Paradigm C++ Reference Manual

Version 5.0

* Paradigm Systems

The authors of this software make no expressed or implied warranty of any kind with regard to this software
and in no event will be liable for incidental or consequential damages arising from the use of this product. The
software described in this document is furnished under a license and may only be used or copied in accordance
with the terms of the licensing agreement.

The information in this document is subject to change without notice.
Copyright © 1999 Paradigm Systems. All rights reserved.

Paradigm C++™ is atrademark of Paradigm Systems. Other brand and product names are trademarks or
registered trademarks of their respective holders.

Version 5.0
January 5, 2000

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of Paradigm Systems.

Paradigm Systems
3301 Country Club Road
Suite 2214
Endwell, NY 13760
USA

(607)748-5966
(607)748-5968 (FAX)

Sales information: info@devtools.com
Technical support: support@devtools.com
Web: http://www.devtools.com
FTP: ftp://ftp.devtools.com

For prompt attention to your technical questions, contact our technical support team viathe Internet at
support@devtools.com. Please note that our 90 days of free technical support is only available to registered
users of Paradigm C++. If you haven't yet done so, take this time to register your products under the Paradigm
C++ Help menu or online at http://www.devtools.com.

Paradigm'’s Survival Pak maintenance agreement will give you unlimited free technical support plus automatic
product updates for an additional 12 months. Call (800) 537-5043 to purchase this protection today.

Chapter 1 Getting started

Starting Paradigm CH+......ooviiieeeeeeeeeee 11
The Paradigm C++ menu system...........cccceveeneene 12
The Paradigm C++ IDE SpeedBarccceueneee 13

Using SPeedMENUS.........ccoeeveeieeienieesiesee e see e 13

Using the Edit WiNdOW...........ccccoveeneeieciee e 14
Creating anew file.......cccccoveveecesece e 14
Navigating your source files.........c.cccooeverinnennnn. 15
Working beyond the Edit window...........c.ccc....... 15

Working with projects...........ccocveeveenencnneesesn 16
Creating an embedded application............cccce..... 17

Configuring the remote connection..............ccccee.... 19
Stand-alone debuggingcccceeeeeeeereeeereeseenens 19

Debugging with Paradigm C++cooovviiiiiiennne 20
Debugger SpeedBUtONSccooereeveenienienieene, 21

Customizing Paradigm CH++.......ccoovveiiinieieeieene 22
Configuring the Paradigm C++ editor 23
Syntax highlighting...........ccccevirienievieie e 24
Customizing the SpeedBars...........cccceveevereerennnns 25
Setting Paradigm C++ preferences...........ccooeeee. 27
Saving your Paradigm C++ Settings.........ccoveeeene 27

Using help in Paradigm C++........ccoocveiiiieiecee, 28
Online help organization...........cccceevveeevieneennns 28
Getting help in Paradigm C++........oooviivvieee 28

Getting context-sensitive help........ccccceveieneee. 29
Accessing and using contents screens............... 29
Using the indeX..........ccooveveieeiincnneeeeesee, 29
Searching for keywords...........cccoevrvieninnenne 29
Help SpeedMenus...........cccevveveeeeveesieseeseenn, 30
Contacting Paradigm.........cccccevvecvneeneciesen, 30

Chapter 2 Managing projects

What is project management?..........cceeeeeeeneeieeseeene 31
Project management tOOIS..........cccecceveeneeieeeeenne. 31

Using the Project Managercccevveveeieeseesiennens 32
Project Manager reference.........ccccccevveeevveceeceenne. 33
Creating aProjeCt.......ccouveereerierieesee e seeseeeseeeeens 34

Setting options with the New Target dialog box34
Specifying the source node types..........ccccve.e. 35
Opening existing Projects..........ccovvveveereereereenn 36
Adding NOES.......ccccceeveeececeee e 36
Deleting source NOdes...........ccoveveveereeeeeseeenn. 36
Adding files without relative path information..... 36
Editing source node attributes............ccoocerevnennee. 37
Adding target nodes to your project..........ccoueee.. 37
Deleting target NOdes..........ccovevvveeveerieseesieene, 38
Editing target attributes using TargetExpert......... 38
Moving nodes within aproject...........cccccvecvvevennee. 38
Copying NOdeS iN @ProjeCtccevvveereererrieeriennens 38
Contents

Table of Contents

Converting project files into makefiles................. 39
Customizing the Project windowc.ccccuveue. 39
Grouping sets of fileswith Source Pools................. 40
Creating a Source Pool...........ccoovveeiininiiinienns 40
Trandators, viewers, and tools..........ccceceverinnienne 41
Adding tranglators and viewers............ccoceeeeerenen. 41
Chapter 3 Project options
Setting Project OPtiONS.......coceeeereenieeee e 45
Using Style Sheets........cocovveeiernneeeeeee 45
Predefined Style Sheetscocecvveeneiieneenee. 46
The default project options..........ccceveeeveverennnne 46
Managing Style Sheetscccoovvveveeveeieceene, 46
Attaching Style Sheetsto nodes.............cc....... 47
Sharing style sheets between projects................ 47
Project Description Languagefiles.................... 48
Setting local overrides.........ccooceveevvnieneenennns 49
View Project OptionS.......cccvecveeeereeieeseesieeeeseeens 50
Compiling ProjECLSoceerieeee e see e 50
Compiling part of aproject........cccccveveeveeriernnnne. 51
Fixing compile-time errors.........ccccceveerereeseesennens 52
VIBWING EITOIS ..o 52
FIXING EITOIS.....coiieieeeceeee e 52
Project optionS reference........ccoveeeeeeneeceseesieenens 52
16-bit compiler Options...........ccevveeeeeerinsieseeseens 53
Calling conNVeNtion..........ccvveveeveeseeseeseseeseeenens 53
(0] 1] FU ST 53
PaSCaloeoirieeee e 53
REGISIEN ... 53
Memory MOdElccceveeveeie e 54
Assume SSequalsDS.........cceceveveereeee, 54
Automatic far data.........cocevverererienescre e 54
Page alignment for far segments..........ccccceeueenee. 55
Borland C++-compatible far data...................... 55
Far datathreshold ..., 55
Far virtual tables..........cccovireiiiiee 55
Fast huge poInters.......coovevvveenecce e 56
MO ... 56
Put constant strings in code segments................ 57
PrOCESSON ...t 57
16-bit insStruction Set.......cocvveeverieneeeeeeeee, 57
Dataalignment...........ccocceevvneenecieseese e 58
Segment NAMES COUE..........ccveveereereerieeieseeseeenens 59
COUE.....cieeeeeee e 59
Segment Name data.........ccoveeveeeeneeneeiee e 60
Initialized data..........cccovveevenerieeee e 60
Uninitialized data...........ccoocvveneninneeneeeneee, 60
Segment names far data.........cccecvveeerveievieereenn, 61
Far initialized data..........ccceoevvrveeiineienere 61

Far uninitialized data.........cccoeveeeeeeeeeeeeeeeeeeen, 62

Far virtual tables.........ccccoeveieeniniieeeee, 62
32-bit compiler OptionS........cccceveevereeneeieeesee, 62
Paradigm optimizing compilerccooceeveneenee. 63
Intel optimizing compilercccoovecvveevecceceenee, 63
32-bit compiler OptioNS.........cccveceereereeierieseeeens 63
Calling conventions...........cccecveveeieeseeseeseeseeenns 63
PrOCESSONeeiiiiieiiieeeie e 64
Build attributes..........coooovireie e 65
CH+ OPLIONS....cceeeeeieeeeee e e 65
CH++ compatibilitycceeeeeveeieeeceece e 65
‘deep’ virtual bases.........ccccccveeveeienieseee 65
Calling convention mangling compatibility......66
Disable constructor displacements.................... 66
Do not treat 'char' as distinct type...........ccocue.... 66
Don't restrict scope 'for' loop expression
VarableS.......coviiei 66
Pass class values via reference to temporary.....67
Push 'this first for Pascal member functions.....67
Treat 'far' classesas'huge'........cocevveevveeniennnne 67
Virtual base pointers.........cooeeeeneenencnneeniennne 67
Vtable pointer follows data members................ 68
Exception handling/RT Tlccoevvecvveereeeeeene, 68
Enable exceptions...........ccccevvevevieneeseseeseenen, 68
Enable run-time type information..................... 68
GENENAL.......eeeeeeeeeee e 70
Zero-length empty base classes.........ccoceeveeeeee. 70
Member POINESS.......ccooeererereereeee e 70
Honor precision of member pointers................. 70
Member pointer representation............c.ccccveee.. 70
TeMPIALES.....c.ee e 71
Templates instance generation............cccceeeeuene 71
Virtual tables........coooeviiiiie e 71
Virtual tableslinkage...........ccocovenininiiinenne 71
Compiler OPLIONS.........ccccveveieereee e 72
DEFINES. ...t 72
Defining macros from the IDE............ccccceneee. 73
Defining macros on the command line.............. 73
Code generation..........cceeeereerierieeseesiesee e 73
Allocate enums asintsS.......cccceeeeveeneenieneenieenen. 73
Duplicate strings merged.........cccooeveeveeceeseeennn. 73
FaSItNIS .o 74
Register variables.........cccoccvvveveiie e, 74
Unsigned characters.........cccooevircineeieneneenn, 75
Floating POiNt.........ccooereeierieniene e 75
Correct Pentium FDIV flawccocevveinnnenne 75
NO floating PoiNtcccvevereererieseere e 76
Fast floating point.........ccccceveeverieseere e 76
Compiler OULPUL.........cceeeeveeieeeeceecie e 76
Autodependency information...........c..ccocevuennee. 76
Generate COMDEFS........cooiiiieeee 77
Generate UNAErSCONES.......ccuveueerieeniereesieeneesieene 77
SOUICE....eoieeireeniee e e e e nnne e 77

Identifier length........cccoecvveeveecececeeeeeee, 77
Language complianee.........ccceveeeereeenienennieenens 78
Nested COMMENES.........ccovreereereeie e 78
D]= 01070 o |1 o ORI 79
Browser reference information in OBJs............ 79
Debug information in OBJs.........cccccevvevenueenee. 79
Line nUMDErS.......ccooiiiri 79
Out-of-lineinline functionsccoccoveeienenne 80
Test stack oVerflow........cocoveeciiiiieieeee 80
Precompiler headers..........cccoooeveeieniinnnieien 81
Cache precompiled header............ccccevveienne. 81
Precompiled header name............cccocevveivnnnnee. 81
Precompiled headers.........cccoccevveceveenncieseennn, 81
Stop precompiling after header file................... 82
DirectorieS OPtioNSccvveeveerieeienee e 82
SOUICE dIrECLONES ... 82
INCIUDE ... 82
] o= VS 82
SOUICE....ceeeieieeere et e 82
Specifying multiple directories.........cccocevennne 83
File search algorithms...........ccooeveniinenece 83
#include-file search algorithms...........ccccceneeee. 83
Library file search algorithms..........c.ccccvenneeee. 83
(O848 100 1= 01 (0] 1= FH RS 84
INterMediateccoovevereiereeree e 84
FINal ..o 84
Guidelines for entering directory names............ 84
SINHERIT and SENV () oovvevveeieieeere e 85
BINHERIT ..o 85
R VAV () TS 85
Librarian OptioNnS..........cccoveeeeveereeieseese e e e 85
Case-sengitive library........cccveevenceneeceneeneene 85
Create extended dictionary..........ccoceveveieieenennns 86
Generate list file.......covieiiiiee e, 86
Library page Size......ccceeeeveece v 86
Purge comment reCords...........ccoeveereereeneereesnenn 86
Linker OptioNS........cccvevievieieeseere e e see e 86
16-DIt HNKEX ..o 86
Discard nonresident nametable..............ccc........ 86
Enable 32-bit processing........cccccoeceveeneninnennnn. 86
Inhibit optimizing far call to near...................... 87
Initialize SegMentS.......cccoceeveecevceeseee e 87
Segment alignMmentccecveceeveereneee e 87
Transfer resident names to nonresident names
table. .o 87
16-bit OptiMIZatioNScovveeiirie e 88
Chain fiXUP «oeeceeeceeece e 88
lterate datal......c.cceeeeeieriese e 89
Minimize resource alignmentcccceeeeervenee. 89
Minimize segment alignment...........ccccceeceereenee. 89
32-DIt HINKEY ... 89
Allow import by ordinal ..., 89
Committed stack size (in hexadecima)............. 90

Paradigm C++ Reference Manual

Committed heap size (in hexadecimal).............. 90

File alignment (in hexadecimal)...........c.ccccuee... 90
Image base address (in hexadecimal)................ 91
Image ishased........cocovviieveniinieeee e 91
Maximum [iNKer errorsccoceeevereneneneeneenne 91
Object alignment (in hexadecimal) 91
Reserved heap size (in hexadecimal.................. 91
Reserved stack size (in hexadecima)................ 92
Use incremental linkerccooovvivenienieneenen. 92
VEIDOSE. ... 92
GENENEl....ciiieeee s 92
Case-sensitve exports and imports.................... 92
Case-SenSitive lINK.......ooevenenenineee e 93
Code Pack SIZE......ccceveeriereree e 93
Default libraries.........ccooooeveiiiiiniieeceee, 93
Include debug information..........ccccccevveeiennnns 93
Pack code segments..........cceveveeeeveeniesenseenen. 9
Subsystem version (major.minor)cc....... 9
MaP fil€..eeeieeeeeeee e 9
Include source line nuMbers...........ccocvveerennnnns 94
MaP fil...eeeeee 95
@ 95
SEOMENTS....eeiiieee e 95
PUBIICS. ..o 96
Print mangled names in map file.........cc.cc........ 96
WarNINGS.....ceoeiieieee e 96
32-DIt WaININGS.....coveeeireeeieeie e 96
NO stack™ Warning........ccoeceeveerierierseesieseeseeens 96
Warn duplicate symbol in .LIBcccccvenenee. 96
MaKE OPLIONS......ceeeeeeiieie e 97
AULOdEPENTENCIES.......ccveeeeeeeeieee e 97
NONE .. e 97

U S it 97
CaCNB.. e e 97
Cacheand display.........cceevveeveeienierece s, 97
Break make on.........ccocevevenineneneeeseee e 97
WaaININGS ..c.veeieceeceeeee e 97
EITOrS. e 97
Fatal errors......coovee v 98
New node path..........cccoceveriiiinineeeeeee, 98
MESSATE OPLIONS....cveeveeeerreesieereeee e seeeee e see e 98
ANSI VIOIELIONS ... 98
Display Warnings.........ccccvvveveeeeneeieseeseeseeseeens 98
Al e 98
SeleCted ... 99
NONE ... e 99
GENENEL....oceeiee e 99
User-defined warningscccceeeveevecceeseene. 99
Inefficient C++ coding........cccceevevveeeveeneeieseene, 99
Inefficient COdiNg........cccceveeveriinieseee e 100
Obsolete CHt ..o 100
POrability ..o 100
Potential C++ EITOrS......ccoceverereeeeene s 100

Contents

Potential errorS........oovevevenereeee e 101
Stop after ... BITOIS ..o 101
Stop after ... Warningsccoveeveeeeneenienienseenne 101
Optimization OPLIONSccceveereriereese e 101
General SEtiNGS......ocoveveereee e 102
16- and 32-Dit......cocveiiiererireeeeee e 102
Common SUbEeXPression..........cccevveeeveerieenens 102
Induction variables...........ccoooveriiniininine 102
Inline intrinsic functions...........cocceeeeveeienenne 103
16-DIt ONIY ..o 104
Assume no pointer aliasing........cccceeeeeeereereeene 104
Copy Propagation..........ccceeereeveeseereeseesensenns 104
Dead code elimination..........ccccccevererencreenne. 105
Global register allocation............cccccevereenuenee. 105
Invariant code MOtioN..........ccoceevereeneeiienienne 105
JUMP OPtIMIZALION......eeeieee e 105
LoOp OptimiZation..........cccceeceeseerineieseesieeens 106
Suppress redundant loads...........cccccevveciennenee. 106
32Dt 106
General optimization Settings.........cccoeeeverieereenne 108
Disable all optimizations............cccceeeveenennnne 108
Use selected optimizations............cceeeveerennnnne 108
Optimize for Size......ccccoveeveceereece e 108
Optimize for speed........cccvvevveceveereeieseene 108
Command-line only options.........cccceeveveereerensenne 109
Object search pathscccocceveeieniirieree 109
16-bit command-line optionsccceceeeeruenee. 109
Compileto .ASM, then assemble.................... 109
Compileto .OBJ, N0 linK........ccccevveveveeniennnnne 110
Specify assembler........ccocovveviveceviereceeee, 110
Specify executablefilename..........cccccoecvvneee. 110
Pass option to lINKer..........ccocviieninienceneee 110
Create aMAPfile....cooiiiieeee 110
Compiler .OBJto filename...........cccoeveenennnnne 110
CH+ COMPIIE....eieieeeece e 110
Compileto assemblerccccoeeevvevevieeneenne 111
Specify assembler option...........ccccceevveceenieenee. 111
Undefine symbol..........cccooeeiiiiiiieee 111
Linker supported command-line options............ 111
Generate 8087 INSLrUCiONSccceveereereenienne. 111
Compileto 16-bit real-mode .AXE.................. 111
Enable backward compatibility options........... 111
Link 16-bit real-mode .AXE.........ccocvvvnvrenne. 111
Extended memory Swapping.........ccceeveereennns 111
Enable 24-bit extended addressing.................. 112
32-bit command-line switches...........cccocveeernenne 112
Generate a multi-threaded target...................... 112
Link using 32-bit Windows API..........ccccce..... 112
Link 32-bit console application...........cccceu.... 112
Link 32-bit .DLL file...ccccovriieeeeceiececiee, 112
Link 32-bit .[EXE file....cccccevrieeiecececee 112
Compiler command-line options...........ccccceeveeenee 112
Command-line options by function...........c............ 118
5

Chapter 4 Browsing through your code

UsiNg the BrowSercocoverineeneee e 125
Starting the Browser.........ccccvcceviveceveeveece e, 125
BrOWSEr VIEWS......coviiiirieniinieeee e 125
Browsing objects (class overview)c.cceceeueenee. 126
Browsing global symbols..........cccoevvriiiiinnnnne 126
SEAICN.....oiie 126
Browser SpeedMenuccccceveeieieeneeniennns 126
Browsing symbolsin your code.............ccceuenunne 126
Symbol declaration window............ccccccueruenee. 127
Browsing references.........cccooevvevevveevveniennens 127
Class inspection Windowcccceeeereerennne 127
Browser filters and letter symbols...........ccceeeeeee. 127
To view all instances of atype of symboal 128
To hide all instances of atype of symboal 128
To change several filter settings at once............. 128
Customizing the browserccccoovevveceivccecene, 128

Chapter 5 Using the integrated debugger
TYPES Of BUGS ...cveeeceeceee e 129
RUN-TIME EITOIS......oviiiie e 129
LOQIC EITOIS ..c.veeeeeeeeee et e s 129
Planning a debugging strategyccoeeevereenueenne. 130
Starting a debugging SESSION.........ccceevererreerienens 130
Compiling with debug information..................... 130
Running your program in the IDE...................... 131
Specifying program argumentscccc.e..... 131
Controlling program execution...........c.ccccvevueeeeene. 131
Running to the cursor location............cccoeeeveenene 132
The execution POINtcccceveereerenieeneeie e 132
Finding the execution point.............ccceeeevennnne 133
Stepping through code.........cccevveeeveerecceeceenee, 133
SEEPPING INLO.....veeeeereeeieeee e 133
SLEPPING OVEN ..ot 134
Debugging member functions.............cccceeuee 135
Running to abreakpoint...........cccocceveriiieenennnne 135
Pausing a program.........cccceeeeeeeeneesessenseeseesieens 135
Terminating the program..........cccceceeeeeveereesnenn 135
Using breakpoints..........cccooveceneereeeeseese e 136
Debugging with breakpoints............cccccvvevereennnne 136
Setting breakpointsccccveeierieneeneneseee, 136
Setting an unconditional breakpoint................ 136
Setting a conditional breakpoint...................... 136
Setting other breakpoints...........cccccvevveceenieenee. 137

Setting breakpoints after program execution
DEJINS ... 137
Creating conditional breakpoints...........c.ccoeueunee. 137
Removing breakpoints..........cccccevveeveeieneenenens 139
From an Edit Windowccoooeeiiiinnienennne 139
From an Edit window or the Disassembly pane of
the CPU WIiNdOWccoceverienenene e 139
From the Breakpoints windowccce..... 139
Disabling and enabling breakpoints.................... 140

6

Viewing and editing code at a breakpoint........... 140
Viewing code at abreakpointcccceeneee 140
Editing code at abreakpointcccoceveenenne 140

Resetting invalid breakpoints...........ccccooevennnnne 141

Using breakpoint groups.........cccceeeeeveereeeceesveenen. 141
Creating a breakpoint groupcccceeveeereennne 141
Disabling or enabling a breakpoint group........ 141

Using breakpoint option Sets..........ccoceveeeeneeenee. 141
Creating a breakpoint option set..........ccccc...... 141
Associating a breakpoint with an option set....141

Changing breakpoint options............c.ccccveeverneene. 142

Changing the color of breakpoint lines............... 142

Using the Breakpoints windowccccccceeueenee. 142
About the Breakpoints windowc........ 143

Integrated debugger features..........coceveveevennnnne 143
Add breakpoint ... 143
OFhEr e 143
Source breakpoint.........cccceeeviveceveerecceseee, 144
Address breakpointccceeveereeieneeneneene 144
Data watch breakpoint............cocevvriereenennns 144
C++ exception breakpoint.............ccocevreerennnne 144
Breakpoint Condition/Action Options............. 145

NAMEScooieieeeeee s 145
CoNAItIONS.....cveveireirieriereeee e 145
EXPr. TrUE ..o 145
Pass CouNt.........cccevieneeeeree e 146
ACHONS ...t 146
Break......ooooeeeeeeece e 146
S (0] 0 1 o o KU 147
SEAT LOG ..o iieieeieieiee e 147
LOQg EXPI e 147
EVA EXPI oo 147
LOg MESSAE......coiiieiiiiee e 147
DisSabe GroUp ..cceeveeereeeieeeeseesie e 147
Enable Groupccoovevveeeeceese e 147
Add Conditiong/Actions..........ccccoeevenereene. 147
Edit Breakpoint dialog box.........c.cccceeueenenne 148
Examining program datavalues...........ccccceeeruenen. 148

Modifying program datavalues.............cccceeueene 148

Understanding watch expressions............cc..c..... 148
Using Watches windowccccccveeevveniennnnne 149

Adding awatCh........cccecevievieiiceeceee e 149
Add Watch dialog boX.........cccceeevvrceeneniinnnenne 149
Formatting watch expressions............c.ccceeeeuee 150

Changing watch properties.........ccoccvveenerinreenne 151
Edit Watch dialog boX.........cccooveiiiiiiiiiiene 152

Disabling and enabling watches..............ccccveuue. 152

Deleting aWalCh..........cccovveeveeieceereece e 152

DynamicC Updates..........cccvvvueveeieeeeeseesieseeseeneens 153

Inspecting dataelements..........cccoceverieiienennnne 153

Evaluating and modifying expressions............... 154
Evaluating eXpressionsccocceveeeeseeniennens 154
Modifying the values of variables................... 155

Paradigm C++ Reference Manual

CPU WINOW ... 156

Resizing the CPU window panes..........c.cccveeue. 157
The Disassembly pane........cccooceveeiviienecieiene 157
The Disassembly pane SpeedMenu................. 157
RUN 1O CUIMeNt........ccovieeeeee e 158
Set PCtocurrent........cocveveeneesee e 158
Toggle Breakpointccccoveeeveevecceenieennn. 158
GO tO AAAIESS......ociieeieee e 158
Gotocurrent PC........cooiiiiiieeeeee 158
Follow jump into Disassembly pane........... 159
Follow addressinto Dump pane................. 159
Show previous address.........cccoeveveevereeenne. 159
GO 1O SOUICE.....ccueeereeiee e 159
Memory DUMP Pane.........cccceeeieeerieeesieeesiieeens 159
The Dump pane SpeedMenu..........ccccceeevenene 160
Display 8S.....cccvereriieiere e 160
Follow address into Disassembly pane....... 160
Follow addressinto Stack pane.................. 160
Machine Stack pane.........cccevveveeeerieeseseeseneens 160
The Stack pane SpeedMenu...........cccoveeenene 161
GO to top frame.......c.occeeveeerieeeeeeeieee 161
GO to top Of Stack.......ccccvevereeieeiieeecienee, 161
REQISIEIS PANE......oceeeececeecee e 161
The Registers pane SpeedMenu...................... 161
Increment register.......ccvvvevvecenceeneeie s 162
Decrement register.......ccoocvveevenieenenienseenne 162
A (o] o [1S (= CON SRR 162
Change register........ooeveevvneenenieneesenne 162
Show old registers......covvevevieeveececeeseene, 162
FlagS Pan€.....cceeeeeeee e 162
The Flags pane SpeedMenu...........cccccveevernee. 163
Toggleflag.....cccooeveriiieeee e, 163
Viewing function calls.........ccooevvnnniniinienene 163
Navigating to function calls..........cc.ccocceveenennnns 164
Chapter 6 Paradigm C++ compiler
Using the command-line compiler...........ccoccenuennee. 165
Command-line compiler syntaX.........c.cceceeuenee. 165
Default SettingsS........coceeveeieneenieresee e 165
Compiler configuration files.........cccccevvecevrreenee. 166
Compiler responsefiles.......ccccvvevevcveiencieseenne. 166
Compiler-option precedencerules.................. 166
Entering directories for command-line options.. 166
USING PLINK ..o 167
PLINK command-line syntaX..........cc.cceveeeruennenne 167
PLINK.CFG file ..o 168
Linker response files.......ooevvececieeneece e 169
Using PLINK with PCC.EXE........cccccvvnirnnnnne. 169
Paradigm C++ tools overviewccceveeeceenenee. 170
Running the command-line tools..........cc.ccccvnuennee. 170
Memory and MAKESWAP.EXEccccvveenee. 170
The run-time manager and toals............ccccueeeee. 171

Contents

Chapter 7 Using MAKE

MAKE DSICS......coveieiiieciceceseceee e 173
BUILTINSMAK ..ottt 174
Using TOUCH.EXE........cccooiiniieeree e 174
MAKE OPtiONS.....ccveieeeieceecieeie e 175

Setting default MAKE options..........ccccevueenee. 176
Compatibility with Microsoft's NMAKE 176

Using MaKefiles........coovveveriiieece e 177

SymboliC targets.......ccvveveece s 177
Rulesfor symbolic targets........cccoevvveevverinnnnnne 177

Explicit and implicit rules.........cccocevvveeveececeenee, 178

EXplicit rule SyntaX........ccocceveeveieenenieseeseeens 178
Single targets with multiple rules.................... 179
Implicit rule SyNtaX........ccoceveeveneenerie e 179
Explicit ruleswith implicit commands............ 180
Command SYNLaX........cceereeveereereereeseeseeeeeseenns 180
Command PrefixXes.......oovveereeieneereseeseenens 180
0 LS oo N (o S 181
USING -NUM AN - ..o 181
USING & 1ottt 181
Command OPErators...........ceveeeereereeseesenieens 181
Debugging with temporary files..........c.cc...... 181

Using MAKE MAaCIoS.........ccceveeeneenieseeniesseeseenens 182
Defining MAKE MAaCIOS........coovreerieeieesiienienens 182
String substitutionsin MAKE macros................ 183
Default MAKE MAaCIOS........coeevieieenieeie e 183
Modifying default MAKE macros..........ccccveuene 184

Using MAKE direCtiVes........cccooevveveveeneeieeseenen 184
F= 01000 (< 0 00 S SUS 185
FRITON it 185
Error-checking controls..........cccooeiiiiiienennnne 186
lif and other conditional directives..................... 186
HNCIUTE. ... 187
TMESSA0E. ..e e ettt 187
PALN.EXL....c.eeeeece e 187
JPFECIOUS ...ttt 188
SUFFIXES...eiee e 188
TUNES ... 188
Using macros in direCtives..........cccceveeevveeenveenne. 188
NUI MACIOS.....coviiiieierereeeree s 189

Chapter 8 PLIB.EXE

PLIB DASICS....ccueiieieieienie e 191
PLIB OPLIONSccveeieeiecie e 191
Using PLIB responsefiles.......cccocvvieeveeceennnenee. 193
PLIB operation list.......cccccoeveeveseeneesieceeseeens 193
PLIB €XampIes........ccoceeiiriiiieieseeneeie e 194

Chapter 9 Exception handling

C++ exception handlingcccceeevveveeieeneesiesene 197
Exception declarations...........cccceeeevveieieenennns 198
Throwing an exception............cccoceeveneneeiienenn 198
Handling an exception...........ccccvvceeierieneenennns 199

Exception specifications...........ccovveeeeveenennnne 200
7

Sample output when 'a istheinpuit................. 202

Constructors and destructors...........ccceeeeveenenne 203
Setting exception handling options.................. 203
Unhandled exceptions...........ccoceeveeceneenennnne 203
C-based structured exceptions............ccccevvereernenne. 204
Using C-based exceptionsin C++cceeeee. 204
Handling C-based exceptions............cccecverveennene 205
Chapter 10 Using inline assembly
Inline assembly syntax and usage..........cccceeveeuenee. 207
Inline assembly references to data and functions208
Inline assembly and register variables............ 208
Inline assmebly, offsets,a and size overrides..209
Using C structure members........cococveceevieenene 209
Using jump instructions and labels..................... 210
Compiling with inline assembly........c.cccccevveciennne. 210
Using the built-in assembler (PASM)ccceneee. 211
(@] 0000 /= T 211
String INSIFUCLIONS.....cc.veieieieeiece e 212
JUMP INSEFUCHIONS......veeieeeceee e 213
Assembly directives.........ccocceveeveneneeienenne 213
Chapter 11 Header files summary
Using precompiled headers...........ccccceveenenenneennn. 216
Setting file Names.........cocceevveierie s, 217
Precompiled header file overviewcccceueee. 217
Precompiled header limits.........ccccceeeeveeveccienieennn. 217
Precompiled header rules..........cccooveeeveevenceennenen. 218
Optimizing precompiled headers...........cccccvevuennene 218
AOC . 219
ASSEIt. N 220
CLYPE N 220
OS. N 221
embedded.N.........cooeiiii 221
EITNO.N o 222
FONEL N 222
FlOBEN .o 223
QENENTC.N..coi e 223
TONL e 223
TOMANIP.NL..eece e 224
MIES. L 224
MAIOC.HN...ceiii 224
MAEN. N 225
MEMLNL.c e 226
(§01= 0070] Y21 o 227
NEW.N . 227
PrOCESS.N.....coiiiieceee e 227
SEAICN. ... 227
SEHMP.N. e 227
SNANEN . 228
SIGNAL N 228
StAArG.N.eeeeee 228
SEAAEF N 229
SEAIO. N 229
8

SEAIOSEI. N e 230
SEAD.N . 230
SEING. N 231
SYSMOCKING. N 231
SYSMYPES.N..eeeceeee e 231
HME. N 232
VAIUES.N ... 232
VaIargS.N e 233
EXCPL N 233
eSS 233
NN 233
UL 234
Chapter 12 Math
Floating-point 1/O.......ccoiiiriiieeee e 235
Floating-point OptioNnS...........cccveveereeveseereeee s 235
Emulating the 80X87chip.......cccceevevveievieiecnne 235
Using the 80X87 code.........cccccvevveeeieerireeeseeenn 236
No floating-point Code..........cceevreeneriereerenene 236
Fast floating-point Option..........cccceveevereenennns 236
The 87 environment variable.............cccoceeenee 236
Registers and the 80X87ccceeeevveveveereenne 237
Disabling floating-point exceptions.................... 237
USINg COMPIEX tYPESccvverveeerereeieeeeseeesee e e 238
USING DCA tYPES ..ot 238
Converting bcd NUMDEXS........ccovveiiieieee 239
Number of decimal digitS........cccoooeviriiiienennnne 240
Chapter 13 16-bit memory management
Running out of Memory..........cccceverieveenenieneenn, 241
Memory MOEIS........cocovveiieriirieee e 241
The 8086 registers........ccoeverceveerenieseee e 241
General-purpose registers.......oovvvererieerennnens 242
Segment registers......oovvvvnierieeieseere e 243
Special-purpose registers........ocovvveeveeieeneennn. 243
Theflagsregister ... 243
Memory segmentation...........ccecveeererieeseeniennens 244
Address calculation...........cccceveerenennennenene 245
POINTES. ... s 245
NEar POINLENS.....cceeieeeeerieerieeeeseesieeee e see e 246
Far POINTErS.......ccveieeee e 246
HUQE POINLENS.eeeeeeeeesieeieeee e 246
The five memory models..........coccovvrenininnenne 247
Mixed-model programming:Addressing modifiers252
Segment POINLENS........ccveveeieereerieeee e seeeee e 252
Declaring far objects........cccovvveevcceiece e 253
Declaring functions to be near or far 253
Declaring pointers to be near, far, or huge.......... 254
Pointing to a given segment:offset address.....255
Using library fileS.......ccoovviniiiiieeeeeren, 255
Linking mixed modules..........cccovevveveieennennne 255

Chapter 14 Using iostreams classes
What iSaStream?........ccccevereeneenene e 257

Paradigm C++ Reference Manual

Theiostream library........cccoccevieeeesceniecce e 257

The streambuf class.........ccoccveeiniiii 257
TheioSClaSs ... 258
SEreaM OULPUL ... 259
Fundamental types........ccvveveevenieere s seeseeens 260
[/O fOrmMatting......ccceevveeieereeseeieseese e seeseeeeens 260
MaNiPUIGLOTS........cceeveeieceesie e see e 260
Filling and padding...........ccooeriininnininnieienne 261
SEEAM INPUL....ceeeeieieeie e 262
1/O of user-defined types........ccooveveveenenneneeneenn, 263
SIMPIEFIE /O 263
String Stream ProCesSING......cevvveeereereereeseesesieens 264

Appendix A Paradigm C++ errors and
messages
MeSSage CAEJONESeevveeeeeeeereerieeeeseeeree e 267

Contents

Fatal errors. ... 267
BITOIS .o 268
WarNINGS ...ceeeieriiiesie e e 268
Informational MESSagES.........ccovvveeneriereenienens 268
MeSSage gENEratOrSccccvveeriee e 268
Compiler errorsand Warnings..........ccceevveeeereene 268
Run-time errors and warnings............ccceeevevvenens 269
Linker errors and Warningscceeeeeereenennens 269
Paradigm C++ debugger messages.........cccveeuene 269
ObjectScripting error messages..........ccoveeeereeene 270
MeSSage fOrMALS.......cccereereeee e 270
Symbolsin MESSAQES.......cccccveveereee e 270
Alphabetical list of messages........cccocevvevveceereeenen. 271
70 [RS 279

10

Paradigm C++ Reference Manual

Command-line
diehards need
not despair, a
complete set of
command tools
and make utility
is included with
Paradigm C++.

Chapter

1

Getting started

Welcome to Paradigm C++, a state-of-the-art integrated devel opment environment (IDE)
for creating x86 embedded system applicationsin C, C++, and assembly language. With
the Paradigm C++ IDE, you can create, debug, and deploy real-time embedded system
applications without resorting to the use of external tools. If you are used to running
separate editor, debugger, make, and other toolsto get ajob done, then you arein for a
real treat with Paradigm C++.

To help you get familiar with the all the powerful capabilities of the Paradigm C++ IDE,
this guide offers an overview of the key technologies that work for you in Paradigm C++:

. Starting Paradigm C++

. Using SpeedMenus

. Using the Edit Window

. Working with projects

. Configuring the remote connection

. Debugging with Paradigm C++

. Customizing Paradigm C++

. Using hepin Paradigm C++

At first, Paradigm C++ may take some getting used to since it breaks the old-style
embedded system devel opment metaphor of separate edit, compile, and debug tools, and
instead tracks the way modern applications are generated. Paradigm C++ includes many
powerful features you may not be familiar with, so it paysto exploreitsfull potentia

before you jump headfirst into anew project. Take alook at the material we provide here
and use it asthe basis for creating and modifying your own projects.

Starting Paradigm C++

Or select
INSTALL.EXE
from the
CD-ROM drive.

For optimum
performance,
Paradigm C++
requires a
Pentium 120,
Windows 95/NT,
and 50MB hard
disk space.

Installation instructions launch automatically from the Paradigm C++ CD. After following
the instructions, exit the install screen. The Start menu will contain a program item titled
Paradigm C++. Use the program item to launch Paradigm C++.

Figure 1-1, page 1-12 shows how Paradigm C++ looks after |oading the DEMO.IDE
project, opening DEMO.C, and building the application. The key features to note are the
Menu Bar offering access to the various Paradigm C++ tools, the SpeedBar displaying
context-sengitive shortcuts to relevant operations such as debugging and browsing, and
the Status Bar at the very bottom with contains up-to-the minute information of the status
of Paradigm C++. Filling the remainder of the window are the Edit, Project, Message and
other views, where the real work of developing an embedded application will take place.

Chapter 1, Getting started 11

Figure1-1 Paradigm C++ IDE screenshot

& Paradigm C++ - demo
E|E Edt Search View Project Script Tool Debug Options Window ﬂaﬂp

Eﬂ_ﬁlm &l |©wl 3 elElellal el ® [R5

CA.ADEMO.C E Project l::"'-,p-ﬂrﬂdi

.-"'J.* « F O v BEEE Axe
! - . 0 demo. :::f ot
;:i Sample applicatior . Paliry aanat mﬁm E[m?n]]
O demo.c [.¢] code sizes

ﬁ 'O Helper files [SourcePool)]
#include <dos.h> D stklen.asm [.asm]

. 0 heapsize.c [.c]

. O console.c [.c]

#include "typedefs.h”

‘_.;‘:I-

i The LEDPORT type
i map into the phyis
Ll |l | 3

Mossage =] E3
" = Building... -

4| | 3
| _Buildime { Buntime [Scrpt [Remote
<] [3]
| 179:24 | Insert | |Tergetnc
The Paradigm C++menu system
The following table describes the menu options on the Paradigm C++ Menu Bar.
Table1-1 Menu item Command descriptions
Paradigm C++
global menus File Commands to open, save, and print files. Also includes the Paradigm C++ exit command
along with alist of recently accessed files.
Edit Clipboard command and commands for undoing and redoing operations on edit buffers.
Search Commands for searching and replacing in edit buffers, files, or the current project, browsing
symbols, locating functions, and reviewing error messages generated by the programming
tools.
View Commands to open the Project Manager, M essage window, and Browser. Also contains
commands to open the integrated debugger views during a debugging session.
Project Commands to open, close, and build or make a project.
Script Provides commands to run and test scripts to automate Paradigm C++. cScript is a powerful
Paradigm C++ feature that allows you to automate and integrate tools into Paradigm C++.
Tool Commands to launch any external programming tools from Paradigm C++.

12

Paradigm C++ Reference Manual

More information
about using
cScriptis
available in the
online Help.

Figure 1-2

EE’JE@ &3 I:E.*iu"i -ﬁpl

Debug Commands to run your project under control of the Paradigm C++ integrated debugger.

SCCS Source code control system integration commands. Thisis an optional menu that is present
when a source code control add-in isinstalled.

Options Paradigm C++ customization and project configuration commands. Here is where you can
completely tailor Paradigm C++ to work as you do.

Window Paradigm C++ window management commands give you complete control to navigate
between windows and close or minimize selected windows.

Help Commands to access the Paradigm C++ online help are included here. Paradigm C++
includes extensive online help covering all of Paradigm C++, from the IDE operation to the
details of the compiler run-time libraries.

Because Paradigm C++ isfully extensible by the end-user, there may be other entrieson
the menu bar from version control tools, real-time operating systems, and other third-
party tools. With just asingle line of Paradigm Scripting Language (cScript) code, you
can have your favorite commands displayed here to use whenever you need them.

The Paradigm C++ IDE SpeedBar

The SpeedBar (located under the main menu) has buttons that give quick access to menu
commands that relate to the area of Paradigm C++ you're working in. For example, if
you're editing code, the SpeedBar contains cut and paste commands, file save commands,
and so on, as well as commands to build and debug. When the Project window has focus,
the SpeedBar has buttons that pertain to projects, such as commands for adding project
nodes and browsing option settings.

Paradigm C++ IDE SpeedBar example

The Status Bar at the bottom of Paradigm C++ contains "flyby" help hints; when the
cursor is over a button, the Status Bar describes the button command. Y ou can configure
the flyby hints and other SpeedBar options as described in “ Customizing the SpeedBars,”
page 25. See Figure 1-7, page 1-22 for a description of the above Paradigm C++
SpeedButtons available during a debug session.

Using SpeedMenus

If you installed
Paradigm C++in
a different
directory, adjust
the paths used in
this guide.

Right-clicking (clicking the right mouse button) accesses the Paradigm C++
SpeedMenus. SpeedM enus contain commands that are context-sensitive to the area of the
program you're working in. For example, the SpeedMenu for the Edit window contains
commands that are related to the editor. In the Project Manager, the SpeedMenus contain
commands to help you with managing your project.

To get afed for SpeedMenus, try the following:

1. From the Paradigm C++ Menu Bar, choose Project|Open project, then select the
project file DEMO.IDE in the PARADIGM\EXAMPLES\REAL\DEMO directory.

2. Double-click the DEMO.C node in the Project window to load the file in an Edit
window so changes can be made.

3. Move the cursor to the dos.h header file reference by clicking on the file name in the
source code.

Chapter 1, Getting started 13

4. Right-click to open the Edit window SpeedMenu, then choose Open Source to open

an Edit window that contains this header file. Y ou can do this even quicker using the
by right-clicking anywhere in the DEMO.C Edit window and selecting the Include
command. Paradigm C++ will instantly parse the file and extract all include file
references in the buffer. Just select the desired include file and you are instantly there
to begin making changes.

In addition to right-clicking, Paradigm C++ SpeedMenus can be accessed at any time by
pressing Alt-F10.

Using the Edit window

14

Edit windows contain the Paradigm C++ editor, which you can use to create and edit your
program code. When you're editing afile, the Paradigm C++ status bar displays the
following information about the file that you are editing:

The line number and character position of the cursor. For example, if the cursor ison
the first line and first character of an Edit window, you'll see 1:1 in the Status Bar. If
the cursor ison line 68 and character 23, you'll see 68:23.

The edit mode: insert or overwrite. Press Insert to toggle whether your text additions
overwrite existing characters or insert new ones into thefile.

Thefile's save status. The word Modified appears if you've made changes to thefile
in the active Edit window, and you have not yet saved your edits or changes.

The Paradigm C++ editor contains many powerful features to help you enter and modify
your program code. For example, you can undo multiple edits by choosing Edit|Undo or

pressing Alt-Backspace. Y ou can also open multiple Edit windows; tile the windows as
you wish; subdivide the window into different Edit panes; and cut, copy, and paste text
between any open files. Paradigm C++ is supplied with four editor emulations and if
these don't suffice, you can create your own editor from any of the supplied editors.

Although this chapter provides a brief introduction to the editor, complete details on how
to use and customize the editor can be found in the online Help. Choose Help|Contents
and double-click Paradigm C++ User's Guide. The Editor is discussed within the
Integrated Devel opment Environment (IDE) book topics.

Creating a new file

To introduce you to the editor, step through the following instructions to add a new source

file to a sample embedded application.

1. If not already open, File]Open the DEMO.IDE project in
PARADIGM\EXAMPLESREAL\DEMO.

2. From the Paradigm C++ Menu Bar, choose File[New|Text Edit to open anew Edit
window with an empty file.

By default, Paradigm C++ names new files NONAMExx.CPP, where xx is a number
that isincremented with each new file opened. Don't worry about the filename for
now, you'll be prompted to change it when you save thefile.

3. Inthe Edit window, type the following C++ code to create a ssimple embedded
program.

Paradigm C++ Reference Manual

#i ncl ude <stdio. h>
char buffer[128]

voi d mai n(voi d)

{

unsi gned passcount = 0 ;

char* format = “%5u Wl cone to Paradi gnC++l\n” ;

for (5;) |
sprintf(buffer, format, passcount) ;
passcount ++ ;

}
}

4. Choose File|Save, and save your new file with the file name TEST.C.

Although we created thefile, it isnot yet part of our Paradigm C++ project. Later, in
“Creating an embedded application,” page 17, we will show you how to add thisfile to
the project where it will get built with other source filesin the project.

Navigating your source files

Once you have some text in the Edit window, you can navigate around your source code.
Paradigm C++ utilizes instant-parsing technology to scan the current Edit window and
extract information about functions, structures and classes, enumerations, and include
files. In small files, source code navigation is possible by scrolling the Edit window, in
large files and multi-file projects, it really isn't possible.

To really see the parsing technology in action, try the following test. Using thefile
TEST.C that was just created, right-click in the window and select the Functions - only
'main()’ should appear at thistime.

Now add a new function to thefile, such as

int test(int x, int y)
{

return x +vy ;

}

Now right-click in the window and select the Functions again and see that both main()
and test() arein thelist of functionsin the file. No compiling, just instant access to your
source code definitions to make it easy to navigate to any function, class or includefilein
the current Edit window.

Working beyond the Edit window

The Paradigm C++ Finder, found under the Search menu, can do much more to help with
the software devel opment process. The Finder provides the ability to search within afile,
aproject, or the entire disk drive for any regular expression. Thisis an incredibly
powerful capability when you need to find text or make changes across one or many files
in your project or on your disk.

Chapter 1, Getting started 15

Figure 1-3 Paradigm C++ Finder

B Finder i
-~ Text to find i Mode
Iv::uiu:l ;i % Find Text
~ v - " Find File
LCaze senzitive DWW hole wordz onhg Fegular expression _< | oA,
— Files " Replace
File: Set [PDREMOTE/ROM x| Save l Femmmie ™ Statistics
Clear Add Directary... Add File...
Directonies/Files I || K.EEF' old mezzages
C:\AppziPdremote. FomBuilds :J I™ File names only
[Fold results
(]
Cancel
= Help
5l ;I‘I

File Typesl“.n:,“.n:ppf.h :_i V¥ Search subdirectories b

No matter what your needs, Paradigm C++ has the tools you need to manage and maintain
your project files. While the Finder works on any source file, the browser adds even
more power by using compiled code to create a database that can be utilized to find
where afunction is defined and al the instancesthat it is used in. More information about
the browser is available in the online Help index under "browser" or see Chapter 4,
“Browsing through your code,” page 4-125 of this manual.

Working with projects

16

After you install Paradigm C++, you'll want to make sure the program is correctly set up;
the details of the compiler and the Paradigm C++ IDE can wait until later. The best way
to test your setup isto compile, build and load the sample applications included with
Paradigm C++.

Paradigm C++ uses projects to help manage your code and make sure any source code
changes are reflected in the other files that depend on them. As an application growsin
size and complexity, it becomes dependent on various intermediate files. Often, source
files need to be compiled with different compilers and different sets of compiler options.
Even a ssimple embedded application can have multiple C/C++ source files, with each
file type requiring different compilers and different compiler settings.

Paradigm C++ Reference Manual

Figure 1-4 The Project Manager Project window

= Project : c:\paradigmiexamplesireall6\demoi\demo.ide

=amR g demo . axe

+ D demo.rm [.cfqg]

+ B0 demo.rom [.rom]

+ ~Ddemo.c [.c] code 8ize=159 1lines=98
@ = 0 Helper files [SourcePool]

+ -0 stklen.asm [.asm]

-+ D heapsize.c [.C]

-+ D console.c [.cC]

a | i

Asyour project complexity increases, the need increases for away to manage the
different components in the project. Looking at the files that make up a project, you can
see that a project combines one or more source files to produce a single target file. While
target filesare usually a .AXE or .HEX file, source files cover a broader range of file
types, including .C, .CPP, .ASM, and other files. Additionally, many source files have
autodependent files (files that are automatically included by the source), such as C header
files. Inlarger projects, you are likely to find several targets with scores of sources.

To get the most from Paradigm C++, we need to create a project so the files and build
options are saved, just as they would be in a more traditional makefile.

Creating an embedded application

Y ou can become familiar with the Project Manager and the C/C++ compiler by following
these steps to create a ssmple embedded application:

If the directory 1. From the Paradigm C++ Menu Bar, choose File|New|Project..., then set the following

doesn't exist, ; - . _
Paradigm C++ options in the New Target dialog box:

creates the . Typethe path and name for your new project in the Project Path and Name input
directory for you. box. In this case, type:
\ par adi gm exanpl es\ deno\ nydeno. i de

. Typethetarget name you want to use. Because you can have more than one target
in the project, you can have different names for targets that share files and options.
In this case, type:
t est

. IntheTarget Typelist box, click Paradigm Application [.AXE]. This selection
will create a project where the source modules are compiled, assembled, linked
and located to generate .AXE files for debugging or .HEX and .BIN filesfor
placing within flash or EPROM devices.

. If youlike, select the desired platform and memory model you want for your
application. You can aso enable the use of floating point arithmetic or other
options that depend on the selected Target Type.

Chapter 1, Getting started 17

18

. If youlike, choose atarget connection from the list of available remote connection

interfaces.

The New Target dialog box should now resembl e the one shown in Figure 1-5.

Figure1-5 New Target dialog box

New Target EHE
ect Path and Mame:
2l v oK
|c iparadigmexamplesidamolmydemoade
Cancal

Target Mame X
ftest %. Drowse
Target Type: Options & Advanced
Faradigm Application [axe Math Support ? Hel
Static Library (for eoe) [lib] ' Floating Foint e
Crymamic Librany [dil] Emulation
=hatic Librany ({or dii) [o] &
Makehle Applicaton [axe) * Hone

Librarias:

W Mo Exceghions
[T Comprass class FAR_DATA

Target Model. Starup Code
|small -] ™ Use allemats startup code
Targat Connection

Mo Target/RIOM

_—
Configure Setings | Qrgﬂt Elpﬂrt

2. Choose OK to close the New Target dialog box.

3. The Project window opens and displays the target and dependencies of the project
you just created.

The following are definitions for the nodes within this newly created project:

TEST.AXE

TEST.CFG

Thisnode isthe final target node that is generated during the locate
phase of the build and includes the absol ute code for debugging or
burning into flash or EPROM.

Thisisthe Paradigm LOCATE configuration file that is used to
generate the TEST.AXE output file. Thisfile contains the description
of the target system address space as well as the build instructions for
placing the program code and data at addresses that you specify.

Paradigm C++ Reference Manual

TEST.ROM Thisnodeis generated by the Paradigm C++ linker and is also the
point in the build processin which a.MAP fileis generated for use in
the locate phase.

TEST.C This node references the files TEST.C, the file that you created earlier
in the chapter (if you haven't already done so, create thisfile by
following the instructions listed in the section, “Creating a new file”
on page 14).

4. Build the application by selecting the .AXE node and right-click to bring up the local
options and select 'Build node'. Because Paradigm C++ has a built-in Project
Manager, it always knows when the project is out-of date and needsto be rebuilt so
thereis no need to explicitly do this. We could have a so selected the Project|Make
all or the Project|Build all commands from the SpeedBar or from the Project menu.

If you correctly followed all the stepsin this section, the application builds without
errors. If the compiler reports errors or warnings during the compile, retrace the stepsin
this section to ensure you correctly followed the steps. When the program compiles
without errors, the Project Manager creates an executable program called TEST.AXE
and placesit in the directory you selected when the project was created.

You canaccess Thisisonly asmall fraction of the information on working with projects. See "projects”
the Master Index i, the online Help index for complete details on managing the build process using

Onr,%n; ‘,ﬁ':ﬂ‘)'ntc?;z Paradigm C++ projects or see Chapter 2 “Managing projects,” on page 2-31 of this
by right-clicking. manual.

Configuring the remote connection

Atarget Paradigm C++ can only debug when atarget such as PDREMOTE/ROM or an in-circuit
COQ”GC“OT}. ”gi”tSt emulator is connected. Configuring the remote connection gives Paradigm C++ the
begin debugging, IMTOMation it needs about your target to begin a debugging session. To configure the

remote connection:

Select the TEST.AXE node from the project view of the Project Manager.
Right-click to see local menu options for the TEST.AXE node.
Sdlect TargetExpert. The dialog contains a pull down menu for Target Connection.
Select the drop down menu to see alist of available remote connection interfaces and
select the desired remote connection interface.

5. Pressthe Modify connection settings button to make specific changes to the remote
interface settings.

A w DN PR

Once the remote connection settings are set up, click OK to close the remote connection
dialog. You are now ready to start debugging. Double-click the TEST.AXE node to
rebuild the application (if needed) and download the application to the target.

= The debugger sets a software breakpoint at the label main in the application. If you would
rather start at the reset vector or run to a different place in the application, then select
Options|Environment|Debugger|Debugger Behavior and delete main, or add the function
name, to Run to on startup.

Stand-alone debugging

To configure the remote connection to do stand-a one debugging without the use of
Project Manager,

Chapter 1, Getting started 19

1. Close any demo projects that may be open (Project|Close project).

2. Select Debug|Load, and Browse or type in the name of the .AXE (or .HEX) file for
remote download, for example,
\ par adi gnm exanpl es\ deno\t est. axe

3. Choose the desired remote connection interface.

4. Pressthe Modify settings button to change any specific remote connection settings for
the selected interface.

5. Select OK to load the application file and start debugging without the use of the
Project Manager.

Again, the debugger sets a software breakpoint at the label mainin the application. If
you would rather start at the reset vector or run to a different place in the application,
then select Options|Environment|Debugger|Debugger Behavior and delete main, or
add the function name, to Run to on startup.

6. When you would like to exit stand-alone debugging mode, Select Debug|Terminate
debug session or hit Ctrl-F2.

Debugging with Paradigm C++

If you have

multiple targets,
you can select

the target

connector from
the local menu of
a target node in
the Project view.

()| o)

Step over/into

20

g "<|

Run/Run to

For ademonstration of debugging in Paradigm C++, open the DEMO.IDE project in
PARADIGM\EXAMPLESIREAL\DEMO asyou did in “Creating anew file,” page 14
and double-click the DEMO.C node in the Project window. Right-click the DEMO.AXE
node in the Project window and select TargetExpert to ensure that the Target Connection
is set to the desired remote connection. Then ssimply double-click the DEMO.AXE node
in the Project window to download the application to your target. If the debugger option
to execute to main(), found under Options|Environment|Debugger|Debugger Behavior, is
enabled, the debugging session will ook like Figure 1-6, page 1-21.

At this point the Debug menu commands and SpeedBar will come alive so you can
inspect program data, view the processor registers, or access target peripherals. Right-
clicking in the Edit window will bring up the debugger SpeedMenu for quick accessto
debugging commands.

Y ou can step through the program and test until you find a bug that needs fixing. Use the
Statement step into or Statement step over SpeedButtons |located beneath the Menu bar to
begin debugging. Y ou could use the Run SpeedButton but the application won't stop
unless you have set a breakpoint somewhere in the program. Y ou can also use the Run to
here button to execute to a particular source line that the cursor is on. See Figure 1-7,
page 1-22 for adescription of Paradigm C++ SpeedButtons available during a debug
Session.

When you find a problem, you might notice that there is no difference between editor
windows and debugger windows. Thisis a big improvement over traditional tools since
you can fix abug right away without exiting the debugger. If you make a change, you can
either continue the debugging session or you can rebuild the application and test the
change - all without losing your place! Thisiswhere Paradigm C++ excels a making the
most of your devel opment time.

Paradigm C++ Reference Manual

Figure 1-6 Paradigm C++ debugging session

& Paradigm C++ - demo

File Edt Search Yiew Projedt Sgrpt Tool Debug Opbons Window Help

MWMMHMEMM

= r::||rrl C \p&mrllqm'lm-nmpl HHE

L Function: mailnZX -axe
7, ngTIJ.ﬂ r:Fg [cfg]
. i , B = demo . rom rom
oy This 15 where it . B dewo. o [[-.:]]:ada eizan
i LED port code. |®@ = O Helper files [SourcePool]
* . O stklen.asm [.asm]
. OO heapsize.c [.c]
’ O conscle.c [.c]

"frjll Slac I-r Hl“'}l?:!

UCHAR portdata ; __I
UINT 5,73

rMessage

|_Buildime [Buntime | Seipt [Remots |
| 761] Insert ® Ereakatd

Debugger SpeedButtons

This section will familiarize you with the Paradigm C++ SpeedButtons used in a
debugging session.

Chapter 1, Getting started

Figure 1-7 Paradigm C++ SpeedButtons

~ Goto execution point

- Open afile - Toggle breakpoint
Save View breakpoint
Compile this file Reset
Make project View CPU
Build project View watches
v I v I i Inspect
eple] el G R OlS [G e
L F 3
Run ,I j View message window 3 J t
Run to here Add target Lo project
Statement step over Add file to project
Statement step into Project fiode options
Pause process — What's This? —

In Paradigm C++, click the What's This? SpeedButton and then a SpeedButton of interest
to receive a help description of that button. The Paradigm C++ debugger is covered in
complete detail in Chapter 5 “Using the integrated debugger,” page 5-129 of this manual.
We have covered just the basics here. Plan on spending some time in Chapter 5 or see
"Iintegrated debugger” in the online Help index for more assistance on the Paradigm C++
integrated debugger.

Customizing Paradigm C++

22

Y ou can configure Paradigm C++ in many ways to create a customized environment that
meets your programming needs. For example, you can have Paradigm C++ do tasks
automatically (such as saving backups of your filesin the Editor windows) or handle
special events.

The Environment Options dialog box (accessed with the Options|Environment command)
lets you configure the different elements and windows of Paradigm C++. Once you've
customized Paradigm C++ to your liking, choose Options|Save, check the options you
want to save, then choose OK; Paradigm C++ saves your environment settingsto afile
called PCCONFIG.PCW. By default, thefileis saved to the BIN directory in your
Paradigm C++ directory tree. This default directory is specified by the
DefaultDesktopDir field of your PCWS5.INI file, which islocated in your Windows
directory.

The Environment Options dialog box displays alist of customizable topics on the left and
each topic's configurable options on the right. Some topics contain subtopics, indicated
by a+ next to the topic. For example, the Editor topic has subtopics called Options, File,
and Display. To view atopic's subtopics, click the + sign next to the topic; its subtopics
appear under it and the + turnsto a - (you can then click the - to collapse the list of
subtopics). Topics without subtopics appear with adot next to their name.

Paradigm C++ Reference Manual

Figure1-8 Environment Options dialog box
" Environment Options
Topics: E ditor
o Browser
e — (T o
o [ptions —
° File This section confrols editor functionality, Below are
g DISF'E}_' . Speadietings: that allow you o choose editor configurations
<P Synitax Highlighting with a single click, Yisit the Options, Fle, and Display sechions
or SpeedBar bo custornize vour editing environment az pou wish
@ Scripting
* Process Conlrol
& Pieferences — Editor SpeedSetting: — — -
& Fartz : Gioun Undo; OFF
o Project View | Default keymapping Cursor bepond EOF: OFF
P Debugger . Keep Trailing blanks: OFF
[BE e BRIEF RegEx OFF
2 | Parsistent Blocks: OFF
SEIEL s =hor | Ovenwrite Blocks: oM
: : Keymap: default kbd
E peil ulak
————— 1| | BRIEF cusar OFF.
'Enriigue edior usng S peeds ettings :
W Ok || X concel | 2 e |
This section discusses the following Environment options topics:
. Configuring the Paradigm C++ editor
. Sdecting the Syntax highlighting options
. Customizing the SpeedBars
« Sdtting the Paradigm C++ preferences
. Saving your Paradigm C++ settings
= Although this chapter doesn't offer a complete reference to the many selectionsin the

Environment Options dialog box, a complete reference is available by clicking the Help
button.

Configuring the Paradigm C++ editor

Y ou can configure the editor so that it looks and behaves like other editors such as Brief
and Epsilon. The Paradigm C++ editor uses keyboard mapping files (.KBD files) that set
the keyboard shortcuts for the editor and the other windows in Paradigm C++. You can
modify this behavior using ObjectScripting. For more information, see " ObjectScripting”
the online Help index.

Chapter 1, Getting started 23

Syntax highlighting

Syntax highlighting lets you define a color and font attribute (such as bold) for certain
elements of code. For example, you could display commentsin blue and stringsin red.

Syntax highlighting is on by default.

Syntax highlighting works on files whose extensions are listed in the Syntax Extensions
list (by default, thesefilesare .C, .CPP, .H, and .HPP). Y ou can add or delete any
extension from thislist, but be sure to separate extensions with semicolons.

The Syntax highlighting section displays the default color scheme and four predefined

color settings. To use a predefined color scheme,
1. Choose OptiongEnvironment|Syntax highlighting.

2. Choose one of the four predefined color schemes (Defaults, Classic, Twilight, or
Ocean) by choosing the Color SpeedSettings,; the sample code changes to the color

scheme you select.

Figure 1-9 Environment Options Syntax Highlighting dialog

Environment Options I
Topics: Customize
@ Browser — Element: kbribuke: ———
=E ditar .l I Bold
= Options Caomment = I_ I'
s E'!E | Reserved Ward .. Italc
= Llisplay |dentifier :
=5 yntax Highlightin Sinrhel e
T ||<.co- Dciier [
=5 peedB ar String - W Default FG
o I:_us_tcun'nze 1 I i k .. v Defaul BG
= Scrpting 5
@ Proceszs Contral — Sample;

@ Preferences

= Fantz

@ Project Wiew
|2rDebugger {

H#include <stdio.h>

int wgin (Int arge,

F
=l

2

char *argv(]]

£ Numerical syntax elements

printt
printt

printt
2 [

("int %d; float fvn"™, 5, &
[Moctal %o0;
[Mohar o

hex xh'wn'™, 05,
illegal zdyvn®™, 'T

Specify syntax highlighting zethings

k. IﬁLind-JF'ag-:l x Ear‘u:ell ? Help l

24

To customize the syntax highlighting colors,

1. Choose Options|Environment, then select the Syntax highlighting topic.

Paradigm C++ Reference Manual

2. Select a predefined color scheme to use as a base for your customized colors.
3. Choose the Customize topic listed under the Syntax highlighting topic. Elements and
sample code appear on the right of the Environment Options dialog box.

4. Select an element you want to modify from the list of elements (for example, choose
Comment), or click the element in the sample code (this selects the name in the
Element list). Y ou might need to scroll the sample code to view more elements.

5. Select acolor for the element. The element color in the sample code reflects your
selection. Use the left mouse button to select aforeground color for the element (FG
appearsin the color). Use the right mouse button to select a background color (BG
appearsin the color). IF FB appearsin the color, the color is used as both a
background and a foreground color.

6. If you want, choose an Attribute (for example, bold).

7. You can check Default FG (foreground) or BG (background) to use the Windows
default colorsfor an element.

8. Repeat steps 2-4 for the e ements you want to modify.

To turn off syntax highlighting, choose OptionslEnvironment|Syntax highlighting, then
uncheck Use Syntax highlighting.

Customizing the SpeedBars

Paradigm C++ uses context-sensitive SpeedBars for all its windows, including Edit,
Browser, Debugger, Project Manager, Message, and Desktop windows. When a window
has focus, the corresponding SpeedBar appears just below the Menu Bar. Using the
Environment Options dialog box, you can customize the SpeedBars for each window so
that they include only the buttons you want.

To add or delete buttons from the SpeedBars,

1. Choose Optiong|Environment from the Paradigm C++ Menu Bar.

2. Choose the SpeedBar topic on the left. The right side of the dialog box displays
general optionsfor all SpeedBars.

The options here let you specify if you want to hide or view the SpeedBar, where you
want the SpeedBar to appear (on the top or bottom of the Paradigm C++ window),
and if you want to use the Flyby Help Hints. If you check Use Flyby Help Hints,
Paradigm C++ displays descriptions of the SpeedButtons on the status line when you
pass the mouse pointer over a button. If you leave this box unchecked, the hints show
on the status line only when you click a SpeedButton.

3. Choose the Customize topic listed under the SpeedBar topic to customize the
SpeedBar for a particular window.

Chapter 1, Getting started 25

Figure 1-10 Environment Options SpeedBar customizing dialog

Environment Options l

Topics:

= Browser

=k ditor

@ Optionz

= File

@ Dizplay
[=5ynrtax Highlighting
@ Cugtomize
[=5peedBar

2 Customize

= Scriphing

= Proceszs Caontral
@ Preferences

@ Fants

@ Project Wiew
|=rDrebugger

Tupe of window whoze SpeedBar will |
be edited

Customize

— Windo;

[T

Copy Layaut. .. 1 Restore Lapaut i ‘

Ayvallable Buttons:

g‘iE Erowse Edit 5 ElLHE:E:H
o2 Browse Pravious Wi
g,@ Erowsze Print

Ll

| 53 Browse Feferences

Browze Symbol
IETE B rowse Window Mc
@“‘1" Debug Add Breakpe
e [ebug Add 'watch

H;f?i Debug Animate

ﬂEDehug Breakpoint
‘| | B

*|

v

Ok,

Active Buttons:

B

T

= File Save
Separator

013 Project Compile

[l bl

1.1 Project Make

(Ll bl

Eﬁ; Froject Build
Separator

4% Debug Fun =
=b_ - 1 m T —
RY— Ll—l

1"| lr! Separator l

%Undu F'agei x Eanceli ? Help l

26

4. Inthe Window dialog box, choose the specific window (Edit, Browser, Debugger,
Project, Message, or the Paradigm C++ Desktop) whose SpeedBar you want to

customize.

The Available Buttons list box displays all the unused buttons that you can add to a
particular window's SpeedBar (each button has a name next to it that describes the
button's function.). The Active Buttons list displays the buttons that are currently
contained in the selected window's SpeedBar.

. Toadd a button to a SpeedBar, double-click the button icon in the Available
Buttonslist, or select it and click the right-pointing arrow. Paradigm C++ places
the button in front of the selected button in the Active Buttons list.

. Toremove a button from a SpeedBar, double-click the button icon in the Active
Buttons ligt, or select it and click the left-pointing arrow. The button moves to the
Available Buttons list.

. Toreorder the button positions for a SpeedBar, select a button in the Active
Buttons list, and use the up and down arrows to move the button within the list.
The top button in the list appears on the left side of the SpeedBar and the last

button in the list appears on the right side of the SpeedBar.

Paradigm C++ Reference Manual

. To put separator spaces between buttons on the SpeedBar, select a button from
the Active Buttons list, and then click the Separator button. The separator is added
before the selected button.

Y ou can also make all SpeedBarsidentical by selecting a SpeedBar in the Window list,
then pressing the Copy Layout button. A dialog box appearsin which you check all the
SpeedBars you want to make identical to the selected Speedbar. For example, if you first
choose the Editor SpeedBar and then click Copy Layout, the dialog box appears with
Editor dimmed. If you then check Project and Message, those SpeedBars will be exactly
the same as the Editor SpeedBar.

Y ou can restore any SpeedBar to its origina defaults by selecting the SpeedBar in the
Windows list, then clicking the Restore Layout button.

Setting Paradigm C++ preferences

The Preferences command lets you customize which of the Paradigm C++ settings you
want automatically saved and how you want some Paradigm C++ windows to work.
To set preferences,

1. Choose Options|Environment|Preferences.

2. Check and uncheck the options you want, then choose OK. For an explanation of each
option, select the option and hit F1 to access the online Help for that option.

Saving your Paradigm C++ settings

Paradigm C++ automatically saves information when you exit Paradigm C++, use a
transfer tool, build or make a project, run the integrated debugger, or close or open a
project. You can control which areas of Paradigm C++ get saved from the Preferences
topic in the Environment Options dialog box (choose Options|Environment from the main
menu).

If you want to save your settings manually, you can do so asfollows:
1. Choose Options|Save.

Figure 1-11 . i
Save options Save Oplions E

dialog
— Save config info for, ——
@ Ere | L
v Desktop x Cancel
V¥ Froject
W Meszages ? Help

2. Check Environment to save the settings from the Editor, Syntax highlighting,
SpeedBar , Browser, and Preferences sections of the Environment Options dialog
box. These settings are saved in afile called PCCONFIG.PCW.

Chapter 1, Getting started 27

3. Check Desktop to save information about open windows and their positions. This
information is saved to afile called <prjname>.DSW. If you don't have a project
open, the information is saved to afile called PCWDEF.DSW.

4. Check Project to save the changes to your project (.IDE) file, including build options

and node attributes.

Using help in Paradigm C++

28

Table 1-2
Help files

Paradigm C++ provides complete online documentation through the Help system. Using
Help isa convenient way to get information about language features, compiler options,
and any tasks you need to perform while developing applicationsin Paradigm C++.

Online help organization

The Help system is organized into Help files that include the following documentation:

Help file

Description

Using Online Help

Paradigm C++ Class Libraries Guide
Paradigm C++ Programmer's Guide
Paradigm C++ User's Guide

Error Messages and Warnings
Toolsand Utilities

ObjectScripting Guide

Paradigm LOCATE Reference
Paradigm LOCATE Error Messages
PDREMOTE/ROM Help

Paradigm Assembler Help
Paradigm C++ SCCS Integration
Run-time Library Source Code
PDREMOTE/ROM Source Code
Paradigm OMFCVT Guide

Features of Paradigm C++ Help (OPENHELP.HLP)
Programming and reference material (CLASSLIB.HLP)
Programming tips and language details (PCPP.HLP)
Paradigm C++ tasks, projects, tools (PCW.HLP)

Paradigm C++ Error message descriptions (PCERRM SG.HLP)
Command-line tools (PCTOOLS.HLP)

Customizing with scriptsin Paradigm C++ (SCRIPT.HLP)
Reference material for Paradigm LOCATE (LOCATE.HLP)
Paradigm LOCATE Error messages (LOCERR.HLP)
PDREMOTE/ROM Tutoria help (PDREM.HLP)
Assembler options and operators reference (PASM.HLP)
Source code control system features (SCCS.HLP)

Building and customizing tips (RUNTIME.HLP)

Building and customizing tips (PDREMSRC.HLP)

Features of Paradigm OMFCVT (OMF.HLP)

Some of these files may only be available if you have optional componentsinstalled in
the Paradigm C++ IDE. Additional files may be available.

Getting help in Paradigm C++

In Paradigm C++, you can get Help in the following ways:

. Context-Sensitive Help (F1)
. Contents Screens
. Index

. Keyword Search (F1 or Ctrl+F1 in the Edit Window)
. SpeedMenus (in the Help window)

. Contacting Paradigm

Paradigm C++ Reference Manual

Toreturnto a
previous topic or
Help file, click the
Back button.

Toreturnto a
previous topic or
Help file, click the
Back button.

Getting context-sensitive help
To access context-sensitive Help for itemsin Paradigm C++:

1. Select the element you want help on (menu, menu command, an item in a dialog box).
2. PressF1 or Ctrl+F1.

Help buttons are available on many dialog boxes and for most error messages.
Click Help to view information about:

. Theentire dialog box
. Aneror message
. Thecurrent group of topicsin an Options settings dialog box

Accessing and using contents screens

Each Help Contents offers an entry into a Help system installed with Paradigm C++.
From the Contents, select the category of information that best suits your needs, then click
onit.

. Todisplay the Master Contents screen, choose Contents on the Help menu in
Paradigm C++.

. To access the Help Contents from within atopic in the active Help file, click the
Contents button.

. To accessthe Help Contents screen of adifferent Help file installed with Paradigm
C++, right-click and select the name of the Help file you want to view.

. To accessthe Contents of all available Help files, click the Book Shelf button from
within the topic of aHelp file. Shortcuts to help files are aso listed under the Start
menu in Programs|Paradigm C++|Help.

Y ou can expand books that appear on the Contents, or jump directly to atopic. To view a

topic, click on it.

Y ou can print several topics at once by clicking a book on the Contents and then clicking
Print.

Using the index

In Help, click the Index tab to view alist of index entries. Either type the word you're
looking for or scroll through the list.

Searching for keywords
Keyword Search gives you direct access to Help about aterm in your program. To get
help on aterm:
1. Inthe Edit window, place the insertion point on the term you want help on.
2. Use one of the following methods:
« PressFior Ctrl+F1.
. Choose Keyword Sear ch on the Help menu.
. Choose Go To Help Topic on the Edit Window SpeedMenu.
3. One of these events occurs:
. Thetopic associated with the term you selected is displayed.

Chapter 1, Getting started 29

. If morethan onetopic is available on the term for which you requested Help, the
Topics Found dialog box is displayed listing topics associated with the term.
Double-click the topic you want to view.

. If noHelpisavailable for the term nearest the insertion point, the index is
displayed. Y ou can then select a different searching method to locate a topic
associated with that term. The term for which you requested Help appears
highlighted in the top box. Click the Display button or double-click the term to
view thelist of topics associated with the term.

Help SpeedMenus

All the Paradigm C++ Help files have SpeedMenus that you access by right-clicking on
the mouse. These menus provide quick access to commands for copying or printing a
Help topic, or exiting Help.

The SpeedMenu aso lists additional Help files containing information related to the
current Help file. Right-click and select a Help file from the SpeedMenu. The Contents
screen for that Help fileis displayed.

Contacting Paradigm

There are several waysto contact Paradigm Systems for technical assistance on Paradigm
C++.

Use the Help menu links to access the Paradigm C++ home page, newsgroups, FTP site or
to register Paradigm C++.

Y ou can contact Paradigm directly at:

Paradigm Systems

Suite 2214

3301 Country Club Road
Endwell, NY 13760
USA

Sales: 607-748-5966, 800-537-5043
Fax. 607-748-5068
Technical Support: 800-582-0864

Ninety days of free technical support isonly available to registered users of Paradigm
C++. If you haven't yet done so, take this time to register your products under the
Paradigm C++ Help menu or online at http://www.devtools.com. Contact Paradigm to
purchase a Paradigm SurvivalPak for an additional 12 months of free technical support
and quarterly product upgrades.

Paradigm C++ Reference Manual

Chapter
2

Managing projects

The Paradigm C++ IDE contains a Project Manager that gives you avisua representation
of the files contained in your project. With the Project Manager, you can see exactly what
filesyou're building, the files you're using in the builds, and the options that you've set for
the builds.

This chapter covers the following topics, which describe how to use the Project Manager
to organize the filesin your project:

. Project management

. Using the Project Manager

. Grouping sets of files with Source pools

. Trandators, viewers, and tools

What is project management?

Table 2-1
Project
management
tools

As an application grows in size and complexity, it becomes dependent on various
intermediate files. Often, source files need to be compiled with different compilers and
different sets of compiler options. Even a ssmple embedded application can have multiple
C or C++ source files, with each file type requiring different compilers and different
compiler settings.

Asyour project complexity increases, the need increases for away to manage the
different components in the project. Looking at the files that make up a project, you can
see that a project combines one or more source files to produce asingle target file.
While target files are usually executable .AXE or .HEX files, source files cover a
broader range of file types, including .C, .CPP, and .ASM files. Additionally, many
source files have autodependent files (files that are automatically included by the
source), such as C header files. In larger projects, you are likely to find several targets
with scores of sources.

Project management is the organization and management of the source and target files
that make up your project. In addition, project management encompasses how and when
you employ different tools to trand ate the source files into your project target files.

Project management tools

Paradigm C++ provides several tools to help you manage your application projects.

Tools Description

Project Manager The Project Manager isthe main tool for managing projectsin Paradigm C++. Use
the View|Project command to access the Project Manager, a
collapsible/expandabl e, hierarchical display of thefilesin your project.

Project menu The Project menu provides commands to open and close projects, add a new target
to aproject, and make, build, or compile targets.

Chapter 2, Managing projects 31

OptionsHierarchy The View Options Hierarchy command (located on the Project Tree window
SpeedMenu) opens a dialog box that lets you set options for individual project
nodes.

Node attributes The Edit Node Attributes command (located on the Project Tree window
SpeedMenu) lets you control how each node is handled by the Project Manager.

Tools Use the Options|Tools command to install, delete, or modify thetools that you use
in your projects.
TargetExpert TargetExpert opens when you create a new project or add anew target node to an

existing project. TargetExpert makes available the appropriate platform, model, and
library choices based on the type of target you select.

Using the Project Manager

32

The Project Manager visually organizes al the filesin your project in a hierarchy
diagram known as the project tree. The Project Tree represents each file in your project
as anode on the tree. The Project Tree is divided into discrete levels where each level
contains asingle target node. Indented below each target node are the target’s
dependencies-the files used to build the target. To expand and collapse the hierarchy tree,
click nodes containing the + and - symbols.

Figure2-1 Project Tree

EE_‘ Project : c:\paradigmhexamples\embedded\cppdemoicppdemo.ide H=1E3
oA copdene . axe [axe]

[cppdeno.xt [.xt)
. =[O cppdemo . rom [.xrom]

. [cppdemo.cpp [.cpp] code size=590 lines=49 dat:
@ =0 Helper files [SourcePool]

. [heapsize.c [.c)

. [console.c [.c]

. M =tklen_asn [.asn]

4| | il

The Project Manager uses the following types of nodes to distinguish the different types
of filesin your project:

The project node, located at the top of the Project Tree, represents the entire project. All
the files used to build that project appear under the project node (similar to a symbolic
target in amakefile). By default, the project node is not displayed in the Project Tree. To
display the project node, choose Options|Environment and select Project View from the
list of topics, then check Show Project Node.

A target node represents afile that is created when its dependent nodes are built. A

target can be one of avariety of target types, but isusualy an .AXE or .LIB filethat you
are creating from source code. A project can contain many target nodes. For example, in a
single project, you might build three separate .AXE files, making three targetsin all.

Paradigm C++ Reference Manual

Table 2-2
Project Manager
reference

Source nodes refer to the files that are used to build atarget. Files such as.C and .CPP
are typical source nodes.

A run-time node refersto files that the Project Manager uses during the linking stage of
your project, such as startup code and .LIB files. The Project Manager adds different run-
time nodes depending on the options you specify in TargetExpert. By default, run-time
nodes are not displayed by the Project Manager. To view run-time nodes, choose
Optiong|Environment|Project View, then check Show Runtime Nodes.

Autodependency nodes are the files that your program automatically references, such as
included header files. By viewing autodependency nodes, you can see the files that source
nodes are dependent upon, and you can easily navigate to these files (just double-click the
node). By default, the Project Manager does not display Autodependency nodes; you must
choose Optiong|Project|Make, then check Autodependencies: Cache & Display. Note that
you must build the project before the Project Manager can display autodependency
information).

The Project Manager usesthe following color schemesfor its nodes:

. Blue nodes represent those that were added by the programmer.
. White nodes indicate project targets.

. Ydlow nodes are those that were added programmatically by the compiler (when it
posts dependencies and Autodependencies), or by TargetExpert (when it adds nodes
based on the target type).

The Project Manager uses specia glyphsin the left margin to indicate the build attributes
of project nodes. To apply build attributes to a node (and for areference on the different
Project Manager glyphs), choose Edit Loca Options from the Project Manager
SpeedMenu, then select the Build Attributes topic.

In addition to helping you organize your project files, you can use the Project Manager to
access source files and build targets.

. Tobring asourcefileinto an Edit window, double-click the node in the Project Tree,
or highlight the node and either press Enter or choose View|Text Edit from the Project
Manager SpeedMenu.

. Using the Project Manager to make a project is very effective because you can use the
Project Manager to translate only the files that have changed since the last project
build; computer resources are not wasted on unnecessary file updates. (The term
"trandate” refersto using one file type to create another. For example, the C++
compiler isatrandator because it generates .OBJ files from .CPP files.)

There are several ways to customize the build options of the nodesin your project.
Maintaining project option and compiling project targetsis described in detail in Chapter
3, Project options.

Project Manager reference

The Project Tree can be traversed with the mouse or the keyboard.

The Project Manager supports incremental searching, so you can quickly find a node by
typing the node name. Incremental searching finds the first node in the Project Manager
that matches the letters you type. Press Ctrl+S to find the next match.

Task Keyboard Mouse

Add Node Insert Right Click|Add Node

Chapter 2, Managing projects 33

34

Collapse hierarchy Minus Click parent node
Collapse/Expand node Spacebar

Copy Node Ctrl+Left Click Drag
Default action for node Enter Double Click
Delete Node Delete

Demote anode Alt+RightArrow Left Click Drag
End node search Esc

Expand hierarchy + (Plus) Click parent node
Expand entire hierarchy * (asterisk)

Find anode Incremental search (start typing)

Move down in project DownArrow Scroll Bar
Move node down Alt+DownArrow Left Click Drag
Move node up Alt+UpArrow Left Click Drag
Move to bottom of hierarchy End Scroll Bar
Moveto top of hierarchy Home Scroll Bar
Move up in project UpArrow Scroll Bar
Open SpeedMenu Alt+F10 Right Click
Page down PgDn Scroll Bar

Page up PgUp Scroll Bar
Promote anode Alt+LeftArrow

Reference Copy Node Alt+Left Click Drag
Scroll left LeftArrow Scroll Bar
Scroll right RightArrow Scroll Bar
Select anode Up/DownArrow Left Click
Select Contiguous nodes Shift UpArrow Shift Left Click
Select Non-Contiguous nodes Ctrl Left Click

Creating a project

When you begin to write a new application, the first step is to create a new project to
organize your application’s files. The command Project|New Project opens the New
Target dialog box.

Setting options with the New Target dialog box

When you create a new project, the IDE automatically assigns default file namesto the
nodes in your project. The following steps show how to change these default settings and
how to complete the initial project setup.

1. Type the path and name for the new project into the Project Path And Name input box
(the project name must contain eight characters or less). Note that you don't have to
type afile extension because the IDE automatically assigns the extension .IDE to all
project files.

2. Inthe Target Name input box, type the name for the first target in your project. Thisis
usually the name of the .AXE or .HEX file that you want to cregte.

The remaining fields in the New Target dialog box set the options for the first target
in the project. These fields are commonly referred to as the TargetExpert, since these
are the fields contained in the TargetExpert dialog box.

Paradigm C++ Reference Manual

3. Choose the type of target you want to build using the Target Type list. For more
information, see "target types' in the online Help index.

4. Choose a platform for your target using the Platform drop-down list. For more
information on individual platform types see "target types' in the online Help index.

5. Select the memory model of the target from the Target Model options:

. Small uses different code and data segments, giving you hear code and near data.
« Medium gives you near data and far code.

. Compact istheinverse of the Medium model, giving you near code and far data.
. Largegivesyou far code and far data.

. Hugeisthe same as Large model, but allows more than 64K of static data.

32-bit targets

. Win32 Native - If Protected address mode is chosen under Platform, selecting
Win 32 Native will alow you to generate an application to be executed locally on
your PC.

. Win 32 Embedded - If Protected address mode is chosen under Platform,
selecting Win32 Embedded will alow you to generate an application to be
executed on an embedded target.

6. If needed, click the Advanced button to specify the types of source nodes created with
your new target (this procedure is described in the following section.

7. Click OK to accept the settings and close the New Target dialog box. The Project
Manager creates the project file, which is denoted with an .IDE extension

When you close the New Target dialog box, the Project Manager draws a graphical
representation of your project in the Project window. The Project Manager creates a
target node with one or more source nodes bel ow with the project node. After creating
theinitia target for a project, you can add, delete, or modify the nodes in your project, as
described in the following sections.

Specifying the source node types

The Advanced button in the New Target dialog box opens the Advanced Options dialog
box. Use this dialog box to set the types of source nodes that the Paradigm C++ IDE
creates with anew target node.

Table 2-3 Extension File Type
Source node
types .CPPnode Creates a C++ language source node.
.C node Creates C language source node.
No source node Creates a Target node that doesn't use a source node. Use this option

when you want to create a Source node that uses the same file name as
the name of the project. When you create a new target with this option,
you must specifically add the source node.

For embedded Win32 applications

.DEF Creates a source node that is associated with a Windows module
definition file, which is used by the linker.

Chapter 2, Managing projects 35

Use care when

deleting nodes;
you cannot undo

36

the deletion.

Opening existing projects

To open an existing project, choose Project|Open Project, then use the file browser to
select an existing .IDE or .PRJ project file (.PRJfiles are converted to .IDE fileswhen
you save the project). If the project opens, but the Project window is not visible, choose
View|Project to access the Project window.

Adding nodes

To add a source node to a project:

1. Select any node in the Project Tree under which you want the new node to appear.
For example, if you want the new node to appear under the target, select the target
node.

2. Pressins, click the button on the SpeedBar, or right-click the node to open the Project
window SpeedMenu and then choose Add node.

3. Using the file browser, choose the file or files you want associated with the new
node. Alternatively, you can type the name for the file you want to add.

4. Choose OK to confirm your settings.
You can usethe Windows File Manager to add one or mor e sour ce nodes:
1. Open the File Manager and arrange the windows so you can still view the Project
window in the Paradigm C++ IDE.
2. Inthe File Manager, press Ctrl and select the files you want to add as source nodes.

3. Drag the files from the File Manager and drop them on a node in the Project window.
The Project Manager automatically adds the source files under the selected node.

Deleting source nodes

To delete anode in a project, select the node and press Del or choose Delete Node from
the SpeedMenu. To delete many nodes, select the ones you want to delete (press Ctrl or
Shift and click the left mouse button to select multiple nodes), then press Del. The Project
Manager asks if you want to delete the nodes before it proceeds. If you delete an origina
node, all reference copies of that node are also deleted.

Adding files without relative path information

Because the Project Tree supports drag and drop, you can copy files right from the
desktop file manager. Relative path information isincluded when files are copied. If you
move sources or the Paradigm C++ IDE, the relative path information will be incorrect.
Hereis how to add filesto your project without the presence of relative path information:

. Make sure that the Absolute (Options|Project|Make]New Node Path) is turned off (this
isthe default setting).

. Right-click on the node under which the added files will become children once they
are dropped.

. Choose Add Node from the Project Tree SpeedMenu.

. Browse and highlight the file(s), you want to add. (Hold down the Ctrl key to select
non-contiguous files.)

. After hightlight the desired files, shift focus to the input box and capture to the
Clipboard (Ctrl-C).

. Browse back to the project file location.

Paradigm C++ Reference Manual

. Shift focus to the input box, paste from the Clipboard (Ctrl-V or Shift + Insert) and
choose OK.

Files added to the project by this method do not have relative path information.

Editing source node attributes

Node attributes describe the source node and define the tool that trandates it (if
applicable). To edit the attributes of a source node:

1. Right-click the source node (or select the node and press Alt-F10), then choose Edit
Node attributes from the SpeedMenu. The Node attributes dialog box appears.
2. Update the node attributes, then choose OK to confirm your settings.

Node attributes
. Name isthefile name of the node, without afile extension.
. Descriptionisan optional text description of the node.

. Style Sheet isthe name of the Style sheet the Project Manager uses when it
trandates that node. If <<None>> is specified, the Project Manager uses the
parent options, plus any local overrides set on nodes higher in the Project Tree
hierarchy.

= If you need to create or edit an existing Style shest, click the Styles button to access
the Style Sheets dialog box.

. Trandator namesthe trandator used on that node. The Paradigm C++ IDE
assigns adefault trandator for the node type (for example, CppCompile for a
.CPP node), which can be overridden using thisfield.

. Nodetype defines node extension, which in turn defines the available trandators
for that node.

Adding target nodes to your project

Toadd atarget to a project with the New Target dialog box:

1. Choose Project|New Target, or click the button on the SpeedBar.
2. Type the name for the new target, then choose one of the following target types:

. Standard (default) can be an absolute executable, .LIB, or other file.
. Source Pool isacollection of filesthat can be referenced in other targets.

3. Choose OK. If the target type is Standard, the TargetExpert dialog box appears so you
can further define your target. If the target type is SourcePool, the Target is added to
the project and you can add nodes to it immediately.

When you add a new target, it is always appended to the end of the Project Tree.

To view asample project with two targets, open the file MULTITRG.IDE inthe
PARADIGM\EXAMPLES\MULTITRG directory. The project contains a text file that
describes how to use two or more targets in a project.

With more than one target in a project, you can choose to build a single target, multiple
targets, or the whole project.

Chapter 2, Managing projects 37

Use care when

deleting target

nodes; you

cannot undo the

38

deletion.

Deleting target nodes

To delete atarget node:
1. Right-click the target node you want to delete (or highlight it and press Alt-F10).
2. Choose Delete Node from the SpeedM enu.

3. The Project Manager asksif you're sure you want to delete the target. Choose OK to
delete the target and al it's dependencies from the project.

Y ou can also delete several nodes by pressing Ctrl and clicking the nodes you want to
delete, then press Del.

Editing target attributes using TargetExpert

Target attributes describe the target. For example, target attributes can describe either a
32-bit Windows DLL or a16-bit DOS absolute executable. Using TargetExpert, you can
modify the attributes for Standard target types. However, you can't change target attributes
for SourcePools.

To change a target's attributes:

1. Inthe Project window, right-click the target node (or select it and press Alt-F10), then
choose TargetExpert from the SpeedMenu to open the TargetExpert dialog box.

The TargetExpert fields are a subset of the fields in the New Target dialog box.
2. Update the target attributes, then choose OK to confirm your new settings.

Moving nodes within a project

Y ou can move nodes within a project in the following ways:

. By dragging the node to its new location.

. By sdecting the node and pressing Alt and the arrow keys. This moves the selected
node up or down through the visible nodes. Y ou can also use Alt and the right and | eft
arrow keys to promote and demote nodes through levels of dependencies. For
example, if you have a.CPP file dependent that is on a header file (the .H file appears
under and right of the .CPP in the project window), you can move the header file to
the same level as the .CPP file by selecting the header file and pressing Alt - .

Copying nodes in a project

Y ou can copy nodes in your project file either by value or by reference. When you copy
nodes by value, the Project Manager makes an identical, but separate, copy of the nodein
the location you specify. The nodes you copy inherit al the attributes from the original
node, and you have the ability to modify any of the copied node's attributes.

When you copy nodes by reference, you smply point to one node from a different

location in the project; areference copy is not distinct from the original node. If you
modify the structure of the original node, the reference copy is also modified. However, a
reference copy does not inherit the options of the origina node; you're free to attach Style
Sheets and override optionsin the copied node without affecting the origina node.

To copy project nodes,

1. Select agroup of nodes you want to copy (press Shift or Ctrl and click to select
modify nodes). Y ou don’t need to select the node's dependents because they are
copied automatically.

Paradigm C++ Reference Manual

2. Hold down the Ctrl key and drag the selected nodes to the new location to copy by
value.

Or

Press the Alt key and drag the selected nodes to the new |ocation to copy by
reference.

When you release the mouse button, the copied node appears. If you reference-copied the

node, it will appear in alighter font. At this point, if you've copied by value, you can edit
either the original or the copied nodes without changing other nodes in the project. If you

reference-copied, and you edit the original node (such as adding or deleting dependents),

al referenced copies are updated.

= Y ou cannot add to, delete, or modify nodes that have been copied by reference; to modify
nodes copied by reference, you must edit the master copy. If you delete an original node,
all reference copiesto that node are aso deleted. Y ou cannot undo this deletion.

Converting project files into makefiles

Using the Paradigm C++ IDE, you can convert project files (.IDE files) into makefiles
(.MAK files). To convert a project file to amakefile:
1. Open the project file you want to convert.

2. Choose Project|Generate Makefile. The Paradigm C++ I DE generates a makefile with
the same name as the project file, but with the extension .MAK, and placesit in the
edit buffer. The Paradigm C++ IDE displays the new makefile in an Edit window.

3. Choose File|Save to save your new makefile.

Customizing the Project window

By default, the Project window displays target nodes and source nodes. To control the
display of nodes and options:

1. Choose Options|Environment to open the Environment Options dialog box, then
choose Project View. The right side of the dialog box displays the Project View
options.

2. Check or uncheck the options you want. A sample node called WHELL O changes as
you select or deselect options. This sample shows you how all nodes appear in the
Project window.

. Build trandator displays the trandator used on the node.

. Codesizedisplaysthetota size of code segments. This information appears only
after the node has been compiled.

. Data size displaysthe size of the data segment in bytes. Thisinformation appears
only after the node has been compiled.

. Description displays the optional description of the node in the Project Tree.
Type the description using the Edit node attributes dialog box from the Project
Manager SpeedMenu.

. Location lists the path to the source file associated with the node.

. Connection displays the name of the target connection used for the node. This
only applies to target nodes that support a debugger connection.

« Number of linesdisplays the number of lines of code in the file associated with
the node. Thisinformation appears only after you compile the code.

Chapter 2, Managing projects 39

. Nodetype describes the type of node (for example, .cpp, or .c).
. Style Sheet names the Style Sheet attached with a node.

. Output names the path and file name that is created when the node is trand ated.
For example, a.CPP node creates an .OBJfile.

« Show run-time nodes displays the nodes the Project Manager uses when the
project is built. For example, it lists startup code and libraries.

. Show Project Node displays the project node, of which all targets are
dependents.
3. Click OK to close the Environment Options dialog box.

4. To save your project customizations, choose Options|Save, then check Project. Note
that you can save different option sets with the different projects you work on.

Grouping sets of files with Source Pools

What is a A Source Pool isacollection of nodes that can be referenced by multiple target nodes.

Source Pool? When a Target node references a Source Pool, the nodes in the Source Pool take on the

40

options and target attributes of the target. Because Source Pools let you create different
targets using a common set of source nodes, it is easy to maintain the files that the targets
use. For example, with Source Pools, you can create both 16- and 32-bit applications
using asingle set of source nodes. Then, when you add or delete from the Source Poal,
you don’t have worry about updating al your target nodes; they're updated automatically
through the reference to the Source Pool.

Y ou can also use Source Pools when you have severa header files that you need to
include throughout your project. If you place the header files in a Source Pool, you can
reference them wherever you need them in your project. Then, you only have to update the
origina Source Pool when you need to make changes to the group of header files; if you
add a new header file to the Source Pooal, all the referenced copies are automatically
updated.

Source Pools are a so useful when you want to assign asingle Style Sheet to multiple
nodes. For example, if three targetsin a project need to use the same Style Sheet, you can
reference a Source Pool that contains the Style Sheet instead of attaching the same Style
Sheet to each individual node. Then, if you need to update the Style Sheet (for example, if
you want to change from compiling with debug information to compiling without it), you
can update al the targets by modifying the single Style Sheet. Y ou can also use Source
Pools to apply custom tools to project nodes. For more information, see " Source Pools'
in the online Help index.

Creating a Source Pool

When you create a Source Pool, you create a target node with a group of nodes under it.

However, the target node of the Source Pool cannot be compiled—to compile the nodes
in a Source Pool, you must copy the Source Pool to a another target node. Source Pools

work to your best advantage when you copy them by reference.

To create a Sour ce Pool

1. Inyour project, create a new target node by choose Project|New Target.
2. Type the name for the Source Pool in the Target Name.

3. Select Source Pool from the Type list and press OK to create a Source Pool target
node in your project.

Paradigm C++ Reference Manual

4. Select the new Source Pool in the Project Tree, then press ins to open the Add To
Project List dialog box.

5. Select the source files you want, then press OK to add them to the Source Pooal.
6. Copy the Source Pool by reference by holding down the Alt key and dragging the
Source Pool to the target nodes you want.

= To see aworking example of Source Pools, open the sample project called
SRCPOOL.IDE in the PARADIGM\EXAMPLES\SRCPOOL directory. The project file
includes atext file that describes how the Source Pool is used in the example.

Translators, viewers, and tools

Trandators, viewers, and tools are internal and external programs that are available to
you through the Paradigm C++ IDE.

. Trandators are programs that create one file type from another. For example, the
C++ compiler isatrandator that creates .OBJfiles from .CPP files; the linker isa
trandator that creates .AXE filesfrom .OBJ, .LIB, and .DEF files.

. Viewers are programsthat let you examine the contents of a selected node. For
example, an editor is aviewer that |ets you examine the source code of a.CPPfile.

. Tools are programs that help you create and test your applications. The external AXE
utility is an example of a programming tool.

The Paradigm C++ IDE associates each node in a project with different trandlators or
viewers, depending on the file extension of the node. Although each node can be
associated with several different translators or viewers, each node is associated with a
single default trandlator or viewer. Thisis how the Paradigm C++ IDE knows to open the
Edit window when you double-click a .CPP node (double-clicking a node invokes the
default viewer on the node).

To seethe default node type (determined by file extension) for a specific translator
or viewer:

1. Choose Options|Toolsto open the Tools dialog box.
2. Select the item you want to inspect from the Toolslist.
3. Choose Edit to access the Tools Options dialog box.

4. Choose Advanced to access the Tool Advanced Options dialog box, then inspect the
Default For text box.

When you right-click anode, you'll find that some source nodes have a Special command
on the SpeedMenu. This command lists the aternative trandators that are available for
the node type selected. For example, the commands C To Assembler, C++ To Assembler,
and Preprocess appear on the Specia menu of a.CPP node. The command Implib
appearsif you selected a.DLL node. Using the Specia command, you can invoke any
trandator that is available for a selected node type. Also, by selecting a source nodein
the Project Tree and choosing Edit Node Attributes from the SpeedMenu, you can
reassign the default trandator for the selected node.

Adding translators and viewers

The Tools dialog box displays the default set of trandators, tools, and viewers The
following steps show how to add an item to thislist of programs:

Chapter 2, Managing projects 41

42

1.

2.

Choose Options|Tools to access the Tool Options dialog box. This dialog box
displays the default list of trandators, tools, and viewers.

Choose New to add a new program to the Tools list (to modify a program that is
already listed, select the tool, then choose Edit).

. Set the following option in the Tools Options dialog box:

. Name isadescription of the item you're adding. Thisis the placed on the Tool
list.

. Path isthe path and executable program name. Y ou can use the Browse button to
complete this selection.

. Command-line holds any command-line options, transfer macros, and the
Paradigm C++ IDE filters you want to pass to the program. For more information,
see "transfer macros' in the online Help index. (Try using $PROMPT if you want
to experiment with transfer macros.) the Paradigm C++ IDE filtersare .DLL files
that let tools interface with the Paradigm C++ IDE (for example, the GrepFile tool
uses afilter to output text to the Message window). To see transfer macros and
filtersin use, choose Options|Tools, then select GrepFiles and choose Edit.

. Menu Text appears on SpeedMenus and on the Tools menu. If you want to assign
a shortcut key to your menu text, precede the shortcut letter with an ampersand (&)
- this letter appears underlined in the menu. For example, & File assigns the letter
F asthe shortcut key for File. If you want an ampersand to appear in your menu
text, use two ampersands (& & Up& date appears as & Update in the menu).

Y ou must supply Menu Text if you want the program item to appear on the
SpeedMenu or Tools menu.

. Hep Hint is descriptive text that appears in the status line of the Tools dialog
box when you select the program item.

. Open the Advanced Options dialog box (choose Advanced) to set the options for your

new program. Depending on the Tool type you choose (Simple Transfer, Trandator,
or Viewer), different fields become available. If you create a Trandlator, the program
becomes available for make and build processes.

. Place On Tool Menu adds the item to the Tools menu.

. Place On SpeedM enu adds a viewer or trandator to the associated SpeedMenu.

. Target Trandator available for trandators and viewers. For trandlators, this
field specifies whether the program produces afina target (such asan .AXE file)
or an intermediate file (such asan .OBJor .1 file). If you check this box, the
trandator produced afinal target that is saved to the directory you specify in the
Final text box (choose Project|Optiong|Directories). If you don’t check Target
Trandator, the trandated file is saved in the directory you specify in the
Intermediate text box.

For viewers, Target Trangdator specifies that the viewer works only on nodes that
have been trandated (such as .OBJ or .AXE files); the node has to be trand ated
before you can view it.

. Trandate From defines the node types (determined by file extension) that a
trandator can trandate. To specify multiple node types, use a semicolon to
separate file extensions.

When you enter afile extension in this field, the Project Manager adds the trand ator
to the Specia menu of the project nodes that have that file extension. When you

Paradigm C++ Reference Manual

choose Special from the Project Manager SpeedMenu, the Project Manager displays
all the available trandators for that node type. However, it isimportant that each
node type can have only a single, default trandator (see the description for Default
For).

To see how thisworks, ook at the tool CppCompile (choose Options|Tools, double-
click CppCompile, then click Advanced). The Tool Advanced Options dialog box
shows that the C++ compiler isatrandator for .CPP, .C, .CAS, and .H files. If you
have a source node with a.C extension, CppCompile appears on the Specia menu
when you right-click the node and choose Special.

. Trandate To defines the extension of the file that the trand ator generates.

. AppliesToissimilar to Trandate From field, except that it's used for viewers
instead of trandators.

. Default For changesthe Paradigm C++ IDE's default trandlator or viewer for the
file types you specify. Type the file extensions (separating each with a semicolon)
for the file types whose default you want to override.

5. Choose OK twice to confirm your settings, then close the Tools dialog box.

Y our new tool has now been added to the Tools list of the associated project, and to the
Tools menu or SpeedMenu, depending on where you chose to add the item. If you added
the item to the Tool menu, you can check the addition by choosing Tools from the main
menu; the new program name appears on the Tools li<t.

Although the Project Manager lets you define your own Tools items, these items apply
only to the project that you add them to; they aren’t added as permanent parts of the
Paradigm C++ IDE. However, trandators, viewers, and tools can be passed to new and
existing projects by sharing the Style Sheets of the projects.

Chapter 2, Managing projects 43

44

Paradigm C++ Reference Manual

Chapter
3

Project options

After you create a project file and write the code for the source nodesin your project, you
need to set the options for the different project nodes before you can compile the project.
This chapter describes how to set options in a project, how to view the options you set,
how to compile a project, and how to use the Message window to view and fix compile-
time errors. In addition, this chapter contains a complete reference to the compiler and
linker options that can be set from the Paradigm C++ IDE.

Setting project options

This section explains how to set, view, and manage project options.

Project options tell the Paradigm C++ IDE how to compile and link the nodesin your
project to form the targets you need. The settings of the project options can indicate
whether or not to generate debugging information, where to look for source code, what
types of compiler optimizations you want to use, and so on.

The Project Manager lets you set project options in two different ways:

« You can attach Style Sheets to your project nodes.
. You can override the settings in a Style Sheet using local overrides.

Style Sheets group a collection of option settings into asingle unit. Once a Style Sheet is
created, you can attach it to a node, a group of nodes, or an entire project. Loca
overrides are settings that take precedence over Style Sheet settings at the node level.

Using Style Sheets

A Style Sheet isagroup of option settings. In your project, for example, you might want
to compile .C files with one set of options and .CPP files with another, or you might want
to build one target with debugging information, and another one without it. Style Sheets
make it easy to view and maintain the settings of your project options. Option settings
control how target nodes in your project are built. You can attach Style Sheets to entire
projects or to individual nodesin a project. Y ou can attach one or more Style Sheets to
your entire project or assign one or more Style Sheets to individual nodes in your project.

To view the options that can be incorporated into a Style Sheet, open the Project Options
dialog box by choosing Options|Project. This dialog box contains a hierarchical list of
topics on the left, with the options that relate to each topic listed on the right. To expand
and collapse the Topic list, click the + and - icons to the left of the topic listings.

To see an example of how Style Sheets are used, open the STYLESHT.IDE project file
located in the PARADIGM\EXAMPLES directory. Thisfile uses a different Style Sheet
for each of its two versions of the application and also contains atext file that explains
the use of Style Shests.

Chapter 3, Project options 45

46

TiP>

Create

Compose

Predefines Style Sheets

The Project Manager contains several predefined Style Sheets that you can attach to any
node in your project. You can aso customize a predefined Style Sheet to meet the special
needs of your projects.

To inspect the predefined Style Sheets, choose Optiong|Style Sheets on the main menu (or
click the Styles button on the Edit Node Attributes dialog box). This opens the Style
Sheets dialog box where you can create, compose, copy, edit, rename, or delete from the
list of Style Sheetsthat are available for your project. Predefined Style Sheets are listed
on the left with the description of the selected Style Sheet on the right.

The default project options

When you initialy create a project, it inherits the Style Sheet known as the Default
Project Options. If some components in your project require different settings, you can
attach different Style Sheets to those nodes. If different nodes in your project require
different option settings, you should override the default option settings by attaching
different Style Sheets to the nodes in your project.

Be careful when you use the Options|Project command to modify option settings; if
your project contains more than a single target node, the changes you make always
modify the project's Default Project Options (regardless of the node you have selected
when you choose the command). Because of this, all targets in your project inherit the
changes you make when you use the Options|Project command. In addition, if you
modify project options when you don't have a project loaded, you modifications update
the Default Project Options Style Sheet; the projects you later create will inherit these
new default settings. If you need to revert to the Paradigm C++ IDE's factory default
settings, delete the file PCWDEF.PCW (located in the Paradigm C++ IDE BIN
directory), then open and close the Paradigm C++ IDE to create a new file.

Managing Style Sheets

The buttons at the bottom of the Style Sheets dialog box let you create, compose, copy,
edit, rename, and delete user-defined Style Sheets.

Create lets you design anew Style Sheet for the currently loaded project. To create a
Style Shest:

Choose the Create button, then enter a name for you new Style Sheet into the Create Style
Sheet dialog box. Choose OK to add the new Style Sheet to the Available Style Sheets
list.
Compose lets you create a Style Sheet that contains the combined options from one or
more Style Sheets. To compose a Style Sheet:

1. Create anew Style Sheet using the Create button.

2. Select the new Style Sheet in the Available Style Sheets list, then click Compose.

3. Select the Style Sheet you want included in your new Style Sheet from the Available
Style Sheets list, then move the Style Sheet to the Composite Style Sheetslist by
double-clicking it or by clicking the® button. (Y ou can aso remove Style Sheets
from the Composite Style Sheet list by selecting a Style Sheet there and clicking -)

4. Continue modifying the composed Style Sheet, then choose OK when you're finished.

Y ou cannot edit the option settings in a composed Style Sheet. However, you can edit the
option settings in the Style Sheets contained in the composed Style Sheet, which affects
the settings in the composed Style Shest.

Paradigm C++ Reference Manual

Copy Copy letsyou create anew Style Sheet from an existing one. When you choose Copy,
you're prompted for the new Style Sheet's name. Enter the new name, then choose OK to
make an exact copy of the selected Style Sheet. Copying is afast way to create a Style
Sheet that closely resembles another-you only have to change the options you want.

Edit to change any of the copied options. Copying is afast way to create a Style Sheet that
closely resembles another-you only have to change the options you want.

Edit Edit lets you modify the option settings of an existing Style Sheet, including any
predefined Style Sheet.

Rename Rename letsyou rename a selected Style Sheet.
Delete Delete lets you remove an unwanted Style Sheet. (This action cannot be reversed.)

Attaching Style Sheets to nodes

Sometimes different nodes in a project need to be built with option settings that are
different than those in the project Style Sheet. For example, you might want to compile .C
fileswith one set of options but .CPP files with another. Or, you might want to build one
target with 16-bit options and another with 32-bit options.

To attach an existing Style Sheet to a project node:
1. Right-click the node in the Project Tree (or select it and press Alt-F10).
2. Choose Edit node Attributes from the SpeedMenu. The Node Attributes dialog box

appears.
3. Select a Style Sheet from the drop-down box, then choose OK.

When you attach a Style Sheet to anode, all child nodes of that node inherit the settings of
the selected Style Sheet. To change the settings of a child node, attach a different Style
Shest, or override an option setting using alocal override.

= Although you can attach only a single Style Sheet to a project node, one Style Sheet can
be composed of severa different Style Sheets.

Sharing style sheets between projects
There are two ways to share Style Sheet between projects:

. inheriting style sheets from another project
. editing the .PDL file associated with a project

When you create a custom Style Sheet, that Style Sheet remains with the project for which
it was created; it doesn't get added to the list of predefined Style Sheets. However, if you
want anew project to use one of your custom Style Sheets or user-defined tools, you can
do so by letting a new project inherit settings from another project.

Before a project can inherit the settings of another project, you must modify the
PCWS5.INI file that residesin your Windows directory. If the file doesn't contain an
inherit setting, then you must add the settings to the file as follows:

[Project]

; To have new projects inherit settings fromthe Default Project

Settings (default) ;
i nherit=0

; To have new projects inherit settings fromcurrently open project:
i nherit=1

Chapter 3, Project options 47

48

TiP>

TiP>

; To have new projects inherit factory default settings:
i nherit=2
To pass Style Sheets or user-defined tools from one project to a new project:
1. Modify PCW5S.INI sothat i nherit =1.
2. Open the project that contains the Style Sheet or tools you want to share.
3. Choose Project|New Project.

When the new project is created, it inherits the Style Sheets and user-defined tools of the
project that was open when you chose Project|New Project.

Project Description Language files

Y ou can also share Style Sheets across projects by editing the Project Description
Language files (.PDL) associated with your projects. When you save a project, you can
instruct the Paradigm C++ IDE to create a .PDL file that has the same file name as the
project's Paradigm C++ IDE file. Likewise, when you open a project you can instruct the
Paradigm C++ IDE to read the project's .PDL file. Because a.PDL file contains
information about the Style Sheets and tools used in a project, you can edit a project's
PDL file so that it uses the Style Sheet and tools of your choosing.

Be careful if you choose to edit .PDL files. If a .PDL fileis corrupted, the Project
Manager will not be able to read it. You may want to make a backup copy of the .PDL
file before you begin making changes.

If you plan to use .PDL filesto share Style Sheets and tools, you must first ensure that the
Paradigm C++ IDE creates and reads the files. To do so, open the PCW5.INI file (found

in your Windows directory) and add the following settings to the [Project] section of the
NI file:

[Project]
saveast ext =1
r eadast ext =1

Thesaveast ext setting tellsthe Paradigm C++ IDE to save a .PDL file whenever a
project issaved. Ther eadast ext setting tells the Paradigm C++ IDE to update an
IDE fileif its associated .PDL fileis newer that the .IDE file.

To share Style Sheets or user-defined tools between projects:
1. Modify your PCW5.INI file as just described.

2. Open the project that you need to transfer Style Sheets or toolsto, then close the
project (choose Project|Close Project). This createsa .PDL file for the project.

3. Open the project that contains the Style Sheets or tools you want to share (the .PDL
file name matches the file name of the .IDE file).

4. Using the text editor, open the .PDL file containing the Style Sheet or tools you want
to share (the .PDL file name matches the file name of the .IDE fil€e).

5. Search for Style Sheet's name. For example, if you created a Style Sheet called
MY STYLE, you'll seeasectioninthe .PDL filethat starts{ St yl eSheet =
"MYSTYLE".

6. Copy al the text from the beginning brace to the ending brace. If needed, you can
copy more than one Style Shest.

Paradigm C++ Reference Manual

= To share a user-defined tool, copy the section that reads Subsyst em=<t ool >.

7. Open the .PDL file that is to receive the Style Sheet.

8. Find the section for Style Sheets, then paste the copied text to the end of the existing
Style Sheet list.

9. Savethe .PDL filethat received the copied Style Sheet.

10. Open the project that received the copied Style Sheet to update the project's Style
Sheets and tools from the .PDL file.

After transferring Style Sheets, it isagood ideato reset the saveast ext andthe
r eadast ext settingsinthe PCW5.INI fileto 0. Thistells the Paradigm C++ IDE to not
saveto or update from .PDL files.

Setting local overrides

Inherited options or Style Sheet options can be overridden at the node level using local
overrides. Local overrides are useful when a node's option settings must differ from its
associated Style Sheet by one or two settings. Set options for an individual node by
selecting Edit Local Options on the Project Tree window SpeedMenu or by selecting Edit
Local Options from the Edit Local Options on the Edit window SpeedMenu when no
project isloaded. The local options dialog box displays where the node is located in the
Project Manager and allows you to set options for that node.

Once options have been set, they become local overrides associated with the node. Local
Override are useful when you use a Style Sheet (perhaps inherited from a parent node).

= Although the local overrides make it easy to set options for individual nodes, they have
the disadvantage of being difficult to track. While the Options Hierarchy dialog box
displays the Style Sheet and local override settings for a selected node, you must examine
each individual node to see which ones have been overridden. Because of this, it's
recommended that you use separate Style Sheets for nodes that require different option
settings, and use local overrides only in special cases.

To override an option setting:
1. Choose the node whose settings you want to override.
2. Right-click the node (or press Alt-F10) and choose Edit Local Options from the
SpeedMenu. The Options dialog box (which is similar to the Project Options dialog
box) appears and displays the settings for that node.

3. Select the option you want to override. The Paradigm C++ IDE automatically checks
the Local Override box whenever you modify a Style Sheet setting.

4. Choose OK to confirm you new settings.

= The Local Override check box is enabled only when an option within atopic is selected
otherwise, the check box is grayed. When you select an option (using Tab, or by clicking
and dragging the mouse off the option), the Local Override check box shows the status of
the selected option. Because of this, you must individually select each option in atopic to
see which ones have been overriden locally. If you choose an option (by clicking it, or by
selecting it and pressing Enter), you change its setting , which always causes the Local
override check box to be checked.

To undo an override:

1. Right-click the node whose setting you want to modify, then choose Edit local options
from the SpeedMenu.

2. Inthe Options dialog box, select the topic that contains the overridden setting.

Chapter 3, Project options 49

When you select atopic page that has alocally overridden option, the Project
Manager enables the Undo Page button.

3. Select the option (using Tab, or by clicking and dragging the mouse off the option)
whose local override you want to undo; the Local Override checkbox will be
checked.

4. Click the Local Override check box to undo the override; the option will revert to the
default Style Sheet setting. To revert the entire topic to the settings contained in the
associated Style Sheet, choose the Undo Page button.

5. Choose OK to confirm your modifications.

View project options

Because each node can have its own Style Sheet and you can override the option in the
Style Sheet, you need a quick way to view the option settings for each node.

To view option settings for the nodes in you project:

1. Right-click any node in the Project window and choose View Options Hierarchy, or
click the button on the SpeedBar.

The Options Hierarchy dialog box appears, listing the nodes in the project on the left
and the options that each node uses on the right. Y ou can expand and collapse the list
of nodesin the dialog box just like you can in the Project window, however,
Autodependency nodes do not appear.

An option that's surrounded by double-asterisks (**) in the Options listing indicates
that the option is overridden (by either a Style Sheet or local override) by a
dependent node located farther down in the Options listing. (The asterisks display
only when you select the node where the option is overridden.)

2. When you select anode in the Project Options At list, its setting appearsto theright in
the Optionsigt.

The Options list displays components of the project in square brackets. At the top of
thelist, you'll see the name of the project followed by its Default Project Options.
Below thisisthe name of the target associated with the node you've selected. If the
node has a Style Sheet associated with it, it is displayed beneath the node (also in
brackets), along with the settings of the Style Sheet. If you've overridden any settings,
these are displayed beneath the [Node overrides] listing. The Options list displays the
setting for al the ancestors of the node selected in the Project Tree.

3. If you want to edit an option, double-click the option in the Option list, or select it and
click Edit. Whenever you edit options in this manner, the modifications become local
overrides.

4. When you finish viewing your project's option settings, choose Close.

Compiling projects

50

There are two basic ways to compile projects: built and make. Build compiles and links
al the nodesin a project, regardless of file dates. Make compares the time stamp of the
target with the time stamps of all the files used to build target. Make then compiles and
links only those nodes necessary to bring the target up to date.

To compile a project, open the project using the Project|Open command, then choose
either Compile, Make All, or Build All from the Project menu (note that the SpeedBar has
three similar looking buttons that correspond to these Project Menu commands).

Paradigm C++ Reference Manual

. Compile (Alt-F9) builds the code in the currently active Edit window. If a Project
window is selected, all the selected nodes in the project are trandlated; child nodes
aren't trandated unless they're selected.

. Makeall (F9) trandates al the out-of-date nodesin a project. If aproject is not open,
the file contained in the active Edit window buffer is built.

When you choose Make All, the Project Manager moves down the Project Tree until

it finds a node with no dependents. The Project Manager then compares the node's
date and time against the date and time of the node's parent. The Project Manager
trand ates the node only if the child node is newer than the parent node. The Project
Manager then moves up the Project Tree and checks the next node's date and time. In
this way, the Project Manager recurses through the Project Tree, trandating only those
nodes that have been updated since the last compile.

. Build All trandates al nodesin aproject - even if they are up-to-date. Build All
always starts at the project node and builds each successive target down the project.
Choose Cancel to stop a build.

When you choose Build All, the Project Manager starts at the first target and works
down the Project Tree until it comes to a node with no dependents. The Project
Manager compiles that node first (and other nodes on the same level), then works
back up the Project Tree, compiling and linking all nodes needed to create the target.
This process is then repeated down the Project Tree, until all the targets have been
updated.

For example, if you have a project with an .AXE target that is dependent on two
separate .OBJfiles, the Project Manager creates the first .OBJfile by compiling all
its dependents. It then creates the next .OBJ file. Once atarget node's dependents are
created, it can compile or link the target node. In this case, the Project Manager will
link the two .OBJfiles (and any run-time nodes) to create the final .AXE.

Compiling part of a project

Y ou can compile part of a project several ways.
. Trandate an individual node.

. Build anode and its dependents.

. Make anode and its dependents.

. Select several nodes and compile.

To trandate an individual node:

1. Select the node you want to trandate.

2. Choose Project|Compile from the main menu or choose the default trandation
command from the SpeedMenu. For example, if you've selected a .CPP file, the node
SpeedMenu contains a C++ Compile command, which compiles only the selected
node.

To build anode and its dependents:

1. Choose the node you want to build.

2. Right-click the node (or press Alt-F10) and choose Build Node from the SpeedMenu.
All the dependent nodes are built regardless of whether they're out-of-date.

To make anode and its dependents:
1. Choose the node you want to build.

Chapter 3, Project options 51

2. Right-click the node (or press Alt-F10) and choose M ake node from the SpeedMenu.
This command compiles only the dependent nodes whose source files are newer than
thelr associated target files.

To compile several selected nodes:

1. Select the project nodes you want to compile by pressing Ctrl and clicking the
desired project nodes. (The nodes must be the same file type, such as .CPP).

2. Choose Make Node or Build Node from the Project Manager SpeedMenu to compile
the selected nodes.

Fixing compile-time errors

Compile-time errors, or syntax errors, occur when your code violates a syntax rule of the
language you're programming in; the C++ compiler cannot compile your program unless it
contains valid language statements. If your compiler encounters a syntax error while
compiling your code, the Message window opens and displays the type of error or
warning it encountered. By choosing Options|Environment|Preferences, you can specify if
old messages should be preserved or deleted between calls to different programming
tools (such as compiler, or GREP). Check Save Old Messagesif you want the Message
window to retain its current listing of messages when you run atool.

To clear the Message window, choose Remove All Messages from the M essage window
SpeedMenu.

Viewing errors

To view the code that caused a compiler error or warning, select the message in the
Message window; the Paradigm C++ IDE updates the Edit window so that it displays the
location in your code where the error or warning occurred (thisis called Automatic Error
Tracking). If the file containing the error isn't loaded in an Edit window, press Spacebar
to load thefile (you can also load the file by pressing Alt-F10, then choosing View
Source from the SpeedMenu). When you view errorsin this manner, the Message window
remains selected so you can navigate from message to message. To open or view the
Message window, click the button on the SpeedMenu, or choose View|M essage.

Fixing errors

To edit the code associated with an error or warning, do one of the following:

. Double-click the message in the Message window.

. Select the message in the Message window and press Enter.

. Press Alt-F10 and choode Edit Source from the SpeedMenu.

The Edit window gains focus with the insertion point placed on the line and column in
your source code where the compiler detected the error. From here, edit your code to fix

the error. After fixing the error, press Alt-F7 to move the next error message in the list or
press Alt-F8 to go back to the previous message.

Project options reference

Y ou set compiler, linker, librarian, and make options from two different placesin the
Paradigm C++ IDE: the Project Options multiple-page dialog box and TargetExpert. The
remainder of this chapter describes the options available in the Project Option dialog
box. They are described in alphabetical order.

52 Paradigm C++ Reference Manual

16-bit compiler options

The 16-bit compiler options affect the compilation of al 16-bit source modules. Itis
usualy best to keep the default setting for most optionsin this section.

The subtopics are

. Processor

. Cdling convention

. Memory model

. Segment names data

. Segment names far data
. Segment names code

. Entry/Exit code

Calling conventions

Calling Convention options tell the compiler which calling sequences to generate for
function calls. The C, Pascal, and Register calling conventions differ in the way each
handles stack cleanup, order of parameters, case, and prefix of global identifiers.

Youcanusethe cdecl, pascal, or __fastcall keywordsto override the default
calling convention on specific functions.

C
Command-line equivaent: -pc, -p-

This option tells the compiler to generate a C calling sequence for function calls
(generate underbars, case sensitive, push parametersright to left). Thisisthe same as
declaring all subroutines and functions with the _ _cdecl keyword. Functions declared
using the C calling convention can take a variable parameter list (the number of
parameters does not need to be fixed).

Pascal
Command-line equivaent: -p

This option tells the compiler to generate a Pascal calling sequence for function calls (do
not generate underbars, all uppercase, calling function cleans stack, pushes parameters
left to right). Thisisthe same as declaring all subroutines and functions with the
__pascal keyword. The resulting function calls are usually smaller and faster than those
made with the C (-pc) calling convention. Functions must pass the correct number and
type of arguments.

Register

Command-line equivaent: -pr

This option forces the compiler to generate al subroutines and all functions using the
Register parameter-passing convention, which is equivalent to declaring all subroutine

and functionswith the __fastcall keyword. With this option enabled, functions or routines
expect parameters to be passed in registers.

Default =C (-pc)

Chapter 3, Project options 53

Default for

54

memory
model

Never

Always

Memory model

The Memory Moddl section lets you specify the organization of segments for code and
datain your 16-bit programs. All .OBJand .LIB filesin your program should be
compiled in the same memory model.

The options are

. Mode
. Assume SSequasDS
Options

. Put congtant strings in code segments
. Far virtual tables

. Automatic far data

. Fast huge pointers

. Far datathreshold

Assume SS equals DS

The Assume SS Equals DS options specify how the compiler considers the stack segment
(SS) and the data segment (DS).

The memory model you use determines whether the stack segment (SS) is equa to the
data segment (DS). Usually, the compiler assumesthat SSis equal to DSin the small and
medium memory models.

Command-line equivalent: -Fs-

The compiler assumes that the SS is never equal to DS. Thisis adwaysthe casein the
compact and large memory models.

Command-line equivaent: -Fs

The compiler always assumes that SSis equal to DSin al memory models. Y ou can use
this option when porting code originally written for an implementation that makes the
stack part of the data segment but you will have to provide replacement startup code for
this option to work.

Default = Default for Memory Model

Automatic far data
Command-line equivalent: -Ff

When the Automatic Far Data option is enabled, the compiler automatically places data
objects larger than or equal to the threshold size into far data segments. The threshold size
defaults to 32,767. This option is useful for code that doesn’t use the huge memory model,
but declares enough large global variables that their total sizeis close to or exceeds 64K.
This option has no effect for programs that use small, and medium memory models.

Paradigm C++ Reference Manual

When this option
is disabled, the
size value is
ignored

This option and the Far Data Threshold input box work together. The Far Data Threshold
specifies the minimum size above that which data objects will be automatically made far.

If you use this option with the Generate COMDEFs option (-Fc), the COMDEFs become
far in the compact, large, and huge models.

Default = OFF

The command-line option -Fm enables all the other -F options (-Fc, -Ff, and -Fs). You
can use -Fm as a handy shortcut when porting code from other compilers. To do thisin
the Paradigm C++ IDE, check the Automatic Far Data and Always options on this Project
Options page, and the Generate COM DEFs option on the Compiler|Floating Point page.

Page alignment for far segments
Command-line equivalent: -Fa

Allows you to change from paragraph (alignment on a 16-byte boundary) to page
alignment (256-byte boundary alignment) of far segments.

Borland C++-compatible far data
Command-line equivalent: -Fb

Enables Borland C++ compatible far data segments. When enabled, Paradigm C++ will
combineinitialized and uninitialized far datainto the FAR_DATA class instead of
placing initialized far datain class FAR_DATA and uninitialized far datain class
FAR_BSS.

Far data threshold
Command-line equivalent: -Ff=size, where size= threshold size

Use Far Data Threshold to specify the size portion needed to compl ete the Automatic Far
Data option.

Default = 32767 (if Automatic Far Datais disabled, this option value isignored)

Far virtual tables
Command-line equivaent: -Vf

When you turn this option on, the compiler creates virtua tables in the code segment
instead of the data segment, unless you override this option using the Far Virtual Tables
Segment (-zV) or Far Virtual Tables Class (-zW) options. Virtual table pointers are
made into full 32-bit pointers (which is done automatically if you are using the huge
memory model).

You can use Far Virtual Tablesto remove the virtua tables from the data segment (which
might be getting full). Y ou might also use this option to share objects (of classes with
virtual functions) between modules that use different data segments.

Y ou must compile al modules that might share objects entirely with or entirely without
this option.

Y ou can get the same effect by using the huge or _export modifiers on a class-by-class
basis.

This option changes the mangled names of C++ objects.
Default = OFF

Chapter 3, Project options 55

56

Small

Medium

Fast huge pointers
Command-line equivaent: -h

This option offers an alternative method of calculating huge pointer expressions.

For 16-bit real-mode programs, this option offers a faster method of “normalizing” than
the standard method. (Normalizing is resolving a memory address so that the offset is
always less than 16.) When you use this option, huge pointers are normalized only when a
segment wraparound occurs in the offset part, which causes problems with huge arrays if
an array element crosses a segment boundary.

Usually, Paradigm C++ normalizes a huge pointer whenever adding or subtracting from it.
Thisensures, for example, that if you have an array of structsthat’s larger than 64K,
indexing into the array and selecting a struct field always works with structs of any size.
Paradigm C++ accomplishes this by aways normalizing the results of huge pointer
operations--the address offset contains a number that is no higher than 15 and a segment
wraparound never occurs with huge pointers. The disadvantage of this approach isthat it
tends to be quite expensive in terms of execution speed.

Default = OFF

Model

The Mode options specify the memory model you want to use. The memory model you
choose determines the default method of memory addressing.

Command-line equivaent: -ms

Use the small model for average size applications. The code and data segments are
different and don't overlap, so you have 64K of code and 64K of data and stack. Near
pointers are always used.

The -ms! command-line option compiles using the small model and assumes DS !=SS.
To achieve thisin the Paradigm C++ IDE, you need to check both the Small and Never
options.

Command-line equivaent: -mm

Use the medium model for large programs that do not keep much datain memory. Far
pointers are used for code but not for data. Data and stack together are limited to 64K, but
code can occupy up to 1 MB.

The -mm! command-line option compiles using the medium model and assumes DS =
SS. To achieve thisin the Paradigm C++ IDE, you need to check both the M eduim and
Never options.

The net effect of the -ms! and -mm! optionsis actualy very small. If you take the address
of astack variable (parameter or auto), the default (DS == SS) is to make the resulting
pointer a near (DS relative) pointer. Thisway, you can assign the address to a default-
sized pointer in those models without problems. When DS != SS, the pointer type created
when you take the address of a stack variableis an _ss pointer. This means that the
pointer can be freely assigned or passed to afar pointer or to an _ss pointer. But for the
memory models affected, assigning the address to a near or default-sized pointer
produces a “ Suspicious pointer conversion” warning. Such warnings are usually errors.

Paradigm C++ Reference Manual

Compact Command-line equivaent: -mc

Use the compact model if your code is small but you need to address alot of data. The
Compact model is the opposite of the medium model: far pointers are used for data but
not for code; code islimited to 64K, pointers can point almost anywhere. All functions
are near by default and all data pointers are far by default.

Large Command-line equivalent: -ml

Use the large model for very large applications only. Far pointers are used for both code
and data. Datais limited to IMB. Far pointers can point almost anywhere. All functions
and data pointers are far by default.

Huge Command-line equivalent: -mh, 16-bit real mode only

Use the huge model for very large applications only. Far pointers are used for both code
and data. Paradigm C++ normally limits the size of al static datato 64K; the huge
memory model sets aside that limit, allowing data to occupy more than 64K.

Default = Large in the Paradigm C++ IDE; Small in PCC.EXE

Put constant strings in code segments
Command-line equivaent: -dc

This option moves all string literals from the data segment to the code segment of the
generated object file, making the data type const.

= Use this option only with compact or large memory models. In addition, this option does
not work with overlays.

Using this option saves data segment space. In large programs, especially those with a
large number of literal strings, this option shifts the burden from the data segment to the
code segment.

Default = OFF

Processor

The Processor options let you specify the minimum CPU type compatible with your
program. These options introduce instructions specific to the CPU type you select to
increase performance.

The options are

. Instruction set
. Dataaignment

16-bit instruction set

The Instruction Set options specify for which CPU instruction set the compiler should
generate code.

8086 Command-line equivalent: -1-

Chapter 3, Project options 57

80186

80286

80386

1486

Pentium

Byte
alignment

58

Choose the 8086 option if you want the compiler to generate 16-bit code for the 8086-
compatible instruction set. (To generate 8086 code, you must not turn on the options -2, -
3, or -4, or -5.) This option is the default for 16-bit.

Command-line equivaent: -1

Choose the 80186 option if you want the compiler to generate extended 16-bit code for
the 80186 instruction set. Also supports the 80286 running in Real mode.

Command-line equivaent: -2

Choose the 80286 option if you want the compiler to generate 16-bit code for the 80286
protected-mode-compatible instruction set.

Command-line equivalent: -3

Choose the 80386 option if you want the compiler to generate 16-bit code for the 80386
protected-mode-compatible instruction set.

Command-line equivaent: -4

Choose the 1486 option if you want the compiler to generate 80386/i486 instructions
running in enhanced-mode Windows.

Default = 8086 (-1-)

Command-line equivalent: -5

Choose the Pentium option if you want the compiler to generate Pentium instructions
running in enhanced-mode Windows.

Data alignment

The Data Alignment options let you choose the compiler aligns datain stored memory.
Word, double-word, and quad-word alignment forces integer-size and larger items to be
aligned on memory addresses that are a multiple of the type chosen. Extra bytes are
inserted in structures to ensure that members align correctly.

Command-line equivaent: -al or -a-

When Byte Alignment is turned on, the compiler does not force alignment of variables or
data fields to any specific memory boundaries; the compiler aligns data at either even or
odd addresses, depending on which is the next available address.

While byte-wise aignment produces more compact programs, the programstend to run a
bit dower. The other data alignment options increase the speed that 80x86 processors
fetch and store data.

Paradigm C++ Reference Manual

Word
alignment (2-
byte)

Double word
(4-byte)

Quad word
(8-byte)

Do not change
the settings in
this dialog box
unless you are

an expert.

Code
segment

Code group

Code class

Command-line equivalent: -a2

When Word Alignment is on, the compiler aligns non-character data at even addresses.
Automatic and global variables are aligned properly. char and unsigned char variables
and fields can be placed at any address; all others are placed at an even-numbered
address.

Command-line equivaent: -a4, 32-bit only

Double Word alignment aligns non-character data at 32-bit word (4-byte) boundaries.
Command-line equivalent: -a8, 32-bit only

Quad Word alignment aligns non-character data at 64-bit word (8-byte) boundaries.
Default = Byte Alignment (-a-)

Segment names code

Segment Names Code options let you specify a new code segment name and reassign the
group and class.

The options are

. Code segment
. Code group
. Codeclass

Code
Use Code to change the name of the code segment as well as the code group and class.

In all options, use an asterisk (*) for name to select the default segment names.

Command-line equivaent = -zCname

Sets the name of the code segment to name. By default, the code segment is named
_CODE for near code and modulename_TEXT for far code, except for the medium and
large models where the name is filename_CODE (filename is the source file name).

Command-line equivaent = -zPname

Causes any output files to be generated with a code group for the code segment named
name.

Command-line equivalent = -zAname

Changes the name of the code segment class to name. By default, the code segment is
assigned to class CODE.

Default = * (default segment name) for al options

Chapter 3, Project options 59

Initialized

data class

d

60

Initialized
ata group

Initialized
data
segment

Segment names data

Use Segment Names Data to change the default segment, group, and class names for
initialized and uninitialized data.

Do not change the settingsin this dialog box unless you have a good understanding of
segmentation on the 80x86 processor. Under normal circumstances, you do not need to
specify segment names.

The options available are

. Initialized Data
. Uninitialized Data

Initialized data

Use Initialized data to change the default segment, group, and class names for initialized
data.

In al options, use an asterisk (*) for name to select the default segment names.

Do not change the settingsin this dialog box unless you have a good understanding of
segmentation on the 80x86 processor. Under normal circumstances, you do not need to
specify segment names.

Command-line equivaent = -zTname

Sets the name of the initialized data segment to name. By default, the initialized data
segments classis named DATA.

Default = * (default segment name) for all options

Command-line equivaent = -zSname

Sets the name of theinitialized data segment group to name. By default, the data group is
named DGROUP.

Command-line equivalent = -zRname

Sets the name of the initialized data segment to name. By default, the initialized data
segment isnamed _DATA for near data and modulename_DATA for far data.

Uninitialized data

Use Uninitialized Data to change the default segment, group, and class names for code
uninitialized data.

In all options, use an asterisk (*) for name to select the default segment names.

Do not change the settings in this dialog box unless you have a good understanding of
segmentation on the 80x86 processor. Under normal circumstances, you do not need to
specify segment names.

Paradigm C++ Reference Manual

Uninitialized
data (BSS
class)

Uninitialized
data (BSS
group)

Uninitialized
data (BSS
segment)

Far data
class

Far data
group

Far data
segment

Command-line equivalent = -zBname

Sets the name of the uninitialized data segment class to name. By default, the uninitialized
data segments are assigned to class BSS.

Default = * (default segment name) for all options

Command-line equivaent = -zGname

Sets the name of the uninitialized data segment group to name. By default, the data group
is named DGROUP.

Command-line equivalent = -zDname

Sets the name of the uninitialized data segment. By default, the uninitialized data segment
isnamed _BSSfor near uninitialized data and modulename_BBS for far uninitialized
data.

Segment names far data

16-bit Compiler|Segment Names Far Data options set the far data segment name, group,
class name, and the far virtual tables segment name and class.

Far initialized data

Use the far uninitialized data options to change the default segment, group, and class
names for far initialized data. These options aso apply to far uninitialized data if the -Fb
option is enabled. In all options, use an asterisk (*) for name to select the default segment
names.

Do not change the settings in this dialog box unless you have a good understanding of
segmentation on the 80x86 processor. Under normal circumstances, you do not need to
specify segment names.

Command-line equivaent = -zFname

Setsthe name of the classfor __far initialized objects to name. By default, the nameis
FAR_DATA.

Default = * (default segment name) for al options

Command-line equivaent = -zHname

Causes __far initialized objects to be placed into the group name. By default, far objects
are not placed into a group.

Command-line equivalent = -zEname

Sets the name of the segment where __far initialized objects are placed to name. By
default, the segment name is the name of the object module followed by _DATA.

Chapter 3, Project options 61

Far uninitialized data

Use the far uninitialized data options to change the default segment, group, and class
names for far uninitialized data. In all options, use an asterisk (*) for name to select the
default segment names.

= Do not change the settingsin this dialog box unless you have a good understanding of
segmentation on the 80x86 processor. Under normal circumstances, you do not need to
specify segment names.

Far Command-line equivalent =-zYname

uninitialized - qoyq the name of the class for __far uninitialized objects to name. By default, the nameis

data class FAR BSS.
Default = * (default segment name) for al options

Far Command-line equivaent =-zZname
uninitialized

Causesuninitialized __far objects to be placed into the group name. By default, far
data group

uninitialized objects are not placed into a group.

Far Command-line equivalent = -zXname

unin itial(ijzid Sets the name of the segment where uninitialized _ _far objects are placed to name. By
segm Snat‘ default, the segment name is the name of the object module followed by _BSS.

Far virtual tables
Use Far Virtual Tablesto change the default segment and class names virtua tables.

In all options, use an asterisk (*) for name to select the default segment names.

= Do not change the settingsin this dialog box unless you have a good understanding of
segmentation on the 80x86 processor. Under normal circumstances, you do not need to
specify segment names.

Virtual table Command-line equivaent = -zZWname

class s the name of the far virtual table class segment to name. By default, far virtual table

classes are generated in the CODE segment.
Default = * (default segment name) for al options

Virtual table Command-line equivaent = -zVnhame

Segment gusthename of the _far virtual table segment to name. By default, far virtual tables

are generated in the CODE segment.

32-bit compiler options

The 32-bit Compiler page contains two radio buttons that alow you to select which 32-
bit compiler backend you want to use when compiling 32-bit applications.

62 Paradigm C++ Reference Manual

These options
should be used
by experts only.

C

Pascal

Paradigm optimizing compiler

The Paradigm optimizing compiler is afaster compiler than the Intel compiler, and it
produces smaller executablefiles. If you are compiling from the command line, use
PCC32.EXE.

Intel optimizing compiler

The Intel optimizing compiler produces faster executable files than the Paradigm
compiler. The trade-off is ower compilation times and slightly larger executable file
sizes. If you are compiling from the command line, use PCC32i.EXE.

The Intel compiler does not support the Browser Information (-R) compiler option.

32-bit compiler options

32-bit compiler options listed on the Processor and Calling Convention pages affect the
compilation of all 32-bit Windows applications for Windows NT and Windows 95.
Because 32-hit programs use a flat memory model (they are not segmented), there are
fewer options to configure than for 16-bit programs.

Calling conventions

Calling Convention options tell the compiler which calling sequences to generate for
function calls. The C, Pascal, and Register calling conventions differ in the way each
handles stack cleanup, order of parameters, case, and prefix of global identifiers.

Youcanusethe _cdecl, pascal, fastcall, or __stdcall keywordsto override the
default calling convention on specific functions.

Command-line equivaent: -pc, -p-

This option tells the compiler to generate a C calling sequence for function calls
(generate underbars, case sensitive, push parametersright to left). Thisisthe same as
declaring all subroutines and functions with the _ _cdecl keyword. Functions declared
using the C calling convention can take a variable parameter list (the number of
parameters does not need to be fixed).

Youcanusethe __pascal, _ fastcall, or __stdcall keywords to specifically declare a
function or subroutine using another calling convention.

Command-line equivaent: -p

This option tells the compiler to generate a Pascal calling sequence for function calls (do
not generate underbars, all uppercase, calling function cleans stack, pushes parameters
left to right). Thisisthe same as declaring all subroutines and functions with the
__pascal keyword. The resulting function calls are usually smaller and faster than those
made with the C (-pc) calling convention. Functions must pass the correct number and
type of arguments.

Youcanusethe _cdecl, fastcall, or _ _stdcall keywordsto specifically declare a
function or subroutine using another calling convention.

Chapter 3, Project options 63

Register

Standard
Call

32-bit

instruction

64

set
80386

i486

Pentium

Command-line equivalent: -pr

This option forces the compiler to generate al subroutines and all functions using the
Register parameter-passing convention, which is equivalent to declaring all subroutine
and functionswith the _ _fastcall keyword. With this option enabled, functions or
routines expect parameters to be passed in registers.

Youcanusethe _pascal, _cdecl, or __stdcall keywords to specifically declare a
function or subroutine using another calling convention.

Command-line equivaent: -ps

This option tells the compiler to generate a Stdcall calling sequence for function calls
(does not generate underscores, preserve case, called function pops the stack, and pushes
parametersright to left). Thisisthe same as declaring all subroutines and functions with
the __stdcall keyword. Functions must pass the correct number and type of arguments.

Youcanusethe _cdecl, pascal, _fastcall keywordsto specifically declare a
function or subroutine using another calling convention.

Default =C (-pc)

Processor

The 32-bit Compiler Processor options specify which CPU instruction set to use and how
to handle floating-point code for 32-bit programs.

The Instruction Set options specify for which CPU instruction set the compiler should
generate code.

Command-line equivalent: -3

Choose the 80386 option if you want the compiler to generate 80386 protected-mode
compatible instructions running on Windows 95 or Windows NT.

Command-line equivaent: -4

Choose the 1486 option if you want the compiler to generate 1486 protected-mode
compatible instructions running on Windows 95 or Windows NT.

Command-line equivalent: -5

Choose the Pentium option if you want the compiler to generate Pentium instructions on
Windows 95 or Windows NT.

While this option increases the speed at which the application runs on Pentium machines,
expect the program to be a bit larger than when compiled with the 80386 or 1486 options.
In addition, Pentium-compiled code will sustain a performance hit on non-Pentium
systems.

Defalt = 80386 (-3)

Paradigm C++ Reference Manual

Build attributes

Build attributes affect whether or not anode is built during compilation. The icons
associated with each of these options are displayed next to the nodes in the Project
hierarchy diagram. Build attributes are set in the Options|Project dialog box.

Always build

Check Always Build and the node is ways built, even if it has not changed.

Build when out of date

Check Build When Out of Date and the node is built only if it has changed.

Never build

Check Never Build and the nodeis not built.

Can't build

Check Can't Build to be notified when a node cannot be built.

Exclude from parent

Check Exclude from Parent and the system indicates when a node should be excluded
from parent (such as with source pools).

C++ options

Project|C++ Options affect compilation of al C and C++ programs. For most of the C++
options, you'll usually want to use the default settings.

C++ compatibility

Use the C++ Compatibility options to handle C++ compatibility issues, such as handling
‘char' types, specifying options about hidden pointers, passing class arguments, adding
hidden members and code to a derived class, passing the 'this pointer to 'Pascal’ member
functions, changing the layout of classes, or insuring compatibility when class instances
are shared with non-C++ code or code compiled with previous versions of Paradigm
C++.

‘deep’ virtual bases

(Command-line equivalent: -Vv)

When a derived class overrides a virtual function which it inherits from a virtual base
class, and a constructor or destructor for the derived class calls that virtual function using

apointer to the virtual base class, the compiler can sometimes add hidden membersto the
derived class. These “hidden members’ add code to the constructors and destructors.

This option directs the compiler not to add the hidden members and code so that the class
instance layout is the same as with previous version of Paradigm C++; the compiler does
not change the layout of any classes to relax the restrictions on pointers.

Default = OFF

Chapter 3, Project options 65

66

Calling convention mangling compatibility
(Command-line equivalent: -VC)

When this option is enabled, the compiler disables the distinction of function names
where the only possible difference isincompatible code generation options. For example,
with this option enabled, the linker will not detect if acall ismadetoa__fastcall
member function with the cdecl calling convention.

Thisoption is provided for backward compatibility only; it letsyou link old library files
that you cannot recompile.

Default = OFF

Disable constructor displacements
(Command-line equivalent: -V c)

When the Disable Constructor Displacements option is enabled, the compiler does not
add hidden members and code to a derived class (the default).

This option insures compatibility with previous versions of the compiler.
Default = OFF

Do not treat 'char' as distinct type
(Command-line equivalent: -K2, 16-hit)

Allow only signed and unsigned char types. The Paradigm C++ compiler alows for
signed char, unsigned char, and char data types. This option treats char as signed.

Thisoption is provided for compatibility with previous versions of Paradigm C++ (3.1
and earlier) and supports only 16-bit programs.

Default = OFF

Don't restrict scope of 'for' loop expression variables
Command-line equivaent: -Vd

This option lets you specify the scope of variables declared in for loop expressions. The
output of the following code segment changes, depending on the setting of this option.

i nt mai n(voi d)

{

for(int i=0; i<10; i++)
{

cout << "Inside for loop, i =" << i << endl;
} /1 end of for-loop block
cout << "Qutside for loop, i =" <<i << endl; /[lerror wthout
-vd
} /1 end of block containing for |oop

If this option is disabled (the default), the variable i goes out of scope when processing
reaches the end of the for loop. Because of this, you'll get an Undefined Symbol
compilation error if you compile this code with this option disabled.

Paradigm C++ Reference Manual

This option
insures
compatibility with
previous
versions of the
compiler.

If this option is enabled (-Vd), the variable i goes out of scope when processing reaches
the end of the block containing the for loop. In this case, the code output would be:

Inside for loop, i =0
tﬁiside for loop, i = 10
Default = OFF

Pass class values via reference to temporary
Command-line equivaent: -Va

When this option is enabled, the compiler passes class arguments using the "reference to
temporary" approach. When an argument of type class with constructorsis passed by
value to a function, this option instructs the compiler to create atemporary variable at the
calling site, initialize this temporary variable with the argument value, and pass a
reference from this temporary to the function.

Default = OFF

Push 'this' first for Pascal member functions
Command-line equivalent: -Vp

When this option is enabled, the compiler passes the this pointer to Pascal member
functions as the first parameter on the stack.

By default, the compiler passes the this parameter as the last parameter on the stack,
which permits smaller and faster member function calls.

Default = OFF

Treat 'far' classes as 'huge’
Command-line equivaent -Vh

When this option is enabled, the compiler treats al classesdeclared _ far asif they
were declared as __huge. For example, the following code normally fails to compile.
Checking this option alows the following code fragment to compile:

struct _ huge A
{

virtual void f(); // Avtable is required to see the error.

b
struct __far B : public A

{
}

/1 Error: Attenpting to derive a far class fromthe huge base 'A .
Default = OFF

Virtual base pointers

The Virtual Base When a class inherits virtually from a base class, the compiler stores a hidden pointer in

Pointers options
specify options
about the hidden
pointer.

the class object to access the virtual base class subobject.

Chapter 3, Project options 67

Always near

This option allows
for the smallest - (\When a class inherits virtually from a base class, the compiler stores a hidden pointer in

and most

efficient code.

Same size

68

as 'this'
pointer

Command-line equivaent: -Vb-
When the Always Near option is on, the hidden pointer will always be a near pointer.

the class object to access the virtual base class subobject.)

Command-line equivalent: -Vb

When the Same Size as ‘this Pointer option is on, the compiler matches the size of the
hidden pointer to the size of the this pointer in the instance class.

This allows for compatibility with previous versions of the compiler.
Default = Always Near (-Vb-)

Vtable pointer follows data members
Command-line equivaent -Vt

When this option is enabled, the compiler places the virtual table pointer after any
nonstatic data members of the specified class.

This option insures compatibility when class instances are shared with non-C++ code and
when sharing classes with code compiled with previous versions of Paradigm C++.

Default = OFF

Exception handling/RTTI

Use the Exceptions Handling options to enable or disable exception handling and to tell
the compiler how to handle the generation of run-time type information.

If you use exception handling constructs in your code and compile with exceptions
disabled, you'll get an error.

Enable exceptions
Command-line equivalent: -x

When this option is enabled, C++ exception handling is enabled. If this option is disabled
(-x-) and you attempt to use exception handling routinesin your code, the compiler
generates error messages during compilation.

Disabling this option makesiit easier for you to remove exception handling information
from programs; this might be useful if you are porting your code to other platforms or
compilers.

Disabling this option turns off only the compilation of exception handling code; your
application can still include exception code if you link .OBJ and library files that were
built with exceptions enabled (such as the Paradigm standard libraries).

Default = ON

Enable run-time type information
Command-line equivalent: -RT

This option causes the compiler to generate code that allows run-time type identification.

Paradigm C++ Reference Manual

Enable
exception
location
information

Enable
destructor
cleanup

Enable fast
exception
prologs

=

Enable
compatible
exceptions

Chapter 3, Project options

In generdl, if you set Enable Destructor Cleanup (-xd), you will need to set this option as
well.

Default = ON

Command-line equivaent: -xp

When this option is enabled, run-time identification of exceptionsis available because
the compiler provides the file name and source-code line number where the exception
occurred. This enables the program to query file and line number from where a C++
exception was thrown.

Default = OFF

Command-line equivalent: -xd

When this option is enabled and an exception is thrown, destructors are called for all
automatically declared objects between the scope of the catch and throw statements.

In genera, when you enable this option, you should aso set Enable Runtime Type
Information (-RT) as well.

Destructors are not automatically called for dynamic objects allocated with new, and
dynamic objects are not automatically freed.

Default = ON

Command-line equivaent: -xf

When this option is enabled, inline code is expanded for every exception handling
function. This option improves performance at the cost of larger executable file sizes.

If you select both Fast Exception Prologs and Enable Compatible Exceptions (-xc), fast
prologs will be generated but Enable Compatible Exceptions will be disabled (the two
options are not compatible).

Default = OFF

Command-line equivalent: -xc, 16-bit only

Thisoption allows .AXEs and .DLLs built with Paradigm C++ to be compatible with
executables built with other products. When Enable Compatible Exceptionsis disabled,
some exception handling information is included in the . AXE, which could cause
compatibility issues.

Librariesthat can be linked into .DLLs need to be built with this option enabled.
Default = OFF

General

Zero-length empty base classes
Command-line equivaent: -Ve

69

Support all

cases

Support
multiple

inheritance

Support
single

inheritance

Smallest for

70

class

Usualy the size of aclassis at least one byte, even if the class does not define any data
members. When this option is enabled, the compiler ignores this unused byte for the
memory layout and the total size of any derived classes.

Default = OFF

Member pointer

Use C++ Member Pointers options to direct member pointers and affect how the compiler
treats explicit casts.

Honor precision of member pointers
Command-line equivalent: -Vmp

When this option is enabled, the compiler uses the declared precision for member pointer
types. Use this option when a pointer to a derived classis explicitly cast as a pointer-to-
member of asimpler base class (when the pointer is actually pointing to a derived class
membe).

Default = OFF

Member pointer representation
The C++ Member pointers options specify what member pointers can point to.

Command-line equivaent: -Vmv

When this option is enabled, the compiler places no restrictions on where member
pointers can point. Member pointers use the most genera (but not always the most
efficient) representation.

Default = ON

Command-line equivaent: -Vmm

When this option is enabled, member pointers can point to members of multiple
inheritance classes (with the exception of virtual base classes).

Default = OFF

Command-line equivaent: -Vms

When this option is enabled, member pointers can point only to members of base classes
that use single inheritance.

Default = OFF

Command-line equivaent: -Vmd

When this option is enabled, member pointers use the smallest possible representation
that allows member pointersto point to all members of their particular class. If the class
isnot fully defined at the point where the member pointer type is declared, the most
general representation is chosen by the compiler and awarning isissued.

Default = OFF

Paradigm C++ Reference Manual

Templates

Use the options under C++ OptiongTemplates to tell the compiler how to generate
template instances in C++.

Templates instance generation

The Template Instance Generation options specify how the compiler generates template
instancesin C++.

Smart Command-line equivaent: -Jg

When the Smart option is enabled, the compiler generates public (global) definitions for
all template instances. If more than one module generates the same template instance, the
linker automatically merges duplicates to produce a single copy of the instance.

Thisisa To generate the instances, the compiler must have available the function body (in the case
convenientway of g template function) or the bodies of member functions and definitions for static data

o ity members (in the case of atemplate class), typically in a header file.

instances. Default = ON

Global Command-line equivaent: -Jgd

When the Global option is on, the compiler generates public (global) definitions for all
template instances.

The Global option does not merge duplicates. If the same template instance is generated
more than once, the linker reports public symbol re-definition errors.

Default = OFF

External Command-line equivalent: -Jgx

When the Externd option is on, the compiler generates external referencesto al template
instances.

When you use this option, all template instances in your code must be publicly defined in
another module with the external option (-Jgd) so that external references are properly
resolved.

Default = OFF

Virtual tables

C++ Optiong|Virtual Tables options control C++ virtua tables and the expansion of inline
functions when debugging.

Virtual tables linkage

The C++ Virtua Tables options control C++ virtual tables and the expansion of inline
functions when debugging.

Smart Command-line equivaent: -V

Chapter 3, Project options 71

Local

External

Public

This option generates common C++ virtual tables and out-of-line inline functions across
the modules in your application. As aresult, only one instance of a given virtua table or
out-of-line inline function isincluded in the program.

The Smart option generates the smallest and most efficient executables, but produces
.OBJand .ASM files compatible only with PLINK and PASM.

Default = ON

Command-line equivaent: -Vs

Y ou use the Local option to generate local virtua tables (and out-of-line inline functions)
so that each module gets its own private copy of each virtua table or inline function it
USEesS.

The Local option uses only standard .OBJ and .ASM constructs, but produces larger
executables.

Default = OFF

Command-line equivalent: -VO

Y ou use the External option to generate external referencesto virtua tables. If you don’t
want to use the Smart or Local options, use the External and Public options to produce
and reference global virtual tables.

When you use this option, one or more of the modules comprising the program must be
compiled with the Public option to supply the definitions for the virtual tables.

Default = OFF

Command-line equivalent: -V1

Public produces public definitions for virtual tables. When using the External option (-
V0), a least one of the modules in the program must be compiled with the Public option
to supply the definitions for the virtua tables. All other modules should be compiled with
the External option to refer to that Public copy of the virtua tables.

Default = OFF

Compiler options

72

Compiler options are common to al C and C++ programs. They directly affect how the
compiler generates code.

Defines

Command-line equivaent: -Dname and -Dname=string

The macro definition capability of Paradigm C++ lets you define and undefine macros
(al'so called manifest or symbolic constants) in the Paradigm C++ IDE or on the
command line. The macros you define override those defined in your sourcefiles.

You can use the SINHERIT and $ENV/() macros to specify the defines for the project
node you are modifying.

Paradigm C++ Reference Manual

Defining macros from the Paradigm C++ IDE

Preprocessor definitions (such as those used in #if statements and macro definitions) can
be entered on the Compiler Defines page. The following rules apply when using the
Defines input box:

. Separate multiple definitions with semicolons (;), and assign values with an equal
sign (=). For example:
Swi t chl; Swit ch2; Swi t ch3=0FF
. Leading and trailing spaces are stripped, but embedded spaces are | eft intact.

. If you want to include a semicolon in a macro, precede the semicolon with a
backslash (\).

Defining macros on the command line

On the command line, the -Dname option defines the identifier name to the null string. -
Dname=string defines name to string. In this assgnment, string cannot contain spaces or
tabs. Y ou can aso define multiple #define options on the command line using either of
the following methods:

. Include multiple definitions after a single -D option by separating each define with a
semicolon (;) and assigning values with an equa sign (=). For example:

PCC. EXE - Dxxx;yyy=1; zzz=NO MYFI LE. C
. Include multiple -D options, separating each with a space. For example:
PCC. EXE - Dxxx -Dyyy=1 -Dzzz=NO MYFI LE. C

Code generation

Compiler Code Generation options affect how code is generated.

Allocate enums as ints
Command-line equivalent: -b
When the Allocate Enums As Ints option is on, the compiler always allocates awhole

word (atwo-byte int for 16-bitsor afour-byte int for 32-bits) for enumeration types
(variables of type enum).

When this option is off (-b-), the compiler allocates the smallest integer that can hold the
enumeration values: the compiler allocates an unsigned or signed char if the values of
the enumeration are within the range of 0 to 255 (minimum) or -128 to 127 (maximum), or
an unsigned or signed short if the values of the enumeration are within the following
ranges:

. 01065,535 (minimum) or -32,768 to 32,767 (maximum) (16-bit)

. 0104,294,967,295 or -2,147,483,648 to 2,147,483,647 (32-bit)

The compiler allocates atwo-byte int (16-bit) or afour-byteint (32-bit) to represent the
enumeration valuesif any valueis out of range.

Default = ON

Duplicate strings merged
Command-line equivaent: -d

Chapter 3, Project options 73

74

When you check the Duplicate Strings Merged option, the compiler mergestwo litera
strings when one matches another. This produces smaller programs (at the expense of a
dightly longer compile time), but can introduce errorsif you modify one string.

Default = OFF (-d-)

fastthis
Command-line equivaent: -po, 16-bit only

This option causes the compiler to use the __fastthis calling convention when passing
the this pointer to member functions. The this pointer is passed in aregister (or aregister
pair in 16-bit large data models). Likewise, calls to member functions load the register
(or register pair) with this. Note that you can use __fastthis to compile specific
functionsin this manner.

When thisisa'near' (16-bit) pointer, it is supplied in the Sl register; for 'far' this
pointers, DS:Sl is used. If necessary, the compiler saves and restores DS. All references
in the member function to member data are done viathe Sl register.

The names of member functions compiled with _ _fastthis are mangled differently from
non-fastthis member functions, to prevent mixing the two. It is easiest to compile al
classeswith _ _fastthis, but you can compile some classeswith __fastthis and some
without, asin the following example:

/1 no -po on the conmmand-1line

class X

#pragnma option -po

class Y /1Y will use fastthis

{

3

class X /I Xwll not use fastthis,

{ /lsince its class declaration

/| appeared before fastthis was turned on

b

#pragnma option -po-

If you use a makefile to build aversion of the classlibrary that has __fastthis enabled,
you must define CLASSLI B_ALLOW po and use the -po option. The

_CLASSLI B_ALLOW po macro can be defined in

<Your_PCW _dir>\INCLUDE\paradigm.h

If you use amakefileto builda___fastthis version of the run-time library, you must
define_ RTL_ALLOW po and use the -po option.

If you rebuild the libraries and use -po without defining the appropriate macro, the linker
emits undefined symbol errors.

Default = OFF

Register variables
These options suppress or enable the use of register variables.

None Command-line equivalent: -r-

Paradigm C++ Reference Manual

Register
keyword

You can use -rd
in #pragma
options.

Automatic

Choose Noneto tell the compiler not to use register variables even if you have used the
register keyword.

Command-line equivaent: -rd

Choose Register Keyword to tell the compiler to use register variables only if you use the
register keyword and aregister is available. Use this option or the Automatic option (-r)
to optimize the use of registers.

Command-line equivalent: -r

Choose Automatic to tell the compiler to automatically assign register variablesif
possible, even when you do not specify aregister variable by using ther egister type
specifier.

Generally, you can keep this option set to Automatic unless you are interfacing with
preexisting assembly code that does not support register variables.

Default = Automatic (-r)

Unsigned characters
Command-line equivaent: -K

When the Unsigned Characters option is on, the compiler treats al char declarations as if
they were unsigned char type, which provides compatibility with other compilers.

Default = OFF (char declarations default to signed; -K-)

Floating point

The Floating Point options specify how the compiler handles floating-point numbersin
your code.

Correct Pentium FDIV flaw
Command-line equivaent: -fp

Some early Pentium chips do not perform specific floating-point division calculations
with full precision. Although your chances of encountering this problem are dim, this
switch inserts code that emulates floating-point division so that you are assured of the
correct result. This option decreases your program's FDIV instruction performance.

Use of this option only corrects FDIV ingtructions in modules that you compile. The run-
time library also contains FDIV instructions which are not modified by the use of this
switch. To correct the run-time libraries, you must recompile them using this switch.

The following functions use FDIV instructions in assembly language which are not
corrected if you use this option:

acos cosh pow10l
acos| coshl powl
asin cosl sin
asinl exp sinh
aan expl sinhl

Chapter 3, Project options 75

76

aan?2 fmod sinl

atan2l fmodl tan
atanl pow tanh
cos powl10 tanhl
tanl

In addition, this switch does not correct functions that convert a floating-point number to
or from a string (such as printf or scanf).

Default = OFF

No floating point
Command-line equivalent: -f-

Choose No Floating Point if you are not using floating point. No floating-point libraries
are linked when this option is enabled (-f-). If you enable this option and use floating-
point calculations in your program, you will get link errors. When unchecked (-f), the
compiler emulates 80x87 calls at run-time.

Default = OFF (-f)

Fast floating point
Command-line equivalent: -ff

When Fast Floating Point is on, floating-point operations are optimized without regard to
explicit or implicit type conversions. Calculations can be faster than under ANS|
operating mode.

When this option is unchecked (-ff-), the compiler follows strict ANSI rules regarding
floating-point conversions.

Default = OFF

Compiler output

Set control of object file contents on the Compiler Output page.

Autodependency information
Command-line equivalent: -X-

When the Autodependency option is checked (-X-), the compiler generates
autodependency information for al project fileswith a.C or .CPP extension.

The Project Manager can use autodependency information to speed up compilation times.
The Project Manager opens the .OBJ file and looks for information about files included in
the source code. Thisinformation is aways placed in the .OBJ file when the source
module is compiled. After that, the time and date of every file that was used to build the
.OBJfileis checked against the time and date information in the .OBJfile. The sourcefile
isrecompiled if the dates are different. Thisis called an autodependency check.

If the project file contains valid dependency information, the Project Manager does the
autodependency check using that information. This is much faster than reading each .OBJ
file.

When this option is unchecked (-X), the compiler does not generate the autodependency
information.

Paradigm C++ Reference Manual

Modules compiled with autodependency information can use MAKE's autodependency
feature.

Default = ON (-X-)

Generate COMDEFs
Command-line equivaent: -Fc, 16-bit only
Generate COM DEFs generates communal variables (COMDEFs) for globa C variables

that are not initialized and not declared as static or extern. Use this option when header
filesincluded in several source files contain global variables.

For example, a definition such as

i nt SomeArray|[256];
could appear in aheader file that is then included in many modules. When this option is
on, the compiler generates SomeArray as acommunal variable rather than a public

definition (a COMDEF record rather than a PUBDEF record). Y ou can use this option
when porting code that uses a similar feature with another implementation.

The linker generates only one instance of the variable, so it will not be a duplicate
definition linker error. Aslong as agiven variable does not need to be initialized to a
nonzero value, you do not need to include a definition for it in any of the source files.

Default = OFF

Generate underscores

Command-line equivalent: -u

When the Generate Underscores option is on, the compiler automatically adds an
underscore character () in front of every global identifier (functions and global
variables) before saving them in the object module. Pascal identifiers (those modified by
the pascal keyword) are converted to uppercase and are not prefixed with an
underscore.

Underscores for C and C++ are optional, but you should turn this option on to avoid
errorsif you are linking with the standard Paradigm C++ libraries.

Default = ON

Source

Compiler|Source options set source code interpretation.

Identifier length
Command-line equivalent: -in, where n = significant characters

Use the Identifier Length input box to specify the number of significant characters (those
which will be recognized by the compiler) in an identifier.

Except in C++, which recognizes identifiers of unlimited length, al identifiers are treated
asdistinct only if their significant characters are distinct. Thisincludes variables,
preprocessor macro names, and structure member names.

Valid numbersfor n are 0, and 8 to 250, where 0 means use the maximum identifier length
of 250.

Chapter 3, Project options 77

Paradigm

extensions

ANSI

UNIX V

Kernighan
and Ritchie

78

TiP>

By default, Paradigm C++ uses 250 characters per identifier. Other systems (including
some UNIX compilers) ignore characters beyond the first eight. If you are porting to other
environments, you might want to compile your code with a smaller number of significant
characters, which helps you locate name conflictsin long identifiers that have been
truncated.

Default = 250

Language compliance
The Language Compliance options tell the compiler how to recognize keywords in your
programs.

Command-line equivaents: -A-, -AT

The Paradigm Extensions option tells the compiler to recognize Paradigm's extensions to
the C language keywords, including near, far, huge, asm, cdecl, pascal, interrupt,
_export, _ds, cs, _ss, _es, and the register pseudovariables (_ AX, BX, and so on). For
acomplete list of keywords, see the keyword index.

Command-line equivaent: -A

The ANS! option compiles C and C++ ANSI-compatible code, alowing for maximum
portability. Non-ANSI keywords are ignored as keywords.

Command-line equivalent: -AU

The UNIX V option tells the compiler to recognize only UNIX V keywords and treat any
of Paradigm's C++ extension keywords as normal identifiers.

Command-line equivalent: -AK

The Kernighan and Ritchie option tells the compiler to recognize only the K& R extension
keywords and treat any of Paradigm's C++ extension keywords as normal identifiers.

If you get declaration syntax errors from your source code, check that this option is set to
Paradigm Extensions.

Default = Paradigm Extensions (-A-)

. Acceptsand ignores directives

Nested comments
Command-line equivalent: -C

When the Nested Comments option is on, you can hest comments in your C and C++
source files.

Nested comments are not alowed in standard C implementations, and they are not
portable.

Default = OFF

Paradigm C++ Reference Manual

Debugging

Compiler Debugging options affect the generation of debug information during
compilation. When linking larger .OBJfiles, you may need to turn these options off to
increase the available system resources.

Browser reference information in OBJs
Command-line equivalent: -R

When the Browser Info In OBJs option is on, the compiler generates additional browser-
specific information such as location and reference information. This information is then
included in your .OBJfiles. In addition to this option, you need debugging information (-
V) to use the Browser.

When this option is off, you can link and create larger object files. While this option does
not affect execution speed, it does affect compilation time and program size.

Default = ON

Debug information in OBJs
Command-line equivalent: -v

When the Debug Info In OBJs option is on, debugging information isincluded in your
.OBJfiles. The compiler passes this option to the linker so it can include the debugging
information in the . AXE file. For debugging, this option treats C++ inline functions as
normal functions.

Y ou need debugging information to use either the integrated debugger or Paradigm
DEBUG.

When this option is off (-v-), you can link and create larger object files. While this option
does not affect execution speed, it does affect compilation and link time.

= When Line Numbersis on, make sure you turn off Jump Optimization in the 16-bit
specific optimizationsand Pentium scheduling in the 32-bit Compiler options. When these
options are enabled, When this option is enabled, the source code will not exactly match
the generated machine instructions, which can make stepping through code confusing.

Default = ON

Line numbers
Command-line equivaent: -y

When the Line Numbers option is on, the compiler automatically includes line numbersin
the object and object map files. Line numbers are used by both the Paradigm C++ IDE
and by Paradigm DEBUG.

Although the Debug Info in OBJs option (-v) automatically generates line number
information, you can turn that option off (-v-) and turn on Line Numbers (-y) to reduce the
size of the debug information generated. With this setup, you can till step, but you will
not be able to watch or inspect data items.

Including line numbers increases the size of the object and map files but does not affect
the speed of the executable program.

= When Line Numbersis on, make sure you turn off Jump Optimization in the 16-bit
specific optimizations and Pentium scheduling in the 32-bit Compiler options. When these

Chapter 3, Project options 79

80

options are enabled, When this option is enabled, the source code will not exactly match
the generated machine instructions, which can make stepping through code confusing.

Default = OFF

Out-of-line inline functions
Command-line equivaent: -vi

When the Out-of-line inline functions option is on, the compiler expands C++ inline
functionsinline.

To control the expansion of inline functions, the Debug information in OBJs option (-v)
acts dightly different for C++ code: when inline function expansion is disabled, inline
functions are generated and called like any other function.

Because debugging with inline expansion can be difficult, the command-line compilers
provide the following options:

. -V turns debugging on and inline expansion off

. -V- turns debugging off and inline expansion on

. -viturnsinline function expansion on

. -vi- turnsinline expansion off (inline functions are expanded out of line)

For example, if you want to turn both debugging and inline expansion on, use the -v and -
Vi options.

Default = OFF

Standard stack frame
Command-line equivalent: -k
When the Standard stack frame option is on, the compiler generates a standard stack

frame (standard function entry and exit code). Thisis helpful when debugging, sinceit
simplifies the process of stepping through the stack of called subroutines.

When this option is off, any function that does not use local variables and has no
parameters is compiled with abbreviated entry and return code. This makes the code
smaller and faster.

The Standard stack frame option should always be on when you compile a source file for
debugging.

Default = ON

Test stack overflow
Command-line equivalent: -N, 16-bit only

When this option is on, the compiler generates stack overflow logic at the entry of each
function.

Even though thisis costly in terms of both program size and speed, it can be area help
when trying to track down difficult stack overflow bugs. If an overflow is detected, the
run-time error message St ack over f | ow isgenerated, and the program exits with
an exit code of 1.

Stack overflow testing is always enabled in the 32-bit compilers (this adds a minimal
overhead to 32-bit programs). (add note sidebar)

Default = OFF

Paradigm C++ Reference Manual

Generate
and use

Use but do
not generate

Do not
generate or
use

Precompiled headers

Using precompiled header files can dramatically increase compilation speed by storing
an image of the symbol table on disk in afile, then later reloading that file from disk
instead of parsing all the header files again. Directly loading the symbol table from disk
is much faster than parsing the text of header files, especially if severa sourcefiles
include the same header file.

You can usethe INHERIT and $ENV/() macrosin any of the precompiled header input
fields.

Cache precompiled header
Command-line equivalent: -Hc

When you enable this option, the compiler caches the precompiled headersit generates.
Thisis useful when you are precompiling more than one header file.

To use this option, you must also enable the Generate and Use (-H) precompiled header
option.

Default = OFF

Precompiled header name
Command-line equivaent: -H=filename

This option lets you specify the name of your precompiled header file. The compilers set
the name of the precompiled header to filename.

When this option is enabled, the compilers generate and use the precompiled header file
that you specify.

Precompiled headers

Using precompiled headers can dramatically increase compilation speeds, though they
require a considerable amount of disk space.

Command-line equivaent: -H

When this option is enabled, the Paradigm C++ IDE generates and uses precompiled
headers. The default file name is <projectname>.CSM for the Paradigm C++ IDE
projects and PCDEF.CSM (16-bit) or PC32DEF.CSM (32-bit) for the command-line
compilers.

Command-line equivaent: -Hu

When the Use But Do Not Generate option is on, the compilers use preexisting
precompiled header files; new precompiled header files are not generated.

Command-line equivalent: -H-

When the Do not generate or use option is on, the compilers do not generate or use
precompiled headers.

Default = Do not generate or use (-H-)

Chapter 3, Project options 81

Stop precompiling after header file
Command-line equivaent: -H" xxx" ; for example -H"stdio.h"

This option terminates compiling the precompiled header after the compiler compiles the
file specified as xxx. Y ou can use this option to reduce the amount of disk space used by
precompiled headers.

When you use this option, the file you specify must be included from a source file for the
compiler to generate a .CSM file.

Y ou cannot specify a header file that isincluded from another header file. For example,
you cannot list a header included by windows.h because this would cause the
precompiled header file to be closed before the compilation of windows.h was
competed.

Directories options

82

The Directories options tell the Paradigm C++ compiler where to find or where to put
header files, library files, source code, output files, and other program elements.

Source directories

The Source directories options let you specify the directories that contain your standard
includefiles, library and .OBJfiles, and program source files.

Click the down-arrow icon or press Alt+Down arrow to display the history list of
previously entered directory names.

You can usethe INHERIT and $ENV/() macrosin any of the following input fields.

Include
Command-line equivaent: -1path, where path = directory path

Use the Include list box to specify the drive and/or directories that contain program
include files. Standard include files are those given in angle brackets (<>) in an #include
statement (for example, #i ncl ude <nyfil e>).

The Paradigm compilers and linkers use specific file search algorithms to locate the
files needed to complete the compilation and link cycles.

Library
Command-line equivaent: -L path, where path = directory path

Usethe Library list box to specify the directories that contain the Paradigm C++ startup
object files (COx.OBJ), run-time library files (.L1B files), and all other .LI1B files. By
default, the linker looks for them in the directory containing the project file (or in the
current directory if you' re using the command-line compiler).

Y ou can aso use the linker option /L path to specify the library search directories when
you link files from the command line.

Source

The Source list box specifies the directories where the compiler and the integrated
debugger should look for your project source files.

Paradigm C++ Reference Manual

Specifying multiple directories

Multiple directory names are allowed in each of the list boxes; use a semicolon (;) to
separate the specified drives and directories. To display ahistory list of previously
entered directory names, click the down-arrow icon or press Alt+Down arrow.

From the command line, you can enter multiple include and library directoriesin the
following ways:

« You can stack multiple entrieswith asingle-L or -1 option by separating directories
with a semicolon:

PCC. EXE - Ldi rnanel; di rname2; di rnanme3 -lincl;inc2;inc3 nyfile.c
« You can place more than one of each option on the command line, like this:

PCC. EXE - Ldirnanel -Ldirname2 -lincl -linc2 -1inc3 nyfile.c
« You can mix listings:

PCC. EXE - Ldi rnanel; dirnane2 -lincl -Ld:dirname3 -1inc2;inc3
nyfile.c

If you list multiple -L or -I options on the command line, the result is cumulative; the
compiler searches al the directories listed in order from left to right.

File search algorithms

#include-file search algorithms

Paradigm C++ searches for filesincluded in your source code with the #include directive
in the following ways:

If you specify apath and/or directory with your include statement, Paradigm C++
searches only the location specified. For example, if you have the following statement in
your code:

#i ncl ude "c:\ PARADI GWi ncl ude\ stdi o. h"
the header file stdio.h must reside in the directory C:\PARADIGM\INCLUDE. In
addition, if you use the statement:

#i ncl ude <stdi o. h>

and you set the Include option (-1) to specify the path ¢c: \ PARADIGM\ i ncl ude, the
file stdio.n must residein C:\PARADIGM\INCLUDE.

. Ifyouputan#i ncl ude <sonefi | e> statement in your source code, Paradigm
C++ searches for "somefile" only in the directories specified with the Include (-1)
option.

. Ifyouputan#i ncl ude "sonefil e" statement in your code, Paradigm C++ first
searchesfor "sonef i | e" inthe current directory; if it does not find the file there, it
then searches in the directories specified with the Include (-1) option.

Library file search algorithms
Thelibrary file search algorithms are similar to those for include files:

. Implicit libraries: Paradigm C++ searches for implicit libraries only in the specified
library directories; thisis similar to the search algorithm for #i ncl ude
<sonefil e>.

Chapter 3, Project options 83

84

Implicit library files are the ones Paradigm C++ automaticaly links in and the start-
up object file (COx.OBJ). To see thesefilesin the Project Manager, turn on run-time
nodes (choose Options|Environment|Project View, then check Show Runtime Nodes).

. Explicit libraries: Where Paradigm C++ searches for explicit (user-specified)
libraries depends in part on how you list the library file name. Explicit library files
areones you list on the command line or in a project file; these are file names with a
LIB extenson.

. Ifyoulist an explicit library file name with no drive or directory (like this:
nmyl i b. 11 b), Paradigm C++ first searches for that library in the current directory. If
the first search is unsuccessful, Paradigm C++ looks in the directories specified with
the Library (-L) option. Thisis similar to the search algorithm for #i ncl ude
"somefile".

. If you list auser-specified library with drive and/or directory information (like this:
c:\nystuff\nylibl.liDb), Paradigm C++ searchesonly in the location you
explicitly listed as part of the library path name and not in any specified library
directories.

Output directories

The Output Directories options specify the directories where your .OBJ, .AXE, .EXE,
and .MAP files are placed. The Paradigm C++ IDE looks for those directories when
performing a make or run and to check dates and times of .OBJs, .AXEs, and .EXEs. If
the entry is blank, the files are stored in the current directory.

Click the down-arrow icon or press Alt+Down arrow to display the history list of
previously entered directory names.

You can usethe INHERIT and $ENV/() macrosin any of the following input fields.

Intermediate

Use the Intermediate list box to specify where Paradigm C++ places object (.OBJ) and
map (.MAP) fileswhen it builds your project. Thisis aso the directory where atool
places any temporary filesthat it might create.

Final
Command-line equivalent: -npath, where path = directory path

The Findl list box specifies the location where the Paradigm C++ IDE places the
generated target files (for example, .AXE and .EXE files).

Guidelines for entering directory names
Use the following guidelines when entering directories in the Directories options pages.
« You must separate multiple directory path names (if alowed) with a semicolon (;).
« You can use up to amaximum of 127 characters (including whitespace).
. Whitespace before and after the semicolon is allowed but not required.
. Reative and absolute path names are alowed, including path names relative to the
logged position in drives other than the current one.
For example,
C\; C ..\ PARADI GM D: \ nypr og\ sour ce

Paradigm C++ Reference Manual

$INHERIT and $ENV()

Paradigm C++ supports the two macros $INHERIT and $ENV() in the Directories page,
the Compiler|Defines page and the Compiler|Precompiled Header page of the Project
Options dialog box.

Y ou can add SINHERIT and $ENV() anywherein the strings you type into the input
boxes.

$INHERIT

The $INHERIT macro expands to the value of the respective option of the current nodes
parent.

For example, suppose the project node MY SOURCE.CPP has a parent node
MY SOURCE.AXE, and the definesfor MY SOURCE.AXE are

W N31;
If you set the Defines value for MY SOURCE.CPP to:
_RTLDLL; $I NHERI T; STRI CT

MY SOURCE.CPP will inherit the defines of MY SOURCE.AXE, which will giveit the
following Defines values:

_RTLDLL; WN31; ; STRICT

$ENV()

The $ENV (environment_variable) macro expands to the defined value of the specified
environment variable. For example, suppose the environment variable PCROOT is set to
the following value:

PCROOT = C.\ PARADI GM

Y ou can then set the Include path in the Directories page as follows:
$ENV(PCROOT) \ | ncl ude

Thiswill set the actual include path to:
C. \ PARADI GM | ncl ude

Librarian options

Librarian options affect the behavior of the built-in librarian. The built-in librarian
combines the .OBJfilesin your project into .LIB files. Optionsin this section control that
process. In addition, you can cause the librarian to generate alist (.LST) file containing
the .OBJsin agenerated .LIB and the functions those .OBJs contain.

PLIB.EXE isthe command-line librarian.
Case-sensitive library

Command-line equivalent =/C

When the Case-sensitive library option ison, the librarian treats case as significant in all
symbolsin the library. For example, if Case-sensitive library is checked, "CASE",
"Case", and "case" are all treated as different symbols.

Chapter 3, Project options 85

Create extended dictionary

Command-line equivalent = /E

When the Create extended dictionary option is on, the librarian includes, in compact
form, additional information that helps the linker process library files faster.

Generate list file

When the Generate list file option is on, the librarian automatically produces alist file
(.LST) that lists the contents of your library when it is created.

Library page size

Command-line equivalent = /Psize, where size is number of pages

The Library page size input box is where you set the number of bytesin each library
"page” (dictionary entry).

The page size determines the maximum size of the library. Page size must be a power of 2
between 16 and 32,768 inclusive. The default page size of 16 alows alibrary of about 1
MB insize.

To create alarger library, change the page size to the next higher value (32).

Purge comment records

Command-line equivalent = /0

When the Purge comment records option is on, the librarian removes all comment records
from modules added to the library.

Linker options

86

Linker options affect how an application is linked.

Linker options et you control how intermediate files (.OBJ, and .L1B) are combined into
absolute executables (LAXE) and dynamic-link libraries (.DLL). For most optionsin this
section, you will usually want to keep the default settings.

16-bit linker

16-bit Linker optionstell the linker how to link 16-bit programs.

Discard nonresident name table
Command-line equivalent = /Gn, 16-bit only

When the Discard Nonresident Name Table option is enabled, the linker does not emit the
nonresident name table. The resultant image will contain only the module descriptionin
the nonresident names table.

See " Transfer resident names to nonresident names table,” page 3-87 for usage details.
Default = OFF

Enable 32-bit processing
Command-line equivalent = /3, 16-bit only

Paradigm C++ Reference Manual

The Enable 32-bit processing option lets you link 32-bit DOS object modules produced
by PASM or a compatible assembler. This option increases the memory requirements for
PLINK and dows down linking.

Default = OFF

Inhibit optimizing far call to near
Command-line equivalent = /f, 16-bit only
When the linker patches two code segments together, and far calls are made from one to

the other, the linker will optimize the code by converting the far callsto near calls. When
Inhibit optimizing far call to near is enabled, this optimization does not occur.

Y ou might want to enable this option when you experience run-time crashes that appear to
be related to corrupt virtual tables. Because virtual tables reside in the code segment,
their contents can sometimes be interpreted by the linker as one of these far calls.

Default = OFF

Initialize segments
Command-line equivalent = /i, 16-bit only
When the Initialize segments option is on, the linker initializes uninitialized trailing

segments to be output into the executable file even if the segments do not contain data
records. Thisis normally not needed and will increase the size of your .AXE files.

Default = OFF

Segment alignment
Command-line equivalent = /A:dd, 16-bit only
Use the Segment alignment input box to change the current byte value on which to align

segments. The operating system seeks pages for loading based on this alignment val ue.
Y ou can enter numbersin the range of 2 to 65,535.

= The aignment factor is automatically rounded up to the nearest power of two. For
example, if you enter 650, it isrounded up to 1,024 (thisis different from the 32-bit
Segment Alignment option).

For efficiency, you should use the smallest value that till allows for correct segment
offsetsin the segment table.

Default = 512

Transfer resident names to nonresident names table

Command-line equivalent = /Gr, 16-bit only

This option causes the linker to copy al namesin the resident names table which have not
been specified as RESIDENTNAME in the .DEF file to the nonresident namestable. The

resultant image contains only the module name and the symbol names of the exported
symbols that were specified as RESIDENTNAME in the .DEF file.

When you use this option, you must also specify the WEP entry point asa
RESIDENTNAME in the EXPORTS section of the .DEF file (Windows obtains the WEP
entry point for this symbol by looking it up in the resident names table).

When building .DLLs that contain many exports, it's possible to exceed the 64K header
file limitation. Because the .DLL contains the resident names table in its header, moving

Chapter 3, Project options 87

88

the exports out of the header using the /Gr option usually remedies this problem. The /Gr
option causes the linker to transfer the names in the resident names table to the
nonresident names table. Names in the nonresident names table are then assigned ordinal
numbers, which your .EXE file uses when referencing the entry pointsin the .DLL.

There are two waysto create input files for the linker:

« RunIMPLIB onthe .DLL to create an import library for linking purposes.

« RunIMPDEF inthe .DLL to create a.DEF file for linking purposes.

Once the import library or .DEF file has been created, there is no need to keep the names
in either the resident or the nonresident names tables. Relinking the .DLL and specifying
both the Transfer resident names to nonresident names table (/Gr) and Discard
nonresident name table (/Gn) options causes the linker to build a.DLL with an “empty”
names table. Not only does this post-processing avoid the problem of exceeding the
header limitation, but it also creates a.DLL that loads faster (becauseit’s smaller) and
runs faster (because references to entry points are by ordinal number instead of by name).

To summarize this process, you must

1. Enablethe/Gr switch to transfer the names in the resident names table to the
nonresident names table. This also assigns ordinal numbers to the names. However;
before doing so, make sure you have included a .DEF file with the following export
definition in the EXPORTS section:

EXPORTS
WEP @ RESI DENTNAME

2. Buildthe .DLL.

3. RunIMPLIB or IMPDEF on the new .DLL file.

4. Enablethe/Gn switch (along with the already enabled /Gr switch).
5. Relink the .DLL.

To see an example of this process, refer to the makefile that builds the ObjectWindows
example programs.

Default = OFF

16-bit optimizations

The 16-bit optimizations control how the linker optimizes 16-bit .EXE programs. In most
cases the final executable file sizeis reduced, which resultsin afaster load time.

Whenever you use one or more of these options, the linker reorders the .EXE segments as
follows:

. PRELOAD segments
. PRELOAD resources
. LOAD ON CALL segments
. LOAD ON CALL resources

These options work only with 16-bit Windows and DPMI programs.

Chain fixup
Command-line equivalent =/Oc, 16-bit only

Paradigm C++ Reference Manual

Chain fixups remove duplicate and/or unnecessary fixup data from the .EXE file. Thisis
done by emitting only one fixup record for each unique internal fixup and "remembering”
the duplicate fixups by creating alinked list of the internal fixup locations within the
.EXE data segment. When the loader |oads the .EXE, it applies the fixup specified in the
fixup record to each of the locations specified in the linked list. Specifying this
optimization also causes trailing zeros in data segments to be eliminated. This usually
resultsin asignificantly smaller .EXE file, which loads faster.

Default = OFF

Iterate data

Command-line equivalent = /Oi, 16-bit only

This option scans data segments for patterns of data (for example, ablock with 128 bytes
filled with "0"). Instead of emitting the data, PLINK emits a"description” of the block of
data which matches the pattern (for example, a 5-byte descriptor specifying a 128 bytes

of 0). Specifying this optimization also causes trailing zeros in data segments to be
eliminated. Thisusually resultsin a significantly smaller .EXE file, while loads faster.

Default = OFF

Minimize resource alignment
Command-line equivalent =/Or, 16-bit only

This optimization switch is the same as the Minimize segment alignment switch (/Oa),
except that it applies to resource alignment values instead of segment alignment values.

Default = OFF

Minimize segment alignment
Command-line equivalent = /Oa, 16-bit only

This optimization switch determines the minimum segment alignment value by examining
the size of the .EXE file. An .EXE that has asize of 1 byte to 64K bytesresultsin an
alignment value of 1; if the .[EXE file Szeis 64K +1 bytesto 128K bytes, the alignment
valueis 2; and so on.

While this optimization results in asmaller .EXE file, the .EXE might load slower
because the newly calculated alignment value may cause the segments to cross physical
disk sector boundaries more often. Unless you have also specified the Segment Alignment
(/A) linker option, the linker initially generates an .EXE using the default alignment value
of 512. Note that this option overrides whatever alignment value the linker might have
used to initially generate the .EXE file.

Default = OFF

32-bit linker

32-bit linker options tell the linker how to link 32-bit programs.

Allow import by ordinal
(Command-line equivaent = /o, 32-bit only)

Chapter 3, Project options 89

This option is
different than the
16-bit /o
(overlays) option.

90

This option lets you import by ordinal value instead of by the import name. When you
specify this option, the linker emits only the ordinal numbers (and not the import names)
to the resident or nonresident name table for those imports that have an ordinal number
specified. If you do not specify this option, the linker ignores all ordinal numbers
contained in import libraries or the .DEF file, and emits the import names to the resident
and nonresident tables.

Committed stack size (in hexadecimal)
Command-line equivalent = /Sc:xxxx, 32-bit only

Specifies the size of the committed stack in hexadecimal. The minimum allowable value
for thisfield is4K (0x1000) and any value specified must be equal to or less than the
Reserved StackSize setting (/S).

Specifying the committed stack size here overrides any STACKSIZE setting in amodule
definition file.(add note sidebar)

The command-line version of this option (/Sc: xxxx) accepts hexadecima numbers as the
stack reserve value.

Default = 8K (0x2000)

Committed heap size (in hexadecimal)
Command-line equivalent = /Hc: xxxx, 32-bit only

Specifies the size of the committed heap in hexadecimal. The minimum allowable value
for thisfield is 0 and any value specified must be equal to or less than the Reserved Heap
Size setting (/H).

Specifying the committed heap size here overrides any HEAPSIZE setting in amodule
definition file.(add note sidebar)

The command-line version of this option (/Hc: xxxx) accepts hexadecima numbers as the
stack reserve value.

Default = 4K (0x1000)

File alignment (in hexadecimal)
Command-line equivalent = /Af:xxxx, 32-bit only

The File Alignment option specifies page aignment for code and data within the
executable file. The linker uses the file alignment value when it writes the various objects
and sections (such as code and data) to the file. For example, if you use the default value
of 0x200, the linker stores the section of the image on 512-byte boundaries within the
executable file.

When using this option, you must specify afile aignment value that is a power of 2, with
the smallest value being 16.

The old style of thisoption (/A:dd) is still supported for backward compatibility. With
this option, the decimal number dd is multiplied by the power of 2 to calculate thefile
alignment value.(add note sidebar)

The command-line version of this option (/Af:xxxx) accepts either decimal or
hexadecimal numbers as the file alignment value.

Default = 512 (0x200)

Paradigm C++ Reference Manual

Image base address (in hexadecimal)
Command-line equivalent = /B: xxxx, 32-bit only

The Image Base Address option specifies an image base address for an application, and
isused in conjunction with the image is based option. If this setting is turned on, interna
fixes are removed from the image and the requested |oad address of the first object in the
application is set to the hexadecimal number specified. All successive objects are
aligned on 64K linear address boundaries. This option makes applications smaller on
disk and improves both load-time and run-time performance (the operating system no
longer hasto apply internal fixes).

The command-line version of this option (/B: xxxx) accepts either decimal or
hexadecimal numbers as the image base address.

It is not recommended that you enable this option when producing aDLL. In addition, do
not use the default setting of 0x400000 if you intend to run your application of Win32s
systems.(add note sidebar)

Default = 0x400000 (recommended for true Win32 system applications)

Image is based

The Image is Based option affects whether an application has an image base address. If
this setting is turned on, internal fixes are removed from the image and the requested |oad
address of thefirst object in the application is set to the number specified in the Image
Base Address input box. Using this option can greatly reduce the size of your final
application module; however, it is not recommended for use when producing aDLL.

Default = OFF

Maximum linker errors
Command-line equivalent =/Enn

Specifies maximum errors the linker reports before terminating. /EO (default) reports an
infinite number of errors (that is, as many as possible).

Object alignment (in hexadecimal)

Command-line equivalent = /A0: xxxx, 32-bit only

The linker uses the object alignment value to determine the virtual addresses of the
various objects and sections (such as code and data) in your application. For example, if

you specify an object alignment value of 8192, the linker aligns the virtual addresses of
the sections in the image on 8192-byte (0x2000) boundaries.

When using this option, you must specify an object alignment value that is a power of 2,
with the smallest value being 4096 (the default).

The command-line version of this option (/A0:xxxx) accepts either decimal or
hexadecimal numbers as the object alignment value.

Defaullt = 4096 (0x1000)

Reserved heap size (in hexadecimal)
Command-line equivalent = /H: xxxx, 32-bit only

Specifies the size of the reserved heap in hexadecimal. The minimum alowable value for
thisfield isO.

Chapter 3, Project options 91

92

Specifying the reserved heap size here overrides any HEAPSIZE setting in amodule
definition file.(add note sidebar)

The command-line version of this option (/H: xxxx) accepts hexadecimal numbers as the
stack reserve value.

Default = 1Mb (0x1000000)

Reserved stack size (in hexadecimal)
Command-line equivalent = /S:xxxx, 32-bit only

Specifies the size of the reserved stack in hexadecimal. The minimum allowable value for
thisfield is4K (0x1000).

Specifying the reserved stack size here overrides any STACKSIZE setting in amodule
definition file.(add note sidebar)

The command-line version of this option (/S:xxxx) accepts hexadecima numbers as the
stack reserve value.

Default = 1Mb (0x1000000)

Use incremental linker

Uses the incrementdl linker.

When on, the first link of the executable file takes about the same amount of time as
without the incremental linker. On subsequent links, when you make small changes to your

source code, the link increases in speed. With the incremental linker in use, thelink is
usualy lessthan 2 seconds, even for multiple megabyte images.

Verbose

Command-line equivalent = /r, 32-bit only

This option causes the linker to emit messages that indicate what part of the link cycleis
currently being executed by the linker. With this option turned on, the linker emits some or
all of the following messages:

. Starting pass 1

. Generating map file

. Starting pass 2

General

Use the Linker|Genera options to include or exclude debugging information from your
AXE or .DLL. Debug information must be included in your program if you want to use
the debugger (you can turn it off for production versions).

Case-sensitive exports and imports
Command-line equivalent = /C, 16-bit only

When the Case-Sensitive Exports option is on, the linker is case sensitive when it
processes the names in the IMPORTS and EXPORTS sections of the module definition
file.

Use this option when you are trying to export non-callback functionsfrom DLLS, asin
exported C++ member functions or dynamic versions of ObjectWindows Library and
BIDS.

Paradigm C++ Reference Manual

Do not use this option for normal Windows callback functions (declared FAR PASCAL).
Default = OFF

Case-sensitive link
Command-line equivalent = /c

When the Case-Sensitive Link option is enabled, the linker differentiates between upper
and lower-case characters in public and external symbols. Normally, this option should
be checked, since C and C++ are both case-sensitive languages.

Default = ON

Code pack size
Command-line equivalent = /P=n, 16-bit only

Use Code Pack Size to change the default code-packing size to any value between 1 and
65,536. (On the command line, set n to a value between 1 and 65,536.)

Y ou would probably want the limit to be a multiple of 4K under the 386 enhanced mode
because of the paging granularity of the system. Although the optimum segment sizein 386
enhanced mode is 4K, the default code segment packing size is 8K because typical code
segments are from 4K to 8K in size, and the default of 8K might pack more efficiently.

Code segment packing typically increases performance because each maintained segment
requires system overhead. On the command-line, /P- turns code segment packing off,
which can be useful if you've turned it on in the configuration file, but want to turn it off
for aparticular link.

Default = 8192 bytes (8K)

Default libraries
Command-line equivalent = /n

When you are linking with modules created by a compiler other than the Paradigm C++
compiler, the other compiler might have placed alist of default librariesin the object
file.

When the Default Libraries option is unchecked (off), the linker triesto find any
undefined routines in these libraries and in the default libraries supplied by the Paradigm
C++ IDE.

When this option is checked (on), the linker searches only the default libraries supplied
by the Paradigm C++ IDE and ignores any defaultsin .OBJfiles. Y ou might want to check
this option when linking modules written in another language.

Default = ON

Include debug information
Command-line equivaent = /v

When the Include Debug Information option is on, the linker includes information in the
output file needed to debug your application with Paradigm DEBUG.

On the command line, this option causes the linker to include debugging information in the
executable file for al object modules that contain debugging information. Y ou can use the
/v+ and /v- options to selectively enable or disable debugging information on a module-
by-module basis (but not on the same command-line where you use /v). For example, the

Chapter 3, Project options 93

Command-
line usage

94

following command includes debugging information for modules mod2 and mod3, but not
for mod1 and mod4:

PLI NK nodl /v+ nod2 nod3 /v- nod4
Default = ON in the Paradigm C++ IDE; OFF on the command line

Pack code segments
Command-line equivaent = /P

Pack Code Segments has different meanings for 16-bit and 32-bit applications. In
addition, Code Segment Packing applies only to 32-bit applicationsand DLLs.

For 16-hit links, Code Segment Packing causes the linker to minimize the number of code
segments by packing as many code segments as possible into one physical segment up to
(and never greater than) the code-segment packing limit, which is set to 8,192 (8K) by
default. PLINK starts a new segment if needed.

Because there is a certain amount of system overhead for every segment maintained, code
segment packing typically increases performance by reducing the number of segments.

For 32-hit links, Code Packing Segments means the linker packs all code into one
“segment.” On the command-line, /P- turns this option off.

Default = ON

Subsystem version (major.minor)
Command-line equivaent =/vd.d

This option lets you specify the Windows version ID on which you expect your
application will be run. The linker sets the Subsystem version field in the .EXE header to
the number you specify in the input box.

Y ou can aso set the Windows version ID in the SUBSY STEM portion of the module
definition file (.DEF file) However, any version setting you specify in the Paradigm C++
IDE or on the command line overrides the setting in the .DEF file.

When you use the /Vd.d command-line option, the linker sets the Windows version ID to
the number specified by d.d.. For example, if you specify / V4. 0, the linker setsthe
Subsystem version field in the .EXE header to 4.0, which indicates a Windows 95
application.

Default = 3.1

Map file

Linker|Map File optionstell the linker what type of map file to produce. Y ou specify the
type of map file created with the Map File options. These options control the information
generated on segment ordering, segment sizes, and public symbols.

Include source line numbers
Command-line equivalent: /I, 16-bit only

When the Include Source Line Numbers option is on, the linker includes source line
numbers in the object map files.

For this option to work, linked .OBJ files must be compiled with debug information using
-V.

Paradigm C++ Reference Manual

When Include Source Line Numbersis on, make sure you turn Jump Optimizations off in
the Optimization|16 bit Specific options page, otherwise the compiler might group
together common code from multiple lines of source text during jump optimization, or it
might reorder lines (which makes line-number tracking difficult).

Default = OFF

Map file
Y ou use the Map File options to choose the type of map file to be produced at link time.

For settings other than Off, the map file is placed in the output directory defined in the
Directories|Output page.

Off Command-line equivalent = /x
The Off option tells the linker not to create amap file.
Default = OFF

Segments Command-line equivaent =/s

The Segments option adds a “ Detailed map of segments’ to the map file created with the
Publics option (/m). The detailed list of segments contains the segment class, the segment
name, the segment group, the segment module, and the segment ACBP information. If the
same segment appears in more than one module, each module appears as a separate line.

The ACBP field encodes the A (alignment), C (combination), and B (big) attributesinto a
set of four bit fields, as defined by Intel. PLINK uses only three of thefields: A, C, and B.
The ACBP value in the map is printed in hexadecimal. The following field values must
be ORed together to arrive at the ACBP value printed.

Table 3-1 Field Value Description
Segment field
values A (alignment) 00 An absol ute segment

20 A byte-aligned segment
40 A word-aigned segment
60 A paragraph-aligned segment
80 A page-aligned segment
A0 An unnamed absol ute portion of storage

C (combination) 00 Cannot be combined
08 A public combining segment

B (big) 00 Segment less than 64K
02 Segment exactly 64K

With the Segments options enabled, public symbols with no references are flagged idle.
Anidle symbol isapublicly defined symbol in amodule that was not referenced by an
EXTDEF record or by any other module included in the link. For example, this fragment
from the public symbol section of amap file indicates that symbols Synbol 1 and
Synbol 3 are not referenced by the image being linked (they can either be deleted or
declared static since no other module requires these symbols):

Chapter 3, Project options 95

Publics

Use the PLINK32

command-line
option /w-stk to

turn this warning

96

off.

0002: 00000874 Idle Synbol 1
0002: 00000CE4 Synbol 2
0002: 000000E7 Idle Synbol 3

Command-line equivalent = /m

This option causes the linker to produce a map file that contains an overview of the
application segments and two listings of the public symbols. The segments listing has a
line for each segment, showing the segment starting address, segment length, segment
name, and the segment class. The public symbols are broken down into two lists, the first
showing the symbols in sorted alphabetically, the second showing the symbolsin
increasing address order. Symbols with absolute addresses are tagged Abs.

A list of public symbolsis useful when debugging: many debuggers use public symbols,
which lets you refer to symbolic addresses while debugging.

For more information, see Linker|Map file.

Print mangled names in map file
Command-line equivalent = /M

Prints the mangled C++ identifiers in the map file, not the full name. This can help you
identify how names are mangled (mangled names are needed as input by some utilities).

Default = OFF

Warnings

Warnings options enable or disable the display of Linker warnings.

32-bit warnings

. No entry point

. Duplicate symbol

. Nodef file

. Import does not match previous definition
. Extern not qualified with _import

« Using based linking in DLL

. Self-relative fixup overflowed

. .EXE module built with a.DLL extension
. Multiple stack segments found

"No stack" warning

This option lets you control whether or not the linker emits the "No stack” warning. The
warning is generated if no stack segment is defined in any of the object files or in any of
the librariesincluded in the link. Except for .DLLS, thisindicates an error. If a Paradigm
C++ program produces this error, make sure you are using the correct COx startup object
file.

Default = OFF

Warn duplicate symbol in .LIB
Command-line equivalent = /d 16-bit, /wdpl 32-bit

Paradigm C++ Reference Manual

Use the PLINK32
command-line
option /w-dpl to
turn this warning
off.

When the Warn Duplicate Symbols option is on, the linker warns you if a symbol appears
in more than one object or library files.

If the symbol must be included in the program, the linker uses the symbol definition from
the first file it encounters with the symbol definition.

Default = OFF

Make options

This option stops
a make if the
compiler
encounters
warnings.

Make options control the conditions under which the building of a project stops and how
the Project Manager uses autodependency information.

Autodependencies

When the M akeA utodependencies option is selected, the Project Manager automatically
checks dependencies for every target that has a corresponding source file in the project
list.

None
When None is selected, no autodependency checking is performed.

Use

When Use is selected, autodependency checking is performed by reading the
autodependency information out of the .OBJfiles.

Cache

When Cache is selected, autodependency information is stored in memory to make
dependency checking faster. This option speeds up compilation, but autodependency
information will not display in the Project Tree.

Cache and display

When Cache and Display is selected, the Project Manager stores the autodependency
information in the project file. Once the autodependency information is generated (after a
compile) the information is displayed in the Project Tree. This makes dependency
checking faster, but makes project fileslarger.

Break make on

The MakelBreak Make On options specify the error condition that stops the making of a
project.

Warnings
Command-line equivalent = -w/!

When this compiler option is enabled, the compiler terminates the compile and returns a
non-zero error code if awarning is encountered; an .OBJfileis not created.

Errors
This option stops a make when the compiler encounters errors.

Chapter 3, Project options 97

Fatal errors

This option tells the Project Manager to generate alist of errors and warnings for all files
and all targets in the project. The Project Manager will go onto link if no errors occur.

Default = Errors

New node path

Turn on the Absolute option if you want new nodes to have an absolute, instead of a
relative, path.

Messages options

Table 3-2

ANSI violation

98

messages

Messages options let you control the messages generated by the compiler. Compiler
messages are indicators of potential trouble spots in your program. These messages can
warn you of many problems that may be waiting to happen, such as variables and
parameters that are declared but never used, type mismatches, and many others.

Setting a message option causes the compiler to generate the associated message or
warning when the specific condition arises. Note that some of the messages are on by
defauilt.

ANSI violations

Compiler Messages|ANS| Violations options enable or disable individual warning
messages about statements that violate the ANSI standard for the C language.

Option Command-line equivalent Default
Void functions may not return avaue -W-VOi ON
Both return and return of avalue used -W-ret ON
Suspicious pointer conversion -W-SuUs ON
Undefined structure 'ident' -wstu OFF
Redefinition of 'ident' is not identical -w-dup ON
Hexadecimal value more than three digits -w-big ON

Bit fields must be signed or unsignedint ~ -wbbf OFF
‘ident’ declared as both external and static -w-ext ON
Declare 'ident' prior to use in prototype -w-dpu ON
Division by zero -w-zdi ON
Initializing 'ident’ with 'ident' -w-bei ON
Initialization isonly partialy bracketed -wpin OFF
Non-ANSI keyword used -whak OFF

Display warnings

Use the Display Warnings options to choose which warnings are displayed.

All
Command-line equivaent: -w

Display all warning and error messages.
Default = OFF

Paradigm C++ Reference Manual

Table 3-3
General warning
messages

Table 3-4
Inefficient C++
coding
messages

Selected
Command-line equivalent: -waaa

Choose which warnings are displayed. Using pr agnma. war n in your source code
overrides messages options set either at the command line or in the Paradigm C++ IDE.

To disable a message from the command line, use the command-line option -w-aaa,
where aaa is the 3-letter message identifier used by the command-line option.

Default = ON

None
Suppresses the display of warning messages. Errors are still displayed.

Default = OFF

General

Compiler Messages|General options enable or disable afew general warning messages.

Option Command-line equivalent Default
Unknown assembler instruction -wasm OFF
I11-formed pragma -w-ill ON

Array variable 'ident' is near -w-ias ON
Superfluous & with function -wamp OFF

'ident’ is obsolete -w-0bs ON
Cannot create precompiled header -w-pch ON
User-defined warnings -W-msg ON

User-defined warnings

Command-line equivaent: -wmsg

The User-defined warnings option allows user-defined messages to appear in the
Paradigm C++ IDE's Message window. User-defined messages are introduced with the
#pragma message compiler syntax.

In addition to messages that you introduce with the #pragma message compiler syntax,
User-defined warnings displays warnings introduced by third-party libraries. Remember,

if you need Help on athird-party warning, please contact the vendor of the header file
that issued the warning.

Default = ON

Inefficient C++ coding

Compiler Messages|inefficient C++ Coding options enable or disable individual warning
messages about inefficient C++ coding.

Option Command-line equivalent Default
Functions containing 'ident' not expanded inline -w-inl ON
Temporary used to initiaize 'ident’ -w-lin ON
Temporary used for parameter 'ident' -w-lvc ON

Chapter 3, Project options 99

Table 3-5
Inefficient coding
messages

Table 3-6
Obsolete C++
messages

Table 3-7
Portability
messages

Table 3-8
Potential
C++Errors

100

Inefficient coding

Compiler Messages|Inefficient Coding options are used to enable or disable individual
warning messages about inefficient coding.

Option Command-line equivalent Default
'ident’ assigned avalue which is never used -w-aus ON
Parameter 'ident' is never used -w-par ON
'ident' declared but never used -wuse OFF
Structure passed by value -wstv OFF
Unreachable code -w-rch ON
Code has no effect -w-eff ON

Thewarnings Unr eachabl e Code and Code Has No Effect canindicate
serious coding problems. If the compiler generates these warnings, be sure to examine the
lines of code that cause these warnings.

Obsolete C++

Compiler Messages|Obsol ete C++ options choose which specific obsolete items or
incorrect syntax C++ warningsto display.

Option Command-line equivalent Default
Base initialization without classnameisobsolete -w-obi ON
This style of function definition is obsolete -w-ofp ON
Overloaded prefix operator used as postfix operator -w-pre ON

Portability

Compiler Messages|Portability options enable or disable individual warning messages
about statements that might not operate correctly in al computer environments.

Option Command-line equivalent Default
Non-portabl e pointer conversion -W-r pt ON
Non-portable pointer comparison -w-cpt ON
Constant out of rangein comparison -w-rng ON
Constant islong -wcln OFF
Conversion may lose significant digits -wsig OFF
Mixing pointers to signed and unsigned char -wucp OFF

Potential C++ errors

Compiler Messages|Potential C++ Errors options enable or disable individual warning
messages about statements that violate C++ language implementation.

Option Command-line equivalent Default
Constant member 'ident' is not initialized -w-nci ON
Assigning 'type' to 'enumeration' -wW-€eas ON
‘function' hides virtual function 'function2' -w-hid ON

Paradigm C++ Reference Manual

Table 3-9
Potential error
messages

Entering O
causes
compilation to
continue until the
end of the file.

Non-const function <function> called for const object -w-ncf ON

Base class 'ident’ inaccessible because also in ‘ident’ -w-ibc ON

Array sizefor 'delete' ignored -w-dsz ON

Use qualified name to access nested type 'ident’ -w-nst ON

Handler for '<typel>' Hidden by Previous Handler for '<type2>' -w-hch ON
Conversion to 'type' will fail for virtual base members -W-mpc ON
Maximum precision used for member pointer type <type> -w-mpd ON

Use'> >' for nested templates instead of '>>' -w-ntd ON
Non-volatile function <function> called for volatile object -w-nvf ON

Potential errors

Compiler Messages|Potential Errors options enable or disable individual warning
messages about potential coding errors.

Option Command-line equivalent Default
Possibly incorrect assignment -w-pia ON

Possible use of 'ident' before definition -wdef OFF
No declaration for function ‘ident’ -wnod OFF

Call to function with no prototype -W-pro ON

Function should return avaue -w-rvl ON
Ambiguous operators need parentheses -wamb OFF
Condition is always (true/fal se) -W-ccC ON
Continuation character \ found in // -W-com ON

Stop after ... errors

Command-line equivalent: -jn

Errors: Stop After causes compilation to stop after the specified number of errors has
been detected. Y ou can enter any number from 0 to 255.

Default = 25

Stop after ... warnings

Command-line equivalent: -gn

Warnings: Stop After causes compilation to stop after the specified number of warnings
has been detected. Y ou can enter any number from O to 255.

Entering O causes compilation to continue until either the end of the file or the error limit
setin errors. Stop After has been reached, whichever comesfirst.

Default = 100

Optimization options

Optimization options are the software equivalent of performance tuning. There are two
general types of compiler optimizations:

« Those that make your code smaller

Chapter 3, Project options 101

No

optimization

Optimize

locally

Optimize

102

globally

. Those that make your code faster

Although you can compile with optimizations at any point in your product devel opment
cycle, be aware when debugging that some assembly instructions might be "optimized
away" by certain compiler optimizations.

General settings

The main Optimizations page in the Project Options dialog box contains four radio
buttons that let you select the overall type of optimizations you want to use. Because of
the complexities of setting compiler optimizations, it is recommended that you use either
the Optimize for Size or the Optimize for Speed radio buttons. The general optimization
settings are:

. Disable all optimizations

. Use sdlected optimizations

. Optimizefor size

« Optimize for speed

16- and 32-bit

The 16- and 32-bit compiler options specify optimization settings for al compilations.

Common subexpression

The Common subexpressions options tell the compiler how to find and eliminate
duplicate expressionsin your code.

When the No optimization option is on, the compiler does not eliminate common
subexpressions. This is the default behavior of the command-line compilers.

Command-line equivalent: -Oc

When the Optimize locally option is on, the compiler eliminates common subexpressions
within groups of statements unbroken by jumps (basic blocks).

Command-line equivalent: -Og

When you set this option, the compiler eliminates common subexpressions within an
entire function. This option globally eliminates duplicate expressions within the target
scope and stores the cal culated value of those expressions once (instead of recal culating
the expression).

Although this optimization could theoretically reduce code size, it optimizes for speed
and rarely resultsin size reductions. Use this option if you prefer to reuse expressions
rather than create explicit stack locations for them.

Induction variables
Command-line equivalent: -Ov

When this option is enabled, the compiler creates induction variables and it performs
strength reduction, which optimizes for |oops speed.

Paradigm C++ Reference Manual

Use this option when you're compiling for speed and your code contains loops. The
optimizer uses induction to create new variables (induction variables) from expressions
used in loops. The optimizer assures that the operations performed on these new
variables are computationally less expensive (reduced in strength) than those used by the
original variables.

Optimizations are common if you use array indexing inside loops, because a
multiplication operation is required to calculate the position in the array that is indicated
by the index. For example, the optimizer creates an induction variable out of the operation
v[i] inthefollowing code becausethev[i] operation requires multiplication. This
optimization also eliminates the need to preserve thevalue of i :
int v[10];
void f(int x, int y, int z)
{
int i;
for (i =0; i <
v[i] =x *y * z
}

With Induction variables enabled, the code changes.

int v[10];
void f(int x, int y, int z)
{ . .

int i, *p;

for (p =v; p < &[9]; pt+)

*p = x * y * z;

}

Inline intrinsic functions
Command-line equivaent: -Oi

When the Inline Intrinsic Functions option is on, the compiler generates the code for
common memory functions like strcpy() within your function's scope. This eliminates the
need for afunction call. The resulting code executes faster, but it is larger.

The following functions are inlined with this option:

aloca fabs memchr memcmp
memcpy memset rotl rotr
stpcpy strcat strchr stremp
strepy strien strncat strncmp
strncpy strnset strrchr

Y ou can control the inlining of these functions with the pragmaintrinsic. For example,
#pragma intrinsic strcpy causesthe compiler to generate inline code for all
subsequent calls to strcpy in your function, and #pr agma i ntrinsic -strcpy
prevents the compiler from inlining strepy. Using these pragmas in afile overrides any
compiler option settings.

When inlining any intrinsic function, you must include a prototype for that function before
you use it; the compiler creates a macro that renames the inlined function to a function that
the compiler recognizesinternaly. In the previous example, the compiler would create a

macro #define strcpy _ _strcpy_ _.

Chapter 3, Project options 103

104

The compiler recognizes calls to functions with two leading and two trailing underscores
and tries to match the prototype of that function against its own internally stored
prototype. If you don't supply a prototype, or if the prototype you supply doesn't match the
compiler's prototype, the compiler regjects the attempt to inline that function and generates
an error.

16-bit

The Optimizations|16-bit options pertain to 16-bit applications only.

Assume no pointer aliasing
Command-line equivaent: -Oa

When the Assume no pointer aliasing option is on, the compiler assumes that pointer
expressions are not aliased in common subexpression eval uation.

Assume no pointer aliasing affects the way the optimizer performs common
subexpression elimination and copy propagation by letting the optimizer maintain copy
propagation information across function calls and by letting the optimizer maintain
common subexpression information across some stores. Without this option the optimizer
must discard information about copies and subexpressions. Pointer aliasing might create
bugs that are hard to spot, so it is only applied when you enable this option.

Assume no pointer aliasing controls how the optimizer treats expressions that contain
pointers. When compiling with global or local common subexpressions and Assume no
pointer aliasing is enabled, the optimizer recognizes*p * x asacommon
subexpression in function funcl.

int g, vy;
int funcl(int *p)

{

i nt
y:
g:
return (*p * x);
}
voi d func2(void)
{
9=2;
funcl(&g); // This is incorrect--the assignnent g = 3

:5'
p* X

w * X

/1 invalidates the expression *p * X

}

Copy propagation
Command-line equivalent: -Op

When this option is enabled; copies of constants, variables, and expressions are
propagated whenever possible.

Copy propagation is primarily speed optimization, but it never increases the size of your
code. Like loop-invariant code motion, copy propagation relies on the analysis performed
during common subexpression elimination. Copy propagation means that the optimizer
remembers the values assigned to expressions and uses those values instead of |oading
the value of the assigned expressions. With this, copies of constants, expressions, and
variables can be propagated.

Paradigm C++ Reference Manual

Dead code elimination
Command-line equivalent: -Ob

When the Dead code elimination option is on, the compiler reveals variables that might
not be needed. Because the optimizer must determine where variables are no longer used
(live range analysis), you might also want to set Global register alocation (-Oe) when
you use this option.

Global register allocation
Command-line equivaent: -Oe

When this option is enabled, global register alocation and variable live range analysis
are enabled. This option should always be used when optimizing code because it
increases the speed and decreases the size of your application.

Invariant code motion
Command-line equivaent: -Om

When this option is enabled, invariant code is moved out of loops and your codeis
optimized for speed. The optimizer uses information about all the expressionsin the
function (gathered during common subexpression elimination) to find expressions whose
values do not change inside a loop.

To prevent the calculation from being done many times inside the loop, the optimizer
moves the code outside the loop so that it is calculated only once. The optimizer then
reuses the calculated value inside the loop.

Y ou should use loop-invariant code motion whenever you are compiling for speed and
have used global common subexpressions, because moving code out of loops can result in
enormous speed gains. For example, inthefollowingcode, x * y * z isevauatedin
every iteration of the loop:
int v[10];
void f(int x, int y, int 2)
{ . .
int i;
for (i

vli]
}

The optimizer rewrites the code:

int v[10];
void f(int x, int y, int 2)
{. .
int i,t1;
tl =x *y* z;
for (i 0; i < 10; i++)
v[i] t1;
}

0; i < 10; i++)
X *y* z

Jump optimization
Command-line equivaent: -O

When Jump optimization option is on, the compiler reduces the code size by eliminating
redundant jumps and reorganizing loops and switch statements.

Chapter 3, Project options 105

106

When this option is enabled, the sequences of stepping in the debugger can be confusing
because of the reordering and elimination of instructions. If you are debugging at the
assembly level, you might want to disable this option.

Default = ON

Loop optimization
Command-line equivalent: -Ol)
When this option is enabled, loops are compacted into REP/STOSX instructions.

L oop optimization takes advantage of the string move instructions on the 80x86
processors by replacing the code for aloop with a string move instruction, making the
code faster.

Depending on the complexity of the operands, the compacted loop code can aso be
smaller than the corresponding non-compacted |oop.

Suppress redundant loads
Command-line equivaent: -Z

When this option is enabled, the compiler suppresses the reloading of registers by
remembering the contents of registers and reusing them as often as possible.

Exercise caution when using this option; the compiler cannot detect if a value has been
modified indirectly by a pointer.

32-bit

Use the Optimizations|32-bit options to specify options specific to the Pentium processor
and the Intel optimizing compiler. The options are:

Pentium instruction scheduling
Command-line equivaent: -OS

When enabled, this switch rearranges instructions to minimize delays that can be caused
by Address Generation Interlocks (AGI) which occur on the i486 and Pentium
processors. This option also optimizes the code so that it takes advantage of the Pentium
parallel pipelines. Best results for Pentium systems are obtained when you use this switch
in conjunction with the 32-bit Compiler|Pentium option in the Project Options dialog box
(-5).

Scheduled code is more difficult to debug at the source level because instructions from a
particular source line may be mixed with instructions from other source lines. Stepping
through the source code is still possible, although the execution point might make
unexpected jumps between source lines as you step. Also, setting a breakpoint on a
source line may result in several breakpoints being set in the code. Thisis especialy
important to note when inspecting variables, since a variable may be undefined even
though the execution point is positioned after the variable assignment.

Sepping through the following function when this switch is enabled demonstrates the
stepping behavior:

Paradigm C++ Reference Manual

int v[10];
void f(int i, int j)
{

int a,b;

vii+];
vlii-jl;
a +
a_

-
I

< < T

—

[b;
[b;
}
Execution starts by computing theindex i - j inthe assgnment to b (note that ais still
undefined although the execution point is positioned after the assgnment to a) . The index
I +] iscomputed, v[i-]] isassignedtob,andv[i +j] isassignedtoa.If a
breakpoint is set on the assignment to b, execution will stop twice: once when computing
the index and again when performing the assignment.

Default = OFF (-O-S)

Cache hit optimizations (Intel compiler only)
Command-line equivaent: -OM

Specifies a set of memory accessing optimizations that improves cache hits and reduces
the number of memory accesses. These optimizations include

. Loop interchange

. Loop distribution

. Strip mining and preloading

. Loop blocking

. Alternate loops

« Loop unrolling

Optimize across function boundaries (Intel compiler only)

Command-line equivaent: -Ol

Specifies a set of interprocedural optimizations. These optimizations eliminate call
overhead and can create opportunities for further optimizations. They are applied across
procedure boundaries but are restricted to routines within the same file, including
routines in files combined by the #include preprocessor directive. These optimizations
include

. Monitoring module-level static variables

« Inlinefunction expansion

. Cloning

. Passing argumentsin registers

. Constant argument propagation

= Currently, these optimizations are disabled if your source code contains embedded
assembly code.

Chapter 3, Project options 107

108

General optimization settings

Disable all optimizations
Command-line equivaent: -Od

Disables all optimization settings, including ones which you may have specifically set
and those which would normally be performed as part of the speed/size tradeoff.

Because this disables code compaction (tail merging) and cross-jump optimizations,
using this option can keep the debugger from jumping around or returning from afunction
without warning, which makes stepping through code easier to follow.

Y ou can override this setting using the predefined Style Sheets in the Project Manager.

Use selected optimizations

Does not set any optimization by default, but lets you set the specific optimization options
you need through the settings contained in the Optimization subtopics. The subtopic pages
are

. 16 and 32-hit

. 16-hit specific

. 32-bit specific

Configuring your own optimization settings should be reserved for expert users only.

Optimize for size
Command-line equivalents: -O1

This radio button sets an aggregate of optimization options that tells the compiler to
optimize your code for size. For example, the compiler scans the generated code for
duplicate sequences. When such sequences warrant, the optimizer replaces one sequence
of code with ajump to the other and eliminates the first piece of code. This occurs most
often with switch statements. The compiler optimizes for size by choosing the smallest
code sequence possible.

This option (-O1) sets the following optimizations:

. Jump optimizations (-O)

. Dead code dimination (-Ob)

. Duplicate expressions (-Oc)

. Register alocation and live range analysis (-Oe)
. Loop optimizations (-Ol)

. Instruction scheduling (-OS)

. Register load suppression (-Z)

The compiler options -Ot and -G are supported for backward compatibility only, and are
equivaent to the-O1 compiler option.

Optimize for speed
Command-line equivaent: -O2

This radio button sets an aggregate of optimization options that tells the compiler to
optimize your code for speed. This switch (-O2) sets the following optimizations:

. Dead code elimination (-Ob)

Paradigm C++ Reference Manual

. Register alocation and live range anaysis (-Oe)
. Duplicate expression within functions (-OQ)
. Intrinsic functions (-Oi)
. Loop optimizations (-Ol)
. Codemotion (-Om)
. Copy propagation (-Op)
. Ingruction scheduling (-OS)
. Induction variables (-Ov)
. Register load suppression (-2)
= The compiler options -Os and -G- are supported for backward compatibility only, and

are equivaent to the -O2 compiler option. The -Ox option is also supported for
backward compatibility and for compatibility with Microsoft make files.

Command-line only options

The options are available only from the command line.

Object search paths

Command-line equivalent = /j

This option lets you specify the directories the linker will search if there is no explicit
path given for an .OBJ module in the compile/link statement. This option works with both
PLINK and PLINK32.

The Specify object search path uses the following command-line syntax:
/ j <Pat hSpec>[; <Pat hSpec>][...]

The linker uses the specified object search path(s) if there is no explicit path given for the
.OBJfile and the linker cannot find the object file in the current directory. For example,
the command

PLI NK32 /jc:\myobjs;.\objs splash .\comon\l|ogo,,,utils logolib

directs the linker to first search the current directory for SPLASH.OBJ. If it is not found
in he current directory, the linker then searches for the file in the C:\MY OBJS directory,
and then in the \OBJs directory. However, notice that the linker does not use the object
search paths to find the file LOGO.OBJ because an explicit path was given for thisfile.

16- and 32-bit command-line options

The following command-line switches are supported by the command-line compiler
PCC.EXE, PCC32.EXE, and PCC32i.EXE.

Compile to .ASM, then assemble
Command-line equivalent = -B

This command-line option causes the compiler to first generate an .ASM file from your
C++ (or C) source code (same as the -S command-line option). The compiler then calls
PASM (or the assembler specified with the -E option) to create an .OBJ file from the
ASM file. The ASM fileisthen deleted. To use this 32-bit compiler option, you must
install a 32-bit assembler, such as PASM32.EXE, and then specify this assembler with

Chapter 3, Project options 109

110

the -E option. In the Paradigm C++ IDE, right-click the source node in the Project
Manager, then choose Specia |[C++ to Assembler.

Y our program will fail to compile with the -B option if your C or C++ source code
declares static global variables that are keywords in assembly. Thisis because the
compiler does not precede static global variables with an underscore (as it does other
variables), and the assembly keywords will generate errors when the code is assembl ed.

Compile to .OBJ, no link
Command-line equivadent = -c

Compiles and assembles the named .C, .CPP, and .ASM files, but does not execute alink
on the resulting .OBJ files. In the Paradigm C++ IDE, choose Project|Compile.

Specify assembler
Command-line equivalent = -Efilename
Assemble instructions using filename as the assembler. The 16-bit compiler uses PASM

as the default assembler. In the Paradigm C++ IDE, you can configure a different
assembler using the Tool menu.

Specify executable file name
Command-line equivalent = -efilename
Link file using filename as the name of the executablefile. If you do not specify an

executable name with this option, the linker creates an executable file based on the name
of thefirst source file or object file listed in the command.

Pass option to linker
Command-line equivalent = -Ix

Use this command-line option to pass option(s) x to the linker from a compile command.
Use the command-line option -I-x to disable a specific linker option.

Create a MAP file
Command-line equivalent = -M

Use this command-line option tells the linker to create amap file.

Compile .OBJ to filename
Command-line equivalent = -ofilename

Use this option to compile the specified source file to filename.OBJ.

C++ compile
Command-line equivalent = -P

The -P command-line option causes the compiler to compile all source files as C++ files,
regardless of their extension. Use -P- to compile al .CPP files as C++ source files and
all other files as C sourcefiles.

The command-line option -Pext causes the compiler to compile all source files as C++
filesand it changes the default extension to whatever you specify with ext. Thisoption is
provided because some programmers use different extensions as their default extension
for C++ code.

Paradigm C++ Reference Manual

The option -P-ext compiles files based on their extension (.CPP compilesto C++, all
other extensions compile to C) and sets the default extension (other than .CPP).

Compile to assembler
Command-line equivaent = -S

This option causes the compiler to generate an .ASM file from your C++ (or C) source
code. The generated .ASM fileincludes the original C or C++ source lines as comments
in thefile.

Specify assembler option
Command-line equivalent = -Tx

Use this command-line option to pass the option(s) x to the assembler you specify with
the -E option. To disable al previously enabled assembler options, use the -T-
command-line option.

Undefine symbol
Command-line equivaent = -Uname

This command-line option undefines the previous definition of the identifier name.

Linker supported command-line options

The following switches are supported by the 16-bit command-line compiler (PCC.EXE)
and linker (PLINK.EXE).

Generate 8087 instructions
Command-line equivaent = -f87

Use this 16-bit compiler option to create 16-bit real-mode 8087 floating-point code.

Compile to 16-bit real-mode .AXE
Command-line equivalent = -tD

The compiler creates a 16-bit real-mode .AXE file (same as-tDe).

Enable backward compatibility options
Command-line equivalent =-Vo

This compiler option enables the following 16-bit backward compatibility options: -Va,
-Vb, -Vc¢, -Vp, -Vt, -Vv. Use this option as a handy shortcut when linking libraries built
with older versions of Paradigm C++.

Link 16-bit real-mode .EXE
Command-line equivaent = /Tde

PLINK generates areal-mode 16-bit real-mode .EXE file.

Extended memory swapping
Command-line equivalent = /yx

Chapter 3, Project options 111

This PLINK option controls the linker's use of extended memory for 1/O buffering. By
default, the linker can use up to 8MB of extended memory. Y ou can control the linker's
use of extended memory with one of the following forms of this switch:

. lyxor/yx+ usesal available extended memory, up to SMB
« lyxn usesonly upton KB of extended memory

Default = OFF

Enable 24-bit extended addressing
Command-line equivalent = -Y

Enables use of the 24-bit extended addressing mode to allow a real-mode address space
of 16MB.

When this option is enabled, themacro _ EXTADDR_ will be defined.

32-bit command-line options

The following switches are supported by the 32-bit command-line compilers
(PCC32.EXE and PCC32i.EXE) and linker (PLINK32.EXE).

= The following 32-bit command-line options are not needed if you include a module
definition file in your compile and link commands which specifies the type of 32-bit
application you intend to build.

Generate a multi-threaded target
Command-line equivalent = -tWM

The compiler creates a multi-threaded .EXE or .DLL. (The command-line option -WM is
supported for backward compatibility only; it has the same functionality as -tWM.)

Link using 32-bit Windows API
Command-line equivalent = /aa

PLINK 32 generates a protected-mode executable that runs using the 32-bit Windows API.

Link for 32-bit console application
Command-line equivaent = /ap

PLINK 32 generates a protected-mode executable file that runs in console mode.

Link 32-bit .DLL file
Command-line equivalent = /Tpd

PLINK 32 generates a 32-bit protected-mode Windows .DLL file.

Link 32-bit .EXE file
Command-line equivalent = /Tpe

PLINK 32 generates a 32-bit protected-mode Windows .EXE file.

Compiler command-line options

The following table lists the command-line compiler options in aphabetical order:

112 Paradigm C++ Reference Manual

Table 3-10
Compiler
command-line
options

Option

Description

@filename
+filename

-Dname
-Dname=string
-d

-dc

-Efilename
-efilename

-Ff=size

-ff

_fp

-Fs

-gn

-H
-H=filename

Chapter 3, Project options

Read compiler options from theresponse file "filename"

Use alternate configuration file "filename"

Generate 8086 compatibleinstructions (Default for 16-bit)
Generate the 80186/286 compatible instructions (16-bit only)

Generate 80286 protected-mode compatible i nstructions (16-bit
compiler only)

Generate 80386 protected-mode compatible instructions (Default for
32-hit)

Generate 80386/80486 protected-mode compatible instructions
Generate Pentium instructions

Use only ANSI keywords

Align byte (Default: -a- use byte-aligning)

Use only Kernighan and Ritchie keywords

Alignto "n" where 1=byte, 2=word (16-bit = 2 bytes) 4=Double word
(32- bit only, 4 bytes), 8=Quad word (32-hit only, 8 bytes)

Use Paradigm C++ keywords (also -A-)

Useonly UNIX V keywords

Compileto .ASM (-S), the assemble to .OBJ (command-line compiler
only)

Make enums always integer-sized (Default: -b- make enums byte-sized when
possible)

Turn nested comments on (Default: -C- turn nested comments off)
Compile to .0OBJ, no link (command-line compiler only)

Define "name" to the null string

Define "name" to "string"

Merge duplicate strings (Default)

Move string literals from data segment to code segment (16-bit
compiler only)

Specify assembler

Specify executable file name

Emulate floating point

No floating point

Generate 8087 floating-point code (command-line compiler only)
Enable page alignment for far segments

Enable Borland C++-compatible far data

Generate COMDEFs (16-bit compiler only)

Create far variables automatically

Create far variables automatically; set the threshold to "size" (16-bit
compiler only)

Fast floating point

Correct Pentium FDIV flaw

Assume DS=SSin all memory models (16-bit compiler only)
Warnings: stop after "n" messages (Default: 255)

Generate and use precompiled headers (Default)

Set the name of the file for precompiled headers

113

114

-H” xxx”

-Hc
-Hu
-in

-Jgd

-mm!

-ms
-ms!

-N

-0
-ofilename
-01

-02

-Oa

-Ob
-Oc
-Od
-Oe
-Og
-0l
-0i
-0l
-OM
-Om
-Op
-0S
-Ov
-P

Stop precompiling after header filexxxx

Usesfast huge pointers

Cache precompiled header

Use but do not generate precompiled headers

Make significant identifier length to be "n" (Default)

Generate definitionsfor all template instances and merge duplicates
(Default)

Generate public definitions for all template instances; duplicates result
in redefinition errors

Generate external references for all template instances

Errors: stop after "n" messages (Default)

Default character type unsigned (Default: -K - default character type
signed)

Turn on standard stack frame (Default)

Allow only two character types (signed and unsigned). Char istreated as signed.
Pass option “x” to linker (command-line compiler only)

Create a Map file (command-line compiler only)

Compile using compact memory model (16-bit compiler only)
Compile using huge memory model

Compile using large memory model (16-bit compiler only)
Compile using medium memory model (16-bit compiler only)

Compile using medium memory model; assume DS!=SS (16-bit
compiler only. Note: thereis no space between the -mm and the !)

Compile using small memory model (Default, 16-bit compiler only)

Compile using small memory model; assume DS! = SS (16-bit
compiler only. Note: there is no space between the -ms and the !)

Check for stack overflow

Optimize jumps

Compile .OBJto “filename” (command-line compiler only)
Generate smallest possible code

Generate fastest possible code

Optimize assuming pointer expressions are not aliased on common
subexpression evaluation

Eliminate dead code

Eliminate duplicate expressions within basic blocks
Disable al optimizations

Allocate global registers and analyze variable live ranges
Eliminate duplicate expressions within functions
Optimize across function boundaries (Intel compiler only)
Expand common intrinsic functions

Compact loops

Cache hit optimizations (Intel compiler only)

Move invariant code out of loops

Propagate copies

Pentium instruction scheduling

Enable loop induction variable and strength reduction
Force C++ compile (command-line compiler only)

Paradigm C++ Reference Manual

-tWM
-Uname

Chapter 3, Project options

Use Pascal calling convention

Use C calling convention (Default: -pc, -p-)

Use fastthis calling convention for passing this parameter in registers
Usefastcall calling convention for passing parametersin registers
Use stdcall calling convention (32-bit compiler only)

Include browser information in generated .OBJfiles

Useregister variables (Default)

Allow only declared register variables to be kept in registers

Enable run-time type information (Default)

Compile to assembler (command-line compiler only)

Specify assembler option “x” (command-line compiler only)
Compileto a 16-hit real-mode .EXE file (same as -tDe) (command-line compiler

only)
Generate a 32-bit multi-threaded target (command-line compiler only)

Undefine any previous definitions of "name" (command-line compiler

only)
Generate underscores (Default)

Use smart C++ virtua tables (Default)
Turn on source debugging

External C++ virtual tables

Public C++ virtual tables

Pass class arguments by reference to atemporary variable (16-bit
compiler only)

Make virtual base class pointer same size as 'this' pointer of the class
(Default, 16-bit compiler only)

Calling convention mangling compatibility

Do not add the hidden members and code to classes with pointersto
virtual base class members (16-bit compiler only)

for loop variable scoping

Zero-length empty base classes

Far C++ virtua tables (16-bit compiler only)

Treat “far” classesas“huge”

Control expansion of inline functions

Use the smallest representation for member pointers
Member pointers support multiple inheritance

Honor the declared precision for all member pointer types
Member pointers support single inheritance

Member pointers have no restrictions (most general representation)
(Default)

Enable backward compatibility options (command-line compiler only)
Pass the 'this' parameter to 'pascal’ member functions as the first
Local C++ virtual tables

Place the virtual table pointer after nonstatic data members (16-bit
compiler only)

‘deep’ virtual basses
Display warnings on
Enable "xxx" warning message (Default)

115

116

-wamb
-wamp
-wasm
-waus
-wbbf
-wbei
-wbig
-wccece
-wcln
-wept
-wdef
-wdpu
-wdup
-wdsz
-weas
-weff
-wias
-wext
-whch
-whid
-wibc
-will
-winl
-wlin
-wlve
-wmsg
-wmpc

-wmpd
-whak

-wnci
-wnfc
-wnod
-wnst
-wntd
-wnvf
-wobi
-wobs
-wofp
-wovl
-wpar
-wpch
-wpia
-wpin
-wpre

Ambiguous operators need parentheses

Superfluous & with function

Unknown assembler instruction

'identifier' is assigned avalue that is never used (Default)

Bit fields must be signed or unsigned int

Initializing 'identifier' with 'identifier' (Default)

Hexadecimal value contains more than three digits (Default)
Condition is always true OR Condition is aways false (Default)
Constant islong

Nonportable pointer comparison (Default)

Possible use of 'identifier' before definition

Declare type 'type' prior to use in prototype (Default)
Redefinition of 'macro’ isnot identical (Default)

Array sizefor 'delete’ ignored (Default)

Assigning ‘type’ to ‘enum’

Code has no effect (Default)

Array variable 'identifier' is near (Default)

'identifier' is declared as both external and static (Default)
Handler for '<typel>' Hidden by Previous Handler for '<type2>'
'functionl' hides virtual function ‘function2' (Default)

Base class 'basel' is inaccessible because also in 'base2' (Default)
I11-formed pragma (Default)

Functions containing reserved words are not expanded inline (Default)
Temporary used to initialize 'identifier' (Default)

Temporary used for parameter 'parameter’ in call to 'function' (Default)
User-defined warnings

Conversion to type fails for members of virtual base class base
(Default)

Maximum precision used for member pointer type <type> (Default)

Non-ANSI Keyword Used: '<keyword>' (Note: Use of thisoptionisa
requirement for ANSI conformance)

The constant member 'identifier' is not initialized (Default)
Non-constant function ‘ident’ called for const object

No declaration for function 'function’

Use qualified name to access nested type 'type' (Default)

Use'> >' for nested templates instead of '>>' (Default)
Non-volatile function <function> called for volatile object (Default)
Base initialization without a class name is now obsolete (Default)
'ident’ is obsolete

Style of function definition is now obsolete (Default)

Overload is now unnecessary and obsolete (Default)

Parameter 'parameter’ is never used (Default)

Cannot creae precompiled header: header (Default)

Possibly incorrect assignment (Default)

Initialization isonly partialy bracketed

Overloaded prefix operator 'operator' used as a postfix operator

Paradigm C++ Reference Manual

-Wpro Call to function with no prototype (Default)

-wrch Unreachable code (Default)

-wr et Both return and return of avalue used (Default)

-wrng Constant out of range in comparison (Default)

-wr pt Nonportable pointer conversion (Default)

-wrvl Function should return avalue (Default)

-wsig Conversion may lose significant digits

-wstu Undefined structure 'structure’

-Wstv Structure passed by value

-Wsus Suspicious pointer conversion (Default)

-wucp Mixing pointersto different 'char' types

-wuse 'identifier' declared but never used

-WVOi Void functions may not return avalue (Default)

-wzdi Division by zero (Default)

-X Disable compiler autodependency output (Default: -X- use compiler
autodependency output)

-X Enable exception handling (Default)

-XC Enable compatible exception handling

-xd Enable destructor cleanup (Default)

-xf Enable fast exception prologs

-Xp Enable exception location information

-y Line numberson

-Y Enables 24-bit extended addressing mode

-Z Enable register load suppression optimization

-zZAname Code class set to "name”

-ZzBname BSS class set to "name”

-zZCname Code segment set to "name”

-zDname BSS segment set to "name”

-zEname Far data segment set to "name”

-ZFname Far data class set to "name”

-zGname BSS group set to "name"

-zZHname Far data group set to "name"

-Zlname Constant initialized far data segment set to "name”

-zJname Constant initialized far data class set to "name"

-zZKname Constant initialized far data group set to "name"

-zPname Code group set to "name"

-zRname Data segment set to "name”

-zSname Data group set to "name”

-ZTname Data class set to "name”

-ZVname Far virtual segment set to "name” (16-bit compiler only)

-2Wname Far virtual class set to "name" (16-hit compiler only)

-zZXname Far BSS segment set to "name”

-ZYname Far BSS class set to "name”

-ZZname Far BSS group set to "name"

Chapter 3, Project options 117

Command-line options by function

Table 3-11
Command-line
only options

118

The Paradigm C++ IDE groups the compiler and linker command-line optionsinto the
following categories.

. Compiler

« 16-bit compiler

. 32-bit compiler

. C++options

. Optimizations

. Messages

. Linker

In addition, there are compiler and linker options that you can set from only the command-
line:

Option Description

Configuration Files

@filename Read compiler options from the response file "filename"

Response Files

+filename Use alternate configuration file "filename"

Compiler|Defines

-Dname Define "name" to the null string

-Dname=string Define "name" to "string"

-Uname Undefine any previous definitions of "name"

Compiler|Code Generation

-b Make enums alwaysinteger-sized (Default: -b- make enums byte-sized
when possible)

-K Default character type unsigned (Default: -K- default character type
signed)

-d Merge duplicate strings (Default)

-po Usefastthis calling convention for passing this parameter in registers
(16-bit compiler only)

-r Useregister variables (Default)

-rd Allow only declared register variablesto be kept in registers

-Y Enables 24-hit extended addressing

Compiler|Floating Point

-f- No floating point

-f Emulate floating point

-ff Fast floating point

-fp Correct Pentium FDIV flaw

Compiler|Compiler Output

-X Disable compiler autodependency output (Default: -X- use compiler
autodependency output)

-u Generate underscores (Default)

-Fc Generate COMDEFs (16-bit compiler only)

Paradigm C++ Reference Manual

Compiler|Source

-C Turn nested comments on (Default: -C- turn nested comments off)

-in Make significant identifier length to be "n" (Default)

-AT Use Paradigm C++ keywords (also -A-)

-A Use only ANSI keywords

-AU Useonly UNIX V keywords

-AK Use only Kernighan and Ritchie keywords

Compiler|Debugging

-k Turn on standard stack frame (Default)

-N Check for stack overflow

-Vi Control expansion of inline functions

-y Line numberson

-V Turn on source debugging

-R Include browser information in generated .OBJfiles

Compiler|Precompiled Headers

-H Generate and use precompiled headers (Default)

-Hu Use but do not generate precompiled headers

-Hc Cache precompiled header

-H=filename Set the name of the file for precompiled headers

-H”xxx" Stop precompiling after header filexxxx

16-bit Compiler |Processor

-1- Generate 8086 compatible instructions (Default for 16-hit)

-1 Generate the 80186/286 compatibl e instructions (16-bit only)

-2 Generate 80286 protected-mode compatible instructions (16-bit
compiler only)

-3 Generate 80386 protected-mode compatible instructions (Default for
32-hit)

-4 Generate 80386/80486 protected-mode compatibl e instructions

-5 Generates Pentium instructions

-a Align byte (Default: -a- use byte-aligning)

-an Alignto "n" where 1=byte, 2=word (16-bit = 2 bytes), 4=Double word

(32-hit only, 4 bytes), 8=Quad word (32-bit only, 8 bytes)
16-bit Compiler|Calling Convention

-pc Use C calling convention (Default: -pc, -p-)

-p Use Pascal calling convention

-pr Usefastcall calling convention for passing parametersin registers

16-bit Compiler[Memory Model

-ms Compile using small memory model (Default, 16-bit compiler only)

-ms! Compile using small memory model; assume DS! = SS (16-bit
compiler only. Note: there is no space between the -msand the !)

-mm Compile using medium memory model (16-bit compiler only)

-mm! Compile using medium memory model; assume DS!=SS (16-bit
compiler only. Note: there is no space between the -mm and the !)

-mc Compile using compact memory model (16-bit compiler only)

-mi Compile using large memory model (16-bit compiler only)

-mh Compile using huge memory model

Chapter 3, Project options 119

120

-Fa Enable page alignment for far segments

-Fb Enable Borland C++-compatible far data

-Fs Assume DS=SS in al memory models (16-bit compiler only)

-dc Move string literals from data segment to code segment (16-bit
compiler only)

-Vf Far C++ virtual tables (16-bit compiler only)

-h Uses fast huge pointers

-Ff Create far variables automatically

-Ff=size Create far variables automatically; set the threshold to "size" (16-bit

compiler only)
16-bit Compiler |Segment Names Data

-zZRname Data segment set to "name”

-zSname Data group set to "name”

-ZTname Data class set to "name”

-zDname BSS segment set to "name”

-zGname BSS group set to "name"

-zBname BSS class set to "name”

16-bit Compiler |Segment Names Far Data

-ZEname Far data segment set to "name"

-ZHname Constant initialized far data segment set to "name "
-Zlname Constant initialized far data class set to "name "
-zJname Constant initialized far data group set to "name "
-zZKname Far data group set to "name”

-ZFname Far data class set to "name”

-ZVhame Far virtual segment set to "name" (16-bit compiler only)
-2Wname Far virtual class set to "name" (16-bit compiler only)
-zXname Far BSS segment set to "name”

-ZYname Far BSS class set to "name"

-ZZname Far BSS group set to "name”

16-bit Compiler|Segment Names Code

-zCname Code segment set to "name”

-zPname Code group set to "name"

-zZAname Code class set to "name”

32-bit Compiler |Processor

-3 Generate 80386 instructions. (Default for 32-bit)

-4 Generate 80486 instructions

-5 Generate Pentium instructions

32-bit Compiler|Calling Convention

-pc Use C calling convention (Default: -pc, -p-)

-p Use Pascal calling convention

-pr Usefastcall calling convention for passing parametersin registers
-ps Use stdcall cal ling convention (32-bit compiler only)
C++ OptionsMember Pointer

-Vmp Honor the declared precision for all member pointer types

Paradigm C++ Reference Manual

-Vmv

-Vmm
-Vms
-Vvmd

Member pointers have no restrictions (most general representation)
(Default)

Member pointers support multiple inheritance
Member pointers support single inheritance
Use the smallest representation for member pointers

C++ OptiongC++ Compatibility

-vd
-K2

for loop variable scoping

Allow only two character types (signed and unsigned). Char istreated
assigned.

Calling convention mangling compatibility

Make virtual base class pointer same size as 'this' pointer of the class
(Default, 16-bit compiler only)

Pass class arguments by reference to atemporary variable (16-bit
compiler only)

Do not add the hidden members and code to classes with pointersto
virtual base class members (16-bit compiler only)

Pass the 'this' parameter to 'pascal’ member functions as the first
‘deep’ virtual basses

Place the virtual table pointer after nonstatic data members (16-bit
compiler only)

Treat “far” classes as“huge”

C++ OptiongVirtual Tables

Use smart C++ virtual tables (Default)
Loca C++ virtual tables

External C++ virtual tables

Public C++ virtua tables

C++ Options|Templates

-Jg
-Jgd

-Jgx

Generate definitionsfor all template instances and merge duplicates
(Default)

Generate public definitions for all template instances; duplicates result
in redefinition errors

Generate external references for all template instances

C++ OptiongException Handling

-RT

Enable exception handling (Default)
Enable exception locaion information
Enable destructor cleanup (Default)
Enable fast exception prologs

Enable compatible exception handling
Enable run-time type information (Default)

C++ OptiongGeneral

Ve

Optimizations

-Od
-01
-02

Zero-length empty base classes

Disable al optimizations
Generate smallest possible code
Generate fastest possible code

Optimizationg|16- and 32-bit

-Oc

Chapter 3, Project options

Eliminate duplicate expressions within basic blocks

121

122

-Og Eliminate duplicate expressions within functions

-0i Expand common intrinsic functions

-Ov Enable loop induction variable and strength reduction

Optimizations|16-bit

-0 Optimize jumps

-0l Compact loops

-Z Enable register load suppression optimization

-Ob Eliminate dead code

-OW Suppress the inc bp/dec bp on windows far functions (16-bit compiler
only)

-Oe Allocate global registers and analyze variable live ranges

-Oa Optimize assuming pointer expressions are not aliased on common
subexpression evaluation

-Om Moveinvariant code out of loops

-Op Propagate copies

Optimizationg32-bit

-0S Pentium instruction scheduling

-OM Cache hit optimizations (Intel compiler only)

-0l Optimize across function boundaries (Intel compiler only)

M essages

-W Display warnings on

-WXXX Enable "xxx" warning message (Default)

-gn Warnings: stop after "n" messages (Default: 255)

-jn Errors: stop after "n" messages (Default)

M essages|Por tability

-wr pt Nonportable pointer conversion (Default)

-wept Nonportable pointer comparison (Default)

-wrng Constant out of range in comparison (Default)

-wcln Constant islong

-wsig Conversion may lose significant digits

-wucp Mixing pointersto different 'char' types

Messages|ANSI Violations

-WVOI Void functions may not return avalue (Default)

-wr et Both return and return of avalue used (Default)

-Wsus Suspicious pointer conversion (Default)

-wstu Undefined structure 'structure’

-wdup Redefinition of 'macro’ isnot identical (Default)

-wbig Hexadecimal value contains more than three digits (Default)

-wbbf Bit fields must be signed or unsigned int

-wext ‘identifier' is declared as both external and static (Default)

-wdpu Declaretype 'type' prior to usein prototype (Default)

-wzdi Division by zero (Default)

-wbei Initializing 'identifier' with 'identifier' (Default)

-wpin Initialization isonly partialy bracketed

-whak Non-ANSI Keyword Used: '<keyword>" (Note: Use of thisoptionisa

requirement for ANSI conformance)

Paradigm C++ Reference Manual

M essages|Obsolete C++

-wobi Baseinitialization without a class name is now obsolete (Default)

-wofp Style of function definition is now obsolete (Default)

-wpre Overloaded prefix operator 'operator' used as a postfix operator

-wovl Overload is now unnecessary and obsolete (Default)

M essages|Potential C++ Errors

-wnci The constant member ‘identifier' is not initialized (Default)

-weas Assigning ‘type’ to ‘enum’

-whid 'functionl' hides virtual function ‘function2' (Default)

-wnfc Non-constant function ‘ident’ called for const object

-wibc Base class 'basel’ is inaccessible because also in 'base2’ (Default)

-wdsz Array sizefor 'delete’ ignored (Default)

-wnst Use qualified name to access nested type 'type' (Default)

-whch Handler for '<typel>' Hidden by Previous Handler for '<type2>'

-wmpc Conversion to type fails for members of virtual base class base
(Default)

-wmpd Maximum precision used for member pointer type <type> (Default)

-wntd Use'> >' for nested templatesinstead of ">>' (Default)

-wnvf Non-volatile function <function> called for volatile object (Default)

M essages|l nefficient C++ Coding

-winl Functions containing reserved words are not expanded inline (Default)

-wlin Temporary used to initialize 'identifier' (Default)

-wlvc Temporary used for parameter 'parameter' in call to ‘function’ (Default)

M essages|Potential Errors

-wpia Possibly incorrect assignment (Default)

-wdef Possible use of 'identifier' before definition

-wnod No declaration for function 'function’

-Wpro Call to function with no prototype (Default)

-wrvl Function should return avalue (Default)

-wamb Ambiguous operators need parentheses

-wcee Condition isaways true OR Condition is always false (Default)

M essages|I nefficient Coding

-waus 'identifier' is assigned avalue that is never used (Default)

-wpar Parameter 'parameter’ is never used (Default)

-wuse 'identifier' declared but never used

-Wstv Structure passed by value

-wrch Unreachabl e code (Default)

-weff Code has no effect (Default)

M essages|Gener al

-wasm Unknown assembler instruction

-will I11-formed pragma (Default)

-wias Array variable 'identifier' is near (Default)

-wamp Superfluous & with function

-wobs 'ident’ is obsolete

-wpch Cannot create precompiled header: header (Default)

-wmsg User-defined warnings

Chapter 3, Project options 123

124

Linker options

Generd

Map file

16-bit linker

16-bit optimizations

32-bit linker

Warnings

Command-line only options

16- and 32-bit command-line options
Linker supported command-line options
32-bit command-line options

Paradigm C++ Reference Manual

Chapter

4

Browsing through your code

The browser lets you search through your object hierarchies, classes, functions,
variables, types, constants, and labels that your program uses. The browser also lets you:

. Graphically view the hierarchies in your application, then select the object of your
choice and view the functions and symbols it contains.

. List the variables your program uses, then select one and view its declaration, list all
referencesto it in your program, or go to where it is declared in your source code.

. Listal the classes your program uses, then select one and list al the symbolsin its
interface part. From thislist, you can select a symbol and browse as you would with
any other symbol in your program.

Using the browser

If the program in the current Edit window or the first file in your project has not yet been
compiled, the Paradigm C++ IDE must first compile your program before invoking the
browser.

If you try to browse a variable or class definition (or any symbol that does not have
symbolic debug information), the Paradigm C++ IDE displays an error message.

If you changed the following default settings on the Project options dialog box, before you
use the browser, be sure to:
1. Choose Options|Project.
2. Choose Compiler|Debugging and check
. Debug information in OBJs
. Browser referenceinformation in OBJs
3. Choose Linker|Genera and check Include debug information.
4. Compile your application.

Starting the browser

To start browsing through your code, choose one of the following menu or SpeedBar
commands: From the main menu or the SpeedBar:

« Search|Browse symbol

. Search|Browse Classes

. Search|Browse Globals

Browser views
The browser provides the following views:

. Global symbols
. Objects (Class overview)
. Symbol declaration

Chapter 4, Browsing through your code 125

. Classinspection
. References

Browsing objects (class overview)

126

Choose Search|Browse classes to see an overall view of the object hierarchiesin your
application, as well asthe small details.

The browser draws your objects and shows their ancestor-descendant relationshipsin a
horizontal tree. The red linesin the hierarchy help you see the immediate ancestor-
descendant relationships of the currently selected object more clearly.

To see more detail about a particular object, double-click it. (If you are not using a
mouse, select the object by using your arrow cursor keys and press Enter.) The browser
lists the symbols (the procedures, functions, variables, and so on) used in the object.

One or more letters appear to the left of each symbol in the object that describe what kind
of symboal it is. "See Browser filters and letter symbols'.

Browsing global symbols

Choose Search|Browse globals to open awindow that lists every global symbol in your
application in aphabetical order.

To see the declaration of a particular symbol listed in the browser, use one of the
following methods:

. Double-click the symbol

. Select the symbol and press Enter

. Sdlect the symbol, choose Browse symbol from the SpeedMenu

Search

The Search input box at the bottom of the window lets you quickly search through the list
of global symbols by typing the first few letters of the symbol name. Asyou type, the
highlight bar in the list box moves to a symbol that matches the typed characters.

Browser SpeedMenu

Once you sdlect the globa symbol you are interested in, you can use the following
commands on the Browser SpeedMenu:

. Edit Source

. Browse Symboal

. Browse References

. Returnto Previous View

. Print Class Hierarchy

. Toggle Window Mode

Browsing symbols in your code

Y ou can browse any symbol in your code without viewing object hierarchies or lists of
symbolsfirst.

To do so, highlight or place the insertion point on the symbol in your code and choose
Browse symbol. from the Search menu or the Edit window SpeedMenu.

Paradigm C++ Reference Manual

If the symbol you select is a structured type, the browser shows you all the symbolsin the
scope of that type. Y ou can then choose to inspect any of these further. For example, if
you choose an object type, you will see al the symbols listed that are within the scope of
the object.

Symbol declaration window
This Browser window shows the declaration of the selected symbol.

Y ou can use the following commands on the Browser SpeedMenu:

. Edit Source

. Browse References

. Browse Class Hierarchy
. Returnto PreviousView
. Toggle Window Mode

Browsing references
This Browser window shows the references to the selected symbol.

Y ou can use the following commands on the Browser SpeedMenu:

. Edit Source

. Browse Class Hierarchy
. Return to Previous View
. Toggle Window Mode

. Set Options

Class inspection window

This Browser window shows the symbols (functions and variables) used in the selected
class.

Once you select the symbol you are interested in, you can use the following commands on
the Browser SpeedMenu:

. Edit Source

. Browse Symboal

. Browse References

. Browse Class Hierarchy

. Return to Previous View

. Toggle Window Mode

. Set Options

Browser filters and letter symbols

When you browse a particular symbol, the same letters that appear on the left that identify
the symbol appear in a Filters matrix at the bottom of the Browser window. The Filters
matrix has a column for each letter which can appear in the top or bottom row of the
column.

Use the filters to select the type of symbols you want to see listed. (Y ou can aso use the
Browser options settings to specify the types of symbols you want to see listed.)

Chapter 4, Browsing through your code 127

Table 4-1
Browser letter
symbols

Click the top cell
of the column.

Click the bottom
cell of the letter
column.

Letter Symbol

Function

Type

Variable

Integral constants
Debuggable

Inherited from an ancestor
Virtual method

< —wOo<4dm

In some cases, more than one letter appears next to a symbol. Additional letters appear to
the right of the letter identifying the type of symbol and further describe the symbol:

To view all instances of a particular type of symbol

For example, to view al the variablesin the currently selected object, click the top cell
intheV column. All the variables used in the object appear.

To hide all instances of a particular type of symbol

For example, to view only the functions and procedures in an object, you need to hide al
the variables. Click the bottom cell inthe V column, and click the top cellsin the F and P
columns.

To change several filter settings at once

Drag your mouse over the cells you want to select in the Filters matrix.

Customizing the browser

128

Use the Environment Options dialog box to select the Browser options you want to use.
1. Choose Optiong|Environment.
2. Choose Browser.

3. Specify the types of symbolsyou want to have visible in the Browser using the
Visible symbols option.

4. Specify how many browser views you can have open at one time. See single or
multiple Browser window mode in the Browser window behavior option.

Paradigm C++ Reference Manual

Chapter

5

Using the integrated debugger

No matter how careful you are when you code, your programis likely to have errors or
bugs that prevent it from running the way you intended. Debugging is the process of
locating and fixing the errorsin your program.

The Paradigm C++ IDE contains an integrated debugger that lets you debug 16- and 32-
bit embedded applications without leaving the development environment. Among other
things, the integrated debugger lets you control the execution of your program, inspect the
values of variables and items in data structures, modify the values of dataitemswhile
debugging. Y ou can access the functionality of the integrated debugger through two
menus. Debug and View along with local menus and keystrokes. This chapter introduces
you to the functionality of the integrated debugger and gives a brief overview of the
debugging process.

Types of bugs

The integrated debugger can help find two basic types of programming errors. run-time
errors and logic errors.

Run-time errors

If your program successfully compiles, but fails when you run it, you've encountered a
run-time error. Y our program contains valid statements, but the statements cause errors
when they're executed. For example, your program might be trying to open a nonexistent
file, or might be trying to divide a number by zero. The operating system detects run-time
errors and stops your program execution if such an error is encountered.

Without a debugger, run-time errors can be difficult to locate because the compiler
doesn't tell you where the error islocated in your source code. Often, the only clue you
have to work with is where your program failed and the error message generated by the
run-time error.

Although you can find run-time errors by searching through your program source code, the
integrated debugger can help you quickly track down these types of errors. Using the
integrated debugger, you can run to a specific program location. From there, you can
begin executing your program one statement at a time, watching the behavior of your
program with each step. When you execute the statement that causes your program to fail,
you have pinpointed the error. From there, you can fix the source code recompile the
program, and resume testing your program.

Logic errors

Logic errors are errors in design and implementation of your program. Y our program
statements are valid (they do something), but the actions they perform are not the actions
you had in mind when you wrote the code. For instance, logic errors can occur when
variables contain incorrect values, or when the output of your program isincorrect.

Chapter 5, Using the integrated debugger 129

Logic errors are often the most difficult type or errorsto find because they can show upin
places you might not expect. To be sure your program works as designed, you must
thoroughly test all of its aspects. Only by scrutinizing each portion of the user interface
and output of your program can you be sure that its behavior correspondsto its design. As
with run-time errors, the integrated debugger helps you locate logic errors by letting you
monitor the values of your program variables and data objects as your program executes.

Planning a debugging strategy

After program design, program development consists of a continuous cycle of program
coding and debugging. Only after you thoroughly test your program should you distribute
it to your end users. To ensure that you test all aspects of your program, it's best to have a
thorough plan for your debugging cycles.

One good debugging method involves breaking your program down into different sections
that you can systematically debug. By closely monitoring the statements in each program
section, you can verify that each areais performing as designed. If you do find a
programming error, you can correct the problem in your source code, recompile the
program, and then resume testing.

Starting a debugging session

130

To start adebugging session:
1. Build your program with debug information.
2. Run your program from within the Paradigm C++ IDE.

When debugging, you have complete control of your program’s execution. Y ou can pause
the program at any point to examine the values of program variables and data structures,
to view the sequence of function calls, and to modify the values of program variablesto
see how different values affect the behavior of your program.

Compiling with debug information

Before you can begin a debugging session, you must compile your program with symbolic
debug information. Symbolic debug information, contained in a symbol table, enables
the debugger to make connections between your program'’s source code and the machine
code that's generated by the compiler. Thislets you view the actual source code of your
program while running the program through the debugger.

To generate symbolic debug information for your project:

1. Inthe Project window, select the project node.

2. Choose Optiong|Project to open the Project Options dialog box.

3. From the Compiler|Debugging topic, check Debug Information in .OBJs to include
debug information in your project .OBJfiles (this option is checked by default).

4. From the Linker|Genera topic, check Include Debug Information. This option
transfers the symbolic debug information contained in your .OBJfiles to the .ROM
file (this option is checked by default).

Adding debugging information to your files increases their file size. Because of this,
you'll want to include debug information in your files only during the development stage
of your project. Once your programis fully debugged, compile your program without
debug information to reduce the final .AXE file size.

Paradigm C++ Reference Manual

= Not all .OBJfilesin your project need symbolic debug information - only those modules
you need to debug must contain a symbol table. However, since you can't statement step
into amodule that doesn't contain debug information, it's best to compile all your modules
with aminimum of line number debug information during the development stages of your
project.

Running your program in the Paradigm C++ IDE

Once you've compiled your program with debug information, you can begin a debugging
session by running your program in the Paradigm C++ IDE. By running your programin
the Paradigm C++ IDE, you have control of when the program runs and when it pauses.
Whenever the program is paused in the Paradigm C++ IDE, the debugger takes control.

When your program is running under the Paradigm C++ IDE, it behaves as it normally
would: your program creates windows, accepts user input, calculates values, and
displays output. During the time that your program is not running, the debugger has
control, and you can use its features to examine the current state of the program. By
viewing the values of variables, the functions on the call stack, and the program outpui,
you can ensure that the area of code you're examining is performing as it was designed.

Asyou run your program through the debugger, you can watch the behavior of your
application in the windows it creates. For best results during your debugging sessions,
arrange your screen so you can see both the Paradigm C++ IDE Edit window and your
application window as you debug. To keep windows from flickering as the focus
alternates between the debugger windows and those of your application, arrange the
windows so they don't overlap (tile the windows). With this setup, your program's
execution will be quicker and smoother during the debugging session.

Specifying program arguments
If the program you want to debug uses command-line arguments, you can specify those
arguments in the Paradigm C++ IDE in two ways.

First:
1. Choose Options|Environment then select the Debugger topic.

2. Inthe Arguments text box, type the arguments you want to use when you run your
program under the control of the integrated debugger.

Second:

1. Choose Debug|Load.
2. Type your program name and arguments in the Load dialog box.

Controlling program execution

An important advantage of a debugger isthat it lets you control the execution of your
program; you can control whether your program will execute a single machine instruction,
asingleline of code, an entire function, or an entire program block. By dictating when the
program should run and when it should pause, you can quickly move over the sections that
you know work correctly and concentrate on the sections that are causing problems.

The integrated debugger lets you control the execution of your program in the following
ways.

« Running to the cursor location

. Stepping through code

Chapter 5, Using the integrated debugger 131

132

« Running to a breakpoint
. Pausing your program

When running code through the debugger, program execution can be based on lines of
source code or on machine instructions. When debugging at the source level, the
integrated debugger lets you control the rate of debugging to the level of asingle line of
code. However, the debugger considers multiple program statements on one line of text to
be asingle line of code; you cannot individually debug multiple statements contained on a
single line of text. In addition, the debugger regards a single statement that's spread over
several lines of text asasingle line of code.

Running to the cursor location

Often when you start a debugging session, you'll want to run your program to a spot just
before the suspected location of the problem. At that point, use the debugger to ensure that
all data values are asthey should be. If everything is OK, you can run your program to
another location, and again check to ensure that your program is behaving asit should.

To run to a specific source line:
1. Inthe Edit window or CPU window, position the cursor on the line of code where
you want to begin (or resume) debugging.
2. Run to the cursor location in one of the following ways:
. Click the Run To Here button on the SpeedBar.
« Choose Run To Current from the Edit window SpeedMenu
« Choose Run To Current in the Disassembly pane of the CPU window.

To run to a specific machine instruction:

1. After your processisloaded, open a CPU view and position the disassembly pane so
that the highlight is on the address to which you want to run.

2. Choose Run To Current from the disassembly pane SpeedMenu, or click the Run To
Here button on the SpeedMenu.

When you run to the cursor, your program executes at full speed until the execution
reaches the location marked by the cursor in the Edit window, or highlight in the CPU
window. When the execution encounters the code marked by the text cursor or
highlighted, the debugger regains control and places the execution point on that line of
code.

The execution point

The execution point marks the next line of source code to be executed by the debugger.
Whenever you pause your program execution within the debugger (for example, whenever
you run to the cursor or step to a program location), the debugger highlights aline of code
using agreen arrow and colored background (depending on your color setup), marking
the location of the execution point.

The execution point always shows the next line of code to be executed, whether you are
going to step through, step into, or run your program at full speed. If there is no source
associated with the code at the current execution point, a CPU window is opened
showing the ingtruction with the instruction at the current execution point.

Paradigm C++ Reference Manual

Finding the execution point

While debugging, you're free to open, close, and navigate through any file in an Edit
window. Because of this, it's easy to lose track of the next program statement to execute,
or the location of the current program scope. To quickly return to the execution point,
choose Debug|Source At Execution Point or click the SpeedBar button. Even if you've
closed the Edit window containing the execution point, Find Execution Point opens an
Edit window, and highlights the source code containing the execution point.

If there is no source associated with the code at the current execution point, you will get
an error stating that no line corresponds to the address. If this happens, you can see the
current execution point by opening the CPU window.

Stepping through code

Stepping is the smplest way to move through your code one statement at a time. Stepping
lets you run your program one line (or instruction) at atime — the next line of code (or
instruction) will not execute until you tell the debugger to continue. After each step, you
can examine the state of the program, view the program output, and modify program data
values. Then, when you are ready, you can continue executing the next program statement.

There are two basic ways to step through your code:

Step Into The Step Into command is available on the SpeedMenu in the Edit window or by using
F8. Step Into causes the debugger to walk through your code one statement at atime. If the
execution point islocated on afunction call, the debugger moves to thefirst line of code
that defines that function. From here, you can execute that function, one statement at a
time. When you step past the return of the function, the debugger resumes stepping from
the point where the function was caled. Using the Step Into command to step through your
program one statement at a time is known as single stepping.

Step Over The Step Over command is also available on the SpeedMenu in the Edit window or by
using F7. Step Over is the same as Step Into, except that if you issue the Step Over
command when the execution point is on afunction cal, the debugger executes the
function at full speed, and pauses the execution on the line of code following the function
call.

Stepping rules
The debugger steps over single lines of lines of code based on the following rules:

. If you string severa statements together on one line, you cannot debug those
statements individually; the debugger treats all statements as asingle line of code.

. If you spread a single statement over multiple linesin your source file, the debugger
executes all the lines as a single statement.

= To ensure that the debugger accurately represents your C++ source code while stepping,
choose OptiongProject|Compiler|Debugging and click Out-of-Line Inline Functions.

Stepping into
To Step Into code, choose Statement|Step Into from the Edit window SpeedMenu or press
F7 (default keyboard mapping).

When you choose Step Into, the debugger executes the code highlighted by the execution
point. If the execution point is highlighting a function call, the debugger movesthe
execution point to the first line of code that defines the function being called.

Chapter 5, Using the integrated debugger 133

134

If the executing statement calls a function that does not contain debug information, the
debugger opens the CPU window and positions the execution point on the disassembled
instruction that corresponds to the function definition in memory.

Example

The following code fragment shows how Step Into works. Suppose these two functions
arein aprogram that was compiled with debug information:

func_1() {
statenent _a;
func_2();
st at emrent _b;

}

func_2() {
i nt custoners;
stat enent _m

}

If you choose Step Into when the execution point ison st at enent ainfunc 1,the
execution point movesto highlight thecall tof unc 2. Choosing Step Into again
positions the execution point at the first line in the definition of f unc 2. Another Step
Into command moves the execution point to st at enent _m, the first executable line of
codeinfunc_2.

When you step past afunction return statement (in this case, the closing function brace),
the debugger positions the execution point on the line following the original function call.
Here, the debugger would highlight st at enent _b with the execution point.

Asyou debug, you can choose to Step Into some functions and Step Over others. Use Step
Into when you need to fully test the function highlighted by the execution point.

Stepping over
To Step Over code, choose Statement|Step Over from the Edit Window SpeedMenu or
press F8 (default keyboard mapping).

When you choose the Step Over command, the debugger executes the code highlighted by
the execution point. If the execution point is highlighting a function cal, the debugger
executes that function at full speed, including any function calls within the function
highlighted by the execution point. The execution point then moves to the next complete
line of code.

Example

The following code fragment shows how Step Over works. Suppose these two functions
arein aprogram that was compiled with debug information:

func_1() {
stat enent _a;
func_2();
st at erment _b;

}

func_2() {
statenent _m
func_3();

}

Paradigm C++ Reference Manual

If you choose Step Over when the execution pointison st at enent ainfunc 1,the
execution point movesto highlight thecall tof unc 2. Choosing Step Over again runs
func 2 at full speed, moving the execution point to st at ement b. Notice that when
you stepover f unc 2,func 3isasorunat full speed.

As you debug, you can choose to Step Into some functions and Step Over others. Step
Over is good to use when you have fully tested afunction, and you do not need to single
step through its code.

Debugging member functions and external code

If you use classes in your programs, you can still use the integrated debugger to step
through the member functionsin your code. The debugger handles member functions the
same way it would step through functions in a program that is not object-oriented.

= If you define a member function inline, then you should check Out-of-line inline functions
to facilitate debugging the inline function.

Y ou can aso step through or step over external code written in any language (including
C, C++, Object Pascal, and assembly language) as long as the code meets all the
requirements for external linking and contains full Paradigm symbolic debugging
information. If the externa code does not contain Paradigm debug information, you can
still step through the code using the CPU window.

Running to a breakpoint

Y ou set breakpoints on lines of source code where you want the program execution to
pause during a run. Running to a breakpoint is similar to running to a cursor position that
the program runs at full speed until it reaches a certain source-code location. However,
unlike Run to Cursor, you can have multiple breakpoints in your code and you can
customize each one s0 it pauses the program's execution only when a specified condition
ismet. For more information on breakpoints, see “ Examining program data values,” page
5-148.

Pausing a program

In addition to stepping over or through code, you can also pause your program whileit is
running. Choosing Debug|Pause Process causes the debugger to pause your program. You
can use the debugger to examine the value of variables and inspect data at this state of the
program. When you are done, choose Debug|Run to continue the execution of your

program.

Terminating the program

Sometimes while debugging, you will find it necessary to restart the program from the
beginning. For example, you might need to restart the program if you step past the location
of abug, or if variables or data structures become corrupted with unwanted val ues.

Choose Debug|Terminate debug session (or press Ctrl-F2) to end the current program run.
Terminating a program closes all open program files, releases all memory allocated by
the program, and clears al variable settings. However, terminating a program does not
delete any breakpoints or watches that you might have set. This makesiit easy to resume a
debugging session.

Chapter 5, Using the integrated debugger 135

Using breakpoints

136

Y ou use breakpointsis similar to using the Run to Cursor command in that the program
runs at full speed until it reaches a certain point. But, unlike Run to Cursor, you can have
multiple breakpoints and you can choose to stop at a breakpoint only under certain
conditions. Once your program’ s execution is paused, you can use the debugger to
examine the state of your program.

The Paradigm C++ IDE keeps track of all your breakpoints during a debugging session
and associates them with your current project. Y ou can maintain all your breakpoints
from a single Breakpoints window and not have to search through your source code files
to look for them.

Debugging with breakpoints

When you run your program from the Paradigm C++ IDE, it will stop whenever the
debugger reaches the location in your program where the breakpoint is set, but before it
executes the line or instruction. The line that contains the breakpoint (or the line that most
closely corresponds to the program location where the breakpoint is set) appears in the
Edit window highlighted by the execution point. At this point, you can perform any other
debugging actions.

Setting breakpoints

Y ou can set a breakpoint the following ways:

To set an unconditional breakpoint on aline in your source code, use one of the following
methods:

. Placetheinsertion point on alinein an Edit window and choose Toggle|Breakpoint
from the Edit window SpeedMenu. or press F5 (default keyboard setting).

. Click the gutter in an Edit window next to the line where you want to set a
breakpoint.

Setting an unconditional breakpoint
To set an unconditional breakpoint on a machine instruction:
1. Highlight amachine instruction in the Disassembly pane in the CPU window.
2. Choose Toggle Breakpoint on the SpeedMenu or press F5 (default keyboard setting).

Setting a conditional breakpoint
To set aconditional breakpoint on aline or machine instruction:
1. Placetheinsertion point on alinein an Edit window or highlight alinein the
Disassembly pane of the CPU window.
2. Choose Debug|Add Breakpoint or choose Add Breakpoint from the SpeedMenu.
3. Complete the information on the Add Breakpoint dialog box.
4. Do one of the following:
. Click the Advanced button to display the Breakpoint Condition/Action Options
dialog box.

. Supply the conditions and action settings you want. See “Creating conditional
breakpoints,” page 5-137.

. Specify option set in the Options input box.

Paradigm C++ Reference Manual

Setting other breakpoints
To set other types of breakpoints:
1. Choose Debug|Add Breakpoint (or press F5 in the default keyboard setting) from
anywhere in the Paradigm C++ IDE or choose Add Breakpoint from the SpeedMenu

in an active Edit or Breakpoint window, or the Disassembly pane of the CPU
window.

2. Select a breakpoint type on the Add Breakpoint dialog box and supply any additional
information associated with the type of breakpoint selected.

3. Either

« Click OK to set an unconditional breakpoint.
. Click the Advanced button to display the Breakpoint Condition/Action Options
dialog box. See* Creating conditional breakpoints,” page 5-137.
Toview a breakpoint

Choose View|Breakpoint to display the Breakpoints window.

Setting breakpoints after program execution begins

While your program is running, you can switch to the debugger (just like you switch to
any Windows application) and set a breakpoint. When you return to your application, the
new breakpoint is set, and your application will pause or perform a specified action
when it reaches the breakpoint.

Creating conditional breakpoints

Use a conditional breakpoint when you want the debugger to activate a breakpoint only
under certain conditions. For example, you may not want a breakpoint to activate every
time it is encountered, especidly if the line containing the breakpoint is executed many
times before the actual occurrence in which you are interested. Likewise, you may not
always want a breakpoint to pause program execution. In these cases, use a conditional
breakpoint.

To set a conditional breakpoint:
1. Choose Debug|Add Breakpoint to open the Add Breakpoint dialog box.

Chapter 5, Using the integrated debugger 137

Figure5-1 Add Breakpoint dialog box

¢ Add Breakpoint l

— Breakpoint Type: —— — Other:
o File: :j Opticris: OptionS et :j
" Address Line #: :_! Group: ;i
" Data'Watch >
" [C++ Exception
" Hardware

W 0K | XK Cancel | 2 Hep |ﬁ§£€|¥5ﬁ£§&§

2. Select abreakpoint type and supply the applicable information.
3. Click Advanced to display the Breakpoint Condition/Action Options dialog box.

4. Click Expr. True and enter an expression that tells the debugger when to trigger the
breakpoint. If the condition is not met, the debugger ignores the breakpoint along with
any of itsactions.

5. If you want the debugger to activate a breakpoint only after it has been reached a
certain number of times, click Pass count and enter the number of passes. Otherwise,
your program will pause every time the breakpoint is activated.

6. If you want program execution to pause when the breakpoint is activated, click sreak
(the default). Otherwise, your program will not pause when the debugger activates the
breakpoint.

7. 1f you want the debugger to perform various actions when the breakpoint activates,
use the Actions settings. Otherwise, click OK.

138 Paradigm C++ Reference Manual

Figure5-2 Breakpoint Condition/Action Options dialog box

" Breakpoint Condition/Action Options

MNames: - Conditions -
E |Elli'|fn:|r'15gﬁ r Eﬂ:ﬂ. Tiue I _.j
™ Pass Count:
Up te: |0 |
Cusrent: |0 =
—Achons:

¥ Break [~ Stoplag [T Statlog

[~ Log Expr: El
[Ewal Exps: |
I Log Message: | El
[Enable Grougp: =
I Disable Group:| El

dh Add | = Delete (| 0K | X Cancel | 2 H

&

Removing breakpoints

Y ou can remove a breakpoint the following ways:

From an Edit window

Double-click the gutter in an Edit window next to the line that contains the breakpoint you
want to remove.

From an Edit window or the Disassembly pane of the CPU window
1. Place the insertion point on the line or highlight the instruction where the breakpoint
IS Set.
2. Choose Toggle Breakpoint from the SpeedMenu.

From the Breakpoints window
1. Choose View|Breakpoint to display the Breakpoints window.
2. Select one or more breakpoints.
3. Choose Remove Breakpoint(s) from the SpeedMenu.

Chapter 5, Using the integrated debugger 139

140

To select multiple breakpoints in the Breakpoints window, hold down the Shift or Ctrl
key as you select each breakpoint.

Disabling and enabling breakpoints

Disable a breakpoint when you prefer not to activate it the next time you run your
program, but want to save it for later use. The breakpoint remainslisted in the
Breakpoints window and available for you to enable when you want.

To enable or disable a breakpoint

1. Choose View|Breakpoint to open the Breakpoints window.
2. Click the checkbox next to the breakpoint to enable it or clear the checkbox to disable
it.
Todisable or enable selected breakpoints

1. In the Breakpoints window, hold down the Shift or Ctrl key as you select each
breakpoint.

2. Choose Enable/Disable Breakpoints from the SpeedMenu.
Touseabreakpoint to disable or enable a group of breakpoints

1. Choose Debug|Add Breakpoint to open the Add Breakpoint dialog box.
2. Click Options to open the Breakpoint Condition/Action Options dialog box.
3. Click Enable Group or Disable Group and enter a group name.

Viewing and editing code at a breakpoint

Even if abreakpoint is not in your current Edit window, you can quickly locate it in your
source code.

Viewing code at a breakpoint
1. Choose View|Breakpoint to display the Breakpoints window.
2. Select abreakpoint.
3. Choose View Source on the Breakpoints window SpeedMenu.
The source code displays in an Edit window at the breakpoint line and the Breakpoints

window remains active. If the source code is not currently open in an Edit window, the
Paradigm C++ IDE opens a new Edit window.

Editing code at a breakpoint
1. Choose View|Breakpoint to display the Breakpoints window.
2. Select abreakpoint.
3. Choose Edit Source from the Breakpoints window SpeedMenu.
The source code displaysin an active Edit window with your cursor positioned on the

breakpoint line, ready for you to edit. If the source code is not currently open in an Edit
window, the Paradigm C++ IDE opens a new Edit window.

Paradigm C++ Reference Manual

Resetting invalid breakpoints

A breakpoint must be set on executable code; otherwise, it isinvalid. For example, a
breakpoint set on acomment, ablank line, or adeclarationisinvalid. A common error is
to set a breakpoint on code that is conditionalized out using #f or #ifdef.

If you set an invalid breakpoint and run your program, the debugger displays an Invalid
Breakpoint dialog box.

Toreset an invalid breakpoint

1. Close the Invalid Breakpoint dialog box.

2. Open the Breakpoints window.

3. Find the invalid breakpoint and delete it.

4. Set the breakpoint in a proper location and continue to run your program.

= If you ignore the Invalid Breakpoint (by dismissing the dialog box) and then choose Run,
the Paradigm C++ IDE executes your program, but does not enable the invalid breakpoint.

Using breakpoint groups

Toremovea Theintegrated debugger lets you group breakpoints together so you can enable or disable

breakpointfrom a - them with a single breakpoint action.
group, select the

group name and . .
press Delete. Creating a breakpoint group

1. Choose Debug|Add Breakpoint to open the Add Breakpoint dialog box.
2. Enter aname in the Group input box.

Disabling or enabling a breakpoint group
1. Choose Debug|Add Breakpoint to open the Add Breakpoint dialog box.
2. Click Options to open the Breakpoint Condition/Action Options dialog box.
3. Click Enable Group or Disable Group and enter a group name.

Using breakpoint option sets

Youcanalso To quickly specify the behavior of one more breakpoints as you create or modify them,

create an option gtore preakpoint settingsin an option set.
set when you

create or edita _))
breakpoint. Creating a breakpoint option set

1. Choose Debug|Breakpoint options to open the Breakpoint Condition/Action Options
dialog box.

2. Enter the conditions and actions. See “ Creating conditional breakpoints,” page 5-137.
3. Click Add.
4. Enter aname in the dialog box that displays and click OK.

Associating a breakpoint with an option set
. Enter an Option namein the Add or Edit Breakpoints dialog box.

Deleting an option set

1. Choose Debug|Breakpoint options to open the Breakpoint Condition/Action Options
dialog box.

Chapter 5, Using the integrated debugger 141

2. Select an Option set and click Delete.

Changing breakpoint options

To change the conditions and actions of a breakpoint:

1. Choose View|Breakpoint to open the Breakpoints window.
2. Double-click on a breakpoint or choose Edit Breakpoint from the SpeedMenu.
3. Change the option set in the Options input box on the Edit Breakpoint dialog box.

or
Add new information as described in “Creating conditional breakpoints,” page 5-137.

Changing the color of breakpoint lines
Tousecolorstoindicateif a breakpoint isenabled, disabled, or invalid:

1. Choose Optiong|Environment.
2. Sedlect Syntax Highlighting and choose Customi ze.
3. From the Element list, select the following breakpoint options you want to change:

. Enabled Break
. Disabled Break
. Invalid Break

4. Select the background (BG) and foreground (FG) colors you want.
5. If you want highlighting, choose Default Color.

Using the Breakpoints window

The Breakpoints window lists all breakpoints currently set in the loaded project (or the
file in the active Edit window if a project is not loaded) and contains atab for each of the
following breakpoint types.

= To display the Breakpoints window, choose View|Breakpoint (Figure 5-3)

Figure5-3 Breakpoints window

Z' Breakpoints E =l

X | ~paradigm~exanples enbedded cppdenccppdenc . cpp, 29 Breal
X c:“paradigmn-~ezanples-enbedded“cppdenc~cppdeno . cpp. 46 Breal
X =:~paradigmnexzamnplesz“emnbedded~cppdenc~cppdenc. cpp., 4 Brealis—
X = ~paradigmnexzanplez“enbedded cppdenc~cppdenc . cpp. 17 Breal

_Source _.}' _Address ,l' [1ata Wwiatch j'__Q++ Exception f_ﬂardware j

The Breakpoints window lets you perform the following actions:

142 Paradigm C++ Reference Manual

Choosea « Click the checkbox beside a breakpoint to enable it or clear the checkbox to disable

command from the br int
the Breakpoint eb eakpo .

window « Double-click on abreakpoint or press Enter to open the Edit Breakpoint dialog box to
SpeedMenu. change breakpoint settings.

About the Breakpoints window
The Breakpoints window provides the following information about each breakpoint:

. Name of the source code file in which the breakpoint is set (for source breakpoints).

. Location (such asline number, file name, module, or address number) where the
breakpoint is set.

. Current state of the breakpoint:
Verified - The breakpoint is legal and validated when the process was |oaded.
Unverified - The process has not been loaded since you added the breakpoint.

Invalid - The breakpoint isillegal. The line on which you set the breakpoint does not
contain executable code (such as a blank line, comment, or declaration) and the
debugger will ignore it.

. Number of times the debugger must reach the breakpoint before activating the
breakpoint. This information appears after a breakpoint has been activated. See “Pass
Count,” page 5-146.

. Associated option set and group name as well as the conditions/action options
specified. See“ Creating conditional breakpoints,” page 5-137.

. Last Event Hit shows the breakpoint last encountered.

Integrated debugger features

Add breakpoint

Use the Add Breakpoint dialog box to create a breakpoint. The options that appear in the
middle of the dialog box change according to the breakpoint type sel ected:

. Source
. Address
. DataWatch

. C++ Exception
The following options always display on the right side of the dialog box:
. Other

= If you want to set conditions and actions that control breakpoint behavior, click Advanced
to open the Breakpoint Condition/Action Options dialog box.

Other
Contains the following options:

Options Indicates the name of the option set that defines breakpoint behavior.
Group Indicates the name of group to which the breakpoint belongs.

Chapter 5, Using the integrated debugger 143

File
Line #

Offset

Address

Length

Type

Stop on
Throw

Stop on Catch

144

Source breakpoint
Sets a breakpoint on alinein your source code.

Indicates the file that contains the source code where the breakpoint is set.
Indicates the line in the source file on which the breakpoint is set.

If you select aline of codein an Edit window and choose Add Breakpoint from the
SpeedMenu, the debugger compl etes these settings for you.

Address breakpoint
Sets a breakpoint on a machine instruction.

Indi cates the address of the machine instruction on which the breakpoint is set.

Data watch breakpoint

Use a Data watch breakpoint to pause your program when a specific location in memory
changes value. Data Watch breakpoints (also called watchpoints or changed memory
breakpoints) let you monitor expressions that evaluate to a specific data object or
memory location. Data watch breakpoints are monitored continuously during your
program’ s execution.

Because the debugger checks the breakpoint conditions after the execution of every
machine instruction, data watch breakpoints are excellent tools for pinpointing code that
is corrupting data.

Enter a specific starting address or any symbol (such as avariable or a class data
member or method) that evaluates to an address.

If you enter an address expression that evaluates to a memory location that contains
executable code, the Data watch breakpoint behaves like an Address breakpoint; the
breakpoint fires when the code at the specified address is executed.

When entering an address expression symbol, you can aso enter a count of the number of
bytes you want monitored.

For example, coding in C, suppose you have declared the following array:
int string[81];

Y ou can watch for a change in the first ten elements of this array by entering the following
item into the Condition Expression input box:
&string[0], 40

The areamonitored is 40 bytes long which equals ten elementsin the array (an int is4
bytes).

C++ exception breakpoint
Sets a breakpoint that pauses your program when it throws or catches a C++ exception.

Specifies the data type (such asint, long, char, or aclass name) used with the exception.
If you enter an ellipses (...) into the Type field, the debugger will trap any C++ exception
that is thrown or caught by your program.

Pauses program execution when an exception is thrown.

Pauses program execution when an exception is caught.

Paradigm C++ Reference Manual

Stop on Pauses program execution when any object is destroyed (when a destructor is called)
Destructor after an exception isthrown.

Breakpoint Condition/Action Options
Use this dialog box to:
. Specify settings that control the behavior of one or more breakpoints, such as the

conditions under which a breakpoint is activated and the type of actions that take
place when it does.

. Enable and disable breakpoint groups
Todisplay thisdialog box, use any of the following methods:

. Choose Debug|Breakpoint Options.

. Choose Debug|Add Breakpoint and click the Advanced button on the Add Breakpoint
window.

. Choose View|Breakpoint and double-click a breakpoint listed in the Breakpoints
window. Then click the Advanced button on the Edit Breakpoint window.

The Breakpoint Condition/Action Options dialog box contains the following options:

Names Lists the names of Option sets that have been created.

Conditions Provides settings that determine when and where a breakpoint is
activated.

Actions Provides settings that determine what actions take place when a

breakpoint is activated.

Names Liststhe names of existing option sets. Use the checkbox next to each option set to enable
or disableit.

For example, if you clear the checkbox next to an option set called MyOpt | onSet , the
debugger ignoresits settings and all breakpoints that use this option set behave like
unconditional breakpoints. To reactivate the breakpoint settingsin MyOpt i onSet so
that they will used by the debugger, click its checkbox.

Conditions Thisgroup of settings determines when and where a breakpoint is activated:

Expr. True Each time the debugger encounters the breakpoint, it evaluates an
expression to determine if the breakpoint should activate.

PassCount Indicates the number of times the debugger encounters the breakpoint line
before it activates.

TIP» click Add or Delete to create or remove an option set.

Expr. True Enter the expression you want to evaluate each time the debugger reaches the breakpoint.
If the expression becomes true (nonzero) when the breakpoint is encountered, the
debugger activates the breakpoint and carries out any actions specified for it. You can
enter a Boolean expression that, for instance, tests if a value falls within a certain range
or if aflag has been set.

Chapter 5, Using the integrated debugger 145

Pass Count

146

Actions

Break

For example:
If you enter the expression
X ==

the debugger activates the breakpoint only if x has been assigned the value 1 at the time
the breakpoint is encountered.

If you enter the expression
x >3

and select Break, when the debugger reaches the breakpoint, your program pausesif the
current value of x is greater than 3. Otherwise, the breakpoint isignored.

This option includes the following settings:

Upto Specifies the number of times you want the debugger to reach the
breakpoint before it is activated.
Current Shows the actual number of times the debugger has reached the breakpoint

so far. You can change this setting if your want to.
Unconditional breakpoint example

Suppose Bresak is checked, and in the Pass Count box you enter 2. In this case, your
program does not stop until the second time the debugger reaches the breakpoint.

Conditional breakpoint example

Suppose Break is checked, plus you enter the expression x>3 and in the Pass Count box
you enter 2. In this case, your program does not stop until the second time the debugger
reaches the breakpoint (that is, when the value of x is greater than 3).

This group of options lets you specify the actions you want carried out each time the
breakpoint is activated:

Break Pauses program execution

Stop Log Stops posting debugger generated messages

Start Log Starts posting debugger generated messages

Log Expr Displays the value of an expression in the message window
Eva Expr Evaluates an expression

Log Message Displays a message in the message window

Enable Group Reactivates a group of breakpoints

Disable Group Disables a group of breakpoints

Click Break (the default) to pause program execution when the debugger activates the
breakpoint. Clear this checkbox if you do not want your program to pause at the
breakpoint.

Paradigm C++ Reference Manual

Stop Log

Start Log

Log Expr

Eval Expr

You cannot use
this technique to
directly modify
your compiled
program.

Log
Message

Disable
Group

Enable
Group

Add
Conditions/
Actions

Chapter 5, Using the integrated debugger

Stops displaying debugger messages in the Run-time Tab of the Message window when
the breakpoint is activated.

Starts displaying debugger messages in the Run-time Tab of the Message window when
the breakpoint is activated.

Click Log Exp if you want to display the value of an expression in the Run-time tab of the
Message window. Then, enter the expression in the input box next to it. The debugger
logs the value each time the breakpoint activates. Use this option when you want to output
avalue each time you reach a specific place in your program — this technique is known
as instrumentation.

For example, you can place a breakpoint at the beginning of aroutine and set it to log the
values of the routine arguments. Then, after running the program, you can determine where
the routine was called from, and if it was called with erroneous arguments. Thiswill give
you no ideawhere it was called from, but will tell you what the arguments are.

When you log expressions, be careful of expressions that unexpectedly change the values
of variables or data objects (side effects).

Click Eva Expr if you want the breakpoint to evaluate an expression. Then, enter an
expression in the input box next to it. For best results, use an expression that changes the
value of avariable or data object (side effects).

By “splicing in” a piece of code before a given source line, you can effectively test a
smple bug fix; you do not have to go through the trouble of compiling and linking your
program just to test aminor change to aroutine.

Click Log message if you want the breakpoint to display a message in the Run-time tab of
the Message window when the breakpoint is activated. Then, enter the text of the message
in the input box next to it.

Click Disable group if you want the breakpoint to disable a group of breakpoints. Then,
enter agroup name in the input box next to it.

When a group of breakpointsis disabled, the breakpoints are not erased, they are smply
hidden from the debugger until you enable them.

Click Enable group if you want the breakpoint to reactivate a group of breakpoints that
have been previoudy disabled. Then, enter a group name in the input box next to it.

Enter aname for the option set and click OK to create anew set of breakpoint options.
Then enter your selections using the Breakpoint Condition/Action options dialog box.

147

Edit

Breakpoint
dialog box

==

Use this dialog box to modify an existing breakpoint. The options that appear on left side
of the dialog box change according to the breakpoint type selected.

The integrated debugger provides the following types of breakpoints:

. Source
. Address
. Datawatch

. C++ Exception
The following options always display on the right side of the dialog box:
. Other

If you want to set conditions and actions that control breakpoint behavior, click Advanced
to open the Breakpoint Condition/Action options dialog box.

Examining program data values

148

Even though you can discover many interesting things about your program by running and
stepping through it, you'll usually need to examine the values of program variablesto
uncover bugs. For example, it's helpful to know the value of the index variable as you
step through afor loop, or the values of the parameters passed to a function call.

After you have paused your application within the integrated debugger, you can examine
the different symbols and data structures with regards to the location of the current
execution point.

Y ou can view the state of your program by:

. Watching program values

. Inspecting data el ements.

. Evauating expressions

. Viewing the low-level state of your program
. Viewing functionsin the Call Stack window

Y ou can also use the Browser to view the global variables and classes contained in your
program.

Modifying program data values

Sometimes you will find that a programming error is caused by an incorrect data value.
Using the integrated debugger, you can test a"fix" by modifying the data value while your
program is running. Y ou can modify program data vaues using:

. TheEvauate diaog box.

« The Inspector window's Change SpeedMenu command

. A breakpoint's Evaluate action, set from the Breakpoint Condition/Action dialog box
. The CPU window's Dump pane

. TheRegister & Stack window

Understanding watch expressions

Y ou use watches to monitor the changing values of a variables or expressions during your
program run. After you enter a watch expression, the Watches window displays the

Paradigm C++ Reference Manual

Figure 5-4
Watches window

The Watches
window will be
blank if you have
not added any
watches.

=

current value of the expression based on the scope of the execution point. Each time your
program pauses (such as when it encounters a breakpoint), the value of the watch changes
to reflect the current value of the expression according to the values of the variablesin
your program.

Using Watches window
To display the Watches window, choose View|Watch.

@ Watches _ O]
I

¥ pas=count

The Watches window lists the watches you are currently monitoring. Check the checkbox
beside awatch to enableit. Clear the checkbox beside a watch to disableit.

The |eft side of the Watches window lists the expressions you enter as watches and their
corresponding data types and values appear on the right. The values of compound data
objects (such as arrays and structures) appear between braces ({ }).

If the execution point steps out of the scope of awatch expression, the watch expression
is undefined. When the execution point re-enters the scope of the expression, the Watches
window again displays the current value of the expression.

Adding a watch

Y ou can add awatch the following ways:

. Placetheinsertion point on aword in an Edit window and choose Watch from the
Edit window SpeedMenu. The debugger adds a watch on the expression at the
insertion point and opens the Watches window.

. From the Watches window, right-click to bring up the Watches window SpeedMenu
and choose Add Watch. In the Add Watch dialog box, create a watch expression on
any variable or expression available to the program you are debugging.

. Bring up the Add Watch dialog box by choosing Debug|Add Watch and enter a
variable or expression you would like to watch.

Add Watch dialog box

The Add Watch dialog box lets you monitor the value of both smple variables (such as
integers) and compound data objects (such as arrays). In addition, you can watch the
values of calculated expressions that do not refer directly to memory locations. For
example, you could watch theexpressonx * y + 4.

Chapter 5, Using the integrated debugger 149

150

To create a watch expression usng the Add Watch dialog box:
1. Choose Debug|Add Watch or choose Add Watch from the Watches window

SpeedMenu.
Figure 5-5 S
I & Add Watch 7] |
dialog box .
E spreszion:
[o 0K
| #

x Caticel
? Help

% Advanced

2. Enter an expression into the Expression input box.
3. Click OK to add the watch or choose any of the following optional settings:
. Advanced

= After you add the watch expression, the Paradigm C++ IDE automatically opensthe
Watches window if it is not already open.

Formatting watch expressions

Y ou can format the display of awatch expression using the Watch Properties dialog box.
Click Advanced from the Add Watch dialog box to bring up the Watch Properties dialog
box.

Paradigm C++ Reference Manual

Figure 5-6
Watch Properties
dialog box

Chapter 5, Using the integrated debugger

5.::1‘ W atch Properties E |

— Radix:
=) QeclmaE [T Hexadecimal
- Dizplay az:
" Default ™ Character i~ Sting
" Shucture " Painter " Floating point
[~ Memomn dump
Repeat count: |0 Significant digits; |7

v' Ok, l x Eann:ell ? Help

By default, the debugger displays integer valuesin decimal form. However, by checking
the Hexadecimal button in the Watch Properties dialog box, you can specify that an
integer watch be displayed as hexadecimal. Y ou can also vary the display of the watches
using the Display As buttons in the Watch Properties dialog box.

For more on Display As buttons in the Watch Properties dialog box, select the Display
As button you would like help on and hit F1 for online Help.

To format afloating-point expression, click the Floating Point button, then indicate the
number of significant digits you want displayed in the Watch window by typing this
number in the Significant Digits text box.

If you're setting up awatch on an element in a data structure such as an array), you can
display the values of consecutive data elements. For example, suppose you have an array
of five integers named xarray. Type the number 5 in the Repeat Count text box of the
Watch Properties dialog box to see al five values of the array.

Y ou can also format watch expressions using the expression format specifiers shown in
Table 5-1, page 5-155. Format specifiers settings override any settings specified in the
Watch Properties dialog box. Format specifiers use the following syntax:

expression [, format_specifier]

Changing watch properties

To change the properties of awatch:

1. Choose View|Watch, to open the Watches window.
2. Double-click awatch to open the Edit Watch dialog box.

151

Figure 5-7 = 2
Edit Watch dialog [l 3 LTG0 1 K I
box
Expreszion:
ok
x Cancel

? Help

8 Advanced

Edit Watch dialog box
Use this dialog box to change the settings for awatch expression:
1. Either accept or change the information in either of the following options.
2. Either
. Choose OK to save your changes and close the dialog box.
. Click Advanced to open the Watch Properties if you want to change how awatch
expression displays in the Watches window.

Disabling and enabling watches

Evauating many watch expressions can slow down the process of debugging. Disable a
watch expression when you prefer not to view it in the Watches window, but want to save
it for later use.

To enableor disable a watch

1. Choose View|Watch to open the Watch window.
2. Either
. Click the checkbox next to awatch to enableit.

. Clear the checkbox next to awatch to disableit.
To disable or enable selected watches

1. Hold down the shift or Ctrl key and click on one or more watches in the Watch
window.

2. Choose Enable or Disable watches from the Watch window SpeedM enu.

Deleting a watch

Y ou can delete a watch the following ways:

1. Choose View|Watch to display the Watches window.

2. Select one or more watch expressions. (To make multiple selections, hold down the
shift or Ctrl key and click.)

3. Choose Remove Watch(es) on the SpeedMenu.

152 Paradigm C++ Reference Manual

Dynamic updates

The Dynamic update dialog box controls the behavior of memory reads and peripheral
register reads while running. Inspector and Watch windows can be updated dynamically
while running, if the option Allow memory reads while running is enabled. Periphera
register viewers can aso be dynamically updated while running if the option Allow
peripheral reads while running is enabled. Enabling these options will interrupt target
execution. Do not enable these options if you wish non-intrusive execution of your
application.

= 1heseoptionsonly apply to remote debugging solutions with the ability to interrupt target
execution.

Inspecting data elements

Y ou can use inspect windows to examine and modify data values. Inspect windows are
extremely useful because they format the data according to the type of data being viewed;
there are different types of Inspect windows for scalars, arrays, structures, functions, and
classes with and without member functions.

The easiest way to inspect adataitem isto highlight the expression you want to inspect
(or just position the text cursor on the token) in the Edit window, and choose I nspect
Object from the SpeedMenu (or press Alt-F5). If you inspect expressions using this
method, the expression is always evaluated within the scope of the line on which the
eXpression appears.

You can also inspect data expressions using the following method,

1. Choose Debug|Inspect to display the Inspect Expression window.

2. Type the expression you want to inspect, then choose a previoudy entered expression
from the drop down list.

3. Choose OK to display an Inspector window.
If the execution point isin the scope of the expression you are inspecting, the value

appears in the Inspect window. If the execution point is outside the scope of the
expression, the value is undefined.

If you are inspecting a compound data item, such as an array or a structure, you can view
the details of the data item by opening another Inspect window on the element you want to

inspect.

Toingpect an element of a compound data item:
1. Inthe Inspector window, select the item you want to inspect.
2. Choose Inspect on the Inspector window SpeedMenu, or press Enter.

You can also use I nspector windows to change the value of a single data item:
1. Select the data item whose value you want to modify.

2. Choose Change on the Inspect window SpeedMenu.
3. Typethe new vaue into the Change value dialog box and click OK.

If you are inspecting a data structure, it is possible the number of items displayed might
be so great that you will have to scroll in the Inspector window to see the data you want.
For easier viewing,

Chapter 5, Using the integrated debugger 153

Figure 5-8

Evaluator dialog

154

box

Narrow the display to a range of data items:

1. Left-click in the Ingpect window or choose Set Range from the SpeedM enu.
2. Inthe Starting Index text box, enter the index of the first item you want to view.

3. Inthe Count text box, enter the number of items you want to see in the Inspect
window.

Evaluating and modifying expressions

Y ou can evaluate expressions using the Expression Evaluator dialog box. The Expression
Evauator dialog box has the advantage that it |ets you change the values of variables and
items in data structures during the course of your debugging session. This can be useful if
you think you've found the solution to a bug, and you want to try it out before exiting the
debugger, changing the source code, and recompiling the program.

Evaluating expressions

Choose Debug|Evaluate to open the Expression Evaluator dialog box. By default, the
token at the cursor position in the current Edit window is placed in the Expression text
box. Y ou can accept or modify this expression, enter another one, or choose an
expression from the history list of expressions you've previously evaluated.

& Evaluator =

— Expression:

E

‘Hezult:

— Mew Yalue:

! H

Flr) Evaluate] X= Modify | v’ Cloze | ? Help |

To evaluated the expression, click the Evaluate button. Using this dialog box, you can
evaluate any valid language expression, except ones that contain:

. Local or dtatic variables that are not accessible from the current execution point

. Symbols or macros defined with #define

When you evaluate an expression, the current value of the expression is displayed in the
Result field of the dialog box. If you need to, you can format the result by adding a comma

and one or more format specifiersto the end of the expression entered in the Expression
text box. Table 5.1, page 5.155 details the legal format specifiers.

Paradigm C++ Reference Manual

Tables-1 Character Types affected

Function

Expression

format specifiers H or X

Integers

C Char, strings

D Integers
Fn Floating point

nM All

P Pointers

R Structures, unions

S Char, strings

Hexadecimal. Shows integer values in hexadecimal
with the Ox prefix, including those in data structures.

Character. Shows special display charactersfor
ASCII 0-31. By default, such characters are shown
using the appropriate C escape sequences (/n, /t, and
S0 on).

Decimal. Showsinteger valuesin decimal form,
including those in data structures.

Floating point. Showsn significant digits (wherenis
in the range of 2-18, and 7 is the default).

Memory dump. Showsn bytes starting at the address
of theindicated expression. If nisnot specified, it
defaultsto the size in bytes of the type of the variable.
By default, each byte displays astwo hex digits. The
C,D, H, S, and X specifiers can be used with M to
change the byte formatting.

Pointer. Shows pointersin seg: ofs instead of the
default Ptr(seg: ofs). It tells you the region of memory
in which the segment is located and, if appropriate,
the name of the variable at the offset address.

Structure/Union. Shows field names and values such
as(X:1;Y:10;Z:5) instead of (1,10,5).

String. Shows ASCII 0-31 as C escape sequences.
Use only to modify memory dumps (seenM above).

For example, to display aresult in hexadecimal, type ,H after the expression. To seea
floating-point number to 3 decimal places, type ,F3 after the expression.

Y ou can aso use arepeat count to reference a specific number of dataitemsin arrays
and structures. To specify arepeat count, follow the expression with a comma and the
number of dataitems you want to reference. For example, suppose you declared the

following array in your program:

int ny_array[10] ;

The following expression evaluates the first 5 elements of this array and displays the

result in hexadecimal:
my_array, 5h

Modifying the values of variables

Once you've evaluated a variable or data structure item, you can modify its value.
Modifying the value of data items during a debugging session lets you test different bug
hypotheses and see how a section of code behaves under different circumstances.

To modify the value of a data item:

1. Open the Expression Evaluator dialog box and enter the name of the variable you
want to modify into the Expression input box.

2. Click Evaluate to evaluate the data item.

3. Typeavaueinto the New Vaue text box (or choose a value from the drop down
list), then click Modify to update the data item.

Chapter 5, Using the integrated debugger

155

= When you modify the value of a dataitem through the debugger, the modification is
effective for that specific program run only; the changes you make through the Expression
Evaluator dialog box do not affect your program source code or the compiled program.
To make your change permanent, you must modify your program source code in the Edit
window, then recompile your program.

Keep these pointsin mind when you modify program data values:

Y ou can change individual variables or elements of arrays and data structures, but you
cannot change the entire contents of an array or data structure.

. Theexpressoninthe New Vaue text box must evaluate to aresult that is assignment-
compatible with the variable to which you want to assign it. A good guidelineisif
that assignment would cause a compile-time or run-time error, it is not alegal
modification value.

Warning! Modifying values (especially pointer values and array indexes), can have undesirable
effects because you can overwrite other variables and data structures. Use caution
whenever you modify program vaues from the debugger.

CPU window

The CPU window consists of five separate panes. Each pane gives you aview into a
specific low-level aspect of your running application:

. The Disassembly pane displays the assembly instructions that have been
disassembled from your application's machine code. In addition, the Disassembly
pane displays the original program source code above the associated assembly
instructions.

« The Dump pane displays a memory dump of any memory accessible to the currently
loaded executable module. By default, memory is displayed as hexadecimal bytes.

. The Stack Pane displays the current contents of the program stack. By default, the
stack is displayed as hexadecimal bytes.

. TheRegisters pane displays the current values of the CPU registers.
. TheFlagspane displays the current values of the CPU flags.

Each pane has an individual SpeedMenu that provides commands specific to the contents
of that pane and the target processor.

156 Paradigm C++ Reference Manual

Figure5-9 CPU window

=2 Am186EM

c:“paradiga~exaaplesseabedded~c [A¥ 2007 |CF
100000 AP push bp

1000:00A9 mowv bp. =p

1000:00AB =ub =p. 0xll6a
1000:00AF push =1

1000:00B0 push di
c:»paradiga*exzamplesz*eabedded*c
1000:00B1 fld=

1000:00B4 f=tp [3]

1000:00B9 £f1d41

1000:00BC f=tp gword ptr [bp-0=00
c:»paradiga™exampleseabedded*c
1000:00C21 f£1d qword ptr [0=0024]
1000:00Ce f=tp [pi]
c:»paradiga~examplesseabedded*c
1000:00CA f£1d gword ptr [0x002c]
1000:00CF f=tp [1]

01000000 A0 00 00 00 4E S5 4C 4C K.
0100:0008 20 43 48 45 43 4B 00 00 I :
0100:0010 00 00 OO0 00 OO0 00 00 00 .. | OOFF:FFFO OOEA

ndan . . and a0 NN N an oo oo no nn NAOTT . TOTTO°TT NS an mn

Resizing the CPU window panes

Y ou can customize the layout of the CPU window by resizing the panes within the
window. Drag the pane borders within the window to enlarge or shrink the windows to
your liking.

The Disassembly pane

The |eft side of the Disassembly pane lists the address of each disassembled instruction.
An arrow to theright of the memory address indicates the location of the current
execution point. To the right of the memory addresses, the Disassembly pane displays the
assembly instructions that have been disassembled from the machine code produced by
the compiler. If you are viewing code that has been linked with a symbol table, the
debugger displays the source code that is associated with the disassembled instructions.

The Disassembly pane SpeedMenu
The Disassembly pane supports the following keyboard commands:

. PressCtrl-N to set the ingtruction pointer (the value of IP/EIP register) to the
beginning of the statement that you have highlighted in the Disassembly pane. Note
that thisis not the same as stepping through the instructions; the debugger does not
execute any instructions that you might skip.

. Press Ctri+LeftArrow and Ctrl+RightArrow to shift the starting point of the display up or
down one byte. Beware that changing the starting point of the display in the
Disassembly pane changes where the debugger begins disassembling the machine
code.

Chapter 5, Using the integrated debugger 157

Run to
Current

Set PC to
current

Toggle
Breakpoint

Go to
Address

Go to
current PC

158

The debugger displays dashes if you view a program memory location in which nothing is
loaded.

The Disassembly pane has the following SpeedMenu commands:

. RunTo Current

. Set PC To Current

. Toggle Breakpoint

. GotoAddress

. Goto Current PC

. Follow jump <address> into Disassembly pane

. Follow address <address> into Memory Dump pane
. Show previous address

. Goto source

The Run To Current command lets you run your program at full speed to the instruction
that you have selected in the Disassembly pane. After your program is paused, you can
use this command to resume debugging at a specific program instruction.

The Set PC to Current command changes the location of the program counter (the value
held in the IP/EIP register) to the currently highlighted line in the Disassembly pane.
When you resume program execution in the debugger, it starts at the new address. This
command is useful when you want to skip certain machine instructions.

Use this command with extreme care; it is easy to place your system in an unstable state
when you skip over program instructions.

When you choose Toggle Breakpoint, the debugger sets an unconditiona or "simple’
breakpoint at the instruction which you have selected in the Disassembly pane. A simple
breakpoint has no conditions, and the only action isthat it will pause the program's
execution.

If asimple breakpoint exists on the selected instruction, then Toggle Breakpoint will
delete the breakpoint at that code location.

The Go to Address command prompts you for anew area of memory to display in the
Code, Dump, or Machine Stack panes of the CPU window. Enter any expression that
evaluates to amemory location, such as main(). Be sure to precede hexadecimal values
with Ox.

The debugger displays dashesif you try to access an address that is not within the scope
of the application you are debugging.

Y ou can also press Ctrl+LeftArrow and Ctrl+RightArrow to shift the starting point of the
display up or down one byte.

This command positions the Disassembly pane at the location of the current program
counter (the location indicated by the IP/EIP register). This location indicates the next
instruction to be executed by your program.

Paradigm C++ Reference Manual

Follow

jump into
Disassembly
pane

Follow
address into
Dump pane

Show
previous
address

Go to source

This command is useful when you have navigated through the Disassembly pane, and you
want to return to the next instruction to be executed.

This command highlights in the Disassembly pane the destination address of the currently
highlighted instruction. Use this command in conjunction with instructions that cause a
transfer of control (such as CALL, JMP, and INT) and with conditional jump
instructions (such as JZ, JNE, L OOP, and so forth). For conditional jumps, the address
isshown asif the jump condition is TRUE. Use the Show Previous Address SpeedMenu
command to return to the origin of the jJump.

From the Memory Dump pane, set the display to Longs for best results.

This command highlightsin the Memory Dump pane the address of the currently
highlighted address. The Show Previous Address SpeedMenu command returns you to the
address from where you jumped.

This command restores the CPU window to the display it had before you issued the last
Follow Address command. The Follow Address commands are found on the SpeedMenus
of the Disassembly pane, the Machine Stack pane, and the Memory Dump pane of the
CPU window.

The Go to source command activates the Edit window and positions the insertion point at
the source code that corresponds to the disassembled instruction selected in the
Disassembly pane. If there is no corresponding source code (for example, if you're
examining Windows kernel code), this command has no effect.

Memory Dump pane

The Dump pane displays the raw values contained in addressable areas of your program.
The display is broken down into three sections: the memory addresses, the current values
in memory, and an ASCI| representation of the valuesin memory.

By default, the Dump pane displays the memory values in hexadecimal notation. The
leftmost part of each line shows the starting address of the line. Following the address
listing is an 8-byte hexadecimal listing of the values contained at that location in memory.
Each byte in memory is represented by two hexadecimal digits. Following the
hexadecimal display isan ASCII display of the memory. Non-printable values are
represented with a period.

The format of the memory display depends on the format selected with the Display As
SpeedMenu command. If you choose one of the floating-point display formats (Floats or
Doubles), a single floating-point number is displayed on each line. The Bytes format
displays 8 bytes per line, Words displays 4 words per line, and Longs displays 2 long
words per line.

Y ou can press Ctri+LeftArrow and Ctrl+RightArrow to shift the starting point of the display
up or down one byte. Using these keystrokes is often faster than using the Go to Address
command to make small adjustments to the display.

Chapter 5, Using the integrated debugger 159

Display as

Table 5-2
Data formats

Follow
address into
Disassembly

pane

Follow
address into
Stack pane

The

debugger
displays dashes
if you view an
unloaded
program memory
location.

160

The Dump pane SpeedMenu

The Dump pane has the following SpeedMenu commands:

. GotoAddress

. Display As

. Follow address <address> into Disassembly pane

. Follow address <address> into Memory Dump pane

. Follow address <address> into Machine Stack pane

. Show previous address

Y ou can change the values of memory displayed in the Dump pane by pressing the Ins key
and typing into the display (when you press Ins, the insertion point in the pane shrinks to
highlight a single nibble in memory). Be extremely careful when changing program

memory values; even small changes in program values can have disastrous effects on your
running program.

Use the Display As command to format the data that’s listed in the Dump or Stack pane of
the CPU window. Y ou can choose any of the data formats listed in the following table:

Data type Display format

Bytes Displays datain hexadecimal bytes

Words Displays datain 2-byte hexadecimal numbers

Longs Displays datain 4-byte hexadecima numbers

Floats Displays datain 4-byte floating-point numbers using scientific notation

Doubles Displays datain 8-byte floating-point numbers using scientific notation

This command highlights in the Disassembly pane the address of the currently highlighted
address. The Show Previous Address SpeedMenu command returns you to the address
from where you jumped.

From the Memory Dump pane, set the display to Longs for best results.

This command highlights in the Machine Stack pane the address of the currently
highlighted address. The Show Previous Address SpeedMenu command returns you to the
address from where you jumped.

Set the display to Longs for best results.

Machine Stack pane

The Stack pane displays the raw values contained in the your program stack. The display
is broken down into three sections: the memory addresses, the current values on the stack,
and an ASCI| representation of the stack values.

By default, the Machine Stack pane displays the memory vaues in hexadecimal notation.
The leftmost part of each line shows the starting address of the line. Following the
address listing is a 4-byte listing of the values contained at that memory location. Each
byte is represented by two hexadecimal digits. Following the hexadecimal display is an
ASCII display of the memory; non-printable values are represented with a period.

Paradigm C++ Reference Manual

Go to top
frame

Go to top of
stack

The format of the memory display depends on the format selected with the Display As

SpeedMenu command. If you choose one of the floating-point display formats (Floats or

Doubles), a single floating-point number is displayed on each line. The Bytes format
displays 4 bytes per line, Words displays 2 words per line, and Longs (the default)
displays 1 long word per line.

Y ou can press Ctri+LeftArrow and Ctrl+RightArrow to shift the starting point of the display
up or down one byte. Using these keystrokes is often faster than using the Go to Address

command to make small adjustments to the display.

The Stack pane SpeedMenu

The Stack pane has the following SpeedMenu commands:
. GotoAddress

. GotoTopFrame

. GotoTop of Stack

. Display As

. Follow address <address> into Disassembly pane

. Follow address <address> into Memory Dump pane
. Follow address <address> into Machine Stack pane

. Show previous address

Y ou can change the values of memory displayed in the Stack pane by pressing the Ins key
and typing into the display (when you press Ins, the insertion point in the pane shrinksto

highlight asingle nibble in memory). Be extremely careful when changing program

memory values; even small changesin program values can have disastrous effects on your

running program.

Positions the insertion point in the Stack pane at the address of the frame pointer (the
address held in the BP/EBP register).

Positions the insertion point in the Stack pane at the address of the stack pointer (the
address held in the SP/ESP register).

Registers pane

The Registers pane displays the contents of the CPU registers of the processor. These
registers consist of eight 16-bit 32-bit general purpose registers, six 16-bit segment
registers, and the program counter (IP/EIP), and the flags register (FL/EFL).

After you execute an ingtruction, the Registers pane highlightsin red any registers that
have changed value since the program was last paused.

The Registers pane SpeedMenu
The Registers pane has the following SpeedMenu commands:

« Increment Register
. Decrement Register
. Zero Register

. Change Register

Chapter 5, Using the integrated debugger

161

Increment
register

Decrement
register

Zero register
Change

register

Show old
registers

Table 5-3
Flags pane
indicators

162

. Show Old Registers/Show Current Registers

Increment Register adds 1 to the value in the currently highlighted register. Thisletsyou
test “off-by-one” bugs by making small adjustments to the register values.

Decrement Register subtracts 1 from the value in the currently highlighted register. This
lets you test “off-by-one” bugs by making small adjustments to the register values.

The Zero Register command sets the value of the currently highlighted register to O.

Lets you change the vaue of the currently highlighted register. This command opens the
Change Register dialog box where you enter anew value. Y ou can make full use of the
expression evaluator to enter new values. Be sure to precede hexadecimal values with

0x.

This command toggles between Show old Registers and Show current registers. When
you select Show old registers, the Registers pane displays the values which the registers
had before the execution of the last instruction. The menu command then changes to Show
current registers, which changes the display back to the current register values.

Y ou can change the values of memory displayed in the Registers pane by pressing the Ins
key and typing into the display (when you press Ins, the insertion point in the pane shrinks
to highlight a single nibble in memory). Be extremely careful when changing register
values; even small changes can have disastrous effects on your running program.

Flags pane

The Fags pane shows the current state of the flags and information bits contained in the
processor flags register. After you execute an instruction, the Flags pane highlightsin red
any flags that have changed vaue since the program was last paused.

The processor uses the following bitsin this register to control certain operations and
indicate the state of the processor after it executes certain instructions:

Lettersin pane Flag/bit name EFL register bit number
CF Carry flag 0

PF Parity flag 2

AF Auxiliary carry 4

ZF Zero flag 6

Sk Signflag 7

TF Trapflag 8

IF Interrupt flag 9

DF Direction flag 10

OF Overflow flag 11

10 1/O privilege level 12 and 13
NF Nested task flag 14

RF Resumeflag 16

Paradigm C++ Reference Manual

Toggle flag

Viewing fu

VM Virtual mode 17
AC Alignment check 18

The Flags pane SpeedMenu
The Flag pane has the following SpeedMenu commands:

. ToggleFlag

Y ou can change the values of memory displayed in the Flags pane by pressing the Ins key
and typing into the display (when you press ins, the insertion point in the pane shrinks to
highlight a single binary value in memory).

The flag and information bits in the Flags pane can each hold a binary vaue of O or 1.
This command toggles the selected flag or bit between these two binary values.

nction calls

Figure 5-10

hH',' Call Stack O] x|
| getport(3)

While debugging, it can be useful to know the order of function calls that brought you to
your current program location. Using the Call Stack window, you can view the current
sequence of function calls. The Call Stack window is also helpful when you want to view
the arguments passed to afunction call; each function listing in the window is followed
by alisting that details the arguments with which the call was made. Use View|Call Stack
to display the Call Stack window.

Call Stack window

_maini)

In the Call Stack window, the function that is currently executing is listed on top, with all
previoudy called functions listed in sequence below. The bottom of the list always

shows the first function in the calling sequence.

Chapter 5, Using the integrated debugger 163

164

The call stack is particularly useful if you accidentally step through code that you wanted
to step over. Using the Call Stack window, you can return to the point where the current
function was cdled from, and then resume debugging from there:

1. Inthe Call Stack window, double-click the function that called the function you
accidentally stepped into (it will be the second function listed in the Call Stack
window). The Edit window becomes active with the cursor positioned at the location
of the function call.

2. Inthe Edit window, move the cursor to the statement following the function call.
3. Choose Run to Cursor on the Edit window SpeedMenu (or press F4).

Navigating to function calls

Using the Call Stack window, you can view or edit the source code located at a particular
function call. Right-clicking afunction in the Call Stack window displays the
SpeedMenu, from where you can choose either View Source or Edit Source. Each of
these commands causes the Edit window to display the selected function; however, Edit
Source gives focus to the Edit window so you can modify the source code at that function
location.

If you select the top function in the Call Stack window, these commands cause the Edit
window to display the location of the execution point in the current function. Selecting
any other function call causes the debugger to display the actual function cal in the Edit
window.

Paradigm C++ Reference Manual

Chapter

6

Paradigm C++ compiler

If you prefer to develop your applications outside of the Paradigm C++ IDE, you can
compile and link your programs from the command line using the Paradigm command-line
tools. When you develop applications using this method, you must first write your
program source code using a text editor, then compile the code into an object (.OBJ) file
using the appropriate command-line compiler. After the .OBJfileis generated, you must
link al the necessary filesto create the final executable program.

Using the command-line compiler

Paradigm C++ includes the following compiler:
. PCC.EXE isthe 16-bit compiler.

Command-line compiler syntax

The genera syntax for the Paradigm C++ command-line compiler is:

PCC [option [option...]] filenane [fil enane...]

—» |temsenclosed in brackets are optional. The option items refer to the command-line
options and filename refers to the source-code files you want to compile. A complete
summary of command-line options can be found under "command-line options® in the
online Help index. A list of command-line optionsis also on page 3-112.

To see alist of the commonly used compiler options, type PCC at the command line
(without any options or file names), then press Enter. This list displays the options that
are enabled by default.

The command-line compiler name and each option and file name must be separated by at
least one space. Precede each option by either a hyphen (-) or aforward slash (/); for
example:

PCC -lc:\code\hfiles

Options and file names entered on the command line override settings in configuration
files.

Y ou can use PCC to send filesto PLINK (.OBJfiles) or PASM ((LASM filesif you have
PASM installed on your machine).

Default settings

PCC.EXE has options that are on by default. To turn off a default option or to override
options in a configuration file, follow the option with aminus (-) sign.

Files without extensions and files with the .CPP extension compile as C++ files. Files
with a.C extension or with extensions other than .CPP, .OBJ, .LIB, or .ASM compile as
Cfiles.

Chapter 6, Paradigm C++ compiler 165

Compiler configuration files

If you repeatedly use a certain set of options, you can list them in a configuration file
instead of continually typing them on the command line. A configuration file is a standard
ASCI|I text file that contains one or more command-line options. Each option must be
separated by a space or anew line.

Whenever you issue a compile command, PCC.EXE searches for a configuration file
called PCC.CFG. The compilerslook for the .CFG filesfirst in the directory where you
issue the compile command, then in the directory where the compilers are located.

Y ou can create and use multiple configuration filesin addition to using the default .CFG
file. To use a configuration file, use the following syntax where you would place the
compiler options:

+[path] fil enane

For example, you could use the following command line to use a configuration file called
MY CONFIG.CFG:

PCC +C. \ M\YPRQJ\ MYCONFI G CFG nycode. cpp
Options typed on the command line override settings stored in configuration files.

Compiler response files

Response files |et you list both compiler options and file namesin asinglefile (unlike
configuration files, which accept only compiler options). A responsefileis a standard
ASCII text file that contains one or more command-line options and/or file names, with
each entry in the file separated by a space or anew line. In addition to ssimplifying your
compile commands, response files let you issue alonger command line than most
operating systems allow.

The syntax for using asingle responsefileis:

PCC @ pat h]respfile.txt

The syntax for using multiple response filesis:
PCC @pat h]respfile.txt @ path]otheresp.txt

Response files shipped with Paradigm C++ have an .RSP extension.
Options typed at the command line override any option or file name in aresponse file.

Compiler-option precedence rules
The command-line compilers evaluate options from left to right, and follows these rules:

. If you duplicate any option except -D, -U, -1, or -L, the last option typed overrides
any earlier one. (-D, -U, -1, and -L are cumulative.)

. Optionstyped at the command line override configuration and response file options.

Entering directories for command-line options

Paradigm C++ can search multiple directories for include and library files. This means
that the syntax for the library directories (-L) and include directories (-1) command-line
options, like that of the #define option (-D), allows multiple listings of a given option.
Here isthe syntax for these options:

Ldi rnane[; di rnane; .. .]
I di rname[; dirnane;...]

166 Paradigm C++ Reference Manual

The parameter dirname used with -L and -1 can be any directory or directory path. You
can enter these multiple directories on the command line in the following ways.

. You can stack multiple entrieswith asingle-L or -1 option by using a semicolon:
PCC. EXE - Ldi rnanel; di rname2;di rnanme3 -lincl;inc2;inc3 nyfile.c

« You can place more than one of each option on the command line, like this:
PCC. EXE - Ldi rnanel; di rnanme2; dirnane3 -lincl;inc2;inc3 nyfile.c

« You can mix listings:

PCC. EXE - Ldi rnanel; di rnane2; di rnanme3 -lincl;inc2 -1inc3
nyfile.c

If you list multiple -L or -I options on the command line, the result is cumulative: The
compiler searches al the directories listed, in order from left to right.

Paradigm C++ PLINK uses a configuration file called PLINK.CFG, aresponse file (optional), and
also supports - command-line options to link object modules, libraries, and resources into an executable

multiple library .
directories. -AXE file.

Using PLINK

PLINK isacommand-line tool that combines object modules (.OBJfiles), library
modules (.L1B files), and resources to produce executable files. Because the compiler
automatically calls PLINK, you don’t need to use PLINK unless you suppress the linking
stage of compiling (see the -c compiler option).

PLINK isinvoked from the command line to link a configuration file called PLINK.CFG,
an optional response file, and command-line options to link object modules, libraries,
and resources into an executable file.

PLINK command-line syntax

The linker syntax controls how the linkers work. Linker command-line options are case-
sensitive.

Thelinker can also use a configuration file called PLINK.CFG for options that you'd
normally type at the command-line.

Syntax

PLINK [@espfile][options] startup nyobjs, [exe], [mapfile],
[libraries]

Where items enclosed in brackets are optional.

[@respfile] A responsefileisan ASCII file that lists linker options
and file names that you would normally type at the
command line. By placing options and files namesin a
response file, you can save the amount of keystrokes
you need to typeto link your application.

[optiong] Linker options that control how the linker works. Linker options
must be preceded by either adash (/) or ahyphen (-).
startup A startup code module that arranges the order of the various

segments of the program. Failure to link in the correct initialization
module usualy resultsin along list of error messages telling you

Chapter 6, Paradigm C++ compiler 167

168

that certain identifiers are unresolved, or that no stack has been
created.

myobjs The .OBJfiles you want linked. Specify the path if the
filesaren’t in the current directory. (The linker appends
an .OBJ extensions if no extension is present.)

[exe] The name you want given to the executable file output file.
If you don’t specify an executable file name, PLINK derives the
name of the executable by appending .EXE to the first object file
name listed. (The linker assumes or appends .EXE extensions for
executablefilesif no extensionis
present.

[mapfile] Is the name you want given to the map file. If you
don’t specify a name, the map file nameis given the
same as exe file (but with the .MAP extension). (The
linker appends a.MAP extension if no extension is
present.)

[libraries] The library files you want included at link time. Do not
use commas to separate the libraries listed. If afileis
not in the current directory or the search path (see the
/L option) then you must include the path in the link
statement. (The linker appends a.LIB extension if no
extension is present.)

The order in which you list the libraries is very important; be sure to use the order
defined inthislist:

. Listany of your own user libraries, noting that if afunction is defined more than once,
the linker uses the first definition encountered

. Mathlibraries (if needed)
« Run-timelibraries associated with your memory model and platform

PLINK.CFG file

PLINK uses a configuration file called PLINK.CFG for options that you would normally
type at the command line (note that configuration files can contain only options, not file
names). Configuration files et you save options you use frequently, so you do not have to
continually retype them.

PLINK looks for PLINK.CFG in the current directory, then in the directory from which it
was | oaded.

The following PLINK.CFG file tells PLINK to:

. Look for librariesfirst in the directory C:\PARADIGM\LIB
« Include debug information in the executables it creates
. Create adetailed segment map.

PLINK.CFG

/Lc:\PARADIGM\LIB
vlIs

Paradigm C++ Reference Manual

= If you specify command-line options in addition to those recorded in a configuration file,
the command-line options override any conflicting configuration options,

Linker response files

Y ou can use response files with the command-line linkers to specify linker options.

Response files are ASCI| filesthat list linker options and file names that you would
normally type at the command line. Response files allow you longer command lines than
most operating systems support, plus you don’t have to continually type the same
information. Response files can include the same information as configuration files, but
they a so support the inclusion of file names.

Unlike the command line, aresponse file can be several lineslong. To specify an added
line, end aline with a plus character (+) and continue the command on the next line. Note
that if aline ends with an option that usesthe plusto turnit on (such as/v+), the + is not
treated as aline continuation character (to continue the line, use /v+ +).

If you separate command-line components (such as .OBJfilesfrom .LIB files) by linesin
aresponse file, you must leave out the comma used to separate them on the command line.
For example,

/c cOs+
nypr og, nyexe +
nynmap +
nmylib cs

leaves out the commas you' d have to type if you put the information on the command line:
PLINK /¢ cOs nyprog, nyexe, nymap, nylib cs
To useresponsefiles,

1. Type the command-line options and file names into an ASCI| text file and save the
file. Response files shipped with Paradigm C++ have the .RSP extension.

2. Type
PLI NK @ pat h] RESFI LE. RSP
. where RESFILE.RSP isthe name of your responsefile.
Y ou can specify more than one response file as follows:
plink /c @istobjs.rsp, nyexe, nymap, @i stlibs.rsp

= Y ou can add comments to response files using semicolons; the linker ignores any text on a
line that follows a semicolon.

Using PLINK with PCC.EXE

Y ou can pass options and filesto PLINK through the command-line compiler (PCC.EXE)
by typing file names on the command line with explicit .OBJand .LIB extensions. For
example,

PCC mai nfile.obj subl.obj nylib.lib

links MAINFILE.OBJ, SUB1.0BJ, and MYLIB.LIB to produce the executable
MAINFILE.EXE.

Chapter 6, Paradigm C++ compiler 169

By default, PCC starts PLINK with the files C0S.OBJ and CS.LIB (initialization module,
and run-time library). In addition, the compiler always passes the linker the /c (case-
sensitive link) option.

Paradigm C++ tools overview

Table 6-1
Paradigm C++
tools

Paradigm C++ includes many tools to help you create C++ programs. While you can
access many of these tools through the Paradigm C++ IDE, you can aso run the tools from
the command line.

The following table lists the Paradigm tools that come with your Paradigm C++ package:

File Description

32RTM.EXE 32-bit runtime manager

CAPDOS32.EXE Utility used by the Paradigm C++ IDE to interface with transfer macros
CPP.EXE C preprocessor (16-bit)

GREP.COM File search utility

MAKE.EXE Make utility

MAKER.EXE Real-mode MAKE utility

MAKESWAP.EXE Creates swap file to use with 32-bit command-line tools
OBJXREF.EXE Utility to examine contents of .OBJand .LIB files
PASM.EXE Paradigm assembler

PCC.EXE Paradigm C++ 16-bit command-line compiler
PCW.EXE The Paradigm C++ IDE

PDADDREG.EXE Enables, disables, installs and deletes PCW addon .DLLs
PLIB.EXE Utility for maintaining static-link libraries

PLINK.EXE Paradigm C++ 16-bit linker

RTM.EXE 16-bit runtime manager

TOUCH.COM Change files stamps to current date/time

Running the command-line tools

MAKESWAP
applies to DOS
only, not to DOS
boxes opened
under Windows.

170

Many Paradigm command-line tools (such as the command-line compiler) use DPMI
(DOS Protected Mode Interface) to run in protected mode. Protected mode tools run on
80386 and greater machines with at least 640K conventional RAM and at least 4AMB

extended memory.

Although the compilers run in protected mode, they generate applications that run in real
mode. Protected-mode tools have the advantage that they can access more memory than
real-mode tools. This helps to compile large projects at faster speeds, without the cost of
extensive disk-swapping.

Memory and MAKESWAP.EXE

If you get “Out of Memory” errors from DOS when running Paradigm command-line tools
(or if you have 8MB of RAM and are running the 32-bit command-line tools), create a
swap file with the MAKESWAP utility. Describe the size of the swap file in kilobytes.
For example, the following command creates a 12MB swap file:

MAKESWAP 12000

In addition, MAKESWAP supports the following syntax:

Paradigm C++ Reference Manual

MAKESWAP 12M

Both commands create a 12MB swap file in the current directory (named EDPMI.SWP)
which the Paradigm command-line tools use when they need additional memory. To
enable the swap file, use the DPM132 environment variable at the DOS prompt, or add
thislineto your AUTOEXEC.BAT file:

set DPM 32=SWAPFI LE <SwapFi | ePat h>EDPM . SWP

= Y ou must clear the DPMI32 environment variable before you use any 16-bit DPMI -
hosted tools with the following command:

set DPM 32=

The run-time manager and tools

The Paradigm C++ protected-mode tools (such as PCC) use the run-time managers
RTM.EXE and 32RTM.EXE. The tools that use run-time managers first load the run-time
manager, then do their work, and then unload the run-time manager. If you' re accessing
32-bit command-line tools that use the run-time manager many times over a short period
(such as from amakefile), you could speed up the process by loading the run-time
manager once, calling the tools, then unloading the run-time manager. To load the run-
time manager, type 32RTMat the command line. To unload 32RTM, type 32RTM - u.

By default, the run-time manager consumes all available memory when it loads. It then
allocates memory to its clients when they request it through the memory manager AP
routines.

When running in a DOS box under Windows, the amount of memory that RTM reservesis
limited to the XMS Memory KB Limit setting for the DOS box. The Property setting for
your DOS box should set XMS Memory KB Limit to at least 1024. This vaue setsthe
[imit on the amount of memory that RTM takes for the 16-bit DOS extended memory
application.

Chapter 6, Paradigm C++ compiler 171

172 Paradigm C++ Reference Manual

Chapter
v

Using MAKE

MAKE.EXE isacommand-line utility that helps you manage project compilation and link
cycles. MAKE helps you quickly build projects by compiling only the files you have
modified since the last compilation. In addition, you can set up rules that specify how
MAKE should deal with the special circumstancesin your builds.

This chapter covers the following topics:
. MAKE basics

. Makefile contents

. Using explicit and implicit rules

. Using MAKE macros

. Using MAKE directives

MAKE basics

MAKE uses rules you write along with its default settings to determine how it should
compile the filesin your project. For example, you can specify when to build your
projects with debug information and to compile your .OBJfiles only if the date/time
stamps of a source file is more recent than the .OBJ itself. If you need to force the
compilation of amodule, use TOUCH.EXE to modify the time stamp of one of the
modul€’ s dependents.

Inan ASCII makefile, you write explicit and implicit rules to tell MAKE how to treat the
filesin your project; MAKE determinesif it should execute a command on afile or set of
filesusing the rules you set up. Although your commands usualy tell MAKE to compile
or link a set of files, you can specify nearly any operating system command with MAKE.

The general syntax for MAKE is
MAKE [options...] [target[targets]]

whereopt i ons are MAKE options that control how MAKE worksandt ar get s are
the names of the filesin the makefile that you want to build.

If youneed to Y ou must separate the MAKE command and the opt i ons and target arguments with
Congjp"e n rt‘;a' spaces. When specifying t ar get s, you can use wildcard characters (such as* and ?) to
o ogram indicate multiple files. To get command-line help for MAKE, type MAKE -2.
MAKER.EXE.

Default MAKE actions

When you issue a MAKE command, MAKE looks in the current directory for thefile
BUILTINS.MAK, which contains the default rules for MAKE (use the -r option to ignore
this set of default rules). After loading BUILTINS.MAK, MAKE looks for afile called
MAKEFILE or MAKEFILE.MAK (usethe -f option to specify afile other than
MAKEFILE). MAKE looks for these files first in the current directory, then in the
directory where MAKE.EXE is stored. If MAKE can't find either of thesefiles, it
generates an error message.

Chapter 7, Using MAKE 173

174

1. After loading the makefile, MAKE triesto build only the first target listed in the
makefile by checking the time and date of the dependent files of the first target. If the
dependent files are more recent than the target file, MAKE executes the commands to
update the target.

2. If one of thefirst target’ s dependent files as atarget elsewhere in the makefile,
MAKE checksthat target’ s dependencies and builds it before building the first target.
This chain reaction is called a linked dependency.

3. If something during the build process fails, MAKE deletes the target file it was
building. Use the .precious directive if you want MAKE to keep atarget after abuild
fails.

Y ou can stop MAKE after issuing the make command by pressing Ctrl+Break or Ctrl+C.

To place MAKE ingtructions in afile other than MAKEFILE, see the section titled
"MAKE options."

BUILTINS.MAK

Thefile BUILTINS.MAK contains standard rules and macros that MAKE uses when it
builds the targets in amakefile. To ignore thisfile, use the -r MAKE option.

Hereisthe default text of BUILTINS.MAK:

#
<Default 9§ Font>Paradi gm C++ - © Copyright 1997 by Paradi gm Syst ens
#

default is to target 16BIT

CcC = pcc

AS = psm

.asm obj :

$(AS) $(AFLAGS) $& asm
. C. exe:

$(CC $(CFLAGS) $& C

. C.obj:

$(CC $(CFLAGS) /c $& ¢
. Cpp. exe:

$(CC) $(CFLAGS) $& cpp

. Cpp. obj :

$(CO $(CPPFLAGS) /c $& cpp
. SUFFI XES: .exe .obj .asm.c
lif !$d(PARADI GVEXAMPLEDI R)

PARADI GVEXAMPLEDI R = $(MAKEDI R) \ . . \ EXAMPLES
lendi f

Using TOUCH

TOUCH.EXE updates afile' s date stamp so that it reflects your system’s current time and
date.

Sometimes you might need to force atarget to be recompiled or rebuilt even though you
haven't changed its source files. One way to do thisis to use the TOUCH utility to update

Paradigm C++ Reference Manual

the time stamp of one or more of the target’ s dependency files. To touch afile (or files),
type the following at the command prompt:

touch [options] filename [fil enane...]

Because TOUCH is a 32-bit executable, it accepts long file names. In addition, you can
use file names that contain the wildcard characters* and ? to “touch” more than asingle
fileat atime.

= Before you use TOUCH, make sure your system’sinternal clock is set correctly.
TOUCH.EXE supports several command-line options:

Table 7-1 Option Description
TOUCH options

dmm-dd-yy Sets the date of the file to the specified date

ffilename Sets the time and date of files to match those of filename

h Displays help information (same as typing TOUCH without options or file names)
thh:mm:ss Setsthe time of the file to the specified time

\Y Verbose mode, shows each file TOUCHed

MAKE options

Use the -W Y ou can use command-line options to control the behavior of MAKE. MAKE options are
g OfPt"l’t“Nt& ;eEt case-sensitive and must be preceded with either a hyphen (-) or slash (/). For example, to
elad use afile called PROJECTA.MAK asthe makefile, type MAKE - f PRQJECTA. MAK.

options.) . . f . -
Many of the command-line options have equivaent directives that you can use within the
makefile.
Table 7-2 Option Description
MAKE options

-a Checks dependencies of include files and nested include files associated with .OBJ
files and updates the .OBJif the .h file changed. See also-c.

-B Builds all targets regardless of file dates.

-C Caches autodependency information, which can improve MAKE's speed. Use with
-a. Do not use this option if MAKE modifiesinclude files (which can happen if
you use TOUCH in the makefile or if you create header or include files during the
MAKE process).

-Dmacro Defines macro as a single character, causing an expression !ifdef macro written

in the makefile to return true.

[-D]macro=[string] Defines macro as string. If string contains any spaces or tabs, enclose string in
quotation marks. The-D is optional.

-ddirectory Use this option with -Sto specify the drive and directory that MAKER (the real
mode version of MAKE) uses when it swaps out of memory. MAKE ignoresthis
option.

-e Ignores amacro if its name is the same as an environment variable (MAKE uses
the environment variable instead of the macro).

-ffilename Usesfilename or filename. MAK instead of MAKEFILE (a space after -fis
optional).

-hor-? Displays MAKE options. Default settings are shown with atrailing plus sign.

-ldirectory MAKE searches for include filesin the current directory first, then in directory you
specify with this option.

-i MAKE ignores the exit status of al programs run from the makefile and continues
the build process.

Chapter 7, Using MAKE 175

Warning!

176

-K Keeps temporary filesthat MAKE creates (MAKE usually deletes them). See also
“KEEP,” page 7-177.

This may be helpful during debugging of your makefiles.

-m Displaysthe date and time stamp of each file as MAKE processesiit.

-N Causes MAKE to mimic Microsoft sSNMAKE.

-n Prints the MAKE commands but does not perform them, thisis helpful for
debugging makefiles.

-p Displays al macro definitions and implicit rules before executing the makefile.

-q Returns 0 if the target is up-to-date and nonzero if it isnot (for use with batch
files).

-r Ignores any rules defined in BUILTINS.MAK .

-S Swaps MAKER out of memory while commands are executed, reducing memory
overhead and allowing compilation of large modules. MAKE ignores this option.

-S Suppresses onscreen command display.

-Umacro Undefines the previous macro definition of macro.

-W Writes the specified non-string options to MAKE.EXE, making them defaults.

Setting default MAKE options
The -W option lets you set the default options for MAKE. Use the following syntax to set
the default options:

make [-option[-] ...] -W

For example, you could type MAKE - m - Wto turn the -m option on by default (which
causes MAKE to always display file dates and times). When you use the -W option,
MAKE asks you to write changesto MAKE.EXE. Type Y to accept the new defaults. To
turn off an option that’s on by default, follow the option with a hyphen. For example, to
undo the -m option change, type

MAKE -m -W
The -W option doesn’t work with the following MAKE options:

-Dmacro -Dmacro=string
-ddirectory -Usymbol
-ffilename -?or-h
-ldirectory

If you attempt to use the -W option when the DOS SHARE program is loaded, MAKE
displaysthemessage Fat al : unable to open file MAKE. EXE.

Compatibility with Microsoft's NMAKE

Usethe-N option if you want to use a makefile that was originally created for
Microsoft' sNMAKE. The following changes occur when you use -N:

. The$d macro istreated differently-use lifdef or !ifndef instead.

. Macrosthat return paths won't return the last \. For example, if $(<D) normally
returns C. \ CPP\ , the -N option causes MAKE to return C:\CPP.

. Unlessthereisamatching .suffixesdirective, MAKE begins searching for rules from
the bottom of the makefile and works its way to the top.

« Inimplicit rules, MAKE expands $* macros to the target name instead of to the
dependent name.

Paradigm C++ Reference Manual

. MAKE interprets the << operator asif it were the & & operator; MAKE uses
temporary files as response files. These files are then deleted. To keep afile, either
use the -K MAKE command-line option or use KEEP in the makefile.

MAKE usually deletes temporary filesit creates.

<<Fi | eNane. Ext
t ext

<<KEEP
If you don’t want to keep atemporary file, type NOKEEP or type only the temporary

(optional) file name. If you don’'t type afile name, MAKE creates a name for you. If you
use NOKEERP, it will override the -K command-line option.

Using makefiles

A makefile is an ASCII file that contains the set of instructions that MAKE uses to build a
certain project. Although MAKE assumes your makefileis called MAKEFILE or
MAKEFILE.MAK, you can specify a different makefile name with the -f option (see page
7-175).

MAKE either builds the target(s) you specify at the MAKE command or it builds only the
first target it findsin the makefile (to build more than one target, see the section
"Symbolic targets'). Makefiles can contain:

. Comments

. Explicit rules

. Implicit rules

« Macros

. Directives

Symbolic targets

A symbolic target forces MAKE to build multiple targets in a makefile. When you
specify asymbolic target, the dependency line lists all the targets you want to build (a
symbolic target basically uses linked dependencies to build more than one target).

For example, the following makefile uses the symbolic target allFiles to build both
FILELEXE and FILE2.EXE:

The AllFiles AllFiles: filel.exe file2.exe
target has no filel.exe: filel.obj
commands. pcc filel. obj
file2.exe: file2.obj
pcc file2. obj

Rules for symbolic targets
Observe the following rules when you use symbolic targets:
. Do not type aline of commands following the symbolic target line.

. A symbolic target must have a unique name; it cannot be the name of afile in your
current directory.

. Symboalic target names must follow the operating system rules for naming files.

Chapter 7, Using MAKE 177

Explicit and implicit rules

178

Y ou write explicit and implicit rules to instruct MAKE how build the targets in your
makefile. In general, these rules are defined as follows:

. Explicit rules are instructions for specific files.
. Implicit rules are genera instructions for files that don’t have explicit rules.

All the rules you write follow this general format:

Dependency | i ne

Conmands
?

While the dependency line uses adifferent syntax for explicit and implicit rules, the
command line syntax stays the same for both rule types. For more information on linked
dependencies see page 7-174.

MAKE supports multiple dependency linesfor asingle target, and a single target can
have multiple command lines. However, only one dependency line should contain a
related command line. For example:

Target 1: dependent1l dep2 dep3 dep4 dep5
Target 1: dep6 dep7 dep8
pcc -c $**

Explicit rule syntax

Explicit rules specify the instructions that MAKE must follow when it builds specific
targets. Explicit rules name one or more targets followed by one or two colons. One
colon means one rule is written for the target(s); two colons mean that two or more rules
are written for the target(s).

Explicit rules follow this syntax:

target [target...]:[:][{path}] [dependent[s]...]

[commands]
?

target The name and extension of the fileto be built (atarget must beginalinein
the makefile - you cannot precede the target name with spaces or tabs). To
specify more than one target, separate the target names with spaces or
tabs. Also, you cannot use a target name more than once in the target
position of an explicit rule.

path A list of directoriesthat tells MAKE where to find the dependent files.
Separate multiple directories with semicolons and enclosed the entire path
specification in braces.

dependent Thefile (or files) whose date and time MAKE checksto seeif it is newer
thant ar get . Each dependent file must be preceded by a space. If a
dependent appears elsewhere in the makefile as atarget, MAKE updates
or creates that target before using the dependent in the original target (this
in known as alinked dependency).

commands Any operating system commands. Y ou must indent the command line by at
least one space or tab, otherwise they are interpreted as atarget. Separate
multiple commands with spaces (see the section on commands, page
7-180)

Paradigm C++ Reference Manual

If adependency or command line continues on the following line, use a backdash (\) at
the end of thefirst line to indicate that the line continues. For example,

MYSQURCE. EXE: FI LEL. OBJ\ #Dependency |ine
FI LE3. OBJ #Dependency |ine conti nued
pcc filel.obj file3.0obj #Conmrand |ine

Single targets with multiple rules
A singletarget can have more than one explicit rule. To specify more than asingle
explicit rule, use adouble colon (::) after the target name. The following example shows
targets with multiple rules and commands.
cpp. obj :
pcc -c -ncobj $<

.asm obj :
tasm /nx $<, asnobj\

nmylib.lib :: f1.0bj f2.
echo Adding Cfiles
plib nylib -+cobjfl -+cobjf2

nmylib.lib :: f3.0bj f4.obj

echo Adding ASMfiles
plib nylib -+asnobjf3 -+asnobjf4

Implicit rule syntax

Animplicit rule specifies a general rule for how MAKE should build files that end with
specific file extensions. Implicit rules start with either a path or a period. Their main
components are file extensions separated by periods. The first extension belongsto the
dependent, the second to the target.

If implicit dependents are out-of-date with respect to the target, or if the dependents don’t
exist, MAKE executes the commands associated with the rule. MAKE updates explicit
dependents before it updates implicit dependents.

Implicit rules follow this basic syntax:

[source dir].source ext[target dir].target ext:
[commands]

{source dir} Thedirectory (or directories) where MAKE can find the dependent files.
Separate multiple directories with a semicolon.

.source ext The dependent filename extension.

{target_dir} Thedirectory where MAKE places the target files. Separate multiple
directories with a semicolon.

target_ext Thetarget filename extension. Macros are allowed here.
Marks the end of the dependency line.

commands Any operating system command or commands. Y ou must indent the
command line by at least one space or tab, otherwise they are interpreted
as atarget. Separate multiple commands with spaces (see the section on
commands, page 7-180)

Chapter 7, Using MAKE 179

See page 7-183
for information on
default macros.

180

Table 7-3
Command
prefixes

If two implicit rules match atarget extension but no dependent exists, MAKE uses the
implicit rule whose dependent’ s extension appears first in the SUFFIXESist. See
“suffixes,” page 7-188.

Explicit rules with implicit commands

A target in an explicit rule can get its command line from an implicit rule. The following
example shows an implicit rule followed by an explicit rule without a command line.

. C.obj:
pcc -c $< #This command uses a macro $< descri bed
| ater
myprog.obj: #This explicit rule uses the conmand: pcc
-C nyprog.c

The implicit rule command tells MAKE to compile MY PROG.C (the macro $< replaces
the namenypr og. obj with nypr og. c).

Command syntax

Commands immediately follow an explicit or implicit rule and must begin on anew line
with a space or tab.

Commands can be any operating system command, but they can aso include MAKE
macros, directives, and special operators that your operating system won't recognize
(however, note that | can’t be used in commands). Here are some sample commands:

cd. .
pcc -c nysource.c
COPY *.OBJ C PRQJECTA

pcc -c $(SOURCE) #Macros are explained later in the
chapter.

Commands follow this genera syntax:

[prefix...] commands

Command prefixes

Commands in both implicit and explicit rules can have prefixes that modify how MAKE
treats the commands. Table 7.3 lists the prefixes you can use in makefiles:

Pr efix Description

@ Don't display the command whileit’s being executed.
-num Stop processing commands in the makefile when the exit code returned from command

exceeds the integer num. Normally, MAKE abortsif the exit code is honzero. No white
space is alowed between - and num.

- Continue processing commands in the makefile, regardless of the exit codes they return.

& Expand either the macro $** , which represents all dependent files, or the macro $?, which
represents all dependent files stamped later than the target. Execute the command once for
each dependent file in the expanded macro.

Paradigm C++ Reference Manual

Using @
The following command uses the @ prefix, which prevents MAKE from displaying the
command onscreen.

diff.exe : diff.obj
@cc diff. obj

Using -num and -

The -num and - prefixes control the makefile processing when errors occur. Y ou can
choose to continue with the MAKE process if an error occurs or you can specify a
number of errorsto tolerate.

In the following example, MAKE continues processing if PCC returns errors.

target.exe : target. obj
target.obj : target.cpp
pcc -c target.cpp

Using &
The & prefix issues acommand once for each dependent file. It is especialy useful for
commands that don’'t take alist of files as parameters. For example,

copyall : filel.cpp file2. cpp
© $** c:\tenp

resultsin COPY being invoked twice as follows:

copy filel.cpp c:\tenp
copy file2.cpp c:\tenp

Without the & modifier, MAKE would call COPY only once.

Command operators

While you can use any operating system command in aMAKE command section, you can
also use special operators. MAKE supports the normal operators (such as +, -, and so on)
as well asthe following special operators:

Table 7-4 Operator Description

Command
operators < Use input from a specified file rather than from standard input
> Send the output from command to file
>> Append the output from command to file
<< Create atemporary inline file and use its contents as standard input to command
&& Create atemporary response file and insert its name in the makefile

delimiter Use delimiters with temporary responsefiles. Y ou can use any character other than # asa
delimiter. Use << and & & asastarting and ending delimiter for atemporary file. Any
characters on the same line and immediately following the starting delimiter are ignored.
The closing delimiter must be written on aline by itself.

Debugging with temporary files
MAKE can create temporary response files when your command lines become too long to
place on asingleline.

To begin writing to aresponse file, place the MAKE operator & & followed by a
delimiter of your choice (| makes a good delimiter) in the makefile. To finish writing to
thefile, repeat your delimiter.

Chapter 7, Using MAKE 181

The following example shows &&| instructing MAKE to create afile for the input to
PLINK.

prog. exe: A. obj B.obj
PLINK /c @& # && opens tenmp file, @for PLINK
c0s. obj $**
prog. exe
pr og. map
maths.lib cs.lib
| # | closes tenp file, nmust be on first colum

The responsefile created by &&| contains these instructions:

c0s. obj a.obj b.obj
pr og. exe

pr og. map

maths.lib cs.lib

MAKE names temporary file starting at MAKEO000.@@@, where the 0000 increments
by one with each temporary file you create. MAKE then deletes the temporary file when
it terminates.

Using MAKE macros

182

A macro isavariable that MAKE expands into a string whenever MAKE encounters the
macro in a makefile. For example, you can define a macro called LIBNAME that
represents the string “mylib.lib.” To do this, typethelineLI BNAME = nylib.li b at
the beginning of your makefile. Then, when MAKE encounters the macro $(LI BNAMVE) ,
it substitutesthe string myl i b. | i b. Macros et you create template makefiles that you
can change to suit different projects.

To use amacro in amakefile, type $(Macr oNanre) where MacroName is a defined
macro. Y ou can use braces or parentheses to enclose MacroName.

MAKE expands macros at various times depending on where they appear in the makefile:

. Nested macros are expanded when the outer macro isinvoked.

« Macrosinrules and directives are expanded when MAKE first looks at the makefile.
« Macrosin commands are expanded when the command is executed.

If MAKE finds an undefined macro in a makefile, it looks for an operating-system
environment variable of that name (usually defined with SET) and uses its definition as
the expansion text. For example, if you wrote $(PATH) in amakefile and never defined

PATH, MAKE would use the text you defined for PATH in your AUTOEXEC.BAT. See
your operating system manuals for information on defining environment variables.

Defining MAKE macros

The generd syntax for defining amacro in amakefileis:
Macr oNane = expansi on_t ext.
. MacroName is case-sensitive (MACROL is different from Macrol).

. MacroName islimited to 512 characters.

. expansion_text islimited to 4096 characters. Expansion characters may be
alphanumeric, punctuation, or whitespace.

Paradigm C++ Reference Manual

Y ou must define each macro on a separate line in your makefile and each macro
definition must start on the first character of the line. For readability, macro definitions
are usually put at the top of the makefile. If MAKE finds more than one definition for
macroName, the new definition overwrites the old one.

Y ou can also define macros using the -D command-line option (see page 7-175). No
spaces are alowed before or after the equal sign (=), however, you can define more than
one macro can by separating the definitions with spaces. The following examples show
macros defined at the command line:

make - Dsourcedir=c:projecta
make - Dcomand="pcc -c”
nmake - Dcomand=pcc option=-c

= Macros defined in makefiles overwrite those defined on the command line.
The following differences in syntax exist between macros entered on the command line
and macros written in a makefile.

Table 7-5 Syntax Makefile Command line
Command line
vs. makefile Spaces allowed before and after = Yes No
Macros Spaces allowed before macroName No Yes

String substitutions in MAKE macros

MAKE lets you temporarily substitute charactersin a previously defined macro. For
example, if you defined the macro

SOURCE = f1l.cpp f2.cpp f3.cpp

you could substitute the characters .obj for the characters .cpp by using the make
command $(SOURCE: . cpp=. obj) . This substitution does not redefine the macro.

Rules for macro substitution:

. Syntax: $(Macr oNane: ori gi nal _t ext =new_t ext)

. No whitespace before or after the colon

. Charactersin original_text must exactly match the charactersin the macro definition
(text is case-sensitive)

MAKE also lets you use macros within substitution macros. For example,

MYEXT=. C
SOURCE=f 1. cpp f2.cpp f3.cpp
$(SOURCE: . cpp=3$(MYEXT)) #Changes fl.cpp to f1.C, etc.

Default MAKE macros

MAKE contains several default macros you can use in your makefiles. Table 7.6 liststhe
macro definition and what it expands to in explicit and implicit rules.

Table 7-6 Macro Expands in implicit Expandsin explicit
Default macros
$* path\dependent file path\target file
$< path\dependent file+ext path\target file+ext
$: path for dependents path for target
$. dependent file+ext target file + ext

Chapter 7, Using MAKE 183

Table 7-7

Other default

macros

Table 7-8

Filename macro

modifiers

$& dependent file target file

$@ path\target file+ext path\target file+ext

$** path\dependent filet+ext all dependents file+ext

$? path\dependent file+ext old dependents

Macro Expandsto = Comment

__MSDOS__ 1 If running under DOS

__MAKE__ 0x0370 MAKE's hex version number

MAKE make MAKE's executable file name

MAKEFLAGS options The optionstyped at the command line

MAKEDIR directory Directory where MAKE.EXE islocated

PCPPROOT Will be defined to be the Paradigm C++ root directory if this can
be determined by MAKE.

If PCPPROOT is defined, you will find the following BIN, INCLUDE, and LIB
directories:

$(PCPPROOT) \ BI N
$(PCPPROOT) \ | NCLUDE
$(PCPPROOT) \ LI B

Modifying default MAKE macros

When the default macroslisted in Table 7.6, page 7-183 don't give you the exact string
you want, macro modifiers let you extract parts of the string to suit your purpose.

To modify a default macro, use this syntax:
$(MacroNane [nodifier])

Table 7.8 lists macro modifiers and provides examples of their use.

Modifier Part of file name expanded Example Result

D Drive and directory $(<D) C:\PROJECTA\

F Base and extension $(<F) MY SOURCE.C

B Base only $(<B) MY SOURCE

R Drive, directory, and base $(<R) C:\PROJA\SOURCE

Using MAKE directives

184

MAKE directives resemble directives in languages such as C and Pascal. In MAKE, they
perform various control functions, such as displaying commands onscreen before
executing them. MAKE directives begin either with an exclamation point or a period, and
the override any options given on the command line.

Table 7-9, page 7-185 lists the MAKE directives and their corresponding command-line
options (directives override command-line options). Each directive is described in more
detail following the table.

Paradigm C++ Reference Manual

Table 7-9 Directive

Option

Description

MAKE directives

.autodepend -a Turns on autodependency checking
.cacheautodepend -c Turns on autodependency caching
lelif ActslikeaC elseif
lelse ActslikeaCelse
lendif Endsan !if, lifdef, or lifndef statement
lerror Stops MAKE and prints an error message
lif Begins a conditional statement
lifdef Actslike aC #ifdef, testing whether agiven macro has
been defined
lifndef Actslike aC #ifndef, testing whether a given macro is undefined
.ignore -i MAKE ignores the return value of acommand
linclude Actslikea C #include, specifying afileto include in the makefile
Imessage Prints a message to stdout while MAKE runs the makefile
.noautodepend -a Turns off autodependency checking

.nocacheautodepend -c-

Turns off autodependency caching

.nolgnore -i- Turns off .Ignore

.nosilent -s Displays commands before MAKE executes them

.noswap -S TellsMAKE not to swap itself out of memory before executing a
command

.path.ext TellsMAKE to search for files with the extension .ext in path
directories

.precious Savesthetarget or targets even if the build fails

Silent -S MAKE executes commands without printing them first

suffixes Determines the implicit rule for ambiguous dependencies

Svap -S TellsMAKE to swap itself out of memory before executing a
command

lundef Clears the definition of amacro. After this, the macro is undefined

.autodepend

Autodependencies are the files that are automatically included in the targets you build,
such as the header filesincluded in your C++ source code. With .autodepend on, MAKE
compares the dates and times of al the files used to build the .OBJ, including the
autodependency files. If the dates or times of the files used to build the .OBJ are newer
than the date/time stamp of the .OBJfile, the .OBJfileisrecompiled. You can use
.autodepend (or -a) in place of forming linked dependencies (see page 7-174 for

information on linked dependencies).

lerror

The syntax of the lerror directiveis:
lerror nessage
MAKE stops processing and prints the following string when it encounters this directive:

Fatal makefile exit code: Error directive: nessage

Embed !error in conditiona statements to abort processing and print an error message, as
shown in the following example:

Chapter 7, Using MAKE 185

186

if !'$d(MYMACRO

#if MYMACRO isn’t defined
lerror MYMACRO i sn't defined
I'endi f

If MYMACRO isn't defined, MAKE terminates and prints:
Fatal nmakefile 4: Error directive: MYMACRO isn't defined

Error-checking controls

MAKE offersfour different controls to control error checking:

. The.ignore directive turns off error checking for a selected portion of the makefile.
. The-i command-line option turns off error checking for the entire makefile.

. The-num prefix, which is entered as part of arule, turns off error checking for the
related command if the exit code exceeds the specified number.

. The- prefix turns off error checking for the related command regardless of the exit
code.

lif and other conditional directives

The!lif directive workslike C if statements. As shown here, the syntax of !if and the other
conditional directives resembles compiler conditionals:

lif condition !if condition !if condition !ifdef macro

lendif lelse lelif condition !endif
lendif lendif

The following expressions are equivalent:

lifdef macro and !if $d(nacro)
i fndef macro and !if !$d(nmacro)

These rules apply to conditional directives:

. Orne'else directiveis alowed between lif, lifdef, or !ifndef and 'endif directives.

. Multiple!€lif directives are allowed between !if, lifdef, or lifndef, 'else and !endif.
« Youcan't split rules across conditional directives.

« You can nest conditional directives.

. lif, lifdef, and lifndef must have matching !'endif directives within the samefile.

The following information can be included between !if and !endif directives:

« Macro definition
. linclude directive
. Explicitrule

. lerror directive

. Implicit rule

. lundef directive

Condition in if statements represents a conditional expression consisting of decimal,
octal, or hexadecimal constants and the operators shown in Table 7-10, page 7-187.

Paradigm C++ Reference Manual

Table 7-10 Operator Description Operator Description
Conditional
operators Negation ? Conditional expression
~ Bit complement ! Logica NOT
+ Addition >> Right shift
Subtraction << L eft shift
* Multiplication & Bitwise AND
/ Division | Bitwise OR
% Remainder n Bitwise XOR
&& Logica AND >= Greater than or equal*
I Logica OR <= L essthan or equal*
> Greater than == Equality*
< Lessthan I= Inequality*

*Operator aso works with string expressions.

MAKE evaluates a conditional expression as either a 32-bit signed integer or asa
character string.

linclude

This directiveislike the #include preprocessor directive for the C or C++ language-it
lets you include the text of another file in the makefile:

linclude fil enane

Y ou can enclose filename in quotation marks (* “) or angle brackets (< >) and nest
directives to unlimited depth, but writing duplicate !include directivesin amakefile isn’t
permitted-you’ll get the error message cycle in the includefile.

Rules, commands, or directives must be complete within a single sourcefile; you can't
start acommand in an linclude file, then finish it in the makefile.

MAKE searches for linclude files in the current directory unless you’ ve specified another
directory with the -1 command-line option.

Imessage

The 'message directive lets you send messages to the screen from a makefile. Y ou can
use these messages to help debug a makefile that isn’t working properly. For example, if
you're having trouble with a macro definition, you could put this line in your makefile:

Imessage The nmacro is defined here as: $(MacroNane)

When MAKE interpretsthisling, it will print onscr een The macro is
defined here as: . CPP (assuming the macro expandsto .CPP). Using a series of
Imessage directives, you can debug your makefiles.

path.ext

The .path.ext directive tells MAKE where to look for files with a certain extension. The
following example tells MAKE to look for files with the .c extension in C:SOURCE or
C.CFILES and to look for files with the .obj extensionin C:OBJS.

.path.c = C CSOURCE; C. CFI LES
. path.obj = C OBJS

Chapter 7, Using MAKE 187

188

.precious

If aMAKE build fails, MAKE deletes the target file. The .precious directive prevents the
file deletion, which you might desire for certain kinds of targets. For example, if your
build fails to add a module to alibrary, you might not want the library to be deleted.

The syntax for .preciousis

.precious: target [target ...]

.suffixes

The .suffixesdirective tells MAKE the order (by file extensions) for building implicit
rules.

The syntax of .suffixesis

.suffixes: .ext [.ext ...]

where .ext represents the dependent file extensions you list in your implicit rules. For
example, you could includetheline. suf fi xes: .asm.c .cpp totel MAKEto
interpret implicit rules beginning with the ones dependent on .ASM files, then .C files,
then .CPP files, regardless of what order they appear in the makefile.

Thefollowing .suffixes example tells MAKE to look for a source file first with an .ASM
extension, next with a.C extension, and finaly with a.CPP extension. If MAKE finds
MY PROG.ASM, it builds MY PROG.OBJ from the assembler file by calling TASM.
MAKE then calls PLINK; otherwise, MAKE searches for MY PROG.C to build the .OBJ
file or it searchesfor MY PROG.CPP.

.suffixes: .asm.c .cpp

nypr og. exe: nyprog. obj
pl i nk mypr og. obj

. Cpp. obj :

pcc -P $<
.asm obj :

tasm/nmx $<
. C.obj:

pcc -P- $<

lundef

lundef (undefine) clears the given macro, causing an !ifdef MacroName test to fail.

The syntax of the lundef directiveis
lundef Macr oNane

Using macros in directives

Y ou can use the $d macro with the lif conditional directive to perform some processing if
a specific macro is defined. Follow the $d with macro name enclosed in parentheses or
braces, as shown in the following example:

lif $d(DEBUG #1 f DEBUG i s defined,
pcc -v fl.cpp f2.cpp #conpile with debug infornmation;

lel se #ot herwi se (el se)

Paradigm C++ Reference Manual

pcc -v- fl.cpp f2.cpp #don't include debug information.

lendi f

Null macros

While an undefined macro causes an !ifdef MacroName test to return false, MacroName

defined as null will return true. Y ou define anull macro by following the equal sign in the
macro definition with either spaces or areturn character. For example, the following line
defines anull macro in a makefile:

NULLMACRO =
Either of the following lines can define a null macro on the MAKE command line:

NULLMACRO=""
- DNULLMACRO

Chapter 7, Using MAKE 189

190 Paradigm C++ Reference Manual

Chapter

38
PLIB.EXE

PLIB.EXE isautility that manages libraries of individual .OBJ (object module) files. A
library is aconvenient tool for dealing with a collection of object modules asasingle
unit.

This chapter covers the basics of using the PLIB library utility including:

. PLIB options

. Operation list

. Responsefiles
. PLIB examples

PLIB basics

The libraries included with Paradigm C++ were built with the PLIB.EXE library utility.
You can use PLIB to build your own libraries, or to modify the Paradigm C++ libraries,

your libraries, libraries furnished by other programmers, or commercial libraries you've
purchased.

When PLIB modifies an existing library, it dways creates a copy of the original library
with a.BAK extension.

You can use PLIB to:

. Create anew library from agroup of object modules.

. Add object modules or other librariesto an existing library.

. Remove object modules from an existing library.

. Replace object modules from an existing library.

. Extract object modules from an existing library.

. Ligt the contents of anew or existing library.

PLIB can aso create (and include in the library file) an extended dictionary, which can
be used to speed up linking.

Although PLIB is not essential for creating executable programs with Paradigm C++, it is
auseful programming productivity tool that can be indispensable for large development
projects.

PLIB options

The PLIB command line takes the following genera form, where items listed in square
brackets are optional:

plib [@espfile] [option] |ibnane [operations] [, listfile]

Table 8-1, page 8-192 lists the command-line options available in PLIB. Each is
described in detail following the table.

Chapter 8, PLIB.EXE 191

For an online summary of PLIB command-line options, type PLIB and press Enter.

==
Table 8-1 Option Description
PLIB options
@respfile The path and name of the response file you want to include. Y ou can specify more
than one response file.
libname The DOS path name of the library you want to create or manage. Every PLIB

192

command must be given alibname. Wildcards are not allowed. PLIB assumes

an extension of .LIB if noneisgiven. Use only the .LIB extension because both
PCC and the Paradigm C++ IDE require the .LIB extension in order to recognize
library files. Note: If the named library does not exist and there are add operations,
PLIB createsthe library.

/C The case-sensitive flag. This option is not normally used.

/E Creates extended dictionary

/Psize Setsthe library page sizeto size.

/0 Purges comment records.

operations Thelist of operations PLIB performs. Operations can appear in any order. If you
only want to examine the contents of the library, don’t give any operations.

listfile The name of thefilethat lists library contents. Thelistfile name (if given) must be

preceded by acomma. No listing is produced if you don't give afile name. The
listing is an alphabetical list of each module. The entry for each module contains
an alphabetical list of each public symbol defined in that module. The default
extension for the listfileis .LST. Y ou can direct the listing to the screen by using
the listfile name CON, or to the printer by using the name PRN.

PLIB /C option
Using case-sensitive symbolsin alibrary

When you add amodule to alibrary, PLIB maintains adictionary of al public symbols
defined in the modules of the library. All symbolsin the library must be distinct. If you try
to add amodule to the library that duplicates a symbol, PLIB displays an error message
and doesn’'t add the module.

Normally, when PLIB checks for duplicate symbolsin the library, uppercase and
lowercase letters are not treated differently (for example, the symbols lookup and
LOOKUP are treated as duplicates). Y ou can use the /C option to add amoduleto a
library that includes symbols differing only in case.

Don't use/C if you plan to use the library with other linkers or let other people use the
library.

PLIB normally rejects symbolsthat differ only in case because some linkers aren’t case-
sensitive. PLINK has no problem distinguishing uppercase and lowercase symbols. As
long as you use your library only with PLINK, you can use the PLIB /C option without
any problems.

PLIB /E option

Creating an extended dictionary

To increase the capacity of PLINK for large links, you can use PLIB to create an extended
dictionary and append it to the library file. This dictionary contains, in a compact form,

information that is not included in the standard library dictionary and that lets PLINK
process library files so that those modules not needed in the link are not processed.

Paradigm C++ Reference Manual

To create an extended dictionary for alibrary that is being modified, use the /E option
when you start PLIB to add, remove, or replace modulesin the library. To create an
extended dictionary for an existing library that you don’t want to modify, use the /E
option. For example, if you type the following text, PLINK appends an extended
dictionary to the specific library:

plib /E nylib

If you get the message “Table limit exceeded”, use /E to seeiif it helps. If you use/E to
add alibrary module containing a C++ class with avirtual function, you' Il get the error
message, Library contains COMDEF records—extended dictionary not created.

PLIB /P option
Setting the page sizeto createalargelibrary

Every DOS library file contains a dictionary that appears at the end of the .LIB file,
following all of the object modules. For each module in the library, the dictionary
contains a 16-bit address of that particular module within the .LIB file; thisaddressis
given in terms of the library page size (it defaults to 16 bytes).

The library page size determines the maximum combined size of al object modulesin the
library, which cannot exceed 65,536 pages. The default (and minimum) page size of 16
bytes allows alibrary of about 1 MB in size. To create alarger library, use the /P option
to increase the page size. The page size must be a power of 2, and it cannot be smaller
than 16 or larger than 32,768.

All modulesin the library must start on a page boundary. For example, in alibrary with a
page size of 32 (the lowest possible page size higher than the default 16), an average of
16 bytes will be lost per object module in padding. If you attempt to create alibrary that
istoo large for the given page size, PL1B will issue an error message and suggest that you
use /P with the next available higher page size.

Using PLIB response files

When you use alarge number of operations, or if you find yourself repeating certain sets
of operations over and over, you will probably want to use response files. A response
fileisan ASCII text file (which can be created with the Paradigm C++ editor) that
contains all or part of a PLIB command. Using PLIB response files, you can build PLIB
commands larger than would fit on one command line. Response files can

. Contain more than one line of text; use the ampersand character (&) at the end of a
line to indicate that another line follows.

« Include apartia list of commands. Y ou can combine options from the command line
with options in aresponsefile.

. beused with other response filesin asingle PLIB command line.

Operation list

The operation list describes what actions you want PLIB to do and consists of a sequence
of operations given one after the other. Each operation consists of a one- or two-character
action symbol followed by afile or module name. Y ou can put whitespace around either
the action symbol or the file or module name, but not in the middle of a two-character
action or in aname.

Chapter 8, PLIB.EXE 193

Y ou can put as many operations as you like on the command line, up to DOS's
COMMAND.COM-imposed line-length limit of 127 characters. The order of the
operations is not important. PLIB always applies the operations in a specific order:

To replace amodule, first remove it, then add the replacement module. The following
shows the order in which PLIB handles these operations:

1. All extract operations are done first.

2. All remove operations are done next.

3. All add operations are done last.

4. Wildcards are never alowed in file or module names.

—» See Table 8-3 for more information on Add, Remove and Extract.
PL 1B finds the name of a module by stripping any drive, path, and extension information
from the given file name.

= PLIB aways assumes reasonable defaults. For example, to add a module that has an .OBJ
extension from the current directory, you need to supply only the module name, not the
path and .OBJ extension.

Tocreatea PLIB recognizes three action symbols (*, +, *), which you can use singly or combined in
library, add - pajrs for atotal of five distinct operations. Table 8-2 summarizes these three action
modules to a
library that does SYMDOIS. The order of the characters is not important for operations that use a pair of
notyet exist. Characters. The action symbols and what they do are listed here:

Table8-2 Symbol Name Description
PLIB action
symbols ~ -* Extract & PLIB copies the named module to the corresponding file name and then
removesit from thelibrary.
*- Remove Removes named module from library.
-+ Replace PLIB replaces the named module with the corresponding file.
Table 8-3 Option Description

PLIB operations
Add PLIB adds the named file to the library. If the file has no extension, PLIB assumes an
extension of .OBJ. If thefileisitself alibrary (with a.LIB extension), then the operation
adds all of the modulesin the named library to the target library.

If amodule being added already exists, PLIB displays a message and does not add the new
module.

Remove PLIB removes the named module from the library. If the modul e does not exist in the
library, PLIB displays a message.
A remove operation needs only amodule name. PLIB lets you enter afull path name with
drive and extension included, but ignores everything except the module name.

Extract PLIB creates the named file by copying the corresponding module from the library to the
file. If the module does not exist, PLIB displays amessage and does not create afile. If the
named file already exists, it is overwritten.

You can’t directly rename modulesin alibrary. To rename amodule, extract and removeit,
rename thefile just created, then add it back into the library.

PLIB examples

These simple examples demonstrate some of the different things you can do with PLIB:

194 Paradigm C++ Reference Manual

Example 1

To create alibrary named MYLIB.LIB with modules X.OBJ, Y.OBJ, and Z.OBJ, type:
plib nylib +x +y +z.

Example 2

To create alibrary named MYLIB.LIB and get alistingin MY LIB.LST too, type:
plib nmylib +x +y +z, nylib.|st.

Example 3

Toget alisting in CS.LST of an existing library CS.LIB, type:
plib cs, cs.Ist.

Example4

To replace module X.OBJwith anew copy, add A.OBJ and delete Z.0BJ from
MYLIB.LIB, type:

plib nylib -+x +a -z.

Example 5

To extract module Y.OBJfrom MYLIB.LIB and get alistingin MYLIB.LST, type:
plib nylib *y, nylib.Ist.

Example 6

To create anew library named ALPHA, with modules A.OBJ, B.OBJ, ..., G.OBJusing a
response file:

1. First create atext file, ALPHA.RSP, with

+a. obj +b.obj +c.obj] &
+d. obj +e.obj +f.obj] &
+g. obj

2. Then use the PLIB command, which produces a listing file named ALPHA.LST:
lib al pha @l pha.rsp, alpha.l st

Chapter 8, PLIB.EXE 195

196 Paradigm C++ Reference Manual

Chapter

9

Exception handling

This chapter describes the Paradigm C++ error-handling mechanisms generally referred
to as exception handling. The Paradigm C++ implementation of C++ exception
handling is consistent with the proposed ANSI specification. The exception-handling
mechanisms that are available in C programs are referred to as structured exceptions.
Paradigm C++ provides full compiling, linking, and debugging support for C programs
with structured exceptions. See the section “ C-based structured exception” page 9-204,
and“,” page 9-203 for a discussion of compiler options for programming with
exceptions.

C++ exception handling

The C++ language defines a standard for exception handling. The standard insures that
the power of object-oriented design is supported throughout your program.

In accordance with the ANSI/ISO C++ working paper specification, Paradigm C++
supports the termination exception-handling model. When an abnormal situation arises
at run-time, the program could terminate. However, throwing an exception allows you
to gather information at the throw point that could be useful in diagnosing the causes
that led to failure. Y ou can aso specify in the exception handler the actions to be taken
before the program terminates. Only synchronous exceptions are handled, meaning that
the cause of failure is generated from within the program. An event such as Ctrl-C
(which is generated from outside the program) is not considered to be an exception.

C++ exceptions can be handled only in atry/catch construct.
Syntax:

try-block:
try compound-statement handler-list

handler-list:
handler handler-list opt

handler:
catch (exception-declaration) compound-statement
exception-declaration:
type-specifier-list declarator
type-specifier-list abstract-declarator
type-specifier-list

throv.\}-.expr on:
thr ow assignment-expression opt
= The catch and thr ow keywords are not allowed in a C program.

— Thetry-block is a statement that specifies the flow of control as the program executes.
' The try-block is designated by the try keyword. After the keyword, braces surround a
program block that can generate exceptions. The language structure specifies that any

Chapter 9, Exception handling 197

exceptions that occur should be raised within the try-block. See "statements” in the
online Help index for more information.

The handler is ablock of code designed to handle an exception. The C++ language
requires that at least one handler be available immediately after the try-block. There
should be a handler for each exception that the program can generate.

When the program encounters an abnormal situation for which it is not designed, you
can transfer control to some other part of the program that is designed to deal with the
problem. Thisis done by throwing an exception.

The exception-handling mechanism requires the use of three keywords: try, catch, and
throw. The try-block specified by try must be followed immediately by the handler
specified by catch. If an exception is thrown in the try-block, program control is
transferred to the appropriate exception handler. The program should attempt to catch
any exception that is thrown by any function. Failure to do so could result in abnormal
termination of the program.

Exception declarations

Although C++ alows an exception to be of any type, it is useful to make exception
classes. The exception object is treated exactly the way any object would be treated. An
exception carries information from the point where the exception is thrown to the point
where the exception is caught. Thisis information that the program user will want to

know when the program encounters some anomaly at run-time.

— Predefined exceptions, specified by the C++ language, are documented in the online
Help Book Shelf index under "Run-time support”, "operator new" or "xalloc". To get to
the Book Shelf index, choose Help|Keyboard and click the Book Shelf menu tab.
Paradigm C++ provides additional support for exceptions. These extensions are also

documented under "classes" in the online Help index.

Throwing an exception

A block of code in which an exception can occur must be prefixed by the keyword try.
Following the try keyword is a block of code enclosed by braces. This indicates that the
program is prepared to test for the existence of exceptions. If an exception occurs, the
program flow isinterrupted. The sequence of steps taken is as follows:

1. The program searches for a matching handler

2. If ahandler isfound, the stack is unwound to that point

3. Programcontrol is tranferred to the handler

If no handler isfound, the program will call the terminate function. If no exceptions are
thrown, the program executes in the normal fashion.

A throw expression is also referred to as a throw-point. Y ou can specify whether an
exception can be thrown by using one of the following syntax specifications:

198 Paradigm C++ Reference Manual

t hrow t hr ow_expression ;
throw ;
void ny_funcl() throw (A B)

wbh ke

{
/1 Body of function.

4, void ny_func2 () throw ()

{
/1 Body of this function.

}
The first case specifiesthat throw_expression is to be passed to a handler.

The second case specifies that the exception currently being handler is to be thrown
again. An exception must currently exist. Otherwise, terminateis called.

—» Thethird case specifiesalist of exceptionsthat my_funcl can throw. No other
exceptions should propagate out of my_funcl. If an exception other than Aor Bis
generated within my_funcl, it is considered to be an unexpected exception and program
control will be transferred to the unexpected function. By default, the unexpected
function ends with a call to abort but it can throw an exception. For more information,
see "unexpected” in the online Help Book Shelf index. The Book Shelf index is
accessed by choosing Help|Keyboard and clicking on the Book Shelf menu tab.

The final case specifies that my_func2 should throw no exceptions. If some other
function (for example, operator new) in the body of my_func2 throws an exception,
such an exception should be caught and handled within the body of my_func2.
Otherwise, such an exception isaviolation of my_func2 exception specification. The
unexpected function is then called.

When an exception occurs, the throw expression initializes atemporary object of the
type T (to match the type of argument arg) used in throw(T arg). Other copies can be
generated as required by the compiler. Consequently, it can be useful to define a copy
constructor for the exception object.

Handling an exception

The exception handler isindicated by the catch keyword. The handler must be placed
immediately after the try-block. The keyword catch can a'so occur immediately after
another catch. Each handler will only evaluate an exception that matches, or can be
converted to, the type specified in its argument list. The possible conversions are listed
after the try-block syntaxes.

The following syntaxes, following the try-block, are valid:

Try {
/1 1nclude any code that m ght throw an exception

}
1. catch (T X
{

// Take sone actions
}
2. catch (...)

// Take sone actions

}

Thefirst statement is specifically defined to handle an object of type T. If the argument
iST, T&, const T, Or const T&, the handler will accept an object of type X if any of the
following are true:

Chapter 9, Exception handling 199

200

. TandX are of the same type
. Tisanaccessible base classfor X in the throw expression

. Tisapointer type and X is a pointer type that can be converted to T by a standard
pointer conversion at the throw point

The statement catch (...) will handle any exception, regardless of type. This statement,
if used, must be the last handler for its try-block.

Every exception thrown by the program must be caught and processed by the exception
handler. If the program fails to provide an exception handler for a thrown exception, the
program will call terminate.

Exception handlers are evaluated in the order that they are encountered. An exception is
caught when its type matches the type in the catch statement. Once atype match is
made, program control is transferred to the handler. The stack will have been unwound
upon entering the handler. The handler specifies what actions should be taken to deal
with the program anomaly.

A goto statement can be used to transfer program control out of a handler but such a
statement can never be used to enter a handler or try-block.

After the handler has executed, the program can continue at the point after the last
handler for the current try-block. No other handlers are evaluated for the current
exception.

Exception specifications

The C++ language makes it possible for you to specify any exceptions that a function
can throw. This exception specification can be used as a suffix to the function
declaration. The syntax for exception specification is as follows:

exception-specification:
throw (type-id-listopt)
type-id-list:
type-id
type-id-list, type-id
The function suffix is not considered to be part of the function's type. Consequently, a

pointer to afunction is not affected by the function's exception specification. Such a
pointer checks only the function's return and argument types. Therefore, the following is

legal:

void f2(void) throw) ; /1 Should not throw exceptions

void f3(void) throw (BETA) ; // Should only throw BETA objects

void (* fptr)() ; /1 Pointer to a function returning void
fptr =2 ;

fptr = f3;

Extreme care should be taken when overriding virtual functions. Again, because the
exception specification is not considered part of the function type, it is possible to
violate the program design. In the following example, the derived class BETA:vfuncis
defined so that it throws an exception — a departure from the original function
declaration.

Gl ass ALPHA {
publi c:
virtual void vfunc(void) throw () { }; // Exception specification

s
class BETA : public ALPHA {

Paradigm C++ Reference Manual

struct BETA ERR { };
voi d vfunc(void) throwm(BETA ERR) { }; // Exception specification
is

/1 changed
i
The following are examples of functions with exception specifications.
void f1(); /1 The function can throw any exception
void f2(); throw (); /1 Should not throw any exceptions

void f3(); throw (A B*); // Can throw exceptions publicly derived
/1l fromA, or a pointer to publicly
derived B

The definition and all declarations of such a function must have an exception
specification containing the same set of type-id's. If afunction throws an exception not
listed in its specification, the program will call unexpected. Thisisarun-timeissue — it
will not be flagged at compile time. Therefore, care must be taken to handle any
exceptions that can be thrown by elements called within a function.

Example 2

/1 HOW TO MAKE EXCEPTI ON- SPECI FI CATI ONS AND HANDLE ALL EXCEPTI ONS
#i ncl ude <i ostream h>

/1 EXCEPTI ON DECLARATI ONS
class Al pha {

/1 1nclude sonething that shows why you chose to throw this
exception.

b
Al pha al pha_inst;

class Beta {

/1 1nclude sonething that shows why you chose to throwthis
excepti on.
}.

Beta beta_inst;

// THROW ONLY Al pha OR Beta TYPE OBJECTS
void f3(char c) throw (A pha, Beta) {
cout << "f3() was called" << endl;
if (c=="'"a).
throw al pha_inst);
if (c=="Db")
throm beta inst);
else ; // DO NOTH NG W TH OTHER CHARACTERS
}

/1 SHOULD NOT THROW EXCEPTI ONS
void f2 (char ch) throw) {
try { /1 WRAP ALL CCDE IN A TRY-BLOCK
cout << "f2() was called" << endl;
f3(ch);

}
// HERE ARE HANDLERS FOR THE EXCEPTI ONS WE KNOW COULD BE THROWN
catch (Al pha& al pha_inst) { cout << "Caught Al pha exception.";}
catch (Beta& beta inst) { cout << "Caught Beta exception.";}

/1 I'F THE CCDE IS MXDI FI ED LATER SO THAT SOME OTHER EXCEPTION | S
{1/ THROM, IT IS HANDLED HERE AND WE AVA D VI OLATI NG THE f2() THROW

Chapter 9, Exception handling 201

/1 SPECI FI CATI ON

catch (...) {
/1 BUT, WE POST QURSELVES A WARNI NG MESSACE.
cout << "Warning: f2() has elenents with exceptions!" << endl
}

}

int main(void) {
char trigger;

try {
cout << "Input a character:";

cin >> trigger;

f2(trigger);

cout << "\nSuccess.";

return 0; //WE GET HERE ONLY | F EVERYTH NG EXECUTES WELL.

}
catch (...) {

cout << "Need nore handlers!";
return 1;

}
}

Sample output when 'a’ is the input
I nput a character: a
f2() was called
f3() was called
Caught Al pha exception
Success.

—» If an exception is thrown which is not listed in the exception specification, the
unexpected function will be called. The following diagrams illustrate the sequence of
events that can occur when unexpected is called. See "Run-time support” in the online
Help Book Shelf index, for a description of the "set_terminate”, "set_unexpected”, and
"unexpected” functions. The Book Shelf index is accessed by choosing Help|K eyboard
and clicking on the Book Shelf menu tab.

Program behavior when afunction is registered with set_unexpected ();
unexpect ed() /1 CALLED AUTOVATI CALLY

/1 DEFI NE YOUR UNEXPECTED HANDLER
unexpect ed_function ny_unexpected(void)

/1 REG STER YOUR HANDLER

|
|
|
]
| /] DEFI NE ACTI ON TO TAKE PGCSSI BLE MAKE ADJUSTMENTS
|
|
|
| set _unexpected(ny_unexpected);

|

nmy_unexpect ed() ;

Program behavior when no function is registered with set_unexpected() but thereisa
function registered with set_terminate():

202 Paradigm C++ Reference Manual

unexpect ed() /1 CALLED AUTOVATI CALLY
|

term nate()

/1 DEFI NE YOUR TERM NATI ON SCHEME
termnate _function ny_termnate(void)

|
|
T
| /1 TAKE ACTI ONS BEFORE TERM NATI NG
| /1 SHOULD NOT THROW EXCEPTI ONS

| exit(1); // MJIST END SOVEHOW
|}

|

|

|

|

/1 REAQ STER YOUR TERM NATI ON FUNCTI ON
set _termnate(nmy_termnate)

nmy_termnate()
// PROGRAM ENDS.

Constructors and destructors

—» When an exception is thrown, the copy constructor is called for the thrown value. The
copy constructor is used to initialize atemporary object at the throw point. Other copies
can be generated by the program. See "copy constructor” in the online Help index for
more information.

When program flow is interrupted by an exception, destructors are called for all
automatic objects that were constructed since the beginning of the try-block was
entered. If the exception was thrown during construction of some object, destructors
will be called only for those objects that were fully constructed. For example, if an array
of objects was under construction when an exception was thrown, destructors will be
called only for the array elements which were already fully constructed.

Destructors are called by default. See "Exception handling/RTTI™ “,” for information
about exception-handling switches.

When a C++ exception is thrown, the stack is unwound. By default, during stack
unwinding, destructors are called by automatic objects. Y ou can use the —xd compiler
option to switch the default off.

Setting exception handling options
The following command-line options can be used to set exception handling:

Setting Command-line option
Enable exception handling -X

Enable destructor cleanup -xd

Enable throwing exceptions from aDLL -xds

Enable exception location information -Xp

Unhandled exceptions
— If an exception is thrown and no handler is found it, the program will call the terminate
' function. Thisfollowing diagram illustrates the series of events that can occur when the
program encounters an exception for which no handler can be found. See "Run-time
support” in the online Help Book Shelf index for a description of the terminate function.
The Book Shelf index is accessed by choosing Help|Keyboard and clicking on the Book
Shelf menu tab.

Chapter 9, Exception handling 203

Default program behavior for unhandled exceptions:
termnate();

|
abort ();

[/ PROGRAM ENDS.

C-based structured exceptions

204

Paradigm C++ provides support for program devel opment that makes use of structured
exceptions. Y ou can compile and link a C source file that contains an implementation of
structured exceptions. In a C program, the ANSI-compatible keywords used to
implement structured exceptionsare __except, __finally, and _ _try. Note that the
__finally and _ _try keywords can appear only in C programs.

For portability, you can use the try and except macros defined in excpt.h.
For try-except exception-handling implementations the syntax is as follows:

try-block:
__try compound-statement (in a C module)
try compound-statement (in a C++ module)

handler:
__except (expression) compound-statement
For try-finally termination implementations the syntax is as follows:

try-block:

___try compound-statement
termination:

___finally compound-statement

Using C-based exceptions in C++

Paradigm C++ allows substantial interaction between C and C++ error handling
mechanisms. The implementation of exception handling mechanisms lets you port code
across platforms. The following interactions are supported:

. C dtructured exceptions can be used in C++ programs.

. C++ exceptions cannot be used in a C module because C++ exceptions require that
their handler be specified by the catch keyword and catchis not allowedinaC
program.

. Anexception generated by a call to the RaiseException function is handled by a
try/__except or _try/ _except block. All handlers of try/catch blocks are ignored
when RaiseExceptionis called.

The following C exception support functions can be used in a C and C++ programs:

. GetExceptionCode

. GetExceptionlnformation

. SetUnhandledExceptionFilter
« UnhandledExceptionFilter

Paradigm C++ does not require that the UnhandledExceptionFilter function be used
only in the except filter of _try/ except or try/ _except blocks. However, program

Paradigm C++ Reference Manual

behavior is undefined when this function is called outside of the __try/ except or
try/__except block.

Handling C-based exceptions

The full functionality of an _ _except block isallowed in C++. If an exception is
generated in a C module, it is possible to provide a handler-block in a separate calling
C++ module.

If a handler can be found for the generated structured exception, the following actions
can be taken:

. Execute the actions specified by the handler

. lgnore the generated exception and resume program execution

. Continue the search for some other handler (regenerate the exception)

These actions are consistent with the design of structured exceptions. The following
example shows how to mix C and C++ exceptions. Note that the C mechanism uses the

try and _ _except keywords. The C++ mechanism uses the required try and catch
keywords.

/* In PROG C */
void func(void) {

/* generate an exception */
Rai seException(/* specify your argunents */);

}

/] In CALLER CPP

/!l How to test for C++ or C-based exceptions.
#i ncl ude <excpt. h>

#i ncl ude <i ostream h>

int main(void) {

try
{ /1 test for C++ exceptions
try
/1 test for C based structured exceptions
func();
} _ _
__except(/* filter-expression */)
{

cout << "A structured exception was generated."

/* specify action to take for this structured exception */

return -1;
}
return O;
}
catch (...)

/1 handl er for any C++ exception
cout << "A C++ exception was thrown.";
return 1,

}

Chapter 9, Exception handling 205

206

Structured exceptions aso allow you to program a termination handler. The termination
handler can be used only in a C module and is specified by the __finally keyword. The
termination handler ensures that the code in the __finally block is executed no matter
how the flow withinthe __try exits. The __finally keyword is not allowed in a C++
program. Consequently, the _try/ _finally block is not supported in a C++ program.

Even though the _try/ finally block is not supported in a C++ program, a C-based
exception generated by the operating system or the program will still result in proper
stack unwinding of objects with destructors. You can use thisto emulatea___finally
block by creating alocal object whose destructor does the necessary cleanup. Any
module compiled with the -xd compiler option (this option is on by default) will have
destructorsinvoked for all objects with auto storage. Stack unwinding occurs from the
point where the exception is thrown to the point where the exception is caught.

Destructors are called by default. See “Exception handling/RTTI,” page 3-68 for
information about exception-handling switches.

Paradigm C++ Reference Manual

Chapter

10

Using inline assembly

Inline assembly is assembly-language instructions embedded within your C and C++
code. Inline assembly instructions are compiled and assembled along with your code
rather than being assembled in separate assembly modules.

This chapter describes how to use inline assembly with Paradigm C++. The following
topics are discussed:
« Inline assembly syntax and usage

. Using the asm keyword to place an assembly instruction within your C/C++
code

. Using C symbolsin your asm statement to reference data and functions
. Using register variables, offsets, and size overrides

. Using C structure members

. Using jump instructions and labels

. Using the-B compiler option and #pragma inline statement to compile inline
assembly

« Using the built-in assembler (PASM)
= See Paradigm C++ equivalents of command-line options on page 3-112.

Inline assembly syntax and usage

This section describes inline assembly syntax, and how to use inline assembly
instructions with C++ structures, pointers, and identifiers.

To place an assembly instruction in your C/C++ code, use the asm keyword. The format
is

asm opcode operands ; or newline
where:

. opcodeisvalid 80x86 instruction.
. Operands contains the operand(s) acceptable to the opcode, and can reference C
constants, variables, and |abels.

. Theend of the asm statement is signaled by either ; (semicolon) or by newline (a
new line).

A new asm statement can be placed on the same line, following a semicolon, but no
asm statement can continue to the next line. To include multiple asm statements,
surround them with braces. Theinitial brace must appear on the same line as the asm

keyword.
Three asm statements are shown here; two on one line, and one below them.

asm {
pop ax; pop ds
iret

}

Chapter 10, Using the inline assembly 207

208

Semicolons are not used to start comments (as they are in PASM). When commenting
asm statements, use C-style comments, like this:

asm nov ax, ds; /* This commrent is OK */
asm {pop ax; pop ds; iret;} /* This comrent is also |egal */
asm push ds ; THHS COMMVENT |S | NVALI D!

The assembly-language portion of the statement is copied straight to the output,
embedded in the assembly language that Paradigm C++ is generating from your C or
C++ instructions. Any C symbols are replaced with appropriate assembly language
equivaents.

Each asm statement is considered to be a C statement. For example, the following
construct isavalid C if statement:

nmyfunc()
(. _
int i;
int Xx;
if (i >0
asm nov X, 4
el se
i =7
}

A semicolon isn't needed after the move x,4 instruction. asm statements are the only
statements in C that depend on the occurrence of a new line to indicate that they have
ended. Although thisisn't in keeping with the rest of the C language, it is the convention
adopted by several UNIX-based compilers.

An asm statement can be used as an executable statement inside afunction, or as an
external declaration outside of afunction. asm statements located inside functions are
placed in the code segment, and asm statements located outside functions are placed in
the data segment.

Inline assembly references to data and functions

Y ou can use any C symbol in your asm statements, including automatic (local)
variables, register variables, and function parameters. Paradigm C++ automatically
converts these symbols to the appropriate assembly-language operands and appends
underscores onto identifier names.

In general, you can use a C symbol in any position where an address operand would be
legal. Of course, you can use aregister variable wherever aregister would be alegal
operand.

If the assembler encounters an identifier while parsing the operands of an inline-
assembly instruction, it searches for the identifier in the C symbol table. The names of
the 80x86 registers are excluded from this search. Either uppercase or lowercase forms
of the register names can be used.

Inline assembly and register variables

Inline assembly code can freely use Sl or DI as scratch registers. If you use Sl or DI in
inline assembly code, the compiler won't use these registers for register variables.

In 16-bit code BX is available for use as a scratch register.In 32-bit code, the
corresponding EBX is not available for use as a scratch register.

Paradigm C++ Reference Manual

When you use PCC32 or PCC32A to compile a C or C++ source file, including files
with inline assembly, the compiler preserves the EBX register. However, when you
compile an assembly .ASM source file, you are responsible for preserving the EBX
register. Thisis true whether you compile the .ASM source file with a 32-bit compiler
or use PASM32.Inline assembly, offsets, and size overrides

When programming, you don’t need to be concerned with the exact offsets of local
variables: using the variable name will include the correct offsets.

It might be necessary, however, to include appropriate WORD PTR, BYTE PTR, or
other size overrides on assembly instruction. A DWORD PTR override is heeded on
LES or indirect far call instructions.

Using C structure members

Y ou can reference structure members in an inline-assembly statement in the usual way
(that is, with variable.member). When you do this, you are working with variables, and
you can store or retrieve values in these structure members. However, you can also
directly reference the member name (without the variable name) as aform of numeric
constant. In this situation, the constant equals the offset (in bytes) from the start of the
structure containing that member. Consider the following program fragment:

struct nmyStruct {
int a_a;
int a_b;
int ac;
}oyA

nmyfunc ()
{

ésh '{rrov ax, WORD PTR nyA.a b
nmov bx, WORD PTR nyA. a c
}
}

This fragment declares a structure type named myStruct with three members.a_a, a b,
and a_c. It also declares avariable myA of type myStruct. The first inline-assembly
statement moves the value contained in myA.a_b into the register AX. The second
moves the value at the address [di] + ofset(a_c) into the register BX (it takes the
address stored in DI and addsto it the offset of a_c from the start of myStruct). In this
sequence, these assembler statements produce the following code:

nove ax, DGROUP : nyA+2

nmove bx, [di +4]

Thisway, if you load aregister (such as DI) with the address of a structure of type
myStruct, you can use the member names to directly reference the members. The
member name can be used in any position where a numeric constant is allowed in an
assembly-statement operand.

The structure member must be preceded by adot (.) to signal that a member name,
rather than anormal C symbol, is being used. Member names are replaced in the
assembly output by the numeric offset of the structure member (the numeric offset of
a _cis4), but no type information is retained. Thus members can be used as compile-
time constants in assembly statements.

There is one restriction, however: if two structures that you're using in inline assembly
have the same member name, you must distinguish between them. Insert the structure

Chapter 10, Using the inline assembly 209

type (in parentheses) between the dot and the member name, asif it were a cast. For
example,

asmnov bx,[di].(struct tn)tm hour

Using jump instructions and labels

Y ou can use any of the conditional and unconditional jump instructions, plus the loop
instructions, in inline assembly. These instructions are valid only inside a function.
Since no labels can be defined in the asm statements, jump instructions must use C goto
labels as the object of the jump. If the label istoo far away, the jump will not be
automatically converted to a long-distance jump. For this reason, you should be careful
when inserting conditional jumps. Y ou can use the -B switch to check your jumps.
Direct far jJumps cannot be generated.

In the following code, the jump goes to the C goto label a.

i nt x()
{

a: /* This is the goto |abel "a" */
éshjm a /* CGoes to | abel "a" */

}

Indirect jumps are also allowed. To use an indirect jJump, use aregister name as the
operand of the jJump instruction.

Compiling with inline assembly

210

There are two way Paradigm C++ can handle inline assembly code in your C or C++
code.

. Paradigm C++ can convert your C or C++ code into assembly language, then
transfer to PASM to produce an .OBJfile. (This method is described in this section.)

. Paradigm C++ can use its built-in assembler (PASM) to insert your assembly
statements directly into the compiler's instruction stream (16-bit compiler only).
(This method is described in the following section.)

Y ou can use the -B compiler option for inline assembly in your C or C++ program. If
you can use this option, the compiler first generates an assembly file, then invokes
PASM on that file to produce the .OBJfile.

By default, -B invokes PASMor PASM32. Y ou can override it with -Exxx, where xxx is
another assembler.

Y ou can invoke PASM while omitting the -B option if you include the #pragma inline
statement in your source code. This statement enables the -B option for you when the
compiler encountersit. You will save compile time if you put #pragma inline at the top
of your source file.

The -B option and #pragma inline tell the compiler to produce an .ASM file, which
might contain your inline assembly instructions, and then transfer to PASM to assemble
the .OBJfile. The 16-bit Paradigm C++ compiler has another method, PASM, that
allows the compiler, not PASM, to assemble you inline assembly code.

Paradigm C++ Reference Manual

Using the built-in assembler (PASM)

The 16-bit compiler can assemble your inline assembly instructions using the built-in
assembler (PASM). This assembler is part of the compiler, and can do most of the
things PASM can do, with the following restrictions:

. It can't use assembler macros.
. It can't handle 80386 or 80486 instruction.

« It doesn’'t permit Ideal mode syntax.
. Italowsonly alimited set of assembler directives (see page 10-213)

Because PASM isn't a complete assembler, it might not accept some assembly-language
constructs. If this happens, Paradigm C++ will issue an error message. Y ou then have
two choices: you can ssimplify your inline assembly-language code so the assembler will
accept it, or you can use the -B option to invoke PASM to catch whatever errors there
might be. PASM might not identify the location of errors, however, because the original
C source line number is lost.

Opcodes

Y ou can include any of the 80x86 instruction opcodes as inline-assembly statements.
There are four classes of instructions allowed by the Paradigm C++ compiler:

. Norma instructions - the regular 80x86 opcode set

. String instructions - special string-handling codes

. Jump instructions - various jump opcodes

. Assembly directives - data alocation and definition

All operands are allowed by the compiler, even if they are erroneous or disallowed by
the assembler. The exact format of the operandsis not enforced by the compiler.

Table 10-1 lists al allowable PASM opcodes. For 80286 instruction, use the -2
command-line compiler option.

= If you're using inline assembly in routines that use floating-point emulation (the
command-line compiler option -f), the opcodes marked with * aren't supported.

Table 10-1 PASM opcode mnemonics

PASM opcode

mnemonics ggg fdivrp fpatan Isl
aad feni fprem mov
aam ffree* fptan mul
aes fiadd frndint neg
adc ficom frstor nop
add ficomp fsave not
and fidiv fscale or
bound fidivr fsgrt out
call fild fst pop
cbw fimul fstcw popa
clc fincstp* fstenv popf
cld finit fstp push
cli fist fstsw pusha
cmc fistp fsub pushf

Chapter 10, Using the inline assembly 211

Table 10-2
PASM string
instructions

212

cmp fisub fsubp rcl

cowd fisubr fsubr rer
daa fld fsubrp ret
das fldl ftst rol
dec fldew fwait ror
div fldenv fxam sahf
enter fldi2e fxch sa
f2xml fldi2t fxtract sar
fabs fldig2 fyl2x sbb
fadd fldin2 fyl2xpl shl
faddp fldpi hit shr
fbld fldz idiv smMsw
fbstp fmul imul stc
fchs fmulp in std
fclex fnclex inc sti
fcom fndisi int sub
fcom fndisi int sub
fcomp fneni into test
fcompp fninit iret verr
fdecstp fnop lahf verw
fdisi fnsave Ids wait
fdiv fnstcw lea xchg
fdivp fnstenv leave xla
fdivr fnstsw les xor

* Not supported if you're using inline assembly in routines that use floating-point emulation (the command-
line compiler option -f).

When using 80186 instruction mnemonics in your inline-assembly statements, you must
include the -1 command-line option. This forces appropriate statements into the
assembly-language compiler output so that the assembler will expect the mnemonics. If
you're using an older assembler, these mnemonics might not be supported.

String instructions
In addition to the opcodes listed in Table 10-1, page 10-211, the string instructions
givenin Table 10-2 can be used alone or with repeat prefixes.

PASM string instructions

cmps insw movsb outsw stos
cmpsb lods movsw scas stosb
cmpsw lodsb scash stosw

lodsw outsb scasw

insb movs

The following prefixes can be used with the string instructions:
lock rep repe repnz repz

Paradigm C++ Reference Manual

Jump instructions

Jump instructions are treated specially. Because alabel can't be included on the
instruction itself, jumps must go to C labels (see “Using jump instructions and labels,”
page 10-210). The alowed jump instructions are given in the next table.

Table 10-3 Jump instructions

. ngp

instructions ja jge jnc jns loop
jee il jne jnz loope
jb jle ing jo loopne
jbe jmp jnge jp loopnz
jc jna jnl ipe loopz
jcxz jnee jnle jpo
je jnb jno is

ig jnbe jnp jz

Assembly directives

The following assembly directives are allowed in Paradigm C++ inline-assembly
statements:

db dd dw extrn

Chapter 10, Using the inline assembly 213

214 Paradigm C++ Reference Manual

Chapter
11

Header files summary

Header files, also called include files, provide function prototype declarations for
library functions. Data types and symbolic constants used with the library functions are
also defined in them, along with global variables defined by Paradigm C++ and by the
library functions. The Paradigm C++ library follows the ANSI C standard on names of
header files and their contents.

The middle column indicates C++ header files and header files defined by ANSI C.

dloc.h

assert.h ANSI C
bed.h C++
complex.h C++
conio.h

constreah C++
ctype.h ANSI C
date.h C++
_defsh

dos.h

embedded.h

errno.h ANSI C
except.h C++
excpt.h

fentl.h

float.h ANSI C
fstream.h C++
generic.h C++
io.h

iomanip.h C++
iostream.h C++
limits.h ANSI C
malloc.h

math.h ANSI C

Chapter 11, Header files summary

Declares memory-management functions (allocation, deallocation, and so
on).

Defines the assert debugging macro.

Declares the C++ classbed and the overloaded operators for bed and bed
math functions.

Declares the C++ complex math functions.

Declares various functions used in caling the operating system console
1/O routines.

Defines the conbuf and constreamclasses.

Contains information used by the character classification and character
conversion macros (such asisalpha and toascii).

Defines the date class.

Definesthe calling conventionsfor different application types and memory
models.

Defines various constants and gives declarations needed for DOS and
8086-specificcals

Defines various constants and gives declarations needed for embedded systems
8086-specificcalls

Defines constant mnemonics for the error codes.

Declares the exception-handling classes and functions.

Declares C structured exception support.

Defines symbolic constants used in connection with the library routine open.
Contains parameters for floating-point routines.

Declaresthe C++ stream classes that support file input and output.
Contains macros for generic class declarations.

Contains structures and declarations for low-level input/output routines.
Declaresthe C++ streams |/O manipulators and contains templates for
creating parameterized manipulators.

Declaresthe basic C++ streams (1/O) routines.

Contains environmental parameters, information about compile-time
limitations, and ranges of integral quantities.

Declares memory-management functions and variables.

Declares prototypes for the math functions and math error handlers.

215

mem.h Declares the memory-manipulation functions. (Many of these are a so defined

in string.h.)
memory.h Contains memory-manipulation functions.
new.h C++ Accessto_new_handler, and set_new_handler.
_nfileh Defines the maximum number of open files.
_null.h Definesthe value of NULL.
process.h Contains structures and declarations for terminating a program.
search.h Declares functions for searching and sorting.
setjmp.h ANSI C Declares the functionslongjmp and setjmp and defines atypejmp_buf that
these functions use.
share.h Defines parameters used in functions that make use of file-sharing.
signal.h ANSI C Defines constants and declarationsfor use by thesignal and raisefunctions.
stdarg.h ANSI C Defines macros used for reading the argument list in functions declared to
accept avariable number of arguments (such asvprintf, vscanf, and so on).
stddef.h ANSI C Defines several common data types and macros.
stdio.h ANSI C Defines types and macros needed for the standard 1/O package defined in

Kernighan and Ritchie and extended under UNIX System V. Definesthe
standard 1/0O predefined streams stdin, stdout, stdprn, and stderr and
declares stream-level 1/O routines.

stdiostr.h C++ Declares the C++ stream classes for use with stdio FILE structures.
Y ou should useiostream.h for new code.
stdlib.h ANSI C Declares several commonly used routines such as conversion routines and
search/sort routines.
string.h ANSI C Declares severa string-manipulation and memory-manipulation routines.
strstreah C++ Declares the C++ stream classes for use with byte arraysin memory.
sys\locking.h Contai ns definitions for mode parameter of locking function.
sys\types.h Declares the typetime_t used with time functions.
time.h ANSI C Defines astructure filled in by the time-conversion routinesasctime,

localtime, and gmtime, and atype used by the routines ctime, difftime,
gmtime, localtime, and stime. It also provides prototypes for these routines.

typeinfo.h C++ Declares the run-time type information classes.

values.h Definesimportant constants, including machine dependencies; provided for
UNIX System V compatibility.

varargs.h Definitions for accessing parametersin functions that accept avariable

number of arguments. Provided for UNIX compatibility; you should use
stdarg.h for new code.

Using precompiled headers

Paradigm C++ can generate (and subsequently use) precompiled headers to speed up
your project compile times.

Precompiled headers are header files that are compiled once, then used over and over
again in their compiled state.

Y ou can use a precompiled header if a compilation uses one or more of the same header
files, the same compiler options, the same macro defines, and so on, asis contained in
the precompiled header file.

To control the use of precompiled headers, do one of the following:

216 Paradigm C++ Reference Manual

« From within the IDE, turn on the Precompiled Headers option in the Compiler
settings page of the Project Options dialog box. The IDE bases the name of the
precompiled header file on the project name, creating< PROJECT _NAME>.CSMV.

. From the command line, use the following command-line options:
-H=<filename>, -Hc, -H<filename>, and -Hu.

. From within your code, use the hdrfile and hdr stop pragmas.

Setting file names

Paradigm C++ stores all precompiled headers in one file, using the following naming
convention:

. The 16-bit command-line compiler names the precompiled header file PCDEF.CSM

. The 32-bit command-line compiler names the precompiled header file
PC32DEF.CSM

. TheIDE names the precompiled header file <PROJECT _NAME>.CSM.

= To explicitly set the precompiled file name from the command line, use the
-H=<filename>option or the #pr agna hdrfile directive.

Precompiled header file overview

When compiling C and C++ programs, the compiler can spend up to half itstime
parsing header files. When the compiler parses a header file, it enters declarations and
definitions into its symbol table.

Precompiled headers cut this process short by creating and storing a binary image of the
symbol table on disk. By directly loading a binary image of the symbol table, the
compiler can increase the speed of this step by over ten times. The disadvantage is that
precompiled header files can become quite large because they can contain the symbol
table images for all the #include files encountered in your sources.

If, while compiling a source file, Paradigm C++ discovers that the first #include files
are identical to those of a previous compilation (of either the same or different source),
it loads the binary image for those #include files and parses the remaining #include
files.

For agiven module, either all or none of the precompiled headers are used--if
compilation of any included header file fails, the precompiled header file isn't updated
for that module.

Precompiled header limits

When using precompiled headers, PCDEF.CSM can become very large because it
contains symbol table images for all sets of includes encountered in your sources. If you
don't have sufficient disk space, you'll get awarning saying the write failed because of
the precompiled headers. To fix this, you must provide more disk space and retry the
compile. For information on reducing the size of the PCDEF.CSM file, see “Optimizing
precompiled headers,” page 11-218.

If you're using large macros in a makefile in addition to using precompiled headers,
thereisalimit on the macro size: 4K for 16-bit applications.and 16K for 32-bit
applications.

If aheader file contains any code, it can't be precompiled. For example, although C++
class definitions can appear in header files, you should ensure that only inline member

Chapter 11, Header files summary 217

functions are defined in the header and heed warnings such as Funct i ons
contai ning reserved word are not expanded inline.

Precompiled header rules

The following rules apply when you create and use precompiled headers:
1. A header that contains code can't be precompiled. For example, athough C++ class

definitions can appear in header files, make sure that only inline member functions
are defined in the header. Heed warnings such as Funct i ons cont ai ni ng
"for' are not expanded inline.

. In order to use a previously generated precompiled header, the source file must:

. Havethe same set of include files, in the same order, as the precompiled header
. Have the same macros defined with identical values as the precompiled header
. Usethe same language (C or C++) as the precompiled header

. Use header fileswith identical time stamps as the precompiled header

. In addition, the following option settings must be identical to those used when you

generated the precompiled header:

. Memory model, including SS!= DS (-mx)
. Underscores on externs (-u)

. Maximum identifier length (-iL)

. Target DOS or Windows (-W or -WXx)

. Generate word alignment (-a)

. Pascal calls(-p)

. Treat enums asintegers (-b)

. Default char isunsigned (-K)

. Virtual table control (-Vx and -Vmx)

. Expandintrinsic functions inline (-Oi)

. Templates (-JX)

. String literalsin code segment (-dc, 16-bit)
. Debugging information (-v, -vi, and -R)

. Farvariables(-Fx)

. Language compilance (-A)

. C++ compile (-P)

. DOS overlay-compatible code (-Y)

. If you're using large macros in addition to using precompiled headers, the compiler

limits the size of the macros as following:
. 4K macrosfor 16-bit applications
. 16K macros for 32-bit applications

Optimizing precompiled headers

218

For the most efficiently compiled precompiled headers, follow these rules:

Arrange your header filesin the same sequence in all source files.
Put the largest header filesfirst.
Prime the precompiled header file with often-used initial sequences of header files.

Paradigm C++ Reference Manual

alloc.h

. Use#pragna hdrstop to terminate the list of header files at well-chosen places.
This lets you make the list of header filesin different sources ook similar to the
compiler.

For example, suppose you have the following two source files (A_SOURCE.CPP and
B_SOURCE.CPP), which both include windows.h and myhdr.h:

/* A SOURCE. CPP */

#i ncl ude <wi ndows. h>
#i ncl ude "nmyhdr. h"

#i ncl ude "xxx. h"

1. ..

/* B_SOURCE. CPP */

#i ncl ude "yyy.h

#i ncl ude <string. h>
#i ncl ude "nyhdr. h"

#i ncl ude <wi ndows. h>
...

To optimize the precompiled headers for these source files, you would rearrange the
beginning of B_ SOURCE.CPP as follows.

/* Revised B_SOURCE. CPP */
#i ncl ude <wi ndows. h>

#i ncl ude "nyhdr. h"

#i ncl ude "yyy. h"

#i ncl ude <string. h>

...

Now, windows.h and myhdr.h are in the same order in both A_SOURCE.CPP and
B_SOURCE.CPP, and they are both located at the beginning of the #i ncl ude list.

In addition, you could aso create a new source file called PREFIX.CPP which contains
only the matching header files, like this:

/* PREFI X. CPP */
#i ncl ude <wi ndows. h>
#i ncl ude "nyhdr. h"

If you compile PREFIX.CPP first (or insert a#pr agnma hdr st op in both
A_SOURCE.CPP and B_SOURCE.CPP), the net effect is that after the initial
compilation of PREFIX.CPP, both A_SOURCE.CPP and B_ SOURCE.CPP will be able
to load the symbol table produced by PREFIX.CPP. The compiler will then need to
parse only xxx.h for A_SOURCE.CPP, and yyy.h and strings.h for B_SOURCE.CPP.

Declares memory-management functions (allocation, deallocation, and so on).
Functions

. caloc

. farcaloc

. farfree

. farmalloc
. farrealoc
. free

. heapcheck

. heapcheckfree

Chapter 11, Header files summary 219

. heapchecknode

. heapfillfree
. heapwalk

. maloc

. redloc

Constants, data types and global variables
. NULL

. ptrdiff t
. gSzet
assert.h
Defines the assert debugging macro.
Functions
. assert
ctype.h
Contains information used by the character classification and character conversion
macros.
Functions and macros
. isanum
. isdpha
. isascii
. iscntrl
. isdigit
. isgraph
. islower
. isprint
. ispunct
. lIsspace
. isupper
. isxdigit
. toascii
. _tolower
. tolower
. _toupper
. toupper
Constants, data types and global variables
. _ISCTL
. _ISDIG
. _IS HEX
. _ISLOW
220 Paradigm C++ Reference Manual

. IS PUN

. _ISSP

. _ISUPP
dos.h

Defines various constants and gives declarations needed for DOS and 8086-specific

cals.

Functions and macros

. _Chain_intr

. disable

. _emit_

. enable

. FP_OFF

. FP_SEG

. getvect

. inport

. inportb

. int86

. in86x

. intr

. MK_FP

. outport

. outportb

. peek

. peekb

. poke

. pokeb

. Segread

. Setvect

Constants, data types and global variables

. €rno

. SREGS
embedded.h

Defines various constants and gives declarations needed for embedded systems 8086-

specific calls.

Functions and macros
. _chain_intr

. disable
. _emit_
. enable

Chapter 11, Header files summary 221

. FP.OFF

. FP_SEG
. getvect
. inport

. inportb

. int86

. INt86x

o intr

. MK_FP
. outport
. outportb
. peek

. peekb

. poke

. pokeb

. segread
. Setvect

Constants, data types and global variables
. SREGS

errno.h
Defines constant mnemonics for the error codes.
Constants, data types and global variables
. _doserrno
. €rno
. _9ys errlist
« _Sys nerr
. error number definitions
fcntl.h
Defines open flags for open and similar library functions.
Functions
. _fmode
Constants
. O _APPEND
. O BINARY
. O_CHANGED
. O CREAT
. O DENYALL
. O _DENYNONE
. O _DENYREAD
222 Paradigm C++ Reference Manual

float.h

. O DENYWRITE
. O _DEVICE

. O _EXCL

. O _NOINHERIT
. O _RDONLY

. O RDWR

. O _TEXT

. O_TRUNC

. O WRONLY

generic.h

Contains parameters for floating-point routines.
Functions

. _Clear87

. _fpreset

. _Status87

Constants, data types and global variables

. CW_DEFAULT

. FPE_EXPLICITGEN
. FPE_INEXACT

. FPE_INTDIVO

. FPE_INTOVFLOW
. FPE_INVALID

. FPE_OVERFLOW

. FPE_UNDERFLOW
. FPE_ZERODIVIDE
. ILL_EXECUTION

. [ILL_EXPLICITGEN
. SEGV_BOUND

. SEGV_EXPLICITGEN

io.h

Contains macros for generic class declarations.

Contains structures and declarations for low-level input/output routines.

Functions

. Setmode

Constants, data types and global variables
. HANDLE_MAX

Chapter 11, Header files summary

223

iomanip.h

Declares the C++ streams I/O manipulators and contains macros for creating
parameterized manipulators.

Includes

. iostream.h
Classes

. lapply

. imanip

. ioapp

. iomanip
. oapp

. Oomanip
« SAPp

. Smanip

Overloaded Operators

<< >>
limits.h

Contains environmental parameters, information about compile-time limitations, and

ranges of integral quantities.

Constants, data types and global variables

. CHARBIT

. CHAR_MAX

. CHAR_MIN

. INT_MAX

« INT_MIN

. LONG MAX

. LONG_MIN

. SCHAR_MAX

. SCHAR MIN

. SHRT_MAX

. SHRT_MIN

. UCHAR_MAX

. UINT_MAX

. ULONG_MAX

. USHRT_MAX
malloc.h

Declares memory-management functions and variables.

224 Paradigm C++ Reference Manual

Includes

. ALLOCH

Functions

. _heapchk

« _heapmin

. _heapset

. Stackavail
math.h

Declares prototypes for the math functions and math error handlers.

Functions

. abs

. acos, acos

. asn,asnl

. dan, atanl

. atan2, atan2l

. atof, atold

. cabs, cabd

. cel,call

. Cos, cosl

. cosh, coshl

. exp, expl

. fabs, fabs

. floor, floorl

. fmod, fmodl
. frexp, frexpl
. hypot, hypotl

. labs
. ldexp, Idexpl
. log, logl

. 10010, log101
. _matherr,_matherrl

. modf, modfl

. poly, polyl

. pow, powl

. pow10, pow1Ol
. sn,snl

. Sinh, sinhl

o SOrt, sortl

. tan, tanl

. tanh, tanhl

Chapter 11, Header files summary

225

mem.h

Constants, data types and global variables

complex (struct)
_complex| (struct)
EDOM
ERANGE
exception (struct)
_exceptionl (struct)
HUGE_VAL
M_E

M_LOG2E
M_LOGI0E
M_LN2
M_LN10

M_PI

M Pl 2

M_Pl 4

M_1 Pl

M _2 Pl

M_1 SQRTPI
M_2 SQRTPI
M_SQRT2
M_SQRT_2
_mexcep

226

Declares the memory-manipulation functions. (Many of these are also defined in
string.h.)

Functions

_fmemccpy
_fmemchr
_fmemcmp
_fmemcpy
_fmemicmp
_fmemmove
_fmemset
_fmovmem
memccpy
memchr
memcmp
memcpy
memicmp
memmove

Paradigm C++ Reference Manual

memory.h

. memset

. movedata
. movmem
. Setmem

Constants, Data Types and Global Variables
. NULL

. ptrdiff t

. Sizet

Contains memory-manipulation functions.
Includes

. MEMH
new.h
Provides access to the the following functions:
. Set new_handler
. _new_handler (global variable)
process.h
Contains structures and declarations for terminating a program.
Functions
. abort
. _C exit
. _cexit
. exit
. _exit
search.h
Declares functions for searching and sorting.
Functions
. bsearch
. Ifind
. Isearch
. (Qsort
setjmp.h

Declares the functions longjmp and setjmp and defines atype jmp_bufj that these

functions use.

Chapter 11, Header files summary

227

Functions

. longimp
. Simp
Constants, data types and global variables
« jmp_buf
share.h
Defines parameters used in functions that make use of file-sharing.
Constants, data types and global variables
. SH_COMPAT
. SH_DENYNO
. SH DENYNONE
. SH_DENYRD
. SH DENYRW
. SH DENYWR
signal.h
Defines constants and declarations for use by the signal and raise functions.
Functions
. raise
. signa
Constants, data types and global variables
. predefined signal handlers
. Sig _atomic_t type
. SIG DFL
. SIG_ERR
. SIG_IGN
. SIGABRT
. SIGFPE
. SIGILL
. SIGINT
. SIGSEGV
. SIGTERM
stdarg.h

Defines macros used for reading the argument list in functions declared to accept a
variable number of arguments (such as vprintf, vscanf, and so on).

M acros

. Vvaag
. vaend

228 Paradigm C++ Reference Manual

stddef.h

. Va start

Constants, data types and global variables

. valist

stdio.h

Defines several common data types and macros.

Functions
. oOffsetof

Constants, data types and global variables

. NULL

. ptrdiff_t

. gSzet

. wchar_t

Defines types and macros needed for the standard 1/0O package defined in Kernighan

and Ritchie and extended under UNIX System V. It defines the standard 1/0 predefined

streams stdin, stdout, stdprn, and stderr, and declares stream-level 1/0 routines.

Functions

_fstrnepy
getc
getchar
gets
getw
perror
printf
putc
putchar
puts
putw
scanf

setbuf
setvbuf
sprintf
sscanf
_strerror
strerror
strncpy
ungetc
vprintf
vscanf
vsprintf
vsscanf

Constants, data types and global variables

_F BIN
_F BUF
_F EOF
_F ERR
FIN

_F LBUF
_F ouT
_F RDWR

FILE

FOPEN_MAX

fpos t
_|OFBF
_IOLBF
_IONBF
L_ctermid
NULL

Chapter 11, Header files summary

size t
stdauix
stderr

stdin

stdout
stdprn

SYS OPEN
TMP_MAX

229

stdiostr.h

Declares the C++ stream classes for use with stdio FILE structures. Y ou should use

iostream.h for new code.

Includes
. |IOSTREAM.H
. STDIOH
stdlib.h
Declares several commonly used routines such as conversion routines and search/sort
routines.
Functions
abort labs realloc
abs Idiv _rotl
atexit Ifind _rotr
atof _rotl srand
atoi _lrotr strtod
atol |search strtol
bsearch Itoa _strtold
calloc malloc strtoul
_crotr max swab
div mblen ultoa
ecvt mbstowcs wcstombs
exit mbtowc wctomb
_exit min
fevt gsort
free rand
gevt random
itoa randomize
Constants, data types and global variables
. divt
. _doserrno
. €rno
. EXIT_FAILURE
. EXIT_SUCCESS
. _fmode
. ldiv_t
. NULL
. RAND MAX
. dSzet
. 9ys errlist
230 Paradigm C++ Reference Manual

string.h

. Sys ner

. wchar_t

Declares several string-manipulation and memory-manipulation routines.

Functions

_fmemccpy
_fmemchr
_fmemcmp
_fmemcpy
_fmemicmp
_fmemset
_fstr*
_fstrcat
_fstrchr
_fstremp
_fstrcpy
_fstrcspn
_fstrdup
_fstricmp
_fstrlen
_fstriwr
_fstrncat
_fstrnemp
_fstrncpy
_fstrnicmp
_fstrnset
_fstrpbrk
_fstrrchr
_fstrrev

_fstrset
_fstrspn
_fstrstr
_fstrtok
_fstrupr
memccpy
memchr
memcmp
memcpy
memicmp
memmove
memset
movedata
movmem
setmem
stpcpy
strcat
strchr
strcmp
strcmp
strempi
streoll
strcpy
strcspn

strdup
strdup
strerror
_strerror
stricmp
strlen
striwr
strncat
srncmp
strncmpi
strncpy
strnicmp
strnset
strpbrk
strrchr
strrev
strset
strspn
strstr
strtok
strupr
strxfrm

Constants, data types and global variables

. gSzet

sys\locking.h

Contains definitions for mode parameter of locking function.

sys\types.h

Constants, data types and global variables

. timet

Chapter 11, Header files summary

231

time.h

Defines a structure filled in by time-conversion routines asctime, localtime, and
gmtime, and a type used by the routines ctime, difftime, gmtime, localtime and stime. It

also provides prototypes for these routines.
Functions

. actime
. ctime

. difftime
. gmtime
. locatime
. mktime
. randomize
. dime

. _drdate

. grftime
. _strtime

. time

Constants, Data Types and Global Variables

. gSzet
. timet
« tm
values.h
Defines UNIX compatible constants for limits to float and double values.
Functions
. BITSPERBYTE
. DMAXEXP
. DMAXPOWTWO
. DMINEXP
. DSIGNIF
. FMAXEXP
. FMAXPOWTWO
. FMINEXP
. FSIGNIF
. _FEXPLEN
. HIBITI
. HIBITL
. HIBITS
. _LENBASE
. MAXDOUBLE
. MAXFLOAT
232 Paradigm C++ Reference Manual

varargs.h

« MAXINT

. MAXLONG

« MAXSHORT
. MINDOUBLE
« MINFLOAT

excpt.h

Definitions for accessing parameters in functions that accept a variable number of
arguments.

These macros are compatible with UNIX System V.
Use STDARG.H for ANSI C compatibility.

Y ou can't include both STDARG.H and VARARGS.H
Macr os

. Vva start
. Vvaag
. vaend
Type

. valist

_defs.h

The excpt.h header file contains the declarations and prototypes for structured
exception-handling values, types, and routines.

=

_nfile.h

The _defs.h header file contains common definitions for pointer size and calling
conventions.

Calling Conventions

_RTLENTRY Specifiesthe calling convention used by the Standard Run-time Library.

_USERENTRY Specifiesthe calling convention the Standard Run-time Library expects user-
compiled functionsto use for callbacks.

Export (and sizefor DOS) infor mation

_EXPCLASS Exportsthe classif you are building aDLL version of alibrary.
_EXPDATA Exportsthe dataif you are building aDLL version of alibrary.
_EXPFUNC Exportsthe function if you are building aDLL version of alibrary.

These export macros are provided as examples only and should not be used to create
user-defined functions.

The _nfile.h header file defines _NFILE_, which specifies the maximum number of
open files you can have.

NFILE isdefined as 50 for al applications.

Chapter 11, Header files summary 233

_null.h

The _null.h defines the value of NULL for different memory models and applications
types:

M odel Value

Hat ((void *)0) if not C++ or Windows application
Flat 0

Small 0

Medium 0

Large oL

234 Paradigm C++ Reference Manual

Chapter

12
Math

This chapter describes the floating-point options and explains how to use complex and
bcd numerical types.

Floating-point I/O

Floating-point output requires linking of conversion routines used by printf, scanf, and
any variants of these functions. To reduce executable size, the floating-point formats are
not automatically linked. However, this linkage is done automatically whenever your
program uses a mathematical routine or the address is taken of some floating-point
number. If neither of these actions occur, the missing floating-point formats can result

in arun-time error.

The following program illustrates how to set up your program to properly execute.

/[* PREPARE TO OUTPUT FLOATI NG PO NT NUVBERS. */
#|l ncl ude <stdi o. h>

#pragnma extref _floatconvert
void main() {

printf("d = %\n", 1.3);
}

Floating-point options

There are two types of numbers you work with in C: integer (int, short, long, and so
on) and floating point (float, double, and long double). Y our computer’ s processor can
easily handle integer values, but more time and effort are required to handle floating-
point values.

However, the iAPx86 family of processors has a corresponding family of math
coprocessors, the 8087, the 80287, and the 80387. We refer to this entire family of math
coprocessors as the 80x87, or “the coprocessor."”

The 80x87 is a special hardware numeric processor that can be installed in your PC. It
executes floating-point instructions very quickly. If you use floating point alot, you'll
probably want a coprocessor. The CPU in your computer interfaces to the 80x87 via
specia hardware lines.

If you have an 80486 or Pentium processor, the numeric coprocessor is probably
already built in.

Emulating the 80x87 chip

The default Paradigm C++ code-generation option is emulation (the -f command-line
compiler option). This option is for programs that might or might not have floating
point, and for machines that might or might not have an 80x87 math coprocessor.

Chapter 12, Math 235

236

With the emulation option, the compiler will generate code as if the 80x87 were present,
but will also link in the emulation library (EMU.LIB). When the program runs, it uses
the 80x87 if it is present; if no coprocessor is present at run-time, it uses specia
software that emulates the 80x87. This software uses 512 bytes of your stack, so make
allowance for it when using the emulation option and set your stack size accordingly.

Using the 80x87 code

If your program is going to run only on machines that have an 80x87 math coprocessor,
you can save a small amount in your .EXE file size by omitting the 80x87 autodetection
and emulation logic. Choose the 80x87 floating-point code-generation option (the {87
command-line compiler option). Paradigm C++ will then link your programs with
FP87.LIB instead of with EMU.LIB.

No floating-point code

If there is no floating-point code in your program, you can save a small amount of link
time by choosing None for the floating-point code-generation option (the -f— command-
line compiler option). Then Paradigm C++ will not link with EMU.LIB, FP87.LIB, or
MATHXx.LIB.

Fast floating-point option

Paradigm C++ has a fast floating-point option (the —ff command-line compiler option).
It can be turned off with —ff— on the command line. Its purpose isto alow certain
optimizations that are technically contrary to correct C semantics. For example,

doubl e x;
x = (float) (3.5*%x);

To execute this correctly, x is multiplied by 3.5 to give adouble that istruncated to
float precision, then stored as adouble in x. Under the fast floating-point option, the
long double product is converted directly to a double. Since very few programs depend
on the loss of precision in passing to a narrower floating-point type, fast floating point is
the default.

The 87 environment variable

If you build your program with 80x87 emulation, which is the default, your program
will automatically check to see if an 80x87 is available, and will useitif itis.

There are some situations in which you might want to override this default
autodetection behavior. For example, your own run-time system might have an 80x87,
but you might need to verify that your program will work as intended on systems
without a coprocessor. Or your program might need to run on a PC-compatible system,
but that particular system returns incorrect information to the autodetection logic
(saying that a nonexistent 80x87 is available, or vice versa).

Paradigm C++ provides an option for overriding the start-up code’ s default
autodetection logic; this option is the 87 environment variable.

Y ou set the 87 environment variable at the DOS prompt with the SET command, like
this:
C> SET 87=N

or likethis:

Paradigm C++ Reference Manual

C SET 87=Y

Don't include spaces on either side of the =. Setting the 87 environment variable to N
(for No) tells the start-up code that you do not want to use the 80x87, even though it
might be present in the system.

= Setting the 87 environment variableto Y (for Y es) means that the coprocessor is there,
and you want the program to use it. Let the programmer beware: If youset 87 =Y
when, in fact, there is no 80x87 available on that system, your system will hang.

If the 87 environment variable has been defined (to any value) but you want to undefine
it, enter the following at the DOS prompt:

C> SET 87=
Press Enter immediately after typing the equal sign.

Registers and the 80x87

When you use floating point, make note of these points about registers:

. In 80x87 emulation mode, register wrap-around and certain other 80x87
peculiarities are not supported.

. If you are mixing floating point with inline assembly, you might need to take special
care when using 80x87 registers. Unless you are sure that enough free registers
exist, you might need to save and pop the 80x87 registers before calling functions
that use the coprocessor.

Disabling floating-point exceptions

By default, Paradigm C++ programs abort if a floating-point overflow or divide-by-zero
error occurs. Y ou can mask these floating-point exceptions by acall to _control87in
main, before any floating-point operations are performed. For example,

#i ncl ude <fl oat. h>

mai n() {
_control 87(MCW EM MCW EM) ;

}

— You can determine whether a floating-point exception occurred after the fact by calling
_status87 or _clear87. See "Run-time library functions' in the online Help index for
detail s about these functions.

Certain math errors can al'so occur in library functions; for instance, if you try to take
the square root of a negative number. The default behavior isto print an error message
to the screen, and to return aNAN (an |EEE not-a-number). Use of the NAN islikely to
cause a floating-point exception later, which will abort the program if unmasked. If you
don’t want the message to be printed, insert the following version of _matherr into your
program:

#i ncl ude <mat h. h>

int matherr(struct _exception *e)

{

return 1; /* error has been handl ed */

}

Any other use of _matherr to intercept math errorsis not encouraged; it is considered
obsolete and might not be supported in future versions of Paradigm C++.

Chapter 12, Math 237

Using complex types

Complex numbers are numbers of the form x + yi, where x and y are real numbers, and i
isthe square root of -1. Paradigm C++ as always had atype:

struct conpl ex

double x, vy;
}
defined in math.h. This type is convenient for holding complex numbers, because they
can be considered a pair of real numbers. However, the limitations of C make arithmetic

with complex numbers rather cumbersome. With the addition of C++, complex math is
much simpler.

A significant advantage to using the Paradigm C++ complex numerical typeisthat all of
the ANSI C Standard mathematical routines are defined to operate with it. These
mathematical routines are not defined for use with the C struct complex.

See "complex class' in the online Help Book Shelf index for more information. The
Book Shelf index can be accessed by choosing Help|Keyboard and clicking on the Book
Shelf menu tab.

To use complex numbersin C++, al you have to do is to include complex.h. In
complex.h, all the following have been overloaded to handle complex numbers:

. All of the binary arithmetic operators.
. theinput and output operators, >> and <<.
. the ANSI C math functions.

The complex library isinvoked only if the argument is of type complex. Thus, to get the
complex square root of -1, use

sqgrt(compl ex(-1))

and not
sgrt(-1)

The following functions are defined by class complex:
doubl e arg(conpl ex&); /1 angle in the plane
conpl ex conj (conpl ex&) ; /1 conpl ex conjugate
doubl e i mag(conpl ex&); /1 imaginary part
doubl e norn{conpl ex&) ; /'l square of the magnitude
doubl e real (conpl ex&) ; /1 real part

/1 Use polar coordinates to create a conpl ex.
conpl ex pol ar (doubl e mag, double angle = 0);

Using bcd types

238

Paradigm C++, along with aimost every other computer and compiler, does arithmetic
on binary numbers (that is, base 2). This can sometimes be confusing to people who are
used to decimal (base 10) representations. Many numbers that are exactly representable
in base 10, such as 0.01, can only be approximated in base 2.

See "bed class' in the online Help Book Shelf index for more information. The Book
Shelf index can be accessed by choosing Help|Keyboard and clicking on the Book Shelf
menu tab.

Binary numbers are preferable for most applications, but in some situations the round-
off error involved in converting between base 2 and 10 is undesirable. The most

Paradigm C++ Reference Manual

common example of thisisafinancial or accounting application, where the pennies are
supposed to add up. Consider the following program to add up 100 pennies and subtract
adollar:

#i ncl ude <stdi o. h>
int i;
float x = 0.0;
for (i =0; i < 100; ++i)
x += 0.01;
Xx -=1.0;
printf("100*.01 - 1 = %g\n",Xx);

The correct answer is 0.0, but the computed answer is a small number closeto 0.0. The
computation magnifies the tiny round-off error that occurs when converting 0.01 to base
2. Changing the type of x to double or long double reduces the error, but does not
eliminate it.
To solve this problem, Paradigm C++ offers the C++ type bed, which is declared in
bed.h. With bed, the number 0.01 is represented exactly, and the bed variable x provides
an exact penny count.

#i ncl ude <bcd. h>

int i;

bcd x = 0.0;

for (i =0; i < 100; ++i)

x += 0.01,;
X -=1.0;
cout << "100*.01 - 1 =" << x << "\n";

Here are some facts to keep in mind about bcd:

. bcd does not eliminate al round-off error: A computation like 1.0/3.0 will still have
round-off error.

. bcd types can be used with ANSI C math functions.

. bcd numbers have about 17 decimal digits precision, and arange of about 1 x 1
to 1 x 10'%.

-125
0

Converting bcd numbers

bcd is a defined type distinct from float, double, or long double; decimal arithmetic is
performed only when at |east one operand is of the type bcd.

The bcd member function real isavailable for converting a bcd number back to one of
the usual formats (float, double, or long double), though the conversion is not done
automatically. real does the necessary conversion to long double, which can then be
converted to other types using the usual C conversions. For example, a bcd can be
printed using any of the following four output statements with cout and printf.

Chapter 12, Math 239

240

=

/* PRI NTI NG bcd NUMBERS */

[* This nust be conpiled as a C++ program */
#| ncl ude <bcd. h>

#i ncl ude <i ostream h>

#i ncl ude <stdi o. h>

void mai n(void) {
bcd a = 12. 1;
double x = real (a); // This conversion required for printf().

printf("\na = %", Xx);

printf("\na = %g9", real(a));

printf("\na = %9", (double)real (a));

cout << "\na =" << a; // the preferred nethod.
}

Since printf doesn’t do argument checking, the format specifier must have the L if the
long double value real(a) is passed.

Number of decimal digits

Y ou can specify how many decimal digits after the decimal point areto be carried in a
conversion from a binary type to abcd. The number of placesis an optional second
argument to the constructor bed. For example, to convert $1000.00/7 to abed variable
rounded to the nearest penny, use

bcd a = bcd(1000.00/7, 2)

where 2 indicates two digits following the decimal point. Thus,
1000. 00/ 7 = 142. 85714,

bcd(1000. 00/ 7, 2 = 142. 860
bcd(1000. 00/ 7, 1) = 142. 900
bcd(1000. 00/ 7, 0) = 143. 000
bcd(1000.00/ 7, -1) = 140. 000
bcd(1000. 00/ 7, -2) = 100. 000

The number is rounded using banker’ s rounding (as specified by |EEE), which rounds
to the nearest whole number, with ties being rounded to an even digit. For example,

bcd(12.335, 2) = 12. 34
bcd(12. 345, 2) = 12. 34
bcd(12. 355, 2) = 12. 36

Paradigm C++ Reference Manual

Chapter
13

16-bit memory management

This chapter discusses

. What to do when you receive "Out of memory" errors.

. What memory models are: how to choose one, and why you would (or wouldn't)
want to use a particular memory model.

Running out of memory

Paradigm C++ does not generate any intermediate data structures to disk when it is
compiling (Paradigm C++ writes only .OBJ filesto disk); instead it uses RAM for
intermediate data structures between passes. Because of this, you might encounter the
message “ Out of memory” if there isn’t enough memory available for the compiler.

The solution to this problem is to make your functions smaller, or to split up the file that
has large functions.

Memory models

Paradigm C++ gives you five memory models, each suited for different program and
code sizes. Each memory model uses memory differently. What do you need to know to
use memory models? To answer that question, you need to take alook at the computer
system you’ re working on. Its central processing unit (CPU) is a microprocessor
belonging to the Intel iAPx86 family; an 80286, 80386, 80486, or Pentium. For now,
we'll just refer to it as an 8086.

= See page 13-247 for a summary of each memory model.

The 8086 registers

The following figure shows some of the registers found in the 8086 processor. There are
other registers—because they can’t be accessed directly, they aren’t shown here.

Chapter 13, 16-bit memory management 241

Figure 13-1
8086 registers

242

General-purpose registers

AX accumulatar (rl'nath opergtions)
#H AL

BX i baze (indexing) oL

X I:H-:-:-unt (ndexing’ oL

DX Dﬂata (h-:-l-:iing -:Iata‘JDL

Segmem address registers

Cs code segment pointer
DS data segment pointer
55 stack segment pointer
ES extra segment pointer

Special-purpose redgisters

sP stachk pointer
BP baze pointer
sl source index
¥} | destination index

General-purpose registers

The general-purpose registers are the registers used most often to hold and manipulate
data. Each has some specia functions that only it can do. For example,

Some math operations can only be done using AX.
BX can be used as an index register.

CX isused by LOOP and some string instructions.
DX isimplicitly used for some math operations.

But there are many operations that all these registers can do; in many cases, you can
freely exchange one for another.

Paradigm C++ Reference Manual

Segment registers

The segment registers hold the starting address of each of the four segments. As
described in the next section, the 16-bit value in a segment register is shifted left 4 bits
(multiplied by 16) to get the true 20-bit address of that segment.

Special-purpose registers
The 8086 also has some special-purpose registers.

. The Sl and DI registers can do many of the things the general -purpose registers can,
plusthey are used as index registers. They’re aso used by Paradigm C++ for
register variables.

. The SPregister pointsto the current top-of-stack and is an offset into the stack
segment.

. TheBPregister isasecondary stack pointer, usually used to index into the stack in
order to retrieve arguments or automatic variables.

Paradigm C++ functions use the base pointer (BP) register as a base address for
arguments and automatic variables. Parameters have positive offsets from BP, which
vary depending on the memory model. BP points to the saved previous BP value if there
Isastack frame. Functions that have no arguments will not use or save BP if the
Standard Stack Frame option is Off.

Automatic variables are given negative offsets from BP. The offsets depend on how
much space has already been assigned to local variables.

The flags register

The 16-bit flags register contains al pertinent information about the state of the 8086
and the results of recent instructions.

Chapter 13, 16-bit memory management 243

Figure13-2 Flags register of 80x86 processors

“irtual 80386 Moce

Fesume
Mested Tazk
12 Pratection Lewvel
Cver flowy
Direction
Interrupt Enable
Trap
=ign
Lero
Avxiliary Carry
Parity
Carr
31 23 15 7 1]
VI R H|IOP |(O|D|I |T|5|2Z A P C
a0356
< ory N At >

244

For example, if you wanted to know whether a subtraction produced a zero result, you
would check the zero flag (the Z bit in the flags register) immediately after the
instruction; if it were set, you would know the result was zero. Other flags, such asthe
carry and overflow flags, smilarly report the results of arithmetic and logical
operations.

Other flags control the 8086 operation modes. The direction flag controls the direction
in which the string instructions move, and the interrupt flag controls whether external
hardware, such as a keyboard or modem, is allowed to halt the current code temporarily
so that urgent needs can be serviced. The trap flag is used only by software that debugs
other software.

The flags register isn’t usually modified or read directly. Instead, the flags register is
generaly controlled through special assembler instructions (such asCLD, ST1, and
CMC) and through arithmetic and logical instructions that modify certain flags.
Likewise, the contents of certain bits of the flags register affect the operation of
instructions such as JZ, RCR, and MOV SB. The flags register is not really used as a
storage location, but rather holds the status and control data for the 8086.

Memory segmentation

The Intel 8086 microprocessor has a segmented memory architecture. It has a total
address space of 1 MB, but is designed to directly address only 64K of memory at a
time. A 64K chunk of memory is known as a segment; hence the phrase * segmented
memory architecture.”

Paradigm C++ Reference Manual

. The 8086 keeps track of four different segments: code, data, stack, and extra. The
code segment is where the machine instructions are; the data segment is where
information is; the stack is, of course, the stack; and the extra segment is also used
for extra data.

. The 8086 has four 16-bit segment registers (one for each segment) named CS, DS,
SS, and ES; these point to the code, data, stack, and extra segments, respectively.

. A segment can be located anywhere in memory. In DOS real-mode it can be located
almost anywhere. For reasons that will become clear as you read on, a segment must
start on an address that is evenly divisible by 16 (in decimal).

Address calculation

A complete address on the 8086 is composed of two 16-bit values. the segment address
and the offset. Suppose the data segment address—the value in the DS register—is
2F84 (base 16), and you want to calculate the actual address of some data that has an
offset of 0532 (base 16) from the start of the data segment: how is that done?

Address calculation is done as follows: Shift the value of the segment register 4 bitsto
the left (equivalent to one hex digit), then add in the offset.

The resulting 20-bit value is the actual address of the data, as illustrated here:

DS register (shifted): 0010 1111 1000 0100 0000 = 2F840
O fset: 0000 0101 0011 0010 = 00532
addr ess: 0010 1111 1101 0111 0010 = 2FD72

= A chunk of 16 bytesis known as a paragraph, so you could say that a segment always
starts on a paragraph boundary.

The starting address of a segment is always a 20-bit number, but a segment register only
holds 16 bits—so the bottom 4 bits are aways assumed to be all zeros. This means
segments can only start every 16 bytes through memory, at an address where the last 4
bits (or last hex digit) are zero. So, if the DS register is holding a value of 2F84, then the
data segment actually starts at address 2F840.

The standard notation for an address takes the form segment: offset; for example, the
previous address would be written as 2F84:0532. Note that since offsets can overlap, a
given segment:offset pair is not unique; the following addresses all refer to the same
memory location:

0000: 0123

0002: 0103

0008: 00A3

0010: 0023
0012: 0003

Segments can overlap (but don’t have to). For example, all four segments could start at
the same address, which means that your entire program would take up no more than
64K—but that’s all the space you' d have for your code, your data, and your stack.

Pointers

Although you can declare a pointer or function to be a specific type regardless of the
model used, by default the type of memory model you choose determines the default
type of pointers used for code and data. There are four types of pointers. near (16 bits),
far (32 bits), huge (also 32 hits), and segment (16 bits).

Chapter 13, 16-bit memory management 245

246

Near pointers

A near pointer (16-hits) relies on one of the segment registersto finish calculating its
address; for example, a pointer to a function would add its 16-bit value to the | eft-
shifted contents of the code segment (CS) register. In asimilar fashion, anear data
pointer contains an offset to the data segment (DS) register. Near pointers are easy to
manipulate, since any arithmetic (such as addition) can be done without worrying about
the segment.

Far pointers

A far pointer (32-bits) contains not only the offset within the segment, but also the
segment address (as another 16-bit value), which is then left-shifted and added to the
offset. By using far pointers, you can have multiple code segments; this, in turn, allows
you to have programs larger than 64K. Y ou can also address more than 64K of data.

When you use far pointers for data, you need to be aware of some potential problemsin
pointer manipulation. As explained in the section on address calculation, you can have
many different segment:offset pairs refer to the same address. For example, the far
pointers 0000:0120, 0010:0020, and 0012:0000 all resolve to the same 20-bit address.
However, if you had three different far pointer variables—a, b, and c—containing those
three values respectively, then all the following expressions would be fal se:

if (a==0b) -

if (b=2c) -

if (a==2¢) -

A related problem occurs when you want to compare far pointers using the >, >=, <,
and <= operators. In those cases, only the offset (as an unsigned) is used for
comparison purposes; given that a, b, and c till have the values previoudly listed, the
following expressions would all betrue:

if (a>bh) -

if (b>c¢c) -

if (a>c) -

The equals (= =) and not-equal (!=) operators use the 32-bit value as an unsigned long
(not as the full memory address). The comparison operators (<=, >=, <, and >) use just
the offset.

The == and != operators need all 32 hits, so the computer can compare to the NULL
pointer (0000:0000). If you used only the offset value for equality checking, any pointer
with 0000 offset would be equal to the NULL pointer, which is not what you want.

If you add values to afar pointer, only the offset is changed. If you add enough to cause
the offset to exceed FFFF (its maximum possible value), the pointer just wraps around
back to the beginning of the segment. For example, if you add 1 to 5031:FFFF, the
result would be 5031:0000 (not 6031:0000). Likewise, if you subtract 1 from
5031:0000, you would get 5031:FFFF (not 5030:000F).

If you want to do pointer comparisons, it’s safest to use either near pointers—which all
use the same segment address—or huge pointers, described next.

Huge pointers
Huge pointers are also 32 bitslong. Like far pointers, they contain both a segment

address and an offset. Unlike far pointers, they are normalized to avoid the problems
associated with far pointers.

Paradigm C++ Reference Manual

A normalized pointer is a 32-bit pointer that has as much of its value in the segment
address as possible. Since a segment can start every 16 bytes (10 in base 16), this means
that the offset will only have avalue from 0 to 15 (0 to F in base 16).

To normalize a pointer, convert it to its 20-bit address, then use the right 4 bits for your
offset and the left 16 bits for your segment address. For example, given the pointer
2F84:0532, you would convert that to the absolute address 2FD72, which you would
then normalize to 2FD7:0002. Here are a few more pointers with their normalized
equivalents:

0000: 0123 0012: 0003

0040: 0056 0045: 0006

500D: 9407 594D: 0007
7418: DO3F 811B: 000F

There are three reasons why it isimportant to always keep huge pointers normalized:

1. For any given memory address there is only one possible huge address
(segment:offset) pair. That means that the = = and ! = operators return correct
answers for any huge pointers.

2. in addition, the >, >=, <, and <= operators are all used on the full 32-bit value for
huge pointers. Normalization guarantees that the results of these comparisons will
also be correct.

3. Finally, because of normalization, the offset in a huge pointer automatically wraps
around every 16 values, but—unlike far pointers—the segment is adjusted as well.
For example, if you were to increment 811B:000F, the result would be 811C:0000;
likewise, if you decrement 811C:0000, you get 811B:000F. It is this aspect of huge
pointers that allows you to manipulate data structures greater than 64K in size. This
ensures that, for example, if you have ahuge array of structsthat islarger than
64K, indexing into the array and selecting a struct field will always work with
structs of any size.

Thereisaprice for using huge pointers. additional overhead. Huge pointer arithmetic is
done with calls to special subroutines. Because of this, huge pointer arithmetic is
significantly slower than that of far or near pointers.

The five memory models

Paradigm C++ gives you five memory models for 16-bit DOS programs: small,
medium, compact, large, and huge. Y our program requirements determine which one
you pick. Here’s a brief summary of each:

. Small. The code and data segments are different and don’t overlap, so you have
64K of code and 64K of data and stack. Near pointers are always used. Thisisa
good size for average applications.

. Medium. Far pointers are used for code, but not for data. As aresult, data plus stack
are limited to 64K, but code can occupy up to 1 MB. Thismodel is best for large
programs without much data in memory.

. Compact. Theinverse of medium: Far pointers are used for data, but not for code.
Codeisthen limited to 64K, while data hasa 1 MB range. This model is best if code
issmall but needs to address alot of data.

. Large. Far pointers are used for both code and data, giving both a1 MB range.
Large and huge are needed only for very large applications.

Chapter 13, 16-bit memory management 247

. Huge. Far pointers are used for both code and data. Paradigm C++ normally limits
the size of all static data to 64K; the huge memory model sets aside that limit,
allowing data to occupy more than 64K.

The following figures show how memory in the 8086 is apportioned for the Paradigm
C++ memory models. To select these memory models, you can either use menu

selections from the IDE or you can type options invoking the Paradigm C++ command-

line compiler.
Figure 13-3)
Small model Segment registers: Low address Segment size:
segmentation = TET class 'CODE
> code Llp t':l Eq'l‘{
DS, 55 S
_DATAclass "DATA
initialized data
_BS% claz=s 'BES’
initialized data Upto 64K
DGROUR
HEAP
FREE SFPACE
SP [T m—t
STACK
Starting SP m—
FAR HEAP Up to rest of memary
FREE SFACE

High address

248 Paradigm C++ Reference Manual

Figure 13-4

Medium model Muttiple =files:
memory :
segmentation siile A
=filz B :
; C5 points to
— only one =file
CE—2>| sfile z at & time.
Segment registers: Low address
(stilE)TET class 'CODE
- code
D=, =5 e
_DATAclass "DATA
initialized data
_BS5 clas= "BES
initialized data
DEROUP
HEAF
FREE SPALCE
SR [TOE) m—
STACE
Starting SP —
FAFR HEAP
FREE SFACE
High address
Figure 13-5
Compact model Segmemnt registers: Low addres=s
memory o 2y
segmentation il TEXT class 'CODE
- code
D= —
_DATAclass "DATA
initialized data
DEROUP
_B55 class 'BSS
initialized data
== 2y
FREE SFACE
SP [TOS) mlty
STACE
Starting SP >
HEAP
FREE SFACE

Chapter 13, 16-bit memory management

High addre==

Segment size:

Each =file up to 64K

Up to 64K

Upto rest of memaoary

Segment =ize:

Up to B4k

Up to B4k

Lp to B4k

Up to rest of memory

249

Figure 13-6

Large model Muttiple =files:
memory -
segmentation sfile A
=file B _
: CIS points to
s only ane =file
Cs—> shile-Z at atime.

Segment registers:

Low address

Segment size:

(SfigATEN class 'CODE Ut 4K
0S N
_DATAclass 'DATA
initialized data
DEROUP Up to B4k
_B5% class 'BSE E
initialized data
S5 %
FREE SFACE
S (TS e
STACK U to B4k
Starting SP y
HEAF Up to rest of memary
FREE SPACE

250

High atldress

Paradigm C++ Reference Manual

Figure 13-7

Huge model Multiple =files:
memor _
segmentatiox =file A
=file B _
; 3 points to
- only ane sfile
Co——>| sfile z at = time.
Segment fﬂﬂﬁn’tﬁ_flﬁi Low address Segment size:
ultiple
zfiles: TEXT clasz 'CODE
sties, | (fie)Te dass Each sfile up to Gk
[/5 —— [=file
; - DATA class"FAR_DATA .
sfile & inttiglized data Each =file up to B4k
55 2
FREE SFALCE
S (TOS) ey
STACK Up to Gk
Starting SP —
HEAFR Up to rest of memory
FREE SFPALCE

High address

The following table summarizes the different models and how they compare to one
another. The models are often grouped according to whether their code or data models
are small (64K) or large (16 MB); these groups correspond to the rows and columnsin

the table.
Table 13-1 Data size Code size = 64K Codesize=16MB
Comparison of
models 54K Small (no overlap; total size=128K) Medium (small data, large code)
16 MB Compact (large data, small code) Large (large data, code)

Huge (same as large but static data> 64K)

The small and compact models are small code models because, by default, code
pointers are near; likewise, compact, large, and huge are large data models because, by
default, data pointers are far.

When you compile a module (a given source file with some number of routinesin it),
the resulting code for that module cannot be greater than 64K, since it must all fit inside
of one code segment. Thisistrue even if you're using one of the larger code models
(medium, large, or huge). If your module is too big to fit into one (64K) code segment,
you must break it up into different source code files, compile each file separately, then
link them together. Similarly, even though the huge model permits static data to total
more than 64K, it still must be less than 64K in each module.

Chapter 13, 16-bit memory management 251

Mixed-model programming: Addressing modifiers

Table 13-2
Defaults for
functions and

252

pointers

Paradigm C++ introduces eight new keywords not found in standard ANSI C. These
keywordsare __near, far, huge, c¢s,_ _ds, _es __ss,and__seg. These
keywords can be used as modifiers to pointers (and in some cases, to functions), with
certain limitations and warnings.

In Paradigm C++, you can modify the declarations of pointers, objects, and functions
with the keywords __near, _far,or _ _huge. The _near, far,and __huge data
pointers are described in “Pointers,” page 13-245. Y ou can declare far objects using the
__far keyword. __near functions are invoked with near calls and exit with near
returns. Similarly, __far functionsare called __far and return far values. _ _huge
functions are like __far functions, except that _ _huge functions set DS to a new value,
and __far functions do not.

Therearealso four special __near datapointers. _ cs, ds, _es,and__ss. These
are 16-bit pointers that are specifically associated with the corresponding segment
register. For example, if you were to declare a pointer to be

char _ss *p;
Then p would contain a 16-bit offset into the stack segment.

Functions and pointers within a given program default to near or far, depending on the
memory model you select. If the function or pointer is near, it is automatically
associated with either the CS or DS register.

The following table shows how this works. Note that the size of the pointer corresponds
to whether it is working within a 64K memory limit (near, within a segment) or inside
the general 1 MB memory space (far, has its own segment address).

Memory model Function pointers Data pointers
Small near, cs near, _ds
Medium far near, _ds
Compact near, cs far

Large far far

Huge far far

Segment pointers

Use _segin segment pointer type declarators. The resulting pointers are 16-bit
segment pointers. The syntax for __segis:

datatype _seg *identifier;
For example,
int _seg *nane;
Any indirection through identifier has an assumed offset of 0. In arithmetic involving
segment pointers the following rules hold true:
1. You can't usethe ++, - -, +=, or -= operators with segment pointers.
2. Y ou cannot subtract one segment pointer from another.

3. When adding a near pointer to a segment pointer, the result isafar pointer that is
formed by using the segment from the segment pointer and the offset from the near
pointer. Therefore, the two pointers must either point to the same type, or one must

Paradigm C++ Reference Manual

be a pointer to void. There is no multiplication of the offset regardless of the type
pointed to.

4. When a segment pointer is used in an indirection expression, it is aso implicitly
converted to afar pointer.

5. When adding or subtracting an integer operand to or from a segment pointer, the
result is afar pointer, with the segment taken from the segment pointer and the
offset found by multiplying the size of the object pointed to by the integer operand.
The arithmetic is performed as if the integer were added to or subtracted from the
far pointer.

6. Segment pointers can be assigned, initialized, passed into and out of functions,
compared and so forth. (Segment pointers are compared as if their values were
unsigned integers). In other words, other than the above restrictions, they are
treated exactly like any other pointer.

Declaring far objects

Y ou can declare far objectsin Paradigm C++. For example,

int far x = 5;

int far z;

extern int far y = 4;
static long j;

The command-line compiler options —zE, —zF, and —zH (which can also be set using
#pragma option) affect the far segment name, class, and group, respectively. When
you use #pragma option, you can make them apply to any ensuing far object
declarations. Thus you could use the following sequence to create a far object in a
specific segment:

#pragma option -zEnysegnment -zHmygroup -zFnycl ass

int far x;

#pragma option -zE* -zH -zF*

Thiswill put x in segment MY SEGMENT ‘MY CLASS in the group ‘MY GROUP',
then reset all of the far object items to the default values. Note that by using these
options, several far objects can be forced into a single segment:

#pragma option -zEconbi ned -zFmycl ass

int far x;

doubl e far vy;
#pragma option -zE* -zF*

Both x and y will appear in the segment COMBINED ‘MY CLASS' with no group.

Declaring functions to be near or far

On occasion, you'll want (or need) to override the default function type of your memory
model.

For example, suppose you' re using the large memory model, but you have arecursive
(self-calling) function in your program, like this:

doubl e power (doubl e x,int exp) {
if (exp <= 0)
return(l);
el se
return(x * power(x, exp-1));
}

Chapter 13, 16-bit memory management 253

254

Every time power callsitsdlf, it hasto do afar call, which uses more stack space and
clock cycles. By declaring power as __near, you eliminate some of the overhead by
forcing al callsto that function to be near:

doubl e _ _near power(double x,int exp)

This guarantees that power is callable only within the code segment in which it was
compiled, and that al callsto it are near calls.

This meansthat if you're using a large code model (medium, large, or huge), you can
only call power from within the module where it is defined. Other modules have their
own code segment and thus cannot call _ _near functions in different modules.
Furthermore, a near function must be either defined or declared before the first timeit is
used, or the compiler won’t know it needs to generate a near call.

Conversely, declaring afunction to be far means that a far return is generated. In the
small code models, the far function must be declared or defined before its first use to
ensureit isinvoked with afar cal.

Look back at the power example at the beginning of this section. It iswise to also
declare power as static, since it should be called only from within the current module.
That way, being a static, its name will not be available to any functions outside the
module.

Declaring pointers to be near, far, or huge

Y ou’ ve seen why you might want to declare functions to be of a different model than
the rest of the program. For the same reasons given in the preceding section, you might
want to modify pointer declarations:. either to avoid unnecessary overhead (declaring
__near when the default would be __far) or to reference something outside of the
default segment (declaring __far or _ _huge when the default would be __near).

There are, of course, potentia pitfallsin declaring functions and pointers to be of non-
default types. For example, say you have the following small model program:
voi d nyputs(s) {
char *s;
int i;
for (i =0; s[i] '=0; i++) putc(s[i]);
}

mai n() {
char near *nystr;

mystr = "Hello, world\n"
myput s(nystr);
}

This program works fine. In fact, the _ _near declaration on mystr is redundant, since
all pointers, both code and data, will be near.

But what if you recompile this program using the compact (or large or huge) memory
model? The pointer mystr in main is still near (it s still a 16-bit pointer). However, the
pointer sin myputs is now far, because that’ s the default. This means that myputs will
pull two words out of the stack in an effort to create afar pointer, and the address it
ends up with will certainly not be that of mystr.

How do you avoid this problem? If you' re going to explicitly declare pointers to be of
type _far or _ _near, be sure to use function prototypes for any functions that might
use them. The solution isto define myputsin ANSI C style, like this:

Paradigm C++ Reference Manual

voi d nyputs(char *s) {
/* body of nyputs */
}

Now when Paradigm C++ compiles your program, it knows that myputs expects a
pointer to char; and since you are compiling under the large model, it knows that the
pointer must be __far. Because of that, Paradigm C++ will push the data segment (DS)
register onto the stack along with the 16-bit value of mystr, forming afar pointer.

How about the reverse case: arguments to myputs declared as ___far and compiled with
asmall data model? Again, without the function prototype, you will have problems,
because main will push both the offset and the segment address onto the stack, but
myputs will expect only the offset. With the prototype-style function definitions,
though, main will only push the offset onto the stack.

Pointing to a given segment:offset address

Y ou can make afar pointer point to a given memory location (a specific segment:offset
address). Y ou can do this with the macro MK_FP, which takes a segment and an offset
and returns afar pointer. For example,

MK _FP(segnent _val ue, offset _val ue)

— Givena_ _far pointer, fp, you can get the segment component with FP_SEG(fp) and
the offset component with FP_OFF(fp).

Using library files

— Paradigm C++ offers aversion of the standard library routines for each of the five
memory models. Paradigm C++ is smart enough to link in the appropriate librariesin
the proper order, depending on which model you’ ve selected. However, if you're using
the Paradigm C++ linker, PLINK, directly (as a stand-alone linker), you need to specify
which librariesto use. See "Using PLINK" in the online Help index for instructions on
how to do this.

Linking mixed modules

Suppose you compiled one module using the small memory model and another module
using the large model, then wanted to link them together. This would present some
problems, but they can be solved.

The fileswould link together fine, but the problems you would encounter would be
similar to those described in the section, “Declaring functions to be near or far,” page
13-253. If afunction in the small module called afunction in the large module, it would
do so with anear call, which would probably be disastrous. Furthermore, you could face
the same problems with pointers as described in “ Declaring pointers to be near, far, or
huge,” page 13-254, since a function in the small module would expect to pass and
receive _ _near pointers, and afunction in the large module would expect __far
pointers.

The solution, again, is to use function prototypes. Suppose that you put myputsinto its
own module and compile it with the large memory model. Then create a header file
called myputs.h (or some other name with a.h extension), which would have the
following function prototypeinit:

voi d far nyputs(char far *s);

Now, put main into its own module (called MYMAIN.C), and set things up like this:

Chapter 13, 16-bit memory management 255

256

#i ncl ude <stdio. h>
#i ncl ude "nyputs. h"

mai n() {
char near *nystr;

mystr = "Hello, world\n";
myput s(nystr);
}

When you compile this program, Paradigm C++ reads in the function prototype from
myputs.h and seesthat itisa___far function that expectsa __far pointer. Therefore, it
generates the proper calling code, even if it's compiled using the small memory model.

What if, on top of all this, you need to link in library routines? Y our best bet isto use
one of the large model libraries and declare everything to be __far. To do this, make a
copy of each header file you would normally include (such as stdio.h), and rename the
copy to something appropriate (such asfstdio.h).

Then edit each function prototype in the copy so that it isexplicitly _ _far, likethis:
int far cdecl printf(char far * format, ...);

That way, not only will __far calls be made to the routines, but the pointers passed will
also be __far pointers. Modify your program so that it includes the new header file:

#i ncl ude <fstdio. h>

void main() {
char near *nystr;
mystr = "Hello, world\n";

printf(nystr);

Compile your program with the command-line compiler PCC then link it with PLINK,
specifying alarge model library, such as CL.LIB. Mixing modelsistricky, but it can be
done; just be prepared for some difficult bugsif you do things wrong.

Paradigm C++ Reference Manual

Chapter

14

Using iostreams classes

Paradigm provides a full implementation of the C++ input and output classes,
commonly known as iostreams. With the arrival of C++ and object-oriented design,
input and output operations became encapsulated in a series of classes. Each iostreams
class encapsulates some form of input, output, or input and output from low-level
character transfer to higher-level, file-oriented input/output operations.

Stream input/output in C++ (commonly referred to asiostreams, or just streams)
provides all the functionality of the stdio library in ANSI C and much more. lostreams
are used to convert typed objects into readable text, and vice versa. Streams can aso
read and write binary data. The C++ language lets you define or overload 1/0 functions
and operators that are then called automatically for corresponding user-defined types.

What is a stream?

A stream is an abstraction referring to any flow of datafrom a source (or producer) to a
sink (or consumer). We also use the synonyms extracting, getting, and fetching when
speaking of inputting characters from a source; and inserting, putting, or storing when
speaking of outputting charactersto asink. Classes are provided that support console
output (constrea.h), memory buffers (iostream.h), files (fstream.h), and strings
(strstrea.h) as sources or sinks (or both).

The iostream library

Figure 14-1
Class streambuf
and its dervied
classes

Theiostream library has two parallel families of classes: those derived from streambuf,
and those derived from ios. Both are low-level classes, each doing a different set of
jobs. All stream classes have at |east one of these two classes as a base class. Access
from ios-based classes to streambuf-based classesis through a pointer.

The streambuf class

The streambuf class provides an interface to memory and physical devices. streambuf
provides underlying methods for buffering and handling streams when little or no
formatting is required. The member functions of the streambuf family of classes are
used by the ios-based classes. Y ou can also derive classes from streambuf for your own
functions and libraries. The buffering classes conbuf, filebuf, and strstreambuf are
derived from streambuf.

rﬁlehuf

stretreamhbuf

streambuf

Chapter 14, Using iostreams classes 257

258

The ios class

The classios (and hence any of its derived classes) contains a pointer to a streambuf. It
performs formatted 1/0 with error-checking using a streambuf.

An inheritance diagram for all the ios family of classesisfound in Figure 14-2, page
14-259. For example, the ifstream class is derived from the istream and fstreambase
classes, and istrstreamis derived from istream and strstreambase. This diagramisnot a
simple hierarchy because of the generous use of multiple inheritance. With multiple
inheritance, asingle class can inherit from more than one base class. (The C++ language
provides for virtual inheritance to avoid multiple declarations.) This means, for
example, that all the members (data and functions) of iostream, istream, ostream,
fstreambase, and ios are part of objects of the fstream class. All classesin the ios-based
tree use a streambuf (or afilebuf or strstreambuf, which are specia cases of a
streambuf) asits source and/or sink.

C++ programs start with four predefined open streams, declared as objects of
withassign classes asfollows:

extern istreamw thassign cin; // Corresponds to stdin;
file descriptor O.
extern ostreamw t hassign cout; // Corresponds to stdout;
file descriptor 1.
extern ostreamw t hassign cerr; // Corresponds to stderr;
file descriptor 2.
extern ostreamw thassign clog; // A buffered cerr;
file descriptor 2.

Paradigm C++ Reference Manual

Figure14-2 Classios and its derived classes

iostream

ifstream

—! istream

istrstream

fstream

istream_withassign

- iostream strstream

| E

ofstream . : :
| ostream iostream_withassign

H ostrstream

ostream_withassign

105 constream

— fetream

— fstreamhbase l ifstream

L ofstream

- strstream

| stretreambase istrstream

— ostrstream

By accepted practice, the arrows point from the derived classto the base class.

Stream output

Stream output is accomplished with the insertion (or put to) operator, <<. The standard
left shift operator, <<, is overloaded for output operations. Its left operand is an object

of type ostream. Its right operand is any type for which stream output has been defined
(that is, fundamental types or any types you have overloaded it for). For example,

cout << "Hello!\n";

writes the string "Hello!" to cout (the standard output stream, normally your screen)
followed by anew line.

The << operator associates from left to right and returns a reference to the ostream
object it isinvoked for. This allows several insertions to be cascaded as follows:
int i = 8;
double d = 2. 34;
n I — 1

cout << << << ", d=" << d << "\n";

Thiswill write the following to standard output:
i =8, d=2234

Chapter 14, Using iostreams classes 259

Fundamental types

The fundamental data types directly supported are char, short, int, long, char* (treated
asastring), float, double, long double, and void* . Integral types are formatted
according to the default rules for printf (unless you've changed these rules by setting
various ios flags). For example, the following two output statements give the same
result:

int i;

long |;

cout << i << " " << |;

printf("%l %d", i, |);

The pointer (void *) inserter is used to display pointer addresses:
int i;
cout << &; /1 display pointer address in hex

—» For more information, read the description of "ostream” in the online Help Book Shelf
index. The Book Shelf index can be accessed by choosing Help|Keyboard and clicking
the Book Shelf menu tab.

I/O formatting

Formatting for both input and output is determined by various format state flags
contained in the classios. The flags are read and set with the flags, setf, and unsetf
member functions.

Output formatting can also be affected by the use of thefill, width, and precision
member functions of classios.

— Theformat flags are detailed in the description of "iosclass' in the online Help Book
Shelf index. The Book Shelf index can be accessed by choosing Help|K eyboard and
clicking the Book Shelf menu tab.

Manipulators

A simple way to change some of the format variablesisto use a specia function-like
operator called a manipulator. Manipulators take a stream reference as an argument and
return a reference to the same stream. Y ou can embed manipulatorsin a chain of
insertions (or extractions) to alter stream states as a side effect without actually
performing any insertions (or extractions). Parameterized manipulators must be called
for each stream operation. For example,

#i ncl ude <i ostream h>
#incl ude <iomanip.h> // Required for paranmeterized mani pul at ors.

int main(void) {
int i =6789, j = 1234, k = 10;

cout << setw(6) << i <<j <<ij <<k <<j;

cout << "\n";

cout << setw(6) << i << setwW(6) << | << setw(6) << k;
return(0);

produces this outpult:

678912346789101234
6789 1234 10

260 Paradigm C++ Reference Manual

Table 14-1
Stream
manipulators

Chapter 14, Using iostreams classes

setw is a parameterized manipulator declared in iomanip.h. Other parameterized
manipulators, setbase, setfill, setprecision, setiosflags and resetiosflags, work in the
same way. To make use of these, your program must include iomanip.h. Y ou can write
your own manipulators without parameters:

#i ncl ude <i ostream h>
/1 Tab and prefix the output with a dollar sign.

ostrean& noney(ostrean& output) {
return output << "\t$";

}

int main(void) {

fl oat owed

1.35, earned = 23.1;

cout << noney << owed << nobney << ear ned;

return(0);

}

produces the following output:

$1. 35

$23.1

The non-parameterized manipulators dec, hex, and oct (declared in iostream.h) take no
arguments and simply change the conversion base (and leave it changed):

int i = 36;
cout << dec << i << " " << hex << | << " " << oct << i << endl;
cout << dec; [// Must reset to use deci mal base.

/1 displays 36 24 44

Manipulator Action

dec Set decimal conversion base format flag.

hex Set hexadecimal conversion base format flag.

oct Set octal conversion base format flag.

ws Extract whitespace characters.

endl Insert newline and flush stream.

ends Insert terminal null in string.

flush Flush an ostream.

setbase(int n) Set conversion base format to base n (0, 8, 10, or 16). 0 means the defaullt:
decimal on output, ANSI C rulesfor literal integers on inpuit.

resetiosflags(long f) Clear the format bits specified by f.

setiosflags(long f) Set the format bits specified by f.

setfill(int c) Set thefill character toc.
setprecision(int n) Set the floating-point precision ton.
setw(int n) Set field width ton.

The manipulator end! inserts a newline character and flushes the stream. Y ou can also
flush an ostream at any time with

ostream << fl ush:

Filling and padding

The fill character and the direction of the padding depend on the setting of the fill
character and the left, right, and interna flags.

The default fill character is a space. You can vary this by using the function fill:

261

int i = 123;

cout.fill("*");

cout . wi dth(6);

cout << i; [l display ***123

The default direction of padding gives right-alignment (pad on the left). Y ou can vary
these defaults (and other format flags) with the functions setf and unsetf:

int i = 56;

cout . wi dth(6);
cout.fill("#);
cout.setf(ios::left,ios::adjustfield);
cout << i; /1 display S56####

The second argument, ios:: adjustfield, tells setf which bits to set. The first argument,
ios::left, tells setf what to set those bits to. Alternatively, you can use the manipulators
setfill, setiosfags, and resetiosflags to modify the fill character and padding mode. See
"ios:adjustfield" in the online Help Book Shelf index, for alist of masks used by setf.
The Book Shelf index can be accessed by choosing Help|Keyboard and clicking the
Book Shelf menu tab.

Stream input

262

Stream input is similar to output but uses the overloaded right shift operator, >>, known
asthe extraction (get from) operator or extractor. The left operand of >> is an object of
type class istream. As with output, the right operand can be of any type for which
stream input has been defined.

By default, >> skips whitespace (as defined by the isspace function in ctype.h), then
reads in characters appropriate to the type of the input object. Whitespace skipping is
controlled by the ios:: skipws flag in the format state's enumeration. The skipws flag is
normally set to give whitespace skipping. Clearing thisflag (with setf, for example)
turns off whitespace skipping. Thereis also a special "sink" manipulator, ws, that lets
you discard whitespace.

Consider the following example:
int i;
doubl e d;
cin >> i >>d;

When the last line is executed, the program skips any leading whitespace. The integer
value (i) isthen read. Any whitespace following the integer isignored. Finaly, the
floating-point value (d) is read.

For type char (signed or unsigned), the effect of the >> operator isto skip whitespace
and store the next (non-whitespace) character. If you need to read the next character,
whether it is whitespace or not, you can use on of the get member functions. See the
discussion of "istream” in online Help Book Shelf index. The Book Shelf index can be
accessed by choosing Help|Keyboard and clicking the Book Shelf menu tab.

For type char* (treated as a string), the effect of the >> operator isto skip whitespace
and store the next (non-whitespace) characters until another whitespace character is
found. A final null character is then appended. Care is needed to avoid "overflowing" a
string. You can alter the default width of zero (meaning no limit) using width as
follows:

Paradigm C++ Reference Manual

char array[Sl ZE] ;
cin.w dth(sizeof (array));
cin >> array; /1 Avoi ds overfl ow

For al input of fundamental types, if only whitespace is encountered, nothing is stored
in the target, and the istreamstate is set to fail. The target will retain its previous value;
if it was uninitialized, it remains uninitialized.

I/O of user-defined types

To input or output your own defined types, you must overload the extraction and
insertion operators. Here is an example:

#i ncl ude <i ostream h>

struct info {
char *nane;
doubl e val ;
char *units;
s
/'l You can overload << for output as foll ows:
ostrean®& operator << (ostream& s, info& n) {
S << mnane << " " << mval << " " << munits;
return s;
s
/1l You can overload >> for input as follows:
i stream& operator >> (istrean& s, info& m {
s >> mnane >> mval >> munits;
return s;
b
int main(void) {
info x;
X.name = new char[15];
X.units = new char[10];

cout << "\nlnput nane, value and units:";
cin >> x;

cout << "\nM input:" << x;

return(0);

}

Simple file I/O

The class ofstream inherits the insertion operations from ostream, while ifstream
inherits the extraction operations from istream. The file-stream classes also provide
constructors and member functions for creating files and handling file 1/0. Y ou must
include fstream.h in all programs using these classes.

Consider the following example that copiesthe file FILE.IN to the file FILE.OUT:
#i ncl ude <fstream h>
int main(void) {
char ch;

ifstreamfl("FILE IN");
of stream f2(" FI LE. QUT") ;

Chapter 14, Using iostreams classes 263

if ('fl1l) cerr << "Cannot open FILE. IN for input";
if (1f2) cerr << "Cannot open FILE QUT for output"”;
while (f2 & f1.get(ch))

f2.put(ch);
return(0);

Note that if the ifstream or ofstream constructors are unable to open the specified files,
the appropriate stream error state is set.

The constructors let you declare afile stream without specifying a named file. Later,
you can associate the file stream with a particular file:

of stream of i | e; /] creates output file stream

ofile.open("payroll"); [/ ofile connects to file "payroll"
/1 do sone payrolling...

ofile.close(); /1 close the ofile stream

ofil e.open("enployee"); // ofile can be reused..

By default, files are opened in text mode. This means that on input, carriage-
return/linefeed sequences are converted to the '\n' character. On output, the \n' character
is converted to a carriage-return/linefeed sequence. These trandations are not done in
binary mode. The file-opening mode is set with an optional second parameter to the
open function or in some file-stream constructors. The file opening-mode constrants can
be used alone or they can logically ORed together. See the description of "ios class' in
the online Help Book Shelf index. The Book Shelf index can be accessed by choosing
Help|Keyboard and clicking the Book Shelf menu tab.

String stream processing

264

The functions defined in strstrea.h support in-memory formatting, similar to sscanf and
sprintf, but much more flexible. All of the istream member functions are available for
classistrstream (input string stream). This is the same for output: ostrstream inherits
from ostream.

Given atext file with the following format:
101 191 Cedar Chest
102 1999. 99 Li vi ngroom Set
Each line can be parsed into three components: an integer 1D, a floating-point price, and
adescription. The output produced is
1: 101 191.00 Cedar Chest
2: 102 1999.99 Livingroom Set
Hereisthe program:

#i ncl ude <fstream h>
#i ncl ude <strstrea. h>
#i ncl ude <i omani p. h>
#i ncl ude <string. h>

Paradigm C++ Reference Manual

int main(int argc, char **argv) {
int id;
float anount;
char description[41];

if (argc == 1) {
cout << "\nlnput file nane required.";
return (-1);

}

ifstreaminf(argv[1]);

if (inf) {
char inbuf[81];
int lineno = 0O;

/1 Want floats to print as fixed point
cout.setf(ios::fixed, ios::floatfield);

/1 want floats to always have deci mal point
cout.setf(ios::showpoint);

while (inf.getline(inbuf,81)) {
/1 "ins' is the string stream
i strstreamins(inbuf,strlen(inbuf));
ins >> id >> anount >> ws;
ins.getline(description,41); [/ Linefeed not copied.
cout << ++lineno << ": "
<< id << "\t
<< setprecision(2) << amobunt << '\t
<< description << "\n";

}

return(0);

}

Note the use of format flags and manipulators in this example. The calls to setf coupled
with setprecision allow floating-point numbers to be printed in a money format. The
manipulator ws skips whitespace before the description string is read.

Chapter 14, Using iostreams classes 265

266 Paradigm C++ Reference Manual

Appendix
A

Errors and messages

This appendix describes the error messages that can be generated by Paradigm C++. It
begins by describing the four types of messages you can receive: fata errors, errors,
warnings, and informational messages.

Next, it covers the different components that can generate messages: the compiler, the
MAKE utility, the linker (PLINK), the librarian (PL1B), the integrated debugger, and the
Windows Help compiler. This appendix also lists the errors that you can receive when
you run your program (run-time errors).

The remainder of the appendix lists messagesin ASCII alphabetic order and provides a
description of each message that includes where the message was generated.

Message categories

Messages are displayed with the message class first, followed by the source file name
and line number where the error was detected, and finaly with the text of the message
itself.

The following categories of messages can occur:

Table A-1 Category Indicates
Message
categories Fatal A problem of critical nature that prevents execution from continuing.
Error A problem that should be fixed such as a missing declaration or a type mismatch.
Warning A problem that can be overlooked.
Informational Progress such as build status.

Many of the messages appear in the Message view. For those messages, context-sensitive
help is available. Point to the message and press F1 to display the message description.

— If you are working from the command line or want to ook up information on an error

: message, refer to the alphabetical list of error and warning messagesin "Alphabetical list
of messages’ later on in this chapter. A listing is also available in the online Help Book
Shelf under "Paradigm C++ error and warnings'. The Book Shelf can be accessed by
choosing Help|Keyboard and clicking the Book Shelf menu tab.

Fatal errors

Fatal errors can be generated by the compiler, the linker, and the MAKE tility. Fatal
errors cause the compilation to stop immediately; you must take appropriate action to fix
the error before you resume compiling.

If the compiler or MAKE utility issues afatal error, no .AXE filesis created. If the linker
issues afatal error, any .AXE file that might have been created by the linker is deleted
before the linker returns.

Appendix A, Errors and messages 267

Errors

Errors can be generated by the compiler, the linker, and the MAKE utility, and the
librarian. In addition, errors can be generated by your program at run-time.

Errors generated by the compiler indicate program syntax errors, command-line errors,
and disk or memory access errors. Compiler errors don't cause the compilation to stop -
the compiler completes the current phase of the compilation and then stops and reports the
errors encountered. The compiler attempts to find as many real errorsin the source
program as possible during each phase (preprocessing, parsing, optimizing, and code-
generating).

Errors generated by the linker don't cause the linker to delete the AXE or .MAPfiles.

However, you shouldn't execute any .AXE file that was linked with errors. Linker errors
aretreated like fatal errorsif you are compiling from the Paradigm C++ IDE.

The MAKE utility generates errors when there is a syntax or semantic error in the source
makefile. Y ou must edit the makefile to fix these types of errors.

Run-time errors are usually caused by logic errorsin your program code. If you recelve a
run-time error, you must fix the error in your source code and recompile the program for
the fix to take effect.

Warnings

Warnings can be issued by the compiler , the linker, and the librarian. Warnings do not
prevent the compilation from finishing. However, they do indicate conditions that are
suspicious, even if the condition that caused the warnings s legitimate within the
language. The compiler also produces warnings if you use machine-dependent constructs
in your source files.

Informational messages

Informational messages inform you about the progress of tasks such as the status of a
build.

Message generators

268

The messages in this appendix include messages that can be generated by the compiler,
the MAKE utility, the linker (PLINK), the librarian, (PLIB), the Paradigm C++ IDE, and
the Windows Help compiler. Run-time errors (errors you can receive when you run your
program) are also included.

Compiler errors and warnings

Compile-time error messages indicate errors in program syntax, command-line errors, or
errorsin accessing a disk or memory. When most compile-time errors occur, the
compiler completes the current phase (preprocessing, parsing, optimizing, and code-
generating) of the compilation and stops. But when fatal compile-time errors happen,
compilation stops completely. If afatal error occurs, fix the error and recompile.

Be aware that the compiler generates messages as they are detected. Because C and C++
don't force any restrictions on placing statements on aline of text, the true cause of the
error might occur one or more lines before or after the line number specified in the error

message.

Paradigm C++ Reference Manual

Warnings indicate that conditions that are suspicious but legitimate exist, or that machine-
dependent constructs exist in your source files. Warnings do not stop compilation.

Warnings are issued as aresult of avariety of conditions, such as:

Table A-2 Warning Description
Warning
descriptions ANSI violations Warn you of code that is acceptable to Paradigm C++ (because of C++ code
or Paradigm C++ extensions), but isnot in the ANSI definition of C.
Frequent warnings Alert you to common programming mistakes. These warning messages point

out conditions that are not in violation of the Paradigm C++ language but can
yield the wrong result.

Lessfrequent warnings Alert you to less common programming mistakes. These warning messages
point out conditionsthat are not in violation of the Paradigm C++ language
but can yield the wrong resullt.

Portability warnings Alert you to possible problems with porting your code to other compilers.

These
usualy apply to Paradigm C++ extensions.

C++ warnings Warn you of errors you've made in your C++ code. They might be dueto

obsolete items or incorrect syntax.

Run-time errors and warnings

Run-time errors occur after the program has successfully compiled and is running. Run-
time errors are usually caused by logic errorsin your program code. If you receive arun-
time error, you must fix the error in your source code and recompile the program for the
fix to take effect.

Linker errors and warnings

Asarule, linker errors do not stop the linker or cause .AXE or .MAP filesto be deleted.
When such errors happens, don't try to execute the .AXE file. Fix the error and relink.

A fatal link error, however, stops the linker immediately. In such a case, the AXE fileis
deleted. All Linker errors are treated as fatal errorsif you are compiling from the
Paradigm C++ IDE.

Linker warnings point out conditions that you should fix. When warnings occur, AXE and
MAPfiles are still created.

Librarian errors and warnings

Librarian errors and warnings occur when there is a problem with files or extended
dictionaries, when memory runs low, or when there are problems as libraries are
accessed.

Paradigm C++ debugger messages

Paradigm C++debugger messages are generated by the integrated debugger and appear
under the Run-time tab of the Message window. Many of these messages relate to options
not set properly in the Paradigm C++ IDE screens.

Appendix A, Errors and messages 269

ObjectScripting error messages

ObjectScripting error messages are messages that result from running scriptsin the
Paradigm C++ IDE. They appear under the Script tab in the Message window.

Message formats

Table A-3

Symbols in error

270

messages

Messages are displayed with the message class first, followed by the source file name
and line number where the error was detected, and finally with the text of the message
itself.

Many of the messages appear in the Message view. For those messages, context-sensitive
help is available. Point to the message and press F1 to display the message description.

If you working from the command line or want to look up information on an error
message, refer to the alphabetical list of error and warning messagesin "Alphabetical list
of messages” later in this chapter. A listing is also available in the online Help Book
Shelf under "Paradigm C++ error and warnings'. The Book Shelf can be accessed by
choosing Help|Keyboard and clicking on the Book Shelf menu tab.

Symbols in messages

Some messages include a symbol (such as avariable, file name, or module) that istaken
from your program. In the following example, ‘filename’ will be replaced by the file
causing the problem:

Error opening 'filename' for output

The following table describes the meaning of symbolsin error and warning messages.

Symbol M eaning

address A hexadecimal number indicating the address where the error occurred
argument An argument

base The name of abase e ement such as abase class
class A classname

constructor The name of a constructor such as a class constructor
filename A file name (with or without extension)
function A function name

group A group name

identifier Anidentifier (variable name or other)

language The name of a programming language

len An actual number

macroname The name of amacro

member The name of adata member or member function
message A message string

module A module name

name Any type of name

num An actual number

operator The symbol for an operator such as ++

option Anoption

parameter A parameter name

path A path name

Paradigm C++ Reference Manual

reason Reason given in message

segment A segment name
size An actua number
specifier A typespecifier
symbol A symbol name
type A type name
variable A program variable

Some messages begin with a symbol name such as the following:

"filenanme' not found

These messages are listed alphabetically using the name of the symbol. The above
message would be filed under f.

Alphabetical list of Paradigm C++ debugger messages

To find this error
message, look
under the
alphabetized
listing of
"function."

Messages are listed in ASCI| aphabetic order. Messages beginning with symbols come
first, then messages beginning with numbers, and then messages beginning with letters of
the alphabet. Messages that begin with symbols are a phabetized by the type of the
symbols. For example, you might receive the following error message if you incorrectly
declared your function my_func:

my_func nmust be declared with no paraneters

Bad line number ‘linenumber’

Y ou tried to add a source breakpoint at a specific line number but you typed an invalid
line number. Use the Paradigm C++ IDE and correct the line number in the Add
Breakpoint dialog box. Breakpoints must be set on executable lines of code.

Can't convert 'string' [which evaluates to 'result'] to an address

The debugger dialog was expecting a memory address as input and it couldn't interpret
the user input as avalid address.

Can't debug during asynchronous compile

While compiling code with the Environment|Process Control JAsynchronous option set,
you tried to issue a debugger command. Because the compiler is not re-entrant and the
debugger and browser use the compiler code, you cannot debug or browse while an
asynchronous (background) compileis taking place.

Can't evaluate 'expression:' 'reason’

The expression you tried to evaluate did not return avalid value. This error will be given
any timeinvalid input is entered in a debugger dialog and there is no more information
about the error. Every debugger dialog uses the debugger's evaluator to validate and
interpret user input.

Can't inspect 'itemname’

Y ou specified an invalid item for inspection.

Can't navigate to address 0

Y ou aretrying to bring up a source view on an address that evaluates to 0.

Appendix A, Errors and messages 271

272

Can't run to 'filename’, line 'linenumber’
Y ou tried to run the specified line of the specified file. Either the file does not exist or
there is no executable code associated with the line.'

Disable Group checked but no value entered
Y ou checked the Disable Group check box, but forgot to specify a group name.

Enable Group checked but no value entered
Y ou checked the Enable Group check box, but forgot to specify a group name.

Ensuring executable is up to date
Paradigm C++ is checking to be sure that the executable fileis up to date, recompiling, if
necessary.

Error: File not specified
Y ou forgot to specify afilename in the Run To dialog.

Error: Line not specified
Y ou forgot to specify aline number in the Run To dialog.

Error trying to change value
Y ou tried to change a value of an object being inspected, but the debugger was unable to
change the value.

Eval Expr checked but no value entered
Y ou checked the Eval Expr check box, but forgot to specify an expression.

Expr True check but no value entered
Y ou checked the Expr True check box, but forgot to provide an expression.

File 'filename' does not exist
You tried to bring up a source view on an address, and the associated file does not exist.
This problem can usually be fixed by setting the appropriate source path on the debugger

option page.

File 'filename' does not exist (trying to load it anyway...)
The debugger tried to load an executable that does not exist. Check to make sure that the
executable exists and that the path to the executable was correctly specified.

File name not specified
Y ou tried to add a source breakpoint using the Paradigm C++ IDE, but you omitted afile
name. Enter the name of the file into which you want to insert the breakpoint in the Add
Breakpoint dialog box.

Function call terminated by unhandled exception 'value' at address 'addr’
This message is emitted when an expression you are evaluating while debugging includes
afunction call that terminates with an unhandled exception. For example, if in the
debugger's evaluate dialog, you request an evaluation of the expression f oo() +1 and
the execution of thefunction f oo() causes a GP fault, this evaluation produces the
above error message.

Paradigm C++ Reference Manual

Y ou may also see this message in the Watches window because it also displays the
results of evaluating an expression.

Group name not specified
Y ou tried to set breakpoint options in the Breakpoint Condition/Action Options dialog
box but forgot to specify a group name.

Invalid Pass Count value entered
The Pass Count value you gave was invalid. Valid vaues for Pass Count are from O to
4294967295.

Invalid pathname for executable
The debugger was unable to find the executable you tried to load.

Invalid process id
Y ou specified aprocess ID that does not match the ID of any active process.

Loading: 'programname’
The debugger isloading the specified program.

Log Expr checked but no value entered
Y ou checked the Log Expr check box, but forgot to specify an expression.

Log Msg checked but no value entered
Y ou checked the Log Msg check box, but forgot to specify a message.

Make failed
The make spawned by the debugger to try to bring the current target up to date failed.
Check the Build Time tab in the Message view to see the reason for the failure.

Make the modified code?
Y ou had a process loaded in integrated debugger and then you modified the source code
for the process. Y ou should probably build the new code instead of continuing to debug
the old executable.

No expression specified
Y ou forgot to specify an expression in the Add Watch dialog

No file corresponds to this item
Y ou tried to bring up a source view on an address, and there is no source file for the
address.

No file line specified
Y ou tried to add a Source breakpoint using the Paradigm C++ IDE, but did not include the
line number. Specify the line in the file where you want the breakpoint to occur in the
Add Breakpoint dialog box.

No line corresponds to this item
Y ou tried to bring up a source view on an address, and there is no line number for the
address.

Appendix A, Errors and messages 273

274

No module name specified
Y ou tried to add a module breakpoint using the Paradigm C++ IDE, but you omitted the
module name. Specify the module name where you want to insert the breakpoint in the
Add Breakpoint dialog box.

No module specified
You tried to add an Address breakpoint using the Paradigm C++ IDE, but you omitted the
module. Specify the module where you want to insert the breakpoint in the Add
Breakpoint dialog box.

No object specified
Y ou tried to add an Address breakpoint using the Paradigm C++ IDE, but you omitted the
object. Specify the name of the object into which you want to insert the breakpoint in the
Add Breakpoint dialog box.

No offset specified
Y ou tried to add an Address breakpoint using the Paradigm C++ IDE, but you omitted the
offset that indicates where you want to insert the breakpoint. Specify the offset in the Add
Breakpoint dialog box.

No process selected
Y ou pressed the Attach button on the debugger's Attach dialog when there was no process
selected in the process list.

No process to load
Y ou left the Program Name field blank on the Load Program dialog.

No process to reset
Y ou tried to reset a process but there was no process running.

No process to stop
Y ou tried to pause a process but there was no process running.

No process to terminate
Y ou tried to terminate processes but there was no process running at the time.

No type specified
Y ou tried to add a C++ exception breakpoint using the Paradigm C++ IDE. Y ou must
specify atype in the Add Breakpoint dialog box to set this type of breakpoint.

No watch address specified
Y ou specified a data watch breakpoint using the Paradigm C++ IDE, but you omitted the
watch address. Y ou need to specify both a memory address and the number of bytes to
watch.

No watch length specified
Y ou specified a data watch breakpoint using the Paradigm C++ IDE, but you omitted the
watch length. Y ou need to specify both a memory address and the number of bytesto
watch.

Paradigm C++ Reference Manual

Not all breakpoints were valid
Y ou set breakpoints in your program but they were not al valid. Check the breakpoint
view to see which breakpoints were invalid.

OS exception number not specified
You tried to add an OS exception breakpoint using the Paradigm C++ IDE. Y ou must
include an OS exception number if you want to add a breakpoint when a particular OS
exception occurs. Select one of the exceptionsin the list box next to the Exception # field
or enter a user-defined exception number.

Pass Count checked but no value entered
Y ou checked the Pass Count check box, but forgot to provide a pass count. Y ou need to
specify avalid pass count.

Process created: 'processname’
The process specified in the message has been created.

Process 'processname’ (0x%X) is already being debugged
Y ou tried to attach to a process that is already being debugged.

Process 'processname’ (0x%X) is Paradigm C++
Y ou tried to attach to the Paradigm C++ IDE. Thisis not allowed. Specify another
process.

Process Stopped: ‘processname’
The process specified in the message was stopped.

Process terminated: '‘programname’
The specified process has been terminated.

Resetting
The processis being reset to itsinitial condition.

Running
The processis running.

Stopping
The process is stopping.

Terminating
The process is terminating.

The expression cannot be modified
Thisis an integrated debugger error. Y ou entered an expression in the Evaluator dialog
box and clicked on Modify but the expression cannot be modified.

The expression you entered could not be evaluated
Thisis an integrated debugger error. The integrated debugger could not interpret the
expression you entered in the Evaluator dialog box.

Appendix A, Errors and messages 275

There is no code for 'file’, line 'linenumber’
You tried to view the disassembly for the given line of source code. The specified line of
the file has no code associated with it.

There is no expression to evaluate
Thisis an integrated debugger error. Y ou forgot to enter an expression in the Evaluator
dialog box.

There is no expression to evaluate, and no process is loaded
Thisis an integrated debugger error. Y ou forgot to enter an expression in the Evaluator
dialog box and no program is loaded.

This operation not supported for 16 bit executables
Y ou tried to use acommand (such as Reset or Pause) in the integrated debugger while the
project was set to produce a 16-bit executable. The integrated debugger does not support
16-hit executables except to run or terminate them.

Alphabetical list of Compiler messages

To find this error Messages are listed in ASCII al phabetic order. Messages beginning with symbols come
messagg, 'C;ﬂk first, then messages beginning with numbers, and then messages beginning with letters of

alphabetized the alphabet. Messages that begin with symbols are alphabetized by the type of the
listing of Symbols. For example, you might receive the following error message if you incorrectly

"function.” declared your function my_func:
my_func must be declared with no paraneters

Cannot access an inactive scope
Y ou have tried to evaluate or inspect a variable local to afunction that is currently not
active. (Thisis an integrated debugger expression evaluation message.)

Cannot evaluate function call
The error message isissued if someone tries to explicitly construct an object or call a
virtual function.

In integrated debugger expression evaluation, calls to certain functions (including implicit
conversion functions, constructors, destructors, overloaded operators, and inline
functions) are not supported.

Cannot take address of member function 'function’
An expression takes the address of a class member function, but this member function was
not found in the program being debugged. The evaluator issues this message.

Invalid ‘expression' in scope override
The evaluator issues this message when thereis an error in a scope overridein an
expression you are watching or inspecting. Y ou can specify a symbol table, a compilation
unit, a source file name, etc. as the scope of the expression, and the message will appear
whenever the compiler cannot access the symbol table, compilation unit, or whatever.

Invalid function call
A requested function call failed because the function is not available in the program, a
parameter cannot be evaluated, and so on. The evauator issues this message.

276 Paradigm C++ Reference Manual

Missing ‘identifier' in scope override
The syntax of a scope override is somehow incomplete. The evaluator issues this
message.

'new' and 'delete' not supported
The integrated debugger does not support the evaluation of the new and del ete operators.

No type information
The integrated debugger has no type information for this variable. Ensure that you've
compiled the module with debug information. If it has, the module may have been
compiled by another compiler or assembler.

Not a valid expression format type
Invalid format specifier following expression in the debug evaluate or watch window. A
valid format specifier is an optional repeat value followed by aformat character (c, d,
f[n], h, x, m, p, r, or s).

Overloaded function resolution not supported
In integrated debugger expression evaluation, resolution of overloaded functions or
operatorsis not supported, not even to take an address.

Repeat count needs an Ivalue
The expression before the comma (,) in the Watch or Evaluate window must be an
accessible region of storage. For example, expressions like this one are not valid:

i ++, 10d
X =y, 10m

String literal not allowed in this context
This error message isissued by the evaluator when a string literal appears in a context
other than afunction call.

The function 'function’ is not available
Y ou tried to call afunction that is known to the evaluator, but which was not present in
the program being debugged for example, an inline function.

Appendix A, Errors and messages 277

278 Paradigm C++ Reference Manual

#

lelif 186
lelse 186
lendif 186
lerror 185
lif 186
lifdef 186
lifndef 186
linclude 187
Imessage 187
lundef 188
#if 141
#ifdef 141
$ENV() 85
$INHERIT 85
.autodepend 185
.path.ext 187
.precious 188
.suffixes 188
/ (dlash)
16-hit linker options 86
32-bit linker options 89
command-line options 109
Directory options 83
General options 92
Librarian options 85
Map options 94
Source Directories options 82
Warnings options 96
; (semi-colon) 208
_ (underscores) 63, 77
__cdecl 53,63
__far 61,62
_ _fastcall 53,63
_ _fastthis 74
__huge 67
__pascal 53, 63
_ _Stdcall 63
_BSS 60
-1 compiler option 57, 212
16- and 32-bit command-line options 109
16- and 32-bit compiler options 109
16-bit command-line options 111
16-bit compiler options 53, 111
calling conventions 53
memory model 54
processor 57
segment names code 59

Index

segment names data 60
segment names far data 61
16-hit linker options 86
calling conventions 87
enabling 32-bit processing 86
initializing segments 87
names tables 87
nonresident names table 86
segment alignment 87
16-bit memory management 241
16-bit optimization 88, 104
-2 compiler option 57
-3 compiler option 57, 64
32-bit command-line options 109, 112
32-bit compiler options 62, 109
calling convention 63
processor 64
32-bit instruction set 64
32-bit linker options 89
committed heap size 90
committed stack size 90
fileaignment 90
image base address 91
imageishbased 91
importing by ordinal 89
incremental linker 92
linker errors 91
object alignment 91
reserved heap size 91
reserved stack size 92
verbose 92
32-bit optimization options 106
32-bit, enabling 86
32RTM.EXE 170
-4 compiler option 57, 64
-5 compiler option 57, 64
8086
processors 57
registers 241
80x86 processors 57, 64
instruction opcodes 211
registers 208
80x87 coprocessors 235
emulating 235
registers 237
87 environment variable 236
-B compiler option 211
1486 instructions 57, 64

Index

279

A

.autodepend 185
-A compile options 78
-acompiler options 58
Add Node command 36
Add Target dialog box 38
addresses 56, 58, 91

map files 95
Advanced Options dialog box 35
-AK compiler option 78
algorithms 83
aliases 104
alignment 58

byte 58

double word 59

file 90

object 91

guad word 59

segments 87

word 59
alloc.h 219
Allocate Enums As Ints option 73
alocation 73, 105
alphabetical listings

error messages and warnings 271, 276

ancestors 126

ANSI 78, 98

arguments 228, 233
passing 53, 63, 67

arithmetic 238

arrays
project options 56, 102

asm keyword 207
nesting 208

assembly language 207
calling conventions 208
comments 208
directives 213
floating-point emulation 211
instructions 207
jump instructions 210, 213
new lines 207
opcodes 211
operands 207
references 208
registers 208
repeat prefixes 212
sizeinstruction 209
statements 207

C symbols 207

string instructions 212
structures 209

280

syntax 207
variable offsets 209
assert 220
assert.h 220
assignment 87, 101
-AT compiler option 78
-AU compiler option 78
autodependencies 76, 97
Automatic Far Data option 54

B

_BSS 60
-b compiler option 73
background compile 271
base addresses 91
bcd, binary-coded decimals 238
converting 240
binary-coded decimals 238
Break make on option 97
Breakpoint Condition/Action options dialog box
145
breakpoints 136
adding 136, 143
conditional 137
customizing 142, 145
color 142
disabling/enabling 140, 145
groups 141
editing 148
inspecting 140
option sets 141
removing 139
resetting invalid 141
setting 135, 136, 137
conditional 136
unconditional 136
type 143
viewing 140
Breakpoints window 136, 137, 140, 142
browser 125
customizing 128
starting 125
using menu commands 125
views 125
Browser options 79
Browser Reference Information in OBJs option 79
browsing
classinspection 127
filters and letter symbols 127
globa symbols 126
objects 126
references 127

Paradigm C++ Reference Manual

symbol declaration 127
symbols 126
Build All command 51
Build attributes option 65
Build Node command 51
building
applications 97
libraries 191
builds 51, 65, 84, 173
BUILTINSMAK 173, 174
byte alignment 58

C

__cdecl 53,63
C calling conventions 53, 63
-C compile option 78
C++ coding, inefficent 99
C++ options 65
compatibility 65
exception handling 68
general 70
member pointers 70
templates 71
virtual tables 71
cache hit optimizations 106
calculations 76, 105
call stack 80
Call Stack window 163
calling conventions 66, 233
__fastthis 74
compiling options 53, 63, 74
optimizing 87, 103
Pascal 53, 63, 67
case sensitivity 85
exports and imports 92
link 93
catch 199
C-based structured exceptions 204
character conversion macros 220
character types 66, 75
child nodes 32
Class Inspection window 127
class member functions 135
classes 257
compiling options 65, 66, 67
declarations 223
empty base classes 70
Classes command 126
code
classes 59
elimination 105
external 135

Index

groups 59
inefficient coding 100
motion, optimizing 105
page aligment 87
searching 125
segments 39, 54, 55, 57, 59, 62
packing 93, 94
unreachable 100
code generation 79, 94
compiler 57,72, 73,77
optimization 104, 105
code pages 90
color customization
syntax highlighting 142
COMDEFs 55, 77
command-line compilers 166
command-line options 109, 166
16- and 32-bit 109
16-bit 111
32-bit 112
by function 118
compiler 112
exception handling 203
MAKE 175
object search paths 109
PLIB 191
PLINK 167
command-line tools
running 170
comment records, purging 86
comments, nested 78
communal variables 54, 77
compact memory models 54, 56, 57
compatibility 65
Compile command 51
compiler errors and warnings 268
declarations 277
evaluating expressions 276, 277
function calls 272, 276, 277
Ilvalue 277
modules 274
watch address 274
compiler options 72
assembly 210
code generation 73
compiler output 76
debugging 79
defines 72
precompiled headers 81
source 77
compiler output options 76
autodependencies 76
generating code 77

281

generating underscores 77
compilers 72, 166
32-bit command-line options 111, 112
command-line options 112
message options 98
project options 52, 53, 62, 65, 72, 101
stopping 101
compile-time errors
fixing 52, 129
compiling 51, 56, 173, 224
optimizing 169
with symbol tables 130
complex numbers 238
conditional breakpoints 137
configuration files 166
constants 104
constructors 66, 203
context-sengitive help 28
conversions 230, 232
converting old projects 39
copy propagation 104
CPU instruction sets 57, 64
CPU window 156
Disassembly pane 157
Flags pane 162
Memory Dump pane 159
Registers pane 161
Stack pane 160
ctype.h 220
customizing See Environment options
customizing the browser 128

D

_defs.h 233
-D compile option 72
-d compiler option 73
data
alignment 58
inspecting range 153
members 68
objects 54
segments 39, 54, 55, 57, 60, 61
structures 148
value 148
-dc compiler option 57
debug options
environment 142
syntax highlighting 142
debugger 20, 129
adding breakpoints 136
compile-time errors 52
conditional breakpoints 137

282

customizing 131
debug information 79, 93, 130
evaluating expressions 154
external code 135
fixing errors 52, 148
logic 129
run-time 129
inspecting code 140, 153
messages and warnings 267, 269
modifying variables 155
optimizing 105, 108
options
pausing a program 135
program arguments 131
restarting aprogram 135
terminating a program 135
program execution 131
running programs 132
setting watches 148
SpeedButtons 21
starting asession 130
stepping 133, 163
target connection 19
stand-alone 19
viewing errors 52
debugging macro, assert 220
debugging options 79
browser 79
debug information in OBJs 79
line numbers 79
out-of-line inline functions 80
stack frame 80
test stack overflow 80
declarations
classes 223
errors 277
default libraries, linker options 93
defining
macros 73, 182
variables 77
dependencies 76
checking 97
derived classes 65, 66
descendants 126
desktop
speedbar options 25
destructors 69, 203
detailed segment maps 95
DGROUP 60
dictionaries 86
extended 192, 193
directives
assembly 213

Paradigm C++ Reference Manual

MAKE 184, 186, 188
directories 82, 109, 166
options 82
entering directory names 84
file search agorithms 83
output 84
source 82
directory names, entering 84
disable all, optimization option 108
disabling messages and warnings 98
Disassembly pane 157
SpeedMenu 158
display warnings 98, 101
DLLs 86
DOS applications
compiling options 54, 56
dosh 221
double 232
double word alignment 59
Dump pane 159, 160
SpeedMenu 160
duplicate strings 74
duplicate symbols, linker warning 96
dynamic mode 153
dynamic-link libraries 86

E

lelif 186
lelse 186
lendif 186
lerror 185
$ENV() 85
Edit window 11, 14, 52, 136, 137
editing code 140
editor 14
options 22
EDPMI.SWP 170
embedded.h 221
enumeration types 73
Environment options 22
browser 128
debugger 131
Editor 23
Preferences 27
project views 39
SpeedBar 25
Syntax highlighting 24
environmental parameters 224
errno.h 222
error codes 222
error messages 269
alphabetical listings 271, 276

Index

categories 267
compiler 268
fatal errors 267
informational 268
librarian 269
linker 269
ObjectScripting 270
run-time 269
warnings 268
error-handling mechanism 197
errors 267
32-bit linker 91
C++ 100
compile-time 52
declaration syntax 78
fixing 52, 129
header file 222
linker 96
linker errors 91
logic 129
messages options 98
potenial errors 101
run-time 129
stop after... 101
viewing 52
Eva Expr 272
evaluating expressions 154
exception handling 227, 233
options 68
routines 68
exceptions 197
catch keyword 199
C-based structured 204
command-line options 203
compiling options 68
constructors and destructors 203
enabling 68
exception declarations 198
floating-point 237
handling 68
throwing exceptions 198
unhandled exceptions 203
excpt.h 233
executable (EXE) files 84, 86, 167
execution point 132, 148
expanding inline functions 68, 71, 80
explicit
casts 70
libraries 83
exporting 87, 92
Expr True 272
expressions
duplicate 102

283

evaluating 154
format specifiers 155
optimizing 102, 104, 105

extended dictionaries 86, 192, 193

external code 135
external option 71
external references 71, 72
external symbols 93

F

_ _far 61,62
_ _fastcall 53, 63
__fastthis 74
-f compiler option 75
-Facompile option 55
far
calls 87
classes 61, 62, 67
data compatibility 55
data segments 54, 55, 61, 62
declaring functions 253
declaring objects 253
declaring pointers 254
Far data threshold 55
initialized data groups 61
objects 61, 62
pointers 246
uninitialized data groups 62
virtual tables 55, 62
FAR BSS 62
FAR_BSSclass 55
FAR DATA 61
FAR_DATA class 55
fastcall parameter-passing 53, 63
fastthis calling convention 74
fatal errors 98, 267, 269
-Fb compile option 55
-Fc compiler option 77
fentl.h 222
-Ff compile option 54, 55
-ff compiler option 75
fileaignment 90
file extensions
.DEF 92
.DLL 84, 86, 87
.EXE 84, 86, 167
.LIB 82, 83, 85, 86, 96
.LST 86
.MAP 84
.OBJ 84, 85, 86, 94, 109, 130
.PDL 47
.ROM 130

284

syntax highlighting 24
file names 81
file search algorithms 83
files 166
32RTM.EXE 170
BUILTINSMAK 174,176
creating 14
include 82
MAKE.EXE 173, 176
MAKESWAP.EXE 170
PLIB.EXE 191
PLINK.CFG 168
TOUCH.EXE 174
file-sharing 228
filling and padding 261
filters and letter symbols 127
Filtersmatrix 127
Finder 15
fixing errors 52, 129
Flags pane 162
SpeedMenu 163
flags registers 243
float 232
float.n 223
floating point
calculations 75
emulation (inline assembler) 211
/10 235
code 236
exceptions 237
fast option 236
options 75
routines 223
Flyby Help Hints 25
-Fm compiler option 54
for statements 66
format specifiers
expressions 155
-fp compiler option 75
-Fs compiler option 54
function boundaries, optimizing 107
function calls 103, 163, 233, 272, 276
compiler error 276
compiling options 53, 63
errors 277
functions
class member 135
inline 68, 71, 79, 80, 103

G

-G compile option 108
-g compiler option 101

Paradigm C++ Reference Manual

General linker options 92
case-senditive link 93
code pack size 93
debug information 93
default libraries 93
exports and imports 92
pack code segments 94
subsystem version 94
general warnings 99
Generate COMDEFs option 77
generating code 79, 94
compiler options 57, 72, 73, 77
optimization 105
generating underscores
compiler options 77
generic.h 223
global
definitions 71
registers 105
symbols 126
variables
project options 54, 58, 77
globals command 126
glyphs
Project Manager 32
groups 273
breakpoint 141

H

__huge 67
-H compile option 81
-h compiler option 56
-H"xxx" compiler option 82
-H=filename compiler option 81
-Hc compiler option 81
header files 83, 215

_defs.h 233

_nfileh 233

_null.h 234

aloc.h 219

assert.h 220

ctype.h 220

dosh 221

embedded.h 221

errno.h 222

excpt.h 233

fentl.h 222

float.h 223

generic.h 223

io.h 223

iomanip.h 224

limitsh 224

Index

malloc.h 224
math.h 225
mem.h 226
memory.h 227
new.h 227
precompiled 81
process.h 227
search.h 227
setjmp.h 227
share.h 228
signa.h 228
stdarg.h 228
stddef.h 229
stdio.h 229
stdiostr.h 230
stdlib.n 230
string.h 231
sysllocking.h 231
sysitype.n 231
timeh 232
values.h 232
varargs.h 233
heap 90, 91
heap size 90, 91
committed 90
reserved 91
Help 28
contacting Paradigm 30
context-sengitive help 29
displaying Contents 29
Help files 28
index 29
keyword searches 29
printing topics 29
SpeedMenus 30
hidden
members 66
pointers 65, 67
-Hu compiler option 81
huge
arrays 56
declaring pointers 254
memory models 54, 56
pointers 246

lif 186
lifdef 186
lifndef 186
linclude 187
#if 141
#ifdef 141

285

$INHERIT 85
1486 instructions 64
-I compile option 82, 83
-i compiler option 77
/O 235
exceptions 237
formatting 260
manipulators 224
of user defined types 263
routines 223, 229
simplefile 263
1486 instructions 57
1586 instructions 57
Identifier length option 77
identifiers 77
Pascal 77
image base addresses 91
implicit libraries 83
importing 92
importing by ordinal, linker option 89
includefiles 83, 215
incremental linker, linker option 92
induction variables 102
informational messages 267, 268
inheritance 67, 70
initialization 60, 100
segments 87
initialized data 60
inline
#pragmadirective 210
assembly 207
functions 68, 71, 79, 80, 103
statements 210
input 223, 257, 262
inspecting 127
breakpoints 140
code 153
datarange 153
error 271
expressions 153
local variables 153
Inspector window 153
changing values 153
installation 11
instructions
Pentium 57, 64
project options 57, 64
string move 106
integral quantities ranges 224
integrated debugger 129
adding breakpoints 136
conditional breakpoints 137
customizing 131

286

error messages 269
errors 52, 129
evaluating expressions 154
inspecting code 140, 153
messages and warnings 267
modifying variables 155
optimizing 105, 108
program execution 131
running programs 132
setting watches 148, 149
starting 131
stepping 133, 163
Intel compiler 106
Intel optimizing compiler 62
intrinsic functions 103
invalid breakpoints 141
invariant code 105
io.h 223
iomanip.h 224
ios class 258
iostream classes 257
ios 258
streambuf 257
iostream library 257

J

-j compiler option 101
-Jg compiler option 71
-Jgd compiler option 71
-Jgx compiler option 71
jump optimization 105

K

-K compile option 75

-k compiler option 80

-K2 compiler option 66
Kernighan and Ritchie 78, 229

L

-L compile option 82
Language compliance option 78
large memory models 54, 56, 57
Librarian messages 269
Librarian options 85
case-sendgitive library 85
comment records 86
dictionaries 86
list files 86
page size 86
libraries 83
case-sensitive 85
creating 191

Paradigm C++ Reference Manual

default libraries 93
dynamic-link 86
managing 191
project options 82, 86, 96
library files 82, 83, 96, 255
library functions 222
limits.h 224
line numbers 79
including 94
linker errors 91
Linker messages 269
Linker options 86
16-hit programs 86
32-bit programs 89
general 92
map files 94
warnings 96
linkers 86

16-bit command-line options 111

command-line options 118
project options 86, 92, 94, 96
linking 86, 167
command-line syntax 167
large applications 192
mixed modules 255
optimizing 86, 94, 168
list files 86
literal strings 57, 74
local virtual tables 72
locking mode parameter 231
Log Expr 273
Log Msg 273
logic errors
fixing 129
longijmp 227
loops 66, 102, 105, 106
low-level I/O routines 223
lvalue
errors 277

M

Imessage 187

Machine Stack pane 160
SpeedMenu 161

macros 183, 229
$INHERIT and $ENV() 84, 85
defining 72, 73
MAKE 182, 183, 184, 188, 189

MAKE 97, 173
command operators 181
command prefixes 180
command syntax 180

Index

command-line options 175, 176
defaults 173, 174, 176, 183
directives 184, 186, 188
macros 182
defaults 183
defining 182
in directives 188
modifying default 184
null 189
string substitutions 183
NMAKE compatibility 176
project options 97
rules 178, 179
TOUCH 174
Make All command 51
Make Node command 51
Make options 97
autodependencies 97
Break make on 97
new node path 98
makefiles 177
response files 181
MAKESWAP 170
malloc.h 224
mangled names 55, 96
manifest constants 72
manipulators 224, 260
map files 84, 95
linker options 94, 95, 96
math
complex classes 238
error handlers 225
floating point 235
math.h 225
-mc compiler option 56
medium memory models 54, 56
mem.h 226
member functions 135
member pointers 70
honor precision 70
options 70
representation 70
memory 86, 219, 226, 227
running out of 241
Memory Dump pane 159
SpeedMenu 160
memory functions 103
memory management
16-bit 241
functions 219, 224

memory manipulation functions 226, 227, 231

Memory Model options 54
compiling segments 54

287

far data 54
far data compatibility 55
far datathreshold 55
huge pointers 56
models 56
page alignment 55
stack and data segments 54
strings 57
virtual tables 55
memory models 241, 247

mixed-model programming 252

memory segmentation 244
memory.h 227
Menu Bar 11

command descriptions 12
Message window 11, 52, 99
messages 98

disabling 98

displaying 98, 267

project options 98
Messages options 98

ANSI violations 98

display warnings 98

general 99

inefficient C++ coding 99

inefficient coding 100

obsolete C++ 100

portability 100

potential C++ errors 100

potential errors 101

stop after... errors 101

stop after... warnings 101

user-defined warnings 99
-mh compiler option 56
mixed-model programming 255
-ml compiler option 56
-mm compiler option 56
-mm! compiler option 56
module definition files 92
modules 53, 62, 274

purging comment records 86
-ms compiler option 56
-ms! compiler option 56
-mt compiler option 56
multiple directories 84
multi-target projects 37

N

_nfileh 233
_null.h 234
-N compile option 80
-n compiler option 84

288

name mangling 55, 66, 96
name tables 86, 87
near
declaring functions 253
declaring pointers 254
pointers 246
nested comments 78
nested templates 101
New Target command 17, 38
new.h 227
NMAKE 176
Node attributes dialog box 37
node path, Make option 98
nodes 40, 65
adding 33, 36
building 51
changing attributes 38
copying 38
default 35
deleting 36
Make Node command 51
options 37, 39, 49, 50
nonresident name tables 86, 87
nonstatic data members 68
normalizing huge pointers 56
null 189
numerical types 238

O

-Ol compile option 106
-OM compile option 106
-OS compile option 106

-O compile option 105

-O1 compiler option 108
-O2 compiler option 108
-Oa compiler option 104
-Ob compiler option 105
object alignment options 91
object files 109, 130

project options 76, 79, 82, 84, 94, 96

searching 109
object hierarchies 126
object search paths 109
objects 54, 61, 62
sharing 55
ObjectScripting messages 270
obsolete C++ 100
-Oc compiler option 102
-Od compiler option 108
-Oe compiler option 105
offsets 56
-Og compiler option 102

Paradigm C++ Reference Manual

-Oi compiler option 103
-Ol compiler option 106
-Om compiler option 105
online help 28
-Op compiler option 104
opcodes 211
opening projects 36
operators 101
Optimization options 101, 104
16- and 32-bit 102, 105
16-bit 88, 104
32-bit 106
common subexpression 102
copy propagation 104
dead code elimination 105
disableall 108
general settings 108
induction variables 102
inlineintrinsic functions 103
invariant code motion 105
jump optimization 105
loop optimization 106
pointer aliasing 104
project options 101
size 105
suppress loads 106
optimizing 101
debugger 105, 108
expressions 102, 104, 105
far call to near 87
jumps 105
size 104
statements 101, 105
ordinal numbers 89, 92
-Os compiler option 108
-Ot compiler option 108
out-of-line inline functions 72, 80
output 223, 235, 257, 259
directories 84
files 84
-Ov compiler option 102
overrides 65
-Ox compiler option 108

P

#pragmadirectives 210
.path.ext 187

.precious 188

__pasca 53, 63

-p compiler option 53

-p compiler options 63
packing code segments 93, 94

Index

page alignment 55, 87, 90
page size 86
Paradigm C++ IDE messages 269
Paradigm C++ messages 267
Paradigm C++ tools overview 170
Paradigm extensions 78
Paradigm optimizing compiler 62
Paradigm Systems, contacting 30
parameterized manipulators 224
parameters 53, 228, 233
passing 63, 67
parent nodes 32
Pascal 63
calling conventions 67
identifiers 77
PASM (inline assembler) 211
pass count 146
error 273
PCC.EXE 109
PCC32.EXE 109
PCC32i.EXE 109
PDL files 47
Pentium instruction scheduling 106
Pentium instructions 57, 64
Pentium option 64
PLIB 191
/C option 192
/E option 192
/P option 193
command-line options 191
error messages 267
examples 194
operation list 193
project options 85
response files 193
PLIB.EXE 85
PLINK 169
command-line options 111
command-line syntax 167
error messages 267
optimizing 192
PLINK and PLINK32 86
16-bit options 86
32-bit options 89
command-line options 112, 118
general options 92
map files 94
warnings 96
PLINK.CFG 168
-po compiler option 74
pointer aliasing, optimization 104
pointers 245

compiling options 55, 56, 65, 67, 68, 70, 104

289

declaring 254
far 246
huge 246
near 246
segment 252
portability 100
precision 101
precompiled headers 81, 216
cache 81
files 81
header name 81
terminating 82
preprocessing 72
Print mangled names 96
process.h 227
Processor options 57, 64
16-bit compiler 57
32-bit compiler 64
32-bit instruction set 64
alignment 58
instructions 57
project management 31
Project Manager 32
nodes 33
Project options 52

16-bit compiler 53, 54, 59, 60, 61

32-bit compiler 62, 64
build attributes 65
C++ 65
compatibility 65
exception handling 68
general options 70
member pointers 70
options 65
templates 71
virtual tables 71
command-line options 109
16- and 32-bit 109
16-bit 111
32-bit 112
by function 118
compiler 112
object search paths 109
compiler 72
code generation 73
compiler output 76
debugging 79
defines 72
floating point 75
precompiled headers 81
source 77
directories 82
file search agorithms 83

290

names 84
output 84
source 82
librarian
case-sengitive library 85
comment records 86
dictionaries 86
list files 86
page size 86
linker 86
16-bit programs 86
32-bit programs 89
general 92
map files 94
warnings 96
Make 97
autodependencies 97
Break make on 97
new node path 98
messages 98
ANSI violation 98
display warnings 98
genera warnings 99
ineffecient C++ coding 99
inefficient coding 100
obsolete C++ 100
portability 100
potential C++ errors 100, 101
stop after... errors 101
stop after... warnings 101
user-defined warnings 99
optimization 101
16- and 32-bit 102, 105
16-bit 104
32-bit 106
common subexpression 102
copy propagation 104
dead code elimination 105
general settings 108
induction variables 102
inline intrinsic functions 103
invariant code motion 105
jump optimization 105
loop optimization 106
pointer aliasing 104
suppress loads 106
project tree 32
default nodes 35
navigating 33
Project View options 39
Project window 16
projects 16, 31, 40, 45, 49, 173, 174
building files 51, 173

Paradigm C++ Reference Manual

compiling 51

converting 39

creating 17

Make Node command 51

multi-target 37

setting preferences 27

sharing tools 47

viewing options 50
public definitions 71, 72
public symbols 93

map files 95

Q
guad word alignment 59

R

-R compile option 79
-r compiler option 74
raise 228
-rd compiler option 74
redundant loads, suppressing 106
reference nodes 38
references 127
compiling options 67, 71
register keyword 74
register variables 74
registers 105, 106
8086 241
flags 243
general-purpose 242
reloading 106
segment 243
special-purpose 243
Registers pane 161
SpeedMenu 161
reloading registers 106
repeat prefixes 212
reserved words 78
resident names 87
response files 166, 169, 193
routines
exception handling 68
-RT compiler option 68
RTM.EXE 171
RTTI 68
run-time errors 269
fixing 129
run-time support 227
run-time type information 68

S
.suffixes 188

Index

__sdcal 63

Save command 27
scratch registers 209
search 227, 230
code 125
paths 83, 109, 166
Search menu
classes 126
globals 126
search.h 227
segment 39
alignment 87
compiling options 54, 55, 57, 59, 60, 61
initializing 87
linker code 87
map files 95
names 59, 60, 61
code options 59
far initialized data 61
far uninitialized data 62
far virtual tables 62
initialized data 60
uninitialized data 60
packing code 93, 94
pointers 252
registers 243
segments and offsets 255
setjmp 227
setjmp.h 227
Settings
optimization 108
share.h 228
sharing objects 55
signal 228
signa.h 228
signed character types 66
single stepping 133
size, optimizing 104, 105, 106
small memory models 54, 56
sorting 227, 230
source code 94, 125
source directories 82
sourcefiles 82
Source options 77
identifier length 77
language compliance 78
nested comments 78
source pools 40
creating 40
speed
optimizing 106
speed, optimizing 102, 103, 104, 105
SpeedBar

291

copying 27
SpeedMenus 13
stack 80, 90, 92, 163
warning 96
Stack pane 160
SpeedMenu 161
stack segments 54
stack size 90, 92
committed 90
reserved 92
statements
optimizing 101, 105
potential C++ errrors 100
Status Bar 11, 14
stdarg.h 228
stddef.h 229
stdio FILE structures 230
stdio.h 229
stdiostr.h 230
stdlib.n 230
stepping 133, 163
step into 133
step over 134
stop after ... warnings 101
stop after... errors 101
stream classes 224, 230, 257
stream input 262
simplefile 263
user-defined types 263
stream output 259
filling and padding 261
fundamental types 260
I/O formatting 260
manipulators 260
simplefile 263
user-defined types 263
streambuf class 257
streams 229
string manipulation functions 231
string move instructions 106
string stream processing 264
string.h 231
strings 57, 73
structured exceptions 204
Style Sheets 39, 45
attaching 47
dialog box 46
inheriting 47
overriding options 49
setting options 45
sharing 47
between projects 48
subexpressions 102, 104, 105

292

subsystem version 94
switch statements 105
symbols
case-sensitivein library 192
duplication warning 96
inlibrary 85
map files 95
public 93
stack warning 96
symbol declaration window 127
symbol tables 130
symbolic addresses 95
symbolic constants 72
viewing 126, 127
visible 128
syntax
MAKE 173, 178, 179, 180, 181, 182
syntax errors 52, 129
syntax highlighting 24, 142
color options 24
sysllocking.h 231
sysitypes.h 231

T

TargetExpert 52
options 35, 38
targets
adding 38
deleting 38
Make Node command 51
multiple 177
multi-target projects 37
templates
instance generation 71
options 71
Test stack overflow option 80
third-party libraries 99
this pointer 74
threshold 54, 55
throwing exceptions 198
timeh 232
tiny memory models 54, 56
Tool Options dialog box 41
tools 41, 173
adding 41, 42
customizing 42
sharing between projects 47
TOUCH 174
TOUCH 174
command-line options 175
trailing segments 87
trandators 41

Paradigm C++ Reference Manual

adding 41
type information
errors 277
typecasting
explicit casts 70

U

lundef 188
-u compiler option 77
underscores(_) 77
uninitialized data 60
uninitialized trailing segments 87
UNIX compatible constants 232
UNIX SystemV 78, 229
unreachable code 100
unsigned character types 66, 75
user-defined warnings 99
Using PLIB response files 193
Using PLINK 167

with PCC.EXE 169
utilities 173

TOUCH 174

Vv

-V compile option 71
-v compiler option 79
-VVO compiler option 71
-V1 compiler option 71
-Vacompiler option 67
values.h 232
varargs.h 233
variable live range analysis 105
variables 156
compiling options 54, 58, 74, 77
examining 125, 155
optimizing 102, 104, 105
scope 66
-Vb compiler option 67
-V C compile option 66
-Vc compiler option 66
-Vd compiler option 66
-Ve compiler option 70
verbose, linker option 92
-Vf compiler option 55
-Vh compiler option 67
-vi compiler option 80
viewers, adding 41
viewing
breakpoints 140
errors 52
project options 50
virtual base pointers 65, 67

Index

virtual tables 55

corrupted 87

far 55, 62

linkage 71

options 71

pointers 55, 68

segments 62
visible symbols 128
-Vmd compiler option 70
-Vmm compiler option 70
-Vmp compiler option 70
-Vms compiler option 70
-Vmv compiler option 70
-Vp compiler option 67
-Vs compiler option 71
-Vt compiler option 68
-Vv compiler option 65

w

-w compiler option 98
warnings 267

alphabetical listings 271, 276

compiler 98

disabling 98

displaying 98

general 99

inefficient C++ coding 99

inefficient coding 100

linker 96

obsolete C++ 100

portability 100

potential 101

potential C++ 100

project options 98

stop after... 101

user-defined 99
Warnings linker options 96

duplicate symbol 96

no stack 96
watch 148, 149

address error 274

changing properties 151

deleting 152

disabling and enabling 152

length error 274
Watches window 148
Windows platforms 62
Windows version 94
-wmsg compiler option 99
word alignment 59

293

X

-X compile option 76
-x compiler option 68
-xc compiler option 68
-xd compiler option 68
-xf compiler option 68
-Xp compiler option 68

Y
-y compiler option 79

z

-Z compiler option 106
-zA compiler option 59

294

-zB compiler option 60
-zC compiler option 59
-zD compiler option 60
-zE compiler option 61
-zF compiler option 61
-zG compiler option 60
-zH compiler option 61
-zP compiler option 59
-zR compiler option 60
-zS compiler option 60
-zT compiler option 60
-zV compiler option 62
-zZW compiler option 62
-zX compiler option 62
-zY compiler option 62
-zZ compiler option 62

Paradigm C++ Reference Manual

