SetBufferWriteIndex C4h
GetBufferWriteIndex C5h

Syntax SetBufferWriteIndex bufferID index
GetBufferWriteIndex bufferID

Arguments Name Type Range Scaling Units
 bufferID unsigned 16 bit 0 to 31 unity -

 index unsigned 32 bit 0 to buffer

length-1
unity long words

(32 bits)

Packet structure SetBufferWriteIndex

 0 C4h
 15 8 7 0

 First data word
write 0 bufferID

 15 4 3 0

 Second data word
write index (high-order part)

 31 16
 Third data word

write index (low-order part)
 15 0

 GetBufferWriteIndex
 0 C5h

 15 8 7 0
 First data word

write 0 bufferID
 15 4 3 0

 Second data word
read index (high-order part)

 31 16
 Third data word

read index (low-order part)
 15 0

Description SetBufferWriteIndex sets the address of the write index for the specified buffer. If

the write index is set to an address beyond the length of the buffer, the command
will not be executed and will return an error.
GetBufferWriteIndex returns the current write index for the specified buffer.

Restrictions

see Set/GetBufferLength, Set/GetBufferReadIndex, Set/GetBufferStart

Navigator Motion Processor Programmer’s Reference
59

SetCaptureSource D8h
GetCaptureSource D9h

Syntax SetCaptureSource axis source
GetCaptureSource axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 source Index
Home

0
1

Packet structure SetCaptureSource

 0 axis D8h
 15 12 11 8 7 0

 Data
write 0 source

 15 1 0

 GetCaptureSource
 0 axis D9h

 15 12 11 8 7 0
 Data

read source
 15 1 0

Description SetCaptureSource determines which of two encoder signals, Index or Home, is

used to trigger the high-speed capture of the actual axis position for the specified
axis.
GetCaptureSource returns the capture signal source for the selected axis.

Restrictions

see GetCaptureValue

Navigator Motion Processor Programmer’s Reference
60

SetCommutationMode (MC2300 and MC2800 only) E2h
GetCommutationMode (MC2300 and MC2800 only) E3h

Syntax SetCommutationMode axis mode
GetCommutationMode axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 mode Sinusoidal
Hall-Based
Microstepping

0
1
2

Packet structure SetCommutationMode

 0 axis E2h
 15 12 11 8 7 0

 Data
write 0 mode

 15 2 1 0

 GetCommutationMode
 0 axis E3h

 15 12 11 8 7 0

 Data
read mode

 15 2 1 0

Description SetCommutationMode sets the phase commutation mode for the specified axis.

When set to sinusoidal, as the motor turns, the encoder input signal is used to
calculate the phase angle. This angle is in turn used to generate sinusoidally varying
outputs to each motor winding.
When set to Hall-based the hall effect sensor inputs are used to commutate the
motor windings using a "six-step" or "trapezoidal" waveform method.
When set to microstepping the output of the trajectory generator is used to
calculate the phase angle. This angle is in turn used to generate sinusoidally varying
outputs to each motor phase.
GetCommutationMode returns the current commutation mode.
When operating with brushless servo motors either sinusoidal or Hall-based are
typically used for motor commutation.
Microstepping is sometimes used with brushless motors to "manually" move the
motor before phase initialization has occurred. Alternatively, Microstepping can be
used with step motors or with AC induction motors where frequency synthesis is all
that is required to rotate the motor.

Restrictions

see Set/GetCommutationPrescale, Set/GetCommutationCounts,
Set/GetPhase commands

Navigator Motion Processor Programmer’s Reference
61

SetDeceleration buffered 91h
GetDeceleration 92h

Syntax SetDeceleration axis deceleration
GetDeceleration axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 Type Range Scaling Units
 deceleration unsigned 32 bits 0 to 231-1 1/216 counts/cycle2

Packet structure SetDeceleration

 0 axis 91h
 15 12 11 8 7 0

 First data word
write deceleration (high-order part)

 31 16
 Second data word

write deceleration (low-order part)
 15 0

 GetDeceleration
 0 axis 92h

 15 12 11 8 7 0
 First data word

read deceleration (high-order part)
 31 16

 Second data word
read deceleration (low-order part)

 15 0

Description SetDeceleration loads the maximum deceleration buffer register for the specified

axis. This command sets the magnitude of the deceleration register, which always
has a negative sign.
GetDeceleration reads the Maximum Deceleration buffer.
Scaling example: To load a value of 1.750 counts/cycle2 multiply by 65,536 (giving
114,688) and load the resultant number as a 32 bit number, giving 0001 in the high
word and C000h in the low word. Retrieved numbers (GetDeceleration) must
correspondingly be divided by 65,536 to convert to units of counts/cycle2

Restrictions This is a buffered command. The new value set will not take effect until the next

Update or MultiUpdate instruction is entered.
These commands are used with the Trapezoidal, S-curve, and Velocity contouring
profile modes. They are not used with the electronic gearing profile mode.
Note: If deceleration is set to zero, then the value specified for acceleration
(SetAcceleration) will automatically be used to set the magnitude of deceleration.

see Set/GetAcceleration, Set/GetJerk, Set/GetPosition, Set/GetVelocity,
MultiUpdate, Update

Navigator Motion Processor Programmer’s Reference
62

SetDerivativeTime 9Ch
GetDerivativeTime 9Dh

Syntax SetDerivativeTime axis time
GetDerivativeTime axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 Type Range Scaling Units
 time unsigned 16 bits 0 to 215-1 unity cycles

Packet structure SetDerivativeTime

 0 axis 9Ch
 15 12 11 8 7 0

 Data
write time

 15 0

 GetDerivativeTime
 0 axis 9Dh

 15 12 11 8 7 0
 Data

read time
 15 0

Description SetDerivativeTime sets the sampling time, in number of servo cycles, for the servo

filter to use in calculating the derivative term for the specified axis.
GetDerivativeTime returns the derivative sampling time.

Restrictions This command is NOT buffered. The new sampling time value will take effect
immediately after the command is sent to the chipset.
This command does not affect the overall cycle time of the chipset, only the
derivative sampling time. The overall cycle time of the chipset is set using the
command SetSampleTime.

see GetDerivative, GetIntegral, MultiUpdate, Update

Navigator Motion Processor Programmer’s Reference
63

SetDiagnosticPortMode 89h
GetDiagnosticPortMode 8Ah

Syntax SetDiagnosticPortMode mode
GetDiagnosticPortMode

Arguments Name Instance Encoding
 mode Limited

Full
0
1

Packet structure SetDiagnosticPortMode

 0 89h
 15 8 7 0

 Data
write 0 mode

 15 1 0

 GetDiagnosticPortMode
 0 8Ah

 15 8 7 0

 Data
read mode

 15 1 0

Description SetDiagnosticPortMode determines the instruction set that can be executed

through the diagnostic port. When set to Limited, only the following instructions
may be executed:
 all Get instructions
 The SetBufferReadIndex instruction
When set to Full, all instructions may be executed.
GetDiagnosticPortMode returns the current mode of the diagnostic port.

Restrictions

see Set/GetSerialPort

Navigator Motion Processor Programmer’s Reference
64

SetEncoderModulus 8Eh
GetEncoderModulus 8Dh

Syntax SetEncoderModulus axis modulus
GetEncoderModulus axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 Type Range Scaling Units
 modulus unsigned 16 bit 1 to 216-1 unity counts

Packet structure SetEncoderModulus

 0 axis 8Dh
 15 12 11 8 7 0

 Data
write modulus

 15 0

 GetEncoderModulus
 0 axis 8Eh

 15 12 11 8 7 0
 Data

read modulus
 15 0

Description SetEncoderModulus sets the parallel word range for the specified axis when

parallel-word feedback is used. Modulus determines the range of the connected
device. The value provided should be one-half of the actual modulus of the axis.
For example if the parallel-word input is used with a linear potentiometer
connected to an external A/D (Analog to Digital converter) which has 12 bits of
resolution, than the total range is 4,096 and a value of 2,048 should be loaded with
this command.
GetEncoderModulus returns the current encoder modulus.

Restrictions These commands are only used if parallel-word feedback is used. If incremental
encoder feedback is used then these commands are not required.

see Set/GetEncoderSource

Navigator Motion Processor Programmer’s Reference
65

SetEncoderSource DAh
GetEncoderSource DBh

Syntax SetEncoderSource axis source
GetEncoderSource axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 source Incremental
Parallel

0
1

 None 2

Packet structure SetEncoderSource

 0 axis DAh
 15 12 11 8 7 0

 Data
write 0 source

 15 1 0

 GetEncoderSource
 0 axis DBh

 15 12 11 8 7 0

 Data
read source

 15 1 0

Description SetEncoderSource sets the type of feedback (incremental quadrature encoder or

parallel-word) for the specified axis. When incremental quadrature is selected the
chip set expects A and B quadrature signals to be input at the I/O chip. When
parallel-word is selected the chipset expects user-defined external circuitry
connected to the chip set's external bus to load a 16-bit word containing the current
position value for each axis. External feedback devices with less than 16 bits may be
used but the unused bits must be sign extended or 'zeroed'.
GetEncoderSource returns the code for the current type of feedback.

Restrictions

see Set/GetEncoderModulus

Navigator Motion Processor Programmer’s Reference
66

SetEncoderToStepRatio (MC2400 and MC2500 only) DEh
GetEncoderToStepRatio (MC2400 and MC2500 only) DFh

Syntax SetEncoderToStepRatio axis counts steps
GetEncoderToStepRatio axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 Type Range Scaling Units
 counts signed 16 bit -215 to 215-1 unity encoder

counts

 steps signed 16 bit -215 to 215-1 unity steps

Packet structure SetEncoderToStepRatio

 0 axis DEh
 15 12 11 8 7 0

 First data word
write counts

 31 16
 Second data word

write steps
 15 0

 GetEncoderToStepRatio
 0 axis DFh

 15 12 11 8 7 0
 First data word

read counts
 31 16

 Second data word
read steps

 15 0

Description SetEncoderToStepRatio sets the ratio of number of encoder counts to the number

of output steps per motor rotation used by the motion processor to convert
encoder counts into steps/microsteps. Counts is the number of encoder counts
per full rotation of the motor. Steps is the number of steps/microsteps output by
the motion processor per full rotation of the motor. Since this command sets a
ratio, the parameters do not have to be for a full rotation as long as they correctly
represent the encoder count to step ratio.
GetEncoderToStepRatio gets the ratio of number of encoder counts to the
number of output steps per motor rotation.

Restrictions

see Set/GetActualPositionUnits

Navigator Motion Processor Programmer’s Reference
67

SetGearMaster AEh
GetGearMaster AFh

Syntax SetGearMaster axis masterAxis source
GetGearMaster axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 masterAxis Axis1
Axis2
Axis3
Axis4

0
1
2
3

 source Actual
Commanded

0
1

Packet structure SetGearMaster

 0 axis AEh
 15 12 11 8 7 0

 Data
write 0 masterAxis

 15 9 8 7 0
 source =

 GetGearMaster
 0 axis AFh

 15 12 11 8 7 0
 Data

read masterAxis
 15 9 8 7 0
 source =

Description SetGearMaster establishes the slave (axis) and master (masterAxis) axes for the

electronic-gearing profile, and sets the source, Actual or Commanded, of the
master axis position data to be used.
The masterAxis determines what axis will drive the slave axis. Both the slave and
the master axes must be enabled (SetAxisMode command). The source determines
whether the master axis' commanded position as determined by the trajectory
generator will be used to drive the slave axis, or whether the master axis' encoder
position will be used to drive the slave.
GetGearMaster returns the codes for the geared axes and position source.

Restrictions For electronic gear mode to operate properly the master axis must be enabled.

see Set/GetGearRatio

Navigator Motion Processor Programmer’s Reference
68

SetGearRatio buffered 14h
GetGearRatio 59h

Syntax SetGearRatio slaveAxis ratio
GetGearRatio

Arguments Name Instance Encoding
 slaveAxis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 Type Range Scaling Units
 ratio signed 32 bits -231 to 231-1 1/216 SlaveCounts/

MasterCounts

Packet structure SetGearRatio

 0 slaveAxis 14h
 15 12 11 8 7 0

 First data word
write ratio (high-order part)

 31 16
 Second data word

write ratio (low-order part)
 15 0

 GetGearRatio
 0 slaveAxis 59h

 15 12 11 8 7 0
 First data word

read ratio (high-order part)
 31 16

 Second data word
read ratio (low-order part)

 15 0

Description SetGearRatio sets the ratio between the master and slave axes for the electronic

gearing profile for the current axis. Positive ratios cause the slave to move in the
same direction as the master, negative ratios in the opposite direction. The
specified ratio has a unity scaling of 65,536.
GetGearRatio returns the gear ratio set for the specified slave axis.
Scaling examples:
ratio value resultant ratio
-32,768 .5 negative slave counts for each positive master count
1,000,000 15.259 positive slave counts for each positive master count
123 .0018 positive slave counts for each positive master count

Restrictions This is a buffered command. The new value set will not take effect until the next
Update or MultiUpdate instruction is entered.

see Set/GetGearMaster, MultiUpdate, Update

Navigator Motion Processor Programmer’s Reference
69

SetIntegrationLimit (Servo products only) buffered 95h
GetIntegrationLimit (Servo products only) 96h

Syntax SetIntegrationLimit axis limit
GetIntegrationLimit axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 Type Range Scaling Units
 limit signed 32 bits 0 to 231-1 1/28 count*cycles

Packet structure SetIntegrationLimit

 0 axis 95h
 15 12 11 8 7 0

 First data word
write limit (high-order part)

 31 16
 Second data word

write limit (low-order part)
 15 0

 GetIntegrationLimit
 0 axis 96h

 15 12 11 8 7 0
 First data word

read limit (high-order part)
 31 16

 Second data word
read limit (low-order part)

 15 0

Description SetIntegrationLimit loads the integration-limit register of the digital servo filter for

the specified axis.
GetIntegrationLimit returns the value of the current integration limit.
Scaling example: The scaling is the same as for the GetIntegral command, namely
that (for example) a constant position error of 100 counts which is present for 256
cycles will result in an integral value of 100 (100*256/256) , and therefore an
IntegrationLimit value of 100 will limit the total accumulated integration error to
25,600 count*cycles.

Restrictions This is a buffered command. The value set using this command will not take effect
until the next Update or MultiUpdate instruction.

This command is not valid on the MC2400 and MC2500.

see GetIntegral, GetDerivative, Set/GetDerivativeTime, MultiUpdate, Update

Navigator Motion Processor Programmer’s Reference
70

SetInterruptMask 2Fh
GetInterruptMask 56h

Syntax SetInterruptMask axis interruptMask
GetInterruptMask axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 interruptMask Motion complete
Wrap-around
Breakpoint 1
Capture received
Motion error
In positive limit
In negative limit
Instruction error
Commutation error
Breakpoint 2

0001h
0002h
0004h
0008h
0010h
0020h
0040h
0080h
0800h
4000h

Packet structure SetInterruptMask

 0 axis 2Fh
 15 12 11 8 7 0

 mask
write 0 0 0 0 0 0

 14 11 8 7 0

 GetInterruptMask
 0 axis 56h

 15 12 11 8 7 0
 mask

read
 14 11 8 7 0

Description SetInterruptMask determines which bits in the Event Status register of the specified

axis will cause a host interrupt. For each interrupt mask bit that is set to 1, the
corresponding Event Status register bit will cause an interrupt when that status
register bit goes active (is set to 1). Interrupt mask bits set to 0 will not generate
interrupts.
GetInterruptMask returns the current mask for the specified axis.
Example: The interrupt mask value 28h will generate an interrupt when either the
"in positive limit" bit or the "capture received" bit of the event status register goes
active (set to 1).

Restrictions

see ClearInterrupt, GetInterruptAxis

Navigator Motion Processor Programmer’s Reference
71

SetJerk buffered 13h
GetJerk 58h

Syntax SetJerk axis jerk
GetJerk axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 Type Range Scaling Units
 jerk unsigned 32 bits 0 to 231-1 1/232 counts/cycle3

Packet structure SetJerk

 0 axis 13h
 15 12 11 8 7 0

 First data word
write jerk (high-order part)

 31 16
 Second data word

write jerk (low-order part)
 15 0

 GetJerk
 0 axis 58h

 15 12 11 8 7 0
 First data word

read jerk (high-order part)
 31 16

 Second data word
read jerk (low-order part)

 15 0

Description SetJerk loads the jerk register in the parameter buffer for the specified axis.

GetJerk reads the contents of the Jerk register.
Scaling example: To load a jerk value (time rate of change of acceleration) of
.012345 counts/cycle3 multiply by 232 or 4,294,967,296. In this example this gives
a value to load of 53,021,371 (decimal) which corresponds to a high word of
0329h and a low word of 0ABBh when loading each word in hexadecimal.

Restrictions SetJerk is a buffered command. The value set using this command will not take
effect until the next Update or MultiUpdate instruction.
This command is used only with the S-curve profile mode. It is not used with the
trapezoidal, velocity contouring, or electronic gear profile modes.

see Set/GetAcceleration, Set/GetDeceleration, Set/GetPosition,
Set/GetVelocity, MultiUpdate, Update

Navigator Motion Processor Programmer’s Reference
72

SetKaff (Servo products only) buffered 93h
GetKaff (Servo products only) 94h

Syntax SetKaff axis Kaff
GetKaff axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 Type Range Scaling Units
 Kaff unsigned 16 bit 0 to 215-1 unity -

Packet structure SetKaff

 0 axis 93h
 15 12 11 8 7 0

 Data
write Kaff

 15 0

 GetKaff
 0 axis 94h

 15 12 11 8 7 0
 Data

read Kaff
 15 0

Description SetKaff sets the acceleration feedforward gain of the digital servo filter for the

specified axis.
GetKaff reads the current value of the acceleration feedforward gain.

Restrictions SetKaff is a buffered command. . The value set using this command will not take
effect until the next Update or MultiUpdate instruction.

This command is not valid on the MC2400 and MC2500.

see Set/GetKd, Set/GetKi, Set/GetKout, Set/GetKp, Set/GetKvff, MultiUpdate,
Update

Navigator Motion Processor Programmer’s Reference
73

SetKd (Servo products only) buffered 27h
GetKd (Servo products only) 52h

Syntax SetKd axis Kd
GetKd axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 Type Range Scaling Units
 Kd unsigned 16 bit 0 to 215-1 unity -

Packet structure SetKd

 0 axis 27h
 15 12 11 8 7 0

 Data
write Kd

 15 0

 GetKd
 0 axis 52h

 15 12 11 8 7 0
 Data

read Kd
 15 0

Description SetKd sets the derivative gain of the digital servo filter for the specified axis.

GetKd reads the current value of the derivative gain.

Restrictions SetKd is a buffered command. The value set using this command will not take
effect until the next Update or MultiUpdate instruction.

This command is not valid on the MC2400 and MC2500.

see Set/GetKaff, Set/GetKi, Set/GetKout, Set/GetKp, Set/GetKvff, MultiUpdate,
Update

Navigator Motion Processor Programmer’s Reference
74

SetKi (Servo products only) buffered 26h
GetKi (Servo products only) 51h

Syntax SetKi axis Ki
GetKi axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 Type Range Scaling Units
 Ki unsigned 16 bit 0 to 215-1 unity -

Packet structure SetKi

 0 axis 26h
 15 12 11 8 7 0

 Data
write Ki

 15 0

 GetKi
 0 axis 51h

 15 12 11 8 7 0
 Data

read Ki
 15 0

Description SetKi sets the integral gain of the digital servo filter for the specified axis.

GetKi reads the current value of the integral gain.

Restrictions This is a buffered command. The value set using this command will not take effect
until the next Update or MultiUpdate instruction.

This command is not valid on the MC2400 and MC2500.

see Set/GetKaff, Set/GetKd, Set/GetKout, Set/GetKp, Set/GetKvff, MultiUpdate,
Update

Navigator Motion Processor Programmer’s Reference
75

SetKout (Servo products only) 9Eh
GetKout (Servo products only) 9Fh

Syntax SetKout axis Kout
GetKout axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 Type Range Scaling Units
 Kout unsigned 16 bit 0 to 216-1 100/216 % output

Packet structure SetKout

 0 axis 9Eh
 15 12 11 8 7 0

 Data
write Kout

 15 0

 GetKout
 0 axis 9Fh

 15 12 11 8 7 0
 Data

read Kout
 15 0

Description SetKout sets the output scale factor of the digital servo filter for the specified axis.

The default value of Kout is 65535.
GetKout reads the current value of the output scale factor.
Example:
To set the output scaling of the servo filter to half, set the Kout register to 32767.

Restrictions This command is NOT buffered. It will take affect immediately after it is sent.

This command is not valid on the MC2400 and MC2500.

see Set/GetKaff, Set/GetKd, Set/GetKi, Set/GetKp, Set/GetKvff

Navigator Motion Processor Programmer’s Reference
76

SetKp (Servo products only) buffered 25h
GetKp (Servo products only) 50h

Syntax SetKp axis Kp
GetKp axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 Type Range Scaling Units
 Kp unsigned 16 bit 0 to 215-1 unity -

Packet structure SetKp

 0 axis 25h
 15 12 11 8 7 0

 Data
write Kp

 15 0

 GetKp
 0 axis 50h

 15 12 11 8 7 0
 Data

read Kp
 15 0

Description SetKp sets the proportional gain of the digital servo filter for the specified axis.

GetKp reads the current value of the proportional gain.

Restrictions SetKp is a buffered command. The value set using this command will not take
effect until the next Update or MultiUpdate instruction.

This command is not valid on the MC2400 and MC2500.

see Set/GetKaff, Set/GetKd, Set/GetKi, Set/GetKout, Set/GetKvff, MultiUpdate,
Update

Navigator Motion Processor Programmer’s Reference
77

SetKvff (Servo products only) buffered 2Bh
GetKvff (Servo products only) 54h

Syntax SetKvff axis Kvff
GetKvff axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 Type Range Scaling Units
 Kvff unsigned 16 bit 0 to 215-1 unity -

Packet structure SetKvff

 0 axis 2Bh
 15 12 11 8 7 0

 Data
write Kvff

 15 0

 GetKvff
 0 axis 54h

 15 12 11 8 7 0
 Data

read Kvff
 15 0

Description SetKvff sets the velocity feedforward gain of the digital servo filter for the specified

axis.
GetKvff reads the current value of the velocity feedforward gain.

Restrictions SetKvff is a buffered command. The value set using this command will not take
effect until the next Update or MultiUpdate instruction.

This command is not valid on the MC2400 and MC2500.

see Set/GetKaff, Set/GetKd, Set/GetKi, Set/GetKout, Set/GetKp, MultiUpdate,
Update

Navigator Motion Processor Programmer’s Reference
78

SetLimitSwitchMode 80h
GetLimitSwitchMode 81h

Syntax SetLimitSwitchMode axis mode
GetLimitSwitchMode axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 mode off
on

0
1

Packet structure SetLimitSwitchMode

 0 axis 80h
 15 12 11 8 7 0

 Data
write 0 mode

 15 1 0

 GetLimitSwitchMode
 0 axis 81h

 15 12 11 8 7 0
 Data

read mode
 15 1 0

Description SetLimitSwitchMode enables (On) or disables (Off) limit-switch sensing for the

specified axis. When the mode is enabled, the axis will cause the corresponding
limit-switch bits in the Event Status register and Activity Status register to be set
when it enters either the positive or negative limit switches and the axis will be
immediately stopped. When it is disabled these bits are not set, regardless of
whether the axis is in a limit switch or not.
GetLimitSwitchMode returns the code for the current state of the limit-sensing
mode.

Restrictions

see GetActivityStatus, GetEventStatus

Navigator Motion Processor Programmer’s Reference
79

SetMotionCompleteMode EBh
GetMotionCompleteMode ECh

Syntax SetMotionCompleteMode axis mode
GetMotionCompleteMode axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 mode commanded
actual

0
1

Packet structure SetMotionCompleteMode

 0 axis EBh
 15 12 11 8 7 0

 Data
write 0 mode

 15 1 0

 GetMotionCompleteMode
 0 axis ECh

 15 12 11 8 7 0
 Data

read mode
 15 1 0

Description SetMotionCompleteMode establishes the source for the comparison which

determines the motion-complete status for the specified axis. When set to
commanded mode the motion is considered complete when the profile velocity
reaches zero and no further motion will occur without an additional host command.
This mode is unaffected by the actual encoder location.
When set to actual mode the motion complete bit will be set when the above
condition is true AND the actual encoder position has been within the Settle
Window (SetSettleWindow command) for the number of servo loops specified by
the SetSettleTime command. The settle "timer" is started at zero at the end of the
trajectory profile motion so at a minimum a delay of SettleTime cycles will occur
after the trajectory profile motion is complete.
GetMotionCompleteMode returns the current motion-complete mode.

Restrictions

see Set/GetSettleTime, Set/GetSettleWindow

Navigator Motion Processor Programmer’s Reference
80

SetMotorBias (Servo products only) 0Fh
GetMotorBias (Servo products only) 2Dh

Syntax SetMotorBias axis bias
GetMotorBias axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 Type Range Scaling Units
 bias signed 16 bit -215 to 215-1 100/215 % output

Packet structure SetMotorBias

 0 axis 0Fh
 15 12 11 8 7 0

 Data
write bias

 15 0

 GetMotorBias
 0 axis 2Dh

 15 12 11 8 7 0
 Data

read bias
 15 0

Description SetMotorBias sets the bias voltage of the digital servo filter for the specified axis.

GetMotorBias reads the current bias voltage of the digital servo filter.
Scaling example:
If it is desired that a motor bias value of -2.5 % of full scale be placed on the servo
filter output than this register should be loaded with a value of -2.5*32,768/100 = -
819 (decimal). This corresponds to a loaded hexadecimal value of 0FCCDh.

Restrictions This command is not valid on the MC2400 and MC2500.

see Set/GetMotorCommand, Set/GetMotorLimit

Navigator Motion Processor Programmer’s Reference
81

SetMotorCommand buffered 77h
GetMotorCommand 69h

Syntax SetMotorCommand axis value
GetMotorCommand axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 Type Range Scaling Units
 value signed 16 bit -215 to 215-1 100/215 % output

Packet structure SetMotorCommand

 0 axis 77h
 15 12 11 8 7 0

 Data
write value

 15 0

 GetMotorCommand
 0 axis 69h

 15 12 11 8 7 0
 Data

read value
 15 0

Description SetMotorCommand loads the motor-command buffer register of the specified axis.

For the MC2400 series, this command is used to control the magnitude of the
output waveform.
GetMotorCommand reads the contents of the motor-command buffer register.
Scaling example:
If it is desired that a motor command value of 13.7 % of full scale be output to the
motor than this register should be loaded with a value of 13.7 *32,768/100 = 4,489
(decimal). This corresponds to a hexadecimal value of 1189h.

Restrictions SetMotorCommand is valid only when the motor is “off” for the MC2100 and
MC2300 series.
SetMotorCommand is a buffered command. The value set using this command
will not take effect until the next Update or MultiUpdate instruction.

This command is not available on the MC2500 series.

see Set/GetMotorBias, Set/GetMotorLimit, Set/GetMotorMode, MultiUpdate,
Update

Navigator Motion Processor Programmer’s Reference
82

SetMotorLimit (Servo products only) 06h
GetMotorLimit (Servo products only) 07h

Syntax SetMotorLimit axis limit
GetMotorLimit axis limit

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 Type Range Scaling Units
 limit unsigned 16 bit 0 to 215-1 100/215 % output

Packet structure SetMotorLimit

 0 axis 06h
 15 12 11 8 7 0

 Data
write limit

 15 0

 GetMotorLimit
 0 axis 07h

 15 12 11 8 7 0
 Data

read limit
 15 0

Description SetMotorLimit sets the maximum value for the motor output command allowed by

the digital servo filter of the specified axis. Motor command values beyond this
value will be clipped to the specified motor command limit. For example if the
motor limit was set to 1,000 and the servo filter determined that the current motor
ouput value should be 1,100 the actual output value would be 1,000. Conversely if
the output value were -1,100 then it would be clipped to -1,000. This command is
useful for protecting amplifiers, motors, or system mechanisms when it is known
that a motor command exceeding a certain value will cause damage.
GetMotorLimit reads the current motor limit value.
Scaling example:
If it is desired that a motor limit of 75 % of full scale be established than this
register should be loaded with a value of 75.0 *32,768/100 = 24,576 (decimal). This
corresponds to a hexadecimal value of 06000h.

Restrictions This command only affects the motor ouput when in closed loop mode. When the
chipset is in open loop mode this command has no affect.

This command is not valid on the MC2400 and MC2500.

see Set/GetMotorBias, Set/GetMotorCommand

Navigator Motion Processor Programmer’s Reference
83

SetMotorMode DCh
GetMotorMode DDh

Syntax SetMotorMode axis mode
GetMotorMode axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 mode Off
On

0
1

Packet structure SetMotorMode

 0 axis DCh
 15 12 11 8 7 0

 Data
write 0 mode

 15 1 0

 GetMotorMode
 0 axis DDh

 15 12 11 8 7 0
 Data

read mode
 15 1 0

Description SetMotorMode determines the mode of motor operation. For servo products,

when set to On, the axis is in closed-loop mode, and is controlled by the output of the
servo filter. On the MC2400 series and MC2500 series, the trajectory generator
controls the motor output.
When set to Off, the axis is in open-loop mode, and is controlled by commands placed
directly into the motor output register by the host. On the MC2400 series and
MC2500 series the trajectory generator is switched off when the motor mode is set
to Off.
GetMotorMode retusns the current motor mode.

Restrictions

see GetActivityStatus, Set/GetMotorCommand

Navigator Motion Processor Programmer’s Reference
84

SetNumberPhases (MC2300, MC2400 and MC2800 only) 85h
GetNumberPhases (MC2300, MC2400 and MC2800 only) 86h

Syntax SetNumberPhases axis phases
GetNumberPhases axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 phases 1Phase
2Phases
3Phases

1
2
3

Packet structure SetNumberPhases

 0 axis 85h
 15 12 11 8 7 0

 Data
write 0 phases

 15 2 0

 GetNumberPhases
 0 axis 86h

 15 12 11 8 7 0
 Data

read phases
 15 2 0

Description SetNumberPhases establishes the number of phases, 1, 2 or 3, for commutation of

the specified axis.
GetNumberPhases returns the number of phases set for the axis.

Restrictions In PWM Sign/Magnitude output mode, the number of phases can be set to 1 or 2.
In PWM 5050 output mode, the number of phases can be set to 1,2 or 3.

see

GetPhaseCommand, InitializePhase, Set/GetPhase Set/GetOutputMode
commands

Navigator Motion Processor Programmer’s Reference
85

SetOutputMode E0h
GetOutputMode 6Eh

Syntax SetOutputMode axis mode
GetOutputMode axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 mode DAC
PWMSignMagnitude
PWM5050Magnitude

0
1
2

Packet structure SetOutputMode

 0 axis E0h
 15 12 11 8 7 0

 Data
write 0 mode

 15 2 1 0

 GetOutputMode
 0 axis 6Eh

 15 12 11 8 7 0
 Data

read mode
 15 2 1 0

Description SetOutputMode determines the form of the motor output signal of the specified

axis.
GetOutputMode returns the code for the current motor output mode.

Restrictions This command is not available on the MC2500.

If the number of phases is set to 3, PWM Sign/Magnitude output mode is not
available.

see

Navigator Motion Processor Programmer’s Reference
86

SetPhaseAngle (MC2300 and MC2800 only) 84h
GetPhaseAngle (MC2300 and MC2800 only) 2Ch

Syntax SetPhaseAngle axis angle
GetPhaseAngle axis

Arguments Name Instance encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 Type Range Scaling Units
 angle unsigned integer 0 to 215-1 unity counts

Packet structure SetPhaseAngle

 0 axis 84h
 15 12 11 8 7 0

 Data
write angle

 15 0

 GetPhaseAngle
 0 axis 2Ch

 15 12 11 8 7 0
 Data

read angle
 15 0

Description SetPhaseAngle sets the instantaneous commutation angle for the specified axis.

GetPhaseAngle returns the value of the current phase angle. To convert counts to
an actual phase angle divide by the number of encoder counts per electrical cycle
and multiply by 360.
For example if a value of 500 is retrieved using GetPhaseAngle and the counts per
electrical cycle value has been set to 2,000 (SetPhaseCounts command) this
corresponds to an angle of (500/2,000)*360 = 90 degrees current phase angle
position.

Restrictions The specified angle must not exceed the number of counts per electrical cycle set by
the SetPhaseCounts command.

see GetPhaseCommand, InitializePhase, Set/GetNumberPhases

Navigator Motion Processor Programmer’s Reference
87

SetPhaseCorrectionMode (MC2300 and MC2800 only) E8h
GetPhaseCorrectionMode (MC2300 and MC2800 only) E9h

Syntax SetPhaseCorrectionMode axis mode
GetPhaseCorrectionMode axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 mode Disabled
Enabled

0
1

Packet structure SetPhaseCorrectionMode

 0 axis E8h
 15 12 11 8 7 0

 Data
write 0 mode

 15 1 0

 GetPhaseCorrectionMode
 0 axis E9h

 15 12 11 8 7 0
 Data

read mode
 15 1 0

Description SetPhaseCorrectionMode sets the phase correction mode for the specified axis to

either 0 (disabled) or 1(enabled). When phase correction is enabled, the encoder
index signal is used to update the commutation phase angle each motor revolution.
This ensures that the commutation angle will remain correct even if some encoder
counts are lost due to electrical noise, or due to the number of encoder
counts/electrical phase not being an integer.
GetPhaseCorrectionMode returns the current phase correction mode.

Restrictions

see GetPhaseCommand, InitializePhase, Set/GetNumberPhases,
Set/GetPhaseCounts

Navigator Motion Processor Programmer’s Reference
88

SetPhaseCounts (MC2300, MC2400 and MC2800 only) 75h
GetPhaseCounts (MC2300, MC2400 and MC2800 only) 7Dh

Syntax SetPhaseCounts axis counts
GetPhaseCounts axis

Arguments Name Instance encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 Type Range Scaling Units
 counts unsigned 16 bit 0 to 215-1 unity counts

Packet structure SetPhaseCounts

 0 axis 75h
 15 12 11 8 7 0

 Data
write count

 15 0

 GetPhaseCounts
 0 axis 7Dh

 15 12 11 8 7 0
 Data

read count
 15 0

Description SetPhaseCounts sets the number of encoder count per electrical phase of the

motor. If this value is not an integer then the closest integer value should be used,
and phase correction mode should be enabled (See SetPhaseCorrectionMode
command). The number of electrical cycles is equal to 1/2 the number of motor
poles.
GetPhaseCounts returns the number of counts per electrical cycle.

Restrictions For MC2400:
The number of microsteps per full step is set using the command
SetPhaseCounts. The parameter used for this command represents the number of
microsteps per electrical cycle (4 times the desired number of microsteps). So for
example, to set 64 microsteps per full step, the command SetPhaseCounts 256
should be used. The maximum number of microsteps that can be generated per full
step is 256, giving a maximum parameter for this command of 1024.

see GetPhaseCommand, InitializePhase, Set/GetNumberPhases

Navigator Motion Processor Programmer’s Reference
89

SetPhaseInitializeMode (MC2300 and MC2800 only) E4h
GetPhaseInitializeMode (MC2300 and MC2800 only) E5h

Syntax SetPhaseInitializeMode axis mode
GetPhaseInitializeMode axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 mode Algorithmic
Hall-based

0
1

Packet structure SetPhaseInitializeMode

 0 axis E4h
 15 12 11 8 7 0

 Data
write 0 mode

 15 1 0

 GetPhaseInitializeMode
 0 axis E5h

 15 12 11 8 7 0
 Data

read mode
 15 1 0

Description SetPhaseInitializeMode establishes the mode in which the specified axis is to be

initialized for commutation. The options are Algorithmic and Hall-based. In
algorithmic mode the chipset briefly stimulates the motor windings and sets the
initial phasing based on the observed motor response. In Hall-based initialization
mode the 3 Hall sensor signals are used to determine the motor phasing.
GetPhaseInitializeMode returns the current initialization mode.

Restrictions Algorithmic mode should only be selected if it is known that the axis is free to
move in both directions, and that a brief uncontrolled move can be tolerated by the
motor, mechanism, and load.

see GetPhaseCommand, InitializePhase, Set/GetNumberPhases

Navigator Motion Processor Programmer’s Reference
90

SetPhaseInitializeTime (MC2300 and MC2800 only) 72h
GetPhaseInitializeTime (MC2300 and MC2800 only) 7Ch

Syntax SetPhaseInitializeTime axis time
GetPhaseInitializeTime axis

Arguments Name Instance encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 Type Range Scaling Units
 time unsigned 16 bit 0 to 215-1 unity cycles

Packet structure SetPhaseInitializeTime

 0 axis 72h
 15 12 11 8 7 0

 Data
write time

 15 0

 GetPhaseInitializeTime
 0 axis 7Ch

 15 12 11 8 7 0
 Data

read time
 15 0

Description SetPhaseInitializeTime sets the time value (in cycles) to be used during the

algorithmic phase initialization procedure. This value determines the duration of
each of the four segments in the phase initialization algorithm. See the User's guide
for more information on algorithmic initialization.
GetPhaseInitializeTime returns the current phase initialization time.

Restrictions

see GetPhaseCommand, InitializePhase, Set/GetNumberPhases

Navigator Motion Processor Programmer’s Reference
91

SetPhaseOffset (MC2300 and MC2800 only) 76h
GetPhaseOffset (MC2300 and MC2800 only) 7Bh

Syntax SetPhaseOffset axis offset
GetPhaseOffset axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 Type Range Scaling Units
 offset unsigned 16 bit 0 to 215-1 unity counts

Packet structure SetPhaseOffset

 0 axis 76h
 15 12 11 8 7 0

 Data
write offset

 15 0

 GetPhaseOffset
 0 axis 7Bh

 15 12 11 8 7 0
 Data

read offset
 15 0

Description SetPhaseOffset sets the offset from the index mark of the specified axis to the

maximum output value of phase A. This command will have no immediate effect
on the commutation angle but will have an affect once the index pulse is
encountered.
GetPhaseOffset returns the current value of the phase offset.
To convert counts to a phase angle in degrees, divide by the number of encoder
counts per electrical cycles and multiply by 360. For example if a value of 500 is
specified using SetPhaseOffset and the counts per electrical cycle value has been
set to 2,000 (SetPhaseCounts command) this corresponds to an angle of
(500/2,000)*360 = 90 degrees phase angle at the index mark.

Restrictions

see GetPhaseCommand, InitializePhase, Set/GetNumberPhases

Navigator Motion Processor Programmer’s Reference
92

SetPhasePrescale (MC2300 and MC2800 only) E6h
GetPhasePrescale (MC2300 and MC2800 only) E7h

Syntax SetPhasePrescale axis scale
GetPhasePrescale axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 mode Off
On

0
1

Packet structure SetPhasePrescale

 0 axis E6h
 15 12 11 8 7 0

 First data word
write 0 mode

 15 1 0

 GetPhasePrescale
 0 axis E7h

 15 12 11 8 7 0
 First data word

read 0 mode
 15 1 0

Description SetPhasePrescale On causes the number of encoder counts to be scaled by a

factor of 1
64 before being used to calculate a commutation angle for the specified

axis. When operated in the prescale mode the chipset can commutate motors with
a high number of counts per electrical cycle, such as motors with very high accuracy
encoders.
SetPhasePrescale Off removes the scale factor.
GetPhasePrescale returns the current scaling mode.

Restrictions

see GetPhaseCommand, InitializePhase, Set/GetNumberPhases

Navigator Motion Processor Programmer’s Reference
93

SetPosition buffered 10h
GetPosition 4Ah

Syntax SetPosition axis position
GetPosition axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 Type Range Scaling Units
 position signed 32 bit -231 to 231-1 unity counts

Packet structure SetPosition

 0 axis 10h
 15 12 11 8 7 0

 First data word
write position (high-order part)

 31 16
 Second data word

write position (low-order part)
 15 0

 GetPosition
 0 axis 4Ah

 15 12 11 8 7 0
 First data word

read position (high-order part)
 31 16

 Second data word
read position (low-order part)

 15 0

Description SetPosition specifies the trajectory destination of the specified axis. It is used in the

Trapezoidal and S-curve profile modes.
GetPosition reads the contents of the buffered position register.

Restrictions SetPosition is a buffered command. The value set using this command will not
take effect until the next Update or MultiUpdate instruction.

see Set/GetAcceleration, Set/GetDeceleration, Set/GetJerk, Set/GetVelocity,
GetPositionError, Set/GetPositionErrorLimit, MultiUpdate, Update

Navigator Motion Processor Programmer’s Reference
94

SetPositionErrorLimit 97h
GetPositionErrorLimit 98h

Syntax SetPositionErrorLimit axis limit
GetPositionErrorLimit axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 Type Range Scaling Units
 limit unsigned 32 bit 0 to 231-1 unity counts

Packet structure SetPositionErrorLimit

 0 axis 97h
 15 12 11 8 7 0

 First data word
write limit (high-order part)

 31 16
 Second data word

write limit (low-order part)
 15 0

 GetPositionErrorLimit
 0 axis 98h

 15 12 11 8 7 0
 First data word

read limit (high-order part)
 31 16

 Second data word
read limit (low-order part)

 15 0

Description SetPositionErrorLimit sets the absolute value of the maximum position error

allowable by the chipset for the specified axis. If the position error exceeds this
limit, a motion error occurs. Such a motion error may or may not cause the axis to
stop moving depending on the value set using the SetAutoStopMode command.
GetPositionErrorLimit returns the current position error limit value.

Restrictions

see GetPositionError, GetActualPosition, Set/GetPosition

Navigator Motion Processor Programmer’s Reference
95

SetProfileMode buffered A0h
GetProfileMode A1h

Syntax SetProfileMode axis profile
GetProfileMode axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 profile Trapezoidal
Velocity contouring
S-curve
Electronic gear
External

0
1
2
3
4

Packet structure SetProfileMode

 0 axis A0h
 15 12 11 8 7 0

 Data
write 0 profile

 15 3 2 0

 GetProfileMode
 0 axis A1h

 15 12 11 8 7 0
 Data

read profile
 15 3 2 0

Description SetProfileMode sets the profile mode, selecting Trapezoidal, Velocity Contouring,

S-curve, Electronic gear or External for the specified axis.
GetProfileMode returns the contents of the buffered profile-mode register for the
specified axis.

Restrictions SetProfileMode is a buffered command. The value set using this command will not
take effect until the next Update or MultiUpdate instruction.

see
Set/GetGearMaster, Set/GetGearRatio, Set/GetBufferFunction, MultiUpdate,
Update

Navigator Motion Processor Programmer’s Reference
96

SetSampleTime 38h
GetSampleTime 61h

Syntax SetSampleTime time
GetSampleTime

Arguments Name Type Range Scaling Units
 time unsigned 16 bit 1 to 215-1 unity µsec/cycle

Packet structure SetSampleTime

 38h
 15 8 7 0

 Data
write time

 15 0

 GetSampleTime
 61h

 15 8 7 0
 Data

read time
 15 0

Description SetSampleTime sets the cycle time for the chipset. This is the time between servo

loop updates and trajectory calculations. The value is expressed in microseconds.
Only certain values are allowed as follows:
Product Allowed values

MC2100 series multiples of 102 and at least 102 µsec per enabled axis

MC2300 series multiples of 154 and at least 154 µsec per enabled axis

MC2400 series multiples of 154 and at least 154 µsec per enabled axis
GetSampleTime returns the current sample time value.

Restrictions This command is not available with the MC2500 series.
This command affects the cycle time for all axes.

see

Navigator Motion Processor Programmer’s Reference
97

SetSerialPortMode 8Bh
GetSerialPortMode 8Ch

Syntax SetSerialPort mask
GetSerialPort

Arguments Name Instance Encoding
 mask see below

Packet structure SetSerialPortMode

 0 8Bh
 15 8 7 0

 Data
write multi-drop address 0 protocol parity transmission rate

 15 11 10 9 8 7 6 5 4 3 0
 < stop bits

 GetSerialPortMode
 0 8Ch

 15 8 7 0
 Data

read multi-drop address protocol parity transmission rate
 15 11 10 9 8 7 6 5 4 3 0

 < stop bits

Description SetSerialPortMode sets the configuration for the asynchronous serial port.

Note: It is recommended that two stop bits be used for baud rates greater than
19200bps.
GetSerialPortMode returns the configuration for the asynchronous serial port.

Navigator Motion Processor Programmer’s Reference
98

The following table shows the encoding of the data used by this command.

Bit Number Name Instance Encoding
0-3 transmission rate 1200 baud

2400
9600
19200
57600
115200
250000
416667

0
1
2
3
4
5
6
7

4-5 parity none
odd
even

0
1
2

6 stop bits 1
2

0
1

7-8 protocol Point-to-point
Multi-drop using address bit
Multi-drop using idle-line
detection

0
2
3

11-15 multi-drop
address

Address 0
Address 1
…
Address 31

0
1
…
31

Restrictions

see Set/GetDiagnosticPortMode

Navigator Motion Processor Programmer’s Reference
99

SetSettleTime AAh
GetSettleTime ABh

Syntax SetSettleTime axis time
GetSettleTime axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 Type Range Scaling Units
 time unsigned 16 bit 0 to 215-1 unity cycles

Packet structure SetSettleTime

 0 axis AAh
 15 12 11 8 7 0

 Data
write time

 15 0

 GetSettleTime
 0 axis ABh

 15 12 11 8 7 0
 Data

read time
 15 0

Description SetSettleTime sets the time, in number of cycles, that the specified axis must

remain within the settle window before the axis-settled indicator (in the activity
status register) is set.
GetSettleTime returns the current settle time for the specified axis.

Restrictions

see Set/GetMotionCompleteMode, Set/GetSettleWindow, GetActivityStatus

Navigator Motion Processor Programmer’s Reference
100

SetSettleWindow BCh
GetSettleWindow BDh

Syntax SetSettleWindow axis window
GetSettleWindow axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 Type Range Scaling Units
 window unsigned 16 bit 0 to 215-1 unity counts

Packet structure SetSettleWindow

 0 axis BCh
 15 12 11 8 7 0

 Data
write window

 15 0

 GetSettleWindow
 0 axis BDh

 15 12 11 8 7 0
 Data

read window
 15 0

Description SetSettleWindow sets the position range within which the specified axis must

remain for the duration specified by SetSettleTime before the axis-settled indicator
(in the activity status register) is set.
GetSettleWindow returns the current value of the settle window.

Restrictions

see Set/GetMotionCompleteMode, Set/GetSettleTime, GetActivityStatus

Navigator Motion Processor Programmer’s Reference
101

SetSignalSense A2h
GetSignalSense A3h

Syntax SetSignalSense axis mask
GetSignalSense axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 Indicator Bit Number
 mask Encoder A

Encoder B
Encoder Index
Encoder Home
Positive limit
Negative limit
AxisIn
Hall A
Hall B
Hall C
AxisOut
StepOutput

0001h
0002h
0004h
0008h
0010h
0020h
0040h
0080h
0100h
0200h
0400h
0800h

0
1
2
3
4
5
6
7
8
9
10
11

 MotorOutput 1000h 12
 reserved 13 - 15

Packet structure SetSignalSense

 0 axis A2h
 15 12 11 8 7 0

 Data
write 0 mask

 15 11 10 0

 GetSignalSense
 0 axis A3h

 15 12 11 8 7 0
 Data

read mask
 15 11 10 0

Description SetSignalSense establishes the sense of the signals connected to the Signal Sense

register by using a bitwise mask that corresponds to the bits of the Signal Status
register, for the specified axis.
For each sense bit that is 0, the input is active low, or not inverted.
For each sense bit that is 1, the input is active high, or inverted.
Inverting the MotorOutput has the effect of reversing the direction of motion
when a positive or negative motor command is given.
Inverting the StepOutput has the effect of reversing step signal generated by the
MC2500 chipset. Refer to the User’s Guide for more information.
GetSignalSense returns the current signal sense mask.

Navigator Motion Processor Programmer’s Reference
102

Restrictions Inverting ther encoder A,B, or index may prevent the index capture mechanism
from operating correctly. Refer to the Navigator Technical Specifications for the
index capture electrical requirements.

see GetSignalStatus

Navigator Motion Processor Programmer’s Reference
103

SetStartVelocity (MC2400 and MC2500 only) buffered 6Ah
GetStartVelocity (MC2400 and MC2500 only) 6Bh

Syntax SetStartVelocity axis velocity
GetStartVelocity axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 Type Range Scaling Units
 velocity unsigned 32 bit 0 to 231-1 1/216 counts/cycle

Packet structure SetStartVelocity

 0 axis 6Ah
 15 12 11 8 7 0

 First data word
write velocity (high-order part)

 31 16
 Second data word

write velocity (low-order part)
 15 0

 GetStartVelocity
 0 axis 6Bh

 15 12 11 8 7 0
 First data word

read velocity (high-order part)
 31 16

 Second data word
read velocity (low-order part)

 15 0

Description SetStartVelocity loads the starting velocity buffer register for the specified axis.

GetStartVelocity reads the starting velocity buffer register.
Scaling example: To load a starting velocity value of 1.750 counts/cycle multiply by
65,536 (giving 114,688) and load the resultant number as a 32 bit number, giving
0001 in the high word and C000h in the low word. Retrieved numbers
(GetStartingVelocity) must correspondingly be divided by 65,536 to convert to
units of counts/cycle.

Restrictions SetStartVelocity has no effect when the chip is in S-curve profile mode.
SetVelocity is a buffered command. The value set using this command will not
take effect until the next Update or MultiUpdate instruction.

see Set/GetAcceleration, Set/GetDeceleration, Set/GetPosition

Navigator Motion Processor Programmer’s Reference
104

SetStepRange (MC 2500 only) CFh
GetStepRange (MC 2500 only) CEh

Syntax SetStepRange axis frequency
GetStepRange axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 frequency 5 MHz
625 kHz
156.25 kHz
39.062 kHz

1
4
6
8

Packet structure SetStepRange

 0 axis CFh
 15 12 11 8 7 0

 Data
write 0 freq

 15 4 0

 GetStepRange
 0 axis CEh

 15 12 11 8 7 0
 Data

read freq
 15 4 0

Description SetStepRange set the maximum pulse rate frequency for the specified axis. For

example, if the desired maximum pulse rate is 200,000 pulses/second, the
command SetStepRange 4 should be issued.

GetMaxStepRate returns the maximum pulse rate frequency for the specified axis.

Restrictions This command is only available on the MC2500 series.

Navigator Motion Processor Programmer’s Reference
105

SetStopMode buffered D0h
GetStopMode D1h

Syntax SetStop axis mode
GetStop axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 mode NoStop
AbruptStop
SmoothStop

0
1
2

Packet structure SetStopMode

 0 axis D0h
 15 12 11 8 7 0

 Data
write 0 mode

 15 2 1 0

 GetStopMode
 0 axis D1h

 15 12 11 8 7 0
 Data

read mode
 15 2 1 0

Description SetStopMode stops the specified axis. The available stop modes are AbruptStop,

which instantly (without any deceleration phase) stops the axis, SmoothStop which
uses the programmed deceleration value and profile shape for the current profile
mode to stop the axis, or NoStop which is generally used to turn off a previously
set stop command.
Note: After an Update a buffered stop command (SetStopMode command) will
reset to the NoStop condition. In other words if the command SetStopMode is
followed by an Update command and then by a GetStopMode command, the
retrieved stop mode will be NoStop.
GetStopMode returns the stop mode set using SetStopMode.

Restrictions SmoothStop mode is not available in the electronic-gearing profile.
SetStopMode is a buffered command. The value set using this command will not
take effect until the next Update or MultiUpdate instruction.

see MultiUpdate, Update

Navigator Motion Processor Programmer’s Reference
106

SetTraceMode B0h
GetTraceMode B1h

Syntax SetTraceMode mode
GetTraceMode

Arguments Name Instance Encoding
 mode OneTime

RollingBuffer
0
1

Packet structure SetTraceMode

 0 B0h
 15 8 7 0

 Data
write 0 mode

 15 1 0

 GetTraceMode
 0 B1h

 15 8 7 0
 Data

read mode
 15 1 0

Description SetTraceMode sets the buffer usage for the next trace. In OneTime mode, the

trace continues until the buffer is filled, then stops. In Rolling mode, the trace
continues from the beginning of the buffer after the end is reached. Values stored
when in the rolling mode are lost if they are not read before being overwritten by
the wrapped data being traced and stored.
GetTraceMode returns the code for the current buffer mode.

Restrictions

see GetTraceStatus

Navigator Motion Processor Programmer’s Reference
107

SetTracePeriod B8h
GetTracePeriod B9h

Syntax SetTracePeriod period
GetTracePeriod

Arguments Name Type Range Scaling Units
 period unsigned 16 bit 1 to 215-1 unity cycles

Packet structure SetTracePeriod

 0 B8h
 15 8 7 0

 Data
write period

 15 0

 GetTracePeriod
 0 B9h

 15 8 7 0
 Data

read period
 15 0

Description SetTracePeriod sets the time period, expressed in number of cycles, between

successive trace points.
GetTracePeriod returns the current trace period.

Restrictions

see Set/GetSampleTime, Set/GetTraceStart, Set/GetTraceStop

Navigator Motion Processor Programmer’s Reference
108

SetTraceStart B2h
GetTraceStart B3h

Syntax SetTraceStart triggerAxis condition triggerBit triggerState
GetTraceStart

Arguments Name Instance Encoding
 triggerAxis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 Description
 condition Immediate

Next update
Event Status register bit
Activity Status register bit
Signal Status register bit

0
1
2
3
4

 triggerBit Status register bit 0 to 15

 triggerState Triggering state of the bit 0 (value = 0)
1 (value = 1)

Packet structure SetTraceStart

 0 B2h
 15 8 7 0

 Data
write 0 triggerBit condition triggerAxis

 15 13 12 11 8 7 4 3 0
 state =

 GetTraceStart
 0 B3h

 15 8 7 0
 Data

read triggerBit condition triggerAxis
 15 13 12 11 8 7 4 3 0

 state =

Description SetTraceStart sets the condition for starting the trace. The Immediate condition

requires no axis to be specified and the trace will begin upon execution of this
instruction. The other four conditions require an axis to be specified; and when the
condition for that axis is attained, the trace will begin.
When a status register bit is the trigger, the bit number and state must be included
in the argument. The trace is started when the indicated bit reaches the specified
state (0 or 1).
Once a trace has started, the trace-start indicator is reset and the SetTraceStart
instruction must be reentered before another trace can be started.
GetTraceStart returns the the current trace-start condition.
Examples:
If it is desired that the trace begin on the next Update for axis 3, then a "1" is set
for the condition, a "2" is set for the axis number, and bit number and state can be
loaded with zeroes since they are not used.

Navigator Motion Processor Programmer’s Reference
109

If it is desired that the trace begin when bit 7 of the Activity Status register for axis
2 goes to 0 then the trace start is loaded as follows: A "3" is loaded for condition, a
"1" is loaded for axis number, a "7" is loaded for bit number, and a "0" is loaded for
state.

The table below shows the corresponding value for combinations of triggerBit
and register.

encoding of
"triggerBit"

register = event status register = activity status register = signal
status

0 Motion Complete Phasing Initialized Encoder A
1 Wrap-around At maximum velocity Encoder B
2 Breakpoint 1 Tracking Encoder index
3 Position capture Home
4 Motion error Positive limit
5 In positive limit Negative limit
6 In negative limit AxisIn
7 Instruction error Axis settled Hall sensor 1
8 Motor on/off Hall sensor 2
9 Position capture Hall sensor 3
0Ah In motion
0Bh Commutation error In positive limit
0Ch In negative limit
0Dh
0Eh Breakpoint 2
0Fh

Restrictions

see Set/GetBufferLength, GetTraceCount, Set/GetTraceMode,

Set/GetTracePeriod, Set/GetTraceStop

Navigator Motion Processor Programmer’s Reference
110

SetTraceStop B4h
GetTraceStop B5h

Syntax SetTraceStop triggerAxis condition triggerBit triggerState
GetTraceStop

Arguments Name Instance Encoding
 triggerAxis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 Description
 condition Immediate

Next update
Event Status register bit
Activity Status register bit
Signal register bit

0
1
2
3
4

 triggerBit Status register bit 0 to 15

 triggerState Triggering state of the bit 0 (value = 0)
1 (value = 1)

Packet structure SetTraceStop

 0 B4h
 15 8 7 0

 Data
write 0 triggerBit condition triggerAxis

 15 13 12 11 8 7 4 3 0
 state =

 GetTraceStop
 0 B5h

 15 8 7 0
 Data

read triggerBit condition triggerAxis
 15 13 12 11 8 7 4 3 0

 state =

Description SetTraceStop sets the condition for stopping the trace. The Immediate condition

requires no axis to be specified and the trace will stop upon execution of this
instruction. The other four conditions require an axis to be specified; and when the
condition for that axis is attained, the trace will stop.
When a status register bit is the trigger, the bit number and state must be included
in the argument. The trace stops when the indicated bit reaches the specified state
(0 or 1).
Once a trace has stopped, the trace-stop indicator is reset and the SetTraceStop
instruction must be reentered before another trace can be stopped.
GetTraceStop returns the code for the current trace-stop condition.
Examples:
If it is desired that the trace stop on the next Update for axis 3, then a "1" is set for
the condition, a "2" is set for the axis number, and bit number and state can be
loaded with zeroes since they are not used.

Navigator Motion Processor Programmer’s Reference
111

If it is desired that the trace stop when bit 7 of the Activity status for axis 2 goes to
0 then the trace stop is loaded as follows: A "3" is loaded for condition, a "1" is
loaded for axis number, a "7" is loaded for bit number, and a "0" is loaded for state.

The table below shows the corresponding value for combinations of triggerBit
and register.

encoding of
"triggerBit"

register = event status register = activity status register = signal
status

0 Motion Complete Phasing Initialized Encoder A
1 Wrap-around At maximum velocity Encoder B
2 Breakpoint 1 Tracking Encoder index
3 Position capture Home
4 Motion error Positive limit
5 In positive limit Negative limit
6 In negative limit AxisIn
7 Instruction error Axis settled Hall sensor 1
8 Motor on/off Hall sensor 2
9 Position capture Hall sensor 3
0Ah In motion
0Bh Commutation error In positive limit
0Ch In negative limit
0Dh
0Eh Breakpoint 2
0Fh

Restrictions

see Set/GetTraceCount, Set/GetTraceStart, Set/GetTraceStatus

Navigator Motion Processor Programmer’s Reference
112

SetTraceVariable B6h
GetTraceVariable B7h

Syntax SetTraceVariable variableNumber traceAxis variable
GetTraceVariable variableNumber

Arguments Name Instance Encoding
 variableNumber Variable1

Variable2
Variable3
Variable4

0
1
2
3

 axis Axis1
Axis2
Axis3
Axis4

0
1
2
3

 variable None (disable the variable)
Position error (32 bits)
Commanded position (32 bits)
Commanded velocity (32 bits)
Commanded acceleration (32 bits)
Actual position (32 bits)
Actual velocity (32 bits)
Motor command (16 bits)
Chipset time (32 bits)
Capture register (32 bits)
Integral (32 bits)
Derivative (16 bits)
Event Status register (16 bits)
Activity Status register (16 bits)
Signal Status register (16 bits)
Phase angle (16 bits)
Phase offset (16 bits)
Phase A (16 bits)
Phase B (16 bits)
Phase C (16 bits)
Analog input 1 (16 bits)
Analog input 2 (16 bits)
Analog input 3 (16 bits)
Analog input 4 (16 bits)
Analog input 5 (16 bits)
Analog input 6 (16 bits)
Analog input 7 (16 bits)
Analog input 8 (16 bits)

0
1
2
3
4
5
6
7
8
9
Ah
Bh
Ch
Dh
Eh
Fh
10h
11h
12h
13h
14h
15h
16h
17h
18h
19h
1Ah
1Bh

 PID Servo Error 1Ch

Navigator Motion Processor Programmer’s Reference
113

Packet structure SetTraceVariable

 0 B6h
 15 8 7 0

 First data word
write 0 variable#

 15 2 1 0
 Second data word

write variable 0 axis
 15 8 7 4 5 0

 GetTraceVariable
 0 B7h

 15 8 7 0
 First data word

write variable#
 15 2 1 0

 Second data word
read variable axis

 15 8 7 4 5 0

Description SetTraceVariable assigns the given variable to the specified variableNumber

location in the trace buffer. The variable will always occupy a 32-bit buffer location.
16-bit values are sign extended to 32 bits. Up to four variables may be traced at one
time. All combinations of axis numbers and trace variables are supported.
All variable assignments must be contiguous starting with variableNumber = 0.
GetTraceVariable returns the variable and axis of the specified variableNumber.
Example: To set up a 3 variable trace capturing the commanded acceleration for
axis 1, the actual position for axis 1, and the event status word for axis 3 the
following sequence of commands would be used. First a SetTraceVariable
command with traceId of "0", axis of "0", and variable of "4" would be sent. Then
a SetTraceVariable command with traceId of "1", axis of "0", and variable of "5"
would be sent. Finally a SetTraceVariable command with traceId of "2", axis of
"2" and variable of "0Ch" would be sent.

Restrictions

see Set/GetTrace commands

Navigator Motion Processor Programmer’s Reference
114

SetTrackingWindow A8h
GetTrackingWindow A9h

Syntax SetTrackingWindow axis window
GetTrackingWindow axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 Type Range Scaling Units
 window unsigned 16 bit 0 to 215-1 unity counts

Packet structure SetTrackingWindow

 0 axis A8h
 15 12 11 8 7 0

 Data
write window

 15 0

 GetTrackingWindow
 0 axis A9h

 15 12 11 8 7 0
 Data

read window
 15 0

Description SetTrackingWindow sets boundaries for the actual position of the specified axis. If

the axis crosses the window boundary in either direction, the Tracking indicator (bit
2 of the activity Status register) is set to 0. When the axis returns to within the
window, the tracking indicator is set to 1.
GetTrackingWindow returns the value of the current tracking window.

Restrictions

see GetActivityStatus, GetActualPosition

Navigator Motion Processor Programmer’s Reference
115

SetVelocity buffered 11h
GetVelocity 4Bh

Syntax SetVelocity axis velocity
GetVelocity axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

 Type Range Scaling Units
 velocity signed 32 bit -231 to 231-1 1/216 counts/cycle

Packet structure SetVelocity

 0 axis 11h
 15 12 11 8 7 0

 First data word
write velocity (high-order part)

 31 16
 Second data word

write velocity (low-order part)
 15 0

 GetVelocity
 0 axis 4Bh

 15 12 11 8 7 0
 First data word

read velocity (high-order part)
 31 16

 Second data word
read velocity (low-order part)

 15 0

Description SetVelocity loads the Maximum Velocity buffer register for the specified axis.

GetVelocity returns the Maximum Velocity buffer register.
Scaling example: To load a velocity value of 1.750 counts/cycle multiply by 65,536
(giving 114,688) and load the resultant number as a 32 bit number, giving 0001 in
the high word and C000h in the low word. Retrieved numbers (GetVelocity) must
correspondingly be divided by 65,536 to convert to units of counts/cycle.

Restrictions SetVelocity may not be issued while an axis is in motion with the S-curve profile.
SetVelocity is not valid in Electronic Gearing profile mode.
The velocity must not be < 0 except in the Velocity-Contouring profile mode.
SetVelocity is a buffered command. The value set using this command will not
take effect until the next Update or MultiUpdate instruction.

see Set/GetAcceleration, Set/GetDeceleration, Set/GetJerk, Set/GetPosition,
MultiUpdate, Update

Navigator Motion Processor Programmer’s Reference
116

Update 1Ah

Syntax Update axis

Arguments Name Instance Encoding
 axis Axis1

Axis2
Axis3
Axis4

0
1
2
3

Packet structure Update

 0 axis 1Ah
 15 12 11 8 7 0

Description Update causes all buffered data parameters are copied into the corresponding run-

time registers on the specified axis.
The following instruction is buffered: ClearPositionError.
The following trajectory parameters are buffered: Acceleration, Deceleration,
GearRatio, Jerk, Position, ProfileMode, StartVelocity, Stop, and Velocity.
The following PID filter parameters are buffered: DerivativeTime, IntegrationLimit,
Kaff, Kd, Ki, Kp, and Kvff.
The following Motor Command parameters is buffered: MotorCommand.

Restrictions

see MultiUpdate

Navigator Motion Processor Programmer’s Reference
117

WriteBuffer C8h

Syntax WriteBuffer bufferID value

Arguments Name Type Range Scaling Units
 bufferID unsigned 16 bit 0 to 15 unity -

 value signed 32 bit -231 to 231-1 unity -

Packet structure WriteBuffer

 0 C8h
 15 8 7 0

 First data word
write 0 bufferID

 15 4 3 0
 Second data word

write value (high-order part)
 31 16

 Third data word
write value (low-order part)

 15 0

Description WriteBuffer writes the 32-bit value into the current location in the specified buffer.

The current location is determined by adding the base address of the buffer (set by
SetBufferStart), to the buffer's Write Index (set by SetBufferWriteIndex). After the
contents have been read, the Write Index is incremented by 1; if the result is equal
to the buffer length (set by SetBufferLength), the Index is reset to 0.
Some chipset operations automatically change the write index such as during a
trace. See the User's Guide for more details.

Restrictions

see ReadBuffer, Set/GetBufferWriteIndex

Navigator Motion Processor Programmer’s Reference
118

WriteIO 82h

Syntax WriteIO address data

Arguments Name Type Range Scaling Units
 address unsigned 8 bit 0 to 255 unity -

 data unsigned 16 bit 0 to 216-1 unity -

Packet structure WriteIO

 0 axis 82h
 15 12 11 8 7 0

 First data word
write 0 address

 15 8 7 0
 Second data word

write data
 15 0

Description WriteIO writes one 16-bit word of data to the device whose address is calculated by

adding 1000h to address. (address is an offset from the base address, 1000h, of
the Navigator’s memory-mapped I/O space.)
The format and interpretation of the 16-bit data word are dependent on the user-
defined device being addressed. User-defined I/O can be used to implement a
variety of features such as additional parallel I/O, flash memory for non-volatile
configuration information storage, or display devices such as LED arrays.

Restrictions

see ReadIO

Navigator Motion Processor Programmer’s Reference
119

3 Instruction Summary Tables

3.1 Descriptions by Functional Category

Breakpoints and Interrupts
ClearInterrupt Reset interrupt line
GetBreakpoint Get breakpoint type
GetBreakpointValue Get breakpoint comparison value
GetInterruptAxis Get the axes with pending interrupts
GetInterruptMask Get interrupt mask
SetBreakpoint Set breakpoint type
SetBreakpointValue Set breakpoint comparison value
SetInterruptMask Set interrupt mask
Commutation
GetCommutationMode Get the commutation mode
GetNumberPhases Get the number of phases
GetPhaseAngle Get current commutation phase angle
GetPhaseCommand Get the motor output command for a given phase A, B, or C
GetPhaseCorrectionMode Get phase correction mode
GetPhaseCounts Get number of encoder counts per commutation cycle
GetPhaseInitializeMode Get phase initialization mode
GetPhaseInitializeTime Get the time parameters for algorithmic phase initialization
GetPhaseOffset Get phase offset value
GetPhasePrescale Get phasing prescaler
InitializePhase Perform phase initialization procedure
SetCommutationMode Set the commutation mode (Hall-based, sinusoidal, or microstepping)
SetNumberPhases Set the number of phases (1, 2, or 3)
SetPhaseAngle Set current commutation phase angle
SetPhaseCorrectionMode Set phase correction mode (on or off)
SetPhaseCounts Set number of encoder counts per commutation cycle
SetPhaseInitializeMode Set phase initialization method (hall-based or algorithmic)
SetPhaseInitializeTime Set the time parameters for algorithmic phase initialization
SetPhaseOffset Set phase offset value
SetPhasePrescale Set commutation prescaler mode (enable or disable)
Digital Servo Filter
ClearPositionError Set position error to 0
GetAutoStopMode Get auto stop mode
GetDerivative Get the derivative of the error signal
GetDerivativeTime Get derivative sampling time
GetIntegral Get integrated position error value
GetIntegrationLimit Get integration limit
GetKaff Get acceleration feedforward gain
GetKd Get derivative gain
GetKi Get integral gain
GetKout Get servo filter output scaler
GetKp Get proportional gain
GetKvff Get velocity feedforward gain
GetMotorBias Get motor output bias
GetMotorLimit Get motor output limit

Navigator Motion Processor Programmer’s Reference
120

GetPositionError Get actual position error
GetPositionErrorLimit Get position error limit
SetAutoStopMode Set auto stop on position error (on or off)
SetDerivativeTime Set derivative sampling time
SetIntegrationLimit Set integration limit
SetKaff Set acceleration feedforward gain
SetKd Set derivative gain
SetKi Set integral gain
SetKout Set servo filter output scaler
SetKp Set proportional gain
SetKvff Set velocity feedforward gain
SetMotorBias Set motor output bias
SetMotorLimit Set motor output limit
SetPositionErrorLimit Set maximum position error limit
Encoder
AdjustActualPosition
GetActualPosition

Sums the specified offset with the actual encoder position
Get the actual encoder position

GetActualPositionUnits Get the unit type returned for the actual encoder position
GetActualVelocity Get the actual encoder velocity
GetCaptureSource Get capture source
GetCaptureValue Get current axis position capture value and reset the capture
GetEncoderModulus Get the full scale range of the parallel-word encoder
GetEncoderSource Get encoder type
GetEncoderToStepRatio Get encoder count to step ratio
SetActualPosition Set the actual encoder position
SetActualPositionUnits Set the unit type returned for the actual encoder position
SetCaptureSource Set capture source (home or index)
SetEncoderModulus Set the full scale range of the parallel-word encoder
SetEncoderSource Set encoder type (incremental or 16-bit parallel word)
SetEncoderToStepRatio Set encoder count to step ratio
External RAM
GetBufferFunction
GetBufferLength

Returns the buffer ID for a specified function
Get the length of a memory buffer

GetBufferReadIndex Get the buffer read pointer for a particular buffer
GetBufferStart Get the start location of a memory buffer
GetBufferWriteIndex Get the buffer write pointer for a particular buffer
ReadBuffer Read a long word value from a buffer memory location
SetBufferFunction
SetBufferLength

Assigns a buffer to the specified function
Set the length of a memory buffer

SetBufferReadIndex Set the buffer read pointer for a particular buffer
SetBufferStart Set the start location of a memory buffer
SetBufferWriteIndex Set the buffer write pointer for a particular buffer
WriteBuffer Write a long word value to a buffer memory location

Motor Output
GetCurrentMotorCommand Read the current motor command value
GetMotorCommand Read buffered motor output command
GetMotorMode Get motor loop mode
GetOutputMode Get output mode
SetStepRange
SetMotorCommand

Sets the allowable range (in KHz) for step output generation
Set direct value to motor output register

SetMotorMode Set motor loop mode (on or off)
SetOutputMode Set motor output mode (PWM sign-magnitude, PWM 50%, or DAC)

Navigator Motion Processor Programmer’s Reference
121

Profile generation
GetAcceleration Get acceleration limit
GetCommandedAcceleration Get commanded (instantaneous desired) acceleration
GetCommandedPosition Get commanded (instantaneous desired) position
GetCommandedVelocity Get commanded (instantaneous desired) velocity
GetDeceleration Get deceleration limit
GetGearMaster Get the electronic gear mode master axis and source
GetGearRatio Get command electronic gear rate
GetJerk Get jerk limit
GetPosition Get destination position
GetProfileMode Get current profile mode set using SetProfileMode
GetStartVelocity Get start velocity
GetStop Get stop command; abrupt, smooth, or none
GetVelocity Get velocity limit
MultiUpdate Multiple axis immediate parameter update
SetAcceleration Set acceleration limit
SetDeceleration Set deceleration limit
SetGearMaster Set the master axis and source (actual or target-based)
SetGearRatio Set command electronic gear ratio
SetJerk Set jerk limit
SetPosition Set position limit
SetProfileMode Set profile mode (S-curve, trapezoidal, velocity-contouring, or electronic gear)
SetStartVelocity Set start velocity
SetStop Set stop command. (abrupt stop, smooth stop, or none)
SetVelocity Set velocity limit
Update Immediate parameter update
Servo loop control
GetAxisMode Get axis mode
GetLimitSwitchMode Get limit switch mode
GetMotionCompleteMode Get the motion complete mode
GetSampleTime Get servo loop sample time
GetSettleTime Get the axis-settled time
GetSettleWindow Get the settle-window boundary value
GetTime Get current chip set time (number of servo loops)
GetTrackingWindow Get the tracking window boundary value
SetAxisMode Set axis operation mode (enabled or disabled)
SetLimitSwitchMode Set limit switching (on or off)
SetMotionCompleteMode Set the motion complete mode (target-based or actual)
SetSampleTime Set servo loop sample time
SetSettleTime Set the axis-settled time
SetSettleWindow Set the settle-window boundary
SetTrackingWindow Set the tracking window boundary
Status Registers and AxisOut Indicator
GetActivityStatus Get Activity Status
GetAxisOutSource Get axis out signal monitor source
GetEventStatus Get event status word
GetSignalStatus Get the current axis Signal Status register
GetSignalSense Get the interpretation of the Signal Status bits
ResetEventStatus Reset bits in event status word
SetAxisOutSource Set axis out monitor signal source
SetSignalSense Set the interpretation of the Signal Status bits
Traces
GetTraceCount Get the number of traced data points
GetTraceMode Get the trace mode

Navigator Motion Processor Programmer’s Reference
122

GetTracePeriod Get the trace period
GetTraceStart Get the trace start condition
GetTraceStatus Get the trace status word
GetTraceStop Get the trace stop condition
GetTraceVariable Get a trace variable setting
SetTraceMode Set the trace mode (rolling or one-time)
SetTracePeriod Set the trace period
SetTraceStart Start the trace
SetTraceStop Stop the trace
SetTraceVariable Set variable (i.e., data) to be traced
Miscellaneous
GetChecksum
GetDiagnosticPortMode

Reads the internal chip checksum
Get the diagnostic port valid instruction mode

GetHostIOError Get the most recent I/O error code
GetSerialPort Read serial-port configuration data
GetVersion Get chipset software version information
NoOperation Perform no operation, used to verify communications
ReadIO Read user defined I/O value
Reset Reset chipset
SetDiagnosticPortMode Set the diagnostic port valid instruction mode (limited or full)
SetSerialPort Set serial-port configuration data
WriteIO Write user-defined I/O value

Navigator Motion Processor Programmer’s Reference
123

3.2 Alphabetical Listing

Note: Get/Set instruction pairs are shown together on the same line of the table

Instruction Code Instruction Code
AdjustActualPosition
ClearInterrupt

F5
AC

ClearPositionError 47
GetAcceleration 4C SetAcceleration 90
GetActivityStatus A6
GetActualPosition 37 SetActualPosition 4D
GetActualPositionUnits BF SetActualPositionUnits BE
GetActualVelocity AD
GetAutoStopMode D3 SetAutoStopMode D2
GetAxisMode 88 SetAxisMode 87
GetAxisOutSource EE SetAxisOutSource ED
GetBreakpoint D5 SetBreakpoint D4
GetBreakpointValue D7 SetBreakpointValue D6
GetBufferFunction
GetBufferLength

CB
C3

SetBufferFunction
SetBufferLength

CA
C2

GetBufferReadIndex C7 SetBufferReadIndex C6
GetBufferStart C1 SetBufferStart C0
GetBufferWriteIndex C5 SetBufferWriteIndex C4
GetCaptureSource D9 SetCaptureSource D8
GetChecksum
GetCaptureValue

F8
36

GetCommandedAcceleration A7
GetCommandedPosition 1D
GetCommandedVelocity 1E
GetCommutationMode E3 SetCommutationMode E2
GetCurrentMotorCommand 3A
GetDeceleration 92 SetDeceleration 91
GetDerivative 9B
GetDerivativeTime 9D SetDerivativeTime 9C
GetDiagnosticPortMode 8A SetDiagnosticPortMode 89
GetEncoderModulus 8E SetEncoderModulus 8D
GetEncoderSource DB SetEncoderSource DA
GetEncoderToStepRatio DF SetEncoderToStepRatio DE
GetEventStatus 31
GetGearMaster AF SetGearMaster AE
GetGearRatio 59 SetGearRatio 14
GetHostIOError A5
GetIntegral 9A
GetIntegrationLimit 96 SetIntegrationLimit 95
GetInterruptAxis E1
GetInterruptMask 56 SetInterruptMask 2F
GetJerk 58 SetJerk 13
GetKaff 94 SetKaff 93
GetKd 52 SetKd 27
GetKi 51 SetKi 26
GetKout 9F SetKout 9E
GetKp 50 SetKp 25
GetKvff 54 SetKvff 2B
GetLimitSwitchMode 81 SetLimitSwitchMode 80
GetMotionCompleteMode EC SetMotionCompleteMode EB
GetMotorBias 2D SetMotorBias 0F
GetMotorCommand 69 SetMotorCommand 77
GetMotorLimit 07 SetMotorLimit 06

Navigator Motion Processor Programmer’s Reference
124

Instruction Code Instruction Code
GetMotorMode DD SetMotorMode DC
GetNumberPhases 86 SetNumberPhases 85
GetOutputMode 6E SetOutputMode E0
GetPhaseAngle 2C SetPhaseAngle 84
GetPhaseCommand EA
GetPhaseCorrectionMode E9 SetPhaseCorrectionMode E8
GetPhaseCounts 7D SetPhaseCounts 75
GetPhaseInitializeMode E5 SetPhaseInitializeMode E4
GetPhaseInitializeTime 7C SetPhaseInitializeTime 72
GetPhaseOffset 7B SetPhaseOffset 76
GetPhasePrescale E7 SetPhasePrescale E6
GetPosition 4A SetPosition 10
GetPositionError 99
GetPositionErrorLimit 98 SetPositionErrorLimit 97
GetProfileMode A1 SetProfileMode A0
GetSampleTime 61 SetSampleTime 38
GetSerialPort 8C SetSerialPort 8B
GetSettleTime AB SetSettleTime AA
GetSettleWindow BD SetSettleWindow BC
GetSignalStatus A4
GetSignalSense A3 SetSignalSense A2
GetStartVelocity 6B SetStartVelocity 6A
GetStop D1 SetStop D0
GetTime 3E
GetTraceCount BB
GetTraceMode B1 SetTraceMode B0
GetTracePeriod B9 SetTracePeriod B8
GetTraceStart B3 SetTraceStart B2
GetTraceStatus BA
GetTraceStop B5 SetTraceStop B4
GetTraceVariable B7 SetTraceVariable B6
GetTrackingWindow A9 SetTrackingWindow A8
GetVelocity 4B SetVelocity 11
GetVersion 8F
InitializePhase 7A
MultiUpdate 5B
NoOperation 00
ReadAnalog EF
ReadBuffer C9
ReadIO 83
Reset 39
ResetEventStatus 34
Update 1A
WriteBuffer C8
WriteIO 82

Navigator Motion Processor Programmer’s Reference
125

3.3 Numeric Listing
Code Instruction Code Instruction Code Instruction
00 NoOperation 80 SetLimitSwitchMode B6 SetTraceVariable
06 SetMotorLimit 81 GetLimitSwitchMode B7 GetTraceVariable
07 GetMotorLimit 82 WriteIO B8 SetTracePeriod
0F SetMotorBias 83 ReadIO B9 GetTracePeriod
10 SetPosition 84 SetPhaseAngle BA GetTraceStatus
11 SetVelocity 85 SetNumberPhases BB GetTraceCount
13 SetJerk 86 GetNumberPhases BC SetSettleWindow
14 SetGearRatio 87 SetAxisMode BD GetSettleWindow
1A Update 88 GetAxisMode BE SetActualPositionUnits
1D GetCommandedPosition 89 SetDiagnosticPortMode BF GetActualPositionUnits
1E GetCommandedVelocity 8A GetDiagnosticPortMode C0 SetBufferStart
25 SetKp 8B SetSerialPort C1 GetBufferStart
26 SetKi 8C GetSerialPort C2 SetBufferLength
27 SetKd 8D SetEncoderModulus C3 GetBufferLength
2B SetKvff 8E GetEncoderModulus C4 SetBufferWriteIndex
2C GetPhaseAngle 8F GetVersion C5 GetBufferWriteIndex
2D GetMotorBias 90 SetAcceleration C6 SetBufferReadIndex
2F SetInterruptMask 91 SetDeceleration C7 GetBufferReadIndex
31 GetEventStatus 92 GetDeceleration C8 WriteBuffer
34 ResetEventStatus 93 SetKaff C9 ReadBuffer
36 GetCaptureValue 94 GetKaff CA SetBufferFunction
37 GetActualPosition 95 SetIntegrationLimit CB GetBufferFunction
38 SetSampleTime 96 GetIntegrationLimit D0 SetStop
39 Reset 97 SetPositionErrorLimit D1 GetStop
3A GetCurrentMotorCommand 98 GetPositionErrorLimit D2 SetAutoStopMode
3E GetTime 99 GetPositionError D3 GetAutoStopMode
47 ClearPositionError 9A GetIntegral D4 SetBreakpoint
4A GetPosition 9B GetDerivative D5 GetBreakpoint
4B GetVelocity 9C SetDerivativeTime D6 SetBreakpointValue
4C GetAcceleration 9D GetDerivativeTime D7 GetBreakpointValue
4D SetActualPosition 9E SetKout D8 SetCaptureSource
50 GetKp 9F GetKout D9 GetCaptureSource
51 GetKi A0 SetProfileMode DA SetEncoderSource
52 GetKd A1 GetProfileMode DB GetEncoderSource
54 GetKvff A2 SetSignalSense DC SetMotorMode
56 GetInterruptMask A3 GetSignalSense DD GetMotorMode
58 GetJerk A4 GetSignalStatus E0 SetOutputMode
59 GetGearRatio A5 GetHostIOError E1 GetInterruptAxis
5B MultiUpdate A6 GetActivityStatus E2 SetCommutationMode
61 GetSampleTime A7 GetCommandedAcceleration E3 GetCommutationMode
68 SetEncoderToStepRatio A8 SetTrackingWindow E4 SetPhaseInitializeMode
69 GetMotorCommand A9 GetTrackingWindow E5 GetPhaseInitializeMode
6A SetStartVelocity AA SetSettleTime E6 SetPhasePrescale
6B GetStartVelocity AB GetSettleTime E7 GetPhasePrescale
6E GetOutputMode AC ClearInterrupt E8 SetPhaseCorrectionMode
6F GetEncoderToStepRatio AD GetActualVelocity E9 GetPhaseCorrectionMode
72 SetPhaseInitializeTime AE SetGearMaster EA GetPhaseCommand
75 SetPhaseCounts AF GetGearMaster EB SetMotionCompleteMode
76 SetPhaseOffset B0 SetTraceMode EC GetMotionCompleteMode
77 SetMotorCommand B1 GetTraceMode ED SetAxisOutSource
7A InitializePhase B2 SetTraceStart EE GetAxisOutSource
7B GetPhaseOffset B3 GetTraceStart EF ReadAnalog
7C GetPhaseInitializeTime B4 SetTraceStop F5 AdjustActualPosition
7D GetPhaseCounts B5 GetTraceStop F8 GetChecksum

	The Navigator Family
	Instruction Reference
	Instruction Summary Tables
	Descriptions by Functional Category
	Alphabetical Listing
	Numeric Listing

