
Paradigm C++ Reference Manual

Version 5.0

Paradigm Systems

The authors of this software make no expressed or implied warranty of any kind with regard to this software
and in no event will be liable for incidental or consequential damages arising from the use of this product. The
software described in this document is furnished under a license and may only be used or copied in accordance
with the terms of the licensing agreement.

The information in this document is subject to change without notice.

Copyright © 1999 Paradigm Systems. All rights reserved.

Paradigm C++™ is a trademark of Paradigm Systems. Other brand and product names are trademarks or
registered trademarks of their respective holders.

Version 5.0

January 5, 2000

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of Paradigm Systems.

Paradigm Systems
3301 Country Club Road

Suite 2214
Endwell, NY 13760

USA

(607)748-5966
(607)748-5968 (FAX)

Sales information: info@devtools.com
Technical support: support@devtools.com

Web: http://www.devtools.com
FTP: ftp://ftp.devtools.com

For prompt attention to your technical questions, contact our technical support team via the Internet at
support@devtools.com. Please note that our 90 days of free technical support is only available to registered
users of Paradigm C++. If you haven't yet done so, take this time to register your products under the Paradigm
C++ Help menu or online at http://www.devtools.com.

Paradigm's SurvivalPak maintenance agreement will give you unlimited free technical support plus automatic
product updates for an additional 12 months. Call (800) 537-5043 to purchase this protection today.

Contents 3

Table of Contents

Chapter 1 Getting started
Starting Paradigm C++...11

The Paradigm C++ menu system..........................12
The Paradigm C++ IDE SpeedBar13

Using SpeedMenus...13
Using the Edit window...14

Creating a new file..14
Navigating your source files.................................15
Working beyond the Edit window........................15

Working with projects..16
Creating an embedded application........................17

Configuring the remote connection..........................19
Stand-alone debugging ...19

Debugging with Paradigm C++20
Debugger SpeedButtons21

Customizing Paradigm C++.....................................22
Configuring the Paradigm C++ editor23
Syntax highlighting...24
Customizing the SpeedBars..................................25
Setting Paradigm C++ preferences.......................27
Saving your Paradigm C++ settings27

Using help in Paradigm C++....................................28
Online help organization.......................................28
Getting help in Paradigm C++..............................28

Getting context-sensitive help...........................29
Accessing and using contents screens29
Using the index..29
Searching for keywords.....................................29
Help SpeedMenus..30
Contacting Paradigm...30

Chapter 2 Managing projects
What is project management?31

Project management tools.....................................31
Using the Project Manager.......................................32

Project Manager reference....................................33
Creating a project..34

Setting options with the New Target dialog box34
Specifying the source node types......................35
Opening existing projects36

Adding nodes..36
Deleting source nodes36

Adding files without relative path information.....36
Editing source node attributes37
Adding target nodes to your project37

Deleting target nodes...38
Editing target attributes using TargetExpert.........38
Moving nodes within a project38
Copying nodes in a project38

Converting project files into makefiles.................39
Customizing the Project window39

Grouping sets of files with Source Pools40
Creating a Source Pool..40

Translators, viewers, and tools41
Adding translators and viewers.............................41

Chapter 3 Project options
Setting project options ..45

Using Style Sheets...45
Predefined Style Sheets46
The default project options46
Managing Style Sheets46
Attaching Style Sheets to nodes47
Sharing style sheets between projects................47
Project Description Language files....................48
Setting local overrides49

View project options ...50
Compiling projects ...50

Compiling part of a project................................51
Fixing compile-time errors.......................................52

Viewing errors ..52
Fixing errors..52

Project options reference ..52
16-bit compiler options...53

Calling convention..53
C option..53
Pascal...53
Register ..53

Memory model..54
Assume SS equals DS..54
Automatic far data ...54
Page alignment for far segments........................55
Borland C++-compatible far data55
Far data threshold ..55
Far virtual tables ..55
Fast huge pointers ..56
Model...56
Put constant strings in code segments57

Processor...57
16-bit instruction set ..57
Data alignment...58

Segment names code...59
Code...59

Segment name data ...60
Initialized data ...60
Uninitialized data...60

Segment names far data ..61
Far initialized data ...61

Paradigm C++ Reference Manual4

Far uninitialized data ...62
Far virtual tables..62

32-bit compiler options ..62
Paradigm optimizing compiler63
Intel optimizing compiler63
32-bit compiler options...63

Calling conventions...63
Processor ...64

Build attributes ...65
C++ options..65

C++ compatibility...65
'deep' virtual bases...65
Calling convention mangling compatibility66
Disable constructor displacements66
Do not treat 'char' as distinct type......................66
Don't restrict scope 'for' loop expression

variables ...66
Pass class values via reference to temporary.....67
Push 'this' first for Pascal member functions.....67
Treat 'far' classes as 'huge'67
Virtual base pointers..67
Vtable pointer follows data members................68

Exception handling/RTTI.....................................68
Enable exceptions..68
Enable run-time type information68

General..70
Zero-length empty base classes.........................70

Member pointers...70
Honor precision of member pointers.................70
Member pointer representation.........................70

Templates..71
Templates instance generation71

Virtual tables...71
Virtual tables linkage...71

Compiler options..72
Defines..72

Defining macros from the IDE..........................73
Defining macros on the command line..............73

Code generation..73
Allocate enums as ints73
Duplicate strings merged...................................73
fastthis ...74
Register variables..74
Unsigned characters ..75

Floating point..75
Correct Pentium FDIV flaw..............................75
No floating point ...76
Fast floating point..76

Compiler output..76
Autodependency information............................76
Generate COMDEFs ...77
Generate underscores ..77

Source ...77

Identifier length..77
Language compliance ..78
Nested comments...78

Debugging...79
Browser reference information in OBJs79
Debug information in OBJs...............................79
Line numbers ...79
Out-of-line inline functions80
Test stack overflow..80

Precompiler headers..81
Cache precompiled header.................................81
Precompiled header name..................................81
Precompiled headers..81
Stop precompiling after header file82

Directories options ...82
Source directories ...82

Include ...82
Library ...82
Source ..82
Specifying multiple directories83

File search algorithms ...83
#include-file search algorithms..........................83
Library file search algorithms83

Output directories ...84
Intermediate ...84
Final ...84
Guidelines for entering directory names............84

$INHERIT and $ENV()85
$INHERIT ...85
$ENV()..85

Librarian options...85
Case-sensitive library..85
Create extended dictionary....................................86
Generate list file ..86
Library page size ...86
Purge comment records...86

Linker options...86
16-bit linker...86

Discard nonresident name table.........................86
Enable 32-bit processing....................................86
Inhibit optimizing far call to near87
Initialize segments ...87
Segment alignment ..87
Transfer resident names to nonresident names

table ..87
16-bit optimizations ..88

Chain fixup ..88
Iterate data..89
Minimize resource alignment89
Minimize segment alignment.............................89

32-bit linker...89
Allow import by ordinal89
Committed stack size (in hexadecimal).............90

Contents 5

Committed heap size (in hexadecimal)90
File alignment (in hexadecimal)........................90
Image base address (in hexadecimal)................91
Image is based...91
Maximum linker errors91
Object alignment (in hexadecimal)91
Reserved heap size (in hexadecimal..................91
Reserved stack size (in hexadecimal)................92
Use incremental linker92
Verbose..92

General..92
Case-sensitve exports and imports92
Case-sensitive link...93
Code pack size...93
Default libraries...93
Include debug information93
Pack code segments...94
Subsystem version (major.minor)94

Map file...94
Include source line numbers..............................94
Map file ...95

Off...95
Segments...95
Publics ..96

Print mangled names in map file.......................96
Warnings...96

32-bit warnings..96
No stack" warning...96
Warn duplicate symbol in .LIB96

Make options..97
Autodependencies...97

None ..97
Use...97
Cache ...97
Cache and display..97

Break make on..97
Warnings ...97
Errors...97
Fatal errors ..98

New node path..98
Message options ...98

ANSI violations ..98
Display warnings ..98

All..98
Selected ...99
None ..99

General..99
User-defined warnings99

Inefficient C++ coding..99
Inefficient coding..100
Obsolete C++..100
Portability ...100
Potential C++ errors ...100

Potential errors..101
Stop after ... errors ..101
Stop after ... warnings ...101

Optimization options ..101
General settings...102
16- and 32-bit..102

Common subexpression...................................102
Induction variables ..102
Inline intrinsic functions103

16-bit only...104
Assume no pointer aliasing..............................104
Copy propagation...104
Dead code elimination.....................................105
Global register allocation.................................105
Invariant code motion......................................105
Jump optimization..105
Loop optimization..106
Suppress redundant loads106

32-bit...106
General optimization settings..............................108

Disable all optimizations108
Use selected optimizations108
Optimize for size..108
Optimize for speed...108

Command-line only options109
Object search paths ...109
16-bit command-line options109

Compile to .ASM, then assemble109
Compile to .OBJ, no link.................................110
Specify assembler ..110
Specify executable file name110
Pass option to linker...110
Create a MAP file ..110
Compiler .OBJ to filename110
C++ compile ..110
Compile to assembler111
Specify assembler option.................................111
Undefine symbol..111

Linker supported command-line options111
Generate 8087 instructions111
Compile to 16-bit real-mode .AXE..................111
Enable backward compatibility options...........111
Link 16-bit real-mode .AXE............................111
Extended memory swapping............................111
Enable 24-bit extended addressing112

32-bit command-line switches112
Generate a multi-threaded target......................112
Link using 32-bit Windows API......................112
Link 32-bit console application.......................112
Link 32-bit .DLL file112
Link 32-bit .EXE file112

Compiler command-line options112
Command-line options by function........................118

Paradigm C++ Reference Manual6

Chapter 4 Browsing through your code
Using the browser ..125

Starting the browser..125
Browser views...125

Browsing objects (class overview)126
Browsing global symbols126

Search..126
Browser SpeedMenu126

Browsing symbols in your code126
Symbol declaration window............................127
Browsing references..127
Class inspection window.................................127

Browser filters and letter symbols127
To view all instances of a type of symbol128
To hide all instances of a type of symbol128
To change several filter settings at once.............128

Customizing the browser128

Chapter 5 Using the integrated debugger
Types of bugs ...129

Run-time errors...129
Logic errors ..129

Planning a debugging strategy...............................130
Starting a debugging session..................................130

Compiling with debug information.....................130
Running your program in the IDE......................131

Specifying program arguments131
Controlling program execution..............................131

Running to the cursor location............................132
The execution point ..132

Finding the execution point133
Stepping through code ..133

Stepping into..133
Stepping over...134
Debugging member functions135

Running to a breakpoint......................................135
Pausing a program..135
Terminating the program....................................135

Using breakpoints...136
Debugging with breakpoints136
Setting breakpoints ...136

Setting an unconditional breakpoint................136
Setting a conditional breakpoint......................136
Setting other breakpoints137
Setting breakpoints after program execution

begins ...137
Creating conditional breakpoints137
Removing breakpoints ..139

From an Edit window......................................139
From an Edit window or the Disassembly pane of

the CPU window ..139
From the Breakpoints window139

Disabling and enabling breakpoints....................140

Viewing and editing code at a breakpoint...........140
Viewing code at a breakpoint140
Editing code at a breakpoint140

Resetting invalid breakpoints141
Using breakpoint groups141

Creating a breakpoint group141
Disabling or enabling a breakpoint group........141

Using breakpoint option sets141
Creating a breakpoint option set......................141
Associating a breakpoint with an option set141

Changing breakpoint options142
Changing the color of breakpoint lines142
Using the Breakpoints window142

About the Breakpoints window143
Integrated debugger features143

Add breakpoint ..143
Other ..143
Source breakpoint ..144
Address breakpoint ..144
Data watch breakpoint144
C++ exception breakpoint................................144
Breakpoint Condition/Action Options145

Names ...145
Conditions ...145
Expr. True ...145
Pass Count...146
Actions ..146
Break...146
Stop Log..147
Start Log..147
Log Expr ...147
Eval Expr ..147
Log Message ...147
Disabe Group ..147
Enable Group ..147
Add Conditions/Actions..............................147
Edit Breakpoint dialog box.........................148

Examining program data values148
Modifying program data values148
Understanding watch expressions148

Using Watches window149
Adding a watch...149

Add Watch dialog box.....................................149
Formatting watch expressions150

Changing watch properties..................................151
Edit Watch dialog box.....................................152

Disabling and enabling watches..........................152
Deleting a watch..152
Dynamic updates...153
Inspecting data elements153
Evaluating and modifying expressions154

Evaluating expressions154
Modifying the values of variables155

Contents 7

CPU window ..156
Resizing the CPU window panes........................157
The Disassembly pane ..157

The Disassembly pane SpeedMenu.................157
Run to Current ..158
Set PC to current...158
Toggle Breakpoint158
Go to Address ...158
Go to current PC...158
Follow jump into Disassembly pane159
Follow address into Dump pane159
Show previous address159
Go to source..159

Memory Dump pane ...159
The Dump pane SpeedMenu...........................160

Display as ...160
Follow address into Disassembly pane.......160
Follow address into Stack pane160

Machine Stack pane ..160
The Stack pane SpeedMenu............................161

Go to top frame ...161
Go to top of stack..161

Registers pane ...161
The Registers pane SpeedMenu......................161

Increment register.......................................162
Decrement register......................................162
Zero register..162
Change register...162
Show old registers162

Flags pane ...162
The Flags pane SpeedMenu163

Toggle flag..163
Viewing function calls ...163

Navigating to function calls................................164

Chapter 6 Paradigm C++ compiler
Using the command-line compiler.........................165

Command-line compiler syntax..........................165
Default settings..165

Compiler configuration files...............................166
Compiler response files166

Compiler-option precedence rules166
Entering directories for command-line options ..166

Using PLINK ...167
PLINK command-line syntax.............................167
PLINK.CFG file ...168
Linker response files...169
Using PLINK with PCC.EXE.............................169

Paradigm C++ tools overview170
Running the command-line tools170

Memory and MAKESWAP.EXE170
The run-time manager and tools171

Chapter 7 Using MAKE
MAKE basics ...173

BUILTINS.MAK..174
Using TOUCH.EXE..174
MAKE options ..175

Setting default MAKE options176
Compatibility with Microsoft's NMAKE176

Using makefiles..177
Symbolic targets..177

Rules for symbolic targets177
Explicit and implicit rules178

Explicit rule syntax...178
Single targets with multiple rules179

Implicit rule syntax...179
Explicit rules with implicit commands............180

Command syntax...180
Command prefixes...180
Using @ ...181
Using -num and - ...181
Using &..181
Command operators...181
Debugging with temporary files181

Using MAKE macros ...182
Defining MAKE macros182
String substitutions in MAKE macros183
Default MAKE macros183
Modifying default MAKE macros184

Using MAKE directives ...184
.autodepend ...185
!error ...185
Error-checking controls.......................................186
!if and other conditional directives186
!include..187
!message..187
.path.ext...187
.precious ..188
.suffixes...188
!undef ..188
Using macros in directives..................................188
Null macros...189

Chapter 8 PLIB.EXE
PLIB basics...191

PLIB options ...191
Using PLIB response files193
PLIB operation list..193
PLIB examples..194

Chapter 9 Exception handling
C++ exception handling ...197

Exception declarations ..198
Throwing an exception..198
Handling an exception...199

Exception specifications200

Paradigm C++ Reference Manual8

Sample output when 'a' is the input202
Constructors and destructors203
Setting exception handling options203
Unhandled exceptions203

C-based structured exceptions................................204
Using C-based exceptions in C++204
Handling C-based exceptions205

Chapter 10 Using inline assembly
Inline assembly syntax and usage207

Inline assembly references to data and functions208
Inline assembly and register variables208
Inline assmebly, offsets,a and size overrides ..209

Using C structure members209
Using jump instructions and labels.....................210

Compiling with inline assembly.............................210
Using the built-in assembler (PASM)211

Opcodes ..211
String instructions..212
Jump instructions...213
Assembly directives ..213

Chapter 11 Header files summary
Using precompiled headers....................................216

Setting file names ...217
Precompiled header file overview217
Precompiled header limits217
Precompiled header rules218
Optimizing precompiled headers218
alloc.h...219
assert.h..220
ctype.h..220
dos.h ...221
embedded.h ..221
errno.h ..222
fcntl.h ...222
float.h ...223
generic.h...223
io.h..223
iomanip.h..224
limits.h..224
malloc.h..224
math.h...225
mem.h...226
memory.h ...227
new.h..227
process.h...227
search.h...227
setjmp.h..227
share.h ..228
signal.h...228
stdarg.h...228
stddef.h...229
stdio.h...229

stdiostr.h ...230
stdlib.h ..230
string.h..231
sys\locking.h...231
sys\types.h...231
time.h..232
values.h...232
varargs.h ...233
excpt.h...233
_defs.h...233
_nfile.h..233
_null.h...234

Chapter 12 Math
Floating-point I/O...235
Floating-point options...235

Emulating the 80x87chip235
Using the 80x87 code..236
No floating-point code ..236
Fast floating-point option....................................236
The 87 environment variable236
Registers and the 80x87237
Disabling floating-point exceptions237

Using complex types ..238
Using bcd types ..238

Converting bcd numbers239
Number of decimal digits240

Chapter 13 16-bit memory management
Running out of memory..241
Memory models..241

The 8086 registers...241
General-purpose registers242
Segment registers...243
Special-purpose registers.................................243
The flags register ...243

Memory segmentation...244
Address calculation..245

Pointers..245
Near pointers..246
Far pointers ..246
Huge pointers...246

The five memory models247
Mixed-model programming:Addressing modifiers252

Segment pointers...252
Declaring far objects ...253
Declaring functions to be near or far253
Declaring pointers to be near, far, or huge..........254

Pointing to a given segment:offset address255
Using library files ...255
Linking mixed modules255

Chapter 14 Using iostreams classes
What is a stream?..257

Contents 9

The iostream library...257
The streambuf class ..257
The ios class ...258

Stream output ...259
Fundamental types..260
I/O formatting...260
Manipulators ...260
Filling and padding...261

Stream input ...262
I/O of user-defined types..263
Simple file I/O..263
String stream processing..264

Appendix A Paradigm C++ errors and
messages

Message categories ..267

Fatal errors ..267
Errors ..268
Warnings ...268
Informational messages.......................................268

Message generators ..268
Compiler errors and warnings.............................268
Run-time errors and warnings.............................269
Linker errors and warnings269
Paradigm C++ debugger messages269
ObjectScripting error messages...........................270

Message formats ...270
Symbols in messages...270

Alphabetical list of messages271
Index...279

Paradigm C++ Reference Manual10

Chapter 1, Getting started 11

C h a p t e r

1

 Getting started

Welcome to Paradigm C++, a state-of-the-art integrated development environment (IDE)
for creating x86 embedded system applications in C, C++, and assembly language. With
the Paradigm C++ IDE, you can create, debug, and deploy real-time embedded system
applications without resorting to the use of external tools. If you are used to running
separate editor, debugger, make, and other tools to get a job done, then you are in for a
real treat with Paradigm C++.

To help you get familiar with the all the powerful capabilities of the Paradigm C++ IDE,
this guide offers an overview of the key technologies that work for you in Paradigm C++:

l Starting Paradigm C++
l Using SpeedMenus
l Using the Edit Window
l Working with projects
l Configuring the remote connection
l Debugging with Paradigm C++
l Customizing Paradigm C++
l Using help in Paradigm C++

At first, Paradigm C++ may take some getting used to since it breaks the old-style
embedded system development metaphor of separate edit, compile, and debug tools, and
instead tracks the way modern applications are generated. Paradigm C++ includes many
powerful features you may not be familiar with, so it pays to explore its full potential
before you jump headfirst into a new project. Take a look at the material we provide here
and use it as the basis for creating and modifying your own projects.

Starting Paradigm C++

Installation instructions launch automatically from the Paradigm C++ CD. After following
the instructions, exit the install screen. The Start menu will contain a program item titled
Paradigm C++. Use the program item to launch Paradigm C++.

Figure 1-1, page 1-12 shows how Paradigm C++ looks after loading the DEMO.IDE
project, opening DEMO.C, and building the application. The key features to note are the
Menu Bar offering access to the various Paradigm C++ tools, the SpeedBar displaying
context-sensitive shortcuts to relevant operations such as debugging and browsing, and
the Status Bar at the very bottom with contains up-to-the minute information of the status
of Paradigm C++. Filling the remainder of the window are the Edit, Project, Message and
other views, where the real work of developing an embedded application will take place.

Command-line
diehards need
not despair, a

complete set of
command tools
and make utility
is included with
Paradigm C++.

Or select
INSTALL.EXE

from the
CD-ROM drive.

For optimum
performance,

Paradigm C++
requires a

Pentium 120,
Windows 95/NT,
and 50MB hard

disk space.

Paradigm C++ Reference Manual12

Paradigm C++ IDE screenshot

The Paradigm C++menu system

The following table describes the menu options on the Paradigm C++ Menu Bar.

Menu item Command descriptions

File Commands to open, save, and print files. Also includes the Paradigm C++ exit command
along with a list of recently accessed files.

Edit Clipboard command and commands for undoing and redoing operations on edit buffers.
Search Commands for searching and replacing in edit buffers, files, or the current project, browsing

symbols, locating functions, and reviewing error messages generated by the programming
tools.

View Commands to open the Project Manager, Message window, and Browser. Also contains
commands to open the integrated debugger views during a debugging session.

Project Commands to open, close, and build or make a project.
Script Provides commands to run and test scripts to automate Paradigm C++. cScript is a powerful

Paradigm C++ feature that allows you to automate and integrate tools into Paradigm C++.
Tool Commands to launch any external programming tools from Paradigm C++.

Figure 1-1

Table 1-1
Paradigm C++

global menus

Chapter 1, Getting started 13

Debug Commands to run your project under control of the Paradigm C++ integrated debugger.
SCCS Source code control system integration commands. This is an optional menu that is present

when a source code control add-in is installed.
Options Paradigm C++ customization and project configuration commands. Here is where you can

completely tailor Paradigm C++ to work as you do.
Window Paradigm C++ window management commands give you complete control to navigate

between windows and close or minimize selected windows.
Help Commands to access the Paradigm C++ online help are included here. Paradigm C++

includes extensive online help covering all of Paradigm C++, from the IDE operation to the
details of the compiler run-time libraries.

Because Paradigm C++ is fully extensible by the end-user, there may be other entries on
the menu bar from version control tools, real-time operating systems, and other third-
party tools. With just a single line of Paradigm Scripting Language (cScript) code, you
can have your favorite commands displayed here to use whenever you need them.

The Paradigm C++ IDE SpeedBar

The SpeedBar (located under the main menu) has buttons that give quick access to menu
commands that relate to the area of Paradigm C++ you're working in. For example, if
you're editing code, the SpeedBar contains cut and paste commands, file save commands,
and so on, as well as commands to build and debug. When the Project window has focus,
the SpeedBar has buttons that pertain to projects, such as commands for adding project
nodes and browsing option settings.

Paradigm C++ IDE SpeedBar example

The Status Bar at the bottom of Paradigm C++ contains "flyby" help hints; when the
cursor is over a button, the Status Bar describes the button command. You can configure
the flyby hints and other SpeedBar options as described in “Customizing the SpeedBars,”
page 25. See Figure 1-7, page 1-22 for a description of the above Paradigm C++
SpeedButtons available during a debug session.

Using SpeedMenus

Right-clicking (clicking the right mouse button) accesses the Paradigm C++
SpeedMenus. SpeedMenus contain commands that are context-sensitive to the area of the
program you're working in. For example, the SpeedMenu for the Edit window contains
commands that are related to the editor. In the Project Manager, the SpeedMenus contain
commands to help you with managing your project.

To get a feel for SpeedMenus, try the following:
 1. From the Paradigm C++ Menu Bar, choose Project|Open project, then select the

project file DEMO.IDE in the PARADIGM\EXAMPLES\REAL\DEMO directory.
 2. Double-click the DEMO.C node in the Project window to load the file in an Edit

window so changes can be made.
 3. Move the cursor to the dos.h header file reference by clicking on the file name in the

source code.

More information
about using

cScript is
available in the

online Help.

Figure 1-2

If you installed
Paradigm C++ in

a different
directory, adjust

the paths used in
this guide.

Paradigm C++ Reference Manual14

 4. Right-click to open the Edit window SpeedMenu, then choose Open Source to open
an Edit window that contains this header file. You can do this even quicker using the
by right-clicking anywhere in the DEMO.C Edit window and selecting the Include
command. Paradigm C++ will instantly parse the file and extract all include file
references in the buffer. Just select the desired include file and you are instantly there
to begin making changes.

In addition to right-clicking, Paradigm C++ SpeedMenus can be accessed at any time by
pressing Alt-F10.

Using the Edit window

Edit windows contain the Paradigm C++ editor, which you can use to create and edit your
program code. When you're editing a file, the Paradigm C++ status bar displays the
following information about the file that you are editing:

l The line number and character position of the cursor. For example, if the cursor is on
the first line and first character of an Edit window, you'll see 1:1 in the Status Bar. If
the cursor is on line 68 and character 23, you'll see 68:23.

l The edit mode: insert or overwrite. Press Insert to toggle whether your text additions
overwrite existing characters or insert new ones into the file.

l The file's save status. The word Modified appears if you've made changes to the file
in the active Edit window, and you have not yet saved your edits or changes.

The Paradigm C++ editor contains many powerful features to help you enter and modify
your program code. For example, you can undo multiple edits by choosing Edit|Undo or
pressing Alt-Backspace. You can also open multiple Edit windows; tile the windows as
you wish; subdivide the window into different Edit panes; and cut, copy, and paste text
between any open files. Paradigm C++ is supplied with four editor emulations and if
these don't suffice, you can create your own editor from any of the supplied editors.

Although this chapter provides a brief introduction to the editor, complete details on how
to use and customize the editor can be found in the online Help. Choose Help|Contents
and double-click Paradigm C++ User's Guide. The Editor is discussed within the
Integrated Development Environment (IDE) book topics.

Creating a new file

To introduce you to the editor, step through the following instructions to add a new source
file to a sample embedded application.
 1. If not already open, File|Open the DEMO.IDE project in

PARADIGM\EXAMPLES\REAL\DEMO.

 2. From the Paradigm C++ Menu Bar, choose File|New|Text Edit to open a new Edit
window with an empty file.

By default, Paradigm C++ names new files NONAMExx.CPP, where xx is a number
that is incremented with each new file opened. Don't worry about the filename for
now, you'll be prompted to change it when you save the file.

 3. In the Edit window, type the following C++ code to create a simple embedded
program.

+

+

Chapter 1, Getting started 15

#include <stdio.h>

char buffer[128] ;

void main(void)
{
 unsigned passcount = 0 ;

 char* format = “%05u Welcome to ParadigmC++!\n” ;
 for (;;) {
 sprintf(buffer, format, passcount) ;
 passcount++ ;
 }
}

 4. Choose File|Save, and save your new file with the file name TEST.C.

Although we created the file, it is not yet part of our Paradigm C++ project. Later, in
“Creating an embedded application,” page 17, we will show you how to add this file to
the project where it will get built with other source files in the project.

Navigating your source files

Once you have some text in the Edit window, you can navigate around your source code.
Paradigm C++ utilizes instant-parsing technology to scan the current Edit window and
extract information about functions, structures and classes, enumerations, and include
files. In small files, source code navigation is possible by scrolling the Edit window, in
large files and multi-file projects, it really isn't possible.

To really see the parsing technology in action, try the following test. Using the file
TEST.C that was just created, right-click in the window and select the Functions - only
'main()' should appear at this time.

Now add a new function to the file, such as
int test(int x, int y)
{
 return x + y ;
}

Now right-click in the window and select the Functions again and see that both main()
and test() are in the list of functions in the file. No compiling, just instant access to your
source code definitions to make it easy to navigate to any function, class or include file in
the current Edit window.

Working beyond the Edit window

The Paradigm C++ Finder, found under the Search menu, can do much more to help with
the software development process. The Finder provides the ability to search within a file,
a project, or the entire disk drive for any regular expression. This is an incredibly
powerful capability when you need to find text or make changes across one or many files
in your project or on your disk.

Paradigm C++ Reference Manual16

Paradigm C++ Finder

No matter what your needs, Paradigm C++ has the tools you need to manage and maintain
your project files. While the Finder works on any source file, the browser adds even
more power by using compiled code to create a database that can be utilized to find
where a function is defined and all the instances that it is used in. More information about
the browser is available in the online Help index under "browser" or see Chapter 4,
“Browsing through your code,” page 4-125 of this manual.

Working with projects

After you install Paradigm C++, you'll want to make sure the program is correctly set up;
the details of the compiler and the Paradigm C++ IDE can wait until later. The best way
to test your setup is to compile, build and load the sample applications included with
Paradigm C++.

Paradigm C++ uses projects to help manage your code and make sure any source code
changes are reflected in the other files that depend on them. As an application grows in
size and complexity, it becomes dependent on various intermediate files. Often, source
files need to be compiled with different compilers and different sets of compiler options.
Even a simple embedded application can have multiple C/C++ source files, with each
file type requiring different compilers and different compiler settings.

Figure 1-3

Chapter 1, Getting started 17

The Project Manager Project window

As your project complexity increases, the need increases for a way to manage the
different components in the project. Looking at the files that make up a project, you can
see that a project combines one or more source files to produce a single target file. While
target files are usually a .AXE or .HEX file, source files cover a broader range of file
types, including .C, .CPP, .ASM, and other files. Additionally, many source files have
autodependent files (files that are automatically included by the source), such as C header
files. In larger projects, you are likely to find several targets with scores of sources.

To get the most from Paradigm C++, we need to create a project so the files and build
options are saved, just as they would be in a more traditional makefile.

Creating an embedded application

You can become familiar with the Project Manager and the C/C++ compiler by following
these steps to create a simple embedded application:
 1. From the Paradigm C++ Menu Bar, choose File|New|Project…, then set the following

options in the New Target dialog box:
l Type the path and name for your new project in the Project Path and Name input

box. In this case, type:
\paradigm\examples\demo\mydemo.ide

l Type the target name you want to use. Because you can have more than one target
in the project, you can have different names for targets that share files and options.
In this case, type:
test

l In the Target Type list box, click Paradigm Application [.AXE]. This selection
will create a project where the source modules are compiled, assembled, linked
and located to generate .AXE files for debugging or .HEX and .BIN files for
placing within flash or EPROM devices.

l If you like, select the desired platform and memory model you want for your
application. You can also enable the use of floating point arithmetic or other
options that depend on the selected Target Type.

Figure 1-4

If the directory
doesn't exist,

Paradigm C++
creates the

directory for you.

Paradigm C++ Reference Manual18

l If you like, choose a target connection from the list of available remote connection
interfaces.

The New Target dialog box should now resemble the one shown in Figure 1-5.

New Target dialog box

 2. Choose OK to close the New Target dialog box.

 3. The Project window opens and displays the target and dependencies of the project
you just created.

The following are definitions for the nodes within this newly created project:

TEST.AXE This node is the final target node that is generated during the locate
phase of the build and includes the absolute code for debugging or
burning into flash or EPROM.

TEST.CFG This is the Paradigm LOCATE configuration file that is used to
generate the TEST.AXE output file. This file contains the description
of the target system address space as well as the build instructions for
placing the program code and data at addresses that you specify.

Figure 1-5

Chapter 1, Getting started 19

TEST.ROM This node is generated by the Paradigm C++ linker and is also the
point in the build process in which a .MAP file is generated for use in
the locate phase.

TEST.C This node references the files TEST.C, the file that you created earlier
in the chapter (if you haven't already done so, create this file by
following the instructions listed in the section, “Creating a new file”
on page 14).

 4. Build the application by selecting the .AXE node and right-click to bring up the local
options and select 'Build node'. Because Paradigm C++ has a built-in Project
Manager, it always knows when the project is out-of date and needs to be rebuilt so
there is no need to explicitly do this. We could have also selected the Project|Make
all or the Project|Build all commands from the SpeedBar or from the Project menu.

If you correctly followed all the steps in this section, the application builds without
errors. If the compiler reports errors or warnings during the compile, retrace the steps in
this section to ensure you correctly followed the steps. When the program compiles
without errors, the Project Manager creates an executable program called TEST.AXE
and places it in the directory you selected when the project was created.

This is only a small fraction of the information on working with projects. See "projects"
in the online Help index for complete details on managing the build process using
Paradigm C++ projects or see Chapter 2 “Managing projects,” on page 2-31 of this
manual.

Configuring the remote connection

Paradigm C++ can only debug when a target such as PDREMOTE/ROM or an in-circuit
emulator is connected. Configuring the remote connection gives Paradigm C++ the
information it needs about your target to begin a debugging session. To configure the
remote connection:

 1. Select the TEST.AXE node from the project view of the Project Manager.
 2. Right-click to see local menu options for the TEST.AXE node.
 3. Select TargetExpert. The dialog contains a pull down menu for Target Connection.
 4. Select the drop down menu to see a list of available remote connection interfaces and

select the desired remote connection interface.
 5. Press the Modify connection settings button to make specific changes to the remote

interface settings.

Once the remote connection settings are set up, click OK to close the remote connection
dialog. You are now ready to start debugging. Double-click the TEST.AXE node to
rebuild the application (if needed) and download the application to the target.

The debugger sets a software breakpoint at the label main in the application. If you would
rather start at the reset vector or run to a different place in the application, then select
Options|Environment|Debugger|Debugger Behavior and delete main, or add the function
name, to Run to on startup.

Stand-alone debugging

To configure the remote connection to do stand-alone debugging without the use of
Project Manager,

You can access
the Master Index

from within any
online Help topic
by right-clicking.

A target
connection must

be specified to
begin debugging.

+

Paradigm C++ Reference Manual20

 1. Close any demo projects that may be open (Project|Close project).
 2. Select Debug|Load, and Browse or type in the name of the .AXE (or .HEX) file for

remote download, for example,
\paradigm\examples\demo\test.axe

 3. Choose the desired remote connection interface.
 4. Press the Modify settings button to change any specific remote connection settings for

the selected interface.
 5. Select OK to load the application file and start debugging without the use of the

Project Manager.

Again, the debugger sets a software breakpoint at the label main in the application. If
you would rather start at the reset vector or run to a different place in the application,
then select Options|Environment|Debugger|Debugger Behavior and delete main, or
add the function name, to Run to on startup.

 6. When you would like to exit stand-alone debugging mode, Select Debug|Terminate
debug session or hit Ctrl-F2.

Debugging with Paradigm C++

For a demonstration of debugging in Paradigm C++, open the DEMO.IDE project in
PARADIGM\EXAMPLES\REAL\DEMO as you did in “Creating a new file,” page 14
and double-click the DEMO.C node in the Project window. Right-click the DEMO.AXE
node in the Project window and select TargetExpert to ensure that the Target Connection
is set to the desired remote connection. Then simply double-click the DEMO.AXE node
in the Project window to download the application to your target. If the debugger option
to execute to main(), found under Options|Environment|Debugger|Debugger Behavior, is
enabled, the debugging session will look like Figure 1-6, page 1-21.

At this point the Debug menu commands and SpeedBar will come alive so you can
inspect program data, view the processor registers, or access target peripherals. Right-
clicking in the Edit window will bring up the debugger SpeedMenu for quick access to
debugging commands.

You can step through the program and test until you find a bug that needs fixing. Use the
Statement step into or Statement step over SpeedButtons located beneath the Menu bar to
begin debugging. You could use the Run SpeedButton but the application won't stop
unless you have set a breakpoint somewhere in the program. You can also use the Run to
here button to execute to a particular source line that the cursor is on. See Figure 1-7,
page 1-22 for a description of Paradigm C++ SpeedButtons available during a debug
session.

When you find a problem, you might notice that there is no difference between editor
windows and debugger windows. This is a big improvement over traditional tools since
you can fix a bug right away without exiting the debugger. If you make a change, you can
either continue the debugging session or you can rebuild the application and test the
change - all without losing your place! This is where Paradigm C++ excels at making the
most of your development time.

 If you have
multiple targets,
you can select

the target
connector from

the local menu of
a target node in

the Project view.

Step over/into

Run/Run to

Chapter 1, Getting started 21

Paradigm C++ debugging session

Debugger SpeedButtons

 This section will familiarize you with the Paradigm C++ SpeedButtons used in a
debugging session.

Figure 1-6

Paradigm C++ Reference Manual22

Paradigm C++ SpeedButtons

In Paradigm C++, click the What's This? SpeedButton and then a SpeedButton of interest
to receive a help description of that button. The Paradigm C++ debugger is covered in
complete detail in Chapter 5 “Using the integrated debugger,” page 5-129 of this manual.
We have covered just the basics here. Plan on spending some time in Chapter 5 or see
"integrated debugger" in the online Help index for more assistance on the Paradigm C++
integrated debugger.

Customizing Paradigm C++

You can configure Paradigm C++ in many ways to create a customized environment that
meets your programming needs. For example, you can have Paradigm C++ do tasks
automatically (such as saving backups of your files in the Editor windows) or handle
special events.

The Environment Options dialog box (accessed with the Options|Environment command)
lets you configure the different elements and windows of Paradigm C++. Once you've
customized Paradigm C++ to your liking, choose Options|Save, check the options you
want to save, then choose OK; Paradigm C++ saves your environment settings to a file
called PCCONFIG.PCW. By default, the file is saved to the BIN directory in your
Paradigm C++ directory tree. This default directory is specified by the
DefaultDesktopDir field of your PCW5.INI file, which is located in your Windows
directory.

The Environment Options dialog box displays a list of customizable topics on the left and
each topic's configurable options on the right. Some topics contain subtopics, indicated
by a + next to the topic. For example, the Editor topic has subtopics called Options, File,
and Display. To view a topic's subtopics, click the + sign next to the topic; its subtopics
appear under it and the + turns to a - (you can then click the - to collapse the list of
subtopics). Topics without subtopics appear with a dot next to their name.

Figure 1-7

Chapter 1, Getting started 23

Environment Options dialog box

This section discusses the following Environment options topics:

l Configuring the Paradigm C++ editor
l Selecting the Syntax highlighting options
l Customizing the SpeedBars
l Setting the Paradigm C++ preferences
l Saving your Paradigm C++ settings

Although this chapter doesn't offer a complete reference to the many selections in the
Environment Options dialog box, a complete reference is available by clicking the Help
button.

Configuring the Paradigm C++ editor

You can configure the editor so that it looks and behaves like other editors such as Brief
and Epsilon. The Paradigm C++ editor uses keyboard mapping files (.KBD files) that set
the keyboard shortcuts for the editor and the other windows in Paradigm C++. You can
modify this behavior using ObjectScripting. For more information, see "ObjectScripting"
the online Help index.

Figure 1-8

+

Paradigm C++ Reference Manual24

Syntax highlighting

Syntax highlighting lets you define a color and font attribute (such as bold) for certain
elements of code. For example, you could display comments in blue and strings in red.
Syntax highlighting is on by default.

Syntax highlighting works on files whose extensions are listed in the Syntax Extensions
list (by default, these files are .C, .CPP, .H, and .HPP). You can add or delete any
extension from this list, but be sure to separate extensions with semicolons.

The Syntax highlighting section displays the default color scheme and four predefined
color settings. To use a predefined color scheme,

 1. Choose Options|Environment|Syntax highlighting.
 2. Choose one of the four predefined color schemes (Defaults, Classic, Twilight, or

Ocean) by choosing the Color SpeedSettings; the sample code changes to the color
scheme you select.

Environment Options Syntax Highlighting dialog

To customize the syntax highlighting colors,
 1. Choose Options|Environment, then select the Syntax highlighting topic.

Figure 1-9

Chapter 1, Getting started 25

 2. Select a predefined color scheme to use as a base for your customized colors.
 3. Choose the Customize topic listed under the Syntax highlighting topic. Elements and

sample code appear on the right of the Environment Options dialog box.
 4. Select an element you want to modify from the list of elements (for example, choose

Comment), or click the element in the sample code (this selects the name in the
Element list). You might need to scroll the sample code to view more elements.

 5. Select a color for the element. The element color in the sample code reflects your
selection. Use the left mouse button to select a foreground color for the element (FG
appears in the color). Use the right mouse button to select a background color (BG
appears in the color). IF FB appears in the color, the color is used as both a
background and a foreground color.

 6. If you want, choose an Attribute (for example, bold).
 7. You can check Default FG (foreground) or BG (background) to use the Windows

default colors for an element.
 8. Repeat steps 2-4 for the elements you want to modify.

To turn off syntax highlighting, choose Options|Environment|Syntax highlighting, then
uncheck Use Syntax highlighting.

Customizing the SpeedBars

Paradigm C++ uses context-sensitive SpeedBars for all its windows, including Edit,
Browser, Debugger, Project Manager, Message, and Desktop windows. When a window
has focus, the corresponding SpeedBar appears just below the Menu Bar. Using the
Environment Options dialog box, you can customize the SpeedBars for each window so
that they include only the buttons you want.

To add or delete buttons from the SpeedBars,

 1. Choose Options|Environment from the Paradigm C++ Menu Bar.
 2. Choose the SpeedBar topic on the left. The right side of the dialog box displays

general options for all SpeedBars.

The options here let you specify if you want to hide or view the SpeedBar, where you
want the SpeedBar to appear (on the top or bottom of the Paradigm C++ window),
and if you want to use the Flyby Help Hints. If you check Use Flyby Help Hints,
Paradigm C++ displays descriptions of the SpeedButtons on the status line when you
pass the mouse pointer over a button. If you leave this box unchecked, the hints show
on the status line only when you click a SpeedButton.

 3. Choose the Customize topic listed under the SpeedBar topic to customize the
SpeedBar for a particular window.

Paradigm C++ Reference Manual26

Environment Options SpeedBar customizing dialog

 4. In the Window dialog box, choose the specific window (Edit, Browser, Debugger,
Project, Message, or the Paradigm C++ Desktop) whose SpeedBar you want to
customize.

The Available Buttons list box displays all the unused buttons that you can add to a
particular window's SpeedBar (each button has a name next to it that describes the
button's function.). The Active Buttons list displays the buttons that are currently
contained in the selected window's SpeedBar.

l To add a button to a SpeedBar, double-click the button icon in the Available
Buttons list, or select it and click the right-pointing arrow. Paradigm C++ places
the button in front of the selected button in the Active Buttons list.

l To remove a button from a SpeedBar, double-click the button icon in the Active
Buttons list, or select it and click the left-pointing arrow. The button moves to the
Available Buttons list.

l To reorder the button positions for a SpeedBar, select a button in the Active
Buttons list, and use the up and down arrows to move the button within the list.
The top button in the list appears on the left side of the SpeedBar and the last
button in the list appears on the right side of the SpeedBar.

Figure 1-10

Chapter 1, Getting started 27

l To put separator spaces between buttons on the SpeedBar, select a button from
the Active Buttons list, and then click the Separator button. The separator is added
before the selected button.

You can also make all SpeedBars identical by selecting a SpeedBar in the Window list,
then pressing the Copy Layout button. A dialog box appears in which you check all the
SpeedBars you want to make identical to the selected Speedbar. For example, if you first
choose the Editor SpeedBar and then click Copy Layout, the dialog box appears with
Editor dimmed. If you then check Project and Message, those SpeedBars will be exactly
the same as the Editor SpeedBar.

You can restore any SpeedBar to its original defaults by selecting the SpeedBar in the
Windows list, then clicking the Restore Layout button.

Setting Paradigm C++ preferences

The Preferences command lets you customize which of the Paradigm C++ settings you
want automatically saved and how you want some Paradigm C++ windows to work.

To set preferences,
 1. Choose Options|Environment|Preferences.
 2. Check and uncheck the options you want, then choose OK. For an explanation of each

option, select the option and hit F1 to access the online Help for that option.

Saving your Paradigm C++ settings

Paradigm C++ automatically saves information when you exit Paradigm C++, use a
transfer tool, build or make a project, run the integrated debugger, or close or open a
project. You can control which areas of Paradigm C++ get saved from the Preferences
topic in the Environment Options dialog box (choose Options|Environment from the main
menu).

If you want to save your settings manually, you can do so as follows:
 1. Choose Options|Save.

 2. Check Environment to save the settings from the Editor, Syntax highlighting,
SpeedBar , Browser, and Preferences sections of the Environment Options dialog
box. These settings are saved in a file called PCCONFIG.PCW.

Figure 1-11
Save options

dialog

Paradigm C++ Reference Manual28

 3. Check Desktop to save information about open windows and their positions. This
information is saved to a file called <prjname>.DSW. If you don't have a project
open, the information is saved to a file called PCWDEF.DSW.

 4. Check Project to save the changes to your project (.IDE) file, including build options
and node attributes.

Using help in Paradigm C++

Paradigm C++ provides complete online documentation through the Help system. Using
Help is a convenient way to get information about language features, compiler options,
and any tasks you need to perform while developing applications in Paradigm C++.

Online help organization

 The Help system is organized into Help files that include the following documentation:

Help file Description

Using Online Help Features of Paradigm C++ Help (OPENHELP.HLP)
Paradigm C++ Class Libraries Guide Programming and reference material (CLASSLIB.HLP)
Paradigm C++ Programmer's Guide Programming tips and language details (PCPP.HLP)
Paradigm C++ User's Guide Paradigm C++ tasks, projects, tools (PCW.HLP)
Error Messages and Warnings Paradigm C++ Error message descriptions (PCERRMSG.HLP)
Tools and Utilities Command-line tools (PCTOOLS.HLP)
ObjectScripting Guide Customizing with scripts in Paradigm C++ (SCRIPT.HLP)
Paradigm LOCATE Reference Reference material for Paradigm LOCATE (LOCATE.HLP)
Paradigm LOCATE Error Messages Paradigm LOCATE Error messages (LOCERR.HLP)
PDREMOTE/ROM Help PDREMOTE/ROM Tutorial help (PDREM.HLP)
Paradigm Assembler Help Assembler options and operators reference (PASM.HLP)
Paradigm C++ SCCS Integration Source code control system features (SCCS.HLP)
Run-time Library Source Code Building and customizing tips (RUNTIME.HLP)
PDREMOTE/ROM Source Code Building and customizing tips (PDREMSRC.HLP)
Paradigm OMFCVT Guide Features of Paradigm OMFCVT (OMF.HLP)

Some of these files may only be available if you have optional components installed in
the Paradigm C++ IDE. Additional files may be available.

Getting help in Paradigm C++

In Paradigm C++, you can get Help in the following ways:

l Context-Sensitive Help (F1)
l Contents Screens
l Index
l Keyword Search (F1 or Ctrl+F1 in the Edit Window)
l SpeedMenus (in the Help window)
l Contacting Paradigm

Table 1-2
Help files

Chapter 1, Getting started 29

Getting context-sensitive help
To access context-sensitive Help for items in Paradigm C++:

 1. Select the element you want help on (menu, menu command, an item in a dialog box).
 2. Press F1 or Ctrl+F1.

Help buttons are available on many dialog boxes and for most error messages.

Click Help to view information about:

l The entire dialog box
l An error message
l The current group of topics in an Options settings dialog box

Accessing and using contents screens
Each Help Contents offers an entry into a Help system installed with Paradigm C++.
From the Contents, select the category of information that best suits your needs, then click
on it.

l To display the Master Contents screen, choose Contents on the Help menu in
Paradigm C++.

l To access the Help Contents from within a topic in the active Help file, click the
Contents button.

l To access the Help Contents screen of a different Help file installed with Paradigm
C++, right-click and select the name of the Help file you want to view.

l To access the Contents of all available Help files, click the Book Shelf button from
within the topic of a Help file. Shortcuts to help files are also listed under the Start
menu in Programs|Paradigm C++|Help.

You can expand books that appear on the Contents, or jump directly to a topic. To view a
topic, click on it.

You can print several topics at once by clicking a book on the Contents and then clicking
Print.

Using the index
In Help, click the Index tab to view a list of index entries. Either type the word you're
looking for or scroll through the list.

Searching for keywords
Keyword Search gives you direct access to Help about a term in your program. To get
help on a term:

 1. In the Edit window, place the insertion point on the term you want help on.
 2. Use one of the following methods:

l Press F1 or Ctrl+F1.
l Choose Keyword Search on the Help menu.
l Choose Go To Help Topic on the Edit Window SpeedMenu.

 3. One of these events occurs:
l The topic associated with the term you selected is displayed.

To return to a
previous topic or

Help file, click the
Back button.

To return to a
previous topic or

Help file, click the
Back button.

Paradigm C++ Reference Manual30

l If more than one topic is available on the term for which you requested Help, the
Topics Found dialog box is displayed listing topics associated with the term.
Double-click the topic you want to view.

l If no Help is available for the term nearest the insertion point, the index is
displayed. You can then select a different searching method to locate a topic
associated with that term. The term for which you requested Help appears
highlighted in the top box. Click the Display button or double-click the term to
view the list of topics associated with the term.

Help SpeedMenus
All the Paradigm C++ Help files have SpeedMenus that you access by right-clicking on
the mouse. These menus provide quick access to commands for copying or printing a
Help topic, or exiting Help.

The SpeedMenu also lists additional Help files containing information related to the
current Help file. Right-click and select a Help file from the SpeedMenu. The Contents
screen for that Help file is displayed.

Contacting Paradigm
There are several ways to contact Paradigm Systems for technical assistance on Paradigm
C++.

Use the Help menu links to access the Paradigm C++ home page, newsgroups, FTP site or
to register Paradigm C++.

You can contact Paradigm directly at:

Paradigm Systems
Suite 2214
3301 Country Club Road
Endwell, NY 13760
USA

Sales: 607-748-5966, 800-537-5043
Fax: 607-748-5968
Technical Support: 800-582-0864

Ninety days of free technical support is only available to registered users of Paradigm
C++. If you haven’t yet done so, take this time to register your products under the
Paradigm C++ Help menu or online at http://www.devtools.com. Contact Paradigm to
purchase a Paradigm SurvivalPak for an additional 12 months of free technical support
and quarterly product upgrades.

+

Chapter 2, Managing projects 31

C h a p t e r

2

Managing projects

The Paradigm C++ IDE contains a Project Manager that gives you a visual representation
of the files contained in your project. With the Project Manager, you can see exactly what
files you're building, the files you're using in the builds, and the options that you've set for
the builds.

This chapter covers the following topics, which describe how to use the Project Manager
to organize the files in your project:

l Project management
l Using the Project Manager
l Grouping sets of files with Source pools
l Translators, viewers, and tools

What is project management?

As an application grows in size and complexity, it becomes dependent on various
intermediate files. Often, source files need to be compiled with different compilers and
different sets of compiler options. Even a simple embedded application can have multiple
C or C++ source files, with each file type requiring different compilers and different
compiler settings.

As your project complexity increases, the need increases for a way to manage the
different components in the project. Looking at the files that make up a project, you can
see that a project combines one or more source files to produce a single target file.
While target files are usually executable .AXE or .HEX files, source files cover a
broader range of file types, including .C, .CPP, and .ASM files. Additionally, many
source files have autodependent files (files that are automatically included by the
source), such as C header files. In larger projects, you are likely to find several targets
with scores of sources.

Project management is the organization and management of the source and target files
that make up your project. In addition, project management encompasses how and when
you employ different tools to translate the source files into your project target files.

Project management tools

Paradigm C++ provides several tools to help you manage your application projects.

Tools Description

Project Manager The Project Manager is the main tool for managing projects in Paradigm C++. Use
the View|Project command to access the Project Manager, a
collapsible/expandable, hierarchical display of the files in your project.

Project menu The Project menu provides commands to open and close projects, add a new target
to a project, and make, build, or compile targets.

Table 2-1
Project

management
tools

Paradigm C++ Reference Manual32

Options Hierarchy The View Options Hierarchy command (located on the Project Tree window
SpeedMenu) opens a dialog box that lets you set options for individual project
nodes.

Node attributes The Edit Node Attributes command (located on the Project Tree window
SpeedMenu) lets you control how each node is handled by the Project Manager.

Tools Use the Options|Tools command to install, delete, or modify the tools that you use
in your projects.

TargetExpert TargetExpert opens when you create a new project or add a new target node to an
existing project. TargetExpert makes available the appropriate platform, model, and
library choices based on the type of target you select.

Using the Project Manager

The Project Manager visually organizes all the files in your project in a hierarchy
diagram known as the project tree. The Project Tree represents each file in your project
as a node on the tree. The Project Tree is divided into discrete levels where each level
contains a single target node. Indented below each target node are the target’s
dependencies-the files used to build the target. To expand and collapse the hierarchy tree,
click nodes containing the + and - symbols.

Project Tree

The Project Manager uses the following types of nodes to distinguish the different types
of files in your project:

The project node, located at the top of the Project Tree, represents the entire project. All
the files used to build that project appear under the project node (similar to a symbolic
target in a makefile). By default, the project node is not displayed in the Project Tree. To
display the project node, choose Options|Environment and select Project View from the
list of topics, then check Show Project Node.

A target node represents a file that is created when its dependent nodes are built. A
target can be one of a variety of target types, but is usually an .AXE or .LIB file that you
are creating from source code. A project can contain many target nodes. For example, in a
single project, you might build three separate .AXE files, making three targets in all.

Figure 2-1

Chapter 2, Managing projects 33

Source nodes refer to the files that are used to build a target. Files such as .C and .CPP
are typical source nodes.

A run-time node refers to files that the Project Manager uses during the linking stage of
your project, such as startup code and .LIB files. The Project Manager adds different run-
time nodes depending on the options you specify in TargetExpert. By default, run-time
nodes are not displayed by the Project Manager. To view run-time nodes, choose
Options|Environment|Project View, then check Show Runtime Nodes.

Autodependency nodes are the files that your program automatically references, such as
included header files. By viewing autodependency nodes, you can see the files that source
nodes are dependent upon, and you can easily navigate to these files (just double-click the
node). By default, the Project Manager does not display Autodependency nodes; you must
choose Options|Project|Make, then check Autodependencies: Cache & Display. Note that
you must build the project before the Project Manager can display autodependency
information).

The Project Manager uses the following color schemes for its nodes:

l Blue nodes represent those that were added by the programmer.
l White nodes indicate project targets.
l Yellow nodes are those that were added programmatically by the compiler (when it

posts dependencies and Autodependencies), or by TargetExpert (when it adds nodes
based on the target type).

The Project Manager uses special glyphs in the left margin to indicate the build attributes
of project nodes. To apply build attributes to a node (and for a reference on the different
Project Manager glyphs), choose Edit Local Options from the Project Manager
SpeedMenu, then select the Build Attributes topic.

In addition to helping you organize your project files, you can use the Project Manager to
access source files and build targets.

l To bring a source file into an Edit window, double-click the node in the Project Tree,
or highlight the node and either press Enter or choose View|Text Edit from the Project
Manager SpeedMenu.

l Using the Project Manager to make a project is very effective because you can use the
Project Manager to translate only the files that have changed since the last project
build; computer resources are not wasted on unnecessary file updates. (The term
"translate" refers to using one file type to create another. For example, the C++
compiler is a translator because it generates .OBJ files from .CPP files.)

There are several ways to customize the build options of the nodes in your project.
Maintaining project option and compiling project targets is described in detail in Chapter
3, Project options.

Project Manager reference

The Project Tree can be traversed with the mouse or the keyboard.

The Project Manager supports incremental searching, so you can quickly find a node by
typing the node name. Incremental searching finds the first node in the Project Manager
that matches the letters you type. Press Ctrl+S to find the next match.

Task Keyboard Mouse

Add Node Insert Right Click|Add Node

+

Table 2-2
Project Manager

reference

Paradigm C++ Reference Manual34

Collapse hierarchy Minus Click parent node
Collapse/Expand node Spacebar
Copy Node Ctrl+Left Click Drag
Default action for node Enter Double Click
Delete Node Delete
Demote a node Alt+RightArrow Left Click Drag
End node search Esc
Expand hierarchy + (Plus) Click parent node
Expand entire hierarchy * (asterisk)
Find a node Incremental search (start typing)
Move down in project DownArrow Scroll Bar
Move node down Alt+DownArrow Left Click Drag
Move node up Alt+UpArrow Left Click Drag
Move to bottom of hierarchy End Scroll Bar
Move to top of hierarchy Home Scroll Bar
Move up in project UpArrow Scroll Bar
Open SpeedMenu Alt+F10 Right Click
Page down PgDn Scroll Bar
Page up PgUp Scroll Bar
Promote a node Alt+LeftArrow
Reference Copy Node Alt+Left Click Drag
Scroll left LeftArrow Scroll Bar
Scroll right RightArrow Scroll Bar
Select a node Up/DownArrow Left Click
Select Contiguous nodes Shift UpArrow Shift Left Click
Select Non-Contiguous nodes Ctrl Left Click

Creating a project

When you begin to write a new application, the first step is to create a new project to
organize your application's files. The command Project|New Project opens the New
Target dialog box.

Setting options with the New Target dialog box
When you create a new project, the IDE automatically assigns default file names to the
nodes in your project. The following steps show how to change these default settings and
how to complete the initial project setup.

 1. Type the path and name for the new project into the Project Path And Name input box
(the project name must contain eight characters or less). Note that you don't have to
type a file extension because the IDE automatically assigns the extension .IDE to all
project files.

 2. In the Target Name input box, type the name for the first target in your project. This is
usually the name of the .AXE or .HEX file that you want to create.

The remaining fields in the New Target dialog box set the options for the first target
in the project. These fields are commonly referred to as the TargetExpert, since these
are the fields contained in the TargetExpert dialog box.

+

Chapter 2, Managing projects 35

 3. Choose the type of target you want to build using the Target Type list. For more
information, see "target types" in the online Help index.

 4. Choose a platform for your target using the Platform drop-down list. For more
information on individual platform types see "target types" in the online Help index.

 5. Select the memory model of the target from the Target Model options:

l Small uses different code and data segments, giving you near code and near data.
l Medium gives you near data and far code.
l Compact is the inverse of the Medium model, giving you near code and far data.
l Large gives you far code and far data.
l Huge is the same as Large model, but allows more than 64K of static data.

32-bit targets

l Win32 Native - If Protected address mode is chosen under Platform, selecting
Win 32 Native will allow you to generate an application to be executed locally on
your PC.

l Win 32 Embedded - If Protected address mode is chosen under Platform,
selecting Win32 Embedded will allow you to generate an application to be
executed on an embedded target.

 6. If needed, click the Advanced button to specify the types of source nodes created with
your new target (this procedure is described in the following section.

 7. Click OK to accept the settings and close the New Target dialog box. The Project
Manager creates the project file, which is denoted with an .IDE extension

When you close the New Target dialog box, the Project Manager draws a graphical
representation of your project in the Project window. The Project Manager creates a
target node with one or more source nodes below with the project node. After creating
the initial target for a project, you can add, delete, or modify the nodes in your project, as
described in the following sections.

Specifying the source node types
The Advanced button in the New Target dialog box opens the Advanced Options dialog
box. Use this dialog box to set the types of source nodes that the Paradigm C++ IDE
creates with a new target node.

Extension File Type

.CPP node Creates a C++ language source node.

.C node Creates C language source node.
No source node Creates a Target node that doesn't use a source node. Use this option

when you want to create a Source node that uses the same file name as
the name of the project. When you create a new target with this option,
you must specifically add the source node.

For embedded Win32 applications
.DEF Creates a source node that is associated with a Windows module

definition file, which is used by the linker.

Table 2-3
Source node

types

Paradigm C++ Reference Manual36

Opening existing projects
To open an existing project, choose Project|Open Project, then use the file browser to
select an existing .IDE or .PRJ project file (.PRJ files are converted to .IDE files when
you save the project). If the project opens, but the Project window is not visible, choose
View|Project to access the Project window.

Adding nodes

To add a source node to a project:

 1. Select any node in the Project Tree under which you want the new node to appear.
For example, if you want the new node to appear under the target, select the target
node.

 2. Press Ins, click the button on the SpeedBar, or right-click the node to open the Project
window SpeedMenu and then choose Add node.

 3. Using the file browser, choose the file or files you want associated with the new
node. Alternatively, you can type the name for the file you want to add.

 4. Choose OK to confirm your settings.

You can use the Windows File Manager to add one or more source nodes:

 1. Open the File Manager and arrange the windows so you can still view the Project
window in the Paradigm C++ IDE.

 2. In the File Manager, press Ctrl and select the files you want to add as source nodes.
 3. Drag the files from the File Manager and drop them on a node in the Project window.

The Project Manager automatically adds the source files under the selected node.

Deleting source nodes
To delete a node in a project, select the node and press Del or choose Delete Node from
the SpeedMenu. To delete many nodes, select the ones you want to delete (press Ctrl or
Shift and click the left mouse button to select multiple nodes), then press Del. The Project
Manager asks if you want to delete the nodes before it proceeds. If you delete an original
node, all reference copies of that node are also deleted.

Adding files without relative path information

Because the Project Tree supports drag and drop, you can copy files right from the
desktop file manager. Relative path information is included when files are copied. If you
move sources or the Paradigm C++ IDE, the relative path information will be incorrect.
Here is how to add files to your project without the presence of relative path information:

l Make sure that the Absolute (Options|Project|Make|New Node Path) is turned off (this
is the default setting).

l Right-click on the node under which the added files will become children once they
are dropped.

l Choose Add Node from the Project Tree SpeedMenu.

l Browse and highlight the file(s), you want to add. (Hold down the Ctrl key to select
non-contiguous files.)

l After hightlight the desired files, shift focus to the input box and capture to the
Clipboard (Ctrl-C).

l Browse back to the project file location.

Use care when
deleting nodes;

you cannot undo
the deletion.

Chapter 2, Managing projects 37

l Shift focus to the input box, paste from the Clipboard (Ctrl-V or Shift + Insert) and
choose OK.

Files added to the project by this method do not have relative path information.

Editing source node attributes

Node attributes describe the source node and define the tool that translates it (if
applicable). To edit the attributes of a source node:

 1. Right-click the source node (or select the node and press Alt-F10), then choose Edit
Node attributes from the SpeedMenu. The Node attributes dialog box appears.

 2. Update the node attributes, then choose OK to confirm your settings.

Node attributes
l Name is the file name of the node, without a file extension.
l Description is an optional text description of the node.
l Style Sheet is the name of the Style sheet the Project Manager uses when it

translates that node. If <<None>> is specified, the Project Manager uses the
parent options, plus any local overrides set on nodes higher in the Project Tree
hierarchy.

If you need to create or edit an existing Style sheet, click the Styles button to access
the Style Sheets dialog box.

l Translator names the translator used on that node. The Paradigm C++ IDE
assigns a default translator for the node type (for example, CppCompile for a
.CPP node), which can be overridden using this field.

l Node type defines node extension, which in turn defines the available translators
for that node.

Adding target nodes to your project

To add a target to a project with the New Target dialog box:

 1. Choose Project|New Target, or click the button on the SpeedBar.
 2. Type the name for the new target, then choose one of the following target types:

l Standard (default) can be an absolute executable, .LIB, or other file.
l Source Pool is a collection of files that can be referenced in other targets.

 3. Choose OK. If the target type is Standard, the TargetExpert dialog box appears so you
can further define your target. If the target type is SourcePool, the Target is added to
the project and you can add nodes to it immediately.

When you add a new target, it is always appended to the end of the Project Tree.

To view a sample project with two targets, open the file MULTITRG.IDE in the
PARADIGM\EXAMPLES\MULTITRG directory. The project contains a text file that
describes how to use two or more targets in a project.

With more than one target in a project, you can choose to build a single target, multiple
targets, or the whole project.

+

Paradigm C++ Reference Manual38

Deleting target nodes
To delete a target node:

 1. Right-click the target node you want to delete (or highlight it and press Alt-F10).
 2. Choose Delete Node from the SpeedMenu.
 3. The Project Manager asks if you're sure you want to delete the target. Choose OK to

delete the target and all it's dependencies from the project.

You can also delete several nodes by pressing Ctrl and clicking the nodes you want to
delete, then press Del.

Editing target attributes using TargetExpert

Target attributes describe the target. For example, target attributes can describe either a
32-bit Windows DLL or a 16-bit DOS absolute executable. Using TargetExpert, you can
modify the attributes for Standard target types. However, you can't change target attributes
for SourcePools.

To change a target's attributes:

 1. In the Project window, right-click the target node (or select it and press Alt-F10), then
choose TargetExpert from the SpeedMenu to open the TargetExpert dialog box.

The TargetExpert fields are a subset of the fields in the New Target dialog box.

 2. Update the target attributes, then choose OK to confirm your new settings.

Moving nodes within a project

You can move nodes within a project in the following ways:

l By dragging the node to its new location.
l By selecting the node and pressing Alt and the arrow keys. This moves the selected

node up or down through the visible nodes. You can also use Alt and the right and left
arrow keys to promote and demote nodes through levels of dependencies. For
example, if you have a .CPP file dependent that is on a header file (the .H file appears
under and right of the .CPP in the project window), you can move the header file to
the same level as the .CPP file by selecting the header file and pressing Alt ←.

Copying nodes in a project

You can copy nodes in your project file either by value or by reference. When you copy
nodes by value, the Project Manager makes an identical, but separate, copy of the node in
the location you specify. The nodes you copy inherit all the attributes from the original
node, and you have the ability to modify any of the copied node's attributes.

When you copy nodes by reference, you simply point to one node from a different
location in the project; a reference copy is not distinct from the original node. If you
modify the structure of the original node, the reference copy is also modified. However, a
reference copy does not inherit the options of the original node; you're free to attach Style
Sheets and override options in the copied node without affecting the original node.

To copy project nodes,

 1. Select a group of nodes you want to copy (press Shift or Ctrl and click to select
modify nodes). You don’t need to select the node's dependents because they are
copied automatically.

Use care when
deleting target

nodes; you
cannot undo the

deletion.

+

Chapter 2, Managing projects 39

 2. Hold down the Ctrl key and drag the selected nodes to the new location to copy by
value.

Or

Press the Alt key and drag the selected nodes to the new location to copy by
reference.

When you release the mouse button, the copied node appears. If you reference-copied the
node, it will appear in a lighter font. At this point, if you've copied by value, you can edit
either the original or the copied nodes without changing other nodes in the project. If you
reference-copied, and you edit the original node (such as adding or deleting dependents),
all referenced copies are updated.

You cannot add to, delete, or modify nodes that have been copied by reference; to modify
nodes copied by reference, you must edit the master copy. If you delete an original node,
all reference copies to that node are also deleted. You cannot undo this deletion.

Converting project files into makefiles

Using the Paradigm C++ IDE, you can convert project files (.IDE files) into makefiles
(.MAK files). To convert a project file to a makefile:

 1. Open the project file you want to convert.
 2. Choose Project|Generate Makefile. The Paradigm C++ IDE generates a makefile with

the same name as the project file, but with the extension .MAK, and places it in the
edit buffer. The Paradigm C++ IDE displays the new makefile in an Edit window.

 3. Choose File|Save to save your new makefile.

Customizing the Project window

By default, the Project window displays target nodes and source nodes. To control the
display of nodes and options:

 1. Choose Options|Environment to open the Environment Options dialog box, then
choose Project View. The right side of the dialog box displays the Project View
options.

 2. Check or uncheck the options you want. A sample node called WHELLO changes as
you select or deselect options. This sample shows you how all nodes appear in the
Project window.

l Build translator displays the translator used on the node.
l Code size displays the total size of code segments. This information appears only

after the node has been compiled.
l Data size displays the size of the data segment in bytes. This information appears

only after the node has been compiled.
l Description displays the optional description of the node in the Project Tree.

Type the description using the Edit node attributes dialog box from the Project
Manager SpeedMenu.

l Location lists the path to the source file associated with the node.
l Connection displays the name of the target connection used for the node. This

only applies to target nodes that support a debugger connection.
l Number of lines displays the number of lines of code in the file associated with

the node. This information appears only after you compile the code.

+

Paradigm C++ Reference Manual40

l Node type describes the type of node (for example, .cpp, or .c).
l Style Sheet names the Style Sheet attached with a node.
l Output names the path and file name that is created when the node is translated.

For example, a .CPP node creates an .OBJ file.
l Show run-time nodes displays the nodes the Project Manager uses when the

project is built. For example, it lists startup code and libraries.
l Show Project Node displays the project node, of which all targets are

dependents.

 3. Click OK to close the Environment Options dialog box.
 4. To save your project customizations, choose Options|Save, then check Project. Note

that you can save different option sets with the different projects you work on.

Grouping sets of files with Source Pools

A Source Pool is a collection of nodes that can be referenced by multiple target nodes.
When a Target node references a Source Pool, the nodes in the Source Pool take on the
options and target attributes of the target. Because Source Pools let you create different
targets using a common set of source nodes, it is easy to maintain the files that the targets
use. For example, with Source Pools, you can create both 16- and 32-bit applications
using a single set of source nodes. Then, when you add or delete from the Source Pool,
you don’t have worry about updating all your target nodes; they're updated automatically
through the reference to the Source Pool.

You can also use Source Pools when you have several header files that you need to
include throughout your project. If you place the header files in a Source Pool, you can
reference them wherever you need them in your project. Then, you only have to update the
original Source Pool when you need to make changes to the group of header files; if you
add a new header file to the Source Pool, all the referenced copies are automatically
updated.

Source Pools are also useful when you want to assign a single Style Sheet to multiple
nodes. For example, if three targets in a project need to use the same Style Sheet, you can
reference a Source Pool that contains the Style Sheet instead of attaching the same Style
Sheet to each individual node. Then, if you need to update the Style Sheet (for example, if
you want to change from compiling with debug information to compiling without it), you
can update all the targets by modifying the single Style Sheet. You can also use Source
Pools to apply custom tools to project nodes. For more information, see "Source Pools"
in the online Help index.

Creating a Source Pool

When you create a Source Pool, you create a target node with a group of nodes under it.
However, the target node of the Source Pool cannot be compiled—to compile the nodes
in a Source Pool, you must copy the Source Pool to a another target node. Source Pools
work to your best advantage when you copy them by reference.

To create a Source Pool

 1. In your project, create a new target node by choose Project|New Target.
 2. Type the name for the Source Pool in the Target Name.
 3. Select Source Pool from the Type list and press OK to create a Source Pool target

node in your project.

What is a
Source Pool?

Chapter 2, Managing projects 41

 4. Select the new Source Pool in the Project Tree, then press Ins to open the Add To
Project List dialog box.

 5. Select the source files you want, then press OK to add them to the Source Pool.
 6. Copy the Source Pool by reference by holding down the Alt key and dragging the

Source Pool to the target nodes you want.

To see a working example of Source Pools, open the sample project called
SRCPOOL.IDE in the PARADIGM\EXAMPLES\SRCPOOL directory. The project file
includes a text file that describes how the Source Pool is used in the example.

Translators, viewers, and tools

Translators, viewers, and tools are internal and external programs that are available to
you through the Paradigm C++ IDE.

l Translators are programs that create one file type from another. For example, the
C++ compiler is a translator that creates .OBJ files from .CPP files; the linker is a
translator that creates .AXE files from .OBJ, .LIB, and .DEF files.

l Viewers are programs that let you examine the contents of a selected node. For
example, an editor is a viewer that lets you examine the source code of a .CPP file.

l Tools are programs that help you create and test your applications. The external AXE
utility is an example of a programming tool.

The Paradigm C++ IDE associates each node in a project with different translators or
viewers, depending on the file extension of the node. Although each node can be
associated with several different translators or viewers, each node is associated with a
single default translator or viewer. This is how the Paradigm C++ IDE knows to open the
Edit window when you double-click a .CPP node (double-clicking a node invokes the
default viewer on the node).

To see the default node type (determined by file extension) for a specific translator
or viewer:

 1. Choose Options|Tools to open the Tools dialog box.
 2. Select the item you want to inspect from the Tools list.
 3. Choose Edit to access the Tools Options dialog box.
 4. Choose Advanced to access the Tool Advanced Options dialog box, then inspect the

Default For text box.

When you right-click a node, you’ll find that some source nodes have a Special command
on the SpeedMenu. This command lists the alternative translators that are available for
the node type selected. For example, the commands C To Assembler, C++ To Assembler,
and Preprocess appear on the Special menu of a .CPP node. The command Implib
appears if you selected a .DLL node. Using the Special command, you can invoke any
translator that is available for a selected node type. Also, by selecting a source node in
the Project Tree and choosing Edit Node Attributes from the SpeedMenu, you can
reassign the default translator for the selected node.

Adding translators and viewers

The Tools dialog box displays the default set of translators, tools, and viewers The
following steps show how to add an item to this list of programs:

+

Paradigm C++ Reference Manual42

 1. Choose Options|Tools to access the Tool Options dialog box. This dialog box
displays the default list of translators, tools, and viewers.

 2. Choose New to add a new program to the Tools list (to modify a program that is
already listed, select the tool, then choose Edit).

 3. Set the following option in the Tools Options dialog box:

l Name is a description of the item you're adding. This is the placed on the Tool
list.

l Path is the path and executable program name. You can use the Browse button to
complete this selection.

l Command-line holds any command-line options, transfer macros, and the
Paradigm C++ IDE filters you want to pass to the program. For more information,
see "transfer macros" in the online Help index. (Try using $PROMPT if you want
to experiment with transfer macros.) the Paradigm C++ IDE filters are .DLL files
that let tools interface with the Paradigm C++ IDE (for example, the GrepFile tool
uses a filter to output text to the Message window). To see transfer macros and
filters in use, choose Options|Tools, then select GrepFiles and choose Edit.

l Menu Text appears on SpeedMenus and on the Tools menu. If you want to assign
a shortcut key to your menu text, precede the shortcut letter with an ampersand (&)
- this letter appears underlined in the menu. For example, &File assigns the letter
F as the shortcut key for File. If you want an ampersand to appear in your menu
text, use two ampersands (&&Up&date appears as &Update in the menu).

You must supply Menu Text if you want the program item to appear on the
SpeedMenu or Tools menu.

l Help Hint is descriptive text that appears in the status line of the Tools dialog
box when you select the program item.

 4. Open the Advanced Options dialog box (choose Advanced) to set the options for your
new program. Depending on the Tool type you choose (Simple Transfer, Translator,
or Viewer), different fields become available. If you create a Translator, the program
becomes available for make and build processes.

l Place On Tool Menu adds the item to the Tools menu.

l Place On SpeedMenu adds a viewer or translator to the associated SpeedMenu.
l Target Translator available for translators and viewers. For translators, this

field specifies whether the program produces a final target (such as an .AXE file)
or an intermediate file (such as an .OBJ or .I file). If you check this box, the
translator produced a final target that is saved to the directory you specify in the
Final text box (choose Project|Options|Directories). If you don’t check Target
Translator, the translated file is saved in the directory you specify in the
Intermediate text box.

For viewers, Target Translator specifies that the viewer works only on nodes that
have been translated (such as .OBJ or .AXE files); the node has to be translated
before you can view it.

l Translate From defines the node types (determined by file extension) that a
translator can translate. To specify multiple node types, use a semicolon to
separate file extensions.

When you enter a file extension in this field, the Project Manager adds the translator
to the Special menu of the project nodes that have that file extension. When you

+

Chapter 2, Managing projects 43

choose Special from the Project Manager SpeedMenu, the Project Manager displays
all the available translators for that node type. However, it is important that each
node type can have only a single, default translator (see the description for Default
For).

To see how this works, look at the tool CppCompile (choose Options|Tools, double-
click CppCompile, then click Advanced). The Tool Advanced Options dialog box
shows that the C++ compiler is a translator for .CPP, .C, .CAS, and .H files. If you
have a source node with a .C extension, CppCompile appears on the Special menu
when you right-click the node and choose Special.

l Translate To defines the extension of the file that the translator generates.
l Applies To is similar to Translate From field, except that it's used for viewers

instead of translators.
l Default For changes the Paradigm C++ IDE's default translator or viewer for the

file types you specify. Type the file extensions (separating each with a semicolon)
for the file types whose default you want to override.

 5. Choose OK twice to confirm your settings, then close the Tools dialog box.

Your new tool has now been added to the Tools list of the associated project, and to the
Tools menu or SpeedMenu, depending on where you chose to add the item. If you added
the item to the Tool menu, you can check the addition by choosing Tools from the main
menu; the new program name appears on the Tools list.

Although the Project Manager lets you define your own Tools items, these items apply
only to the project that you add them to; they aren’t added as permanent parts of the
Paradigm C++ IDE. However, translators, viewers, and tools can be passed to new and
existing projects by sharing the Style Sheets of the projects.

Paradigm C++ Reference Manual44

Chapter 3, Project options 45

C h a p t e r

3

 Project options

After you create a project file and write the code for the source nodes in your project, you
need to set the options for the different project nodes before you can compile the project.
This chapter describes how to set options in a project, how to view the options you set,
how to compile a project, and how to use the Message window to view and fix compile-
time errors. In addition, this chapter contains a complete reference to the compiler and
linker options that can be set from the Paradigm C++ IDE.

Setting project options

This section explains how to set, view, and manage project options.

Project options tell the Paradigm C++ IDE how to compile and link the nodes in your
project to form the targets you need. The settings of the project options can indicate
whether or not to generate debugging information, where to look for source code, what
types of compiler optimizations you want to use, and so on.

The Project Manager lets you set project options in two different ways:

l You can attach Style Sheets to your project nodes.
l You can override the settings in a Style Sheet using local overrides.

Style Sheets group a collection of option settings into a single unit. Once a Style Sheet is
created, you can attach it to a node, a group of nodes, or an entire project. Local
overrides are settings that take precedence over Style Sheet settings at the node level.

Using Style Sheets

A Style Sheet is a group of option settings. In your project, for example, you might want
to compile .C files with one set of options and .CPP files with another, or you might want
to build one target with debugging information, and another one without it. Style Sheets
make it easy to view and maintain the settings of your project options. Option settings
control how target nodes in your project are built. You can attach Style Sheets to entire
projects or to individual nodes in a project. You can attach one or more Style Sheets to
your entire project or assign one or more Style Sheets to individual nodes in your project.

To view the options that can be incorporated into a Style Sheet, open the Project Options
dialog box by choosing Options|Project. This dialog box contains a hierarchical list of
topics on the left, with the options that relate to each topic listed on the right. To expand
and collapse the Topic list, click the + and - icons to the left of the topic listings.

To see an example of how Style Sheets are used, open the STYLESHT.IDE project file
located in the PARADIGM\EXAMPLES directory. This file uses a different Style Sheet
for each of its two versions of the application and also contains a text file that explains
the use of Style Sheets.

Paradigm C++ Reference Manual46

Predefines Style Sheets
The Project Manager contains several predefined Style Sheets that you can attach to any
node in your project. You can also customize a predefined Style Sheet to meet the special
needs of your projects.

To inspect the predefined Style Sheets, choose Options|Style Sheets on the main menu (or
click the Styles button on the Edit Node Attributes dialog box). This opens the Style
Sheets dialog box where you can create, compose, copy, edit, rename, or delete from the
list of Style Sheets that are available for your project. Predefined Style Sheets are listed
on the left with the description of the selected Style Sheet on the right.

The default project options
When you initially create a project, it inherits the Style Sheet known as the Default
Project Options. If some components in your project require different settings, you can
attach different Style Sheets to those nodes. If different nodes in your project require
different option settings, you should override the default option settings by attaching
different Style Sheets to the nodes in your project.

Be careful when you use the Options|Project command to modify option settings; if
your project contains more than a single target node, the changes you make always
modify the project's Default Project Options (regardless of the node you have selected
when you choose the command). Because of this, all targets in your project inherit the
changes you make when you use the Options|Project command. In addition, if you
modify project options when you don't have a project loaded, you modifications update
the Default Project Options Style Sheet; the projects you later create will inherit these
new default settings. If you need to revert to the Paradigm C++ IDE's factory default
settings, delete the file PCWDEF.PCW (located in the Paradigm C++ IDE BIN
directory), then open and close the Paradigm C++ IDE to create a new file.

Managing Style Sheets
The buttons at the bottom of the Style Sheets dialog box let you create, compose, copy,
edit, rename, and delete user-defined Style Sheets.

Create lets you design a new Style Sheet for the currently loaded project. To create a
Style Sheet:

Choose the Create button, then enter a name for you new Style Sheet into the Create Style
Sheet dialog box. Choose OK to add the new Style Sheet to the Available Style Sheets
list.

Compose lets you create a Style Sheet that contains the combined options from one or
more Style Sheets. To compose a Style Sheet:
 1. Create a new Style Sheet using the Create button.
 2. Select the new Style Sheet in the Available Style Sheets list, then click Compose.
 3. Select the Style Sheet you want included in your new Style Sheet from the Available

Style Sheets list, then move the Style Sheet to the Composite Style Sheets list by
double-clicking it or by clicking the → button. (You can also remove Style Sheets
from the Composite Style Sheet list by selecting a Style Sheet there and clicking ←.)

 4. Continue modifying the composed Style Sheet, then choose OK when you're finished.

You cannot edit the option settings in a composed Style Sheet. However, you can edit the
option settings in the Style Sheets contained in the composed Style Sheet, which affects
the settings in the composed Style Sheet.

Create

Compose

+

Chapter 3, Project options 47

Copy lets you create a new Style Sheet from an existing one. When you choose Copy,
you're prompted for the new Style Sheet's name. Enter the new name, then choose OK to
make an exact copy of the selected Style Sheet. Copying is a fast way to create a Style
Sheet that closely resembles another-you only have to change the options you want.

Edit to change any of the copied options. Copying is a fast way to create a Style Sheet that
closely resembles another-you only have to change the options you want.

Edit lets you modify the option settings of an existing Style Sheet, including any
predefined Style Sheet.

Rename lets you rename a selected Style Sheet.

Delete lets you remove an unwanted Style Sheet. (This action cannot be reversed.)

Attaching Style Sheets to nodes
Sometimes different nodes in a project need to be built with option settings that are
different than those in the project Style Sheet. For example, you might want to compile .C
files with one set of options but .CPP files with another. Or, you might want to build one
target with 16-bit options and another with 32-bit options.

To attach an existing Style Sheet to a project node:
 1. Right-click the node in the Project Tree (or select it and press Alt-F10).
 2. Choose Edit node Attributes from the SpeedMenu. The Node Attributes dialog box

appears.
 3. Select a Style Sheet from the drop-down box, then choose OK.

When you attach a Style Sheet to a node, all child nodes of that node inherit the settings of
the selected Style Sheet. To change the settings of a child node, attach a different Style
Sheet, or override an option setting using a local override.

Although you can attach only a single Style Sheet to a project node, one Style Sheet can
be composed of several different Style Sheets.

Sharing style sheets between projects
There are two ways to share Style Sheet between projects:

l inheriting style sheets from another project
l editing the .PDL file associated with a project

When you create a custom Style Sheet, that Style Sheet remains with the project for which
it was created; it doesn't get added to the list of predefined Style Sheets. However, if you
want a new project to use one of your custom Style Sheets or user-defined tools, you can
do so by letting a new project inherit settings from another project.

Before a project can inherit the settings of another project, you must modify the
PCW5.INI file that resides in your Windows directory. If the file doesn't contain an
inherit setting, then you must add the settings to the file as follows:

[Project]
;To have new projects inherit settings from the Default Project
Settings (default) ;
inherit=0

;To have new projects inherit settings from currently open project:
inherit=1

Copy

Edit

Rename

Delete

+

Paradigm C++ Reference Manual48

;To have new projects inherit factory default settings:
inherit=2

To pass Style Sheets or user-defined tools from one project to a new project:
 1. Modify PCW5.INI so that inherit=1.
 2. Open the project that contains the Style Sheet or tools you want to share.
 3. Choose Project|New Project.

When the new project is created, it inherits the Style Sheets and user-defined tools of the
project that was open when you chose Project|New Project.

Project Description Language files
You can also share Style Sheets across projects by editing the Project Description
Language files (.PDL) associated with your projects. When you save a project, you can
instruct the Paradigm C++ IDE to create a .PDL file that has the same file name as the
project's Paradigm C++ IDE file. Likewise, when you open a project you can instruct the
Paradigm C++ IDE to read the project's .PDL file. Because a .PDL file contains
information about the Style Sheets and tools used in a project, you can edit a project's
.PDL file so that it uses the Style Sheet and tools of your choosing.

Be careful if you choose to edit .PDL files. If a .PDL file is corrupted, the Project
Manager will not be able to read it. You may want to make a backup copy of the .PDL
file before you begin making changes.

If you plan to use .PDL files to share Style Sheets and tools, you must first ensure that the
Paradigm C++ IDE creates and reads the files. To do so, open the PCW5.INI file (found
in your Windows directory) and add the following settings to the [Project] section of the
.INI file:

[Project]
saveastext=1
readastext=1

The saveastext setting tells the Paradigm C++ IDE to save a .PDL file whenever a
project is saved. The readastext setting tells the Paradigm C++ IDE to update an
.IDE file if its associated .PDL file is newer that the .IDE file.

To share Style Sheets or user-defined tools between projects:
 1. Modify your PCW5.INI file as just described.
 2. Open the project that you need to transfer Style Sheets or tools to, then close the

project (choose Project|Close Project). This creates a .PDL file for the project.
 3. Open the project that contains the Style Sheets or tools you want to share (the .PDL

file name matches the file name of the .IDE file).
 4. Using the text editor, open the .PDL file containing the Style Sheet or tools you want

to share (the .PDL file name matches the file name of the .IDE file).
 5. Search for Style Sheet's name. For example, if you created a Style Sheet called

MYSTYLE, you'll see a section in the .PDL file that starts { StyleSheet =
"MYSTYLE".

 6. Copy all the text from the beginning brace to the ending brace. If needed, you can
copy more than one Style Sheet.

Chapter 3, Project options 49

To share a user-defined tool, copy the section that reads Subsystem=<tool>.

 7. Open the .PDL file that is to receive the Style Sheet.
 8. Find the section for Style Sheets, then paste the copied text to the end of the existing

Style Sheet list.
 9. Save the .PDL file that received the copied Style Sheet.
 10. Open the project that received the copied Style Sheet to update the project's Style

Sheets and tools from the .PDL file.

After transferring Style Sheets, it is a good idea to reset the saveastext and the
readastext settings in the PCW5.INI file to 0. This tells the Paradigm C++ IDE to not
save to or update from .PDL files.

Setting local overrides
Inherited options or Style Sheet options can be overridden at the node level using local
overrides. Local overrides are useful when a node's option settings must differ from its
associated Style Sheet by one or two settings. Set options for an individual node by
selecting Edit Local Options on the Project Tree window SpeedMenu or by selecting Edit
Local Options from the Edit Local Options on the Edit window SpeedMenu when no
project is loaded. The local options dialog box displays where the node is located in the
Project Manager and allows you to set options for that node.

Once options have been set, they become local overrides associated with the node. Local
Override are useful when you use a Style Sheet (perhaps inherited from a parent node).

Although the local overrides make it easy to set options for individual nodes, they have
the disadvantage of being difficult to track. While the Options Hierarchy dialog box
displays the Style Sheet and local override settings for a selected node, you must examine
each individual node to see which ones have been overridden. Because of this, it's
recommended that you use separate Style Sheets for nodes that require different option
settings, and use local overrides only in special cases.

To override an option setting:
 1. Choose the node whose settings you want to override.
 2. Right-click the node (or press Alt-F10) and choose Edit Local Options from the

SpeedMenu. The Options dialog box (which is similar to the Project Options dialog
box) appears and displays the settings for that node.

 3. Select the option you want to override. The Paradigm C++ IDE automatically checks
the Local Override box whenever you modify a Style Sheet setting.

 4. Choose OK to confirm you new settings.

The Local Override check box is enabled only when an option within a topic is selected
otherwise, the check box is grayed. When you select an option (using Tab, or by clicking
and dragging the mouse off the option), the Local Override check box shows the status of
the selected option. Because of this, you must individually select each option in a topic to
see which ones have been overriden locally. If you choose an option (by clicking it, or by
selecting it and pressing Enter), you change its setting , which always causes the Local
override check box to be checked.

To undo an override:
 1. Right-click the node whose setting you want to modify, then choose Edit local options

from the SpeedMenu.
 2. In the Options dialog box, select the topic that contains the overridden setting.

+

+

+

Paradigm C++ Reference Manual50

When you select a topic page that has a locally overridden option, the Project
Manager enables the Undo Page button.

 3. Select the option (using Tab, or by clicking and dragging the mouse off the option)
whose local override you want to undo; the Local Override checkbox will be
checked.

 4. Click the Local Override check box to undo the override; the option will revert to the
default Style Sheet setting. To revert the entire topic to the settings contained in the
associated Style Sheet, choose the Undo Page button.

 5. Choose OK to confirm your modifications.

View project options

Because each node can have its own Style Sheet and you can override the option in the
Style Sheet, you need a quick way to view the option settings for each node.

To view option settings for the nodes in you project:
 1. Right-click any node in the Project window and choose View Options Hierarchy, or

click the button on the SpeedBar.

The Options Hierarchy dialog box appears, listing the nodes in the project on the left
and the options that each node uses on the right. You can expand and collapse the list
of nodes in the dialog box just like you can in the Project window, however,
Autodependency nodes do not appear.

An option that's surrounded by double-asterisks (**) in the Options listing indicates
that the option is overridden (by either a Style Sheet or local override) by a
dependent node located farther down in the Options listing. (The asterisks display
only when you select the node where the option is overridden.)

 2. When you select a node in the Project Options At list, its setting appears to the right in
the Options list.
The Options list displays components of the project in square brackets. At the top of
the list, you'll see the name of the project followed by its Default Project Options.
Below this is the name of the target associated with the node you've selected. If the
node has a Style Sheet associated with it, it is displayed beneath the node (also in
brackets), along with the settings of the Style Sheet. If you've overridden any settings,
these are displayed beneath the [Node overrides] listing. The Options list displays the
setting for all the ancestors of the node selected in the Project Tree.

 3. If you want to edit an option, double-click the option in the Option list, or select it and
click Edit. Whenever you edit options in this manner, the modifications become local
overrides.

 4. When you finish viewing your project's option settings, choose Close.

Compiling projects

There are two basic ways to compile projects: built and make. Build compiles and links
all the nodes in a project, regardless of file dates. Make compares the time stamp of the
target with the time stamps of all the files used to build target. Make then compiles and
links only those nodes necessary to bring the target up to date.

To compile a project, open the project using the Project|Open command, then choose
either Compile, Make All, or Build All from the Project menu (note that the SpeedBar has
three similar looking buttons that correspond to these Project Menu commands).

Chapter 3, Project options 51

l Compile (Alt-F9) builds the code in the currently active Edit window. If a Project
window is selected, all the selected nodes in the project are translated; child nodes
aren't translated unless they're selected.

l Make all (F9) translates all the out-of-date nodes in a project. If a project is not open,
the file contained in the active Edit window buffer is built.

When you choose Make All, the Project Manager moves down the Project Tree until
it finds a node with no dependents. The Project Manager then compares the node's
date and time against the date and time of the node's parent. The Project Manager
translates the node only if the child node is newer than the parent node. The Project
Manager then moves up the Project Tree and checks the next node's date and time. In
this way, the Project Manager recurses through the Project Tree, translating only those
nodes that have been updated since the last compile.

l Build All translates all nodes in a project - even if they are up-to-date. Build All
always starts at the project node and builds each successive target down the project.
Choose Cancel to stop a build.

When you choose Build All, the Project Manager starts at the first target and works
down the Project Tree until it comes to a node with no dependents. The Project
Manager compiles that node first (and other nodes on the same level), then works
back up the Project Tree, compiling and linking all nodes needed to create the target.
This process is then repeated down the Project Tree, until all the targets have been
updated.

For example, if you have a project with an .AXE target that is dependent on two
separate .OBJ files, the Project Manager creates the first .OBJ file by compiling all
its dependents. It then creates the next .OBJ file. Once a target node's dependents are
created, it can compile or link the target node. In this case, the Project Manager will
link the two .OBJ files (and any run-time nodes) to create the final .AXE.

Compiling part of a project
You can compile part of a project several ways:

l Translate an individual node.
l Build a node and its dependents.
l Make a node and its dependents.
l Select several nodes and compile.

To translate an individual node:

 1. Select the node you want to translate.
 2. Choose Project|Compile from the main menu or choose the default translation

command from the SpeedMenu. For example, if you've selected a .CPP file, the node
SpeedMenu contains a C++ Compile command, which compiles only the selected
node.

To build a node and its dependents:

 1. Choose the node you want to build.
 2. Right-click the node (or press Alt-F10) and choose Build Node from the SpeedMenu.

All the dependent nodes are built regardless of whether they're out-of-date.
To make a node and its dependents:

 1. Choose the node you want to build.

Paradigm C++ Reference Manual52

 2. Right-click the node (or press Alt-F10) and choose Make node from the SpeedMenu.
This command compiles only the dependent nodes whose source files are newer than
their associated target files.

To compile several selected nodes:

 1. Select the project nodes you want to compile by pressing Ctrl and clicking the
desired project nodes. (The nodes must be the same file type, such as .CPP).

 2. Choose Make Node or Build Node from the Project Manager SpeedMenu to compile
the selected nodes.

Fixing compile-time errors

Compile-time errors, or syntax errors, occur when your code violates a syntax rule of the
language you're programming in; the C++ compiler cannot compile your program unless it
contains valid language statements. If your compiler encounters a syntax error while
compiling your code, the Message window opens and displays the type of error or
warning it encountered. By choosing Options|Environment|Preferences, you can specify if
old messages should be preserved or deleted between calls to different programming
tools (such as compiler, or GREP). Check Save Old Messages if you want the Message
window to retain its current listing of messages when you run a tool.

To clear the Message window, choose Remove All Messages from the Message window
SpeedMenu.

Viewing errors

To view the code that caused a compiler error or warning, select the message in the
Message window; the Paradigm C++ IDE updates the Edit window so that it displays the
location in your code where the error or warning occurred (this is called Automatic Error
Tracking). If the file containing the error isn't loaded in an Edit window, press Spacebar
to load the file (you can also load the file by pressing Alt-F10, then choosing View
Source from the SpeedMenu). When you view errors in this manner, the Message window
remains selected so you can navigate from message to message. To open or view the
Message window, click the button on the SpeedMenu, or choose View|Message.

Fixing errors

To edit the code associated with an error or warning, do one of the following:

l Double-click the message in the Message window.
l Select the message in the Message window and press Enter.
l Press Alt-F10 and choode Edit Source from the SpeedMenu.

The Edit window gains focus with the insertion point placed on the line and column in
your source code where the compiler detected the error. From here, edit your code to fix
the error. After fixing the error, press Alt-F7 to move the next error message in the list or
press Alt-F8 to go back to the previous message.

Project options reference

You set compiler, linker, librarian, and make options from two different places in the
Paradigm C++ IDE: the Project Options multiple-page dialog box and TargetExpert. The
remainder of this chapter describes the options available in the Project Option dialog
box. They are described in alphabetical order.

Chapter 3, Project options 53

16-bit compiler options

The 16-bit compiler options affect the compilation of all 16-bit source modules. It is
usually best to keep the default setting for most options in this section.

The subtopics are

l Processor
l Calling convention
l Memory model
l Segment names data
l Segment names far data
l Segment names code
l Entry/Exit code

Calling conventions

Calling Convention options tell the compiler which calling sequences to generate for
function calls. The C, Pascal, and Register calling conventions differ in the way each
handles stack cleanup, order of parameters, case, and prefix of global identifiers.

You can use the _ _cdecl, _ _pascal, or _ _fastcall keywords to override the default
calling convention on specific functions.

C
Command-line equivalent: -pc, -p-

This option tells the compiler to generate a C calling sequence for function calls
(generate underbars, case sensitive, push parameters right to left). This is the same as
declaring all subroutines and functions with the _ _cdecl keyword. Functions declared
using the C calling convention can take a variable parameter list (the number of
parameters does not need to be fixed).

Pascal
Command-line equivalent: -p

This option tells the compiler to generate a Pascal calling sequence for function calls (do
not generate underbars, all uppercase, calling function cleans stack, pushes parameters
left to right). This is the same as declaring all subroutines and functions with the
_ _pascal keyword. The resulting function calls are usually smaller and faster than those
made with the C (-pc) calling convention. Functions must pass the correct number and
type of arguments.

Register
Command-line equivalent: -pr

This option forces the compiler to generate all subroutines and all functions using the
Register parameter-passing convention, which is equivalent to declaring all subroutine
and functions with the _ _fastcall keyword. With this option enabled, functions or routines
expect parameters to be passed in registers.

Default = C (-pc)

Paradigm C++ Reference Manual54

Memory model

The Memory Model section lets you specify the organization of segments for code and
data in your 16-bit programs. All .OBJ and .LIB files in your program should be
compiled in the same memory model.

The options are

l Model
l Assume SS equals DS
Options

l Put constant strings in code segments
l Far virtual tables
l Automatic far data
l Fast huge pointers
l Far data threshold

Assume SS equals DS
The Assume SS Equals DS options specify how the compiler considers the stack segment
(SS) and the data segment (DS).

The memory model you use determines whether the stack segment (SS) is equal to the
data segment (DS). Usually, the compiler assumes that SS is equal to DS in the small and
medium memory models.

Command-line equivalent: -Fs-

The compiler assumes that the SS is never equal to DS. This is always the case in the
compact and large memory models.

Command-line equivalent: -Fs

The compiler always assumes that SS is equal to DS in all memory models. You can use
this option when porting code originally written for an implementation that makes the
stack part of the data segment but you will have to provide replacement startup code for
this option to work.

Default = Default for Memory Model

Automatic far data
Command-line equivalent: -Ff

When the Automatic Far Data option is enabled, the compiler automatically places data
objects larger than or equal to the threshold size into far data segments. The threshold size
defaults to 32,767. This option is useful for code that doesn’t use the huge memory model,
but declares enough large global variables that their total size is close to or exceeds 64K.
This option has no effect for programs that use small, and medium memory models.

Default for
memory

model

Never

Always

Chapter 3, Project options 55

This option and the Far Data Threshold input box work together. The Far Data Threshold
specifies the minimum size above that which data objects will be automatically made far.

If you use this option with the Generate COMDEFs option (-Fc), the COMDEFs become
far in the compact, large, and huge models.

Default = OFF

The command-line option -Fm enables all the other -F options (-Fc, -Ff, and -Fs). You
can use -Fm as a handy shortcut when porting code from other compilers. To do this in
the Paradigm C++ IDE, check the Automatic Far Data and Always options on this Project
Options page, and the Generate COMDEFs option on the Compiler|Floating Point page.

Page alignment for far segments
Command-line equivalent: -Fa

Allows you to change from paragraph (alignment on a 16-byte boundary) to page
alignment (256-byte boundary alignment) of far segments.

Borland C++-compatible far data
Command-line equivalent: -Fb

Enables Borland C++ compatible far data segments. When enabled, Paradigm C++ will
combine initialized and uninitialized far data into the FAR_DATA class instead of
placing initialized far data in class FAR_DATA and uninitialized far data in class
FAR_BSS.

Far data threshold
Command-line equivalent: -Ff=size, where size= threshold size

Use Far Data Threshold to specify the size portion needed to complete the Automatic Far
Data option.

Default = 32767 (if Automatic Far Data is disabled, this option value is ignored)

Far virtual tables
Command-line equivalent: -Vf

When you turn this option on, the compiler creates virtual tables in the code segment
instead of the data segment, unless you override this option using the Far Virtual Tables
Segment (-zV) or Far Virtual Tables Class (-zW) options. Virtual table pointers are
made into full 32-bit pointers (which is done automatically if you are using the huge
memory model).

You can use Far Virtual Tables to remove the virtual tables from the data segment (which
might be getting full). You might also use this option to share objects (of classes with
virtual functions) between modules that use different data segments.

You must compile all modules that might share objects entirely with or entirely without
this option.

You can get the same effect by using the huge or _export modifiers on a class-by-class
basis.

This option changes the mangled names of C++ objects.

Default = OFF

When this option
is disabled, the

size value is
ignored

+

Paradigm C++ Reference Manual56

Fast huge pointers
Command-line equivalent: -h

This option offers an alternative method of calculating huge pointer expressions.

For 16-bit real-mode programs, this option offers a faster method of “normalizing” than
the standard method. (Normalizing is resolving a memory address so that the offset is
always less than 16.) When you use this option, huge pointers are normalized only when a
segment wraparound occurs in the offset part, which causes problems with huge arrays if
an array element crosses a segment boundary.

Usually, Paradigm C++ normalizes a huge pointer whenever adding or subtracting from it.
This ensures, for example, that if you have an array of structs that’s larger than 64K,
indexing into the array and selecting a struct field always works with structs of any size.
Paradigm C++ accomplishes this by always normalizing the results of huge pointer
operations--the address offset contains a number that is no higher than 15 and a segment
wraparound never occurs with huge pointers. The disadvantage of this approach is that it
tends to be quite expensive in terms of execution speed.

Default = OFF

Model
The Model options specify the memory model you want to use. The memory model you
choose determines the default method of memory addressing.

Command-line equivalent: -ms

Use the small model for average size applications. The code and data segments are
different and don't overlap, so you have 64K of code and 64K of data and stack. Near
pointers are always used.

The -ms! command-line option compiles using the small model and assumes DS != SS.
To achieve this in the Paradigm C++ IDE, you need to check both the Small and Never
options.

Command-line equivalent: -mm

Use the medium model for large programs that do not keep much data in memory. Far
pointers are used for code but not for data. Data and stack together are limited to 64K, but
code can occupy up to 1 MB.

The -mm! command-line option compiles using the medium model and assumes DS !=
SS. To achieve this in the Paradigm C++ IDE, you need to check both the Meduim and
Never options.

The net effect of the -ms! and -mm! options is actually very small. If you take the address
of a stack variable (parameter or auto), the default (DS == SS) is to make the resulting
pointer a near (DS relative) pointer. This way, you can assign the address to a default-
sized pointer in those models without problems. When DS != SS, the pointer type created
when you take the address of a stack variable is an _ss pointer. This means that the
pointer can be freely assigned or passed to a far pointer or to an _ss pointer. But for the
memory models affected, assigning the address to a near or default-sized pointer
produces a “Suspicious pointer conversion” warning. Such warnings are usually errors.

Small

Medium

+

Chapter 3, Project options 57

Command-line equivalent: -mc

Use the compact model if your code is small but you need to address a lot of data. The
Compact model is the opposite of the medium model: far pointers are used for data but
not for code; code is limited to 64K, pointers can point almost anywhere. All functions
are near by default and all data pointers are far by default.

Command-line equivalent: -ml

Use the large model for very large applications only. Far pointers are used for both code
and data. Data is limited to 1MB. Far pointers can point almost anywhere. All functions
and data pointers are far by default.

Command-line equivalent: -mh, 16-bit real mode only

Use the huge model for very large applications only. Far pointers are used for both code
and data. Paradigm C++ normally limits the size of all static data to 64K; the huge
memory model sets aside that limit, allowing data to occupy more than 64K.

Default = Large in the Paradigm C++ IDE; Small in PCC.EXE

Put constant strings in code segments
Command-line equivalent: -dc

This option moves all string literals from the data segment to the code segment of the
generated object file, making the data type const.

Use this option only with compact or large memory models. In addition, this option does
not work with overlays.

Using this option saves data segment space. In large programs, especially those with a
large number of literal strings, this option shifts the burden from the data segment to the
code segment.

Default = OFF

Processor

The Processor options let you specify the minimum CPU type compatible with your
program. These options introduce instructions specific to the CPU type you select to
increase performance.

The options are

l Instruction set
l Data alignment

16-bit instruction set
The Instruction Set options specify for which CPU instruction set the compiler should
generate code.

Command-line equivalent: -1-

Compact

Large

Huge

+

8086

Paradigm C++ Reference Manual58

Choose the 8086 option if you want the compiler to generate 16-bit code for the 8086-
compatible instruction set. (To generate 8086 code, you must not turn on the options -2, -
3, or -4, or -5.) This option is the default for 16-bit.

Command-line equivalent: -1

Choose the 80186 option if you want the compiler to generate extended 16-bit code for
the 80186 instruction set. Also supports the 80286 running in Real mode.

Command-line equivalent: -2

Choose the 80286 option if you want the compiler to generate 16-bit code for the 80286
protected-mode-compatible instruction set.

Command-line equivalent: -3

Choose the 80386 option if you want the compiler to generate 16-bit code for the 80386
protected-mode-compatible instruction set.

Command-line equivalent: -4

Choose the i486 option if you want the compiler to generate 80386/i486 instructions
running in enhanced-mode Windows.

Default = 8086 (-1-)

Command-line equivalent: -5

Choose the Pentium option if you want the compiler to generate Pentium instructions
running in enhanced-mode Windows.

Data alignment
The Data Alignment options let you choose the compiler aligns data in stored memory.
Word, double-word, and quad-word alignment forces integer-size and larger items to be
aligned on memory addresses that are a multiple of the type chosen. Extra bytes are
inserted in structures to ensure that members align correctly.

Command-line equivalent: -a1 or -a-

When Byte Alignment is turned on, the compiler does not force alignment of variables or
data fields to any specific memory boundaries; the compiler aligns data at either even or
odd addresses, depending on which is the next available address.

While byte-wise alignment produces more compact programs, the programs tend to run a
bit slower. The other data alignment options increase the speed that 80x86 processors
fetch and store data.

80186

80286

80386

i486

Pentium

Byte
alignment

Chapter 3, Project options 59

Command-line equivalent: -a2

When Word Alignment is on, the compiler aligns non-character data at even addresses.
Automatic and global variables are aligned properly. char and unsigned char variables
and fields can be placed at any address; all others are placed at an even-numbered
address.

Command-line equivalent: -a4, 32-bit only

Double Word alignment aligns non-character data at 32-bit word (4-byte) boundaries.

Command-line equivalent: -a8, 32-bit only

Quad Word alignment aligns non-character data at 64-bit word (8-byte) boundaries.

Default = Byte Alignment (-a-)

Segment names code

Segment Names Code options let you specify a new code segment name and reassign the
group and class.

The options are

l Code segment
l Code group
l Code class

Code
Use Code to change the name of the code segment as well as the code group and class.

In all options, use an asterisk (*) for name to select the default segment names.

Command-line equivalent = -zCname

Sets the name of the code segment to name. By default, the code segment is named
_CODE for near code and modulename_TEXT for far code, except for the medium and
large models where the name is filename_CODE (filename is the source file name).

Command-line equivalent = -zPname

Causes any output files to be generated with a code group for the code segment named
name.

Command-line equivalent = -zAname

Changes the name of the code segment class to name. By default, the code segment is
assigned to class CODE.

Default = * (default segment name) for all options

Word
alignment (2-

byte)

Double word
(4-byte)

Quad word
(8-byte)

Do not change
the settings in
this dialog box
unless you are

an expert.

Code
segment

Code group

Code class

Paradigm C++ Reference Manual60

Segment names data

Use Segment Names Data to change the default segment, group, and class names for
initialized and uninitialized data.

Do not change the settings in this dialog box unless you have a good understanding of
segmentation on the 80x86 processor. Under normal circumstances, you do not need to
specify segment names.

The options available are

l Initialized Data
l Uninitialized Data

Initialized data
Use Initialized data to change the default segment, group, and class names for initialized
data.

In all options, use an asterisk (*) for name to select the default segment names.

Do not change the settings in this dialog box unless you have a good understanding of
segmentation on the 80x86 processor. Under normal circumstances, you do not need to
specify segment names.

Command-line equivalent = -zTname

Sets the name of the initialized data segment to name. By default, the initialized data
segments class is named DATA.

Default = * (default segment name) for all options

Command-line equivalent = -zSname

Sets the name of the initialized data segment group to name. By default, the data group is
named DGROUP.

Command-line equivalent = -zRname

Sets the name of the initialized data segment to name. By default, the initialized data
segment is named _DATA for near data and modulename_DATA for far data.

Uninitialized data
Use Uninitialized Data to change the default segment, group, and class names for code
uninitialized data.

In all options, use an asterisk (*) for name to select the default segment names.

Do not change the settings in this dialog box unless you have a good understanding of
segmentation on the 80x86 processor. Under normal circumstances, you do not need to
specify segment names.

+

+

Initialized
data class

Initialized
data group

Initialized
data

segment

+

Chapter 3, Project options 61

Command-line equivalent = -zBname

Sets the name of the uninitialized data segment class to name. By default, the uninitialized
data segments are assigned to class BSS.

Default = * (default segment name) for all options

Command-line equivalent = -zGname

Sets the name of the uninitialized data segment group to name. By default, the data group
is named DGROUP.

Command-line equivalent = -zDname

Sets the name of the uninitialized data segment. By default, the uninitialized data segment
is named _BSS for near uninitialized data and modulename_BBS for far uninitialized
data.

Segment names far data

16-bit Compiler|Segment Names Far Data options set the far data segment name, group,
class name, and the far virtual tables segment name and class.

Far initialized data
Use the far uninitialized data options to change the default segment, group, and class
names for far initialized data. These options also apply to far uninitialized data if the -Fb
option is enabled. In all options, use an asterisk (*) for name to select the default segment
names.

Do not change the settings in this dialog box unless you have a good understanding of
segmentation on the 80x86 processor. Under normal circumstances, you do not need to
specify segment names.

Command-line equivalent = -zFname

Sets the name of the class for _ _far initialized objects to name. By default, the name is
FAR_DATA.

Default = * (default segment name) for all options

Command-line equivalent = -zHname

Causes _ _far initialized objects to be placed into the group name. By default, far objects
are not placed into a group.

Command-line equivalent = -zEname

Sets the name of the segment where _ _far initialized objects are placed to name. By
default, the segment name is the name of the object module followed by _DATA.

Uninitialized
data (BSS

class)

Uninitialized
data (BSS

group)

Uninitialized
data (BSS
segment)

+

Far data
class

Far data
group

Far data
segment

Paradigm C++ Reference Manual62

Far uninitialized data
Use the far uninitialized data options to change the default segment, group, and class
names for far uninitialized data. In all options, use an asterisk (*) for name to select the
default segment names.

Do not change the settings in this dialog box unless you have a good understanding of
segmentation on the 80x86 processor. Under normal circumstances, you do not need to
specify segment names.

Command-line equivalent = -zYname

Sets the name of the class for _ _far uninitialized objects to name. By default, the name is
FAR_BSS.

Default = * (default segment name) for all options

Command-line equivalent = -zZname

Causes uninitialized _ _far objects to be placed into the group name. By default, far
uninitialized objects are not placed into a group.

Command-line equivalent = -zXname

Sets the name of the segment where uninitialized _ _far objects are placed to name. By
default, the segment name is the name of the object module followed by _BSS.

Far virtual tables
Use Far Virtual Tables to change the default segment and class names virtual tables.

In all options, use an asterisk (*) for name to select the default segment names.

Do not change the settings in this dialog box unless you have a good understanding of
segmentation on the 80x86 processor. Under normal circumstances, you do not need to
specify segment names.

Command-line equivalent = -zWname

Sets the name of the far virtual table class segment to name. By default, far virtual table
classes are generated in the CODE segment.

Default = * (default segment name) for all options

Command-line equivalent = -zVname

Sets the name of the _ _far virtual table segment to name. By default, far virtual tables
are generated in the CODE segment.

32-bit compiler options

The 32-bit Compiler page contains two radio buttons that allow you to select which 32-
bit compiler backend you want to use when compiling 32-bit applications.

+

Far
uninitialized

data class

Far
uninitialized

data group

Far
uninitialized

data
segment

+

Virtual table
class

Virtual table
segment

Chapter 3, Project options 63

Paradigm optimizing compiler

The Paradigm optimizing compiler is a faster compiler than the Intel compiler, and it
produces smaller executable files. If you are compiling from the command line, use
PCC32.EXE.

Intel optimizing compiler

The Intel optimizing compiler produces faster executable files than the Paradigm
compiler. The trade-off is slower compilation times and slightly larger executable file
sizes. If you are compiling from the command line, use PCC32i.EXE.

The Intel compiler does not support the Browser Information (-R) compiler option.

32-bit compiler options

32-bit compiler options listed on the Processor and Calling Convention pages affect the
compilation of all 32-bit Windows applications for Windows NT and Windows 95.
Because 32-bit programs use a flat memory model (they are not segmented), there are
fewer options to configure than for 16-bit programs.

Calling conventions
Calling Convention options tell the compiler which calling sequences to generate for
function calls. The C, Pascal, and Register calling conventions differ in the way each
handles stack cleanup, order of parameters, case, and prefix of global identifiers.

You can use the _ _cdecl, _ _pascal, _ _fastcall, or _ _stdcall keywords to override the
default calling convention on specific functions.

Command-line equivalent: -pc, -p-

This option tells the compiler to generate a C calling sequence for function calls
(generate underbars, case sensitive, push parameters right to left). This is the same as
declaring all subroutines and functions with the _ _cdecl keyword. Functions declared
using the C calling convention can take a variable parameter list (the number of
parameters does not need to be fixed).

You can use the _ _pascal, _ _fastcall, or _ _stdcall keywords to specifically declare a
function or subroutine using another calling convention.

Command-line equivalent: -p

This option tells the compiler to generate a Pascal calling sequence for function calls (do
not generate underbars, all uppercase, calling function cleans stack, pushes parameters
left to right). This is the same as declaring all subroutines and functions with the
_ _pascal keyword. The resulting function calls are usually smaller and faster than those
made with the C (-pc) calling convention. Functions must pass the correct number and
type of arguments.

You can use the _ _cdecl, _ _fastcall, or _ _stdcall keywords to specifically declare a
function or subroutine using another calling convention.

+

These options
should be used

by experts only.

C

Pascal

Paradigm C++ Reference Manual64

Command-line equivalent: -pr

This option forces the compiler to generate all subroutines and all functions using the
Register parameter-passing convention, which is equivalent to declaring all subroutine
and functions with the _ _fastcall keyword. With this option enabled, functions or
routines expect parameters to be passed in registers.

You can use the _ _pascal, _ _cdecl, or _ _stdcall keywords to specifically declare a
function or subroutine using another calling convention.

Command-line equivalent: -ps

This option tells the compiler to generate a Stdcall calling sequence for function calls
(does not generate underscores, preserve case, called function pops the stack, and pushes
parameters right to left). This is the same as declaring all subroutines and functions with
the _ _stdcall keyword. Functions must pass the correct number and type of arguments.

You can use the _ _cdecl, _ _pascal, _ _fastcall keywords to specifically declare a
function or subroutine using another calling convention.

Default = C (-pc)

Processor
The 32-bit Compiler Processor options specify which CPU instruction set to use and how
to handle floating-point code for 32-bit programs.

The Instruction Set options specify for which CPU instruction set the compiler should
generate code.

Command-line equivalent: -3

Choose the 80386 option if you want the compiler to generate 80386 protected-mode
compatible instructions running on Windows 95 or Windows NT.

Command-line equivalent: -4

Choose the i486 option if you want the compiler to generate i486 protected-mode
compatible instructions running on Windows 95 or Windows NT.

Command-line equivalent: -5

Choose the Pentium option if you want the compiler to generate Pentium instructions on
Windows 95 or Windows NT.

While this option increases the speed at which the application runs on Pentium machines,
expect the program to be a bit larger than when compiled with the 80386 or i486 options.
In addition, Pentium-compiled code will sustain a performance hit on non-Pentium
systems.

Default = 80386 (-3)

Register

Standard
Call

32-bit
instruction

set
80386

i486

Pentium

Chapter 3, Project options 65

Build attributes

Build attributes affect whether or not a node is built during compilation. The icons
associated with each of these options are displayed next to the nodes in the Project
hierarchy diagram. Build attributes are set in the Options|Project dialog box.

Always build

Check Always Build and the node is always built, even if it has not changed.

Build when out of date

Check Build When Out of Date and the node is built only if it has changed.

Never build

Check Never Build and the node is not built.

Can't build

Check Can't Build to be notified when a node cannot be built.

Exclude from parent

Check Exclude from Parent and the system indicates when a node should be excluded
from parent (such as with source pools).

C++ options

Project|C++ Options affect compilation of all C and C++ programs. For most of the C++
options, you'll usually want to use the default settings.

C++ compatibility

Use the C++ Compatibility options to handle C++ compatibility issues, such as handling
'char' types, specifying options about hidden pointers, passing class arguments, adding
hidden members and code to a derived class, passing the 'this' pointer to 'Pascal' member
functions, changing the layout of classes, or insuring compatibility when class instances
are shared with non-C++ code or code compiled with previous versions of Paradigm
C++.

'deep' virtual bases
(Command-line equivalent: -Vv)

When a derived class overrides a virtual function which it inherits from a virtual base
class, and a constructor or destructor for the derived class calls that virtual function using
a pointer to the virtual base class, the compiler can sometimes add hidden members to the
derived class. These “hidden members” add code to the constructors and destructors.

This option directs the compiler not to add the hidden members and code so that the class
instance layout is the same as with previous version of Paradigm C++; the compiler does
not change the layout of any classes to relax the restrictions on pointers.

Default = OFF

Paradigm C++ Reference Manual66

Calling convention mangling compatibility
(Command-line equivalent: -VC)

When this option is enabled, the compiler disables the distinction of function names
where the only possible difference is incompatible code generation options. For example,
with this option enabled, the linker will not detect if a call is made to a _ _fastcall
member function with the cdecl calling convention.

This option is provided for backward compatibility only; it lets you link old library files
that you cannot recompile.

Default = OFF

Disable constructor displacements
(Command-line equivalent: -Vc)

When the Disable Constructor Displacements option is enabled, the compiler does not
add hidden members and code to a derived class (the default).

This option insures compatibility with previous versions of the compiler.

Default = OFF

Do not treat 'char' as distinct type
(Command-line equivalent: -K2, 16-bit)

Allow only signed and unsigned char types. The Paradigm C++ compiler allows for
signed char, unsigned char, and char data types. This option treats char as signed.

This option is provided for compatibility with previous versions of Paradigm C++ (3.1
and earlier) and supports only 16-bit programs.

Default = OFF

Don't restrict scope of 'for' loop expression variables
Command-line equivalent: -Vd

This option lets you specify the scope of variables declared in for loop expressions. The
output of the following code segment changes, depending on the setting of this option.

int main(void)
{

 for(int i=0; i<10; i++)
 {
 cout << "Inside for loop, i = " << i << endl;
 } //end of for-loop block

 cout << "Outside for loop, i = " << i << endl; //error without
 -Vd

} //end of block containing for loop

If this option is disabled (the default), the variable i goes out of scope when processing
reaches the end of the for loop. Because of this, you'll get an Undefined Symbol
compilation error if you compile this code with this option disabled.

Chapter 3, Project options 67

If this option is enabled (-Vd), the variable i goes out of scope when processing reaches
the end of the block containing the for loop. In this case, the code output would be:

Inside for loop, i = 0
...
Outside for loop, i = 10

Default = OFF

Pass class values via reference to temporary
Command-line equivalent: -Va

When this option is enabled, the compiler passes class arguments using the "reference to
temporary" approach. When an argument of type class with constructors is passed by
value to a function, this option instructs the compiler to create a temporary variable at the
calling site, initialize this temporary variable with the argument value, and pass a
reference from this temporary to the function.

Default = OFF

Push 'this' first for Pascal member functions
Command-line equivalent: -Vp

When this option is enabled, the compiler passes the this pointer to Pascal member
functions as the first parameter on the stack.

By default, the compiler passes the this parameter as the last parameter on the stack,
which permits smaller and faster member function calls.

Default = OFF

Treat 'far' classes as 'huge'
Command-line equivalent -Vh

When this option is enabled, the compiler treats all classes declared _ _far as if they
were declared as _ _huge. For example, the following code normally fails to compile.
Checking this option allows the following code fragment to compile:

struct __huge A
{
virtual void f(); // A vtable is required to see the error.
};
struct __far B : public A
{
};
// Error: Attempting to derive a far class from the huge base 'A'.

Default = OFF

Virtual base pointers
When a class inherits virtually from a base class, the compiler stores a hidden pointer in
the class object to access the virtual base class subobject.

This option
insures

compatibility with
previous

versions of the
compiler.

The Virtual Base
Pointers options
specify options

about the hidden
pointer.

Paradigm C++ Reference Manual68

Command-line equivalent: -Vb-

When the Always Near option is on, the hidden pointer will always be a near pointer.
(When a class inherits virtually from a base class, the compiler stores a hidden pointer in
the class object to access the virtual base class subobject.)

Command-line equivalent: -Vb

When the Same Size as ‘this' Pointer option is on, the compiler matches the size of the
hidden pointer to the size of the this pointer in the instance class.

This allows for compatibility with previous versions of the compiler.

Default = Always Near (-Vb-)

Vtable pointer follows data members
Command-line equivalent -Vt

When this option is enabled, the compiler places the virtual table pointer after any
nonstatic data members of the specified class.

This option insures compatibility when class instances are shared with non-C++ code and
when sharing classes with code compiled with previous versions of Paradigm C++.

Default = OFF

Exception handling/RTTI

Use the Exceptions Handling options to enable or disable exception handling and to tell
the compiler how to handle the generation of run-time type information.

If you use exception handling constructs in your code and compile with exceptions
disabled, you'll get an error.

Enable exceptions
Command-line equivalent: -x

When this option is enabled, C++ exception handling is enabled. If this option is disabled
(-x-) and you attempt to use exception handling routines in your code, the compiler
generates error messages during compilation.

Disabling this option makes it easier for you to remove exception handling information
from programs; this might be useful if you are porting your code to other platforms or
compilers.

Disabling this option turns off only the compilation of exception handling code; your
application can still include exception code if you link .OBJ and library files that were
built with exceptions enabled (such as the Paradigm standard libraries).

Default = ON

Enable run-time type information
Command-line equivalent: -RT

This option causes the compiler to generate code that allows run-time type identification.

Always near

This option allows
for the smallest

and most
efficient code.

Same size
as 'this'
pointer

+

Chapter 3, Project options 69

In general, if you set Enable Destructor Cleanup (-xd), you will need to set this option as
well.

Default = ON

Command-line equivalent: -xp

When this option is enabled, run-time identification of exceptions is available because
the compiler provides the file name and source-code line number where the exception
occurred. This enables the program to query file and line number from where a C++
exception was thrown.

Default = OFF

Command-line equivalent: -xd

When this option is enabled and an exception is thrown, destructors are called for all
automatically declared objects between the scope of the catch and throw statements.

In general, when you enable this option, you should also set Enable Runtime Type
Information (-RT) as well.

Destructors are not automatically called for dynamic objects allocated with new, and
dynamic objects are not automatically freed.

Default = ON

Command-line equivalent: -xf

When this option is enabled, inline code is expanded for every exception handling
function. This option improves performance at the cost of larger executable file sizes.

If you select both Fast Exception Prologs and Enable Compatible Exceptions (-xc), fast
prologs will be generated but Enable Compatible Exceptions will be disabled (the two
options are not compatible).

Default = OFF

Command-line equivalent: -xc, 16-bit only

This option allows .AXEs and .DLLs built with Paradigm C++ to be compatible with
executables built with other products. When Enable Compatible Exceptions is disabled,
some exception handling information is included in the .AXE, which could cause
compatibility issues.

Libraries that can be linked into .DLLs need to be built with this option enabled.

Default = OFF

General

Zero-length empty base classes
Command-line equivalent: -Ve

Enable
exception

location
information

Enable
destructor

cleanup

+

Enable fast
exception

prologs

+

Enable
compatible
exceptions

+

Paradigm C++ Reference Manual70

Usually the size of a class is at least one byte, even if the class does not define any data
members. When this option is enabled, the compiler ignores this unused byte for the
memory layout and the total size of any derived classes.

Default = OFF

Member pointer

Use C++ Member Pointers options to direct member pointers and affect how the compiler
treats explicit casts.

Honor precision of member pointers
Command-line equivalent: -Vmp

When this option is enabled, the compiler uses the declared precision for member pointer
types. Use this option when a pointer to a derived class is explicitly cast as a pointer-to-
member of a simpler base class (when the pointer is actually pointing to a derived class
member).

Default = OFF

Member pointer representation
The C++ Member pointers options specify what member pointers can point to.

Command-line equivalent: -Vmv

When this option is enabled, the compiler places no restrictions on where member
pointers can point. Member pointers use the most general (but not always the most
efficient) representation.

Default = ON

Command-line equivalent: -Vmm

When this option is enabled, member pointers can point to members of multiple
inheritance classes (with the exception of virtual base classes).

Default = OFF

Command-line equivalent: -Vms

When this option is enabled, member pointers can point only to members of base classes
that use single inheritance.

Default = OFF

Command-line equivalent: -Vmd

When this option is enabled, member pointers use the smallest possible representation
that allows member pointers to point to all members of their particular class. If the class
is not fully defined at the point where the member pointer type is declared, the most
general representation is chosen by the compiler and a warning is issued.

Default = OFF

Support all
cases

Support
multiple

inheritance

Support
single

inheritance

Smallest for
class

Chapter 3, Project options 71

Templates

Use the options under C++ Options|Templates to tell the compiler how to generate
template instances in C++.

Templates instance generation
The Template Instance Generation options specify how the compiler generates template
instances in C++.

Command-line equivalent: -Jg

When the Smart option is enabled, the compiler generates public (global) definitions for
all template instances. If more than one module generates the same template instance, the
linker automatically merges duplicates to produce a single copy of the instance.

To generate the instances, the compiler must have available the function body (in the case
of a template function) or the bodies of member functions and definitions for static data
members (in the case of a template class), typically in a header file.

Default = ON

Command-line equivalent: -Jgd

When the Global option is on, the compiler generates public (global) definitions for all
template instances.

The Global option does not merge duplicates. If the same template instance is generated
more than once, the linker reports public symbol re-definition errors.

Default = OFF

Command-line equivalent: -Jgx

When the External option is on, the compiler generates external references to all template
instances.

When you use this option, all template instances in your code must be publicly defined in
another module with the external option (-Jgd) so that external references are properly
resolved.

Default = OFF

Virtual tables

C++ Options|Virtual Tables options control C++ virtual tables and the expansion of inline
functions when debugging.

Virtual tables linkage
The C++ Virtual Tables options control C++ virtual tables and the expansion of inline
functions when debugging.

Command-line equivalent: -V

Smart

This is a
convenient way

of generating
template

instances.

Global

External

Smart

Paradigm C++ Reference Manual72

This option generates common C++ virtual tables and out-of-line inline functions across
the modules in your application. As a result, only one instance of a given virtual table or
out-of-line inline function is included in the program.

The Smart option generates the smallest and most efficient executables, but produces
.OBJ and .ASM files compatible only with PLINK and PASM.

Default = ON

Command-line equivalent: -Vs

You use the Local option to generate local virtual tables (and out-of-line inline functions)
so that each module gets its own private copy of each virtual table or inline function it
uses.

The Local option uses only standard .OBJ and .ASM constructs, but produces larger
executables.

Default = OFF

Command-line equivalent: -V0

You use the External option to generate external references to virtual tables. If you don’t
want to use the Smart or Local options, use the External and Public options to produce
and reference global virtual tables.

When you use this option, one or more of the modules comprising the program must be
compiled with the Public option to supply the definitions for the virtual tables.

Default = OFF

Command-line equivalent: -V1

Public produces public definitions for virtual tables. When using the External option (-
V0), at least one of the modules in the program must be compiled with the Public option
to supply the definitions for the virtual tables. All other modules should be compiled with
the External option to refer to that Public copy of the virtual tables.

Default = OFF

Compiler options

Compiler options are common to all C and C++ programs. They directly affect how the
compiler generates code.

Defines

Command-line equivalent: -Dname and -Dname=string

The macro definition capability of Paradigm C++ lets you define and undefine macros
(also called manifest or symbolic constants) in the Paradigm C++ IDE or on the
command line. The macros you define override those defined in your source files.

You can use the $INHERIT and $ENV() macros to specify the defines for the project
node you are modifying.

Local

External

+

Public

+

Chapter 3, Project options 73

Defining macros from the Paradigm C++ IDE
Preprocessor definitions (such as those used in #if statements and macro definitions) can
be entered on the Compiler Defines page. The following rules apply when using the
Defines input box:

l Separate multiple definitions with semicolons (;), and assign values with an equal
sign (=). For example:

Switch1;Switch2;Switch3=OFF

l Leading and trailing spaces are stripped, but embedded spaces are left intact.
l If you want to include a semicolon in a macro, precede the semicolon with a

backslash (\).

Defining macros on the command line
On the command line, the -Dname option defines the identifier name to the null string. -
Dname=string defines name to string. In this assignment, string cannot contain spaces or
tabs. You can also define multiple #define options on the command line using either of
the following methods:

l Include multiple definitions after a single -D option by separating each define with a
semicolon (;) and assigning values with an equal sign (=). For example:

PCC.EXE -Dxxx;yyy=1;zzz=NO MYFILE.C

l Include multiple -D options, separating each with a space. For example:
PCC.EXE -Dxxx -Dyyy=1 -Dzzz=NO MYFILE.C

Code generation

Compiler Code Generation options affect how code is generated.

Allocate enums as ints
Command-line equivalent: -b

When the Allocate Enums As Ints option is on, the compiler always allocates a whole
word (a two-byte int for 16-bitsor a four-byte int for 32-bits) for enumeration types
(variables of type enum).

When this option is off (-b-), the compiler allocates the smallest integer that can hold the
enumeration values: the compiler allocates an unsigned or signed char if the values of
the enumeration are within the range of 0 to 255 (minimum) or -128 to 127 (maximum), or
an unsigned or signed short if the values of the enumeration are within the following
ranges:

l 0 to 65,535 (minimum) or -32,768 to 32,767 (maximum) (16-bit)
l 0 to 4,294,967,295 or -2,147,483,648 to 2,147,483,647 (32-bit)

The compiler allocates a two-byte int (16-bit) or a four-byte int (32-bit) to represent the
enumeration values if any value is out of range.

Default = ON

Duplicate strings merged
Command-line equivalent: -d

Paradigm C++ Reference Manual74

When you check the Duplicate Strings Merged option, the compiler merges two literal
strings when one matches another. This produces smaller programs (at the expense of a
slightly longer compile time), but can introduce errors if you modify one string.

Default = OFF (-d-)

fastthis
Command-line equivalent: -po, 16-bit only

This option causes the compiler to use the _ _fastthis calling convention when passing
the this pointer to member functions. The this pointer is passed in a register (or a register
pair in 16-bit large data models). Likewise, calls to member functions load the register
(or register pair) with this. Note that you can use _ _fastthis to compile specific
functions in this manner.

When this is a 'near' (16-bit) pointer, it is supplied in the SI register; for 'far' this
pointers, DS:SI is used. If necessary, the compiler saves and restores DS. All references
in the member function to member data are done via the SI register.

The names of member functions compiled with _ _fastthis are mangled differently from
non-fastthis member functions, to prevent mixing the two. It is easiest to compile all
classes with _ _fastthis, but you can compile some classes with _ _fastthis and some
without, as in the following example:
// no -po on the command-line
class X;
#pragma option -po
class Y //Y will use fastthis
{
...
};
class X //X will not use fastthis,
{ //since its class declaration
 //appeared before fastthis was turned on
...
};
#pragma option -po-

If you use a makefile to build a version of the class library that has _ _fastthis enabled,
you must define CLASSLIB_ALLOW_po and use the -po option. The
_CLASSLIB_ALLOW_po macro can be defined in
<Your_PCW_dir>\INCLUDE\paradigm.h

If you use a makefile to build a _ _fastthis version of the run-time library, you must
define _RTL_ALLOW_po and use the -po option.

If you rebuild the libraries and use -po without defining the appropriate macro, the linker
emits undefined symbol errors.

Default = OFF

Register variables
These options suppress or enable the use of register variables.

Command-line equivalent: -r-

+

None

Chapter 3, Project options 75

Choose None to tell the compiler not to use register variables even if you have used the
register keyword.

Command-line equivalent: -rd

Choose Register Keyword to tell the compiler to use register variables only if you use the
register keyword and a register is available. Use this option or the Automatic option (-r)
to optimize the use of registers.

Command-line equivalent: -r

Choose Automatic to tell the compiler to automatically assign register variables if
possible, even when you do not specify a register variable by using the register type
specifier.

Generally, you can keep this option set to Automatic unless you are interfacing with
preexisting assembly code that does not support register variables.

Default = Automatic (-r)

Unsigned characters
Command-line equivalent: -K

When the Unsigned Characters option is on, the compiler treats all char declarations as if
they were unsigned char type, which provides compatibility with other compilers.

Default = OFF (char declarations default to signed; -K-)

Floating point

 The Floating Point options specify how the compiler handles floating-point numbers in
your code.

Correct Pentium FDIV flaw
Command-line equivalent: -fp

Some early Pentium chips do not perform specific floating-point division calculations
with full precision. Although your chances of encountering this problem are slim, this
switch inserts code that emulates floating-point division so that you are assured of the
correct result. This option decreases your program's FDIV instruction performance.

Use of this option only corrects FDIV instructions in modules that you compile. The run-
time library also contains FDIV instructions which are not modified by the use of this
switch. To correct the run-time libraries, you must recompile them using this switch.

The following functions use FDIV instructions in assembly language which are not
corrected if you use this option:

acos cosh pow10l
acosl coshl powl
asin cosl sin
asinl exp sinh
atan expl sinhl

Register
keyword

You can use -rd
in #pragma

options.

Automatic

+

Paradigm C++ Reference Manual76

atan2 fmod sinl
atan2l fmodl tan
atanl pow tanh
cos pow10 tanhl
tanl

In addition, this switch does not correct functions that convert a floating-point number to
or from a string (such as printf or scanf).

Default = OFF

No floating point
Command-line equivalent: -f-

Choose No Floating Point if you are not using floating point. No floating-point libraries
are linked when this option is enabled (-f-). If you enable this option and use floating-
point calculations in your program, you will get link errors. When unchecked (-f), the
compiler emulates 80x87 calls at run-time.

Default = OFF (-f)

Fast floating point
Command-line equivalent: -ff

When Fast Floating Point is on, floating-point operations are optimized without regard to
explicit or implicit type conversions. Calculations can be faster than under ANSI
operating mode.

When this option is unchecked (-ff-), the compiler follows strict ANSI rules regarding
floating-point conversions.

Default = OFF

Compiler output

Set control of object file contents on the Compiler Output page.

Autodependency information
Command-line equivalent: -X-

When the Autodependency option is checked (-X-), the compiler generates
autodependency information for all project files with a .C or .CPP extension.

The Project Manager can use autodependency information to speed up compilation times.
The Project Manager opens the .OBJ file and looks for information about files included in
the source code. This information is always placed in the .OBJ file when the source
module is compiled. After that, the time and date of every file that was used to build the
.OBJ file is checked against the time and date information in the .OBJ file. The source file
is recompiled if the dates are different. This is called an autodependency check.

If the project file contains valid dependency information, the Project Manager does the
autodependency check using that information. This is much faster than reading each .OBJ
file.

When this option is unchecked (-X), the compiler does not generate the autodependency
information.

Chapter 3, Project options 77

Modules compiled with autodependency information can use MAKE's autodependency
feature.

Default = ON (-X-)

Generate COMDEFs
Command-line equivalent: -Fc, 16-bit only

Generate COMDEFs generates communal variables (COMDEFs) for global C variables
that are not initialized and not declared as static or extern. Use this option when header
files included in several source files contain global variables.

For example, a definition such as
int SomeArray[256];

could appear in a header file that is then included in many modules. When this option is
on, the compiler generates SomeArray as a communal variable rather than a public
definition (a COMDEF record rather than a PUBDEF record). You can use this option
when porting code that uses a similar feature with another implementation.

The linker generates only one instance of the variable, so it will not be a duplicate
definition linker error. As long as a given variable does not need to be initialized to a
nonzero value, you do not need to include a definition for it in any of the source files.

Default = OFF

Generate underscores
Command-line equivalent: -u

When the Generate Underscores option is on, the compiler automatically adds an
underscore character (_) in front of every global identifier (functions and global
variables) before saving them in the object module. Pascal identifiers (those modified by
the _ _pascal keyword) are converted to uppercase and are not prefixed with an
underscore.

Underscores for C and C++ are optional, but you should turn this option on to avoid
errors if you are linking with the standard Paradigm C++ libraries.

Default = ON

Source

Compiler|Source options set source code interpretation.

Identifier length
 Command-line equivalent: -in, where n = significant characters

Use the Identifier Length input box to specify the number of significant characters (those
which will be recognized by the compiler) in an identifier.

Except in C++, which recognizes identifiers of unlimited length, all identifiers are treated
as distinct only if their significant characters are distinct. This includes variables,
preprocessor macro names, and structure member names.

Valid numbers for n are 0, and 8 to 250, where 0 means use the maximum identifier length
of 250.

Paradigm C++ Reference Manual78

By default, Paradigm C++ uses 250 characters per identifier. Other systems (including
some UNIX compilers) ignore characters beyond the first eight. If you are porting to other
environments, you might want to compile your code with a smaller number of significant
characters, which helps you locate name conflicts in long identifiers that have been
truncated.

Default = 250

Language compliance
The Language Compliance options tell the compiler how to recognize keywords in your
programs.

Command-line equivalents: -A-, -AT

The Paradigm Extensions option tells the compiler to recognize Paradigm's extensions to
the C language keywords, including near, far, huge, asm, cdecl, pascal, interrupt,
_export, _ds, _cs, _ss, _es, and the register pseudovariables (_AX, _BX, and so on). For
a complete list of keywords, see the keyword index.

Command-line equivalent: -A

The ANSI option compiles C and C++ ANSI-compatible code, allowing for maximum
portability. Non-ANSI keywords are ignored as keywords.

Command-line equivalent: -AU

The UNIX V option tells the compiler to recognize only UNIX V keywords and treat any
of Paradigm's C++ extension keywords as normal identifiers.

Command-line equivalent: -AK

The Kernighan and Ritchie option tells the compiler to recognize only the K&R extension
keywords and treat any of Paradigm's C++ extension keywords as normal identifiers.

If you get declaration syntax errors from your source code, check that this option is set to
Paradigm Extensions.

Default = Paradigm Extensions (-A-)

l Accepts and ignores directives

Nested comments
Command-line equivalent: -C

When the Nested Comments option is on, you can nest comments in your C and C++
source files.

Nested comments are not allowed in standard C implementations, and they are not
portable.

Default = OFF

Paradigm
extensions

ANSI

UNIX V

Kernighan
and Ritchie

Chapter 3, Project options 79

Debugging

Compiler Debugging options affect the generation of debug information during
compilation. When linking larger .OBJ files, you may need to turn these options off to
increase the available system resources.

Browser reference information in OBJs
Command-line equivalent: -R

When the Browser Info In OBJs option is on, the compiler generates additional browser-
specific information such as location and reference information. This information is then
included in your .OBJ files. In addition to this option, you need debugging information (-
v) to use the Browser.

When this option is off, you can link and create larger object files. While this option does
not affect execution speed, it does affect compilation time and program size.

Default = ON

Debug information in OBJs
Command-line equivalent: -v

When the Debug Info In OBJs option is on, debugging information is included in your
.OBJ files. The compiler passes this option to the linker so it can include the debugging
information in the .AXE file. For debugging, this option treats C++ inline functions as
normal functions.

You need debugging information to use either the integrated debugger or Paradigm
DEBUG.

When this option is off (-v-), you can link and create larger object files. While this option
does not affect execution speed, it does affect compilation and link time.

When Line Numbers is on, make sure you turn off Jump Optimization in the 16-bit
specific optimizationsand Pentium scheduling in the 32-bit Compiler options. When these
options are enabled, When this option is enabled, the source code will not exactly match
the generated machine instructions, which can make stepping through code confusing.

Default = ON

Line numbers
Command-line equivalent: -y

When the Line Numbers option is on, the compiler automatically includes line numbers in
the object and object map files. Line numbers are used by both the Paradigm C++ IDE
and by Paradigm DEBUG.

Although the Debug Info in OBJs option (-v) automatically generates line number
information, you can turn that option off (-v-) and turn on Line Numbers (-y) to reduce the
size of the debug information generated. With this setup, you can still step, but you will
not be able to watch or inspect data items.

Including line numbers increases the size of the object and map files but does not affect
the speed of the executable program.

When Line Numbers is on, make sure you turn off Jump Optimization in the 16-bit
specific optimizations and Pentium scheduling in the 32-bit Compiler options. When these

+

+

Paradigm C++ Reference Manual80

options are enabled, When this option is enabled, the source code will not exactly match
the generated machine instructions, which can make stepping through code confusing.

Default = OFF

Out-of-line inline functions
Command-line equivalent: -vi

When the Out-of-line inline functions option is on, the compiler expands C++ inline
functions inline.

To control the expansion of inline functions, the Debug information in OBJs option (-v)
acts slightly different for C++ code: when inline function expansion is disabled, inline
functions are generated and called like any other function.

Because debugging with inline expansion can be difficult, the command-line compilers
provide the following options:

l -v turns debugging on and inline expansion off
l -v- turns debugging off and inline expansion on
l -vi turns inline function expansion on
l -vi- turns inline expansion off (inline functions are expanded out of line)

For example, if you want to turn both debugging and inline expansion on, use the -v and -
vi options.

Default = OFF

Standard stack frame
Command-line equivalent: -k

When the Standard stack frame option is on, the compiler generates a standard stack
frame (standard function entry and exit code). This is helpful when debugging, since it
simplifies the process of stepping through the stack of called subroutines.

When this option is off, any function that does not use local variables and has no
parameters is compiled with abbreviated entry and return code. This makes the code
smaller and faster.

The Standard stack frame option should always be on when you compile a source file for
debugging.

Default = ON

Test stack overflow
Command-line equivalent: -N, 16-bit only

When this option is on, the compiler generates stack overflow logic at the entry of each
function.

Even though this is costly in terms of both program size and speed, it can be a real help
when trying to track down difficult stack overflow bugs. If an overflow is detected, the
run-time error message Stack overflow! is generated, and the program exits with
an exit code of 1.

Stack overflow testing is always enabled in the 32-bit compilers (this adds a minimal
overhead to 32-bit programs). (add note sidebar)

Default = OFF

Chapter 3, Project options 81

Precompiled headers

Using precompiled header files can dramatically increase compilation speed by storing
an image of the symbol table on disk in a file, then later reloading that file from disk
instead of parsing all the header files again. Directly loading the symbol table from disk
is much faster than parsing the text of header files, especially if several source files
include the same header file.

You can use the $INHERIT and $ENV() macros in any of the precompiled header input
fields.

Cache precompiled header
 Command-line equivalent: -Hc

When you enable this option, the compiler caches the precompiled headers it generates.
This is useful when you are precompiling more than one header file.

To use this option, you must also enable the Generate and Use (-H) precompiled header
option.

Default = OFF

Precompiled header name
Command-line equivalent: -H=filename

This option lets you specify the name of your precompiled header file. The compilers set
the name of the precompiled header to filename.

When this option is enabled, the compilers generate and use the precompiled header file
that you specify.

Precompiled headers
Using precompiled headers can dramatically increase compilation speeds, though they
require a considerable amount of disk space.

Command-line equivalent: -H

When this option is enabled, the Paradigm C++ IDE generates and uses precompiled
headers. The default file name is <projectname>.CSM for the Paradigm C++ IDE
projects and PCDEF.CSM (16-bit) or PC32DEF.CSM (32-bit) for the command-line
compilers.

Command-line equivalent: -Hu

When the Use But Do Not Generate option is on, the compilers use preexisting
precompiled header files; new precompiled header files are not generated.

Command-line equivalent: -H-

When the Do not generate or use option is on, the compilers do not generate or use
precompiled headers.

Default = Do not generate or use (-H-)

+

+

Generate
and use

Use but do
not generate

Do not
generate or

use

Paradigm C++ Reference Manual82

Stop precompiling after header file
Command-line equivalent: -H"xxx"; for example -H"stdio.h"

This option terminates compiling the precompiled header after the compiler compiles the
file specified as xxx. You can use this option to reduce the amount of disk space used by
precompiled headers.

When you use this option, the file you specify must be included from a source file for the
compiler to generate a .CSM file.

You cannot specify a header file that is included from another header file. For example,
you cannot list a header included by windows.h because this would cause the
precompiled header file to be closed before the compilation of windows.h was
competed.

Directories options

The Directories options tell the Paradigm C++ compiler where to find or where to put
header files, library files, source code, output files, and other program elements.

Source directories

The Source directories options let you specify the directories that contain your standard
include files, library and .OBJ files, and program source files.

Click the down-arrow icon or press Alt+Down arrow to display the history list of
previously entered directory names.

You can use the $INHERIT and $ENV() macros in any of the following input fields.

Include
Command-line equivalent: -Ipath, where path = directory path

Use the Include list box to specify the drive and/or directories that contain program
include files. Standard include files are those given in angle brackets (<>) in an #include
statement (for example, #include <myfile>).

The Paradigm compilers and linkers use specific file search algorithms to locate the
files needed to complete the compilation and link cycles.

Library
Command-line equivalent: -Lpath, where path = directory path

Use the Library list box to specify the directories that contain the Paradigm C++ startup
object files (C0x.OBJ), run-time library files (.LIB files), and all other .LIB files. By
default, the linker looks for them in the directory containing the project file (or in the
current directory if you’re using the command-line compiler).

You can also use the linker option /Lpath to specify the library search directories when
you link files from the command line.

Source
The Source list box specifies the directories where the compiler and the integrated
debugger should look for your project source files.

+

+

+

+

Chapter 3, Project options 83

Specifying multiple directories
Multiple directory names are allowed in each of the list boxes; use a semicolon (;) to
separate the specified drives and directories. To display a history list of previously
entered directory names, click the down-arrow icon or press Alt+Down arrow.

From the command line, you can enter multiple include and library directories in the
following ways:

l You can stack multiple entries with a single -L or -I option by separating directories
with a semicolon:

PCC.EXE -Ldirname1;dirname2;dirname3 -Iinc1;inc2;inc3 myfile.c

l You can place more than one of each option on the command line, like this:
PCC.EXE -Ldirname1 -Ldirname2 -Iinc1 -Iinc2 -Iinc3 myfile.c

l You can mix listings:
PCC.EXE -Ldirname1;dirname2 -Iinc1 -Ld:dirname3 -Iinc2;inc3
myfile.c

If you list multiple -L or -I options on the command line, the result is cumulative; the
compiler searches all the directories listed in order from left to right.

File search algorithms

#include-file search algorithms
Paradigm C++ searches for files included in your source code with the #include directive
in the following ways:

If you specify a path and/or directory with your include statement, Paradigm C++
searches only the location specified. For example, if you have the following statement in
your code:

#include "c:\PARADIGM\include\stdio.h"

the header file stdio.h must reside in the directory C:\PARADIGM\INCLUDE. In
addition, if you use the statement:

#include <stdio.h>

and you set the Include option (-I) to specify the path c:\PARADIGM\include, the
file stdio.h must reside in C:\PARADIGM\INCLUDE.

l If you put an #include <somefile> statement in your source code, Paradigm
C++ searches for "somefile" only in the directories specified with the Include (-I)
option.

l If you put an #include "somefile" statement in your code, Paradigm C++ first
searches for "somefile" in the current directory; if it does not find the file there, it
then searches in the directories specified with the Include (-I) option.

Library file search algorithms
The library file search algorithms are similar to those for include files:

l Implicit libraries: Paradigm C++ searches for implicit libraries only in the specified
library directories; this is similar to the search algorithm for #include
<somefile>.

Paradigm C++ Reference Manual84

Implicit library files are the ones Paradigm C++ automatically links in and the start-
up object file (C0x.OBJ). To see these files in the Project Manager, turn on run-time
nodes (choose Options|Environment|Project View, then check Show Runtime Nodes).

l Explicit libraries: Where Paradigm C++ searches for explicit (user-specified)
libraries depends in part on how you list the library file name. Explicit library files
are ones you list on the command line or in a project file; these are file names with a
.LIB extension.

l If you list an explicit library file name with no drive or directory (like this:
mylib.lib), Paradigm C++ first searches for that library in the current directory. If
the first search is unsuccessful, Paradigm C++ looks in the directories specified with
the Library (-L) option. This is similar to the search algorithm for #include
"somefile".

l If you list a user-specified library with drive and/or directory information (like this:
c:\mystuff\mylib1.lib), Paradigm C++ searches only in the location you
explicitly listed as part of the library path name and not in any specified library
directories.

Output directories

The Output Directories options specify the directories where your .OBJ, .AXE, .EXE,
and .MAP files are placed. The Paradigm C++ IDE looks for those directories when
performing a make or run and to check dates and times of .OBJs, .AXEs, and .EXEs. If
the entry is blank, the files are stored in the current directory.

Click the down-arrow icon or press Alt+Down arrow to display the history list of
previously entered directory names.

You can use the $INHERIT and $ENV() macros in any of the following input fields.

Intermediate
Use the Intermediate list box to specify where Paradigm C++ places object (.OBJ) and
map (.MAP) files when it builds your project. This is also the directory where a tool
places any temporary files that it might create.

Final
Command-line equivalent: -npath, where path = directory path

The Final list box specifies the location where the Paradigm C++ IDE places the
generated target files (for example, .AXE and .EXE files).

Guidelines for entering directory names
Use the following guidelines when entering directories in the Directories options pages.

l You must separate multiple directory path names (if allowed) with a semicolon (;).
l You can use up to a maximum of 127 characters (including whitespace).
l Whitespace before and after the semicolon is allowed but not required.
l Relative and absolute path names are allowed, including path names relative to the

logged position in drives other than the current one.

For example,
C:\;C:..\PARADIGM;D:\myprog\source

+

Chapter 3, Project options 85

$INHERIT and $ENV()

Paradigm C++ supports the two macros $INHERIT and $ENV() in the Directories page,
the Compiler|Defines page and the Compiler|Precompiled Header page of the Project
Options dialog box.

You can add $INHERIT and $ENV() anywhere in the strings you type into the input
boxes.

$INHERIT
The $INHERIT macro expands to the value of the respective option of the current nodes
parent.

For example, suppose the project node MYSOURCE.CPP has a parent node
MYSOURCE.AXE, and the defines for MYSOURCE.AXE are

WIN31;

If you set the Defines value for MYSOURCE.CPP to:
_RTLDLL;$INHERIT;STRICT

MYSOURCE.CPP will inherit the defines of MYSOURCE.AXE, which will give it the
following Defines values:

_RTLDLL;WIN31;;STRICT

$ENV()
The $ENV(environment_variable) macro expands to the defined value of the specified
environment variable. For example, suppose the environment variable PCROOT is set to
the following value:

PCROOT = C:\PARADIGM

You can then set the Include path in the Directories page as follows:
$ENV(PCROOT)\Include

This will set the actual include path to:
C:\PARADIGM\Include

Librarian options

Librarian options affect the behavior of the built-in librarian. The built-in librarian
combines the .OBJ files in your project into .LIB files. Options in this section control that
process. In addition, you can cause the librarian to generate a list (.LST) file containing
the .OBJs in a generated .LIB and the functions those .OBJs contain.

PLIB.EXE is the command-line librarian.

Case-sensitive library

Command-line equivalent = /C

When the Case-sensitive library option is on, the librarian treats case as significant in all
symbols in the library. For example, if Case-sensitive library is checked, "CASE",
"Case", and "case" are all treated as different symbols.

+

Paradigm C++ Reference Manual86

Create extended dictionary

Command-line equivalent = /E

When the Create extended dictionary option is on, the librarian includes, in compact
form, additional information that helps the linker process library files faster.

Generate list file

When the Generate list file option is on, the librarian automatically produces a list file
(.LST) that lists the contents of your library when it is created.

Library page size

Command-line equivalent = /Psize, where size is number of pages

The Library page size input box is where you set the number of bytes in each library
"page" (dictionary entry).

The page size determines the maximum size of the library. Page size must be a power of 2
between 16 and 32,768 inclusive. The default page size of 16 allows a library of about 1
MB in size.

To create a larger library, change the page size to the next higher value (32).

Purge comment records

Command-line equivalent = /0

When the Purge comment records option is on, the librarian removes all comment records
from modules added to the library.

Linker options

Linker options affect how an application is linked.

Linker options let you control how intermediate files (.OBJ, and .LIB) are combined into
absolute executables (.AXE) and dynamic-link libraries (.DLL). For most options in this
section, you will usually want to keep the default settings.

16-bit linker

16-bit Linker options tell the linker how to link 16-bit programs.

Discard nonresident name table
Command-line equivalent = /Gn, 16-bit only

When the Discard Nonresident Name Table option is enabled, the linker does not emit the
nonresident name table. The resultant image will contain only the module description in
the nonresident names table.

See “Transfer resident names to nonresident names table,” page 3-87 for usage details.

Default = OFF

Enable 32-bit processing
Command-line equivalent = /3, 16-bit only

+

Chapter 3, Project options 87

The Enable 32-bit processing option lets you link 32-bit DOS object modules produced
by PASM or a compatible assembler. This option increases the memory requirements for
PLINK and slows down linking.

Default = OFF

Inhibit optimizing far call to near
Command-line equivalent = /f, 16-bit only

When the linker patches two code segments together, and far calls are made from one to
the other, the linker will optimize the code by converting the far calls to near calls. When
Inhibit optimizing far call to near is enabled, this optimization does not occur.

You might want to enable this option when you experience run-time crashes that appear to
be related to corrupt virtual tables. Because virtual tables reside in the code segment,
their contents can sometimes be interpreted by the linker as one of these far calls.

Default = OFF

Initialize segments
Command-line equivalent = /i, 16-bit only

When the Initialize segments option is on, the linker initializes uninitialized trailing
segments to be output into the executable file even if the segments do not contain data
records. This is normally not needed and will increase the size of your .AXE files.

Default = OFF

Segment alignment
Command-line equivalent = /A:dd, 16-bit only

Use the Segment alignment input box to change the current byte value on which to align
segments. The operating system seeks pages for loading based on this alignment value.
You can enter numbers in the range of 2 to 65,535.

The alignment factor is automatically rounded up to the nearest power of two. For
example, if you enter 650, it is rounded up to 1,024 (this is different from the 32-bit
Segment Alignment option).

For efficiency, you should use the smallest value that still allows for correct segment
offsets in the segment table.

Default = 512

Transfer resident names to nonresident names table
Command-line equivalent = /Gr, 16-bit only

This option causes the linker to copy all names in the resident names table which have not
been specified as RESIDENTNAME in the .DEF file to the nonresident names table. The
resultant image contains only the module name and the symbol names of the exported
symbols that were specified as RESIDENTNAME in the .DEF file.

When you use this option, you must also specify the WEP entry point as a
RESIDENTNAME in the EXPORTS section of the .DEF file (Windows obtains the WEP
entry point for this symbol by looking it up in the resident names table).

When building .DLLs that contain many exports, it’s possible to exceed the 64K header
file limitation. Because the .DLL contains the resident names table in its header, moving

+

+

Paradigm C++ Reference Manual88

the exports out of the header using the /Gr option usually remedies this problem. The /Gr
option causes the linker to transfer the names in the resident names table to the
nonresident names table. Names in the nonresident names table are then assigned ordinal
numbers, which your .EXE file uses when referencing the entry points in the .DLL.

There are two ways to create input files for the linker:

l Run IMPLIB on the .DLL to create an import library for linking purposes.
l Run IMPDEF in the .DLL to create a .DEF file for linking purposes.

Once the import library or .DEF file has been created, there is no need to keep the names
in either the resident or the nonresident names tables. Relinking the .DLL and specifying
both the Transfer resident names to nonresident names table (/Gr) and Discard
nonresident name table (/Gn) options causes the linker to build a .DLL with an “empty”
names table. Not only does this post-processing avoid the problem of exceeding the
header limitation, but it also creates a .DLL that loads faster (because it’s smaller) and
runs faster (because references to entry points are by ordinal number instead of by name).

To summarize this process, you must

 1. Enable the /Gr switch to transfer the names in the resident names table to the
nonresident names table. This also assigns ordinal numbers to the names. However;
before doing so, make sure you have included a .DEF file with the following export
definition in the EXPORTS section:
EXPORTS
 WEP @1 RESIDENTNAME

 2. Build the .DLL.
 3. Run IMPLIB or IMPDEF on the new .DLL file.
 4. Enable the /Gn switch (along with the already enabled /Gr switch).
 5. Relink the .DLL.

To see an example of this process, refer to the makefile that builds the ObjectWindows
example programs.

Default = OFF

16-bit optimizations

The 16-bit optimizations control how the linker optimizes 16-bit .EXE programs. In most
cases the final executable file size is reduced, which results in a faster load time.

Whenever you use one or more of these options, the linker reorders the .EXE segments as
follows:

l PRELOAD segments
l PRELOAD resources
l LOAD ON CALL segments
l LOAD ON CALL resources

These options work only with 16-bit Windows and DPMI programs.

Chain fixup
Command-line equivalent =/Oc, 16-bit only

+

Chapter 3, Project options 89

Chain fixups remove duplicate and/or unnecessary fixup data from the .EXE file. This is
done by emitting only one fixup record for each unique internal fixup and "remembering"
the duplicate fixups by creating a linked list of the internal fixup locations within the
.EXE data segment. When the loader loads the .EXE, it applies the fixup specified in the
fixup record to each of the locations specified in the linked list. Specifying this
optimization also causes trailing zeros in data segments to be eliminated. This usually
results in a significantly smaller .EXE file, which loads faster.

Default = OFF

Iterate data
Command-line equivalent = /Oi, 16-bit only

This option scans data segments for patterns of data (for example, a block with 128 bytes
filled with "0"). Instead of emitting the data, PLINK emits a "description" of the block of
data which matches the pattern (for example, a 5-byte descriptor specifying a 128 bytes
of 0). Specifying this optimization also causes trailing zeros in data segments to be
eliminated. This usually results in a significantly smaller .EXE file, while loads faster.

Default = OFF

Minimize resource alignment
Command-line equivalent =/Or, 16-bit only

This optimization switch is the same as the Minimize segment alignment switch (/Oa),
except that it applies to resource alignment values instead of segment alignment values.

Default = OFF

Minimize segment alignment
Command-line equivalent = /Oa, 16-bit only

This optimization switch determines the minimum segment alignment value by examining
the size of the .EXE file. An .EXE that has a size of 1 byte to 64K bytes results in an
alignment value of 1; if the .EXE file size is 64K+1 bytes to 128K bytes, the alignment
value is 2; and so on.

While this optimization results in a smaller .EXE file, the .EXE might load slower
because the newly calculated alignment value may cause the segments to cross physical
disk sector boundaries more often. Unless you have also specified the Segment Alignment
(/A) linker option, the linker initially generates an .EXE using the default alignment value
of 512. Note that this option overrides whatever alignment value the linker might have
used to initially generate the .EXE file.

Default = OFF

32-bit linker

32-bit linker options tell the linker how to link 32-bit programs.

Allow import by ordinal
(Command-line equivalent = /o, 32-bit only)

Paradigm C++ Reference Manual90

This option lets you import by ordinal value instead of by the import name. When you
specify this option, the linker emits only the ordinal numbers (and not the import names)
to the resident or nonresident name table for those imports that have an ordinal number
specified. If you do not specify this option, the linker ignores all ordinal numbers
contained in import libraries or the .DEF file, and emits the import names to the resident
and nonresident tables.

Committed stack size (in hexadecimal)
Command-line equivalent = /Sc:xxxx, 32-bit only

Specifies the size of the committed stack in hexadecimal. The minimum allowable value
for this field is 4K (0x1000) and any value specified must be equal to or less than the
Reserved StackSize setting (/S).

Specifying the committed stack size here overrides any STACKSIZE setting in a module
definition file.(add note sidebar)

The command-line version of this option (/Sc:xxxx) accepts hexadecimal numbers as the
stack reserve value.

Default = 8K (0x2000)

Committed heap size (in hexadecimal)
Command-line equivalent = /Hc:xxxx, 32-bit only

Specifies the size of the committed heap in hexadecimal. The minimum allowable value
for this field is 0 and any value specified must be equal to or less than the Reserved Heap
Size setting (/H).

Specifying the committed heap size here overrides any HEAPSIZE setting in a module
definition file.(add note sidebar)

The command-line version of this option (/Hc:xxxx) accepts hexadecimal numbers as the
stack reserve value.

Default = 4K (0x1000)

File alignment (in hexadecimal)
Command-line equivalent = /Af:xxxx, 32-bit only

The File Alignment option specifies page alignment for code and data within the
executable file. The linker uses the file alignment value when it writes the various objects
and sections (such as code and data) to the file. For example, if you use the default value
of 0x200, the linker stores the section of the image on 512-byte boundaries within the
executable file.

When using this option, you must specify a file alignment value that is a power of 2, with
the smallest value being 16.

The old style of this option (/A:dd) is still supported for backward compatibility. With
this option, the decimal number dd is multiplied by the power of 2 to calculate the file
alignment value.(add note sidebar)

The command-line version of this option (/Af:xxxx) accepts either decimal or
hexadecimal numbers as the file alignment value.

Default = 512 (0x200)

This option is
different than the

16-bit /o
(overlays) option.

Chapter 3, Project options 91

Image base address (in hexadecimal)
Command-line equivalent = /B:xxxx, 32-bit only

The Image Base Address option specifies an image base address for an application, and
is used in conjunction with the Image is based option. If this setting is turned on, internal
fixes are removed from the image and the requested load address of the first object in the
application is set to the hexadecimal number specified. All successive objects are
aligned on 64K linear address boundaries. This option makes applications smaller on
disk and improves both load-time and run-time performance (the operating system no
longer has to apply internal fixes).

The command-line version of this option (/B:xxxx) accepts either decimal or
hexadecimal numbers as the image base address.

It is not recommended that you enable this option when producing a DLL. In addition, do
not use the default setting of 0x400000 if you intend to run your application of Win32s
systems.(add note sidebar)

Default = 0x400000 (recommended for true Win32 system applications)

Image is based
The Image is Based option affects whether an application has an image base address. If
this setting is turned on, internal fixes are removed from the image and the requested load
address of the first object in the application is set to the number specified in the Image
Base Address input box. Using this option can greatly reduce the size of your final
application module; however, it is not recommended for use when producing a DLL.

Default = OFF

Maximum linker errors
Command-line equivalent = /Enn

Specifies maximum errors the linker reports before terminating. /E0 (default) reports an
infinite number of errors (that is, as many as possible).

Object alignment (in hexadecimal)
Command-line equivalent = /Ao:xxxx, 32-bit only

The linker uses the object alignment value to determine the virtual addresses of the
various objects and sections (such as code and data) in your application. For example, if
you specify an object alignment value of 8192, the linker aligns the virtual addresses of
the sections in the image on 8192-byte (0x2000) boundaries.

When using this option, you must specify an object alignment value that is a power of 2,
with the smallest value being 4096 (the default).

The command-line version of this option (/Ao:xxxx) accepts either decimal or
hexadecimal numbers as the object alignment value.

Default = 4096 (0x1000)

Reserved heap size (in hexadecimal)
Command-line equivalent = /H:xxxx, 32-bit only

Specifies the size of the reserved heap in hexadecimal. The minimum allowable value for
this field is 0.

Paradigm C++ Reference Manual92

Specifying the reserved heap size here overrides any HEAPSIZE setting in a module
definition file.(add note sidebar)

The command-line version of this option (/H:xxxx) accepts hexadecimal numbers as the
stack reserve value.

Default = 1Mb (0x1000000)

Reserved stack size (in hexadecimal)
Command-line equivalent = /S:xxxx, 32-bit only

Specifies the size of the reserved stack in hexadecimal. The minimum allowable value for
this field is 4K (0x1000).

Specifying the reserved stack size here overrides any STACKSIZE setting in a module
definition file.(add note sidebar)

The command-line version of this option (/S:xxxx) accepts hexadecimal numbers as the
stack reserve value.

Default = 1Mb (0x1000000)

Use incremental linker
Uses the incremental linker.

When on, the first link of the executable file takes about the same amount of time as
without the incremental linker. On subsequent links, when you make small changes to your
source code, the link increases in speed. With the incremental linker in use, the link is
usually less than 2 seconds, even for multiple megabyte images.

Verbose
Command-line equivalent = /r, 32-bit only

This option causes the linker to emit messages that indicate what part of the link cycle is
currently being executed by the linker. With this option turned on, the linker emits some or
all of the following messages:

l Starting pass 1
l Generating map file
l Starting pass 2

General

Use the Linker|General options to include or exclude debugging information from your
.AXE or .DLL. Debug information must be included in your program if you want to use
the debugger (you can turn it off for production versions).

Case-sensitive exports and imports
Command-line equivalent = /C, 16-bit only

When the Case-Sensitive Exports option is on, the linker is case sensitive when it
processes the names in the IMPORTS and EXPORTS sections of the module definition
file.

Use this option when you are trying to export non-callback functions from DLLs, as in
exported C++ member functions or dynamic versions of ObjectWindows Library and
BIDS.

Chapter 3, Project options 93

Do not use this option for normal Windows callback functions (declared FAR PASCAL).

Default = OFF

Case-sensitive link
Command-line equivalent = /c

When the Case-Sensitive Link option is enabled, the linker differentiates between upper
and lower-case characters in public and external symbols. Normally, this option should
be checked, since C and C++ are both case-sensitive languages.

Default = ON

Code pack size
Command-line equivalent = /P=n, 16-bit only

Use Code Pack Size to change the default code-packing size to any value between 1 and
65,536. (On the command line, set n to a value between 1 and 65,536.)

You would probably want the limit to be a multiple of 4K under the 386 enhanced mode
because of the paging granularity of the system. Although the optimum segment size in 386
enhanced mode is 4K, the default code segment packing size is 8K because typical code
segments are from 4K to 8K in size, and the default of 8K might pack more efficiently.

Code segment packing typically increases performance because each maintained segment
requires system overhead. On the command-line, /P- turns code segment packing off,
which can be useful if you’ve turned it on in the configuration file, but want to turn it off
for a particular link.

Default = 8192 bytes (8K)

Default libraries
Command-line equivalent = /n

When you are linking with modules created by a compiler other than the Paradigm C++
compiler, the other compiler might have placed a list of default libraries in the object
file.

When the Default Libraries option is unchecked (off), the linker tries to find any
undefined routines in these libraries and in the default libraries supplied by the Paradigm
C++ IDE.

When this option is checked (on), the linker searches only the default libraries supplied
by the Paradigm C++ IDE and ignores any defaults in .OBJ files. You might want to check
this option when linking modules written in another language.

Default = ON

Include debug information
Command-line equivalent = /v

When the Include Debug Information option is on, the linker includes information in the
output file needed to debug your application with Paradigm DEBUG.

On the command line, this option causes the linker to include debugging information in the
executable file for all object modules that contain debugging information. You can use the
/v+ and /v- options to selectively enable or disable debugging information on a module-
by-module basis (but not on the same command-line where you use /v). For example, the

Paradigm C++ Reference Manual94

following command includes debugging information for modules mod2 and mod3, but not
for mod1 and mod4:

PLINK mod1 /v+ mod2 mod3 /v- mod4

Default = ON in the Paradigm C++ IDE; OFF on the command line

Pack code segments
Command-line equivalent = /P

Pack Code Segments has different meanings for 16-bit and 32-bit applications. In
addition, Code Segment Packing applies only to 32-bit applications and DLLs.

For 16-bit links, Code Segment Packing causes the linker to minimize the number of code
segments by packing as many code segments as possible into one physical segment up to
(and never greater than) the code-segment packing limit, which is set to 8,192 (8K) by
default. PLINK starts a new segment if needed.

Because there is a certain amount of system overhead for every segment maintained, code
segment packing typically increases performance by reducing the number of segments.

For 32-bit links, Code Packing Segments means the linker packs all code into one
“segment.” On the command-line, /P- turns this option off.

Default = ON

Subsystem version (major.minor)
Command-line equivalent = /Vd.d

This option lets you specify the Windows version ID on which you expect your
application will be run. The linker sets the Subsystem version field in the .EXE header to
the number you specify in the input box.

You can also set the Windows version ID in the SUBSYSTEM portion of the module
definition file (.DEF file) However, any version setting you specify in the Paradigm C++
IDE or on the command line overrides the setting in the .DEF file.

When you use the /Vd.d command-line option, the linker sets the Windows version ID to
the number specified by d.d.. For example, if you specify /V4.0, the linker sets the
Subsystem version field in the .EXE header to 4.0, which indicates a Windows 95
application.

Default = 3.1

Map file

Linker|Map File options tell the linker what type of map file to produce. You specify the
type of map file created with the Map File options. These options control the information
generated on segment ordering, segment sizes, and public symbols.

Include source line numbers
Command-line equivalent: /l, 16-bit only

When the Include Source Line Numbers option is on, the linker includes source line
numbers in the object map files.

For this option to work, linked .OBJ files must be compiled with debug information using
-v.

Command-
line usage

Chapter 3, Project options 95

When Include Source Line Numbers is on, make sure you turn Jump Optimizations off in
the Optimization|16 bit Specific options page, otherwise the compiler might group
together common code from multiple lines of source text during jump optimization, or it
might reorder lines (which makes line-number tracking difficult).

Default = OFF

Map file
You use the Map File options to choose the type of map file to be produced at link time.

For settings other than Off, the map file is placed in the output directory defined in the
Directories|Output page.

Command-line equivalent = /x

The Off option tells the linker not to create a map file.

Default = OFF

Command-line equivalent = /s

The Segments option adds a “Detailed map of segments” to the map file created with the
Publics option (/m). The detailed list of segments contains the segment class, the segment
name, the segment group, the segment module, and the segment ACBP information. If the
same segment appears in more than one module, each module appears as a separate line.

The ACBP field encodes the A (alignment), C (combination), and B (big) attributes into a
set of four bit fields, as defined by Intel. PLINK uses only three of the fields: A, C, and B.
The ACBP value in the map is printed in hexadecimal. The following field values must
be ORed together to arrive at the ACBP value printed.

Field Value Description

A (alignment) 00 An absolute segment
20 A byte-aligned segment
40 A word-aligned segment
60 A paragraph-aligned segment
80 A page-aligned segment
A0 An unnamed absolute portion of storage

C (combination) 00 Cannot be combined
08 A public combining segment

B (big) 00 Segment less than 64K
02 Segment exactly 64K

With the Segments options enabled, public symbols with no references are flagged idle.
An idle symbol is a publicly defined symbol in a module that was not referenced by an
EXTDEF record or by any other module included in the link. For example, this fragment
from the public symbol section of a map file indicates that symbols Symbol1 and
Symbol3 are not referenced by the image being linked (they can either be deleted or
declared static since no other module requires these symbols):

Off

Segments

Table 3-1
Segment field

values

Paradigm C++ Reference Manual96

0002:00000874 Idle Symbol1
0002:00000CE4 Symbol2
0002:000000E7 Idle Symbol3

Command-line equivalent = /m

This option causes the linker to produce a map file that contains an overview of the
application segments and two listings of the public symbols. The segments listing has a
line for each segment, showing the segment starting address, segment length, segment
name, and the segment class. The public symbols are broken down into two lists, the first
showing the symbols in sorted alphabetically, the second showing the symbols in
increasing address order. Symbols with absolute addresses are tagged Abs.

A list of public symbols is useful when debugging: many debuggers use public symbols,
which lets you refer to symbolic addresses while debugging.

For more information, see Linker|Map file.

Print mangled names in map file
Command-line equivalent = /M

Prints the mangled C++ identifiers in the map file, not the full name. This can help you
identify how names are mangled (mangled names are needed as input by some utilities).

Default = OFF

Warnings

Warnings options enable or disable the display of Linker warnings.

32-bit warnings
l No entry point
l Duplicate symbol
l No def file
l Import does not match previous definition
l Extern not qualified with _import
l Using based linking in DLL
l Self-relative fixup overflowed
l .EXE module built with a .DLL extension
l Multiple stack segments found

"No stack" warning
This option lets you control whether or not the linker emits the "No stack" warning. The
warning is generated if no stack segment is defined in any of the object files or in any of
the libraries included in the link. Except for .DLLs, this indicates an error. If a Paradigm
C++ program produces this error, make sure you are using the correct C0x startup object
file.

Default = OFF

Warn duplicate symbol in .LIB
Command-line equivalent = /d 16-bit, /wdpl 32-bit

Publics

Use the PLINK32
command-line

option /w-stk to
turn this warning

off.

Chapter 3, Project options 97

When the Warn Duplicate Symbols option is on, the linker warns you if a symbol appears
in more than one object or library files.

If the symbol must be included in the program, the linker uses the symbol definition from
the first file it encounters with the symbol definition.

Default = OFF

Make options

Make options control the conditions under which the building of a project stops and how
the Project Manager uses autodependency information.

Autodependencies

When the Make|Autodependencies option is selected, the Project Manager automatically
checks dependencies for every target that has a corresponding source file in the project
list.

None
When None is selected, no autodependency checking is performed.

Use
When Use is selected, autodependency checking is performed by reading the
autodependency information out of the .OBJ files.

Cache
When Cache is selected, autodependency information is stored in memory to make
dependency checking faster. This option speeds up compilation, but autodependency
information will not display in the Project Tree.

Cache and display
When Cache and Display is selected, the Project Manager stores the autodependency
information in the project file. Once the autodependency information is generated (after a
compile) the information is displayed in the Project Tree. This makes dependency
checking faster, but makes project files larger.

Break make on

The Make|Break Make On options specify the error condition that stops the making of a
project.

Warnings
Command-line equivalent = -w!

When this compiler option is enabled, the compiler terminates the compile and returns a
non-zero error code if a warning is encountered; an .OBJ file is not created.

Errors
This option stops a make when the compiler encounters errors.

Use the PLINK32
command-line

option /w-dpl to
turn this warning

off.

This option stops
a make if the

compiler
encounters

warnings.

Paradigm C++ Reference Manual98

Fatal errors
This option tells the Project Manager to generate a list of errors and warnings for all files
and all targets in the project. The Project Manager will go on to link if no errors occur.

Default = Errors

New node path

Turn on the Absolute option if you want new nodes to have an absolute, instead of a
relative, path.

Messages options

Messages options let you control the messages generated by the compiler. Compiler
messages are indicators of potential trouble spots in your program. These messages can
warn you of many problems that may be waiting to happen, such as variables and
parameters that are declared but never used, type mismatches, and many others.

Setting a message option causes the compiler to generate the associated message or
warning when the specific condition arises. Note that some of the messages are on by
default.

ANSI violations

Compiler Messages|ANSI Violations options enable or disable individual warning
messages about statements that violate the ANSI standard for the C language.

Option Command-line equivalent Default

Void functions may not return a value -w-voi ON
Both return and return of a value used -w-ret ON
Suspicious pointer conversion -w-sus ON
Undefined structure 'ident' -wstu OFF
Redefinition of 'ident' is not identical -w-dup ON
Hexadecimal value more than three digits -w-big ON
Bit fields must be signed or unsigned int -wbbf OFF
'ident' declared as both external and static -w-ext ON
Declare 'ident' prior to use in prototype -w-dpu ON
Division by zero -w-zdi ON
Initializing 'ident' with 'ident' -w-bei ON
Initialization is only partially bracketed -wpin OFF
Non-ANSI keyword used -wnak OFF

Display warnings

Use the Display Warnings options to choose which warnings are displayed.

All
Command-line equivalent: -w

Display all warning and error messages.

Default = OFF

Table 3-2
ANSI violation

messages

Chapter 3, Project options 99

Selected
Command-line equivalent: -waaa

Choose which warnings are displayed. Using pragma warn in your source code
overrides messages options set either at the command line or in the Paradigm C++ IDE.

To disable a message from the command line, use the command-line option -w-aaa,
where aaa is the 3-letter message identifier used by the command-line option.

Default = ON

None
Suppresses the display of warning messages. Errors are still displayed.

Default = OFF

General

Compiler Messages|General options enable or disable a few general warning messages.

Option Command-line equivalent Default

Unknown assembler instruction -wasm OFF
Ill-formed pragma -w-ill ON
Array variable 'ident' is near -w-ias ON
Superfluous & with function -wamp OFF
'ident' is obsolete -w-obs ON
Cannot create precompiled header -w-pch ON
User-defined warnings -w-msg ON

User-defined warnings
Command-line equivalent: -wmsg

The User-defined warnings option allows user-defined messages to appear in the
Paradigm C++ IDE's Message window. User-defined messages are introduced with the
#pragma message compiler syntax.

In addition to messages that you introduce with the #pragma message compiler syntax,
User-defined warnings displays warnings introduced by third-party libraries. Remember,
if you need Help on a third-party warning, please contact the vendor of the header file
that issued the warning.

Default = ON

Inefficient C++ coding

Compiler Messages|Inefficient C++ Coding options enable or disable individual warning
messages about inefficient C++ coding.

Option Command-line equivalent Default

Functions containing 'ident' not expanded inline -w-inl ON
Temporary used to initialize 'ident' -w-lin ON
Temporary used for parameter 'ident' -w-lvc ON

Table 3-3
General warning

messages

+

Table 3-4
Inefficient C++

coding
messages

Paradigm C++ Reference Manual100

Inefficient coding

Compiler Messages|Inefficient Coding options are used to enable or disable individual
warning messages about inefficient coding.

Option Command-line equivalent Default

'ident' assigned a value which is never used -w-aus ON
Parameter 'ident' is never used -w-par ON
'ident' declared but never used -wuse OFF
Structure passed by value -wstv OFF
Unreachable code -w-rch ON
Code has no effect -w-eff ON

The warnings Unreachable Code and Code Has No Effect can indicate
serious coding problems. If the compiler generates these warnings, be sure to examine the
lines of code that cause these warnings.

Obsolete C++

Compiler Messages|Obsolete C++ options choose which specific obsolete items or
incorrect syntax C++ warnings to display.

Option Command-line equivalent Default

Base initialization without class name is obsolete -w-obi ON
This style of function definition is obsolete -w-ofp ON
Overloaded prefix operator used as postfix operator -w-pre ON

Portability

Compiler Messages|Portability options enable or disable individual warning messages
about statements that might not operate correctly in all computer environments.

Option Command-line equivalent Default

Non-portable pointer conversion -w-rpt ON
Non-portable pointer comparison -w-cpt ON
Constant out of range in comparison -w-rng ON
Constant is long -wcln OFF
Conversion may lose significant digits -wsig OFF
Mixing pointers to signed and unsigned char -wucp OFF

Potential C++ errors

Compiler Messages|Potential C++ Errors options enable or disable individual warning
messages about statements that violate C++ language implementation.

Option Command-line equivalent Default

Constant member 'ident' is not initialized -w-nci ON
Assigning 'type' to 'enumeration' -w-eas ON
'function' hides virtual function 'function2' -w-hid ON

Table 3-5
Inefficient coding

messages

+

Table 3-6
Obsolete C++

messages

Table 3-7
Portability

messages

Table 3-8
Potential

C++Errors

Chapter 3, Project options 101

Non-const function <function> called for const object -w-ncf ON
Base class 'ident' inaccessible because also in 'ident' -w-ibc ON
Array size for 'delete' ignored -w-dsz ON
Use qualified name to access nested type 'ident' -w-nst ON
Handler for '<type1>' Hidden by Previous Handler for '<type2>' -w-hch ON
Conversion to 'type' will fail for virtual base members -w-mpc ON
Maximum precision used for member pointer type <type> -w-mpd ON
Use '> >' for nested templates instead of '>>' -w-ntd ON
Non-volatile function <function> called for volatile object -w-nvf ON

Potential errors

Compiler Messages|Potential Errors options enable or disable individual warning
messages about potential coding errors.

Option Command-line equivalent Default

Possibly incorrect assignment -w-pia ON
Possible use of 'ident' before definition -wdef OFF
No declaration for function 'ident' -wnod OFF
Call to function with no prototype -w-pro ON
Function should return a value -w-rvl ON
Ambiguous operators need parentheses -wamb OFF
Condition is always (true/false) -w-ccc ON
Continuation character \ found in // -w-com ON

Stop after ... errors

 Command-line equivalent: -jn

Errors: Stop After causes compilation to stop after the specified number of errors has
been detected. You can enter any number from 0 to 255.

Default = 25

Stop after ... warnings

Command-line equivalent: -gn

Warnings: Stop After causes compilation to stop after the specified number of warnings
has been detected. You can enter any number from 0 to 255.

Entering 0 causes compilation to continue until either the end of the file or the error limit
set in Errors: Stop After has been reached, whichever comes first.

Default = 100

Optimization options

Optimization options are the software equivalent of performance tuning. There are two
general types of compiler optimizations:

l Those that make your code smaller

Table 3-9
Potential error

messages

Entering 0
causes

compilation to
continue until the

end of the file.

Paradigm C++ Reference Manual102

l Those that make your code faster

Although you can compile with optimizations at any point in your product development
cycle, be aware when debugging that some assembly instructions might be "optimized
away" by certain compiler optimizations.

General settings

The main Optimizations page in the Project Options dialog box contains four radio
buttons that let you select the overall type of optimizations you want to use. Because of
the complexities of setting compiler optimizations, it is recommended that you use either
the Optimize for Size or the Optimize for Speed radio buttons. The general optimization
settings are:

l Disable all optimizations
l Use selected optimizations
l Optimize for size
l Optimize for speed

16- and 32-bit

The 16- and 32-bit compiler options specify optimization settings for all compilations.

Common subexpression
The Common subexpressions options tell the compiler how to find and eliminate
duplicate expressions in your code.

When the No optimization option is on, the compiler does not eliminate common
subexpressions. This is the default behavior of the command-line compilers.

Command-line equivalent: -Oc

When the Optimize locally option is on, the compiler eliminates common subexpressions
within groups of statements unbroken by jumps (basic blocks).

Command-line equivalent: -Og

When you set this option, the compiler eliminates common subexpressions within an
entire function. This option globally eliminates duplicate expressions within the target
scope and stores the calculated value of those expressions once (instead of recalculating
the expression).

Although this optimization could theoretically reduce code size, it optimizes for speed
and rarely results in size reductions. Use this option if you prefer to reuse expressions
rather than create explicit stack locations for them.

Induction variables
Command-line equivalent: -Ov

When this option is enabled, the compiler creates induction variables and it performs
strength reduction, which optimizes for loops speed.

No
optimization

Optimize
locally

Optimize
globally

Chapter 3, Project options 103

Use this option when you're compiling for speed and your code contains loops. The
optimizer uses induction to create new variables (induction variables) from expressions
used in loops. The optimizer assures that the operations performed on these new
variables are computationally less expensive (reduced in strength) than those used by the
original variables.

Optimizations are common if you use array indexing inside loops, because a
multiplication operation is required to calculate the position in the array that is indicated
by the index. For example, the optimizer creates an induction variable out of the operation
v[i] in the following code because the v[i] operation requires multiplication. This
optimization also eliminates the need to preserve the value of i:

int v[10];
void f(int x, int y, int z)
{
 int i;
 for (i = 0; i < 10; i++)
 v[i] = x * y * z;
}

With Induction variables enabled, the code changes:
int v[10];
void f(int x, int y, int z)
{
 int i, *p;
 for (p = v; p < &v[9]; p++)
 *p = x * y * z;
}

Inline intrinsic functions
Command-line equivalent: -Oi

When the Inline Intrinsic Functions option is on, the compiler generates the code for
common memory functions like strcpy() within your function's scope. This eliminates the
need for a function call. The resulting code executes faster, but it is larger.

The following functions are inlined with this option:

alloca fabs memchr memcmp
memcpy memset rotl rotr
stpcpy strcat strchr strcmp
strcpy strlen strncat strncmp
strncpy strnset strrchr

You can control the inlining of these functions with the pragma intrinsic. For example,
#pragma intrinsic strcpy causes the compiler to generate inline code for all
subsequent calls to strcpy in your function, and #pragma intrinsic -strcpy
prevents the compiler from inlining strcpy. Using these pragmas in a file overrides any
compiler option settings.

When inlining any intrinsic function, you must include a prototype for that function before
you use it; the compiler creates a macro that renames the inlined function to a function that
the compiler recognizes internally. In the previous example, the compiler would create a
macro #define strcpy _ _strcpy_ _.

Paradigm C++ Reference Manual104

The compiler recognizes calls to functions with two leading and two trailing underscores
and tries to match the prototype of that function against its own internally stored
prototype. If you don't supply a prototype, or if the prototype you supply doesn't match the
compiler's prototype, the compiler rejects the attempt to inline that function and generates
an error.

16-bit

The Optimizations|16-bit options pertain to 16-bit applications only.

Assume no pointer aliasing
Command-line equivalent: -Oa

When the Assume no pointer aliasing option is on, the compiler assumes that pointer
expressions are not aliased in common subexpression evaluation.

Assume no pointer aliasing affects the way the optimizer performs common
subexpression elimination and copy propagation by letting the optimizer maintain copy
propagation information across function calls and by letting the optimizer maintain
common subexpression information across some stores. Without this option the optimizer
must discard information about copies and subexpressions. Pointer aliasing might create
bugs that are hard to spot, so it is only applied when you enable this option.

Assume no pointer aliasing controls how the optimizer treats expressions that contain
pointers. When compiling with global or local common subexpressions and Assume no
pointer aliasing is enabled, the optimizer recognizes *p * x as a common
subexpression in function func1.

int g, y;
int func1(int *p)
{

 int x=5;
 y = *p * x;
 g = 3;
 return (*p * x);
}
void func2(void)
{
 g=2;
 func1(&g); // This is incorrect--the assignment g = 3

 // invalidates the expression *p * x
}

Copy propagation
Command-line equivalent: -Op

When this option is enabled; copies of constants, variables, and expressions are
propagated whenever possible.

Copy propagation is primarily speed optimization, but it never increases the size of your
code. Like loop-invariant code motion, copy propagation relies on the analysis performed
during common subexpression elimination. Copy propagation means that the optimizer
remembers the values assigned to expressions and uses those values instead of loading
the value of the assigned expressions. With this, copies of constants, expressions, and
variables can be propagated.

Chapter 3, Project options 105

Dead code elimination
Command-line equivalent: -Ob

When the Dead code elimination option is on, the compiler reveals variables that might
not be needed. Because the optimizer must determine where variables are no longer used
(live range analysis), you might also want to set Global register allocation (-Oe) when
you use this option.

Global register allocation
Command-line equivalent: -Oe

When this option is enabled, global register allocation and variable live range analysis
are enabled. This option should always be used when optimizing code because it
increases the speed and decreases the size of your application.

Invariant code motion
Command-line equivalent: -Om

When this option is enabled, invariant code is moved out of loops and your code is
optimized for speed. The optimizer uses information about all the expressions in the
function (gathered during common subexpression elimination) to find expressions whose
values do not change inside a loop.

To prevent the calculation from being done many times inside the loop, the optimizer
moves the code outside the loop so that it is calculated only once. The optimizer then
reuses the calculated value inside the loop.

You should use loop-invariant code motion whenever you are compiling for speed and
have used global common subexpressions, because moving code out of loops can result in
enormous speed gains. For example, in the following code, x * y * z is evaluated in
every iteration of the loop:

int v[10];
void f(int x, int y, int z)
{
 int i;
 for (i = 0; i < 10; i++)
 v[i] = x * y * z;
}

The optimizer rewrites the code:
int v[10];
void f(int x, int y, int z)
{
 int i,t1;
 t1 = x * y * z;
 for (i = 0; i < 10; i++)
 v[i] = t1;
}

Jump optimization
Command-line equivalent: -O

When Jump optimization option is on, the compiler reduces the code size by eliminating
redundant jumps and reorganizing loops and switch statements.

Paradigm C++ Reference Manual106

When this option is enabled, the sequences of stepping in the debugger can be confusing
because of the reordering and elimination of instructions. If you are debugging at the
assembly level, you might want to disable this option.

Default = ON

Loop optimization
Command-line equivalent: -Ol)

When this option is enabled, loops are compacted into REP/STOSx instructions.

Loop optimization takes advantage of the string move instructions on the 80x86
processors by replacing the code for a loop with a string move instruction, making the
code faster.

Depending on the complexity of the operands, the compacted loop code can also be
smaller than the corresponding non-compacted loop.

Suppress redundant loads
Command-line equivalent: -Z

When this option is enabled, the compiler suppresses the reloading of registers by
remembering the contents of registers and reusing them as often as possible.

Exercise caution when using this option; the compiler cannot detect if a value has been
modified indirectly by a pointer.

32-bit

Use the Optimizations|32-bit options to specify options specific to the Pentium processor
and the Intel optimizing compiler. The options are:

Pentium instruction scheduling
Command-line equivalent: -OS

When enabled, this switch rearranges instructions to minimize delays that can be caused
by Address Generation Interlocks (AGI) which occur on the i486 and Pentium
processors. This option also optimizes the code so that it takes advantage of the Pentium
parallel pipelines. Best results for Pentium systems are obtained when you use this switch
in conjunction with the 32-bit Compiler|Pentium option in the Project Options dialog box
(-5).

Scheduled code is more difficult to debug at the source level because instructions from a
particular source line may be mixed with instructions from other source lines. Stepping
through the source code is still possible, although the execution point might make
unexpected jumps between source lines as you step. Also, setting a breakpoint on a
source line may result in several breakpoints being set in the code. This is especially
important to note when inspecting variables, since a variable may be undefined even
though the execution point is positioned after the variable assignment.

Stepping through the following function when this switch is enabled demonstrates the
stepping behavior:

+

Chapter 3, Project options 107

int v[10];
void f(int i, int j)
{
 int a,b;

 a = v[i+j];
 b = v[i-j];
 v[i] = a + b;
 v[j] = a - b;
}

Execution starts by computing the index i-j in the assignment to b (note that a is still
undefined although the execution point is positioned after the assignment to a). The index
i+j is computed, v[i-j] is assigned to b, and v[i+j] is assigned to a. If a
breakpoint is set on the assignment to b, execution will stop twice: once when computing
the index and again when performing the assignment.

Default = OFF (-O-S)

Cache hit optimizations (Intel compiler only)
Command-line equivalent: -OM

Specifies a set of memory accessing optimizations that improves cache hits and reduces
the number of memory accesses. These optimizations include

l Loop interchange
l Loop distribution
l Strip mining and preloading
l Loop blocking
l Alternate loops
l Loop unrolling

Optimize across function boundaries (Intel compiler only)
Command-line equivalent: -OI

Specifies a set of interprocedural optimizations. These optimizations eliminate call
overhead and can create opportunities for further optimizations. They are applied across
procedure boundaries but are restricted to routines within the same file, including
routines in files combined by the #include preprocessor directive. These optimizations
include

l Monitoring module-level static variables
l Inline function expansion
l Cloning
l Passing arguments in registers
l Constant argument propagation

Currently, these optimizations are disabled if your source code contains embedded
assembly code.+

Paradigm C++ Reference Manual108

General optimization settings

Disable all optimizations
Command-line equivalent: -Od

Disables all optimization settings, including ones which you may have specifically set
and those which would normally be performed as part of the speed/size tradeoff.

Because this disables code compaction (tail merging) and cross-jump optimizations,
using this option can keep the debugger from jumping around or returning from a function
without warning, which makes stepping through code easier to follow.

You can override this setting using the predefined Style Sheets in the Project Manager.

Use selected optimizations
Does not set any optimization by default, but lets you set the specific optimization options
you need through the settings contained in the Optimization subtopics. The subtopic pages
are

l 16 and 32-bit
l 16-bit specific
l 32-bit specific

Configuring your own optimization settings should be reserved for expert users only.

Optimize for size
Command-line equivalents: -O1

This radio button sets an aggregate of optimization options that tells the compiler to
optimize your code for size. For example, the compiler scans the generated code for
duplicate sequences. When such sequences warrant, the optimizer replaces one sequence
of code with a jump to the other and eliminates the first piece of code. This occurs most
often with switch statements. The compiler optimizes for size by choosing the smallest
code sequence possible.

This option (-O1) sets the following optimizations:

l Jump optimizations (-O)
l Dead code elimination (-Ob)
l Duplicate expressions (-Oc)
l Register allocation and live range analysis (-Oe)
l Loop optimizations (-Ol)
l Instruction scheduling (-OS)
l Register load suppression (-Z)

The compiler options -Ot and -G are supported for backward compatibility only, and are
equivalent to the -O1 compiler option.

Optimize for speed
Command-line equivalent: -O2

This radio button sets an aggregate of optimization options that tells the compiler to
optimize your code for speed. This switch (-O2) sets the following optimizations:

l Dead code elimination (-Ob)

+

+

+

Chapter 3, Project options 109

l Register allocation and live range analysis (-Oe)
l Duplicate expression within functions (-Og)
l Intrinsic functions (-Oi)
l Loop optimizations (-Ol)
l Code motion (-Om)
l Copy propagation (-Op)
l Instruction scheduling (-OS)
l Induction variables (-Ov)
l Register load suppression (-Z)

The compiler options -Os and -G- are supported for backward compatibility only, and
are equivalent to the -O2 compiler option. The -Ox option is also supported for
backward compatibility and for compatibility with Microsoft make files.

Command-line only options

The options are available only from the command line.

Object search paths

Command-line equivalent = /j

This option lets you specify the directories the linker will search if there is no explicit
path given for an .OBJ module in the compile/link statement.This option works with both
PLINK and PLINK32.

The Specify object search path uses the following command-line syntax:
/j<PathSpec>[;<PathSpec>][...]

The linker uses the specified object search path(s) if there is no explicit path given for the
.OBJ file and the linker cannot find the object file in the current directory. For example,
the command

PLINK32 /jc:\myobjs;.\objs splash .\common\logo,,,utils logolib

directs the linker to first search the current directory for SPLASH.OBJ. If it is not found
in he current directory, the linker then searches for the file in the C:\MYOBJS directory,
and then in the .\OBJs directory. However, notice that the linker does not use the object
search paths to find the file LOGO.OBJ because an explicit path was given for this file.

16- and 32-bit command-line options

The following command-line switches are supported by the command-line compiler
PCC.EXE, PCC32.EXE, and PCC32i.EXE.

Compile to .ASM, then assemble
Command-line equivalent = -B

This command-line option causes the compiler to first generate an .ASM file from your
C++ (or C) source code (same as the -S command-line option). The compiler then calls
PASM (or the assembler specified with the -E option) to create an .OBJ file from the
.ASM file. The .ASM file is then deleted. To use this 32-bit compiler option, you must
install a 32-bit assembler, such as PASM32.EXE, and then specify this assembler with

+

Paradigm C++ Reference Manual110

the -E option. In the Paradigm C++ IDE, right-click the source node in the Project
Manager, then choose Special|C++ to Assembler.

Your program will fail to compile with the -B option if your C or C++ source code
declares static global variables that are keywords in assembly. This is because the
compiler does not precede static global variables with an underscore (as it does other
variables), and the assembly keywords will generate errors when the code is assembled.

Compile to .OBJ, no link
Command-line equivalent = -c

Compiles and assembles the named .C, .CPP, and .ASM files, but does not execute a link
on the resulting .OBJ files. In the Paradigm C++ IDE, choose Project|Compile.

Specify assembler
Command-line equivalent = -Efilename

Assemble instructions using filename as the assembler. The 16-bit compiler uses PASM
as the default assembler. In the Paradigm C++ IDE, you can configure a different
assembler using the Tool menu.

Specify executable file name
Command-line equivalent = -efilename

Link file using filename as the name of the executable file. If you do not specify an
executable name with this option, the linker creates an executable file based on the name
of the first source file or object file listed in the command.

Pass option to linker
Command-line equivalent = -lx

Use this command-line option to pass option(s) x to the linker from a compile command.
Use the command-line option -l-x to disable a specific linker option.

Create a MAP file
Command-line equivalent = -M

Use this command-line option tells the linker to create a map file.

Compile .OBJ to filename
Command-line equivalent = -ofilename

Use this option to compile the specified source file to filename.OBJ.

C++ compile
Command-line equivalent = -P

The -P command-line option causes the compiler to compile all source files as C++ files,
regardless of their extension. Use -P- to compile all .CPP files as C++ source files and
all other files as C source files.

The command-line option -Pext causes the compiler to compile all source files as C++
files and it changes the default extension to whatever you specify with ext. This option is
provided because some programmers use different extensions as their default extension
for C++ code.

+

Chapter 3, Project options 111

The option -P-ext compiles files based on their extension (.CPP compiles to C++, all
other extensions compile to C) and sets the default extension (other than .CPP).

Compile to assembler
Command-line equivalent = -S

This option causes the compiler to generate an .ASM file from your C++ (or C) source
code. The generated .ASM file includes the original C or C++ source lines as comments
in the file.

Specify assembler option
Command-line equivalent = -Tx

Use this command-line option to pass the option(s) x to the assembler you specify with
the -E option. To disable all previously enabled assembler options, use the -T-
command-line option.

Undefine symbol
Command-line equivalent = -Uname

This command-line option undefines the previous definition of the identifier name.

Linker supported command-line options

The following switches are supported by the 16-bit command-line compiler (PCC.EXE)
and linker (PLINK.EXE).

Generate 8087 instructions
Command-line equivalent = -f87

Use this 16-bit compiler option to create 16-bit real-mode 8087 floating-point code.

Compile to 16-bit real-mode .AXE
Command-line equivalent = -tD

The compiler creates a 16-bit real-mode .AXE file (same as -tDe).

Enable backward compatibility options
Command-line equivalent = -Vo

This compiler option enables the following 16-bit backward compatibility options: -Va,
-Vb, -Vc, -Vp, -Vt, -Vv. Use this option as a handy shortcut when linking libraries built
with older versions of Paradigm C++.

Link 16-bit real-mode .EXE
Command-line equivalent = /Tde

PLINK generates a real-mode 16-bit real-mode .EXE file.

Extended memory swapping
Command-line equivalent = /yx

Paradigm C++ Reference Manual112

This PLINK option controls the linker's use of extended memory for I/O buffering. By
default, the linker can use up to 8MB of extended memory. You can control the linker's
use of extended memory with one of the following forms of this switch:

l /yx or /yx+ uses all available extended memory, up to 8MB
l /yxn uses only up to n KB of extended memory

Default = OFF

Enable 24-bit extended addressing
Command-line equivalent = -Y

Enables use of the 24-bit extended addressing mode to allow a real-mode address space
of 16MB.

When this option is enabled, the macro __EXTADDR__ will be defined.

32-bit command-line options

The following switches are supported by the 32-bit command-line compilers
(PCC32.EXE and PCC32i.EXE) and linker (PLINK32.EXE).

The following 32-bit command-line options are not needed if you include a module
definition file in your compile and link commands which specifies the type of 32-bit
application you intend to build.

Generate a multi-threaded target
Command-line equivalent = -tWM

The compiler creates a multi-threaded .EXE or .DLL. (The command-line option -WM is
supported for backward compatibility only; it has the same functionality as -tWM.)

Link using 32-bit Windows API
Command-line equivalent = /aa

PLINK32 generates a protected-mode executable that runs using the 32-bit Windows API.

Link for 32-bit console application
Command-line equivalent = /ap

PLINK32 generates a protected-mode executable file that runs in console mode.

Link 32-bit .DLL file
Command-line equivalent = /Tpd

PLINK32 generates a 32-bit protected-mode Windows .DLL file.

Link 32-bit .EXE file
Command-line equivalent = /Tpe

PLINK32 generates a 32-bit protected-mode Windows .EXE file.

Compiler command-line options

The following table lists the command-line compiler options in alphabetical order:

+

Chapter 3, Project options 113

Option Description

@filename Read compiler options from the response file "filename"
+filename Use alternate configuration file "filename"
-1- Generate 8086 compatible instructions (Default for 16-bit)
-1 Generate the 80186/286 compatible instructions (16-bit only)
-2 Generate 80286 protected-mode compatible instructions (16-bit

compiler only)
-3 Generate 80386 protected-mode compatible instructions (Default for

32-bit)
-4 Generate 80386/80486 protected-mode compatible instructions
-5 Generate Pentium instructions
-A Use only ANSI keywords
-a Align byte (Default: -a- use byte-aligning)
-AK Use only Kernighan and Ritchie keywords
-an Align to "n" where 1=byte, 2=word (16-bit = 2 bytes) 4=Double word

(32- bit only, 4 bytes), 8=Quad word (32-bit only, 8 bytes)
-AT Use Paradigm C++ keywords (also -A-)
-AU Use only UNIX V keywords
-B Compile to .ASM (-S), the assemble to .OBJ (command-line compiler

only)
-b Make enums always integer-sized (Default: -b- make enums byte-sized when

possible)
-C Turn nested comments on (Default: -C- turn nested comments off)
-c Compile to .OBJ, no link (command-line compiler only)
-Dname Define "name" to the null string

-Dname=string Define "name" to "string"

-d Merge duplicate strings (Default)
-dc Move string literals from data segment to code segment (16-bit

compiler only)
-Efilename Specify assembler

-efilename Specify executable file name

-f Emulate floating point
-f- No floating point
-f87 Generate 8087 floating-point code (command-line compiler only)
-Fa Enable page alignment for far segments
-Fb Enable Borland C++-compatible far data
-Fc Generate COMDEFs (16-bit compiler only)
-Ff Create far variables automatically
-Ff=size Create far variables automatically; set the threshold to "size" (16-bit

compiler only)
-ff Fast floating point
-fp Correct Pentium FDIV flaw
-Fs Assume DS=SS in all memory models (16-bit compiler only)
-gn Warnings: stop after "n" messages (Default: 255)

-H Generate and use precompiled headers (Default)
-H=filename Set the name of the file for precompiled headers

Table 3-10
Compiler

command-line
options

Paradigm C++ Reference Manual114

-H”xxx” Stop precompiling after header file xxxx

-h Uses fast huge pointers
-Hc Cache precompiled header
-Hu Use but do not generate precompiled headers
-in Make significant identifier length to be "n" (Default)

-Jg Generate definitions for all template instances and merge duplicates
(Default)

-Jgd Generate public definitions for all template instances; duplicates result
in redefinition errors

-Jgx Generate external references for all template instances
-jn Errors: stop after "n" messages (Default)

-K Default character type unsigned (Default: -K- default character type
signed)

-k Turn on standard stack frame (Default)
-K2 Allow only two character types (signed and unsigned). Char is treated as signed.
-lx Pass option “x” to linker (command-line compiler only)

-M Create a Map file (command-line compiler only)
-mc Compile using compact memory model (16-bit compiler only)
-mh Compile using huge memory model
-ml Compile using large memory model (16-bit compiler only)
-mm Compile using medium memory model (16-bit compiler only)
-mm! Compile using medium memory model; assume DS!=SS (16-bit

compiler only. Note: there is no space between the -mm and the !)
-ms Compile using small memory model (Default, 16-bit compiler only)
-ms! Compile using small memory model; assume DS! = SS (16-bit

compiler only. Note: there is no space between the -ms and the !)
-N Check for stack overflow
-O Optimize jumps
-ofilename Compile .OBJ to “filename” (command-line compiler only)

-O1 Generate smallest possible code
-O2 Generate fastest possible code
-Oa Optimize assuming pointer expressions are not aliased on common

subexpression evaluation
-Ob Eliminate dead code
-Oc Eliminate duplicate expressions within basic blocks
-Od Disable all optimizations
-Oe Allocate global registers and analyze variable live ranges
-Og Eliminate duplicate expressions within functions
-OI Optimize across function boundaries (Intel compiler only)
-Oi Expand common intrinsic functions
-Ol Compact loops
-OM Cache hit optimizations (Intel compiler only)
-Om Move invariant code out of loops
-Op Propagate copies
-OS Pentium instruction scheduling
-Ov Enable loop induction variable and strength reduction
-P Force C++ compile (command-line compiler only)

Chapter 3, Project options 115

-p Use Pascal calling convention
-pc Use C calling convention (Default: -pc, -p-)
-po Use fastthis calling convention for passing this parameter in registers
-pr Use fastcall calling convention for passing parameters in registers
-ps Use stdcall calling convention (32-bit compiler only)
-R Include browser information in generated .OBJ files
-r Use register variables (Default)
-rd Allow only declared register variables to be kept in registers
-RT Enable run-time type information (Default)
-S Compile to assembler (command-line compiler only)
-Tx Specify assembler option “x” (command-line compiler only)

-tD Compile to a 16-bit real-mode .EXE file (same as -tDe) (command-line compiler
only)

-tWM Generate a 32-bit multi-threaded target (command-line compiler only)
-Uname Undefine any previous definitions of "name" (command-line compiler

only)
-u Generate underscores (Default)
-V Use smart C++ virtual tables (Default)
-v Turn on source debugging
-V0 External C++ virtual tables
-V1 Public C++ virtual tables
-Va Pass class arguments by reference to a temporary variable (16-bit

compiler only)
-Vb Make virtual base class pointer same size as 'this' pointer of the class

(Default, 16-bit compiler only)
-VC Calling convention mangling compatibility
-Vc Do not add the hidden members and code to classes with pointers to

virtual base class members (16-bit compiler only)
-Vd for loop variable scoping
-Ve Zero-length empty base classes
-Vf Far C++ virtual tables (16-bit compiler only)
-Vh Treat “far” classes as “huge”
-vi Control expansion of inline functions
-Vmd Use the smallest representation for member pointers
-Vmm Member pointers support multiple inheritance
-Vmp Honor the declared precision for all member pointer types
-Vms Member pointers support single inheritance
-Vmv Member pointers have no restrictions (most general representation)

(Default)
-Vo Enable backward compatibility options (command-line compiler only)
-Vp Pass the 'this' parameter to 'pascal' member functions as the first
-Vs Local C++ virtual tables
-Vt Place the virtual table pointer after nonstatic data members (16-bit

compiler only)
-Vv ‘deep’ virtual basses
-w Display warnings on
-w"xxx" Enable "xxx" warning message (Default)

Paradigm C++ Reference Manual116

-wamb Ambiguous operators need parentheses
-wamp Superfluous & with function
-wasm Unknown assembler instruction
-waus 'identifier' is assigned a value that is never used (Default)
-wbbf Bit fields must be signed or unsigned int
-wbei Initializing 'identifier' with 'identifier' (Default)
-wbig Hexadecimal value contains more than three digits (Default)
-wccc Condition is always true OR Condition is always false (Default)
-wcln Constant is long
-wcpt Nonportable pointer comparison (Default)
-wdef Possible use of 'identifier' before definition
-wdpu Declare type 'type' prior to use in prototype (Default)
-wdup Redefinition of 'macro' is not identical (Default)
-wdsz Array size for 'delete' ignored (Default)
-weas Assigning ‘type’ to ‘enum’
-weff Code has no effect (Default)
-wias Array variable 'identifier' is near (Default)
-wext 'identifier' is declared as both external and static (Default)
-whch Handler for '<type1>' Hidden by Previous Handler for '<type2>'
-whid 'function1' hides virtual function 'function2' (Default)
-wibc Base class 'base1' is inaccessible because also in 'base2' (Default)
-will Ill-formed pragma (Default)
-winl Functions containing reserved words are not expanded inline (Default)
-wlin Temporary used to initialize 'identifier' (Default)
-wlvc Temporary used for parameter 'parameter' in call to 'function' (Default)
-wmsg User-defined warnings
-wmpc Conversion to type fails for members of virtual base class base

(Default)
-wmpd Maximum precision used for member pointer type <type> (Default)
-wnak Non-ANSI Keyword Used: '<keyword>' (Note: Use of this option is a

requirement for ANSI conformance)
-wnci The constant member 'identifier' is not initialized (Default)
-wnfc Non-constant function ‘ident’ called for const object
-wnod No declaration for function 'function'
-wnst Use qualified name to access nested type 'type' (Default)
-wntd Use '> >' for nested templates instead of '>>' (Default)
-wnvf Non-volatile function <function> called for volatile object (Default)
-wobi Base initialization without a class name is now obsolete (Default)
-wobs 'ident' is obsolete
-wofp Style of function definition is now obsolete (Default)
-wovl Overload is now unnecessary and obsolete (Default)
-wpar Parameter 'parameter' is never used (Default)
-wpch Cannot create precompiled header: header (Default)
-wpia Possibly incorrect assignment (Default)
-wpin Initialization is only partially bracketed
-wpre Overloaded prefix operator 'operator' used as a postfix operator

Chapter 3, Project options 117

-wpro Call to function with no prototype (Default)
-wrch Unreachable code (Default)
-wret Both return and return of a value used (Default)
-wrng Constant out of range in comparison (Default)
-wrpt Nonportable pointer conversion (Default)
-wrvl Function should return a value (Default)
-wsig Conversion may lose significant digits
-wstu Undefined structure 'structure'
-wstv Structure passed by value
-wsus Suspicious pointer conversion (Default)
-wucp Mixing pointers to different 'char' types
-wuse 'identifier' declared but never used
-wvoi Void functions may not return a value (Default)
-wzdi Division by zero (Default)
-X Disable compiler autodependency output (Default: -X- use compiler

autodependency output)
-x Enable exception handling (Default)
-xc Enable compatible exception handling
-xd Enable destructor cleanup (Default)
-xf Enable fast exception prologs
-xp Enable exception location information
-y Line numbers on
-Y Enables 24-bit extended addressing mode
-Z Enable register load suppression optimization
-zAname Code class set to "name"

-zBname BSS class set to "name"

-zCname Code segment set to "name"

-zDname BSS segment set to "name"

-zEname Far data segment set to "name"

-zFname Far data class set to "name"

-zGname BSS group set to "name"

-zHname Far data group set to "name"

-zIname Constant initialized far data segment set to "name"

-zJname Constant initialized far data class set to "name"

-zKname Constant initialized far data group set to "name"

-zPname Code group set to "name"

-zRname Data segment set to "name"

-zSname Data group set to "name"

-zTname Data class set to "name"

-zVname Far virtual segment set to "name" (16-bit compiler only)

-zWname Far virtual class set to "name" (16-bit compiler only)

-zXname Far BSS segment set to "name"

-zYname Far BSS class set to "name"

-zZname Far BSS group set to "name"

Paradigm C++ Reference Manual118

Command-line options by function

The Paradigm C++ IDE groups the compiler and linker command-line options into the
following categories:

l Compiler
l 16-bit compiler
l 32-bit compiler

l C++ options
l Optimizations
l Messages
l Linker

In addition, there are compiler and linker options that you can set from only the command-
line:

Option Description

Configuration Files
@filename Read compiler options from the response file "filename"

Response Files
+filename Use alternate configuration file "filename"

Compiler|Defines
-Dname Define "name" to the null string

-Dname=string Define "name" to "string"

-Uname Undefine any previous definitions of "name"

Compiler|Code Generation
-b Make enums always integer-sized (Default: -b- make enums byte-sized

when possible)
-K Default character type unsigned (Default: -K- default character type

signed)
-d Merge duplicate strings (Default)
-po Use fastthis calling convention for passing this parameter in registers

(16-bit compiler only)
-r Use register variables (Default)
-rd Allow only declared register variables to be kept in registers
-Y Enables 24-bit extended addressing

Compiler|Floating Point
-f- No floating point
-f Emulate floating point
-ff Fast floating point
-fp Correct Pentium FDIV flaw

Compiler|Compiler Output
-X Disable compiler autodependency output (Default: -X- use compiler

autodependency output)
-u Generate underscores (Default)
-Fc Generate COMDEFs (16-bit compiler only)

Table 3-11
Command-line

only options

Chapter 3, Project options 119

Compiler|Source
-C Turn nested comments on (Default: -C- turn nested comments off)
-in Make significant identifier length to be "n" (Default)

-AT Use Paradigm C++ keywords (also -A-)
-A Use only ANSI keywords
-AU Use only UNIX V keywords
-AK Use only Kernighan and Ritchie keywords

Compiler|Debugging
-k Turn on standard stack frame (Default)
-N Check for stack overflow
-vi Control expansion of inline functions
-y Line numbers on
-v Turn on source debugging
-R Include browser information in generated .OBJ files

Compiler|Precompiled Headers
-H Generate and use precompiled headers (Default)
-Hu Use but do not generate precompiled headers
-Hc Cache precompiled header
-H=filename Set the name of the file for precompiled headers
-H”xxx” Stop precompiling after header file xxxx

16-bit Compiler|Processor
-1- Generate 8086 compatible instructions (Default for 16-bit)
-1 Generate the 80186/286 compatible instructions (16-bit only)
-2 Generate 80286 protected-mode compatible instructions (16-bit

compiler only)
-3 Generate 80386 protected-mode compatible instructions (Default for

32-bit)
-4 Generate 80386/80486 protected-mode compatible instructions
-5 Generates Pentium instructions
-a Align byte (Default: -a- use byte-aligning)
-an Align to "n" where 1=byte, 2=word (16-bit = 2 bytes), 4=Double word

(32-bit only, 4 bytes), 8=Quad word (32-bit only, 8 bytes)

16-bit Compiler|Calling Convention
-pc Use C calling convention (Default: -pc, -p-)
-p Use Pascal calling convention
-pr Use fastcall calling convention for passing parameters in registers

16-bit Compiler|Memory Model
-ms Compile using small memory model (Default, 16-bit compiler only)
-ms! Compile using small memory model; assume DS! = SS (16-bit

compiler only. Note: there is no space between the -ms and the !)
-mm Compile using medium memory model (16-bit compiler only)
-mm! Compile using medium memory model; assume DS!=SS (16-bit

compiler only. Note: there is no space between the -mm and the !)
-mc Compile using compact memory model (16-bit compiler only)
-ml Compile using large memory model (16-bit compiler only)
-mh Compile using huge memory model

Paradigm C++ Reference Manual120

-Fa Enable page alignment for far segments
-Fb Enable Borland C++-compatible far data
-Fs Assume DS=SS in all memory models (16-bit compiler only)
-dc Move string literals from data segment to code segment (16-bit

compiler only)
-Vf Far C++ virtual tables (16-bit compiler only)
-h Uses fast huge pointers
-Ff Create far variables automatically
-Ff=size Create far variables automatically; set the threshold to "size" (16-bit

compiler only)

16-bit Compiler|Segment Names Data
-zRname Data segment set to "name"

-zSname Data group set to "name"

-zTname Data class set to "name"

-zDname BSS segment set to "name"

-zGname BSS group set to "name"

-zBname BSS class set to "name"

16-bit Compiler|Segment Names Far Data
-zEname Far data segment set to "name"

-zHname Constant initialized far data segment set to "name "

-zIname Constant initialized far data class set to "name "

-zJname Constant initialized far data group set to "name "

-zKname Far data group set to "name"

-zFname Far data class set to "name"

-zVname Far virtual segment set to "name" (16-bit compiler only)

-zWname Far virtual class set to "name" (16-bit compiler only)

-zXname Far BSS segment set to "name"

-zYname Far BSS class set to "name"

-zZname Far BSS group set to "name"

16-bit Compiler|Segment Names Code
-zCname Code segment set to "name"

-zPname Code group set to "name"

-zAname Code class set to "name"

32-bit Compiler|Processor
-3 Generate 80386 instructions. (Default for 32-bit)
-4 Generate 80486 instructions
-5 Generate Pentium instructions

32-bit Compiler|Calling Convention
-pc Use C calling convention (Default: -pc, -p-)
-p Use Pascal calling convention
-pr Use fastcall calling convention for passing parameters in registers
-ps Use stdcall calling convention (32-bit compiler only)

C++ Options|Member Pointer
-Vmp Honor the declared precision for all member pointer types

Chapter 3, Project options 121

-Vmv Member pointers have no restrictions (most general representation)
(Default)

-Vmm Member pointers support multiple inheritance
-Vms Member pointers support single inheritance
-Vmd Use the smallest representation for member pointers

C++ Options|C++ Compatibility
-Vd for loop variable scoping
-K2 Allow only two character types (signed and unsigned). Char is treated

as signed.
-VC Calling convention mangling compatibility
-Vb Make virtual base class pointer same size as 'this' pointer of the class

(Default, 16-bit compiler only)
-Va Pass class arguments by reference to a temporary variable (16-bit

compiler only)
-Vc Do not add the hidden members and code to classes with pointers to

virtual base class members (16-bit compiler only)
-Vp Pass the 'this' parameter to 'pascal' member functions as the first
-Vv ‘deep’ virtual basses
-Vt Place the virtual table pointer after nonstatic data members (16-bit

compiler only)
-Vh Treat “far” classes as “huge”

C++ Options|Virtual Tables
-V Use smart C++ virtual tables (Default)
-Vs Local C++ virtual tables
-V0 External C++ virtual tables
-V1 Public C++ virtual tables

C++ Options|Templates
-Jg Generate definitions for all template instances and merge duplicates

(Default)
-Jgd Generate public definitions for all template instances; duplicates result

in redefinition errors
-Jgx Generate external references for all template instances

C++ Options|Exception Handling
-x Enable exception handling (Default)
-xp Enable exception location information
-xd Enable destructor cleanup (Default)
-xf Enable fast exception prologs
-xc Enable compatible exception handling
-RT Enable run-time type information (Default)

C++ Options|General
-Ve Zero-length empty base classes

Optimizations
-Od Disable all optimizations
-O1 Generate smallest possible code
-O2 Generate fastest possible code

Optimizations|16- and 32-bit
-Oc Eliminate duplicate expressions within basic blocks

Paradigm C++ Reference Manual122

-Og Eliminate duplicate expressions within functions
-Oi Expand common intrinsic functions
-Ov Enable loop induction variable and strength reduction

Optimizations|16-bit
-O Optimize jumps
-Ol Compact loops
-Z Enable register load suppression optimization
-Ob Eliminate dead code
-OW Suppress the inc bp/dec bp on windows far functions (16-bit compiler

only)
-Oe Allocate global registers and analyze variable live ranges
-Oa Optimize assuming pointer expressions are not aliased on common

subexpression evaluation
-Om Move invariant code out of loops
-Op Propagate copies

Optimizations|32-bit
-OS Pentium instruction scheduling
-OM Cache hit optimizations (Intel compiler only)
-OI Optimize across function boundaries (Intel compiler only)

Messages
-w Display warnings on
-wxxx Enable "xxx" warning message (Default)

-gn Warnings: stop after "n" messages (Default: 255)

-jn Errors: stop after "n" messages (Default)

Messages|Portability
-wrpt Nonportable pointer conversion (Default)
-wcpt Nonportable pointer comparison (Default)
-wrng Constant out of range in comparison (Default)
-wcln Constant is long
-wsig Conversion may lose significant digits
-wucp Mixing pointers to different 'char' types

Messages|ANSI Violations
-wvoi Void functions may not return a value (Default)
-wret Both return and return of a value used (Default)
-wsus Suspicious pointer conversion (Default)
-wstu Undefined structure 'structure'
-wdup Redefinition of 'macro' is not identical (Default)
-wbig Hexadecimal value contains more than three digits (Default)
-wbbf Bit fields must be signed or unsigned int
-wext 'identifier' is declared as both external and static (Default)
-wdpu Declare type 'type' prior to use in prototype (Default)
-wzdi Division by zero (Default)
-wbei Initializing 'identifier' with 'identifier' (Default)
-wpin Initialization is only partially bracketed
-wnak Non-ANSI Keyword Used: '<keyword>' (Note: Use of this option is a

requirement for ANSI conformance)

Chapter 3, Project options 123

Messages|Obsolete C++
-wobi Base initialization without a class name is now obsolete (Default)
-wofp Style of function definition is now obsolete (Default)
-wpre Overloaded prefix operator 'operator' used as a postfix operator
-wovl Overload is now unnecessary and obsolete (Default)

Messages|Potential C++ Errors
-wnci The constant member 'identifier' is not initialized (Default)
-weas Assigning ‘type’ to ‘enum’
-whid 'function1' hides virtual function 'function2' (Default)
-wnfc Non-constant function ‘ident’ called for const object
-wibc Base class 'base1' is inaccessible because also in 'base2' (Default)
-wdsz Array size for 'delete' ignored (Default)
-wnst Use qualified name to access nested type 'type' (Default)
-whch Handler for '<type1>' Hidden by Previous Handler for '<type2>'
-wmpc Conversion to type fails for members of virtual base class base

(Default)
-wmpd Maximum precision used for member pointer type <type> (Default)
-wntd Use '> >' for nested templates instead of '>>' (Default)
-wnvf Non-volatile function <function> called for volatile object (Default)

Messages|Inefficient C++ Coding
-winl Functions containing reserved words are not expanded inline (Default)
-wlin Temporary used to initialize 'identifier' (Default)
-wlvc Temporary used for parameter 'parameter' in call to 'function' (Default)

Messages|Potential Errors
-wpia Possibly incorrect assignment (Default)
-wdef Possible use of 'identifier' before definition
-wnod No declaration for function 'function'
-wpro Call to function with no prototype (Default)
-wrvl Function should return a value (Default)
-wamb Ambiguous operators need parentheses
-wccc Condition is always true OR Condition is always false (Default)

Messages|Inefficient Coding
-waus 'identifier' is assigned a value that is never used (Default)
-wpar Parameter 'parameter' is never used (Default)
-wuse 'identifier' declared but never used
-wstv Structure passed by value
-wrch Unreachable code (Default)
-weff Code has no effect (Default)

Messages|General
-wasm Unknown assembler instruction
-will Ill-formed pragma (Default)
-wias Array variable 'identifier' is near (Default)
-wamp Superfluous & with function
-wobs 'ident' is obsolete
-wpch Cannot create precompiled header: header (Default)
-wmsg User-defined warnings

Paradigm C++ Reference Manual124

Linker options
General
Map file
16-bit linker
16-bit optimizations
32-bit linker
Warnings

Command-line only options
16- and 32-bit command-line options
Linker supported command-line options
32-bit command-line options

Chapter 4, Browsing through your code 125

C h a p t e r

4

Browsing through your code

The browser lets you search through your object hierarchies, classes, functions,
variables, types, constants, and labels that your program uses. The browser also lets you:

l Graphically view the hierarchies in your application, then select the object of your
choice and view the functions and symbols it contains.

l List the variables your program uses, then select one and view its declaration, list all
references to it in your program, or go to where it is declared in your source code.

l List all the classes your program uses, then select one and list all the symbols in its
interface part. From this list, you can select a symbol and browse as you would with
any other symbol in your program.

Using the browser

If the program in the current Edit window or the first file in your project has not yet been
compiled, the Paradigm C++ IDE must first compile your program before invoking the
browser.

If you try to browse a variable or class definition (or any symbol that does not have
symbolic debug information), the Paradigm C++ IDE displays an error message.

If you changed the following default settings on the Project options dialog box, before you
use the browser, be sure to:
 1. Choose Options|Project.
 2. Choose Compiler|Debugging and check

l Debug information in OBJs
l Browser reference information in OBJs

 3. Choose Linker|General and check Include debug information.
 4. Compile your application.

Starting the browser

To start browsing through your code, choose one of the following menu or SpeedBar
commands: From the main menu or the SpeedBar:

l Search|Browse symbol
l Search|Browse Classes
l Search|Browse Globals

Browser views
The browser provides the following views:

l Global symbols
l Objects (Class overview)
l Symbol declaration

Paradigm C++ Reference Manual126

l Class inspection
l References

Browsing objects (class overview)

Choose Search|Browse classes to see an overall view of the object hierarchies in your
application, as well as the small details.

The browser draws your objects and shows their ancestor-descendant relationships in a
horizontal tree. The red lines in the hierarchy help you see the immediate ancestor-
descendant relationships of the currently selected object more clearly.

To see more detail about a particular object, double-click it. (If you are not using a
mouse, select the object by using your arrow cursor keys and press Enter.) The browser
lists the symbols (the procedures, functions, variables, and so on) used in the object.

One or more letters appear to the left of each symbol in the object that describe what kind
of symbol it is. "See Browser filters and letter symbols".

Browsing global symbols

Choose Search|Browse globals to open a window that lists every global symbol in your
application in alphabetical order.

To see the declaration of a particular symbol listed in the browser, use one of the
following methods:

l Double-click the symbol
l Select the symbol and press Enter
l Select the symbol, choose Browse symbol from the SpeedMenu

Search
The Search input box at the bottom of the window lets you quickly search through the list
of global symbols by typing the first few letters of the symbol name. As you type, the
highlight bar in the list box moves to a symbol that matches the typed characters.

Browser SpeedMenu
Once you select the global symbol you are interested in, you can use the following
commands on the Browser SpeedMenu:

l Edit Source
l Browse Symbol
l Browse References
l Return to Previous View
l Print Class Hierarchy
l Toggle Window Mode

Browsing symbols in your code

You can browse any symbol in your code without viewing object hierarchies or lists of
symbols first.

To do so, highlight or place the insertion point on the symbol in your code and choose
Browse symbol. from the Search menu or the Edit window SpeedMenu.

Chapter 4, Browsing through your code 127

If the symbol you select is a structured type, the browser shows you all the symbols in the
scope of that type. You can then choose to inspect any of these further. For example, if
you choose an object type, you will see all the symbols listed that are within the scope of
the object.

Symbol declaration window
This Browser window shows the declaration of the selected symbol.

You can use the following commands on the Browser SpeedMenu:

l Edit Source
l Browse References
l Browse Class Hierarchy
l Return to Previous View
l Toggle Window Mode

Browsing references
This Browser window shows the references to the selected symbol.

You can use the following commands on the Browser SpeedMenu:

l Edit Source
l Browse Class Hierarchy
l Return to Previous View
l Toggle Window Mode
l Set Options

Class inspection window
This Browser window shows the symbols (functions and variables) used in the selected
class.

Once you select the symbol you are interested in, you can use the following commands on
the Browser SpeedMenu:

l Edit Source
l Browse Symbol
l Browse References
l Browse Class Hierarchy
l Return to Previous View
l Toggle Window Mode
l Set Options

Browser filters and letter symbols

When you browse a particular symbol, the same letters that appear on the left that identify
the symbol appear in a Filters matrix at the bottom of the Browser window. The Filters
matrix has a column for each letter which can appear in the top or bottom row of the
column.

Use the filters to select the type of symbols you want to see listed. (You can also use the
Browser options settings to specify the types of symbols you want to see listed.)

Paradigm C++ Reference Manual128

Letter Symbol

F Function
T Type
V Variable
C Integral constants
? Debuggable
I Inherited from an ancestor
v Virtual method

In some cases, more than one letter appears next to a symbol. Additional letters appear to
the right of the letter identifying the type of symbol and further describe the symbol:

To view all instances of a particular type of symbol

For example, to view all the variables in the currently selected object, click the top cell
in the V column. All the variables used in the object appear.

To hide all instances of a particular type of symbol

For example, to view only the functions and procedures in an object, you need to hide all
the variables. Click the bottom cell in the V column, and click the top cells in the F and P
columns.

To change several filter settings at once

Drag your mouse over the cells you want to select in the Filters matrix.

Customizing the browser

Use the Environment Options dialog box to select the Browser options you want to use.
 1. Choose Options|Environment.
 2. Choose Browser.
 3. Specify the types of symbols you want to have visible in the Browser using the

Visible symbols option.
 4. Specify how many browser views you can have open at one time. See single or

multiple Browser window mode in the Browser window behavior option.

Table 4-1
Browser letter

symbols

+

Click the top cell
of the column.

Click the bottom
cell of the letter

column.

Chapter 5, Using the integrated debugger 129

C h a p t e r

5

Using the integrated debugger

No matter how careful you are when you code, your program is likely to have errors or
bugs that prevent it from running the way you intended. Debugging is the process of
locating and fixing the errors in your program.

The Paradigm C++ IDE contains an integrated debugger that lets you debug 16- and 32-
bit embedded applications without leaving the development environment. Among other
things, the integrated debugger lets you control the execution of your program, inspect the
values of variables and items in data structures, modify the values of data items while
debugging. You can access the functionality of the integrated debugger through two
menus: Debug and View along with local menus and keystrokes. This chapter introduces
you to the functionality of the integrated debugger and gives a brief overview of the
debugging process.

Types of bugs

The integrated debugger can help find two basic types of programming errors: run-time
errors and logic errors.

Run-time errors

If your program successfully compiles, but fails when you run it, you've encountered a
run-time error. Your program contains valid statements, but the statements cause errors
when they're executed. For example, your program might be trying to open a nonexistent
file, or might be trying to divide a number by zero. The operating system detects run-time
errors and stops your program execution if such an error is encountered.

Without a debugger, run-time errors can be difficult to locate because the compiler
doesn't tell you where the error is located in your source code. Often, the only clue you
have to work with is where your program failed and the error message generated by the
run-time error.

Although you can find run-time errors by searching through your program source code, the
integrated debugger can help you quickly track down these types of errors. Using the
integrated debugger, you can run to a specific program location. From there, you can
begin executing your program one statement at a time, watching the behavior of your
program with each step. When you execute the statement that causes your program to fail,
you have pinpointed the error. From there, you can fix the source code recompile the
program, and resume testing your program.

Logic errors

Logic errors are errors in design and implementation of your program. Your program
statements are valid (they do something), but the actions they perform are not the actions
you had in mind when you wrote the code. For instance, logic errors can occur when
variables contain incorrect values, or when the output of your program is incorrect.

Paradigm C++ Reference Manual130

Logic errors are often the most difficult type or errors to find because they can show up in
places you might not expect. To be sure your program works as designed, you must
thoroughly test all of its aspects. Only by scrutinizing each portion of the user interface
and output of your program can you be sure that its behavior corresponds to its design. As
with run-time errors, the integrated debugger helps you locate logic errors by letting you
monitor the values of your program variables and data objects as your program executes.

Planning a debugging strategy

After program design, program development consists of a continuous cycle of program
coding and debugging. Only after you thoroughly test your program should you distribute
it to your end users. To ensure that you test all aspects of your program, it's best to have a
thorough plan for your debugging cycles.

One good debugging method involves breaking your program down into different sections
that you can systematically debug. By closely monitoring the statements in each program
section, you can verify that each area is performing as designed. If you do find a
programming error, you can correct the problem in your source code, recompile the
program, and then resume testing.

Starting a debugging session

To start a debugging session:

 1. Build your program with debug information.
 2. Run your program from within the Paradigm C++ IDE.

When debugging, you have complete control of your program's execution. You can pause
the program at any point to examine the values of program variables and data structures,
to view the sequence of function calls, and to modify the values of program variables to
see how different values affect the behavior of your program.

Compiling with debug information

Before you can begin a debugging session, you must compile your program with symbolic
debug information. Symbolic debug information, contained in a symbol table, enables
the debugger to make connections between your program's source code and the machine
code that's generated by the compiler. This lets you view the actual source code of your
program while running the program through the debugger.

To generate symbolic debug information for your project:

 1. In the Project window, select the project node.
 2. Choose Options|Project to open the Project Options dialog box.
 3. From the Compiler|Debugging topic, check Debug Information in .OBJs to include

debug information in your project .OBJ files (this option is checked by default).
 4. From the Linker|General topic, check Include Debug Information. This option

transfers the symbolic debug information contained in your .OBJ files to the .ROM
file (this option is checked by default).

Adding debugging information to your files increases their file size. Because of this,
you'll want to include debug information in your files only during the development stage
of your project. Once your program is fully debugged, compile your program without
debug information to reduce the final .AXE file size.

Chapter 5, Using the integrated debugger 131

Not all .OBJ files in your project need symbolic debug information - only those modules
you need to debug must contain a symbol table. However, since you can't statement step
into a module that doesn't contain debug information, it's best to compile all your modules
with a minimum of line number debug information during the development stages of your
project.

Running your program in the Paradigm C++ IDE

Once you've compiled your program with debug information, you can begin a debugging
session by running your program in the Paradigm C++ IDE. By running your program in
the Paradigm C++ IDE, you have control of when the program runs and when it pauses.
Whenever the program is paused in the Paradigm C++ IDE, the debugger takes control.

When your program is running under the Paradigm C++ IDE, it behaves as it normally
would: your program creates windows, accepts user input, calculates values, and
displays output. During the time that your program is not running, the debugger has
control, and you can use its features to examine the current state of the program. By
viewing the values of variables, the functions on the call stack, and the program output,
you can ensure that the area of code you're examining is performing as it was designed.

As you run your program through the debugger, you can watch the behavior of your
application in the windows it creates. For best results during your debugging sessions,
arrange your screen so you can see both the Paradigm C++ IDE Edit window and your
application window as you debug. To keep windows from flickering as the focus
alternates between the debugger windows and those of your application, arrange the
windows so they don't overlap (tile the windows). With this setup, your program's
execution will be quicker and smoother during the debugging session.

Specifying program arguments
If the program you want to debug uses command-line arguments, you can specify those
arguments in the Paradigm C++ IDE in two ways.

First:

 1. Choose Options|Environment then select the Debugger topic.
 2. In the Arguments text box, type the arguments you want to use when you run your

program under the control of the integrated debugger.
Second:

 1. Choose Debug|Load.
 2. Type your program name and arguments in the Load dialog box.

Controlling program execution

An important advantage of a debugger is that it lets you control the execution of your
program; you can control whether your program will execute a single machine instruction,
a single line of code, an entire function, or an entire program block. By dictating when the
program should run and when it should pause, you can quickly move over the sections that
you know work correctly and concentrate on the sections that are causing problems.

The integrated debugger lets you control the execution of your program in the following
ways:

l Running to the cursor location
l Stepping through code

+

Paradigm C++ Reference Manual132

l Running to a breakpoint
l Pausing your program

When running code through the debugger, program execution can be based on lines of
source code or on machine instructions. When debugging at the source level, the
integrated debugger lets you control the rate of debugging to the level of a single line of
code. However, the debugger considers multiple program statements on one line of text to
be a single line of code; you cannot individually debug multiple statements contained on a
single line of text. In addition, the debugger regards a single statement that's spread over
several lines of text as a single line of code.

Running to the cursor location

Often when you start a debugging session, you'll want to run your program to a spot just
before the suspected location of the problem. At that point, use the debugger to ensure that
all data values are as they should be. If everything is OK, you can run your program to
another location, and again check to ensure that your program is behaving as it should.

To run to a specific source line:

 1. In the Edit window or CPU window, position the cursor on the line of code where
you want to begin (or resume) debugging.

 2. Run to the cursor location in one of the following ways:

l Click the Run To Here button on the SpeedBar.
l Choose Run To Current from the Edit window SpeedMenu
l Choose Run To Current in the Disassembly pane of the CPU window.

To run to a specific machine instruction:

 1. After your process is loaded, open a CPU view and position the disassembly pane so
that the highlight is on the address to which you want to run.

 2. Choose Run To Current from the disassembly pane SpeedMenu, or click the Run To
Here button on the SpeedMenu.

When you run to the cursor, your program executes at full speed until the execution
reaches the location marked by the cursor in the Edit window, or highlight in the CPU
window. When the execution encounters the code marked by the text cursor or
highlighted, the debugger regains control and places the execution point on that line of
code.

The execution point

The execution point marks the next line of source code to be executed by the debugger.
Whenever you pause your program execution within the debugger (for example, whenever
you run to the cursor or step to a program location), the debugger highlights a line of code
using a green arrow and colored background (depending on your color setup), marking
the location of the execution point.

The execution point always shows the next line of code to be executed, whether you are
going to step through, step into, or run your program at full speed. If there is no source
associated with the code at the current execution point, a CPU window is opened
showing the instruction with the instruction at the current execution point.

Chapter 5, Using the integrated debugger 133

Finding the execution point
While debugging, you're free to open, close, and navigate through any file in an Edit
window. Because of this, it's easy to lose track of the next program statement to execute,
or the location of the current program scope. To quickly return to the execution point,
choose Debug|Source At Execution Point or click the SpeedBar button. Even if you've
closed the Edit window containing the execution point, Find Execution Point opens an
Edit window, and highlights the source code containing the execution point.

If there is no source associated with the code at the current execution point, you will get
an error stating that no line corresponds to the address. If this happens, you can see the
current execution point by opening the CPU window.

Stepping through code

Stepping is the simplest way to move through your code one statement at a time. Stepping
lets you run your program one line (or instruction) at a time – the next line of code (or
instruction) will not execute until you tell the debugger to continue. After each step, you
can examine the state of the program, view the program output, and modify program data
values. Then, when you are ready, you can continue executing the next program statement.

There are two basic ways to step through your code:

The Step Into command is available on the SpeedMenu in the Edit window or by using
F8. Step Into causes the debugger to walk through your code one statement at a time. If the
execution point is located on a function call, the debugger moves to the first line of code
that defines that function. From here, you can execute that function, one statement at a
time. When you step past the return of the function, the debugger resumes stepping from
the point where the function was called. Using the Step Into command to step through your
program one statement at a time is known as single stepping.

The Step Over command is also available on the SpeedMenu in the Edit window or by
using F7. Step Over is the same as Step Into, except that if you issue the Step Over
command when the execution point is on a function call, the debugger executes the
function at full speed, and pauses the execution on the line of code following the function
call.

Stepping rules

The debugger steps over single lines of lines of code based on the following rules:

l If you string several statements together on one line, you cannot debug those
statements individually; the debugger treats all statements as a single line of code.

l If you spread a single statement over multiple lines in your source file, the debugger
executes all the lines as a single statement.

To ensure that the debugger accurately represents your C++ source code while stepping,
choose Options|Project|Compiler|Debugging and click Out-of-Line Inline Functions.

Stepping into
To Step Into code, choose Statement|Step Into from the Edit window SpeedMenu or press
F7 (default keyboard mapping).

When you choose Step Into, the debugger executes the code highlighted by the execution
point. If the execution point is highlighting a function call, the debugger moves the
execution point to the first line of code that defines the function being called.

Step Into

Step Over

+

Paradigm C++ Reference Manual134

If the executing statement calls a function that does not contain debug information, the
debugger opens the CPU window and positions the execution point on the disassembled
instruction that corresponds to the function definition in memory.

Example

The following code fragment shows how Step Into works. Suppose these two functions
are in a program that was compiled with debug information:

func_1() {
statement_a;
func_2();
statement_b;

}

func_2() {
int customers;
statement_m;

}

If you choose Step Into when the execution point is on statement a in func 1, the
execution point moves to highlight the call to func 2. Choosing Step Into again
positions the execution point at the first line in the definition of func 2. Another Step
Into command moves the execution point to statement_m , the first executable line of
code in func_2.

When you step past a function return statement (in this case, the closing function brace),
the debugger positions the execution point on the line following the original function call.
Here, the debugger would highlight statement_b with the execution point.

As you debug, you can choose to Step Into some functions and Step Over others. Use Step
Into when you need to fully test the function highlighted by the execution point.

Stepping over
To Step Over code, choose Statement|Step Over from the Edit Window SpeedMenu or
press F8 (default keyboard mapping).

When you choose the Step Over command, the debugger executes the code highlighted by
the execution point. If the execution point is highlighting a function call, the debugger
executes that function at full speed, including any function calls within the function
highlighted by the execution point. The execution point then moves to the next complete
line of code.

Example

The following code fragment shows how Step Over works. Suppose these two functions
are in a program that was compiled with debug information:

func_1() {
statement_a;
func_2();
statement_b;

}

func_2() {
statement_m;
func_3();

}

Chapter 5, Using the integrated debugger 135

If you choose Step Over when the execution point is on statement a in func 1, the
execution point moves to highlight the call to func 2. Choosing Step Over again runs
func 2 at full speed, moving the execution point to statement b. Notice that when
you step over func 2, func 3 is also run at full speed.

As you debug, you can choose to Step Into some functions and Step Over others. Step
Over is good to use when you have fully tested a function, and you do not need to single
step through its code.

Debugging member functions and external code
If you use classes in your programs, you can still use the integrated debugger to step
through the member functions in your code. The debugger handles member functions the
same way it would step through functions in a program that is not object-oriented.

If you define a member function inline, then you should check Out-of-line inline functions
to facilitate debugging the inline function.

You can also step through or step over external code written in any language (including
C, C++, Object Pascal, and assembly language) as long as the code meets all the
requirements for external linking and contains full Paradigm symbolic debugging
information. If the external code does not contain Paradigm debug information, you can
still step through the code using the CPU window.

Running to a breakpoint

You set breakpoints on lines of source code where you want the program execution to
pause during a run. Running to a breakpoint is similar to running to a cursor position that
the program runs at full speed until it reaches a certain source-code location. However,
unlike Run to Cursor, you can have multiple breakpoints in your code and you can
customize each one so it pauses the program's execution only when a specified condition
is met. For more information on breakpoints, see “Examining program data values,” page
5-148.

Pausing a program

In addition to stepping over or through code, you can also pause your program while it is
running. Choosing Debug|Pause Process causes the debugger to pause your program. You
can use the debugger to examine the value of variables and inspect data at this state of the
program. When you are done, choose Debug|Run to continue the execution of your
program.

Terminating the program

Sometimes while debugging, you will find it necessary to restart the program from the
beginning. For example, you might need to restart the program if you step past the location
of a bug, or if variables or data structures become corrupted with unwanted values.

Choose Debug|Terminate debug session (or press Ctrl-F2) to end the current program run.
Terminating a program closes all open program files, releases all memory allocated by
the program, and clears all variable settings. However, terminating a program does not
delete any breakpoints or watches that you might have set. This makes it easy to resume a
debugging session.

+

Paradigm C++ Reference Manual136

Using breakpoints

You use breakpoints is similar to using the Run to Cursor command in that the program
runs at full speed until it reaches a certain point. But, unlike Run to Cursor, you can have
multiple breakpoints and you can choose to stop at a breakpoint only under certain
conditions. Once your program’s execution is paused, you can use the debugger to
examine the state of your program.

The Paradigm C++ IDE keeps track of all your breakpoints during a debugging session
and associates them with your current project. You can maintain all your breakpoints
from a single Breakpoints window and not have to search through your source code files
to look for them.

Debugging with breakpoints

When you run your program from the Paradigm C++ IDE, it will stop whenever the
debugger reaches the location in your program where the breakpoint is set, but before it
executes the line or instruction. The line that contains the breakpoint (or the line that most
closely corresponds to the program location where the breakpoint is set) appears in the
Edit window highlighted by the execution point. At this point, you can perform any other
debugging actions.

Setting breakpoints

You can set a breakpoint the following ways:

To set an unconditional breakpoint on a line in your source code, use one of the following
methods:

l Place the insertion point on a line in an Edit window and choose Toggle|Breakpoint
from the Edit window SpeedMenu. or press F5 (default keyboard setting).

l Click the gutter in an Edit window next to the line where you want to set a
breakpoint.

Setting an unconditional breakpoint
To set an unconditional breakpoint on a machine instruction:

 1. Highlight a machine instruction in the Disassembly pane in the CPU window.
 2. Choose Toggle Breakpoint on the SpeedMenu or press F5 (default keyboard setting).

Setting a conditional breakpoint
To set a conditional breakpoint on a line or machine instruction:

 1. Place the insertion point on a line in an Edit window or highlight a line in the
Disassembly pane of the CPU window.

 2. Choose Debug|Add Breakpoint or choose Add Breakpoint from the SpeedMenu.
 3. Complete the information on the Add Breakpoint dialog box.
 4. Do one of the following:

l Click the Advanced button to display the Breakpoint Condition/Action Options
dialog box.

l Supply the conditions and action settings you want. See “Creating conditional
breakpoints,” page 5-137.

l Specify option set in the Options input box.

Chapter 5, Using the integrated debugger 137

Setting other breakpoints
To set other types of breakpoints:

 1. Choose Debug|Add Breakpoint (or press F5 in the default keyboard setting) from
anywhere in the Paradigm C++ IDE or choose Add Breakpoint from the SpeedMenu
in an active Edit or Breakpoint window, or the Disassembly pane of the CPU
window.

 2. Select a breakpoint type on the Add Breakpoint dialog box and supply any additional
information associated with the type of breakpoint selected.

 3. Either

l Click OK to set an unconditional breakpoint.
l Click the Advanced button to display the Breakpoint Condition/Action Options

dialog box. See “Creating conditional breakpoints,” page 5-137.

To view a breakpoint

Choose View|Breakpoint to display the Breakpoints window.

Setting breakpoints after program execution begins
While your program is running, you can switch to the debugger (just like you switch to
any Windows application) and set a breakpoint. When you return to your application, the
new breakpoint is set, and your application will pause or perform a specified action
when it reaches the breakpoint.

Creating conditional breakpoints

Use a conditional breakpoint when you want the debugger to activate a breakpoint only
under certain conditions. For example, you may not want a breakpoint to activate every
time it is encountered, especially if the line containing the breakpoint is executed many
times before the actual occurrence in which you are interested. Likewise, you may not
always want a breakpoint to pause program execution. In these cases, use a conditional
breakpoint.

To set a conditional breakpoint:

 1. Choose Debug|Add Breakpoint to open the Add Breakpoint dialog box.

Paradigm C++ Reference Manual138

Add Breakpoint dialog box

 2. Select a breakpoint type and supply the applicable information.
 3. Click Advanced to display the Breakpoint Condition/Action Options dialog box.
 4. Click Expr. True and enter an expression that tells the debugger when to trigger the

breakpoint. If the condition is not met, the debugger ignores the breakpoint along with
any of its actions.

 5. If you want the debugger to activate a breakpoint only after it has been reached a
certain number of times, click Pass count and enter the number of passes. Otherwise,
your program will pause every time the breakpoint is activated.

 6. If you want program execution to pause when the breakpoint is activated, click Break
(the default). Otherwise, your program will not pause when the debugger activates the
breakpoint.

 7. If you want the debugger to perform various actions when the breakpoint activates,
use the Actions settings. Otherwise, click OK.

Figure 5-1

Chapter 5, Using the integrated debugger 139

Breakpoint Condition/Action Options dialog box

Removing breakpoints

You can remove a breakpoint the following ways:

From an Edit window
Double-click the gutter in an Edit window next to the line that contains the breakpoint you
want to remove.

From an Edit window or the Disassembly pane of the CPU window
 1. Place the insertion point on the line or highlight the instruction where the breakpoint

is set.
 2. Choose Toggle Breakpoint from the SpeedMenu.

From the Breakpoints window
 1. Choose View|Breakpoint to display the Breakpoints window.
 2. Select one or more breakpoints.
 3. Choose Remove Breakpoint(s) from the SpeedMenu.

Figure 5-2

Paradigm C++ Reference Manual140

To select multiple breakpoints in the Breakpoints window, hold down the Shift or Ctrl
key as you select each breakpoint.

Disabling and enabling breakpoints

Disable a breakpoint when you prefer not to activate it the next time you run your
program, but want to save it for later use. The breakpoint remains listed in the
Breakpoints window and available for you to enable when you want.

To enable or disable a breakpoint

 1. Choose View|Breakpoint to open the Breakpoints window.
 2. Click the checkbox next to the breakpoint to enable it or clear the checkbox to disable

it.

To disable or enable selected breakpoints

 1. In the Breakpoints window, hold down the Shift or Ctrl key as you select each
breakpoint.

 2. Choose Enable/Disable Breakpoints from the SpeedMenu.

To use a breakpoint to disable or enable a group of breakpoints

 1. Choose Debug|Add Breakpoint to open the Add Breakpoint dialog box.
 2. Click Options to open the Breakpoint Condition/Action Options dialog box.
 3. Click Enable Group or Disable Group and enter a group name.

Viewing and editing code at a breakpoint

Even if a breakpoint is not in your current Edit window, you can quickly locate it in your
source code.

Viewing code at a breakpoint
 1. Choose View|Breakpoint to display the Breakpoints window.
 2. Select a breakpoint.
 3. Choose View Source on the Breakpoints window SpeedMenu.

The source code displays in an Edit window at the breakpoint line and the Breakpoints
window remains active. If the source code is not currently open in an Edit window, the
Paradigm C++ IDE opens a new Edit window.

Editing code at a breakpoint
 1. Choose View|Breakpoint to display the Breakpoints window.
 2. Select a breakpoint.
 3. Choose Edit Source from the Breakpoints window SpeedMenu.

The source code displays in an active Edit window with your cursor positioned on the
breakpoint line, ready for you to edit. If the source code is not currently open in an Edit
window, the Paradigm C++ IDE opens a new Edit window.

+

Chapter 5, Using the integrated debugger 141

Resetting invalid breakpoints

A breakpoint must be set on executable code; otherwise, it is invalid. For example, a
breakpoint set on a comment, a blank line, or a declaration is invalid. A common error is
to set a breakpoint on code that is conditionalized out using #if or #ifdef.

If you set an invalid breakpoint and run your program, the debugger displays an Invalid
Breakpoint dialog box.

To reset an invalid breakpoint

 1. Close the Invalid Breakpoint dialog box.
 2. Open the Breakpoints window.
 3. Find the invalid breakpoint and delete it.
 4. Set the breakpoint in a proper location and continue to run your program.

If you ignore the Invalid Breakpoint (by dismissing the dialog box) and then choose Run,
the Paradigm C++ IDE executes your program, but does not enable the invalid breakpoint.

Using breakpoint groups

The integrated debugger lets you group breakpoints together so you can enable or disable
them with a single breakpoint action.

Creating a breakpoint group
 1. Choose Debug|Add Breakpoint to open the Add Breakpoint dialog box.
 2. Enter a name in the Group input box.

Disabling or enabling a breakpoint group
 1. Choose Debug|Add Breakpoint to open the Add Breakpoint dialog box.
 2. Click Options to open the Breakpoint Condition/Action Options dialog box.
 3. Click Enable Group or Disable Group and enter a group name.

Using breakpoint option sets

To quickly specify the behavior of one more breakpoints as you create or modify them,
store breakpoint settings in an option set.

Creating a breakpoint option set
 1. Choose Debug|Breakpoint options to open the Breakpoint Condition/Action Options

dialog box.
 2. Enter the conditions and actions. See “Creating conditional breakpoints,” page 5-137.
 3. Click Add.
 4. Enter a name in the dialog box that displays and click OK.

Associating a breakpoint with an option set
l Enter an Option name in the Add or Edit Breakpoints dialog box.

Deleting an option set

 1. Choose Debug|Breakpoint options to open the Breakpoint Condition/Action Options
dialog box.

+

To remove a
breakpoint from a
group, select the
group name and

press Delete.

You can also
create an option

set when you
create or edit a

breakpoint.

Paradigm C++ Reference Manual142

 2. Select an Option set and click Delete.

Changing breakpoint options

To change the conditions and actions of a breakpoint:

 1. Choose View|Breakpoint to open the Breakpoints window.
 2. Double-click on a breakpoint or choose Edit Breakpoint from the SpeedMenu.
 3. Change the option set in the Options input box on the Edit Breakpoint dialog box.

or

Add new information as described in “Creating conditional breakpoints,” page 5-137.

Changing the color of breakpoint lines

To use colors to indicate if a breakpoint is enabled, disabled, or invalid:

 1. Choose Options|Environment.
 2. Select Syntax Highlighting and choose Customize.
 3. From the Element list, select the following breakpoint options you want to change:

l Enabled Break
l Disabled Break
l Invalid Break

 4. Select the background (BG) and foreground (FG) colors you want.
 5. If you want highlighting, choose Default Color.

Using the Breakpoints window

The Breakpoints window lists all breakpoints currently set in the loaded project (or the
file in the active Edit window if a project is not loaded) and contains a tab for each of the
following breakpoint types.

To display the Breakpoints window, choose View|Breakpoint (Figure 5-3)

Breakpoints window

The Breakpoints window lets you perform the following actions:

+
Figure 5-3

Chapter 5, Using the integrated debugger 143

l Click the checkbox beside a breakpoint to enable it or clear the checkbox to disable
the breakpoint.

l Double-click on a breakpoint or press Enter to open the Edit Breakpoint dialog box to
change breakpoint settings.

About the Breakpoints window
The Breakpoints window provides the following information about each breakpoint:

l Name of the source code file in which the breakpoint is set (for source breakpoints).

l Location (such as line number, file name, module, or address number) where the
breakpoint is set.

l Current state of the breakpoint:

Verified - The breakpoint is legal and validated when the process was loaded.

Unverified - The process has not been loaded since you added the breakpoint.

Invalid - The breakpoint is illegal. The line on which you set the breakpoint does not
contain executable code (such as a blank line, comment, or declaration) and the
debugger will ignore it.

l Number of times the debugger must reach the breakpoint before activating the
breakpoint. This information appears after a breakpoint has been activated. See “Pass
Count,” page 5-146.

l Associated option set and group name as well as the conditions/action options
specified. See “Creating conditional breakpoints,” page 5-137.

l Last Event Hit shows the breakpoint last encountered.

Integrated debugger features

Add breakpoint
Use the Add Breakpoint dialog box to create a breakpoint. The options that appear in the
middle of the dialog box change according to the breakpoint type selected:

l Source
l Address
l Data Watch
l C++ Exception

The following options always display on the right side of the dialog box:

l Other

If you want to set conditions and actions that control breakpoint behavior, click Advanced
to open the Breakpoint Condition/Action Options dialog box.

Other
Contains the following options:

Indicates the name of the option set that defines breakpoint behavior.

Indicates the name of group to which the breakpoint belongs.

Choose a
command from
the Breakpoint

window
SpeedMenu.

+

Options

Group

Paradigm C++ Reference Manual144

Source breakpoint
Sets a breakpoint on a line in your source code.

Indicates the file that contains the source code where the breakpoint is set.

Indicates the line in the source file on which the breakpoint is set.

If you select a line of code in an Edit window and choose Add Breakpoint from the
SpeedMenu, the debugger completes these settings for you.

Address breakpoint
Sets a breakpoint on a machine instruction.

Indicates the address of the machine instruction on which the breakpoint is set.

Data watch breakpoint
Use a Data watch breakpoint to pause your program when a specific location in memory
changes value. Data Watch breakpoints (also called watchpoints or changed memory
breakpoints) let you monitor expressions that evaluate to a specific data object or
memory location. Data watch breakpoints are monitored continuously during your
program’s execution.

Because the debugger checks the breakpoint conditions after the execution of every
machine instruction, data watch breakpoints are excellent tools for pinpointing code that
is corrupting data.

Enter a specific starting address or any symbol (such as a variable or a class data
member or method) that evaluates to an address.

If you enter an address expression that evaluates to a memory location that contains
executable code, the Data watch breakpoint behaves like an Address breakpoint; the
breakpoint fires when the code at the specified address is executed.

When entering an address expression symbol, you can also enter a count of the number of
bytes you want monitored.

For example, coding in C, suppose you have declared the following array:
int string[81];

You can watch for a change in the first ten elements of this array by entering the following
item into the Condition Expression input box:

&string[0], 40

The area monitored is 40 bytes long which equals ten elements in the array (an int is 4
bytes).

C++ exception breakpoint
Sets a breakpoint that pauses your program when it throws or catches a C++ exception.

Specifies the data type (such as int, long, char, or a class name) used with the exception.
If you enter an ellipses (...) into the Type field, the debugger will trap any C++ exception
that is thrown or caught by your program.

Pauses program execution when an exception is thrown.

Pauses program execution when an exception is caught.

File

Line #

+

Offset

Address

+
Length

Type

Stop on
Throw

Stop on Catch

Chapter 5, Using the integrated debugger 145

Pauses program execution when any object is destroyed (when a destructor is called)
after an exception is thrown.

Breakpoint Condition/Action Options
Use this dialog box to:

l Specify settings that control the behavior of one or more breakpoints, such as the
conditions under which a breakpoint is activated and the type of actions that take
place when it does.

l Enable and disable breakpoint groups

To display this dialog box, use any of the following methods:

l Choose Debug|Breakpoint Options.
l Choose Debug|Add Breakpoint and click the Advanced button on the Add Breakpoint

window.
l Choose View|Breakpoint and double-click a breakpoint listed in the Breakpoints

window. Then click the Advanced button on the Edit Breakpoint window.

The Breakpoint Condition/Action Options dialog box contains the following options:

Names Lists the names of Option sets that have been created.

Conditions Provides settings that determine when and where a breakpoint is
activated.

Actions Provides settings that determine what actions take place when a
breakpoint is activated.

Lists the names of existing option sets. Use the checkbox next to each option set to enable
or disable it.

For example, if you clear the checkbox next to an option set called MyOptionSet, the
debugger ignores its settings and all breakpoints that use this option set behave like
unconditional breakpoints. To reactivate the breakpoint settings in MyOptionSet so
that they will used by the debugger, click its checkbox.

This group of settings determines when and where a breakpoint is activated:

Expr. True Each time the debugger encounters the breakpoint, it evaluates an
expression to determine if the breakpoint should activate.

Pass Count Indicates the number of times the debugger encounters the breakpoint line
before it activates.

Click Add or Delete to create or remove an option set.

Enter the expression you want to evaluate each time the debugger reaches the breakpoint.
If the expression becomes true (nonzero) when the breakpoint is encountered, the
debugger activates the breakpoint and carries out any actions specified for it. You can
enter a Boolean expression that, for instance, tests if a value falls within a certain range
or if a flag has been set.

Stop on
 Destructor

Names

Conditions

Expr. True

Paradigm C++ Reference Manual146

For example:

If you enter the expression
x == 1

the debugger activates the breakpoint only if x has been assigned the value 1 at the time
the breakpoint is encountered.

If you enter the expression
x > 3

and select Break, when the debugger reaches the breakpoint, your program pauses if the
current value of x is greater than 3. Otherwise, the breakpoint is ignored.

This option includes the following settings:

Up to Specifies the number of times you want the debugger to reach the
breakpoint before it is activated.

Current Shows the actual number of times the debugger has reached the breakpoint
so far. You can change this setting if your want to.

Unconditional breakpoint example

Suppose Break is checked, and in the Pass Count box you enter 2. In this case, your
program does not stop until the second time the debugger reaches the breakpoint.

Conditional breakpoint example

Suppose Break is checked, plus you enter the expression x>3 and in the Pass Count box
you enter 2. In this case, your program does not stop until the second time the debugger
reaches the breakpoint (that is, when the value of x is greater than 3).

This group of options lets you specify the actions you want carried out each time the
breakpoint is activated:

Break Pauses program execution

Stop Log Stops posting debugger generated messages

Start Log Starts posting debugger generated messages

Log Expr Displays the value of an expression in the message window

Eval Expr Evaluates an expression

Log Message Displays a message in the message window

Enable Group Reactivates a group of breakpoints

Disable Group Disables a group of breakpoints

Click Break (the default) to pause program execution when the debugger activates the
breakpoint. Clear this checkbox if you do not want your program to pause at the
breakpoint.

Pass Count

Actions

Break

Chapter 5, Using the integrated debugger 147

Stops displaying debugger messages in the Run-time Tab of the Message window when
the breakpoint is activated.

Starts displaying debugger messages in the Run-time Tab of the Message window when
the breakpoint is activated.

Click Log Exp if you want to display the value of an expression in the Run-time tab of the
Message window. Then, enter the expression in the input box next to it. The debugger
logs the value each time the breakpoint activates. Use this option when you want to output
a value each time you reach a specific place in your program — this technique is known
as instrumentation.

For example, you can place a breakpoint at the beginning of a routine and set it to log the
values of the routine arguments. Then, after running the program, you can determine where
the routine was called from, and if it was called with erroneous arguments. This will give
you no idea where it was called from, but will tell you what the arguments are.

When you log expressions, be careful of expressions that unexpectedly change the values
of variables or data objects (side effects).

Click Eval Expr if you want the breakpoint to evaluate an expression. Then, enter an
expression in the input box next to it. For best results, use an expression that changes the
value of a variable or data object (side effects).

By “splicing in” a piece of code before a given source line, you can effectively test a
simple bug fix; you do not have to go through the trouble of compiling and linking your
program just to test a minor change to a routine.

Click Log message if you want the breakpoint to display a message in the Run-time tab of
the Message window when the breakpoint is activated. Then, enter the text of the message
in the input box next to it.

Click Disable group if you want the breakpoint to disable a group of breakpoints. Then,
enter a group name in the input box next to it.

When a group of breakpoints is disabled, the breakpoints are not erased, they are simply
hidden from the debugger until you enable them.

Click Enable group if you want the breakpoint to reactivate a group of breakpoints that
have been previously disabled. Then, enter a group name in the input box next to it.

Enter a name for the option set and click OK to create a new set of breakpoint options.
Then enter your selections using the Breakpoint Condition/Action options dialog box.

Stop Log

Start Log

Log Expr

+

Eval Expr

You cannot use
this technique to

directly modify
your compiled

program.

Log
Message

Disable
Group

+

Enable
Group

Add
Conditions/

Actions

Paradigm C++ Reference Manual148

Use this dialog box to modify an existing breakpoint. The options that appear on left side
of the dialog box change according to the breakpoint type selected.

The integrated debugger provides the following types of breakpoints:

l Source
l Address
l Data watch
l C++ Exception

The following options always display on the right side of the dialog box:

l Other

If you want to set conditions and actions that control breakpoint behavior, click Advanced
to open the Breakpoint Condition/Action options dialog box.

Examining program data values

Even though you can discover many interesting things about your program by running and
stepping through it, you'll usually need to examine the values of program variables to
uncover bugs. For example, it's helpful to know the value of the index variable as you
step through a for loop, or the values of the parameters passed to a function call.

After you have paused your application within the integrated debugger, you can examine
the different symbols and data structures with regards to the location of the current
execution point.

You can view the state of your program by:

l Watching program values
l Inspecting data elements.
l Evaluating expressions
l Viewing the low-level state of your program
l Viewing functions in the Call Stack window

You can also use the Browser to view the global variables and classes contained in your
program.

Modifying program data values

Sometimes you will find that a programming error is caused by an incorrect data value.
Using the integrated debugger, you can test a "fix" by modifying the data value while your
program is running. You can modify program data values using:

l The Evaluate dialog box.
l The Inspector window's Change SpeedMenu command
l A breakpoint's Evaluate action, set from the Breakpoint Condition/Action dialog box
l The CPU window's Dump pane
l The Register & Stack window

Understanding watch expressions

You use watches to monitor the changing values of a variables or expressions during your
program run. After you enter a watch expression, the Watches window displays the

Edit
Breakpoint
dialog box

+

Chapter 5, Using the integrated debugger 149

current value of the expression based on the scope of the execution point. Each time your
program pauses (such as when it encounters a breakpoint), the value of the watch changes
to reflect the current value of the expression according to the values of the variables in
your program.

Using Watches window
To display the Watches window, choose View|Watch.

The Watches window lists the watches you are currently monitoring. Check the checkbox
beside a watch to enable it. Clear the checkbox beside a watch to disable it.

The left side of the Watches window lists the expressions you enter as watches and their
corresponding data types and values appear on the right. The values of compound data
objects (such as arrays and structures) appear between braces ({ }).

If the execution point steps out of the scope of a watch expression, the watch expression
is undefined. When the execution point re-enters the scope of the expression, the Watches
window again displays the current value of the expression.

Adding a watch

You can add a watch the following ways:

l Place the insertion point on a word in an Edit window and choose Watch from the
Edit window SpeedMenu. The debugger adds a watch on the expression at the
insertion point and opens the Watches window.

l From the Watches window, right-click to bring up the Watches window SpeedMenu
and choose Add Watch. In the Add Watch dialog box, create a watch expression on
any variable or expression available to the program you are debugging.

l Bring up the Add Watch dialog box by choosing Debug|Add Watch and enter a
variable or expression you would like to watch.

Add Watch dialog box
The Add Watch dialog box lets you monitor the value of both simple variables (such as
integers) and compound data objects (such as arrays). In addition, you can watch the
values of calculated expressions that do not refer directly to memory locations. For
example, you could watch the expression x * y + 4.

Figure 5-4
Watches window

The Watches
window will be

blank if you have
not added any

watches.

+

Paradigm C++ Reference Manual150

To create a watch expression using the Add Watch dialog box:

 1. Choose Debug|Add Watch or choose Add Watch from the Watches window
SpeedMenu.

 2. Enter an expression into the Expression input box.
 3. Click OK to add the watch or choose any of the following optional settings:

l Advanced

After you add the watch expression, the Paradigm C++ IDE automatically opens the
Watches window if it is not already open.

Formatting watch expressions
You can format the display of a watch expression using the Watch Properties dialog box.
Click Advanced from the Add Watch dialog box to bring up the Watch Properties dialog
box.

Figure 5-5
Add Watch
dialog box

+

Chapter 5, Using the integrated debugger 151

By default, the debugger displays integer values in decimal form. However, by checking
the Hexadecimal button in the Watch Properties dialog box, you can specify that an
integer watch be displayed as hexadecimal. You can also vary the display of the watches
using the Display As buttons in the Watch Properties dialog box.

For more on Display As buttons in the Watch Properties dialog box, select the Display
As button you would like help on and hit F1 for online Help.

To format a floating-point expression, click the Floating Point button, then indicate the
number of significant digits you want displayed in the Watch window by typing this
number in the Significant Digits text box.

If you're setting up a watch on an element in a data structure such as an array), you can
display the values of consecutive data elements. For example, suppose you have an array
of five integers named xarray. Type the number 5 in the Repeat Count text box of the
Watch Properties dialog box to see all five values of the array.

You can also format watch expressions using the expression format specifiers shown in
Table 5-1, page 5-155. Format specifiers settings override any settings specified in the
Watch Properties dialog box. Format specifiers use the following syntax:

expression [, format_specifier]

Changing watch properties

To change the properties of a watch:

 1. Choose View|Watch, to open the Watches window.
 2. Double-click a watch to open the Edit Watch dialog box.

Figure 5-6
Watch Properties

dialog box

Paradigm C++ Reference Manual152

Edit Watch dialog box
Use this dialog box to change the settings for a watch expression:

 1. Either accept or change the information in either of the following options:
 2. Either

l Choose OK to save your changes and close the dialog box.
l Click Advanced to open the Watch Properties if you want to change how a watch

expression displays in the Watches window.

Disabling and enabling watches

Evaluating many watch expressions can slow down the process of debugging. Disable a
watch expression when you prefer not to view it in the Watches window, but want to save
it for later use.

To enable or disable a watch

 1. Choose View|Watch to open the Watch window.
 2. Either

l Click the checkbox next to a watch to enable it.

l Clear the checkbox next to a watch to disable it.

To disable or enable selected watches

 1. Hold down the Shift or Ctrl key and click on one or more watches in the Watch
window.

 2. Choose Enable or Disable watches from the Watch window SpeedMenu.

Deleting a watch

You can delete a watch the following ways:

 1. Choose View|Watch to display the Watches window.
 2. Select one or more watch expressions. (To make multiple selections, hold down the

Shift or Ctrl key and click.)
 3. Choose Remove Watch(es) on the SpeedMenu.

Figure 5-7
Edit Watch dialog

box

Chapter 5, Using the integrated debugger 153

Dynamic updates

The Dynamic update dialog box controls the behavior of memory reads and peripheral
register reads while running. Inspector and Watch windows can be updated dynamically
while running, if the option Allow memory reads while running is enabled. Peripheral
register viewers can also be dynamically updated while running if the option Allow
peripheral reads while running is enabled. Enabling these options will interrupt target
execution. Do not enable these options if you wish non-intrusive execution of your
application.

These options only apply to remote debugging solutions with the ability to interrupt target
execution.

Inspecting data elements

You can use inspect windows to examine and modify data values. Inspect windows are
extremely useful because they format the data according to the type of data being viewed;
there are different types of Inspect windows for scalars, arrays, structures, functions, and
classes with and without member functions.

The easiest way to inspect a data item is to highlight the expression you want to inspect
(or just position the text cursor on the token) in the Edit window, and choose Inspect
Object from the SpeedMenu (or press Alt-F5). If you inspect expressions using this
method, the expression is always evaluated within the scope of the line on which the
expression appears.

You can also inspect data expressions using the following method,

 1. Choose Debug|Inspect to display the Inspect Expression window.
 2. Type the expression you want to inspect, then choose a previously entered expression

from the drop down list.
 3. Choose OK to display an Inspector window.

If the execution point is in the scope of the expression you are inspecting, the value
appears in the Inspect window. If the execution point is outside the scope of the
expression, the value is undefined.

If you are inspecting a compound data item, such as an array or a structure, you can view
the details of the data item by opening another Inspect window on the element you want to
inspect.

To inspect an element of a compound data item:

 1. In the Inspector window, select the item you want to inspect.
 2. Choose Inspect on the Inspector window SpeedMenu, or press Enter.

You can also use Inspector windows to change the value of a single data item:

 1. Select the data item whose value you want to modify.
 2. Choose Change on the Inspect window SpeedMenu.
 3. Type the new value into the Change value dialog box and click OK.

If you are inspecting a data structure, it is possible the number of items displayed might
be so great that you will have to scroll in the Inspector window to see the data you want.
For easier viewing,

+

Paradigm C++ Reference Manual154

Narrow the display to a range of data items:

 1. Left-click in the Inspect window or choose Set Range from the SpeedMenu.
 2. In the Starting Index text box, enter the index of the first item you want to view.
 3. In the Count text box, enter the number of items you want to see in the Inspect

window.

Evaluating and modifying expressions

You can evaluate expressions using the Expression Evaluator dialog box. The Expression
Evaluator dialog box has the advantage that it lets you change the values of variables and
items in data structures during the course of your debugging session. This can be useful if
you think you've found the solution to a bug, and you want to try it out before exiting the
debugger, changing the source code, and recompiling the program.

Evaluating expressions
Choose Debug|Evaluate to open the Expression Evaluator dialog box. By default, the
token at the cursor position in the current Edit window is placed in the Expression text
box. You can accept or modify this expression, enter another one, or choose an
expression from the history list of expressions you've previously evaluated.

To evaluated the expression, click the Evaluate button. Using this dialog box, you can
evaluate any valid language expression, except ones that contain:

l Local or static variables that are not accessible from the current execution point
l Symbols or macros defined with #define

When you evaluate an expression, the current value of the expression is displayed in the
Result field of the dialog box. If you need to, you can format the result by adding a comma
and one or more format specifiers to the end of the expression entered in the Expression
text box. Table 5.1, page 5.155 details the legal format specifiers.

Figure 5-8
Evaluator dialog

box

Chapter 5, Using the integrated debugger 155

Character Types affected Function

H or X Integers Hexadecimal. Shows integer values in hexadecimal
with the 0x prefix, including those in data structures.

C Char, strings Character. Shows special display characters for
ASCII 0-31. By default, such characters are shown
using the appropriate C escape sequences (/n, /t, and
so on).

D Integers Decimal. Shows integer values in decimal form,
including those in data structures.

Fn Floating point Floating point. Shows n significant digits (where n is
in the range of 2-18, and 7 is the default).

nM All Memory dump. Shows n bytes starting at the address
of the indicated expression. If n is not specified, it
defaults to the size in bytes of the type of the variable.
By default, each byte displays as two hex digits. The
C, D, H, S, and X specifiers can be used with M to
change the byte formatting.

P Pointers Pointer. Shows pointers in seg:ofs instead of the
default Ptr(seg:ofs). It tells you the region of memory
in which the segment is located and, if appropriate,
the name of the variable at the offset address.

R Structures, unions Structure/Union. Shows field names and values such
as (X:1;Y:10;Z:5) instead of (1,10,5).

S Char, strings String. Shows ASCII 0-31 as C escape sequences.
Use only to modify memory dumps (see nM above).

For example, to display a result in hexadecimal, type ,H after the expression. To see a
floating-point number to 3 decimal places, type ,F3 after the expression.

You can also use a repeat count to reference a specific number of data items in arrays
and structures. To specify a repeat count, follow the expression with a comma and the
number of data items you want to reference. For example, suppose you declared the
following array in your program:

int my_array[10] ;

The following expression evaluates the first 5 elements of this array and displays the
result in hexadecimal:

my_array, 5h

Modifying the values of variables
Once you've evaluated a variable or data structure item, you can modify its value.
Modifying the value of data items during a debugging session lets you test different bug
hypotheses and see how a section of code behaves under different circumstances.

To modify the value of a data item:

 1. Open the Expression Evaluator dialog box and enter the name of the variable you
want to modify into the Expression input box.

 2. Click Evaluate to evaluate the data item.
 3. Type a value into the New Value text box (or choose a value from the drop down

list), then click Modify to update the data item.

Table 5-1
Expression

format specifiers

Paradigm C++ Reference Manual156

When you modify the value of a data item through the debugger, the modification is
effective for that specific program run only; the changes you make through the Expression
Evaluator dialog box do not affect your program source code or the compiled program.
To make your change permanent, you must modify your program source code in the Edit
window, then recompile your program.

Keep these points in mind when you modify program data values:

You can change individual variables or elements of arrays and data structures, but you
cannot change the entire contents of an array or data structure.

l The expression in the New Value text box must evaluate to a result that is assignment-
compatible with the variable to which you want to assign it. A good guideline is if
that assignment would cause a compile-time or run-time error, it is not a legal
modification value.

Modifying values (especially pointer values and array indexes), can have undesirable
effects because you can overwrite other variables and data structures. Use caution
whenever you modify program values from the debugger.

CPU window

The CPU window consists of five separate panes. Each pane gives you a view into a
specific low-level aspect of your running application:

l The Disassembly pane displays the assembly instructions that have been
disassembled from your application's machine code. In addition, the Disassembly
pane displays the original program source code above the associated assembly
instructions.

l The Dump pane displays a memory dump of any memory accessible to the currently
loaded executable module. By default, memory is displayed as hexadecimal bytes.

l The Stack Pane displays the current contents of the program stack. By default, the
stack is displayed as hexadecimal bytes.

l The Registers pane displays the current values of the CPU registers.
l The Flags pane displays the current values of the CPU flags.

Each pane has an individual SpeedMenu that provides commands specific to the contents
of that pane and the target processor.

+

Warning!

Chapter 5, Using the integrated debugger 157

CPU window

Resizing the CPU window panes

You can customize the layout of the CPU window by resizing the panes within the
window. Drag the pane borders within the window to enlarge or shrink the windows to
your liking.

The Disassembly pane

The left side of the Disassembly pane lists the address of each disassembled instruction.
An arrow to the right of the memory address indicates the location of the current
execution point. To the right of the memory addresses, the Disassembly pane displays the
assembly instructions that have been disassembled from the machine code produced by
the compiler. If you are viewing code that has been linked with a symbol table, the
debugger displays the source code that is associated with the disassembled instructions.

The Disassembly pane SpeedMenu
The Disassembly pane supports the following keyboard commands:

l Press Ctrl-N to set the instruction pointer (the value of IP/EIP register) to the
beginning of the statement that you have highlighted in the Disassembly pane. Note
that this is not the same as stepping through the instructions; the debugger does not
execute any instructions that you might skip.

l Press Ctrl+LeftArrow and Ctrl+RightArrow to shift the starting point of the display up or
down one byte. Beware that changing the starting point of the display in the
Disassembly pane changes where the debugger begins disassembling the machine
code.

Figure 5-9

Paradigm C++ Reference Manual158

The debugger displays dashes if you view a program memory location in which nothing is
loaded.

The Disassembly pane has the following SpeedMenu commands:

l Run To Current
l Set PC To Current
l Toggle Breakpoint
l Go to Address
l Go to Current PC
l Follow jump <address> into Disassembly pane
l Follow address <address> into Memory Dump pane
l Show previous address
l Go to source

The Run To Current command lets you run your program at full speed to the instruction
that you have selected in the Disassembly pane. After your program is paused, you can
use this command to resume debugging at a specific program instruction.

The Set PC to Current command changes the location of the program counter (the value
held in the IP/EIP register) to the currently highlighted line in the Disassembly pane.
When you resume program execution in the debugger, it starts at the new address. This
command is useful when you want to skip certain machine instructions.

Use this command with extreme care; it is easy to place your system in an unstable state
when you skip over program instructions.

When you choose Toggle Breakpoint, the debugger sets an unconditional or "simple"
breakpoint at the instruction which you have selected in the Disassembly pane. A simple
breakpoint has no conditions, and the only action is that it will pause the program's
execution.

If a simple breakpoint exists on the selected instruction, then Toggle Breakpoint will
delete the breakpoint at that code location.

The Go to Address command prompts you for a new area of memory to display in the
Code, Dump, or Machine Stack panes of the CPU window. Enter any expression that
evaluates to a memory location, such as main(). Be sure to precede hexadecimal values
with 0x.

The debugger displays dashes if you try to access an address that is not within the scope
of the application you are debugging.

You can also press Ctrl+LeftArrow and Ctrl+RightArrow to shift the starting point of the
display up or down one byte.

This command positions the Disassembly pane at the location of the current program
counter (the location indicated by the IP/EIP register). This location indicates the next
instruction to be executed by your program.

+

Run to
Current

Set PC to
current

+

Toggle
Breakpoint

Go to
Address

+

Go to
current PC

Chapter 5, Using the integrated debugger 159

This command is useful when you have navigated through the Disassembly pane, and you
want to return to the next instruction to be executed.

This command highlights in the Disassembly pane the destination address of the currently
highlighted instruction. Use this command in conjunction with instructions that cause a
transfer of control (such as CALL, JMP, and INT) and with conditional jump
instructions (such as JZ, JNE, LOOP, and so forth). For conditional jumps, the address
is shown as if the jump condition is TRUE. Use the Show Previous Address SpeedMenu
command to return to the origin of the jump.

From the Memory Dump pane, set the display to Longs for best results.

This command highlights in the Memory Dump pane the address of the currently
highlighted address. The Show Previous Address SpeedMenu command returns you to the
address from where you jumped.

This command restores the CPU window to the display it had before you issued the last
Follow Address command. The Follow Address commands are found on the SpeedMenus
of the Disassembly pane, the Machine Stack pane, and the Memory Dump pane of the
CPU window.

The Go to source command activates the Edit window and positions the insertion point at
the source code that corresponds to the disassembled instruction selected in the
Disassembly pane. If there is no corresponding source code (for example, if you're
examining Windows kernel code), this command has no effect.

Memory Dump pane

The Dump pane displays the raw values contained in addressable areas of your program.
The display is broken down into three sections: the memory addresses, the current values
in memory, and an ASCII representation of the values in memory.

By default, the Dump pane displays the memory values in hexadecimal notation. The
leftmost part of each line shows the starting address of the line. Following the address
listing is an 8-byte hexadecimal listing of the values contained at that location in memory.
Each byte in memory is represented by two hexadecimal digits. Following the
hexadecimal display is an ASCII display of the memory. Non-printable values are
represented with a period.

The format of the memory display depends on the format selected with the Display As
SpeedMenu command. If you choose one of the floating-point display formats (Floats or
Doubles), a single floating-point number is displayed on each line. The Bytes format
displays 8 bytes per line, Words displays 4 words per line, and Longs displays 2 long
words per line.

 You can press Ctrl+LeftArrow and Ctrl+RightArrow to shift the starting point of the display
up or down one byte. Using these keystrokes is often faster than using the Go to Address
command to make small adjustments to the display.

Follow
 jump into

Disassembly
pane

Follow
address into
Dump pane

Show
previous
address

Go to source

+

Paradigm C++ Reference Manual160

The Dump pane SpeedMenu
The Dump pane has the following SpeedMenu commands:

l Go to Address
l Display As
l Follow address <address> into Disassembly pane
l Follow address <address> into Memory Dump pane
l Follow address <address> into Machine Stack pane
l Show previous address

You can change the values of memory displayed in the Dump pane by pressing the Ins key
and typing into the display (when you press Ins, the insertion point in the pane shrinks to
highlight a single nibble in memory). Be extremely careful when changing program
memory values; even small changes in program values can have disastrous effects on your
running program.

Use the Display As command to format the data that’s listed in the Dump or Stack pane of
the CPU window. You can choose any of the data formats listed in the following table:

Data type Display format

Bytes Displays data in hexadecimal bytes
Words Displays data in 2-byte hexadecimal numbers
Longs Displays data in 4-byte hexadecimal numbers
Floats Displays data in 4-byte floating-point numbers using scientific notation
Doubles Displays data in 8-byte floating-point numbers using scientific notation

This command highlights in the Disassembly pane the address of the currently highlighted
address. The Show Previous Address SpeedMenu command returns you to the address
from where you jumped.

From the Memory Dump pane, set the display to Longs for best results.

This command highlights in the Machine Stack pane the address of the currently
highlighted address. The Show Previous Address SpeedMenu command returns you to the
address from where you jumped.

Set the display to Longs for best results.

Machine Stack pane

The Stack pane displays the raw values contained in the your program stack. The display
is broken down into three sections: the memory addresses, the current values on the stack,
and an ASCII representation of the stack values.

By default, the Machine Stack pane displays the memory values in hexadecimal notation.
The leftmost part of each line shows the starting address of the line. Following the
address listing is a 4-byte listing of the values contained at that memory location. Each
byte is represented by two hexadecimal digits. Following the hexadecimal display is an
ASCII display of the memory; non-printable values are represented with a period.

+

Display as

Table 5-2
Data formats

Follow
address into
Disassembly

pane

Follow
address into

Stack pane

The
debugger

displays dashes
if you view an

unloaded
program memory

location.

Chapter 5, Using the integrated debugger 161

The format of the memory display depends on the format selected with the Display As
SpeedMenu command. If you choose one of the floating-point display formats (Floats or
Doubles), a single floating-point number is displayed on each line. The Bytes format
displays 4 bytes per line, Words displays 2 words per line, and Longs (the default)
displays 1 long word per line.

You can press Ctrl+LeftArrow and Ctrl+RightArrow to shift the starting point of the display
up or down one byte. Using these keystrokes is often faster than using the Go to Address
command to make small adjustments to the display.

The Stack pane SpeedMenu
The Stack pane has the following SpeedMenu commands:

l Go to Address
l Go to Top Frame
l Go to Top of Stack
l Display As
l Follow address <address> into Disassembly pane
l Follow address <address> into Memory Dump pane
l Follow address <address> into Machine Stack pane
l Show previous address

You can change the values of memory displayed in the Stack pane by pressing the Ins key
and typing into the display (when you press Ins, the insertion point in the pane shrinks to
highlight a single nibble in memory). Be extremely careful when changing program
memory values; even small changes in program values can have disastrous effects on your
running program.

Positions the insertion point in the Stack pane at the address of the frame pointer (the
address held in the BP/EBP register).

Positions the insertion point in the Stack pane at the address of the stack pointer (the
address held in the SP/ESP register).

Registers pane

The Registers pane displays the contents of the CPU registers of the processor. These
registers consist of eight 16-bit 32-bit general purpose registers, six 16-bit segment
registers, and the program counter (IP/EIP), and the flags register (FL/EFL).

After you execute an instruction, the Registers pane highlights in red any registers that
have changed value since the program was last paused.

The Registers pane SpeedMenu
The Registers pane has the following SpeedMenu commands:

l Increment Register
l Decrement Register
l Zero Register
l Change Register

+

+

Go to top
frame

Go to top of
stack

Paradigm C++ Reference Manual162

l Show Old Registers/Show Current Registers'

Increment Register adds 1 to the value in the currently highlighted register. This lets you
test “off-by-one” bugs by making small adjustments to the register values.

Decrement Register subtracts 1 from the value in the currently highlighted register. This
lets you test “off-by-one” bugs by making small adjustments to the register values.

The Zero Register command sets the value of the currently highlighted register to 0.

Lets you change the value of the currently highlighted register. This command opens the
Change Register dialog box where you enter a new value. You can make full use of the
expression evaluator to enter new values. Be sure to precede hexadecimal values with
0x.

This command toggles between Show old Registers and Show current registers. When
you select Show old registers, the Registers pane displays the values which the registers
had before the execution of the last instruction. The menu command then changes to Show
current registers, which changes the display back to the current register values.

You can change the values of memory displayed in the Registers pane by pressing the Ins
key and typing into the display (when you press Ins, the insertion point in the pane shrinks
to highlight a single nibble in memory). Be extremely careful when changing register
values; even small changes can have disastrous effects on your running program.

Flags pane

The Flags pane shows the current state of the flags and information bits contained in the
processor flags register. After you execute an instruction, the Flags pane highlights in red
any flags that have changed value since the program was last paused.

The processor uses the following bits in this register to control certain operations and
indicate the state of the processor after it executes certain instructions:

Letters in pane Flag/bit name EFL register bit number

CF Carry flag 0
PF Parity flag 2
AF Auxiliary carry 4
ZF Zero flag 6
SF Sign flag 7
TF Trap flag 8
IF Interrupt flag 9
DF Direction flag 10
OF Overflow flag 11
IO I/O privilege level 12 and 13
NF Nested task flag 14
RF Resume flag 16

Increment
register

Decrement
register

Zero register

Change
register

Show old
registers

+

Table 5-3
Flags pane

indicators

Chapter 5, Using the integrated debugger 163

VM Virtual mode 17
AC Alignment check 18

The Flags pane SpeedMenu
The Flag pane has the following SpeedMenu commands:

l Toggle Flag

You can change the values of memory displayed in the Flags pane by pressing the Ins key
and typing into the display (when you press Ins, the insertion point in the pane shrinks to
highlight a single binary value in memory).

The flag and information bits in the Flags pane can each hold a binary value of 0 or 1.
This command toggles the selected flag or bit between these two binary values.

Viewing function calls

While debugging, it can be useful to know the order of function calls that brought you to
your current program location. Using the Call Stack window, you can view the current
sequence of function calls. The Call Stack window is also helpful when you want to view
the arguments passed to a function call; each function listing in the window is followed
by a listing that details the arguments with which the call was made. Use View|Call Stack
to display the Call Stack window.

Call Stack window

In the Call Stack window, the function that is currently executing is listed on top, with all
previously called functions listed in sequence below. The bottom of the list always
shows the first function in the calling sequence.

+

Toggle flag

Figure 5-10

Paradigm C++ Reference Manual164

The call stack is particularly useful if you accidentally step through code that you wanted
to step over. Using the Call Stack window, you can return to the point where the current
function was called from, and then resume debugging from there:

 1. In the Call Stack window, double-click the function that called the function you
accidentally stepped into (it will be the second function listed in the Call Stack
window). The Edit window becomes active with the cursor positioned at the location
of the function call.

 2. In the Edit window, move the cursor to the statement following the function call.
 3. Choose Run to Cursor on the Edit window SpeedMenu (or press F4).

Navigating to function calls

Using the Call Stack window, you can view or edit the source code located at a particular
function call. Right-clicking a function in the Call Stack window displays the
SpeedMenu, from where you can choose either View Source or Edit Source. Each of
these commands causes the Edit window to display the selected function; however, Edit
Source gives focus to the Edit window so you can modify the source code at that function
location.

If you select the top function in the Call Stack window, these commands cause the Edit
window to display the location of the execution point in the current function. Selecting
any other function call causes the debugger to display the actual function call in the Edit
window.

Chapter 6, Paradigm C++ compiler 165

C h a p t e r

6

Paradigm C++ compiler

If you prefer to develop your applications outside of the Paradigm C++ IDE, you can
compile and link your programs from the command line using the Paradigm command-line
tools. When you develop applications using this method, you must first write your
program source code using a text editor, then compile the code into an object (.OBJ) file
using the appropriate command-line compiler. After the .OBJ file is generated, you must
link all the necessary files to create the final executable program.

Using the command-line compiler

Paradigm C++ includes the following compiler:

l PCC.EXE is the 16-bit compiler.

Command-line compiler syntax

The general syntax for the Paradigm C++ command-line compiler is:
PCC [option [option...]] filename [filename...]

Items enclosed in brackets are optional. The option items refer to the command-line
options and filename refers to the source-code files you want to compile. A complete
summary of command-line options can be found under "command-line options" in the
online Help index. A list of command-line options is also on page 3-112.

To see a list of the commonly used compiler options, type PCC at the command line
(without any options or file names), then press Enter. This list displays the options that
are enabled by default.

The command-line compiler name and each option and file name must be separated by at
least one space. Precede each option by either a hyphen (-) or a forward slash (/); for
example:

PCC -Ic:\code\hfiles

Options and file names entered on the command line override settings in configuration
files.

You can use PCC to send files to PLINK (.OBJ files) or PASM (.ASM files if you have
PASM installed on your machine).

Default settings
PCC.EXE has options that are on by default. To turn off a default option or to override
options in a configuration file, follow the option with a minus (-) sign.

Files without extensions and files with the .CPP extension compile as C++ files. Files
with a .C extension or with extensions other than .CPP, .OBJ, .LIB, or .ASM compile as
C files.

Paradigm C++ Reference Manual166

Compiler configuration files

If you repeatedly use a certain set of options, you can list them in a configuration file
instead of continually typing them on the command line. A configuration file is a standard
ASCII text file that contains one or more command-line options. Each option must be
separated by a space or a new line.

Whenever you issue a compile command, PCC.EXE searches for a configuration file
called PCC.CFG. The compilers look for the .CFG files first in the directory where you
issue the compile command, then in the directory where the compilers are located.

You can create and use multiple configuration files in addition to using the default .CFG
file. To use a configuration file, use the following syntax where you would place the
compiler options:

+[path]filename

For example, you could use the following command line to use a configuration file called
MYCONFIG.CFG:

PCC +C:\MYPROJ\MYCONFIG.CFG mycode.cpp

Options typed on the command line override settings stored in configuration files.

Compiler response files

Response files let you list both compiler options and file names in a single file (unlike
configuration files, which accept only compiler options). A response file is a standard
ASCII text file that contains one or more command-line options and/or file names, with
each entry in the file separated by a space or a new line. In addition to simplifying your
compile commands, response files let you issue a longer command line than most
operating systems allow.

The syntax for using a single response file is:
PCC @[path]respfile.txt

The syntax for using multiple response files is:
PCC @[path]respfile.txt @[path]otheresp.txt

Response files shipped with Paradigm C++ have an .RSP extension.
Options typed at the command line override any option or file name in a response file.

Compiler-option precedence rules
The command-line compilers evaluate options from left to right, and follows these rules:

l If you duplicate any option except -D, -U, -I, or -L, the last option typed overrides
any earlier one. (-D, -U, -I, and -L are cumulative.)

l Options typed at the command line override configuration and response file options.

Entering directories for command-line options

Paradigm C++ can search multiple directories for include and library files. This means
that the syntax for the library directories (-L) and include directories (-I) command-line
options, like that of the #define option (-D), allows multiple listings of a given option.
Here is the syntax for these options:

Ldirname[;dirname;...]
Idirname[;dirname;...]

Chapter 6, Paradigm C++ compiler 167

The parameter dirname used with -L and -I can be any directory or directory path. You
can enter these multiple directories on the command line in the following ways:

l You can stack multiple entries with a single -L or -I option by using a semicolon:
PCC.EXE -Ldirname1;dirname2;dirname3 -Iinc1;inc2;inc3 myfile.c

l You can place more than one of each option on the command line, like this:
PCC.EXE -Ldirname1;dirname2;dirname3 -Iinc1;inc2;inc3 myfile.c

l You can mix listings:
PCC.EXE -Ldirname1;dirname2;dirname3 -Iinc1;inc2 -Iinc3
myfile.c

If you list multiple -L or -I options on the command line, the result is cumulative: The
compiler searches all the directories listed, in order from left to right.

PLINK uses a configuration file called PLINK.CFG, a response file (optional), and
command-line options to link object modules, libraries, and resources into an executable
.AXE file.

Using PLINK

PLINK is a command-line tool that combines object modules (.OBJ files), library
modules (.LIB files), and resources to produce executable files. Because the compiler
automatically calls PLINK, you don’t need to use PLINK unless you suppress the linking
stage of compiling (see the -c compiler option).

PLINK is invoked from the command line to link a configuration file called PLINK.CFG,
an optional response file, and command-line options to link object modules, libraries,
and resources into an executable file.

PLINK command-line syntax

The linker syntax controls how the linkers work. Linker command-line options are case-
sensitive.

The linker can also use a configuration file called PLINK.CFG for options that you’d
normally type at the command-line.

Syntax
PLINK [@respfile][options] startup myobjs, [exe], [mapfile],
 [libraries]

Where items enclosed in brackets are optional.

[@respfile] A response file is an ASCII file that lists linker options
and file names that you would normally type at the
command line. By placing options and files names in a
response file, you can save the amount of keystrokes
you need to type to link your application.

[options] Linker options that control how the linker works. Linker options
must be preceded by either a slash (/) or a hyphen (-).

startup A startup code module that arranges the order of the various
segments of the program. Failure to link in the correct initialization
module usually results in a long list of error messages telling you

Paradigm C++
also supports

multiple library
directories.

Paradigm C++ Reference Manual168

that certain identifiers are unresolved, or that no stack has been
created.

myobjs The .OBJ files you want linked. Specify the path if the
files aren’t in the current directory. (The linker appends
an .OBJ extensions if no extension is present.)

[exe] The name you want given to the executable file output file.
If you don’t specify an executable file name, PLINK derives the
name of the executable by appending .EXE to the first object file
name listed. (The linker assumes or appends .EXE extensions for
executable files if no extension is
present.

[mapfile] Is the name you want given to the map file. If you
don’t specify a name, the map file name is given the
same as exe file (but with the .MAP extension). (The
linker appends a .MAP extension if no extension is
present.)

[libraries] The library files you want included at link time. Do not
use commas to separate the libraries listed. If a file is
not in the current directory or the search path (see the
/L option) then you must include the path in the link
statement. (The linker appends a .LIB extension if no
extension is present.)

The order in which you list the libraries is very important; be sure to use the order
defined in this list:

l List any of your own user libraries, noting that if a function is defined more than once,
the linker uses the first definition encountered

l Math libraries (if needed)
l Run-time libraries associated with your memory model and platform

PLINK.CFG file

PLINK uses a configuration file called PLINK.CFG for options that you would normally
type at the command line (note that configuration files can contain only options, not file
names). Configuration files let you save options you use frequently, so you do not have to
continually retype them.

PLINK looks for PLINK.CFG in the current directory, then in the directory from which it
was loaded.

The following PLINK.CFG file tells PLINK to:

l Look for libraries first in the directory C:\PARADIGM\LIB
l Include debug information in the executables it creates
l Create a detailed segment map.

PLINK.CFG

/Lc:\PARADIGM\LIB
/v /s

Chapter 6, Paradigm C++ compiler 169

If you specify command-line options in addition to those recorded in a configuration file,
the command-line options override any conflicting configuration options.

Linker response files

You can use response files with the command-line linkers to specify linker options.

Response files are ASCII files that list linker options and file names that you would
normally type at the command line. Response files allow you longer command lines than
most operating systems support, plus you don’t have to continually type the same
information. Response files can include the same information as configuration files, but
they also support the inclusion of file names.

Unlike the command line, a response file can be several lines long. To specify an added
line, end a line with a plus character (+) and continue the command on the next line. Note
that if a line ends with an option that uses the plus to turn it on (such as /v+), the + is not
treated as a line continuation character (to continue the line, use /v+ +).

If you separate command-line components (such as .OBJ files from .LIB files) by lines in
a response file, you must leave out the comma used to separate them on the command line.
For example,

/c c0s+
myprog,myexe +
mymap +
mylib cs

leaves out the commas you’d have to type if you put the information on the command line:
PLINK /c c0s myprog,myexe,mymap,mylib cs

To use response files,

 1. Type the command-line options and file names into an ASCII text file and save the
file. Response files shipped with Paradigm C++ have the .RSP extension.

 2. Type
 PLINK @[path]RESFILE.RSP

l where RESFILE.RSP is the name of your response file.

You can specify more than one response file as follows:
plink /c @listobjs.rsp,myexe,mymap,@listlibs.rsp

You can add comments to response files using semicolons; the linker ignores any text on a
line that follows a semicolon.

Using PLINK with PCC.EXE

You can pass options and files to PLINK through the command-line compiler (PCC.EXE)
by typing file names on the command line with explicit .OBJ and .LIB extensions. For
example,

PCC mainfile.obj sub1.obj mylib.lib

links MAINFILE.OBJ, SUB1.OBJ, and MYLIB.LIB to produce the executable
MAINFILE.EXE.

+

+

Paradigm C++ Reference Manual170

By default, PCC starts PLINK with the files C0S.OBJ and CS.LIB (initialization module,
and run-time library). In addition, the compiler always passes the linker the /c (case-
sensitive link) option.

Paradigm C++ tools overview

Paradigm C++ includes many tools to help you create C++ programs. While you can
access many of these tools through the Paradigm C++ IDE, you can also run the tools from
the command line.

The following table lists the Paradigm tools that come with your Paradigm C++ package:

File Description

32RTM.EXE 32-bit runtime manager
CAPDOS32.EXE Utility used by the Paradigm C++ IDE to interface with transfer macros
CPP.EXE C preprocessor (16-bit)
GREP.COM File search utility
MAKE.EXE Make utility
MAKER.EXE Real-mode MAKE utility
MAKESWAP.EXE Creates swap file to use with 32-bit command-line tools
OBJXREF.EXE Utility to examine contents of .OBJ and .LIB files
PASM.EXE Paradigm assembler
PCC.EXE Paradigm C++ 16-bit command-line compiler
PCW.EXE The Paradigm C++ IDE
PDADDREG.EXE Enables, disables, installs and deletes PCW addon .DLLs
PLIB.EXE Utility for maintaining static-link libraries
PLINK.EXE Paradigm C++ 16-bit linker
RTM.EXE 16-bit runtime manager
TOUCH.COM Change files stamps to current date/time

Running the command-line tools

Many Paradigm command-line tools (such as the command-line compiler) use DPMI
(DOS Protected Mode Interface) to run in protected mode. Protected mode tools run on
80386 and greater machines with at least 640K conventional RAM and at least 4MB
extended memory.

Although the compilers run in protected mode, they generate applications that run in real
mode. Protected-mode tools have the advantage that they can access more memory than
real-mode tools. This helps to compile large projects at faster speeds, without the cost of
extensive disk-swapping.

Memory and MAKESWAP.EXE

If you get “Out of Memory” errors from DOS when running Paradigm command-line tools
(or if you have 8MB of RAM and are running the 32-bit command-line tools), create a
swap file with the MAKESWAP utility. Describe the size of the swap file in kilobytes.
For example, the following command creates a 12MB swap file:

MAKESWAP 12000

In addition, MAKESWAP supports the following syntax:

+

Table 6-1
Paradigm C++

tools

MAKESWAP
applies to DOS

only, not to DOS
boxes opened

under Windows.

Chapter 6, Paradigm C++ compiler 171

MAKESWAP 12M

Both commands create a 12MB swap file in the current directory (named EDPMI.SWP)
which the Paradigm command-line tools use when they need additional memory. To
enable the swap file, use the DPMI32 environment variable at the DOS prompt, or add
this line to your AUTOEXEC.BAT file:

set DPMI32=SWAPFILE <SwapFilePath>EDPMI.SWP

You must clear the DPMI32 environment variable before you use any 16-bit DPMI-
hosted tools with the following command:

set DPMI32=

The run-time manager and tools

The Paradigm C++ protected-mode tools (such as PCC) use the run-time managers
RTM.EXE and 32RTM.EXE. The tools that use run-time managers first load the run-time
manager, then do their work, and then unload the run-time manager. If you’re accessing
32-bit command-line tools that use the run-time manager many times over a short period
(such as from a makefile), you could speed up the process by loading the run-time
manager once, calling the tools, then unloading the run-time manager. To load the run-
time manager, type 32RTM at the command line. To unload 32RTM, type 32RTM -u.

By default, the run-time manager consumes all available memory when it loads. It then
allocates memory to its clients when they request it through the memory manager API
routines.

When running in a DOS box under Windows, the amount of memory that RTM reserves is
limited to the XMS Memory KB Limit setting for the DOS box. The Property setting for
your DOS box should set XMS Memory KB Limit to at least 1024. This value sets the
limit on the amount of memory that RTM takes for the 16-bit DOS extended memory
application.

+

Paradigm C++ Reference Manual172

Chapter 7, Using MAKE 173

C h a p t e r

7

Using MAKE

MAKE.EXE is a command-line utility that helps you manage project compilation and link
cycles. MAKE helps you quickly build projects by compiling only the files you have
modified since the last compilation. In addition, you can set up rules that specify how
MAKE should deal with the special circumstances in your builds.

This chapter covers the following topics:

l MAKE basics
l Makefile contents
l Using explicit and implicit rules
l Using MAKE macros
l Using MAKE directives

MAKE basics

MAKE uses rules you write along with its default settings to determine how it should
compile the files in your project. For example, you can specify when to build your
projects with debug information and to compile your .OBJ files only if the date/time
stamps of a source file is more recent than the .OBJ itself. If you need to force the
compilation of a module, use TOUCH.EXE to modify the time stamp of one of the
module’s dependents.

In an ASCII makefile, you write explicit and implicit rules to tell MAKE how to treat the
files in your project; MAKE determines if it should execute a command on a file or set of
files using the rules you set up. Although your commands usually tell MAKE to compile
or link a set of files, you can specify nearly any operating system command with MAKE.

The general syntax for MAKE is
MAKE [options...] [target[targets]]

where options are MAKE options that control how MAKE works and targets are
the names of the files in the makefile that you want to build.

You must separate the MAKE command and the options and target arguments with
spaces. When specifying targets, you can use wildcard characters (such as * and ?) to
indicate multiple files. To get command-line help for MAKE, type MAKE -?.

Default MAKE actions

When you issue a MAKE command, MAKE looks in the current directory for the file
BUILTINS.MAK, which contains the default rules for MAKE (use the -r option to ignore
this set of default rules). After loading BUILTINS.MAK, MAKE looks for a file called
MAKEFILE or MAKEFILE.MAK (use the -f option to specify a file other than
MAKEFILE). MAKE looks for these files first in the current directory, then in the
directory where MAKE.EXE is stored. If MAKE can’t find either of these files, it
generates an error message.

If you need to
compile in real
mode, use the

program
MAKER.EXE.

Paradigm C++ Reference Manual174

 1. After loading the makefile, MAKE tries to build only the first target listed in the
makefile by checking the time and date of the dependent files of the first target. If the
dependent files are more recent than the target file, MAKE executes the commands to
update the target.

 2. If one of the first target’s dependent files as a target elsewhere in the makefile,
MAKE checks that target’s dependencies and builds it before building the first target.
This chain reaction is called a linked dependency.

 3. If something during the build process fails, MAKE deletes the target file it was
building. Use the .precious directive if you want MAKE to keep a target after a build
fails.

You can stop MAKE after issuing the make command by pressing Ctrl+Break or Ctrl+C.

To place MAKE instructions in a file other than MAKEFILE, see the section titled
"MAKE options."

BUILTINS.MAK

The file BUILTINS.MAK contains standard rules and macros that MAKE uses when it
builds the targets in a makefile. To ignore this file, use the -r MAKE option.

Here is the default text of BUILTINS.MAK:
#
<Default ¶ Font>Paradigm C++ - © Copyright 1997 by Paradigm Systems
#

default is to target 16BIT

CC = pcc
AS = psm
.asm.obj:
$(AS) $(AFLAGS) $&.asm
.c.exe:
$(CC) $(CFLAGS) $&.c
.c.obj:
$(CC) $(CFLAGS) /c $&.c
.cpp.exe:
$(CC) $(CFLAGS) $&.cpp
.cpp.obj:
$(CC) $(CPPFLAGS) /c $&.cpp

.SUFFIXES: .exe .obj .asm .c

!if !$d(PARADIGMEXAMPLEDIR)
PARADIGMEXAMPLEDIR = $(MAKEDIR)\..\EXAMPLES
!endif

Using TOUCH

TOUCH.EXE updates a file’s date stamp so that it reflects your system’s current time and
date.

Sometimes you might need to force a target to be recompiled or rebuilt even though you
haven’t changed its source files. One way to do this is to use the TOUCH utility to update

Chapter 7, Using MAKE 175

the time stamp of one or more of the target’s dependency files. To touch a file (or files),
type the following at the command prompt:

touch [options] filename [filename...]

Because TOUCH is a 32-bit executable, it accepts long file names. In addition, you can
use file names that contain the wildcard characters * and ? to “touch” more than a single
file at a time.

Before you use TOUCH, make sure your system’s internal clock is set correctly.

TOUCH.EXE supports several command-line options:

Option Description

dmm-dd-yy Sets the date of the file to the specified date
ffilename Sets the time and date of files to match those of filename
h Displays help information (same as typing TOUCH without options or file names)
thh:mm:ss Sets the time of the file to the specified time
v Verbose mode, shows each file TOUCHed

MAKE options

You can use command-line options to control the behavior of MAKE. MAKE options are
case-sensitive and must be preceded with either a hyphen (-) or slash (/). For example, to
use a file called PROJECTA.MAK as the makefile, type MAKE -fPROJECTA.MAK.
Many of the command-line options have equivalent directives that you can use within the
makefile.

Option Description

-a Checks dependencies of include files and nested include files associated with .OBJ
files and updates the .OBJ if the .h file changed. See also -c.

-B Builds all targets regardless of file dates.
-c Caches autodependency information, which can improve MAKE’s speed. Use with

-a. Do not use this option if MAKE modifies include files (which can happen if
you use TOUCH in the makefile or if you create header or include files during the
MAKE process).

-Dmacro Defines macro as a single character, causing an expression !ifdef macro written
in the makefile to return true.

[-D]macro=[string] Defines macro as string. If string contains any spaces or tabs, enclose string in
quotation marks. The -D is optional.

-ddirectory Use this option with -S to specify the drive and directory that MAKER (the real
mode version of MAKE) uses when it swaps out of memory. MAKE ignores this
option.

-e Ignores a macro if its name is the same as an environment variable (MAKE uses
the environment variable instead of the macro).

-ffilename Uses filename or filename.MAK instead of MAKEFILE (a space after -f is
optional).

-h or -? Displays MAKE options. Default settings are shown with a trailing plus sign.
-Idirectory MAKE searches for include files in the current directory first, then in directory you

specify with this option.
-i MAKE ignores the exit status of all programs run from the makefile and continues

the build process.

+
Table 7-1

TOUCH options

Use the -W
option to set

default MAKE
options.

Table 7-2
MAKE options

Paradigm C++ Reference Manual176

-K Keeps temporary files that MAKE creates (MAKE usually deletes them). See also
“KEEP,” page 7-177.
This may be helpful during debugging of your makefiles.

-m Displays the date and time stamp of each file as MAKE processes it.
-N Causes MAKE to mimic Microsoft’s NMAKE.
-n Prints the MAKE commands but does not perform them, this is helpful for

debugging makefiles.
-p Displays all macro definitions and implicit rules before executing the makefile.
-q Returns 0 if the target is up-to-date and nonzero if it is not (for use with batch

files).
-r Ignores any rules defined in BUILTINS.MAK.
-S Swaps MAKER out of memory while commands are executed, reducing memory

overhead and allowing compilation of large modules. MAKE ignores this option.
-s Suppresses onscreen command display.
-Umacro Undefines the previous macro definition of macro.
-W Writes the specified non-string options to MAKE.EXE, making them defaults.

Setting default MAKE options
The -W option lets you set the default options for MAKE. Use the following syntax to set
the default options:

make [-option[-] ...] -W

For example, you could type MAKE -m -W to turn the -m option on by default (which
causes MAKE to always display file dates and times). When you use the -W option,
MAKE asks you to write changes to MAKE.EXE. Type Y to accept the new defaults. To
turn off an option that’s on by default, follow the option with a hyphen. For example, to
undo the -m option change, type

MAKE -m- -W

The -W option doesn’t work with the following MAKE options:

-Dmacro -Dmacro=string

-ddirectory -Usymbol

-ffilename -? or -h

-Idirectory

If you attempt to use the -W option when the DOS SHARE program is loaded, MAKE
displays the message Fatal: unable to open file MAKE.EXE.

Compatibility with Microsoft’s NMAKE
Use the -N option if you want to use a makefile that was originally created for
Microsoft’s NMAKE. The following changes occur when you use -N:

l The $d macro is treated differently-use !ifdef or !ifndef instead.
l Macros that return paths won’t return the last \. For example, if $(<D) normally

returns C:\CPP\, the -N option causes MAKE to return C:\CPP.
l Unless there is a matching .suffixes directive, MAKE begins searching for rules from

the bottom of the makefile and works its way to the top.
l In implicit rules, MAKE expands $* macros to the target name instead of to the

dependent name.

Warning!

+

Chapter 7, Using MAKE 177

l MAKE interprets the << operator as if it were the && operator; MAKE uses
temporary files as response files. These files are then deleted. To keep a file, either
use the -K MAKE command-line option or use KEEP in the makefile.

MAKE usually deletes temporary files it creates.
<<FileName.Ext
 text
 ...
 <<KEEP

If you don’t want to keep a temporary file, type NOKEEP or type only the temporary
(optional) file name. If you don’t type a file name, MAKE creates a name for you. If you
use NOKEEP, it will override the -K command-line option.

Using makefiles

A makefile is an ASCII file that contains the set of instructions that MAKE uses to build a
certain project. Although MAKE assumes your makefile is called MAKEFILE or
MAKEFILE.MAK, you can specify a different makefile name with the -f option (see page
7-175).

MAKE either builds the target(s) you specify at the MAKE command or it builds only the
first target it finds in the makefile (to build more than one target, see the section
"Symbolic targets"). Makefiles can contain:

l Comments
l Explicit rules
l Implicit rules
l Macros
l Directives

Symbolic targets

A symbolic target forces MAKE to build multiple targets in a makefile. When you
specify a symbolic target, the dependency line lists all the targets you want to build (a
symbolic target basically uses linked dependencies to build more than one target).

For example, the following makefile uses the symbolic target allFiles to build both
FILE1.EXE and FILE2.EXE:

AllFiles: file1.exe file2.exe
file1.exe: file1.obj
 pcc file1.obj
file2.exe: file2.obj
 pcc file2.obj

Rules for symbolic targets
Observe the following rules when you use symbolic targets:

l Do not type a line of commands following the symbolic target line.
l A symbolic target must have a unique name; it cannot be the name of a file in your

current directory.
l Symbolic target names must follow the operating system rules for naming files.

The AllFiles
target has no
commands.

Paradigm C++ Reference Manual178

Explicit and implicit rules

You write explicit and implicit rules to instruct MAKE how build the targets in your
makefile. In general, these rules are defined as follows:

l Explicit rules are instructions for specific files.
l Implicit rules are general instructions for files that don’t have explicit rules.

All the rules you write follow this general format:
Dependency line
 Commands
 ?

While the dependency line uses a different syntax for explicit and implicit rules, the
command line syntax stays the same for both rule types. For more information on linked
dependencies see page 7-174.

MAKE supports multiple dependency lines for a single target, and a single target can
have multiple command lines. However, only one dependency line should contain a
related command line. For example:

Target1: dependent1 dep2 dep3 dep4 dep5
Target1: dep6 dep7 dep8
 pcc -c $**

Explicit rule syntax

Explicit rules specify the instructions that MAKE must follow when it builds specific
targets. Explicit rules name one or more targets followed by one or two colons. One
colon means one rule is written for the target(s); two colons mean that two or more rules
are written for the target(s).

Explicit rules follow this syntax:
target [target...]:[:][{path}] [dependent[s]...]
 [commands]
 ?

target The name and extension of the file to be built (a target must begin a line in
the makefile - you cannot precede the target name with spaces or tabs). To
specify more than one target, separate the target names with spaces or
tabs. Also, you cannot use a target name more than once in the target
position of an explicit rule.

path A list of directories that tells MAKE where to find the dependent files.
Separate multiple directories with semicolons and enclosed the entire path
specification in braces.

dependent The file (or files) whose date and time MAKE checks to see if it is newer
than target. Each dependent file must be preceded by a space. If a
dependent appears elsewhere in the makefile as a target, MAKE updates
or creates that target before using the dependent in the original target (this
in known as a linked dependency).

commands Any operating system commands. You must indent the command line by at
least one space or tab, otherwise they are interpreted as a target. Separate
multiple commands with spaces (see the section on commands, page
7-180)

Chapter 7, Using MAKE 179

If a dependency or command line continues on the following line, use a backslash (\) at
the end of the first line to indicate that the line continues. For example,

MYSOURCE.EXE: FILE1.OBJ\ #Dependency line
 FILE3.OBJ #Dependency line continued
 pcc file1.obj file3.obj #Command line

Single targets with multiple rules
A single target can have more than one explicit rule. To specify more than a single
explicit rule, use a double colon (::) after the target name. The following example shows
targets with multiple rules and commands.

cpp.obj:
 pcc -c -ncobj $<

.asm.obj:
 tasm /mx $<, asmobj\

mylib.lib :: f1.obj f2.
 echo Adding C files
 plib mylib -+cobjf1 -+cobjf2

mylib.lib :: f3.obj f4.obj
 echo Adding ASM files
 plib mylib -+asmobjf3 -+asmobjf4

Implicit rule syntax

An implicit rule specifies a general rule for how MAKE should build files that end with
specific file extensions. Implicit rules start with either a path or a period. Their main
components are file extensions separated by periods. The first extension belongs to the
dependent, the second to the target.

If implicit dependents are out-of-date with respect to the target, or if the dependents don’t
exist, MAKE executes the commands associated with the rule. MAKE updates explicit
dependents before it updates implicit dependents.

Implicit rules follow this basic syntax:
[source_dir].source_ext[target_dir].target_ext:
 [commands]

{source_dir} The directory (or directories) where MAKE can find the dependent files.
Separate multiple directories with a semicolon.

.source_ext The dependent filename extension.

{target_dir} The directory where MAKE places the target files. Separate multiple
directories with a semicolon.

.target_ext The target filename extension. Macros are allowed here.

: Marks the end of the dependency line.

commands Any operating system command or commands. You must indent the
command line by at least one space or tab, otherwise they are interpreted
as a target. Separate multiple commands with spaces (see the section on
commands, page 7-180)

Paradigm C++ Reference Manual180

If two implicit rules match a target extension but no dependent exists, MAKE uses the
implicit rule whose dependent’s extension appears first in the .SUFFIXES list. See
“suffixes,” page 7-188.

Explicit rules with implicit commands
A target in an explicit rule can get its command line from an implicit rule. The following
example shows an implicit rule followed by an explicit rule without a command line.

.c.obj:
 pcc -c $< #This command uses a macro $< described
 later

myprog.obj: #This explicit rule uses the command: pcc
 -c myprog.c

The implicit rule command tells MAKE to compile MYPROG.C (the macro $< replaces
the name myprog.obj with myprog.c).

Command syntax

Commands immediately follow an explicit or implicit rule and must begin on a new line
with a space or tab.

Commands can be any operating system command, but they can also include MAKE
macros, directives, and special operators that your operating system won’t recognize
(however, note that | can’t be used in commands). Here are some sample commands:

cd..

pcc -c mysource.c

COPY *.OBJ C:PROJECTA

pcc -c $(SOURCE) #Macros are explained later in the
 chapter.

Commands follow this general syntax:
[prefix...] commands

Command prefixes
Commands in both implicit and explicit rules can have prefixes that modify how MAKE
treats the commands. Table 7.3 lists the prefixes you can use in makefiles:

Prefix Description

@ Don’t display the command while it’s being executed.
-num Stop processing commands in the makefile when the exit code returned from command

exceeds the integer num. Normally, MAKE aborts if the exit code is nonzero. No white
space is allowed between - and num.

- Continue processing commands in the makefile, regardless of the exit codes they return.
& Expand either the macro $**, which represents all dependent files, or the macro $?, which

represents all dependent files stamped later than the target. Execute the command once for
each dependent file in the expanded macro.

See page 7-183
for information on

default macros.

Table 7-3
Command

prefixes

Chapter 7, Using MAKE 181

Using @
The following command uses the @ prefix, which prevents MAKE from displaying the
command onscreen.

diff.exe : diff.obj
 @pcc diff.obj

Using -num and -
The -num and - prefixes control the makefile processing when errors occur. You can
choose to continue with the MAKE process if an error occurs or you can specify a
number of errors to tolerate.

In the following example, MAKE continues processing if PCC returns errors:
target.exe : target.obj
target.obj : target.cpp
 pcc -c target.cpp

Using &
The & prefix issues a command once for each dependent file. It is especially useful for
commands that don’t take a list of files as parameters. For example,

copyall : file1.cpp file2.cpp
 © $** c:\temp

results in COPY being invoked twice as follows:
copy file1.cpp c:\temp
copy file2.cpp c:\temp

Without the & modifier, MAKE would call COPY only once.

Command operators
While you can use any operating system command in a MAKE command section, you can
also use special operators. MAKE supports the normal operators (such as +, -, and so on)
as well as the following special operators:

Operator Description

< Use input from a specified file rather than from standard input
> Send the output from command to file
>> Append the output from command to file
<< Create a temporary inline file and use its contents as standard input to command
&& Create a temporary response file and insert its name in the makefile
delimiter Use delimiters with temporary response files. You can use any character other than # as a

delimiter. Use << and && as a starting and ending delimiter for a temporary file. Any
characters on the same line and immediately following the starting delimiter are ignored.
The closing delimiter must be written on a line by itself.

Debugging with temporary files
MAKE can create temporary response files when your command lines become too long to
place on a single line.

To begin writing to a response file, place the MAKE operator && followed by a
delimiter of your choice (| makes a good delimiter) in the makefile. To finish writing to
the file, repeat your delimiter.

Table 7-4
Command
operators

Paradigm C++ Reference Manual182

The following example shows &&| instructing MAKE to create a file for the input to
PLINK.

prog.exe: A.obj B.obj
 PLINK /c @&&| # &&| opens temp file, @ for PLINK
 c0s.obj $**
 prog.exe
 prog.map
 maths.lib cs.lib
 | # | closes temp file, must be on first column

The response file created by &&| contains these instructions:
c0s.obj a.obj b.obj
prog.exe
prog.map
maths.lib cs.lib

MAKE names temporary file starting at MAKE0000.@@@, where the 0000 increments
by one with each temporary file you create. MAKE then deletes the temporary file when
it terminates.

Using MAKE macros

A macro is a variable that MAKE expands into a string whenever MAKE encounters the
macro in a makefile. For example, you can define a macro called LIBNAME that
represents the string “mylib.lib.” To do this, type the line LIBNAME = mylib.lib at
the beginning of your makefile. Then, when MAKE encounters the macro $(LIBNAME),
it substitutes the string mylib.lib. Macros let you create template makefiles that you
can change to suit different projects.

To use a macro in a makefile, type $(MacroName) where MacroName is a defined
macro. You can use braces or parentheses to enclose MacroName.

MAKE expands macros at various times depending on where they appear in the makefile:

l Nested macros are expanded when the outer macro is invoked.
l Macros in rules and directives are expanded when MAKE first looks at the makefile.
l Macros in commands are expanded when the command is executed.

If MAKE finds an undefined macro in a makefile, it looks for an operating-system
environment variable of that name (usually defined with SET) and uses its definition as
the expansion text. For example, if you wrote $(PATH) in a makefile and never defined
PATH, MAKE would use the text you defined for PATH in your AUTOEXEC.BAT. See
your operating system manuals for information on defining environment variables.

Defining MAKE macros

The general syntax for defining a macro in a makefile is:
MacroName = expansion_text.

l MacroName is case-sensitive (MACRO1 is different from Macro1).
l MacroName is limited to 512 characters.
l expansion_text is limited to 4096 characters. Expansion characters may be

alphanumeric, punctuation, or whitespace.

Chapter 7, Using MAKE 183

You must define each macro on a separate line in your makefile and each macro
definition must start on the first character of the line. For readability, macro definitions
are usually put at the top of the makefile. If MAKE finds more than one definition for
macroName, the new definition overwrites the old one.

You can also define macros using the -D command-line option (see page 7-175). No
spaces are allowed before or after the equal sign (=), however, you can define more than
one macro can by separating the definitions with spaces. The following examples show
macros defined at the command line:

make -Dsourcedir=c:projecta
make -Dcommand=”pcc -c”
make -Dcommand=pcc option=-c

Macros defined in makefiles overwrite those defined on the command line.
The following differences in syntax exist between macros entered on the command line
and macros written in a makefile.

Syntax Makefile Command line

Spaces allowed before and after = Yes No
Spaces allowed before macroName No Yes

String substitutions in MAKE macros

MAKE lets you temporarily substitute characters in a previously defined macro. For
example, if you defined the macro

SOURCE = f1.cpp f2.cpp f3.cpp

you could substitute the characters .obj for the characters .cpp by using the make
command $(SOURCE:.cpp=.obj). This substitution does not redefine the macro.

Rules for macro substitution:

l Syntax: $(MacroName:original_text=new_text)
l No whitespace before or after the colon
l Characters in original_text must exactly match the characters in the macro definition

(text is case-sensitive)

MAKE also lets you use macros within substitution macros. For example,
MYEXT=.C
SOURCE=f1.cpp f2.cpp f3.cpp
$(SOURCE:.cpp=$(MYEXT)) #Changes f1.cpp to f1.C, etc.

Default MAKE macros

MAKE contains several default macros you can use in your makefiles. Table 7.6 lists the
macro definition and what it expands to in explicit and implicit rules.

Macro Expands in implicit Expands in explicit

$* path\dependent file path\target file
$< path\dependent file+ext path\target file+ext
$: path for dependents path for target
$. dependent file+ext target file + ext

+

Table 7-5
Command line

vs. makefile
macros

Table 7-6
Default macros

Paradigm C++ Reference Manual184

$& dependent file target file
$@ path\target file+ext path\target file+ext
$** path\dependent file+ext all dependents file+ext
$? path\dependent file+ext old dependents

Macro Expands to Comment

_ _MSDOS_ _ 1 If running under DOS
_ _MAKE_ _ 0x0370 MAKE’s hex version number
MAKE make MAKE’s executable file name
MAKEFLAGS options The options typed at the command line
MAKEDIR directory Directory where MAKE.EXE is located

PCPPROOT Will be defined to be the Paradigm C++ root directory if this can
be determined by MAKE.

If PCPPROOT is defined, you will find the following BIN, INCLUDE, and LIB
directories:
$(PCPPROOT)\BIN
$(PCPPROOT)\INCLUDE
$(PCPPROOT)\LIB

Modifying default MAKE macros

When the default macros listed in Table 7.6, page 7-183 don’t give you the exact string
you want, macro modifiers let you extract parts of the string to suit your purpose.

To modify a default macro, use this syntax:
$(MacroName [modifier])

Table 7.8 lists macro modifiers and provides examples of their use.

Modifier Part of file name expanded Example Result

D Drive and directory $(<D) C:\PROJECTA\
F Base and extension $(<F) MYSOURCE.C
B Base only $(<B) MYSOURCE
R Drive, directory, and base $(<R) C:\PROJA\SOURCE

Using MAKE directives

MAKE directives resemble directives in languages such as C and Pascal. In MAKE, they
perform various control functions, such as displaying commands onscreen before
executing them. MAKE directives begin either with an exclamation point or a period, and
the override any options given on the command line.

Table 7-9, page 7-185 lists the MAKE directives and their corresponding command-line
options (directives override command-line options). Each directive is described in more
detail following the table.

Table 7-7
Other default

macros

+

Table 7-8
Filename macro

modifiers

Chapter 7, Using MAKE 185

Directive Option Description

.autodepend -a Turns on autodependency checking

.cacheautodepend -c Turns on autodependency caching
!elif Acts like a C else if
!else Acts like a C else
!endif Ends an !if, !ifdef, or !ifndef statement
!error Stops MAKE and prints an error message
!if Begins a conditional statement
!ifdef Acts like a C #ifdef, testing whether a given macro has

been defined
!ifndef Acts like a C #ifndef, testing whether a given macro is undefined
.ignore -i MAKE ignores the return value of a command
!include Acts like a C #include, specifying a file to include in the makefile
!message Prints a message to stdout while MAKE runs the makefile
.noautodepend -a- Turns off autodependency checking
.nocacheautodepend -c- Turns off autodependency caching
.noIgnore -i- Turns off .Ignore
.nosilent -s- Displays commands before MAKE executes them
.noswap -S- Tells MAKE not to swap itself out of memory before executing a

command
.path.ext Tells MAKE to search for files with the extension .ext in path

directories
.precious Saves the target or targets even if the build fails
.silent -s MAKE executes commands without printing them first
.suffixes Determines the implicit rule for ambiguous dependencies
.swap -S Tells MAKE to swap itself out of memory before executing a

command
!undef Clears the definition of a macro. After this, the macro is undefined

.autodepend

Autodependencies are the files that are automatically included in the targets you build,
such as the header files included in your C++ source code. With .autodepend on, MAKE
compares the dates and times of all the files used to build the .OBJ, including the
autodependency files. If the dates or times of the files used to build the .OBJ are newer
than the date/time stamp of the .OBJ file, the .OBJ file is recompiled. You can use
.autodepend (or -a) in place of forming linked dependencies (see page 7-174 for
information on linked dependencies).

!error

The syntax of the !error directive is:
!error message

MAKE stops processing and prints the following string when it encounters this directive:
Fatal makefile exit code: Error directive: message

Embed !error in conditional statements to abort processing and print an error message, as
shown in the following example:

Table 7-9
MAKE directives

Paradigm C++ Reference Manual186

!if !$d(MYMACRO)
#if MYMACRO isn’t defined
!error MYMACRO isn’t defined
!endif

If MYMACRO isn’t defined, MAKE terminates and prints:
Fatal makefile 4: Error directive: MYMACRO isn’t defined

Error-checking controls

MAKE offers four different controls to control error checking:

l The .ignore directive turns off error checking for a selected portion of the makefile.
l The -i command-line option turns off error checking for the entire makefile.
l The -num prefix, which is entered as part of a rule, turns off error checking for the

related command if the exit code exceeds the specified number.
l The - prefix turns off error checking for the related command regardless of the exit

code.

!if and other conditional directives

The !if directive works like C if statements. As shown here, the syntax of !if and the other
conditional directives resembles compiler conditionals:

!if condition !if condition !if condition !ifdef macro

!endif !else !elif condition !endif

!endif !endif

The following expressions are equivalent:
!ifdef macro and !if $d(macro)
ifndef macro and !if !$d(macro)

These rules apply to conditional directives:

l One !else directive is allowed between !if, !ifdef, or !ifndef and !endif directives.
l Multiple !elif directives are allowed between !if, !ifdef, or !ifndef, !else and !endif.
l You can’t split rules across conditional directives.
l You can nest conditional directives.
l !if, !ifdef, and !ifndef must have matching !endif directives within the same file.

The following information can be included between !if and !endif directives:

l Macro definition
l !include directive
l Explicit rule
l !error directive
l Implicit rule
l !undef directive

Condition in if statements represents a conditional expression consisting of decimal,
octal, or hexadecimal constants and the operators shown in Table 7-10, page 7-187.

Chapter 7, Using MAKE 187

Operator Description Operator Description

- Negation ?: Conditional expression
~ Bit complement ! Logical NOT
+ Addition >> Right shift
- Subtraction << Left shift
* Multiplication & Bitwise AND
/ Division | Bitwise OR
% Remainder ^ Bitwise XOR
&& Logical AND >= Greater than or equal*
|| Logical OR <= Less than or equal*
> Greater than = = Equality*
< Less than != Inequality*

*Operator also works with string expressions.

MAKE evaluates a conditional expression as either a 32-bit signed integer or as a
character string.

!include

This directive is like the #include preprocessor directive for the C or C++ language-it
lets you include the text of another file in the makefile:

!include filename

You can enclose filename in quotation marks (“ “) or angle brackets (< >) and nest
directives to unlimited depth, but writing duplicate !include directives in a makefile isn’t
permitted-you’ll get the error message cycle in the include file.

Rules, commands, or directives must be complete within a single source file; you can’t
start a command in an !include file, then finish it in the makefile.

MAKE searches for !include files in the current directory unless you’ve specified another
directory with the -I command-line option.

!message

The !message directive lets you send messages to the screen from a makefile. You can
use these messages to help debug a makefile that isn’t working properly. For example, if
you’re having trouble with a macro definition, you could put this line in your makefile:

!message The macro is defined here as: $(MacroName)

When MAKE interprets this line, it will print onscreen The macro is
defined here as: .CPP (assuming the macro expands to .CPP). Using a series of
!message directives, you can debug your makefiles.

.path.ext

The .path.ext directive tells MAKE where to look for files with a certain extension. The
following example tells MAKE to look for files with the .c extension in C:SOURCE or
C:CFILES and to look for files with the .obj extension in C:OBJS.

.path.c = C:CSOURCE;C:CFILES

.path.obj = C:OBJS

Table 7-10
Conditional

operators

Paradigm C++ Reference Manual188

.precious

If a MAKE build fails, MAKE deletes the target file. The .precious directive prevents the
file deletion, which you might desire for certain kinds of targets. For example, if your
build fails to add a module to a library, you might not want the library to be deleted.

The syntax for .precious is
.precious: target [target ...]

.suffixes

The .suffixes directive tells MAKE the order (by file extensions) for building implicit
rules.

The syntax of .suffixes is
.suffixes: .ext [.ext ...]

where .ext represents the dependent file extensions you list in your implicit rules. For
example, you could include the line .suffixes: .asm .c .cpp to tell MAKE to
interpret implicit rules beginning with the ones dependent on .ASM files, then .C files,
then .CPP files, regardless of what order they appear in the makefile.

The following .suffixes example tells MAKE to look for a source file first with an .ASM
extension, next with a .C extension, and finally with a .CPP extension. If MAKE finds
MYPROG.ASM, it builds MYPROG.OBJ from the assembler file by calling TASM.
MAKE then calls PLINK; otherwise, MAKE searches for MYPROG.C to build the .OBJ
file or it searches for MYPROG.CPP.

.suffixes: .asm .c .cpp

myprog.exe: myprog.obj
plink myprog.obj

.cpp.obj:
 pcc -P $<
.asm.obj:
 tasm /mx $<
.c.obj:
 pcc -P- $<

!undef

!undef (undefine) clears the given macro, causing an !ifdef MacroName test to fail.

The syntax of the !undef directive is
!undef MacroName

Using macros in directives

You can use the $d macro with the !if conditional directive to perform some processing if
a specific macro is defined. Follow the $d with macro name enclosed in parentheses or
braces, as shown in the following example:

!if $d(DEBUG) #If DEBUG is defined,

pcc -v f1.cpp f2.cpp #compile with debug information;

!else #otherwise (else)

Chapter 7, Using MAKE 189

pcc -v- f1.cpp f2.cpp #don’t include debug information.

!endif

Null macros

While an undefined macro causes an !ifdef MacroName test to return false, MacroName
defined as null will return true. You define a null macro by following the equal sign in the
macro definition with either spaces or a return character. For example, the following line
defines a null macro in a makefile:

NULLMACRO =

Either of the following lines can define a null macro on the MAKE command line:
NULLMACRO=””
-DNULLMACRO

Paradigm C++ Reference Manual190

Chapter 8, PLIB.EXE 191

C h a p t e r

8

PLIB.EXE

PLIB.EXE is a utility that manages libraries of individual .OBJ (object module) files. A
library is a convenient tool for dealing with a collection of object modules as a single
unit.

This chapter covers the basics of using the PLIB library utility including:

l PLIB options
l Operation list
l Response files
l PLIB examples

PLIB basics

The libraries included with Paradigm C++ were built with the PLIB.EXE library utility.
You can use PLIB to build your own libraries, or to modify the Paradigm C++ libraries,
your libraries, libraries furnished by other programmers, or commercial libraries you’ve
purchased.

When PLIB modifies an existing library, it always creates a copy of the original library
with a .BAK extension.

You can use PLIB to:

l Create a new library from a group of object modules.
l Add object modules or other libraries to an existing library.
l Remove object modules from an existing library.
l Replace object modules from an existing library.
l Extract object modules from an existing library.
l List the contents of a new or existing library.

PLIB can also create (and include in the library file) an extended dictionary, which can
be used to speed up linking.

Although PLIB is not essential for creating executable programs with Paradigm C++, it is
a useful programming productivity tool that can be indispensable for large development
projects.

PLIB options

The PLIB command line takes the following general form, where items listed in square
brackets are optional:

plib [@respfile] [option] libname [operations] [, listfile]

Table 8-1, page 8-192 lists the command-line options available in PLIB. Each is
described in detail following the table.

Paradigm C++ Reference Manual192

For an online summary of PLIB command-line options, type PLIB and press Enter.

Option Description

@respfile The path and name of the response file you want to include. You can specify more
than one response file.

libname The DOS path name of the library you want to create or manage. Every PLIB
command must be given a libname. Wildcards are not allowed. PLIB assumes
an extension of .LIB if none is given. Use only the .LIB extension because both
PCC and the Paradigm C++ IDE require the .LIB extension in order to recognize
library files. Note: If the named library does not exist and there are add operations,
PLIB creates the library.

/C The case-sensitive flag. This option is not normally used.
/E Creates extended dictionary
/Psize Sets the library page size to size.
/0 Purges comment records.
operations The list of operations PLIB performs. Operations can appear in any order. If you

only want to examine the contents of the library, don’t give any operations.
listfile The name of the file that lists library contents. The listfile name (if given) must be

preceded by a comma. No listing is produced if you don’t give a file name. The
listing is an alphabetical list of each module. The entry for each module contains
an alphabetical list of each public symbol defined in that module. The default
extension for the listfile is .LST. You can direct the listing to the screen by using
the listfile name CON, or to the printer by using the name PRN.

PLIB /C option
Using case-sensitive symbols in a library

When you add a module to a library, PLIB maintains a dictionary of all public symbols
defined in the modules of the library. All symbols in the library must be distinct. If you try
to add a module to the library that duplicates a symbol, PLIB displays an error message
and doesn’t add the module.

Normally, when PLIB checks for duplicate symbols in the library, uppercase and
lowercase letters are not treated differently (for example, the symbols lookup and
LOOKUP are treated as duplicates). You can use the /C option to add a module to a
library that includes symbols differing only in case.

Don’t use /C if you plan to use the library with other linkers or let other people use the
library.

PLIB normally rejects symbols that differ only in case because some linkers aren’t case-
sensitive. PLINK has no problem distinguishing uppercase and lowercase symbols. As
long as you use your library only with PLINK, you can use the PLIB /C option without
any problems.

PLIB /E option
Creating an extended dictionary

To increase the capacity of PLINK for large links, you can use PLIB to create an extended
dictionary and append it to the library file. This dictionary contains, in a compact form,
information that is not included in the standard library dictionary and that lets PLINK
process library files so that those modules not needed in the link are not processed.

+
Table 8-1

PLIB options

Chapter 8, PLIB.EXE 193

To create an extended dictionary for a library that is being modified, use the /E option
when you start PLIB to add, remove, or replace modules in the library. To create an
extended dictionary for an existing library that you don’t want to modify, use the /E
option. For example, if you type the following text, PLINK appends an extended
dictionary to the specific library:

plib /E mylib

If you get the message “Table limit exceeded”, use /E to see if it helps. If you use /E to
add a library module containing a C++ class with a virtual function, you’ll get the error
message, Library contains COMDEF records—extended dictionary not created.

PLIB /P option
Setting the page size to create a large library

Every DOS library file contains a dictionary that appears at the end of the .LIB file,
following all of the object modules. For each module in the library, the dictionary
contains a 16-bit address of that particular module within the .LIB file; this address is
given in terms of the library page size (it defaults to 16 bytes).

The library page size determines the maximum combined size of all object modules in the
library, which cannot exceed 65,536 pages. The default (and minimum) page size of 16
bytes allows a library of about 1 MB in size. To create a larger library, use the /P option
to increase the page size. The page size must be a power of 2, and it cannot be smaller
than 16 or larger than 32,768.

All modules in the library must start on a page boundary. For example, in a library with a
page size of 32 (the lowest possible page size higher than the default 16), an average of
16 bytes will be lost per object module in padding. If you attempt to create a library that
is too large for the given page size, PLIB will issue an error message and suggest that you
use /P with the next available higher page size.

Using PLIB response files

When you use a large number of operations, or if you find yourself repeating certain sets
of operations over and over, you will probably want to use response files. A response
file is an ASCII text file (which can be created with the Paradigm C++ editor) that
contains all or part of a PLIB command. Using PLIB response files, you can build PLIB
commands larger than would fit on one command line. Response files can

l Contain more than one line of text; use the ampersand character (&) at the end of a
line to indicate that another line follows.

l Include a partial list of commands. You can combine options from the command line
with options in a response file.

l be used with other response files in a single PLIB command line.

Operation list

The operation list describes what actions you want PLIB to do and consists of a sequence
of operations given one after the other. Each operation consists of a one- or two-character
action symbol followed by a file or module name. You can put whitespace around either
the action symbol or the file or module name, but not in the middle of a two-character
action or in a name.

Paradigm C++ Reference Manual194

You can put as many operations as you like on the command line, up to DOS’s
COMMAND.COM-imposed line-length limit of 127 characters. The order of the
operations is not important. PLIB always applies the operations in a specific order:

To replace a module, first remove it, then add the replacement module. The following
shows the order in which PLIB handles these operations:

 1. All extract operations are done first.
 2. All remove operations are done next.
 3. All add operations are done last.
 4. Wildcards are never allowed in file or module names.

See Table 8-3 for more information on Add, Remove and Extract.
PLIB finds the name of a module by stripping any drive, path, and extension information
from the given file name.

PLIB always assumes reasonable defaults. For example, to add a module that has an .OBJ
extension from the current directory, you need to supply only the module name, not the
path and .OBJ extension.

PLIB recognizes three action symbols (*, +, *), which you can use singly or combined in
pairs for a total of five distinct operations. Table 8-2 summarizes these three action
symbols. The order of the characters is not important for operations that use a pair of
characters. The action symbols and what they do are listed here:

Symbol Name Description

-* Extract & PLIB copies the named module to the corresponding file name and then
removes it from the library.

*- Remove Removes named module from library.
-+ Replace PLIB replaces the named module with the corresponding file.

Option Description

Add PLIB adds the named file to the library. If the file has no extension, PLIB assumes an
extension of .OBJ. If the file is itself a library (with a .LIB extension), then the operation
adds all of the modules in the named library to the target library.
If a module being added already exists, PLIB displays a message and does not add the new
module.

Remove PLIB removes the named module from the library. If the module does not exist in the
library, PLIB displays a message.
A remove operation needs only a module name. PLIB lets you enter a full path name with
drive and extension included, but ignores everything except the module name.

Extract PLIB creates the named file by copying the corresponding module from the library to the
file. If the module does not exist, PLIB displays a message and does not create a file. If the
named file already exists, it is overwritten.
You can’t directly rename modules in a library. To rename a module, extract and remove it,
rename the file just created, then add it back into the library.

PLIB examples

These simple examples demonstrate some of the different things you can do with PLIB:

+
To create a
library, add

modules to a
library that does

not yet exist.

Table 8-2
PLIB action

symbols

Table 8-3
PLIB operations

Chapter 8, PLIB.EXE 195

Example 1

To create a library named MYLIB.LIB with modules X.OBJ, Y.OBJ, and Z.OBJ, type:
plib mylib +x +y +z.

Example 2

To create a library named MYLIB.LIB and get a listing in MYLIB.LST too, type:
plib mylib +x +y +z, mylib.lst.

Example 3

To get a listing in CS.LST of an existing library CS.LIB, type:
plib cs, cs.lst.

Example 4

To replace module X.OBJ with a new copy, add A.OBJ and delete Z.OBJ from
MYLIB.LIB, type:

plib mylib -+x +a -z.

Example 5

To extract module Y.OBJ from MYLIB.LIB and get a listing in MYLIB.LST, type:
plib mylib *y, mylib.lst.

Example 6

To create a new library named ALPHA, with modules A.OBJ, B.OBJ, ..., G.OBJ using a
response file:

 1. First create a text file, ALPHA.RSP, with
+a.obj +b.obj +c.obj &
+d.obj +e.obj +f.obj &
+g.obj

 2. Then use the PLIB command, which produces a listing file named ALPHA.LST:
lib alpha @alpha.rsp, alpha.lst

Paradigm C++ Reference Manual196

Chapter 9, Exception handling 197

C h a p t e r
9

Exception handling
This chapter describes the Paradigm C++ error-handling mechanisms generally referred
to as exception handling. The Paradigm C++ implementation of C++ exception
handling is consistent with the proposed ANSI specification. The exception-handling
mechanisms that are available in C programs are referred to as structured exceptions.
Paradigm C++ provides full compiling, linking, and debugging support for C programs
with structured exceptions. See the section “C-based structured exception,” page 9-204,
and “,” page 9-203 for a discussion of compiler options for programming with
exceptions.

C++ exception handling
The C++ language defines a standard for exception handling. The standard insures that
the power of object-oriented design is supported throughout your program.

In accordance with the ANSI/ISO C++ working paper specification, Paradigm C++
supports the termination exception-handling model. When an abnormal situation arises
at run-time, the program could terminate. However, throwing an exception allows you
to gather information at the throw point that could be useful in diagnosing the causes
that led to failure. You can also specify in the exception handler the actions to be taken
before the program terminates. Only synchronous exceptions are handled, meaning that
the cause of failure is generated from within the program. An event such as Ctrl-C
(which is generated from outside the program) is not considered to be an exception.

C++ exceptions can be handled only in a try/catch construct.

Syntax:

 try-block:
 try compound-statement handler-list

 handler-list:
 handler handler-list opt

 handler:
 catch (exception-declaration) compound-statement

 exception-declaration:
 type-specifier-list declarator
 type-specifier-list abstract-declarator
 type-specifier-list
 …
 throw-expression:
 throw assignment-expression opt

The catch and throw keywords are not allowed in a C program.

The try-block is a statement that specifies the flow of control as the program executes.
The try-block is designated by the try keyword. After the keyword, braces surround a
program block that can generate exceptions. The language structure specifies that any

+

Paradigm C++ Reference Manual198

exceptions that occur should be raised within the try-block. See "statements" in the
online Help index for more information.

The handler is a block of code designed to handle an exception. The C++ language
requires that at least one handler be available immediately after the try-block. There
should be a handler for each exception that the program can generate.

When the program encounters an abnormal situation for which it is not designed, you
can transfer control to some other part of the program that is designed to deal with the
problem. This is done by throwing an exception.

The exception-handling mechanism requires the use of three keywords: try, catch, and
throw. The try-block specified by try must be followed immediately by the handler
specified by catch. If an exception is thrown in the try-block, program control is
transferred to the appropriate exception handler. The program should attempt to catch
any exception that is thrown by any function. Failure to do so could result in abnormal
termination of the program.

Exception declarations

Although C++ allows an exception to be of any type, it is useful to make exception
classes. The exception object is treated exactly the way any object would be treated. An
exception carries information from the point where the exception is thrown to the point
where the exception is caught. This is information that the program user will want to
know when the program encounters some anomaly at run-time.

Predefined exceptions, specified by the C++ language, are documented in the online
Help Book Shelf index under "Run-time support", "operator new" or "xalloc". To get to
the Book Shelf index, choose Help|Keyboard and click the Book Shelf menu tab.
Paradigm C++ provides additional support for exceptions. These extensions are also
documented under "classes" in the online Help index.

Throwing an exception

A block of code in which an exception can occur must be prefixed by the keyword try.
Following the try keyword is a block of code enclosed by braces. This indicates that the
program is prepared to test for the existence of exceptions. If an exception occurs, the
program flow is interrupted. The sequence of steps taken is as follows:

 1. The program searches for a matching handler
 2. If a handler is found, the stack is unwound to that point
 3. Program control is tranferred to the handler

If no handler is found, the program will call the terminate function. If no exceptions are
thrown, the program executes in the normal fashion.

A throw expression is also referred to as a throw-point. You can specify whether an
exception can be thrown by using one of the following syntax specifications:

Chapter 9, Exception handling 199

1. throw throw_expression ;
2. throw ;
3. void my_func1() throw (A, B)
 {
 // Body of function.
 }
4. void my_func2 () throw ()
 {
 // Body of this function.
 }

The first case specifies that throw_expression is to be passed to a handler.

The second case specifies that the exception currently being handler is to be thrown
again. An exception must currently exist. Otherwise, terminate is called.

The third case specifies a list of exceptions that my_func1 can throw. No other
exceptions should propagate out of my_func1. If an exception other than A or B is
generated within my_func1, it is considered to be an unexpected exception and program
control will be transferred to the unexpected function. By default, the unexpected
function ends with a call to abort but it can throw an exception. For more information,
see "unexpected" in the online Help Book Shelf index. The Book Shelf index is
accessed by choosing Help|Keyboard and clicking on the Book Shelf menu tab.

The final case specifies that my_func2 should throw no exceptions. If some other
function (for example, operator new) in the body of my_func2 throws an exception,
such an exception should be caught and handled within the body of my_func2.
Otherwise, such an exception is a violation of my_func2 exception specification. The
unexpected function is then called.

When an exception occurs, the throw expression initializes a temporary object of the
type T (to match the type of argument arg) used in throw(T arg). Other copies can be
generated as required by the compiler. Consequently, it can be useful to define a copy
constructor for the exception object.

Handling an exception

The exception handler is indicated by the catch keyword. The handler must be placed
immediately after the try-block. The keyword catch can also occur immediately after
another catch. Each handler will only evaluate an exception that matches, or can be
converted to, the type specified in its argument list. The possible conversions are listed
after the try-block syntaxes.

The following syntaxes, following the try-block, are valid:
 Try {
 // Include any code that might throw an exception
 }
1. catch (T X)
 {
 // Take some actions
 }
2. catch (…)
 {
 // Take some actions
 }

The first statement is specifically defined to handle an object of type T. If the argument
is T, T&, const T, or const T&, the handler will accept an object of type X if any of the
following are true:

Paradigm C++ Reference Manual200

l T and X are of the same type
l T is an accessible base class for X in the throw expression
l T is a pointer type and X is a pointer type that can be converted to T by a standard

pointer conversion at the throw point

The statement catch (…) will handle any exception, regardless of type. This statement,
if used, must be the last handler for its try-block.

Every exception thrown by the program must be caught and processed by the exception
handler. If the program fails to provide an exception handler for a thrown exception, the
program will call terminate.

Exception handlers are evaluated in the order that they are encountered. An exception is
caught when its type matches the type in the catch statement. Once a type match is
made, program control is transferred to the handler. The stack will have been unwound
upon entering the handler. The handler specifies what actions should be taken to deal
with the program anomaly.

A goto statement can be used to transfer program control out of a handler but such a
statement can never be used to enter a handler or try-block.

After the handler has executed, the program can continue at the point after the last
handler for the current try-block. No other handlers are evaluated for the current
exception.

Exception specifications
The C++ language makes it possible for you to specify any exceptions that a function
can throw. This exception specification can be used as a suffix to the function
declaration. The syntax for exception specification is as follows:

 exception-specification:
 throw (type-id-listopt)
 type-id-list:
 type-id
 type-id-list, type-id

The function suffix is not considered to be part of the function's type. Consequently, a
pointer to a function is not affected by the function's exception specification. Such a
pointer checks only the function's return and argument types. Therefore, the following is
legal:
void f2(void) throw() ; // Should not throw exceptions
void f3(void) throw (BETA) ; // Should only throw BETA objects
void (* fptr)() ; // Pointer to a function returning void
fptr = f2 ;
fptr = f3 ;

Extreme care should be taken when overriding virtual functions. Again, because the
exception specification is not considered part of the function type, it is possible to
violate the program design. In the following example, the derived class BETA:vfunc is
defined so that it throws an exception – a departure from the original function
declaration.
Class ALPHA {
public:
 virtual void vfunc(void) throw () { }; // Exception specification
};
class BETA : public ALPHA {

Chapter 9, Exception handling 201

 struct BETA_ERR { };
 void vfunc(void) throw(BETA_ERR) { }; // Exception specification
is
 // changed
};

The following are examples of functions with exception specifications.
void f1(); // The function can throw any exception
void f2(); throw (); // Should not throw any exceptions
void f3(); throw (A, B*); // Can throw exceptions publicly derived
 // from A, or a pointer to publicly
derived B

The definition and all declarations of such a function must have an exception
specification containing the same set of type-id's. If a function throws an exception not
listed in its specification, the program will call unexpected. This is a run-time issue – it
will not be flagged at compile time. Therefore, care must be taken to handle any
exceptions that can be thrown by elements called within a function.

Example 2
// HOW TO MAKE EXCEPTION-SPECIFICATIONS AND HANDLE ALL EXCEPTIONS
#include <iostream.h>

// EXCEPTION DECLARATIONS
class Alpha {
 // Include something that shows why you chose to throw this
exception.
};
Alpha alpha_inst;

class Beta {
 // Include something that shows why you chose to throw this
exception.
};
Beta beta_inst;

// THROW ONLY Alpha OR Beta TYPE OBJECTS
void f3(char c) throw (Alpha, Beta) {
 cout << "f3() was called" << endl;
 if (c = = 'a').
 throw(alpha_inst);
 if (c = = 'b')
 throw(beta_inst);
 else ; // DO NOTHING WITH OTHER CHARACTERS
 }

// SHOULD NOT THROW EXCEPTIONS
void f2 (char ch) throw() {
 try { // WRAP ALL CODE IN A TRY-BLOCK
 cout << "f2() was called" << endl;
 f3(ch);
 }
 // HERE ARE HANDLERS FOR THE EXCEPTIONS WE KNOW COULD BE THROWN
 catch (Alpha& alpha_inst) { cout << "Caught Alpha exception.";}
 catch (Beta& beta_inst) { cout << "Caught Beta exception.";}

 // IF THE CODE IS MODIFIED LATER SO THAT SOME OTHER EXCEPTION IS
 // THROWN, IT IS HANDLED HERE AND WE AVOID VIOLATING THE f2() THROW

Paradigm C++ Reference Manual202

 // SPECIFICATION
 catch (…) {
 // BUT, WE POST OURSELVES A WARNING MESSAGE.
 cout << "Warning: f2() has elements with exceptions!" << endl;
 }
 }

int main(void) {
 char trigger;

 try {
 cout << "Input a character:";
 cin >> trigger;
 f2(trigger);
 cout << "\nSuccess.";
 return 0; //WE GET HERE ONLY IF EVERYTHING EXECUTES WELL.
 }
 catch (…) {
 cout << "Need more handlers!";
 return 1;
 }
 }

Sample output when 'a' is the input
Input a character: a
f2() was called
f3() was called
Caught Alpha exception.
Success.

If an exception is thrown which is not listed in the exception specification, the
unexpected function will be called. The following diagrams illustrate the sequence of
events that can occur when unexpected is called. See "Run-time support" in the online
Help Book Shelf index, for a description of the "set_terminate", "set_unexpected", and
"unexpected" functions. The Book Shelf index is accessed by choosing Help|Keyboard
and clicking on the Book Shelf menu tab.

Program behavior when a function is registered with set_unexpected ();
 unexpected() // CALLED AUTOMATICALLY
 |
 |
 | // DEFINE YOUR UNEXPECTED HANDLER
 | unexpected_function my_unexpected(void)
 | {
 | //DEFINE ACTION TO TAKE POSSIBLE MAKE ADJUSTMENTS
 | }
 |
 | // REGISTER YOUR HANDLER
 | set_unexpected(my_unexpected);
 |
my_unexpected();

Program behavior when no function is registered with set_unexpected() but there is a
function registered with set_terminate():

Chapter 9, Exception handling 203

unexpected() // CALLED AUTOMATICALLY
 |
terminate()
 |
 | // DEFINE YOUR TERMINATION SCHEME
 | terminate_function my_terminate(void)
 | {
 | // TAKE ACTIONS BEFORE TERMINATING
 | // SHOULD NOT THROW EXCEPTIONS
 | exit(1); // MUST END SOMEHOW.
 | }
 |
 | // REGISTER YOUR TERMINATION FUNCTION
 | set_terminate(my_terminate)
 |
 |
my_terminate()
// PROGRAM ENDS.

Constructors and destructors
When an exception is thrown, the copy constructor is called for the thrown value. The
copy constructor is used to initialize a temporary object at the throw point. Other copies
can be generated by the program. See "copy constructor" in the online Help index for
more information.

When program flow is interrupted by an exception, destructors are called for all
automatic objects that were constructed since the beginning of the try-block was
entered. If the exception was thrown during construction of some object, destructors
will be called only for those objects that were fully constructed. For example, if an array
of objects was under construction when an exception was thrown, destructors will be
called only for the array elements which were already fully constructed.

Destructors are called by default. See "Exception handling/RTTI" “,” for information
about exception-handling switches.

When a C++ exception is thrown, the stack is unwound. By default, during stack
unwinding, destructors are called by automatic objects. You can use the –xd compiler
option to switch the default off.

Setting exception handling options
The following command-line options can be used to set exception handling:

Setting Command-line option

Enable exception handling -x
Enable destructor cleanup -xd
Enable throwing exceptions from a DLL -xds
Enable exception location information -xp

Unhandled exceptions
If an exception is thrown and no handler is found it, the program will call the terminate
function. This following diagram illustrates the series of events that can occur when the
program encounters an exception for which no handler can be found. See "Run-time
support" in the online Help Book Shelf index for a description of the terminate function.
The Book Shelf index is accessed by choosing Help|Keyboard and clicking on the Book
Shelf menu tab.

+

Paradigm C++ Reference Manual204

Default program behavior for unhandled exceptions:
terminate();
 |
 |
abort();
// PROGRAM ENDS.

C-based structured exceptions
Paradigm C++ provides support for program development that makes use of structured
exceptions. You can compile and link a C source file that contains an implementation of
structured exceptions. In a C program, the ANSI-compatible keywords used to
implement structured exceptions are _ _except, _ _finally, and _ _try. Note that the
_ _finally and _ _try keywords can appear only in C programs.

For portability, you can use the try and except macros defined in excpt.h.

For try-except exception-handling implementations the syntax is as follows:

try-block:
 _ _try compound-statement (in a C module)
 try compound-statement (in a C++ module)

handler:
 _ _except (expression) compound-statement

For try-finally termination implementations the syntax is as follows:

 try-block:
 _ _try compound-statement
 termination:
 _ _finally compound-statement

Using C-based exceptions in C++

Paradigm C++ allows substantial interaction between C and C++ error handling
mechanisms. The implementation of exception handling mechanisms lets you port code
across platforms. The following interactions are supported:

l C structured exceptions can be used in C++ programs.
l C++ exceptions cannot be used in a C module because C++ exceptions require that

their handler be specified by the catch keyword and catch is not allowed in a C
program.

l An exception generated by a call to the RaiseException function is handled by a
try/_ _except or _ try/ _except block. All handlers of try/catch blocks are ignored
when RaiseException is called.

The following C exception support functions can be used in a C and C++ programs:

l GetExceptionCode
l GetExceptionInformation
l SetUnhandledExceptionFilter
l UnhandledExceptionFilter

Paradigm C++ does not require that the UnhandledExceptionFilter function be used
only in the except filter of _ try/ except or try/ _except blocks. However, program

+

+

Chapter 9, Exception handling 205

behavior is undefined when this function is called outside of the _ _try/_except or
try/_ _except block.

Handling C-based exceptions

The full functionality of an _ _except block is allowed in C++. If an exception is
generated in a C module, it is possible to provide a handler-block in a separate calling
C++ module.

If a handler can be found for the generated structured exception, the following actions
can be taken:

l Execute the actions specified by the handler
l Ignore the generated exception and resume program execution
l Continue the search for some other handler (regenerate the exception)

These actions are consistent with the design of structured exceptions. The following
example shows how to mix C and C++ exceptions. Note that the C mechanism uses the
try and _ _except keywords. The C++ mechanism uses the required try and catch
keywords.

/* In PROG.C */
void func(void) {
 …
 /* generate an exception */
RaiseException(/* specify your arguments */);
 …
}
// In CALLER.CPP
// How to test for C++ or C-based exceptions.
#include <excpt.h>
#include <iostream.h>

int main(void) {
 try
 { // test for C++ exceptions
 try
 { // test for C-based structured exceptions
 func();
 }
 _ _except(/* filter-expression */)
 {
 cout << "A structured exception was generated.";
 …
 /* specify action to take for this structured exception */
 return –1;
 }
 return 0;
 }
 catch (…)
 {
 // handler for any C++ exception
 cout << "A C++ exception was thrown.";
 return 1;
 }
}

Paradigm C++ Reference Manual206

Structured exceptions also allow you to program a termination handler. The termination
handler can be used only in a C module and is specified by the _ _finally keyword. The
termination handler ensures that the code in the _ _finally block is executed no matter
how the flow within the _ _try exits. The _ _finally keyword is not allowed in a C++
program. Consequently, the _ try/ _ finally block is not supported in a C++ program.

Even though the _ try/ _finally block is not supported in a C++ program, a C-based
exception generated by the operating system or the program will still result in proper
stack unwinding of objects with destructors. You can use this to emulate a _ _finally
block by creating a local object whose destructor does the necessary cleanup. Any
module compiled with the -xd compiler option (this option is on by default) will have
destructors invoked for all objects with auto storage. Stack unwinding occurs from the
point where the exception is thrown to the point where the exception is caught.

Destructors are called by default. See “Exception handling/RTTI,” page 3-68 for
information about exception-handling switches.+

Chapter 10, Using the inline assembly 207

C h a p t e r
10

Using inline assembly
Inline assembly is assembly-language instructions embedded within your C and C++
code. Inline assembly instructions are compiled and assembled along with your code
rather than being assembled in separate assembly modules.

This chapter describes how to use inline assembly with Paradigm C++. The following
topics are discussed:

l Inline assembly syntax and usage
l Using the asm keyword to place an assembly instruction within your C/C++

code
l Using C symbols in your asm statement to reference data and functions
l Using register variables, offsets, and size overrides
l Using C structure members
l Using jump instructions and labels

l Using the -B compiler option and #pragma inline statement to compile inline
assembly

l Using the built-in assembler (PASM)

See Paradigm C++ equivalents of command-line options on page 3-112.

Inline assembly syntax and usage

This section describes inline assembly syntax, and how to use inline assembly
instructions with C++ structures, pointers, and identifiers.

To place an assembly instruction in your C/C++ code, use the asm keyword. The format
is

asm opcode operands ; or newline

where:

l opcode is valid 80x86 instruction.
l operands contains the operand(s) acceptable to the opcode, and can reference C

constants, variables, and labels.
l The end of the asm statement is signaled by either ; (semicolon) or by newline (a

new line).

A new asm statement can be placed on the same line, following a semicolon, but no
asm statement can continue to the next line. To include multiple asm statements,
surround them with braces. The initial brace must appear on the same line as the asm
keyword.

Three asm statements are shown here; two on one line, and one below them.
asm {
 pop ax; pop ds
 iret
}

+

Paradigm C++ Reference Manual208

Semicolons are not used to start comments (as they are in PASM). When commenting
asm statements, use C-style comments, like this:

asm mov ax,ds; /* This comment is OK */
asm {pop ax; pop ds; iret;} /* This comment is also legal */
asm push ds ;THIS COMMENT IS INVALID!!

The assembly-language portion of the statement is copied straight to the output,
embedded in the assembly language that Paradigm C++ is generating from your C or
C++ instructions. Any C symbols are replaced with appropriate assembly language
equivalents.

Each asm statement is considered to be a C statement. For example, the following
construct is a valid C if statement:

myfunc()
{
 int i;
 int x;
 if (i > 0)
 asm mov x,4
 else
 i = 7;
}

A semicolon isn't needed after the move x,4 instruction. asm statements are the only
statements in C that depend on the occurrence of a new line to indicate that they have
ended. Although this isn't in keeping with the rest of the C language, it is the convention
adopted by several UNIX-based compilers.

An asm statement can be used as an executable statement inside a function, or as an
external declaration outside of a function. asm statements located inside functions are
placed in the code segment, and asm statements located outside functions are placed in
the data segment.

Inline assembly references to data and functions

You can use any C symbol in your asm statements, including automatic (local)
variables, register variables, and function parameters. Paradigm C++ automatically
converts these symbols to the appropriate assembly-language operands and appends
underscores onto identifier names.

In general, you can use a C symbol in any position where an address operand would be
legal. Of course, you can use a register variable wherever a register would be a legal
operand.

If the assembler encounters an identifier while parsing the operands of an inline-
assembly instruction, it searches for the identifier in the C symbol table. The names of
the 80x86 registers are excluded from this search. Either uppercase or lowercase forms
of the register names can be used.

Inline assembly and register variables
Inline assembly code can freely use SI or DI as scratch registers. If you use SI or DI in
inline assembly code, the compiler won't use these registers for register variables.

In 16-bit code BX is available for use as a scratch register.In 32-bit code, the
corresponding EBX is not available for use as a scratch register.

+

Chapter 10, Using the inline assembly 209

When you use PCC32 or PCC32A to compile a C or C++ source file, including files
with inline assembly, the compiler preserves the EBX register. However, when you
compile an assembly .ASM source file, you are responsible for preserving the EBX
register. This is true whether you compile the .ASM source file with a 32-bit compiler
or use PASM32.Inline assembly, offsets, and size overrides
When programming, you don’t need to be concerned with the exact offsets of local
variables: using the variable name will include the correct offsets.

It might be necessary, however, to include appropriate WORD PTR, BYTE PTR, or
other size overrides on assembly instruction. A DWORD PTR override is needed on
LES or indirect far call instructions.

Using C structure members

You can reference structure members in an inline-assembly statement in the usual way
(that is, with variable.member). When you do this, you are working with variables, and
you can store or retrieve values in these structure members. However, you can also
directly reference the member name (without the variable name) as a form of numeric
constant. In this situation, the constant equals the offset (in bytes) from the start of the
structure containing that member. Consider the following program fragment:

struct myStruct {
 int a_a;
 int a_b;
 int a_c;
} myA ;

myfunc ()
{
 . . .
 asm {mov ax, WORD PTR myA.a_b
 mov bx, WORD PTR myA.a_c
 }
 . . .
}

This fragment declares a structure type named myStruct with three members:a_a, a_b,
and a_c. It also declares a variable myA of type myStruct. The first inline-assembly
statement moves the value contained in myA.a_b into the register AX. The second
moves the value at the address [di] + ofset(a_c) into the register BX (it takes the
address stored in DI and adds to it the offset of a_c from the start of myStruct). In this
sequence, these assembler statements produce the following code:

move ax, DGROUP : myA+2
move bx, [di+4]

This way, if you load a register (such as DI) with the address of a structure of type
myStruct, you can use the member names to directly reference the members. The
member name can be used in any position where a numeric constant is allowed in an
assembly-statement operand.

The structure member must be preceded by a dot (.) to signal that a member name,
rather than a normal C symbol, is being used. Member names are replaced in the
assembly output by the numeric offset of the structure member (the numeric offset of
a_c is 4), but no type information is retained. Thus members can be used as compile-
time constants in assembly statements.

There is one restriction, however: if two structures that you're using in inline assembly
have the same member name, you must distinguish between them. Insert the structure

Paradigm C++ Reference Manual210

type (in parentheses) between the dot and the member name, as if it were a cast. For
example,

asm mov bx,[di].(struct tm)tm_hour

Using jump instructions and labels

You can use any of the conditional and unconditional jump instructions, plus the loop
instructions, in inline assembly. These instructions are valid only inside a function.
Since no labels can be defined in the asm statements, jump instructions must use C goto
labels as the object of the jump. If the label is too far away, the jump will not be
automatically converted to a long-distance jump. For this reason, you should be careful
when inserting conditional jumps. You can use the -B switch to check your jumps.
Direct far jumps cannot be generated.

In the following code, the jump goes to the C goto label a.
int x()
{
a: /* This is the goto label "a" */
 . . .
 asm jmp a /* Goes to label "a" */
 . . .
}

Indirect jumps are also allowed. To use an indirect jump, use a register name as the
operand of the jump instruction.

Compiling with inline assembly
There are two way Paradigm C++ can handle inline assembly code in your C or C++
code.

l Paradigm C++ can convert your C or C++ code into assembly language, then
transfer to PASM to produce an .OBJ file. (This method is described in this section.)

l Paradigm C++ can use its built-in assembler (PASM) to insert your assembly
statements directly into the compiler's instruction stream (16-bit compiler only).
(This method is described in the following section.)

You can use the -B compiler option for inline assembly in your C or C++ program. If
you can use this option, the compiler first generates an assembly file, then invokes
PASM on that file to produce the .OBJ file.

By default, -B invokes PASMor PASM32. You can override it with -Exxx, where xxx is
another assembler.

You can invoke PASM while omitting the -B option if you include the #pragma inline
statement in your source code. This statement enables the -B option for you when the
compiler encounters it. You will save compile time if you put #pragma inline at the top
of your source file.

The -B option and #pragma inline tell the compiler to produce an .ASM file, which
might contain your inline assembly instructions, and then transfer to PASM to assemble
the .OBJ file. The 16-bit Paradigm C++ compiler has another method, PASM, that
allows the compiler, not PASM, to assemble you inline assembly code.

+

Chapter 10, Using the inline assembly 211

Using the built-in assembler (PASM)
The 16-bit compiler can assemble your inline assembly instructions using the built-in
assembler (PASM). This assembler is part of the compiler, and can do most of the
things PASM can do, with the following restrictions:

l It can't use assembler macros.
l It can't handle 80386 or 80486 instruction.
l It doesn’t permit Ideal mode syntax.
l It allows only a limited set of assembler directives (see page 10-213)

Because PASM isn't a complete assembler, it might not accept some assembly-language
constructs. If this happens, Paradigm C++ will issue an error message. You then have
two choices: you can simplify your inline assembly-language code so the assembler will
accept it, or you can use the -B option to invoke PASM to catch whatever errors there
might be. PASM might not identify the location of errors, however, because the original
C source line number is lost.

Opcodes

You can include any of the 80x86 instruction opcodes as inline-assembly statements.
There are four classes of instructions allowed by the Paradigm C++ compiler:

l Normal instructions - the regular 80x86 opcode set
l String instructions - special string-handling codes
l Jump instructions - various jump opcodes
l Assembly directives - data allocation and definition

All operands are allowed by the compiler, even if they are erroneous or disallowed by
the assembler. The exact format of the operands is not enforced by the compiler.

Table 10-1 lists all allowable PASM opcodes. For 80286 instruction, use the -2
command-line compiler option.

If you're using inline assembly in routines that use floating-point emulation (the
command-line compiler option -f), the opcodes marked with * aren't supported.

PASM opcode mnemonics

aaa fdivrp fpatan lsl
aad feni fprem mov
aam ffree* fptan mul
aas fiadd frndint neg
adc ficom frstor nop
add ficomp fsave not
and fidiv fscale or
bound fidivr fsqrt out
call fild fst pop
cbw fimul fstcw popa
clc fincstp* fstenv popf
cld finit fstp push
cli fist fstsw pusha
cmc fistp fsub pushf

+
Table 10-1

PASM opcode
mnemonics

Paradigm C++ Reference Manual212

cmp fisub fsubp rcl
cwd fisubr fsubr rcr
daa fld fsubrp ret
das fld1 ftst rol
dec fldcw fwait ror
div fldenv fxam sahf
enter fldl2e fxch sal
f2xm1 fldl2t fxtract sar
fabs fldlg2 fyl2x sbb
fadd fldln2 fyl2xp1 shl
faddp fldpi hlt shr
fbld fldz idiv smsw
fbstp fmul imul stc
fchs fmulp in std
fclex fnclex inc sti
fcom fndisi int sub
fcom fndisi int sub
fcomp fneni into test
fcompp fninit iret verr
fdecstp fnop lahf verw
fdisi fnsave lds wait
fdiv fnstcw lea xchg
fdivp fnstenv leave xlat
fdivr fnstsw les xor

* Not supported if you're using inline assembly in routines that use floating-point emulation (the command-
line compiler option -f).

When using 80186 instruction mnemonics in your inline-assembly statements, you must
include the -1 command-line option. This forces appropriate statements into the
assembly-language compiler output so that the assembler will expect the mnemonics. If
you're using an older assembler, these mnemonics might not be supported.

String instructions
In addition to the opcodes listed in Table 10-1, page 10-211, the string instructions
given in Table 10-2 can be used alone or with repeat prefixes.

PASM string instructions

cmps insw movsb outsw stos
cmpsb lods movsw scas stosb
cmpsw lodsb scasb stosw
lodsw outsb scasw
insb movs

The following prefixes can be used with the string instructions:
lock rep repe repnz repz

Table 10-2
PASM string
instructions

Chapter 10, Using the inline assembly 213

Jump instructions
Jump instructions are treated specially. Because a label can't be included on the
instruction itself, jumps must go to C labels (see “Using jump instructions and labels,”
page 10-210). The allowed jump instructions are given in the next table.

Jump instructions

ja jge jnc jns loop
jae jl jne jnz loope
jb jle jng jo loopne
jbe jmp jnge jp loopnz
jc jna jnl jpe loopz
jcxz jnae jnle jpo
je jnb jno js
jg jnbe jnp jz

Assembly directives
The following assembly directives are allowed in Paradigm C++ inline-assembly
statements:
db dd dw extrn

Table 10-3
Jump

instructions

Paradigm C++ Reference Manual214

Chapter 11, Header files summary 215

C h a p t e r
11

Header files summary
Header files, also called include files, provide function prototype declarations for
library functions. Data types and symbolic constants used with the library functions are
also defined in them, along with global variables defined by Paradigm C++ and by the
library functions. The Paradigm C++ library follows the ANSI C standard on names of
header files and their contents.

The middle column indicates C++ header files and header files defined by ANSI C.

alloc.h Declares memory-management functions (allocation, deallocation, and so
on).

assert.h ANSI C Defines the assert debugging macro.
bcd.h C++ Declares the C++ class bcd and the overloaded operators for bcd and bcd

math functions.
complex.h C++ Declares the C++ complex math functions.
conio.h Declares various functions used in calling the operating system console

I/O routines.
constrea.h C++ Defines the conbuf and constream classes.
ctype.h ANSI C Contains information used by the character classification and character

conversion macros (such as isalpha and toascii).
date.h C++ Defines the date class.
_defs.h Defines the calling conventions for different application types and memory

models.
dos.h Defines various constants and gives declarations needed for DOS and

8086-specific calls
embedded.h Defines various constants and gives declarations needed for embedded systems

8086-specific calls
errno.h ANSI C Defines constant mnemonics for the error codes.
except.h C++ Declares the exception-handling classes and functions.
excpt.h Declares C structured exception support.
fcntl.h Defines symbolic constants used in connection with the library routine open.
float.h ANSI C Contains parameters for floating-point routines.
fstream.h C++ Declares the C++ stream classes that support file input and output.
generic.h C++ Contains macros for generic class declarations.
io.h Contains structures and declarations for low-level input/output routines.
iomanip.h C++ Declares the C++ streams I/O manipulators and contains templates for

creating parameterized manipulators.
iostream.h C++ Declares the basic C++ streams (I/O) routines.
limits.h ANSI C Contains environmental parameters, information about compile-time

limitations, and ranges of integral quantities.
malloc.h Declares memory-management functions and variables.
math.h ANSI C Declares prototypes for the math functions and math error handlers.

+

Paradigm C++ Reference Manual216

mem.h Declares the memory-manipulation functions. (Many of these are also defined
in string.h.)

memory.h Contains memory-manipulation functions.
new.h C++ Access to _new_handler, and set_new_handler.
_nfile.h Defines the maximum number of open files.
_null.h Defines the value of NULL.
process.h Contains structures and declarations for terminating a program.
search.h Declares functions for searching and sorting.
setjmp.h ANSI C Declares the functions longjmp and setjmp and defines a type jmp_buf that

these functions use.
share.h Defines parameters used in functions that make use of file-sharing.
signal.h ANSI C Defines constants and declarations for use by the signal and raise functions.
stdarg.h ANSI C Defines macros used for reading the argument list in functions declared to

accept a variable number of arguments (such as vprintf, vscanf, and so on).
stddef.h ANSI C Defines several common data types and macros.
stdio.h ANSI C Defines types and macros needed for the standard I/O package defined in

Kernighan and Ritchie and extended under UNIX System V. Defines the
standard I/O predefined streams stdin, stdout, stdprn, and stderr and
declares stream-level I/O routines.

stdiostr.h C++ Declares the C++ stream classes for use with stdio FILE structures.
You should use iostream.h for new code.

stdlib.h ANSI C Declares several commonly used routines such as conversion routines and
search/sort routines.

string.h ANSI C Declares several string-manipulation and memory-manipulation routines.
strstrea.h C++ Declares the C++ stream classes for use with byte arrays in memory.
sys\locking.h Contains definitions for mode parameter of locking function.
sys\types.h Declares the type time_t used with time functions.
time.h ANSI C Defines a structure filled in by the time-conversion routines asctime ,

localtime , and gmtime, and a type used by the routines ctime, difftime,
gmtime , localtime , and stime. It also provides prototypes for these routines.

typeinfo.h C++ Declares the run-time type information classes.
values.h Defines important constants, including machine dependencies; provided for

UNIX System V compatibility.
varargs.h Definitions for accessing parameters in functions that accept a variable

number of arguments. Provided for UNIX compatibility; you should use
stdarg.h for new code.

Using precompiled headers

Paradigm C++ can generate (and subsequently use) precompiled headers to speed up
your project compile times.

Precompiled headers are header files that are compiled once, then used over and over
again in their compiled state.

You can use a precompiled header if a compilation uses one or more of the same header
files, the same compiler options, the same macro defines, and so on, as is contained in
the precompiled header file.

To control the use of precompiled headers, do one of the following:

Chapter 11, Header files summary 217

l From within the IDE, turn on the Precompiled Headers option in the Compiler
settings page of the Project Options dialog box. The IDE bases the name of the
precompiled header file on the project name, creating<PROJECT_NAME>.CSM.

l From the command line, use the following command-line options:
-H=<filename>, -Hc, -H<filename>, and -Hu.

l From within your code, use the hdrfile and hdrstop pragmas.

Setting file names

Paradigm C++ stores all precompiled headers in one file, using the following naming
convention:

l The 16-bit command-line compiler names the precompiled header file PCDEF.CSM
l The 32-bit command-line compiler names the precompiled header file

PC32DEF.CSM
l The IDE names the precompiled header file <PROJECT_NAME>.CSM.

To explicitly set the precompiled file name from the command line, use the
-H=<filename> option or the #pragma hdrfile directive.

Precompiled header file overview

When compiling C and C++ programs, the compiler can spend up to half its time
parsing header files. When the compiler parses a header file, it enters declarations and
definitions into its symbol table.

Precompiled headers cut this process short by creating and storing a binary image of the
symbol table on disk. By directly loading a binary image of the symbol table, the
compiler can increase the speed of this step by over ten times. The disadvantage is that
precompiled header files can become quite large because they can contain the symbol
table images for all the #include files encountered in your sources.

If, while compiling a source file, Paradigm C++ discovers that the first #include files
are identical to those of a previous compilation (of either the same or different source),
it loads the binary image for those #include files and parses the remaining #include
files.

For a given module, either all or none of the precompiled headers are used--if
compilation of any included header file fails, the precompiled header file isn't updated
for that module.

Precompiled header limits
When using precompiled headers, PCDEF.CSM can become very large because it
contains symbol table images for all sets of includes encountered in your sources. If you
don't have sufficient disk space, you'll get a warning saying the write failed because of
the precompiled headers. To fix this, you must provide more disk space and retry the
compile. For information on reducing the size of the PCDEF.CSM file, see “Optimizing
precompiled headers,” page 11-218.

If you're using large macros in a makefile in addition to using precompiled headers,
there is a limit on the macro size: 4K for 16-bit applications.and 16K for 32-bit
applications.

If a header file contains any code, it can't be precompiled. For example, although C++
class definitions can appear in header files, you should ensure that only inline member

+

Paradigm C++ Reference Manual218

functions are defined in the header and heed warnings such as Functions
containing reserved word are not expanded inline.

Precompiled header rules

The following rules apply when you create and use precompiled headers:

 1. A header that contains code can't be precompiled. For example, although C++ class
definitions can appear in header files, make sure that only inline member functions
are defined in the header. Heed warnings such as Functions containing
'for' are not expanded inline.

 2. In order to use a previously generated precompiled header, the source file must:
l Have the same set of include files, in the same order, as the precompiled header
l Have the same macros defined with identical values as the precompiled header
l Use the same language (C or C++) as the precompiled header
l Use header files with identical time stamps as the precompiled header

 3. In addition, the following option settings must be identical to those used when you
generated the precompiled header:
l Memory model, including SS != DS (-mx)
l Underscores on externs (-u)
l Maximum identifier length (-iL)
l Target DOS or Windows (-W or -Wx)
l Generate word alignment (-a)
l Pascal calls (-p)
l Treat enums as integers (-b)
l Default char is unsigned (-K)
l Virtual table control (-Vx and -Vmx)
l Expand intrinsic functions inline (-Oi)
l Templates (-Jx)
l String literals in code segment (-dc, 16-bit)
l Debugging information (-v, -vi, and -R)
l Far variables (-Fx)
l Language compilance (-A)
l C++ compile (-P)
l DOS overlay-compatible code (-Y)

 4. If you're using large macros in addition to using precompiled headers, the compiler
limits the size of the macros as following:
l 4K macros for 16-bit applications
l 16K macros for 32-bit applications

Optimizing precompiled headers
For the most efficiently compiled precompiled headers, follow these rules:

l Arrange your header files in the same sequence in all source files.
l Put the largest header files first.
l Prime the precompiled header file with often-used initial sequences of header files.

Chapter 11, Header files summary 219

l Use #pragma hdrstop to terminate the list of header files at well-chosen places.
This lets you make the list of header files in different sources look similar to the
compiler.

For example, suppose you have the following two source files (A_SOURCE.CPP and
B_SOURCE.CPP), which both include windows.h and myhdr.h:

/* A_SOURCE.CPP */
#include <windows.h>
#include "myhdr.h"
#include "xxx.h"
// ...

/* B_SOURCE.CPP */
#include "yyy.h
#include <string.h>
#include "myhdr.h"
#include <windows.h>
// ...

To optimize the precompiled headers for these source files, you would rearrange the
beginning of B_SOURCE.CPP as follows:

/* Revised B_SOURCE.CPP */
#include <windows.h>
#include "myhdr.h"
#include "yyy.h"
#include <string.h>
// ...

Now, windows.h and myhdr.h are in the same order in both A_SOURCE.CPP and
B_SOURCE.CPP, and they are both located at the beginning of the #include list.

In addition, you could also create a new source file called PREFIX.CPP which contains
only the matching header files, like this:

/* PREFIX.CPP */
#include <windows.h>
#include "myhdr.h"

If you compile PREFIX.CPP first (or insert a #pragma hdrstop in both
A_SOURCE.CPP and B_SOURCE.CPP), the net effect is that after the initial
compilation of PREFIX.CPP, both A_SOURCE.CPP and B_SOURCE.CPP will be able
to load the symbol table produced by PREFIX.CPP. The compiler will then need to
parse only xxx.h for A_SOURCE.CPP, and yyy.h and strings.h for B_SOURCE.CPP.

alloc.h

Declares memory-management functions (allocation, deallocation, and so on).

Functions

l calloc
l farcalloc
l farfree
l farmalloc
l farrealloc
l free
l heapcheck
l heapcheckfree

Paradigm C++ Reference Manual220

l heapchecknode
l heapfillfree
l heapwalk
l malloc
l realloc

Constants, data types and global variables

l NULL
l ptrdiff_t
l size_t

assert.h
Defines the assert debugging macro.

Functions

l assert

ctype.h

Contains information used by the character classification and character conversion
macros.

Functions and macros

l isalnum
l isalpha
l isascii
l iscntrl
l isdigit
l isgraph
l islower
l isprint
l ispunct
l isspace
l isupper
l isxdigit
l toascii
l _tolower
l tolower
l _toupper
l toupper

Constants, data types and global variables

l _IS_CTL
l _IS_DIG
l _IS_HEX
l _IS_LOW

Chapter 11, Header files summary 221

l _IS_PUN
l _IS_SP
l _IS_UPP

dos.h
Defines various constants and gives declarations needed for DOS and 8086-specific
calls.

Functions and macros

l _chain_intr
l disable
l _emit_
l enable
l FP_OFF
l FP_SEG
l getvect
l inport
l inportb
l int86
l in86x
l intr
l MK_FP
l outport
l outportb
l peek
l peekb
l poke
l pokeb
l segread

l setvect

Constants, data types and global variables

l errno

l SREGS

embedded.h

Defines various constants and gives declarations needed for embedded systems 8086-
specific calls.

Functions and macros

l _chain_intr
l disable
l _emit_
l enable

Paradigm C++ Reference Manual222

l FP_OFF
l FP_SEG
l getvect
l inport
l inportb
l int86
l int86x
l intr
l MK_FP
l outport
l outportb
l peek
l peekb
l poke
l pokeb
l segread
l setvect

Constants, data types and global variables

l SREGS

errno.h

Defines constant mnemonics for the error codes.

Constants, data types and global variables

l _doserrno
l errno
l _sys_errlist
l _sys_nerr
l error number definitions

fcntl.h
Defines open flags for open and similar library functions.

Functions

l _fmode

Constants

l O_APPEND
l O_BINARY
l O_CHANGED
l O_CREAT
l O_DENYALL
l O_DENYNONE
l O_DENYREAD

Chapter 11, Header files summary 223

l O_DENYWRITE
l O_DEVICE
l O_EXCL
l O_NOINHERIT
l O_RDONLY
l O_RDWR
l O_TEXT
l O_TRUNC
l O_WRONLY

float.h
Contains parameters for floating-point routines.

Functions

l _clear87
l _fpreset
l _status87

Constants, data types and global variables

l CW_DEFAULT
l FPE_EXPLICITGEN
l FPE_INEXACT
l FPE_INTDIV0
l FPE_INTOVFLOW
l FPE_INVALID
l FPE_OVERFLOW
l FPE_UNDERFLOW
l FPE_ZERODIVIDE
l ILL_EXECUTION
l ILL_EXPLICITGEN
l SEGV_BOUND
l SEGV_EXPLICITGEN

generic.h

Contains macros for generic class declarations.

io.h
Contains structures and declarations for low-level input/output routines.

Functions

l setmode

Constants, data types and global variables

l HANDLE_MAX

Paradigm C++ Reference Manual224

iomanip.h
Declares the C++ streams I/O manipulators and contains macros for creating
parameterized manipulators.

Includes

l iostream.h

Classes

l iapply
l imanip
l ioapp
l iomanip
l oapp
l omanip
l sapp
l smanip

Overloaded Operators

<< >>

limits.h

Contains environmental parameters, information about compile-time limitations, and
ranges of integral quantities.

Constants, data types and global variables

l CHAR_BIT
l CHAR_MAX
l CHAR_MIN
l INT_MAX
l INT_MIN
l LONG_MAX
l LONG_MIN
l SCHAR_MAX
l SCHAR_MIN
l SHRT_MAX
l SHRT_MIN
l UCHAR_MAX
l UINT_MAX
l ULONG_MAX
l USHRT_MAX

malloc.h

Declares memory-management functions and variables.

Chapter 11, Header files summary 225

Includes

l ALLOC.H

Functions

l _heapchk
l _heapmin
l _heapset
l stackavail

math.h

Declares prototypes for the math functions and math error handlers.

Functions

l abs
l acos, acosl
l asin, asinl
l atan, atanl
l atan2, atan2l
l atof, _atold
l cabs, cabsl
l ceil, ceill
l cos, cosl
l cosh, coshl
l exp, expl
l fabs, fabs
l floor, floorl
l fmod, fmodl
l frexp, frexpl
l hypot, hypotl
l labs
l ldexp, ldexpl
l log, logl
l log10, log101
l _matherr,_matherrl
l modf, modfl
l poly, polyl
l pow, powl
l pow10, pow10l
l sin, sinl
l sinh, sinhl
l sqrt, sqrtl
l tan, tanl
l tanh, tanhl

Paradigm C++ Reference Manual226

Constants, data types and global variables

l complex (struct)
l _complexl (struct)
l EDOM
l ERANGE
l exception (struct)
l _exceptionl (struct)
l HUGE_VAL
l M_E
l M_LOG2E
l M_LOG10E
l M_LN2
l M_LN10
l M_PI
l M_PI_2
l M_PI_4
l M_1_PI
l M_2_PI
l M_1_SQRTPI
l M_2_SQRTPI
l M_SQRT2
l M_SQRT_2
l _mexcep

mem.h

Declares the memory-manipulation functions. (Many of these are also defined in
string.h.)

Functions

l _fmemccpy
l _fmemchr
l _fmemcmp
l _fmemcpy
l _fmemicmp
l _fmemmove
l _fmemset
l _fmovmem
l memccpy
l memchr
l memcmp
l memcpy
l memicmp
l memmove

Chapter 11, Header files summary 227

l memset
l movedata
l movmem
l setmem

Constants, Data Types and Global Variables

l NULL
l ptrdiff_t
l size_t

memory.h

Contains memory-manipulation functions.

Includes

l MEM.H

new.h
Provides access to the the following functions:

l set_new_handler
l _new_handler (global variable)

process.h
Contains structures and declarations for terminating a program.

Functions

l abort
l _c_exit
l _cexit
l exit
l _exit

search.h

Declares functions for searching and sorting.

Functions

l bsearch
l lfind
l lsearch
l qsort

setjmp.h
Declares the functions longjmp and setjmp and defines a type jmp_bufj that these
functions use.

Paradigm C++ Reference Manual228

Functions

l longjmp
l setjmp

Constants, data types and global variables

l jmp_buf

share.h

Defines parameters used in functions that make use of file-sharing.

Constants, data types and global variables

l SH_COMPAT
l SH_DENYNO
l SH_DENYNONE
l SH_DENYRD
l SH_DENYRW
l SH_DENYWR

signal.h

Defines constants and declarations for use by the signal and raise functions.

Functions

l raise
l signal

Constants, data types and global variables

l predefined signal handlers
l sig_atomic_t type
l SIG_DFL
l SIG_ERR
l SIG_IGN
l SIGABRT
l SIGFPE
l SIGILL
l SIGINT
l SIGSEGV
l SIGTERM

stdarg.h
Defines macros used for reading the argument list in functions declared to accept a
variable number of arguments (such as vprintf, vscanf, and so on).

Macros

l va_arg
l va_end

Chapter 11, Header files summary 229

l va_start

Constants, data types and global variables

l va_list

stddef.h
Defines several common data types and macros.

Functions

l offsetof

Constants, data types and global variables

l NULL
l ptrdiff_t
l size_t
l wchar_t

stdio.h
Defines types and macros needed for the standard I/O package defined in Kernighan
and Ritchie and extended under UNIX System V. It defines the standard I/O predefined
streams stdin, stdout, stdprn, and stderr, and declares stream-level I/O routines.

Functions

_fstrncpy setbuf
getc setvbuf
getchar sprintf
gets sscanf
getw _strerror
perror strerror
printf strncpy
putc ungetc
putchar vprintf
puts vscanf
putw vsprintf
scanf vsscanf

Constants, data types and global variables

_F_BIN FILE size_t
_F_BUF FOPEN_MAX stdaux
_F_EOF fpos_t stderr
_F_ERR _IOFBF stdin
_F_IN _IOLBF stdout
_F_LBUF _IONBF stdprn
_F_OUT L_ctermid SYS_OPEN
_F_RDWR NULL TMP_MAX

Paradigm C++ Reference Manual230

stdiostr.h

Declares the C++ stream classes for use with stdio FILE structures. You should use
iostream.h for new code.

Includes

l IOSTREAM.H
l STDIO.H

stdlib.h

Declares several commonly used routines such as conversion routines and search/sort
routines.

Functions

abort labs realloc
abs ldiv _rotl
atexit lfind _rotr
atof _lrotl srand
atoi _lrotr strtod
atol lsearch strtol
bsearch ltoa _strtold
calloc malloc strtoul
_crotr max swab
div mblen ultoa
ecvt mbstowcs wcstombs
exit mbtowc wctomb
_exit min
fcvt qsort
free rand
gcvt random
itoa randomize

Constants, data types and global variables

l div_t
l _doserrno
l errno
l EXIT_FAILURE
l EXIT_SUCCESS
l _fmode
l ldiv_t
l NULL
l RAND_MAX
l size_t
l sys_errlist

Chapter 11, Header files summary 231

l sys_nerr
l wchar_t

string.h

Declares several string-manipulation and memory-manipulation routines.

Functions

_fmemccpy _fstrset strdup
_fmemchr _fstrspn strdup
_fmemcmp _fstrstr strerror
_fmemcpy _fstrtok _strerror
_fmemicmp _fstrupr stricmp
_fmemset memccpy strlen
_fstr* memchr strlwr
_fstrcat memcmp strncat
_fstrchr memcpy strncmp
_fstrcmp memicmp strncmpi
_fstrcpy memmove strncpy
_fstrcspn memset strnicmp
_fstrdup movedata strnset
_fstricmp movmem strpbrk
_fstrlen setmem strrchr
_fstrlwr stpcpy strrev
_fstrncat strcat strset
_fstrncmp strchr strspn
_fstrncpy strcmp strstr
_fstrnicmp strcmp strtok
_fstrnset strcmpi strupr
_fstrpbrk strcoll strxfrm
_fstrrchr strcpy
_fstrrev strcspn

Constants, data types and global variables

l size_t

sys\locking.h

Contains definitions for mode parameter of locking function.

sys\types.h

Constants, data types and global variables

l time_t

Paradigm C++ Reference Manual232

time.h
Defines a structure filled in by time-conversion routines asctime, localtime, and
gmtime, and a type used by the routines ctime, difftime, gmtime, localtime and stime. It
also provides prototypes for these routines.

Functions

l asctime
l ctime
l difftime
l gmtime
l localtime
l mktime
l randomize
l stime
l _strdate
l strftime
l _strtime
l time

Constants, Data Types and Global Variables

l size_t
l time_t
l tm

values.h
Defines UNIX compatible constants for limits to float and double values.

Functions

l BITSPERBYTE
l DMAXEXP
l DMAXPOWTWO
l DMINEXP
l DSIGNIF
l FMAXEXP
l FMAXPOWTWO
l FMINEXP
l FSIGNIF
l _FEXPLEN
l HIBITI
l HIBITL
l HIBITS
l _LENBASE
l MAXDOUBLE
l MAXFLOAT

Chapter 11, Header files summary 233

l MAXINT
l MAXLONG
l MAXSHORT
l MINDOUBLE
l MINFLOAT

varargs.h

Definitions for accessing parameters in functions that accept a variable number of
arguments.

These macros are compatible with UNIX System V.

Use STDARG.H for ANSI C compatibility.

You can't include both STDARG.H and VARARGS.H

Macros

l va_start
l va_arg
l va_end

Type

l va_list

excpt.h

The excpt.h header file contains the declarations and prototypes for structured
exception-handling values, types, and routines.

_defs.h

The _defs.h header file contains common definitions for pointer size and calling
conventions.

Calling Conventions
_RTLENTRY Specifies the calling convention used by the Standard Run-time Library.
_USERENTRY Specifies the calling convention the Standard Run-time Library expects user-

compiled functions to use for callbacks.

Export (and size for DOS) information

_EXPCLASS Exports the class if you are building a DLL version of a library.
_EXPDATA Exports the data if you are building a DLL version of a library.
_EXPFUNC Exports the function if you are building a DLL version of a library.

These export macros are provided as examples only and should not be used to create
user-defined functions.

_nfile.h

The _nfile.h header file defines _NFILE_, which specifies the maximum number of
open files you can have.

NFILE is defined as 50 for all applications.

+

+

Paradigm C++ Reference Manual234

_null.h
The _null.h defines the value of NULL for different memory models and applications
types:

Model Value

Flat ((void *)0) if not C++ or Windows application
Flat 0
Small 0
Medium 0
Large 0L

Chapter 12, Math 235

C h a p t e r
12

Math
This chapter describes the floating-point options and explains how to use complex and
bcd numerical types.

Floating-point I/O
Floating-point output requires linking of conversion routines used by printf, scanf, and
any variants of these functions. To reduce executable size, the floating-point formats are
not automatically linked. However, this linkage is done automatically whenever your
program uses a mathematical routine or the address is taken of some floating-point
number. If neither of these actions occur, the missing floating-point formats can result
in a run-time error.

The following program illustrates how to set up your program to properly execute.
/* PREPARE TO OUTPUT FLOATING-POINT NUMBERS. */
 #Include <stdio.h>

 #pragma extref _floatconvert

 void main() {
 printf("d = %f\n", 1.3);
 }

Floating-point options

There are two types of numbers you work with in C: integer (int, short, long, and so
on) and floating point (float, double , and long double). Your computer’s processor can
easily handle integer values, but more time and effort are required to handle floating-
point values.

However, the iAPx86 family of processors has a corresponding family of math
coprocessors, the 8087, the 80287, and the 80387. We refer to this entire family of math
coprocessors as the 80x87, or “the coprocessor."

The 80x87 is a special hardware numeric processor that can be installed in your PC. It
executes floating-point instructions very quickly. If you use floating point a lot, you’ll
probably want a coprocessor. The CPU in your computer interfaces to the 80x87 via
special hardware lines.

If you have an 80486 or Pentium processor, the numeric coprocessor is probably
already built in.

Emulating the 80x87 chip

The default Paradigm C++ code-generation option is emulation (the –f command-line
compiler option). This option is for programs that might or might not have floating
point, and for machines that might or might not have an 80x87 math coprocessor.

+

Paradigm C++ Reference Manual236

With the emulation option, the compiler will generate code as if the 80x87 were present,
but will also link in the emulation library (EMU.LIB). When the program runs, it uses
the 80x87 if it is present; if no coprocessor is present at run-time, it uses special
software that emulates the 80x87. This software uses 512 bytes of your stack, so make
allowance for it when using the emulation option and set your stack size accordingly.

Using the 80x87 code

If your program is going to run only on machines that have an 80x87 math coprocessor,
you can save a small amount in your .EXE file size by omitting the 80x87 autodetection
and emulation logic. Choose the 80x87 floating-point code-generation option (the –f87
command-line compiler option). Paradigm C++ will then link your programs with
FP87.LIB instead of with EMU.LIB.

No floating-point code

If there is no floating-point code in your program, you can save a small amount of link
time by choosing None for the floating-point code-generation option (the –f– command-
line compiler option). Then Paradigm C++ will not link with EMU.LIB, FP87.LIB, or
MATHx.LIB.

Fast floating-point option

Paradigm C++ has a fast floating-point option (the –ff command-line compiler option).
It can be turned off with –ff– on the command line. Its purpose is to allow certain
optimizations that are technically contrary to correct C semantics. For example,

double x;
x = (float)(3.5*x);

To execute this correctly, x is multiplied by 3.5 to give a double that is truncated to
float precision, then stored as a double in x. Under the fast floating-point option, the
long double product is converted directly to a double . Since very few programs depend
on the loss of precision in passing to a narrower floating-point type, fast floating point is
the default.

The 87 environment variable

If you build your program with 80x87 emulation, which is the default, your program
will automatically check to see if an 80x87 is available, and will use it if it is.

There are some situations in which you might want to override this default
autodetection behavior. For example, your own run-time system might have an 80x87,
but you might need to verify that your program will work as intended on systems
without a coprocessor. Or your program might need to run on a PC-compatible system,
but that particular system returns incorrect information to the autodetection logic
(saying that a nonexistent 80x87 is available, or vice versa).

Paradigm C++ provides an option for overriding the start-up code’s default
autodetection logic; this option is the 87 environment variable.

You set the 87 environment variable at the DOS prompt with the SET command, like
this:

 C> SET 87=N

or like this:

Chapter 12, Math 237

 C> SET 87=Y

Don’t include spaces on either side of the =. Setting the 87 environment variable to N
(for No) tells the start-up code that you do not want to use the 80x87, even though it
might be present in the system.

Setting the 87 environment variable to Y (for Yes) means that the coprocessor is there,
and you want the program to use it. Let the programmer beware: If you set 87 = Y
when, in fact, there is no 80x87 available on that system, your system will hang.

If the 87 environment variable has been defined (to any value) but you want to undefine
it, enter the following at the DOS prompt:

C> SET 87=

Press Enter immediately after typing the equal sign.

Registers and the 80x87

When you use floating point, make note of these points about registers:

l In 80x87 emulation mode, register wrap-around and certain other 80x87
peculiarities are not supported.

l If you are mixing floating point with inline assembly, you might need to take special
care when using 80x87 registers. Unless you are sure that enough free registers
exist, you might need to save and pop the 80x87 registers before calling functions
that use the coprocessor.

Disabling floating-point exceptions

By default, Paradigm C++ programs abort if a floating-point overflow or divide-by-zero
error occurs. You can mask these floating-point exceptions by a call to _control87 in
main, before any floating-point operations are performed. For example,

#include <float.h>
main() {
 _control87(MCW_EM,MCW_EM);
 …
}

You can determine whether a floating-point exception occurred after the fact by calling
_status87 or _clear87. See "Run-time library functions" in the online Help index for
details about these functions.

Certain math errors can also occur in library functions; for instance, if you try to take
the square root of a negative number. The default behavior is to print an error message
to the screen, and to return a NAN (an IEEE not-a-number). Use of the NAN is likely to
cause a floating-point exception later, which will abort the program if unmasked. If you
don’t want the message to be printed, insert the following version of _matherr into your
program:

#include <math.h>
int _matherr(struct _exception *e)
{
 return 1; /* error has been handled */
}

Any other use of _matherr to intercept math errors is not encouraged; it is considered
obsolete and might not be supported in future versions of Paradigm C++.

+

Paradigm C++ Reference Manual238

Using complex types
Complex numbers are numbers of the form x + yi, where x and y are real numbers, and i
is the square root of -1. Paradigm C++ as always had a type:

struct complex
{
 double x, y;
};

defined in math.h. This type is convenient for holding complex numbers, because they
can be considered a pair of real numbers. However, the limitations of C make arithmetic
with complex numbers rather cumbersome. With the addition of C++, complex math is
much simpler.

A significant advantage to using the Paradigm C++ complex numerical type is that all of
the ANSI C Standard mathematical routines are defined to operate with it. These
mathematical routines are not defined for use with the C struct complex.

See "complex class" in the online Help Book Shelf index for more information. The
Book Shelf index can be accessed by choosing Help|Keyboard and clicking on the Book
Shelf menu tab.

To use complex numbers in C++, all you have to do is to include complex.h. In
complex.h, all the following have been overloaded to handle complex numbers:

l All of the binary arithmetic operators.
l the input and output operators, >> and <<.
l the ANSI C math functions.

The complex library is invoked only if the argument is of type complex. Thus, to get the
complex square root of -1, use

sqrt(complex(-1))

and not
sqrt(-1)

The following functions are defined by class complex:
double arg(complex&); // angle in the plane
complex conj(complex&); // complex conjugate
double imag(complex&); // imaginary part
double norm(complex&); // square of the magnitude
double real(complex&); // real part
// Use polar coordinates to create a complex.
complex polar(double mag, double angle = 0);

Using bcd types

Paradigm C++, along with almost every other computer and compiler, does arithmetic
on binary numbers (that is, base 2). This can sometimes be confusing to people who are
used to decimal (base 10) representations. Many numbers that are exactly representable
in base 10, such as 0.01, can only be approximated in base 2.

See "bcd class" in the online Help Book Shelf index for more information. The Book
Shelf index can be accessed by choosing Help|Keyboard and clicking on the Book Shelf
menu tab.

Binary numbers are preferable for most applications, but in some situations the round-
off error involved in converting between base 2 and 10 is undesirable. The most

Chapter 12, Math 239

common example of this is a financial or accounting application, where the pennies are
supposed to add up. Consider the following program to add up 100 pennies and subtract
a dollar:

#include <stdio.h>
int i;
float x = 0.0;
for (i = 0; i < 100; ++i)
 x += 0.01;
x -= 1.0;
printf("100*.01 - 1 = %g\n",x);

The correct answer is 0.0, but the computed answer is a small number close to 0.0. The
computation magnifies the tiny round-off error that occurs when converting 0.01 to base
2. Changing the type of x to double or long double reduces the error, but does not
eliminate it.

To solve this problem, Paradigm C++ offers the C++ type bcd, which is declared in
bcd.h. With bcd, the number 0.01 is represented exactly, and the bcd variable x provides
an exact penny count.

#include <bcd.h>
int i;
bcd x = 0.0;
for (i = 0; i < 100; ++i)
 x += 0.01;
x -= 1.0;
cout << "100*.01 - 1 = " << x << "\n";

Here are some facts to keep in mind about bcd:

l bcd does not eliminate all round-off error: A computation like 1.0/3.0 will still have
round-off error.

l bcd types can be used with ANSI C math functions.
l bcd numbers have about 17 decimal digits precision, and a range of about 1 x 10-125

to 1 x 10125.

Converting bcd numbers

bcd is a defined type distinct from float, double , or long double; decimal arithmetic is
performed only when at least one operand is of the type bcd.

The bcd member function real is available for converting a bcd number back to one of
the usual formats (float, double , or long double), though the conversion is not done
automatically. real does the necessary conversion to long double , which can then be
converted to other types using the usual C conversions. For example, a bcd can be
printed using any of the following four output statements with cout and printf.

Paradigm C++ Reference Manual240

/* PRINTING bcd NUMBERS */
/* This must be compiled as a C++ program. */
#Include <bcd.h>
#include <iostream.h>
#include <stdio.h>

void main(void) {
 bcd a = 12.1;
 double x = real(a); // This conversion required for printf().

 printf("\na = %g", x);
 printf("\na = %Lg", real(a));
 printf("\na = %g", (double)real(a));
 cout << "\na = " << a; // the preferred method.
 }

Since printf doesn’t do argument checking, the format specifier must have the L if the
long double value real(a) is passed.

Number of decimal digits

You can specify how many decimal digits after the decimal point are to be carried in a
conversion from a binary type to a bcd. The number of places is an optional second
argument to the constructor bcd. For example, to convert $1000.00/7 to a bcd variable
rounded to the nearest penny, use

bcd a = bcd(1000.00/7, 2)

where 2 indicates two digits following the decimal point. Thus,
1000.00/7 = 142.85714...
bcd(1000.00/7, 2 = 142.860
bcd(1000.00/7, 1) = 142.900
bcd(1000.00/7, 0) = 143.000
bcd(1000.00/7, -1) = 140.000
bcd(1000.00/7, -2) = 100.000

The number is rounded using banker’s rounding (as specified by IEEE), which rounds
to the nearest whole number, with ties being rounded to an even digit. For example,

bcd(12.335, 2) = 12.34
bcd(12.345, 2) = 12.34
bcd(12.355, 2) = 12.36

+

Chapter 13, 16-bit memory management 241

C h a p t e r
13

16-bit memory management
 This chapter discusses

l What to do when you receive "Out of memory" errors.
l What memory models are: how to choose one, and why you would (or wouldn't)

want to use a particular memory model.

Running out of memory

Paradigm C++ does not generate any intermediate data structures to disk when it is
compiling (Paradigm C++ writes only .OBJ files to disk); instead it uses RAM for
intermediate data structures between passes. Because of this, you might encounter the
message “Out of memory” if there isn’t enough memory available for the compiler.

The solution to this problem is to make your functions smaller, or to split up the file that
has large functions.

Memory models

Paradigm C++ gives you five memory models, each suited for different program and
code sizes. Each memory model uses memory differently. What do you need to know to
use memory models? To answer that question, you need to take a look at the computer
system you’re working on. Its central processing unit (CPU) is a microprocessor
belonging to the Intel iAPx86 family; an 80286, 80386, 80486, or Pentium. For now,
we’ll just refer to it as an 8086.

See page 13-247 for a summary of each memory model.

The 8086 registers

The following figure shows some of the registers found in the 8086 processor. There are
other registers—because they can’t be accessed directly, they aren’t shown here.

+

Paradigm C++ Reference Manual242

General-purpose registers
The general-purpose registers are the registers used most often to hold and manipulate
data. Each has some special functions that only it can do. For example,

l Some math operations can only be done using AX.
l BX can be used as an index register.
l CX is used by LOOP and some string instructions.
l DX is implicitly used for some math operations.

But there are many operations that all these registers can do; in many cases, you can
freely exchange one for another.

Figure 13-1
8086 registers

Chapter 13, 16-bit memory management 243

Segment registers
The segment registers hold the starting address of each of the four segments. As
described in the next section, the 16-bit value in a segment register is shifted left 4 bits
(multiplied by 16) to get the true 20-bit address of that segment.

Special-purpose registers
The 8086 also has some special-purpose registers:

l The SI and DI registers can do many of the things the general-purpose registers can,
plus they are used as index registers. They’re also used by Paradigm C++ for
register variables.

l The SP register points to the current top-of-stack and is an offset into the stack
segment.

l The BP register is a secondary stack pointer, usually used to index into the stack in
order to retrieve arguments or automatic variables.

Paradigm C++ functions use the base pointer (BP) register as a base address for
arguments and automatic variables. Parameters have positive offsets from BP, which
vary depending on the memory model. BP points to the saved previous BP value if there
is a stack frame. Functions that have no arguments will not use or save BP if the
Standard Stack Frame option is Off.

Automatic variables are given negative offsets from BP. The offsets depend on how
much space has already been assigned to local variables.

The flags register
The 16-bit flags register contains all pertinent information about the state of the 8086
and the results of recent instructions.

Paradigm C++ Reference Manual244

Flags register of 80x86 processors

For example, if you wanted to know whether a subtraction produced a zero result, you
would check the zero flag (the Z bit in the flags register) immediately after the
instruction; if it were set, you would know the result was zero. Other flags, such as the
carry and overflow flags, similarly report the results of arithmetic and logical
operations.

Other flags control the 8086 operation modes. The direction flag controls the direction
in which the string instructions move, and the interrupt flag controls whether external
hardware, such as a keyboard or modem, is allowed to halt the current code temporarily
so that urgent needs can be serviced. The trap flag is used only by software that debugs
other software.

The flags register isn’t usually modified or read directly. Instead, the flags register is
generally controlled through special assembler instructions (such as CLD, STI, and
CMC) and through arithmetic and logical instructions that modify certain flags.
Likewise, the contents of certain bits of the flags register affect the operation of
instructions such as JZ, RCR, and MOVSB. The flags register is not really used as a
storage location, but rather holds the status and control data for the 8086.

Memory segmentation

The Intel 8086 microprocessor has a segmented memory architecture. It has a total
address space of 1 MB, but is designed to directly address only 64K of memory at a
time. A 64K chunk of memory is known as a segment; hence the phrase “segmented
memory architecture."

Figure 13-2

Chapter 13, 16-bit memory management 245

l The 8086 keeps track of four different segments: code, data, stack, and extra. The
code segment is where the machine instructions are; the data segment is where
information is; the stack is, of course, the stack; and the extra segment is also used
for extra data.

l The 8086 has four 16-bit segment registers (one for each segment) named CS, DS,
SS, and ES; these point to the code, data, stack, and extra segments, respectively.

l A segment can be located anywhere in memory. In DOS real-mode it can be located
almost anywhere. For reasons that will become clear as you read on, a segment must
start on an address that is evenly divisible by 16 (in decimal).

Address calculation
A complete address on the 8086 is composed of two 16-bit values: the segment address
and the offset. Suppose the data segment address—the value in the DS register—is
2F84 (base 16), and you want to calculate the actual address of some data that has an
offset of 0532 (base 16) from the start of the data segment: how is that done?

Address calculation is done as follows: Shift the value of the segment register 4 bits to
the left (equivalent to one hex digit), then add in the offset.

The resulting 20-bit value is the actual address of the data, as illustrated here:
DS register (shifted): 0010 1111 1000 0100 0000 = 2F840
Offset: 0000 0101 0011 0010 = 00532
______________________ __________________________________
address: 0010 1111 1101 0111 0010 = 2FD72

A chunk of 16 bytes is known as a paragraph, so you could say that a segment always
starts on a paragraph boundary.

The starting address of a segment is always a 20-bit number, but a segment register only
holds 16 bits—so the bottom 4 bits are always assumed to be all zeros. This means
segments can only start every 16 bytes through memory, at an address where the last 4
bits (or last hex digit) are zero. So, if the DS register is holding a value of 2F84, then the
data segment actually starts at address 2F840.

The standard notation for an address takes the form segment:offset; for example, the
previous address would be written as 2F84:0532. Note that since offsets can overlap, a
given segment:offset pair is not unique; the following addresses all refer to the same
memory location:

0000:0123
0002:0103
0008:00A3
0010:0023
0012:0003

Segments can overlap (but don’t have to). For example, all four segments could start at
the same address, which means that your entire program would take up no more than
64K—but that’s all the space you’d have for your code, your data, and your stack.

Pointers

Although you can declare a pointer or function to be a specific type regardless of the
model used, by default the type of memory model you choose determines the default
type of pointers used for code and data. There are four types of pointers: near (16 bits),
far (32 bits), huge (also 32 bits), and segment (16 bits).

+

Paradigm C++ Reference Manual246

Near pointers
A near pointer (16-bits) relies on one of the segment registers to finish calculating its
address; for example, a pointer to a function would add its 16-bit value to the left-
shifted contents of the code segment (CS) register. In a similar fashion, a near data
pointer contains an offset to the data segment (DS) register. Near pointers are easy to
manipulate, since any arithmetic (such as addition) can be done without worrying about
the segment.

Far pointers
A far pointer (32-bits) contains not only the offset within the segment, but also the
segment address (as another 16-bit value), which is then left-shifted and added to the
offset. By using far pointers, you can have multiple code segments; this, in turn, allows
you to have programs larger than 64K. You can also address more than 64K of data.

When you use far pointers for data, you need to be aware of some potential problems in
pointer manipulation. As explained in the section on address calculation, you can have
many different segment:offset pairs refer to the same address. For example, the far
pointers 0000:0120, 0010:0020, and 0012:0000 all resolve to the same 20-bit address.
However, if you had three different far pointer variables—a, b, and c—containing those
three values respectively, then all the following expressions would be false:

if (a == b) · · ·
if (b == c) · · ·
if (a == c) · · ·

A related problem occurs when you want to compare far pointers using the >, >=, <,
and <= operators. In those cases, only the offset (as an unsigned) is used for
comparison purposes; given that a, b, and c still have the values previously listed, the
following expressions would all be true:

if (a > b) · · ·
if (b > c) · · ·
if (a > c) · · ·

The equals (= =) and not-equal (!=) operators use the 32-bit value as an unsigned long
(not as the full memory address). The comparison operators (<=, >=, <, and >) use just
the offset.

The = = and != operators need all 32 bits, so the computer can compare to the NULL
pointer (0000:0000). If you used only the offset value for equality checking, any pointer
with 0000 offset would be equal to the NULL pointer, which is not what you want.

If you add values to a far pointer, only the offset is changed. If you add enough to cause
the offset to exceed FFFF (its maximum possible value), the pointer just wraps around
back to the beginning of the segment. For example, if you add 1 to 5031:FFFF, the
result would be 5031:0000 (not 6031:0000). Likewise, if you subtract 1 from
5031:0000, you would get 5031:FFFF (not 5030:000F).

If you want to do pointer comparisons, it’s safest to use either near pointers—which all
use the same segment address—or huge pointers, described next.

Huge pointers
Huge pointers are also 32 bits long. Like far pointers, they contain both a segment
address and an offset. Unlike far pointers, they are normalized to avoid the problems
associated with far pointers.

+

Chapter 13, 16-bit memory management 247

A normalized pointer is a 32-bit pointer that has as much of its value in the segment
address as possible. Since a segment can start every 16 bytes (10 in base 16), this means
that the offset will only have a value from 0 to 15 (0 to F in base 16).

To normalize a pointer, convert it to its 20-bit address, then use the right 4 bits for your
offset and the left 16 bits for your segment address. For example, given the pointer
2F84:0532, you would convert that to the absolute address 2FD72, which you would
then normalize to 2FD7:0002. Here are a few more pointers with their normalized
equivalents:

0000:0123 0012:0003
0040:0056 0045:0006
500D:9407 594D:0007
7418:D03F 811B:000F

There are three reasons why it is important to always keep huge pointers normalized:

 1. For any given memory address there is only one possible huge address
(segment:offset) pair. That means that the = = and != operators return correct
answers for any huge pointers.

 2. in addition, the >, >=, <, and <= operators are all used on the full 32-bit value for
huge pointers. Normalization guarantees that the results of these comparisons will
also be correct.

 3. Finally, because of normalization, the offset in a huge pointer automatically wraps
around every 16 values, but—unlike far pointers—the segment is adjusted as well.
For example, if you were to increment 811B:000F, the result would be 811C:0000;
likewise, if you decrement 811C:0000, you get 811B:000F. It is this aspect of huge
pointers that allows you to manipulate data structures greater than 64K in size. This
ensures that, for example, if you have a huge array of structs that is larger than
64K, indexing into the array and selecting a struct field will always work with
structs of any size.

There is a price for using huge pointers: additional overhead. Huge pointer arithmetic is
done with calls to special subroutines. Because of this, huge pointer arithmetic is
significantly slower than that of far or near pointers.

The five memory models

Paradigm C++ gives you five memory models for 16-bit DOS programs: small,
medium, compact, large, and huge. Your program requirements determine which one
you pick. Here’s a brief summary of each:

l Small. The code and data segments are different and don’t overlap, so you have
64K of code and 64K of data and stack. Near pointers are always used. This is a
good size for average applications.

l Medium. Far pointers are used for code, but not for data. As a result, data plus stack
are limited to 64K, but code can occupy up to 1 MB. This model is best for large
programs without much data in memory.

l Compact. The inverse of medium: Far pointers are used for data, but not for code.
Code is then limited to 64K, while data has a 1 MB range. This model is best if code
is small but needs to address a lot of data.

l Large. Far pointers are used for both code and data, giving both a 1 MB range.
Large and huge are needed only for very large applications.

Paradigm C++ Reference Manual248

l Huge. Far pointers are used for both code and data. Paradigm C++ normally limits
the size of all static data to 64K; the huge memory model sets aside that limit,
allowing data to occupy more than 64K.

The following figures show how memory in the 8086 is apportioned for the Paradigm
C++ memory models. To select these memory models, you can either use menu
selections from the IDE or you can type options invoking the Paradigm C++ command-
line compiler.

Figure 13-3
Small model

memory
segmentation

Chapter 13, 16-bit memory management 249

Figure 13-4
Medium model

memory
segmentation

Figure 13-5
Compact model

memory
segmentation

Paradigm C++ Reference Manual250

Figure 13-6
Large model

memory
segmentation

Chapter 13, 16-bit memory management 251

The following table summarizes the different models and how they compare to one
another. The models are often grouped according to whether their code or data models
are small (64K) or large (16 MB); these groups correspond to the rows and columns in
the table.

Data size Code size = 64K Code size = 16MB

64K Small (no overlap; total size = 128K) Medium (small data, large code)
16 MB Compact (large data, small code) Large (large data, code)

Huge (same as large but static data > 64K)

The small and compact models are small code models because, by default, code
pointers are near; likewise, compact, large, and huge are large data models because, by
default, data pointers are far.

When you compile a module (a given source file with some number of routines in it),
the resulting code for that module cannot be greater than 64K, since it must all fit inside
of one code segment. This is true even if you’re using one of the larger code models
(medium, large, or huge). If your module is too big to fit into one (64K) code segment,
you must break it up into different source code files, compile each file separately, then
link them together. Similarly, even though the huge model permits static data to total
more than 64K, it still must be less than 64K in each module.

Figure 13-7
Huge model

memory
segmentation

Table 13-1
Comparison of

models

Paradigm C++ Reference Manual252

Mixed-model programming: Addressing modifiers
Paradigm C++ introduces eight new keywords not found in standard ANSI C. These
keywords are _ _near, _ _far, _ _huge, _ _cs, _ _ds, _ _es, _ _ss, and _ _seg. These
keywords can be used as modifiers to pointers (and in some cases, to functions), with
certain limitations and warnings.

In Paradigm C++, you can modify the declarations of pointers, objects, and functions
with the keywords _ _near, _ _far, or _ _huge. The _ _near, _ _far, and _ _huge data
pointers are described in “Pointers,” page 13-245. You can declare far objects using the
_ _far keyword. _ _near functions are invoked with near calls and exit with near
returns. Similarly, _ _far functions are called _ _far and return far values. _ _huge
functions are like _ _far functions, except that _ _huge functions set DS to a new value,
and _ _far functions do not.

There are also four special _ _near data pointers: _ _cs, _ _ds, _ _es, and _ _ss. These
are 16-bit pointers that are specifically associated with the corresponding segment
register. For example, if you were to declare a pointer to be

char _ss *p;

Then p would contain a 16-bit offset into the stack segment.

Functions and pointers within a given program default to near or far, depending on the
memory model you select. If the function or pointer is near, it is automatically
associated with either the CS or DS register.

The following table shows how this works. Note that the size of the pointer corresponds
to whether it is working within a 64K memory limit (near, within a segment) or inside
the general 1 MB memory space (far, has its own segment address).

Memory model Function pointers Data pointers

Small near, _cs near, _ds
Medium far near, _ds
Compact near, _cs far
Large far far
Huge far far

Segment pointers

Use _ _seg in segment pointer type declarators. The resulting pointers are 16-bit
segment pointers. The syntax for _ _seg is:

datatype _seg *identifier;

For example,
int _seg *name;

Any indirection through identifier has an assumed offset of 0. In arithmetic involving
segment pointers the following rules hold true:

 1. You can’t use the ++, - -, +=, or -= operators with segment pointers.
 2. You cannot subtract one segment pointer from another.
 3. When adding a near pointer to a segment pointer, the result is a far pointer that is

formed by using the segment from the segment pointer and the offset from the near
pointer. Therefore, the two pointers must either point to the same type, or one must

Table 13-2
Defaults for

functions and
pointers

Chapter 13, 16-bit memory management 253

be a pointer to void. There is no multiplication of the offset regardless of the type
pointed to.

 4. When a segment pointer is used in an indirection expression, it is also implicitly
converted to a far pointer.

 5. When adding or subtracting an integer operand to or from a segment pointer, the
result is a far pointer, with the segment taken from the segment pointer and the
offset found by multiplying the size of the object pointed to by the integer operand.
The arithmetic is performed as if the integer were added to or subtracted from the
far pointer.

 6. Segment pointers can be assigned, initialized, passed into and out of functions,
compared and so forth. (Segment pointers are compared as if their values were
unsigned integers). In other words, other than the above restrictions, they are
treated exactly like any other pointer.

Declaring far objects

You can declare far objects in Paradigm C++. For example,
int far x = 5;
int far z;
extern int far y = 4;
static long j;

The command-line compiler options –zE, –zF, and –zH (which can also be set using
#pragma option) affect the far segment name, class, and group, respectively. When
you use #pragma option, you can make them apply to any ensuing far object
declarations. Thus you could use the following sequence to create a far object in a
specific segment:

#pragma option -zEmysegment -zHmygroup -zFmyclass
int far x;
#pragma option -zE* -zH* -zF*

This will put x in segment MYSEGMENT ‘MYCLASS’ in the group ‘MYGROUP’,
then reset all of the far object items to the default values. Note that by using these
options, several far objects can be forced into a single segment:

#pragma option -zEcombined -zFmyclass
int far x;
double far y;
#pragma option -zE* -zF*

Both x and y will appear in the segment COMBINED ‘MYCLASS’ with no group.

Declaring functions to be near or far

On occasion, you’ll want (or need) to override the default function type of your memory
model.

For example, suppose you’re using the large memory model, but you have a recursive
(self-calling) function in your program, like this:

double power(double x,int exp) {
 if (exp <= 0)
 return(1);
 else
 return(x * power(x, exp-1));
 }

Paradigm C++ Reference Manual254

Every time power calls itself, it has to do a far call, which uses more stack space and
clock cycles. By declaring power as _ _near, you eliminate some of the overhead by
forcing all calls to that function to be near:

double _ _near power(double x,int exp)

This guarantees that power is callable only within the code segment in which it was
compiled, and that all calls to it are near calls.

This means that if you’re using a large code model (medium, large, or huge), you can
only call power from within the module where it is defined. Other modules have their
own code segment and thus cannot call _ _near functions in different modules.
Furthermore, a near function must be either defined or declared before the first time it is
used, or the compiler won’t know it needs to generate a near call.

Conversely, declaring a function to be far means that a far return is generated. In the
small code models, the far function must be declared or defined before its first use to
ensure it is invoked with a far call.

Look back at the power example at the beginning of this section. It is wise to also
declare power as static, since it should be called only from within the current module.
That way, being a static, its name will not be available to any functions outside the
module.

Declaring pointers to be near, far, or huge

You’ve seen why you might want to declare functions to be of a different model than
the rest of the program. For the same reasons given in the preceding section, you might
want to modify pointer declarations: either to avoid unnecessary overhead (declaring
_ _near when the default would be _ _far) or to reference something outside of the
default segment (declaring _ _far or _ _huge when the default would be _ _near).

There are, of course, potential pitfalls in declaring functions and pointers to be of non-
default types. For example, say you have the following small model program:

void myputs(s) {
 char *s;
 int i;
 for (i = 0; s[i] != 0; i++) putc(s[i]);
 }

main() {
 char near *mystr;

mystr = "Hello, world\n"
 myputs(mystr);
 }

This program works fine. In fact, the _ _near declaration on mystr is redundant, since
all pointers, both code and data, will be near.

But what if you recompile this program using the compact (or large or huge) memory
model? The pointer mystr in main is still near (it’s still a 16-bit pointer). However, the
pointer s in myputs is now far, because that’s the default. This means that myputs will
pull two words out of the stack in an effort to create a far pointer, and the address it
ends up with will certainly not be that of mystr.

How do you avoid this problem? If you’re going to explicitly declare pointers to be of
type _ _far or _ _near, be sure to use function prototypes for any functions that might
use them. The solution is to define myputs in ANSI C style, like this:

Chapter 13, 16-bit memory management 255

void myputs(char *s) {
 /* body of myputs */
 }

Now when Paradigm C++ compiles your program, it knows that myputs expects a
pointer to char; and since you are compiling under the large model, it knows that the
pointer must be _ _far. Because of that, Paradigm C++ will push the data segment (DS)
register onto the stack along with the 16-bit value of mystr, forming a far pointer.

How about the reverse case: arguments to myputs declared as _ _far and compiled with
a small data model? Again, without the function prototype, you will have problems,
because main will push both the offset and the segment address onto the stack, but
myputs will expect only the offset. With the prototype-style function definitions,
though, main will only push the offset onto the stack.

Pointing to a given segment:offset address
You can make a far pointer point to a given memory location (a specific segment:offset
address). You can do this with the macro MK_FP, which takes a segment and an offset
and returns a far pointer. For example,

MK_FP(segment_value, offset_value)

Given a _ _far pointer, fp, you can get the segment component with FP_SEG(fp) and
the offset component with FP_OFF(fp).

Using library files

Paradigm C++ offers a version of the standard library routines for each of the five
memory models. Paradigm C++ is smart enough to link in the appropriate libraries in
the proper order, depending on which model you’ve selected. However, if you’re using
the Paradigm C++ linker, PLINK, directly (as a stand-alone linker), you need to specify
which libraries to use. See "Using PLINK" in the online Help index for instructions on
how to do this.

Linking mixed modules

Suppose you compiled one module using the small memory model and another module
using the large model, then wanted to link them together. This would present some
problems, but they can be solved.

The files would link together fine, but the problems you would encounter would be
similar to those described in the section, “Declaring functions to be near or far,” page
13-253. If a function in the small module called a function in the large module, it would
do so with a near call, which would probably be disastrous. Furthermore, you could face
the same problems with pointers as described in “Declaring pointers to be near, far, or
huge,” page 13-254, since a function in the small module would expect to pass and
receive _ _near pointers, and a function in the large module would expect _ _far
pointers.

The solution, again, is to use function prototypes. Suppose that you put myputs into its
own module and compile it with the large memory model. Then create a header file
called myputs.h (or some other name with a .h extension), which would have the
following function prototype in it:

void far myputs(char far *s);

Now, put main into its own module (called MYMAIN.C), and set things up like this:

Paradigm C++ Reference Manual256

#include <stdio.h>
#include "myputs.h"

main() {
 char near *mystr;

 mystr = "Hello, world\n";
 myputs(mystr);
 }

When you compile this program, Paradigm C++ reads in the function prototype from
myputs.h and sees that it is a _ _far function that expects a _ _far pointer. Therefore, it
generates the proper calling code, even if it’s compiled using the small memory model.

What if, on top of all this, you need to link in library routines? Your best bet is to use
one of the large model libraries and declare everything to be _ _far. To do this, make a
copy of each header file you would normally include (such as stdio.h), and rename the
copy to something appropriate (such as fstdio.h).

Then edit each function prototype in the copy so that it is explicitly _ _far, like this:
int far cdecl printf(char far * format, ...);

That way, not only will _ _far calls be made to the routines, but the pointers passed will
also be _ _far pointers. Modify your program so that it includes the new header file:

#include <fstdio.h>

void main() {
 char near *mystr;
 mystr = "Hello, world\n";
 printf(mystr);
}

Compile your program with the command-line compiler PCC then link it with PLINK,
specifying a large model library, such as CL.LIB. Mixing models is tricky, but it can be
done; just be prepared for some difficult bugs if you do things wrong.

Chapter 14, Using iostreams classes 257

C h a p t e r
14

Using iostreams classes
Paradigm provides a full implementation of the C++ input and output classes,
commonly known as iostreams. With the arrival of C++ and object-oriented design,
input and output operations became encapsulated in a series of classes. Each iostreams
class encapsulates some form of input, output, or input and output from low-level
character transfer to higher-level, file-oriented input/output operations.

Stream input/output in C++ (commonly referred to as iostreams, or just streams)
provides all the functionality of the stdio library in ANSI C and much more. Iostreams
are used to convert typed objects into readable text, and vice versa. Streams can also
read and write binary data. The C++ language lets you define or overload I/O functions
and operators that are then called automatically for corresponding user-defined types.

What is a stream?

A stream is an abstraction referring to any flow of data from a source (or producer) to a
sink (or consumer). We also use the synonyms extracting, getting, and fetching when
speaking of inputting characters from a source; and inserting, putting, or storing when
speaking of outputting characters to a sink. Classes are provided that support console
output (constrea.h), memory buffers (iostream.h), files (fstream.h), and strings
(strstrea.h) as sources or sinks (or both).

The iostream library

The iostream library has two parallel families of classes: those derived from streambuf,
and those derived from ios. Both are low-level classes, each doing a different set of
jobs. All stream classes have at least one of these two classes as a base class. Access
from ios-based classes to streambuf-based classes is through a pointer.

The streambuf class

The streambuf class provides an interface to memory and physical devices. streambuf
provides underlying methods for buffering and handling streams when little or no
formatting is required. The member functions of the streambuf family of classes are
used by the ios-based classes. You can also derive classes from streambuf for your own
functions and libraries. The buffering classes conbuf, filebuf, and strstreambuf are
derived from streambuf.

Figure 14-1
Class streambuf

and its dervied
classes

Paradigm C++ Reference Manual258

The ios class

The class ios (and hence any of its derived classes) contains a pointer to a streambuf. It
performs formatted I/O with error-checking using a streambuf.

An inheritance diagram for all the ios family of classes is found in Figure 14-2, page
14-259. For example, the ifstream class is derived from the istream and fstreambase
classes, and istrstream is derived from istream and strstreambase. This diagram is not a
simple hierarchy because of the generous use of multiple inheritance. With multiple
inheritance, a single class can inherit from more than one base class. (The C++ language
provides for virtual inheritance to avoid multiple declarations.) This means, for
example, that all the members (data and functions) of iostream, istream, ostream,
fstreambase, and ios are part of objects of the fstream class. All classes in the ios-based
tree use a streambuf (or a filebuf or strstreambuf, which are special cases of a
streambuf) as its source and/or sink.

C++ programs start with four predefined open streams, declared as objects of
withassign classes as follows:
extern istream_withassign cin; // Corresponds to stdin;
 file descriptor 0.
extern ostream_withassign cout; // Corresponds to stdout;
 file descriptor 1.
extern ostream_withassign cerr; // Corresponds to stderr;
 file descriptor 2.
extern ostream_withassign clog; // A buffered cerr;
 file descriptor 2.

Chapter 14, Using iostreams classes 259

Class ios and its derived classes

By accepted practice, the arrows point from the derived class to the base class.

Stream output

Stream output is accomplished with the insertion (or put to) operator, <<. The standard
left shift operator, <<, is overloaded for output operations. Its left operand is an object
of type ostream. Its right operand is any type for which stream output has been defined
(that is, fundamental types or any types you have overloaded it for). For example,

cout << "Hello!\n";

writes the string "Hello!" to cout (the standard output stream, normally your screen)
followed by a new line.

The << operator associates from left to right and returns a reference to the ostream
object it is invoked for. This allows several insertions to be cascaded as follows:

int i = 8;
double d = 2.34;
 cout << "i = " << i << ", d = " << d << "\n";

This will write the following to standard output:
i = 8, d = 2.34

Figure 14-2

Paradigm C++ Reference Manual260

Fundamental types

The fundamental data types directly supported are char, short, int, long, char* (treated
as a string), float, double , long double , and void*. Integral types are formatted
according to the default rules for printf (unless you've changed these rules by setting
various ios flags). For example, the following two output statements give the same
result:

int i;
long l;
cout << i << " " << l;
printf("%d %ld", i, l);

The pointer (void *) inserter is used to display pointer addresses:
int i;
cout << &i; // display pointer address in hex

For more information, read the description of "ostream" in the online Help Book Shelf
index. The Book Shelf index can be accessed by choosing Help|Keyboard and clicking
the Book Shelf menu tab.

I/O formatting

Formatting for both input and output is determined by various format state flags
contained in the class ios. The flags are read and set with the flags, setf, and unsetf
member functions.

Output formatting can also be affected by the use of the fill, width, and precision
member functions of class ios.

The format flags are detailed in the description of "ios class" in the online Help Book
Shelf index. The Book Shelf index can be accessed by choosing Help|Keyboard and
clicking the Book Shelf menu tab.

Manipulators

A simple way to change some of the format variables is to use a special function-like
operator called a manipulator. Manipulators take a stream reference as an argument and
return a reference to the same stream. You can embed manipulators in a chain of
insertions (or extractions) to alter stream states as a side effect without actually
performing any insertions (or extractions). Parameterized manipulators must be called
for each stream operation. For example,

#include <iostream.h>
#include <iomanip.h> // Required for parameterized manipulators.

int main(void) {
int i = 6789, j = 1234, k = 10;

 cout << setw(6) << i << j << i << k << j;
 cout << "\n";
 cout << setw(6) << i << setw(6) << j << setw(6) << k;
 return(0);
 }

produces this output:
678912346789101234
6789 1234 10

Chapter 14, Using iostreams classes 261

setw is a parameterized manipulator declared in iomanip.h. Other parameterized
manipulators, setbase, setfill, setprecision, setiosflags and resetiosflags, work in the
same way. To make use of these, your program must include iomanip.h. You can write
your own manipulators without parameters:

#include <iostream.h>

// Tab and prefix the output with a dollar sign.
ostream& money(ostream& output) {
 return output << "\t$";
 }

int main(void) {
 float owed = 1.35, earned = 23.1;
 cout << money << owed << money << earned;
 return(0);
 }

produces the following output:
$1.35 $23.1

The non-parameterized manipulators dec, hex, and oct (declared in iostream.h) take no
arguments and simply change the conversion base (and leave it changed):

int i = 36;
cout << dec << i << " " << hex << i << " " << oct << i << endl;
cout << dec; // Must reset to use decimal base.
// displays 36 24 44

Manipulator Action

dec Set decimal conversion base format flag.
hex Set hexadecimal conversion base format flag.
oct Set octal conversion base format flag.
ws Extract whitespace characters.
endl Insert newline and flush stream.
ends Insert terminal null in string.
flush Flush an ostream.
setbase(int n) Set conversion base format to base n (0, 8, 10, or 16). 0 means the default:

decimal on output, ANSI C rules for literal integers on input.
resetiosflags(long f) Clear the format bits specified by f.
setiosflags(long f) Set the format bits specified by f.
setfill(int c) Set the fill character to c.
setprecision(int n) Set the floating-point precision to n.
setw(int n) Set field width to n.

The manipulator endl inserts a newline character and flushes the stream. You can also
flush an ostream at any time with

ostream << flush;

Filling and padding

The fill character and the direction of the padding depend on the setting of the fill
character and the left, right, and internal flags.

The default fill character is a space. You can vary this by using the function fill:

Table 14-1
Stream

manipulators

Paradigm C++ Reference Manual262

int i = 123;
cout.fill('*');
cout.width(6);
cout << i; // display ***123

The default direction of padding gives right-alignment (pad on the left). You can vary
these defaults (and other format flags) with the functions setf and unsetf:

int i = 56;
 .
 .
 .
cout.width(6);
cout.fill('#');
cout.setf(ios::left,ios::adjustfield);
cout << i; // display 56####

The second argument, ios::adjustfield, tells setf which bits to set. The first argument,
ios::left, tells setf what to set those bits to. Alternatively, you can use the manipulators
setfill, setiosfags, and resetiosflags to modify the fill character and padding mode. See
"ios:adjustfield" in the online Help Book Shelf index, for a list of masks used by setf.
The Book Shelf index can be accessed by choosing Help|Keyboard and clicking the
Book Shelf menu tab.

Stream input
Stream input is similar to output but uses the overloaded right shift operator, >>, known
as the extraction (get from) operator or extractor. The left operand of >> is an object of
type class istream. As with output, the right operand can be of any type for which
stream input has been defined.

By default, >> skips whitespace (as defined by the isspace function in ctype.h), then
reads in characters appropriate to the type of the input object. Whitespace skipping is
controlled by the ios::skipws flag in the format state's enumeration. The skipws flag is
normally set to give whitespace skipping. Clearing this flag (with setf, for example)
turns off whitespace skipping. There is also a special "sink" manipulator, ws, that lets
you discard whitespace.

Consider the following example:
int i;
double d;
cin >> i >> d;

When the last line is executed, the program skips any leading whitespace. The integer
value (i) is then read. Any whitespace following the integer is ignored. Finally, the
floating-point value (d) is read.

For type char (signed or unsigned), the effect of the >> operator is to skip whitespace
and store the next (non-whitespace) character. If you need to read the next character,
whether it is whitespace or not, you can use on of the get member functions. See the
discussion of "istream" in online Help Book Shelf index. The Book Shelf index can be
accessed by choosing Help|Keyboard and clicking the Book Shelf menu tab.

For type char* (treated as a string), the effect of the >> operator is to skip whitespace
and store the next (non-whitespace) characters until another whitespace character is
found. A final null character is then appended. Care is needed to avoid "overflowing" a
string. You can alter the default width of zero (meaning no limit) using width as
follows:

Chapter 14, Using iostreams classes 263

char array[SIZE];
cin.width(sizeof(array));
cin >> array; // Avoids overflow.

For all input of fundamental types, if only whitespace is encountered, nothing is stored
in the target, and the istream state is set to fail. The target will retain its previous value;
if it was uninitialized, it remains uninitialized.

I/O of user-defined types

To input or output your own defined types, you must overload the extraction and
insertion operators. Here is an example:

#include <iostream.h>

struct info {
 char *name;
 double val;
 char *units;
 };

// You can overload << for output as follows:
ostream& operator << (ostream& s, info& m) {
 s << m.name << " " << m.val << " " << m.units;
 return s;
 };

// You can overload >> for input as follows:
istream& operator >> (istream& s, info& m) {
 s >> m.name >> m.val >> m.units;
 return s;
 };

int main(void) {
 info x;
 x.name = new char[15];
 x.units = new char[10];

 cout << "\nInput name, value and units:";
 cin >> x;
 cout << "\nMy input:" << x;
 return(0);
 }

Simple file I/O

The class ofstream inherits the insertion operations from ostream, while ifstream
inherits the extraction operations from istream. The file-stream classes also provide
constructors and member functions for creating files and handling file I/O. You must
include fstream.h in all programs using these classes.

Consider the following example that copies the file FILE.IN to the file FILE.OUT:
#include <fstream.h>

int main(void) {
 char ch;
 ifstream f1("FILE.IN");
 ofstream f2("FILE.OUT");

Paradigm C++ Reference Manual264

 if (!f1) cerr << "Cannot open FILE.IN for input";
 if (!f2) cerr << "Cannot open FILE.OUT for output";
 while (f2 && f1.get(ch))
 f2.put(ch);
 return(0);
 }

Note that if the ifstream or ofstream constructors are unable to open the specified files,
the appropriate stream error state is set.

The constructors let you declare a file stream without specifying a named file. Later,
you can associate the file stream with a particular file:

ofstream ofile; // creates output file stream
 .
 .
 .
ofile.open("payroll"); // ofile connects to file "payroll"
// do some payrolling...
ofile.close(); // close the ofile stream
ofile.open("employee"); // ofile can be reused...

By default, files are opened in text mode. This means that on input, carriage-
return/linefeed sequences are converted to the '\n' character. On output, the '\n' character
is converted to a carriage-return/linefeed sequence. These translations are not done in
binary mode. The file-opening mode is set with an optional second parameter to the
open function or in some file-stream constructors. The file opening-mode constrants can
be used alone or they can logically ORed together. See the description of "ios class" in
the online Help Book Shelf index. The Book Shelf index can be accessed by choosing
Help|Keyboard and clicking the Book Shelf menu tab.

String stream processing

The functions defined in strstrea.h support in-memory formatting, similar to sscanf and
sprintf, but much more flexible. All of the istream member functions are available for
class istrstream (input string stream). This is the same for output: ostrstream inherits
from ostream.

Given a text file with the following format:
101 191 Cedar Chest
102 1999.99 Livingroom Set

Each line can be parsed into three components: an integer ID, a floating-point price, and
a description. The output produced is

1: 101 191.00 Cedar Chest
2: 102 1999.99 Livingroom Set

Here is the program:
#include <fstream.h>
#include <strstrea.h>
#include <iomanip.h>
#include <string.h>

Chapter 14, Using iostreams classes 265

int main(int argc, char **argv) {
 int id;
 float amount;
 char description[41];

 if (argc == 1) {
 cout << "\nInput file name required.";
 return (-1);
 }

 ifstream inf(argv[1]);

 if (inf) {
 char inbuf[81];
 int lineno = 0;

 // Want floats to print as fixed point
 cout.setf(ios::fixed, ios::floatfield);

 // Want floats to always have decimal point
 cout.setf(ios::showpoint);

 while (inf.getline(inbuf,81)) {
 // 'ins' is the string stream:
 istrstream ins(inbuf,strlen(inbuf));
 ins >> id >> amount >> ws;
 ins.getline(description,41); // Linefeed not copied.
 cout << ++lineno << ": "
 << id << '\t'
 << setprecision(2) << amount << '\t'
 << description << "\n";
 }
 }
 return(0);
}

Note the use of format flags and manipulators in this example. The calls to setf coupled
with setprecision allow floating-point numbers to be printed in a money format. The
manipulator ws skips whitespace before the description string is read.

Paradigm C++ Reference Manual266

Appendix A, Errors and messages 267

A p p e n d i x

A

Errors and messages

This appendix describes the error messages that can be generated by Paradigm C++. It
begins by describing the four types of messages you can receive: fatal errors, errors,
warnings, and informational messages.

Next, it covers the different components that can generate messages: the compiler, the
MAKE utility, the linker (PLINK), the librarian (PLIB), the integrated debugger, and the
Windows Help compiler. This appendix also lists the errors that you can receive when
you run your program (run-time errors).

The remainder of the appendix lists messages in ASCII alphabetic order and provides a
description of each message that includes where the message was generated.

Message categories

Messages are displayed with the message class first, followed by the source file name
and line number where the error was detected, and finally with the text of the message
itself.

The following categories of messages can occur:

Category Indicates

Fatal A problem of critical nature that prevents execution from continuing.
Error A problem that should be fixed such as a missing declaration or a type mismatch.
Warning A problem that can be overlooked.
Informational Progress such as build status.

Many of the messages appear in the Message view. For those messages, context-sensitive
help is available. Point to the message and press F1 to display the message description.

If you are working from the command line or want to look up information on an error
message, refer to the alphabetical list of error and warning messages in "Alphabetical list
of messages" later on in this chapter. A listing is also available in the online Help Book
Shelf under "Paradigm C++ error and warnings". The Book Shelf can be accessed by
choosing Help|Keyboard and clicking the Book Shelf menu tab.

Fatal errors

Fatal errors can be generated by the compiler, the linker, and the MAKE utility. Fatal
errors cause the compilation to stop immediately; you must take appropriate action to fix
the error before you resume compiling.

If the compiler or MAKE utility issues a fatal error, no .AXE files is created. If the linker
issues a fatal error, any .AXE file that might have been created by the linker is deleted
before the linker returns.

Table A-1
Message

categories

Paradigm C++ Reference Manual268

Errors

Errors can be generated by the compiler, the linker, and the MAKE utility, and the
librarian. In addition, errors can be generated by your program at run-time.

Errors generated by the compiler indicate program syntax errors, command-line errors,
and disk or memory access errors. Compiler errors don't cause the compilation to stop -
the compiler completes the current phase of the compilation and then stops and reports the
errors encountered. The compiler attempts to find as many real errors in the source
program as possible during each phase (preprocessing, parsing, optimizing, and code-
generating).

Errors generated by the linker don't cause the linker to delete the .AXE or .MAP files.
However, you shouldn't execute any .AXE file that was linked with errors. Linker errors
are treated like fatal errors if you are compiling from the Paradigm C++ IDE.

The MAKE utility generates errors when there is a syntax or semantic error in the source
makefile. You must edit the makefile to fix these types of errors.

Run-time errors are usually caused by logic errors in your program code. If you receive a
run-time error, you must fix the error in your source code and recompile the program for
the fix to take effect.

Warnings

Warnings can be issued by the compiler , the linker, and the librarian. Warnings do not
prevent the compilation from finishing. However, they do indicate conditions that are
suspicious, even if the condition that caused the warnings is legitimate within the
language. The compiler also produces warnings if you use machine-dependent constructs
in your source files.

Informational messages

Informational messages inform you about the progress of tasks such as the status of a
build.

Message generators

The messages in this appendix include messages that can be generated by the compiler,
the MAKE utility, the linker (PLINK), the librarian, (PLIB), the Paradigm C++ IDE, and
the Windows Help compiler. Run-time errors (errors you can receive when you run your
program) are also included.

Compiler errors and warnings

Compile-time error messages indicate errors in program syntax, command-line errors, or
errors in accessing a disk or memory. When most compile-time errors occur, the
compiler completes the current phase (preprocessing, parsing, optimizing, and code-
generating) of the compilation and stops. But when fatal compile-time errors happen,
compilation stops completely. If a fatal error occurs, fix the error and recompile.

Be aware that the compiler generates messages as they are detected. Because C and C++
don't force any restrictions on placing statements on a line of text, the true cause of the
error might occur one or more lines before or after the line number specified in the error
message.

+

Appendix A, Errors and messages 269

Warnings indicate that conditions that are suspicious but legitimate exist, or that machine-
dependent constructs exist in your source files. Warnings do not stop compilation.

Warnings are issued as a result of a variety of conditions, such as:

Warning Description

ANSI violations Warn you of code that is acceptable to Paradigm C++ (because of C++ code
or Paradigm C++ extensions), but is not in the ANSI definition of C.

Frequent warnings Alert you to common programming mistakes. These warning messages point
out conditions that are not in violation of the Paradigm C++ language but can
yield the wrong result.

Less frequent warnings Alert you to less common programming mistakes. These warning messages
point out conditions that are not in violation of the Paradigm C++ language
but can yield the wrong result.

Portability warnings Alert you to possible problems with porting your code to other compilers.
These

usually apply to Paradigm C++ extensions.
C++ warnings Warn you of errors you've made in your C++ code. They might be due to

obsolete items or incorrect syntax.

Run-time errors and warnings

Run-time errors occur after the program has successfully compiled and is running. Run-
time errors are usually caused by logic errors in your program code. If you receive a run-
time error, you must fix the error in your source code and recompile the program for the
fix to take effect.

Linker errors and warnings

As a rule, linker errors do not stop the linker or cause .AXE or .MAP files to be deleted.
When such errors happens, don't try to execute the .AXE file. Fix the error and relink.

A fatal link error, however, stops the linker immediately. In such a case, the .AXE file is
deleted. All Linker errors are treated as fatal errors if you are compiling from the
Paradigm C++ IDE.

Linker warnings point out conditions that you should fix. When warnings occur, .AXE and
.MAP files are still created.

Librarian errors and warnings

Librarian errors and warnings occur when there is a problem with files or extended
dictionaries, when memory runs low, or when there are problems as libraries are
accessed.

Paradigm C++ debugger messages

Paradigm C++debugger messages are generated by the integrated debugger and appear
under the Run-time tab of the Message window. Many of these messages relate to options
not set properly in the Paradigm C++ IDE screens.

Table A-2
Warning

descriptions

Paradigm C++ Reference Manual270

ObjectScripting error messages

ObjectScripting error messages are messages that result from running scripts in the
Paradigm C++ IDE. They appear under the Script tab in the Message window.

Message formats

Messages are displayed with the message class first, followed by the source file name
and line number where the error was detected, and finally with the text of the message
itself.

Many of the messages appear in the Message view. For those messages, context-sensitive
help is available. Point to the message and press F1 to display the message description.

If you working from the command line or want to look up information on an error
message, refer to the alphabetical list of error and warning messages in "Alphabetical list
of messages" later in this chapter. A listing is also available in the online Help Book
Shelf under "Paradigm C++ error and warnings". The Book Shelf can be accessed by
choosing Help|Keyboard and clicking on the Book Shelf menu tab.

Symbols in messages

Some messages include a symbol (such as a variable, file name, or module) that is taken
from your program. In the following example, 'filename' will be replaced by the file
causing the problem:

Error opening 'filename' for output

The following table describes the meaning of symbols in error and warning messages.

Symbol Meaning

address A hexadecimal number indicating the address where the error occurred
argument An argument
base The name of a base element such as a base class
class A class name
constructor The name of a constructor such as a class constructor
filename A file name (with or without extension)
function A function name
group A group name
identifier An identifier (variable name or other)
language The name of a programming language
len An actual number
macroname The name of a macro
member The name of a data member or member function
message A message string
module A module name
name Any type of name
num An actual number
operator The symbol for an operator such as ++
option An option
parameter A parameter name
path A path name

Table A-3
Symbols in error

messages

Appendix A, Errors and messages 271

reason Reason given in message
segment A segment name
size An actual number
specifier A type specifier
symbol A symbol name
type A type name
variable A program variable

Some messages begin with a symbol name such as the following:
'filename' not found

These messages are listed alphabetically using the name of the symbol. The above
message would be filed under f.

Alphabetical list of Paradigm C++ debugger messages

Messages are listed in ASCII alphabetic order. Messages beginning with symbols come
first, then messages beginning with numbers, and then messages beginning with letters of
the alphabet. Messages that begin with symbols are alphabetized by the type of the
symbols. For example, you might receive the following error message if you incorrectly
declared your function my_func:

my_func must be declared with no parameters

Bad line number 'linenumber'
You tried to add a source breakpoint at a specific line number but you typed an invalid
line number. Use the Paradigm C++ IDE and correct the line number in the Add
Breakpoint dialog box. Breakpoints must be set on executable lines of code.

Can't convert 'string' [which evaluates to 'result'] to an address
The debugger dialog was expecting a memory address as input and it couldn't interpret
the user input as a valid address.

Can't debug during asynchronous compile
While compiling code with the Environment|Process Control|Asynchronous option set,
you tried to issue a debugger command. Because the compiler is not re-entrant and the
debugger and browser use the compiler code, you cannot debug or browse while an
asynchronous (background) compile is taking place.

Can't evaluate 'expression:' 'reason'
The expression you tried to evaluate did not return a valid value. This error will be given
any time invalid input is entered in a debugger dialog and there is no more information
about the error. Every debugger dialog uses the debugger's evaluator to validate and
interpret user input.

Can't inspect 'itemname'
You specified an invalid item for inspection.

Can't navigate to address 0
You are trying to bring up a source view on an address that evaluates to 0.

To find this error
message, look

under the
alphabetized

listing of
"function."

Paradigm C++ Reference Manual272

Can't run to 'filename', line 'linenumber'
You tried to run the specified line of the specified file. Either the file does not exist or
there is no executable code associated with the line.'

Disable Group checked but no value entered
You checked the Disable Group check box, but forgot to specify a group name.

Enable Group checked but no value entered
You checked the Enable Group check box, but forgot to specify a group name.

Ensuring executable is up to date
Paradigm C++ is checking to be sure that the executable file is up to date, recompiling, if
necessary.

Error: File not specified
You forgot to specify a filename in the Run To dialog.

Error: Line not specified
You forgot to specify a line number in the Run To dialog.

Error trying to change value
You tried to change a value of an object being inspected, but the debugger was unable to
change the value.

Eval Expr checked but no value entered
You checked the Eval Expr check box, but forgot to specify an expression.

Expr True check but no value entered
You checked the Expr True check box, but forgot to provide an expression.

File 'filename' does not exist
You tried to bring up a source view on an address, and the associated file does not exist.
This problem can usually be fixed by setting the appropriate source path on the debugger
option page.

File 'filename' does not exist (trying to load it anyway...)
The debugger tried to load an executable that does not exist. Check to make sure that the
executable exists and that the path to the executable was correctly specified.

File name not specified
You tried to add a source breakpoint using the Paradigm C++ IDE, but you omitted a file
name. Enter the name of the file into which you want to insert the breakpoint in the Add
Breakpoint dialog box.

Function call terminated by unhandled exception 'value' at address 'addr'
This message is emitted when an expression you are evaluating while debugging includes
a function call that terminates with an unhandled exception. For example, if in the
debugger's evaluate dialog, you request an evaluation of the expression foo()+1 and
the execution of the function foo() causes a GP fault, this evaluation produces the
above error message.

Appendix A, Errors and messages 273

You may also see this message in the Watches window because it also displays the
results of evaluating an expression.

Group name not specified
You tried to set breakpoint options in the Breakpoint Condition/Action Options dialog
box but forgot to specify a group name.

Invalid Pass Count value entered
The Pass Count value you gave was invalid. Valid values for Pass Count are from 0 to
4294967295.

Invalid pathname for executable
The debugger was unable to find the executable you tried to load.

Invalid process id
You specified a process ID that does not match the ID of any active process.

Loading: 'programname'
The debugger is loading the specified program.

Log Expr checked but no value entered
You checked the Log Expr check box, but forgot to specify an expression.

Log Msg checked but no value entered
You checked the Log Msg check box, but forgot to specify a message.

Make failed
The make spawned by the debugger to try to bring the current target up to date failed.
Check the Build Time tab in the Message view to see the reason for the failure.

Make the modified code?
You had a process loaded in integrated debugger and then you modified the source code
for the process. You should probably build the new code instead of continuing to debug
the old executable.

No expression specified
You forgot to specify an expression in the Add Watch dialog

No file corresponds to this item
You tried to bring up a source view on an address, and there is no source file for the
address.

No file line specified
You tried to add a Source breakpoint using the Paradigm C++ IDE, but did not include the
line number. Specify the line in the file where you want the breakpoint to occur in the
Add Breakpoint dialog box.

No line corresponds to this item
You tried to bring up a source view on an address, and there is no line number for the
address.

Paradigm C++ Reference Manual274

No module name specified
You tried to add a module breakpoint using the Paradigm C++ IDE, but you omitted the
module name. Specify the module name where you want to insert the breakpoint in the
Add Breakpoint dialog box.

No module specified
You tried to add an Address breakpoint using the Paradigm C++ IDE, but you omitted the
module. Specify the module where you want to insert the breakpoint in the Add
Breakpoint dialog box.

No object specified
You tried to add an Address breakpoint using the Paradigm C++ IDE, but you omitted the
object. Specify the name of the object into which you want to insert the breakpoint in the
Add Breakpoint dialog box.

No offset specified
You tried to add an Address breakpoint using the Paradigm C++ IDE, but you omitted the
offset that indicates where you want to insert the breakpoint. Specify the offset in the Add
Breakpoint dialog box.

No process selected
You pressed the Attach button on the debugger's Attach dialog when there was no process
selected in the process list.

No process to load
You left the Program Name field blank on the Load Program dialog.

No process to reset
You tried to reset a process but there was no process running.

No process to stop
You tried to pause a process but there was no process running.

No process to terminate
You tried to terminate processes but there was no process running at the time.

No type specified
You tried to add a C++ exception breakpoint using the Paradigm C++ IDE. You must
specify a type in the Add Breakpoint dialog box to set this type of breakpoint.

No watch address specified
You specified a data watch breakpoint using the Paradigm C++ IDE, but you omitted the
watch address. You need to specify both a memory address and the number of bytes to
watch.

No watch length specified
You specified a data watch breakpoint using the Paradigm C++ IDE, but you omitted the
watch length. You need to specify both a memory address and the number of bytes to
watch.

Appendix A, Errors and messages 275

Not all breakpoints were valid
You set breakpoints in your program but they were not all valid. Check the breakpoint
view to see which breakpoints were invalid.

OS exception number not specified
You tried to add an OS exception breakpoint using the Paradigm C++ IDE. You must
include an OS exception number if you want to add a breakpoint when a particular OS
exception occurs. Select one of the exceptions in the list box next to the Exception # field
or enter a user-defined exception number.

Pass Count checked but no value entered
You checked the Pass Count check box, but forgot to provide a pass count. You need to
specify a valid pass count.

Process created: 'processname'
The process specified in the message has been created.

Process 'processname' (0x%X) is already being debugged
You tried to attach to a process that is already being debugged.

Process 'processname' (0x%X) is Paradigm C++
You tried to attach to the Paradigm C++ IDE. This is not allowed. Specify another
process.

Process Stopped: 'processname'
The process specified in the message was stopped.

Process terminated: 'programname'
The specified process has been terminated.

Resetting
The process is being reset to its initial condition.

Running
The process is running.

Stopping
The process is stopping.

Terminating
The process is terminating.

The expression cannot be modified
This is an integrated debugger error. You entered an expression in the Evaluator dialog
box and clicked on Modify but the expression cannot be modified.

The expression you entered could not be evaluated
This is an integrated debugger error. The integrated debugger could not interpret the
expression you entered in the Evaluator dialog box.

Paradigm C++ Reference Manual276

There is no code for 'file', line 'linenumber'
You tried to view the disassembly for the given line of source code. The specified line of
the file has no code associated with it.

There is no expression to evaluate
This is an integrated debugger error. You forgot to enter an expression in the Evaluator
dialog box.

There is no expression to evaluate, and no process is loaded
This is an integrated debugger error. You forgot to enter an expression in the Evaluator
dialog box and no program is loaded.

This operation not supported for 16 bit executables
You tried to use a command (such as Reset or Pause) in the integrated debugger while the
project was set to produce a 16-bit executable. The integrated debugger does not support
16-bit executables except to run or terminate them.

Alphabetical list of Compiler messages

Messages are listed in ASCII alphabetic order. Messages beginning with symbols come
first, then messages beginning with numbers, and then messages beginning with letters of
the alphabet. Messages that begin with symbols are alphabetized by the type of the
symbols. For example, you might receive the following error message if you incorrectly
declared your function my_func:

my_func must be declared with no parameters

Cannot access an inactive scope
You have tried to evaluate or inspect a variable local to a function that is currently not
active. (This is an integrated debugger expression evaluation message.)

Cannot evaluate function call
The error message is issued if someone tries to explicitly construct an object or call a
virtual function.

In integrated debugger expression evaluation, calls to certain functions (including implicit
conversion functions, constructors, destructors, overloaded operators, and inline
functions) are not supported.

Cannot take address of member function 'function'
An expression takes the address of a class member function, but this member function was
not found in the program being debugged. The evaluator issues this message.

Invalid 'expression' in scope override
The evaluator issues this message when there is an error in a scope override in an
expression you are watching or inspecting. You can specify a symbol table, a compilation
unit, a source file name, etc. as the scope of the expression, and the message will appear
whenever the compiler cannot access the symbol table, compilation unit, or whatever.

Invalid function call
A requested function call failed because the function is not available in the program, a
parameter cannot be evaluated, and so on. The evaluator issues this message.

To find this error
message, look

under the
alphabetized

listing of
"function."

Appendix A, Errors and messages 277

Missing 'identifier' in scope override
The syntax of a scope override is somehow incomplete. The evaluator issues this
message.

'new' and 'delete' not supported
The integrated debugger does not support the evaluation of the new and delete operators.

No type information
The integrated debugger has no type information for this variable. Ensure that you've
compiled the module with debug information. If it has, the module may have been
compiled by another compiler or assembler.

Not a valid expression format type
Invalid format specifier following expression in the debug evaluate or watch window. A
valid format specifier is an optional repeat value followed by a format character (c, d,
f[n], h, x, m, p, r, or s).

Overloaded function resolution not supported
In integrated debugger expression evaluation, resolution of overloaded functions or
operators is not supported, not even to take an address.

Repeat count needs an lvalue
The expression before the comma (,) in the Watch or Evaluate window must be an
accessible region of storage. For example, expressions like this one are not valid:

i++,10d
x = y, 10m

String literal not allowed in this context
This error message is issued by the evaluator when a string literal appears in a context
other than a function call.

The function 'function' is not available
You tried to call a function that is known to the evaluator, but which was not present in
the program being debugged for example, an inline function.

Paradigm C++ Reference Manual278

Index 279

Index

#

!elif 186
!else 186
!endif 186
!error 185
!if 186
!ifdef 186
!ifndef 186
!include 187
!message 187
!undef 188
#if 141
#ifdef 141
$ENV() 85
$INHERIT 85
.autodepend 185
.path.ext 187
.precious 188
.suffixes 188
/ (slash)

16-bit linker options 86
32-bit linker options 89
command-line options 109
Directory options 83
General options 92
Librarian options 85
Map options 94
Source Directories options 82
Warnings options 96

; (semi-colon) 208
_ (underscores) 63, 77

_ _cdecl 53, 63
_ _far 61, 62
_ _fastcall 53, 63
_ _fastthis 74
_ _huge 67
_ _pascal 53, 63
_ _stdcall 63
_BSS 60

-1 compiler option 57, 212
16- and 32-bit command-line options 109
16- and 32-bit compiler options 109
16-bit command-line options 111
16-bit compiler options 53, 111

calling conventions 53
memory model 54
processor 57
segment names code 59

segment names data 60
segment names far data 61

16-bit linker options 86
calling conventions 87
enabling 32-bit processing 86
initializing segments 87
names tables 87
nonresident names table 86
segment alignment 87

16-bit memory management 241
16-bit optimization 88, 104
-2 compiler option 57
-3 compiler option 57, 64
32-bit command-line options 109, 112
32-bit compiler options 62, 109

calling convention 63
processor 64

32-bit instruction set 64
32-bit linker options 89

committed heap size 90
committed stack size 90
file alignment 90
image base address 91
image is based 91
importing by ordinal 89
incremental linker 92
linker errors 91
object alignment 91
reserved heap size 91
reserved stack size 92
verbose 92

32-bit optimization options 106
32-bit, enabling 86
32RTM.EXE 170
-4 compiler option 57, 64
-5 compiler option 57, 64
8086

processors 57
registers 241

80x86 processors 57, 64
instruction opcodes 211
registers 208

80x87 coprocessors 235
emulating 235
registers 237

87 environment variable 236
-B compiler option 211
i486 instructions 57, 64

Paradigm C++ Reference Manual280

A

.autodepend 185
-A compile options 78
-a compiler options 58
Add Node command 36
Add Target dialog box 38
addresses 56, 58, 91

map files 95
Advanced Options dialog box 35
-AK compiler option 78
algorithms 83
aliases 104
alignment 58

byte 58
double word 59
file 90
object 91
quad word 59
segments 87
word 59

alloc.h 219
Allocate Enums As Ints option 73
allocation 73, 105
alphabetical listings

error messages and warnings 271, 276
ancestors 126
ANSI 78, 98
arguments 228, 233

passing 53, 63, 67
arithmetic 238
arrays

project options 56, 102
asm keyword 207

nesting 208
assembly language 207

calling conventions 208
comments 208
directives 213
floating-point emulation 211
instructions 207
jump instructions 210, 213
new lines 207
opcodes 211
operands 207
references 208
registers 208
repeat prefixes 212
size instruction 209
statements 207

C symbols 207
string instructions 212
structures 209

syntax 207
variable offsets 209

assert 220
assert.h 220
assignment 87, 101
-AT compiler option 78
-AU compiler option 78
autodependencies 76, 97
Automatic Far Data option 54

B

_BSS 60
-b compiler option 73
background compile 271
base addresses 91
bcd, binary-coded decimals 238

converting 240
binary-coded decimals 238
Break make on option 97
Breakpoint Condition/Action options dialog box

145
breakpoints 136

adding 136, 143
conditional 137
customizing 142, 145

color 142
disabling/enabling 140, 145

groups 141
editing 148
inspecting 140
option sets 141
removing 139
resetting invalid 141
setting 135, 136, 137

conditional 136
unconditional 136

type 143
viewing 140

Breakpoints window 136, 137, 140, 142
browser 125

customizing 128
starting 125
using menu commands 125
views 125

Browser options 79
Browser Reference Information in OBJs option 79
browsing

class inspection 127
filters and letter symbols 127
global symbols 126
objects 126
references 127

Index 281

symbol declaration 127
symbols 126

Build All command 51
Build attributes option 65
Build Node command 51
building

applications 97
libraries 191

builds 51, 65, 84, 173
BUILTINS.MAK 173, 174
byte alignment 58

C

_ _cdecl 53, 63
C calling conventions 53, 63
-C compile option 78
C++ coding, inefficent 99
C++ options 65

compatibility 65
exception handling 68
general 70
member pointers 70
templates 71
virtual tables 71

cache hit optimizations 106
calculations 76, 105
call stack 80
Call Stack window 163
calling conventions 66, 233

_ _fastthis 74
compiling options 53, 63, 74
optimizing 87, 103
Pascal 53, 63, 67

case sensitivity 85
exports and imports 92
link 93

catch 199
C-based structured exceptions 204
character conversion macros 220
character types 66, 75
child nodes 32
Class Inspection window 127
class member functions 135
classes 257

compiling options 65, 66, 67
declarations 223
empty base classes 70

Classes command 126
code

classes 59
elimination 105
external 135

groups 59
inefficient coding 100
motion, optimizing 105
page aligment 87
searching 125
segments 39, 54, 55, 57, 59, 62

packing 93, 94
unreachable 100

code generation 79, 94
compiler 57, 72, 73, 77
optimization 104, 105

code pages 90
color customization

syntax highlighting 142
COMDEFs 55, 77
command-line compilers 166
command-line options 109, 166

16- and 32-bit 109
16-bit 111
32-bit 112
by function 118
compiler 112
exception handling 203
MAKE 175
object search paths 109
PLIB 191
PLINK 167

command-line tools
running 170

comment records, purging 86
comments, nested 78
communal variables 54, 77
compact memory models 54, 56, 57
compatibility 65
Compile command 51
compiler errors and warnings 268

declarations 277
evaluating expressions 276, 277
function calls 272, 276, 277
lvalue 277
modules 274
watch address 274

compiler options 72
assembly 210
code generation 73
compiler output 76
debugging 79
defines 72
precompiled headers 81
source 77

compiler output options 76
autodependencies 76
generating code 77

Paradigm C++ Reference Manual282

generating underscores 77
compilers 72, 166

32-bit command-line options 111, 112
command-line options 112
message options 98
project options 52, 53, 62, 65, 72, 101
stopping 101

compile-time errors
fixing 52, 129

compiling 51, 56, 173, 224
optimizing 169
with symbol tables 130

complex numbers 238
conditional breakpoints 137
configuration files 166
constants 104
constructors 66, 203
context-sensitive help 28
conversions 230, 232
converting old projects 39
copy propagation 104
CPU instruction sets 57, 64
CPU window 156

Disassembly pane 157
Flags pane 162
Memory Dump pane 159
Registers pane 161
Stack pane 160

ctype.h 220
customizing See Environment options
customizing the browser 128

D

_defs.h 233
-D compile option 72
-d compiler option 73
data

alignment 58
inspecting range 153
members 68
objects 54
segments 39, 54, 55, 57, 60, 61
structures 148
value 148

-dc compiler option 57
debug options

environment 142
syntax highlighting 142

debugger 20, 129
adding breakpoints 136
compile-time errors 52
conditional breakpoints 137

customizing 131
debug information 79, 93, 130
evaluating expressions 154
external code 135
fixing errors 52, 148

logic 129
run-time 129

inspecting code 140, 153
messages and warnings 267, 269
modifying variables 155
optimizing 105, 108
options

pausing a program 135
program arguments 131
restarting a program 135
terminating a program 135

program execution 131
running programs 132
setting watches 148
SpeedButtons 21
starting a session 130
stepping 133, 163
target connection 19

stand-alone 19
viewing errors 52

debugging macro, assert 220
debugging options 79

browser 79
debug information in OBJs 79
line numbers 79
out-of-line inline functions 80
stack frame 80
test stack overflow 80

declarations
classes 223
errors 277

default libraries, linker options 93
defining

macros 73, 182
variables 77

dependencies 76
checking 97

derived classes 65, 66
descendants 126
desktop

speedbar options 25
destructors 69, 203
detailed segment maps 95
DGROUP 60
dictionaries 86

extended 192, 193
directives

assembly 213

Index 283

MAKE 184, 186, 188
directories 82, 109, 166

options 82
entering directory names 84
file search algorithms 83
output 84
source 82

directory names, entering 84
disable all, optimization option 108
disabling messages and warnings 98
Disassembly pane 157

SpeedMenu 158
display warnings 98, 101
DLLs 86
DOS applications

compiling options 54, 56
dos.h 221
double 232
double word alignment 59
Dump pane 159, 160

SpeedMenu 160
duplicate strings 74
duplicate symbols, linker warning 96
dynamic mode 153
dynamic-link libraries 86

E

!elif 186
!else 186
!endif 186
!error 185
$ENV() 85
Edit window 11, 14, 52, 136, 137
editing code 140
editor 14

options 22
EDPMI.SWP 170
embedded.h 221
enumeration types 73
Environment options 22

browser 128
debugger 131
Editor 23
Preferences 27
project views 39
SpeedBar 25
Syntax highlighting 24

environmental parameters 224
errno.h 222
error codes 222
error messages 269

alphabetical listings 271, 276

categories 267
compiler 268
fatal errors 267
informational 268
librarian 269
linker 269
ObjectScripting 270
run-time 269
warnings 268

error-handling mechanism 197
errors 267

32-bit linker 91
C++ 100
compile-time 52
declaration syntax 78
fixing 52, 129
header file 222
linker 96
linker errors 91
logic 129
messages options 98
potenial errors 101
run-time 129
stop after… 101
viewing 52

Eval Expr 272
evaluating expressions 154
exception handling 227, 233

options 68
routines 68

exceptions 197
catch keyword 199
C-based structured 204
command-line options 203
compiling options 68
constructors and destructors 203
enabling 68
exception declarations 198
floating-point 237
handling 68
throwing exceptions 198
unhandled exceptions 203

excpt.h 233
executable (EXE) files 84, 86, 167
execution point 132, 148
expanding inline functions 68, 71, 80
explicit

casts 70
libraries 83

exporting 87, 92
Expr True 272
expressions

duplicate 102

Paradigm C++ Reference Manual284

evaluating 154
format specifiers 155
optimizing 102, 104, 105

extended dictionaries 86, 192, 193
external code 135
external option 71
external references 71, 72
external symbols 93

F

_ _far 61, 62
_ _fastcall 53, 63
_ _fastthis 74
-f compiler option 75
-Fa compile option 55
far

calls 87
classes 61, 62, 67
data compatibility 55
data segments 54, 55, 61, 62
declaring functions 253
declaring objects 253
declaring pointers 254
Far data threshold 55
initialized data groups 61
objects 61, 62
pointers 246
uninitialized data groups 62
virtual tables 55, 62

FAR_BSS 62
FAR_BSS class 55
FAR_DATA 61
FAR_DATA class 55
fastcall parameter-passing 53, 63
fastthis calling convention 74
fatal errors 98, 267, 269
-Fb compile option 55
-Fc compiler option 77
fcntl.h 222
-Ff compile option 54, 55
-ff compiler option 75
file alignment 90
file extensions

.DEF 92

.DLL 84, 86, 87

.EXE 84, 86, 167

.LIB 82, 83, 85, 86, 96

.LST 86

.MAP 84

.OBJ 84, 85, 86, 94, 109, 130

.PDL 47

.ROM 130

syntax highlighting 24
file names 81
file search algorithms 83
files 166

32RTM.EXE 170
BUILTINS.MAK 174, 176
creating 14
include 82
MAKE.EXE 173, 176
MAKESWAP.EXE 170
PLIB.EXE 191
PLINK.CFG 168
TOUCH.EXE 174

file-sharing 228
filling and padding 261
filters and letter symbols 127
Filters matrix 127
Finder 15
fixing errors 52, 129
Flags pane 162

SpeedMenu 163
flags registers 243
float 232
float.h 223
floating point

calculations 75
emulation (inline assembler) 211
I/O 235

code 236
exceptions 237
fast option 236

options 75
routines 223

Flyby Help Hints 25
-Fm compiler option 54
for statements 66
format specifiers

expressions 155
-fp compiler option 75
-Fs compiler option 54
function boundaries, optimizing 107
function calls 103, 163, 233, 272, 276

compiler error 276
compiling options 53, 63
errors 277

functions
class member 135
inline 68, 71, 79, 80, 103

G

-G compile option 108
-g compiler option 101

Index 285

General linker options 92
case-sensitive link 93
code pack size 93
debug information 93
default libraries 93
exports and imports 92
pack code segments 94
subsystem version 94

general warnings 99
Generate COMDEFs option 77
generating code 79, 94

compiler options 57, 72, 73, 77
optimization 105

generating underscores
compiler options 77

generic.h 223
global

definitions 71
registers 105
symbols 126
variables

project options 54, 58, 77
globals command 126
glyphs

Project Manager 32
groups 273

breakpoint 141

H

_ _huge 67
-H compile option 81
-h compiler option 56
-H"xxx" compiler option 82
-H=filename compiler option 81
-Hc compiler option 81
header files 83, 215

_defs.h 233
_nfile.h 233
_null.h 234
alloc.h 219
assert.h 220
ctype.h 220
dos.h 221
embedded.h 221
errno.h 222
excpt.h 233
fcntl.h 222
float.h 223
generic.h 223
io.h 223
iomanip.h 224
limits.h 224

malloc.h 224
math.h 225
mem.h 226
memory.h 227
new.h 227
precompiled 81
process.h 227
search.h 227
setjmp.h 227
share.h 228
signal.h 228
stdarg.h 228
stddef.h 229
stdio.h 229
stdiostr.h 230
stdlib.h 230
string.h 231
sys\locking.h 231
sys\type.h 231
time.h 232
values.h 232
varargs.h 233

heap 90, 91
heap size 90, 91

committed 90
reserved 91

Help 28
contacting Paradigm 30
context-sensitive help 29
displaying Contents 29
Help files 28
index 29
keyword searches 29
printing topics 29
SpeedMenus 30

hidden
members 66
pointers 65, 67

-Hu compiler option 81
huge

arrays 56
declaring pointers 254
memory models 54, 56
pointers 246

I

!if 186
!ifdef 186
!ifndef 186
!include 187
#if 141
#ifdef 141

Paradigm C++ Reference Manual286

$INHERIT 85
i486 instructions 64
-I compile option 82, 83
-i compiler option 77
I/O 235

exceptions 237
formatting 260
manipulators 224
of user defined types 263
routines 223, 229
simple file 263

i486 instructions 57
i586 instructions 57
Identifier length option 77
identifiers 77

Pascal 77
image base addresses 91
implicit libraries 83
importing 92
importing by ordinal, linker option 89
include files 83, 215
incremental linker, linker option 92
induction variables 102
informational messages 267, 268
inheritance 67, 70
initialization 60, 100

segments 87
initialized data 60
inline

#pragma directive 210
assembly 207
functions 68, 71, 79, 80, 103
statements 210

input 223, 257, 262
inspecting 127

breakpoints 140
code 153
data range 153
error 271
expressions 153
local variables 153

Inspector window 153
changing values 153

installation 11
instructions

Pentium 57, 64
project options 57, 64
string move 106

integral quantities ranges 224
integrated debugger 129

adding breakpoints 136
conditional breakpoints 137
customizing 131

error messages 269
errors 52, 129
evaluating expressions 154
inspecting code 140, 153
messages and warnings 267
modifying variables 155
optimizing 105, 108
program execution 131
running programs 132
setting watches 148, 149
starting 131
stepping 133, 163

Intel compiler 106
Intel optimizing compiler 62
intrinsic functions 103
invalid breakpoints 141
invariant code 105
io.h 223
iomanip.h 224
ios class 258
iostream classes 257

ios 258
streambuf 257

iostream library 257

J

-j compiler option 101
-Jg compiler option 71
-Jgd compiler option 71
-Jgx compiler option 71
jump optimization 105

K

-K compile option 75
-k compiler option 80
-K2 compiler option 66
Kernighan and Ritchie 78, 229

L

-L compile option 82
Language compliance option 78
large memory models 54, 56, 57
Librarian messages 269
Librarian options 85

case-sensitive library 85
comment records 86
dictionaries 86
list files 86
page size 86

libraries 83
case-sensitive 85
creating 191

Index 287

default libraries 93
dynamic-link 86
managing 191
project options 82, 86, 96

library files 82, 83, 96, 255
library functions 222
limits.h 224
line numbers 79

including 94
linker errors 91
Linker messages 269
Linker options 86

16-bit programs 86
32-bit programs 89
general 92
map files 94
warnings 96

linkers 86
16-bit command-line options 111
command-line options 118
project options 86, 92, 94, 96

linking 86, 167
command-line syntax 167
large applications 192
mixed modules 255
optimizing 86, 94, 168

list files 86
literal strings 57, 74
local virtual tables 72
locking mode parameter 231
Log Expr 273
Log Msg 273
logic errors

fixing 129
longjmp 227
loops 66, 102, 105, 106
low-level I/O routines 223
lvalue

errors 277

M

!message 187
Machine Stack pane 160

SpeedMenu 161
macros 183, 229

$INHERIT and $ENV() 84, 85
defining 72, 73
MAKE 182, 183, 184, 188, 189

MAKE 97, 173
command operators 181
command prefixes 180
command syntax 180

command-line options 175, 176
defaults 173, 174, 176, 183
directives 184, 186, 188
macros 182

defaults 183
defining 182
in directives 188
modifying default 184
null 189
string substitutions 183

NMAKE compatibility 176
project options 97
rules 178, 179
TOUCH 174

Make All command 51
Make Node command 51
Make options 97

autodependencies 97
Break make on 97
new node path 98

makefiles 177
response files 181

MAKESWAP 170
malloc.h 224
mangled names 55, 96
manifest constants 72
manipulators 224, 260
map files 84, 95

linker options 94, 95, 96
math

complex classes 238
error handlers 225
floating point 235
math.h 225

-mc compiler option 56
medium memory models 54, 56
mem.h 226
member functions 135
member pointers 70

honor precision 70
options 70
representation 70

memory 86, 219, 226, 227
running out of 241

Memory Dump pane 159
SpeedMenu 160

memory functions 103
memory management

16-bit 241
functions 219, 224

memory manipulation functions 226, 227, 231
Memory Model options 54

compiling segments 54

Paradigm C++ Reference Manual288

far data 54
far data compatibility 55
far data threshold 55
huge pointers 56
models 56
page alignment 55
stack and data segments 54
strings 57
virtual tables 55

memory models 241, 247
mixed-model programming 252

memory segmentation 244
memory.h 227
Menu Bar 11

command descriptions 12
Message window 11, 52, 99
messages 98

disabling 98
displaying 98, 267
project options 98

Messages options 98
ANSI violations 98
display warnings 98
general 99
inefficient C++ coding 99
inefficient coding 100
obsolete C++ 100
portability 100
potential C++ errors 100
potential errors 101
stop after… errors 101
stop after… warnings 101
user-defined warnings 99

-mh compiler option 56
mixed-model programming 255
-ml compiler option 56
-mm compiler option 56
-mm! compiler option 56
module definition files 92
modules 53, 62, 274

purging comment records 86
-ms compiler option 56
-ms! compiler option 56
-mt compiler option 56
multiple directories 84
multi-target projects 37

N

_nfile.h 233
_null.h 234
-N compile option 80
-n compiler option 84

name mangling 55, 66, 96
name tables 86, 87
near

declaring functions 253
declaring pointers 254
pointers 246

nested comments 78
nested templates 101
New Target command 17, 38
new.h 227
NMAKE 176
Node attributes dialog box 37
node path, Make option 98
nodes 40, 65

adding 33, 36
building 51
changing attributes 38
copying 38
default 35
deleting 36
Make Node command 51
options 37, 39, 49, 50

nonresident name tables 86, 87
nonstatic data members 68
normalizing huge pointers 56
null 189
numerical types 238

O

-OI compile option 106
-OM compile option 106
-OS compile option 106
-O compile option 105
-O1 compiler option 108
-O2 compiler option 108
-Oa compiler option 104
-Ob compiler option 105
object alignment options 91
object files 109, 130

project options 76, 79, 82, 84, 94, 96
searching 109

object hierarchies 126
object search paths 109
objects 54, 61, 62

sharing 55
ObjectScripting messages 270
obsolete C++ 100
-Oc compiler option 102
-Od compiler option 108
-Oe compiler option 105
offsets 56
-Og compiler option 102

Index 289

-Oi compiler option 103
-Ol compiler option 106
-Om compiler option 105
online help 28
-Op compiler option 104
opcodes 211
opening projects 36
operators 101
Optimization options 101, 104

16- and 32-bit 102, 105
16-bit 88, 104
32-bit 106
common subexpression 102
copy propagation 104
dead code elimination 105
disable all 108
general settings 108
induction variables 102
inline intrinsic functions 103
invariant code motion 105
jump optimization 105
loop optimization 106
pointer aliasing 104
project options 101
size 105
suppress loads 106

optimizing 101
debugger 105, 108
expressions 102, 104, 105
far call to near 87
jumps 105
size 104
statements 101, 105

ordinal numbers 89, 92
-Os compiler option 108
-Ot compiler option 108
out-of-line inline functions 72, 80
output 223, 235, 257, 259

directories 84
files 84

-Ov compiler option 102
overrides 65
-Ox compiler option 108

P

#pragma directives 210
.path.ext 187
.precious 188
_ _pascal 53, 63
-p compiler option 53
-p compiler options 63
packing code segments 93, 94

page alignment 55, 87, 90
page size 86
Paradigm C++ IDE messages 269
Paradigm C++ messages 267
Paradigm C++ tools overview 170
Paradigm extensions 78
Paradigm optimizing compiler 62
Paradigm Systems, contacting 30
parameterized manipulators 224
parameters 53, 228, 233

passing 63, 67
parent nodes 32
Pascal 63

calling conventions 67
identifiers 77

PASM (inline assembler) 211
pass count 146

error 273
PCC.EXE 109
PCC32.EXE 109
PCC32i.EXE 109
PDL files 47
Pentium instruction scheduling 106
Pentium instructions 57, 64
Pentium option 64
PLIB 191

/C option 192
/E option 192
/P option 193
command-line options 191
error messages 267
examples 194
operation list 193
project options 85
response files 193

PLIB.EXE 85
PLINK 169

command-line options 111
command-line syntax 167
error messages 267
optimizing 192

PLINK and PLINK32 86
16-bit options 86
32-bit options 89
command-line options 112, 118
general options 92
map files 94
warnings 96

PLINK.CFG 168
-po compiler option 74
pointer aliasing, optimization 104
pointers 245

compiling options 55, 56, 65, 67, 68, 70, 104

Paradigm C++ Reference Manual290

declaring 254
far 246
huge 246
near 246
segment 252

portability 100
precision 101
precompiled headers 81, 216

cache 81
files 81
header name 81
terminating 82

preprocessing 72
Print mangled names 96
process.h 227
Processor options 57, 64

16-bit compiler 57
32-bit compiler 64
32-bit instruction set 64
alignment 58
instructions 57

project management 31
Project Manager 32

nodes 33
Project options 52

16-bit compiler 53, 54, 59, 60, 61
32-bit compiler 62, 64
build attributes 65
C++ 65

compatibility 65
exception handling 68
general options 70
member pointers 70
options 65
templates 71
virtual tables 71

command-line options 109
16- and 32-bit 109
16-bit 111
32-bit 112
by function 118
compiler 112
object search paths 109

compiler 72
code generation 73
compiler output 76
debugging 79
defines 72
floating point 75
precompiled headers 81
source 77

directories 82
file search algorithms 83

names 84
output 84
source 82

librarian
case-sensitive library 85
comment records 86
dictionaries 86
list files 86
page size 86

linker 86
16-bit programs 86
32-bit programs 89
general 92
map files 94
warnings 96

Make 97
autodependencies 97
Break make on 97
new node path 98

messages 98
ANSI violation 98
display warnings 98
general warnings 99
ineffecient C++ coding 99
inefficient coding 100
obsolete C++ 100
portability 100
potential C++ errors 100, 101
stop after… errors 101
stop after… warnings 101
user-defined warnings 99

optimization 101
16- and 32-bit 102, 105
16-bit 104
32-bit 106
common subexpression 102
copy propagation 104
dead code elimination 105
general settings 108
induction variables 102
inline intrinsic functions 103
invariant code motion 105
jump optimization 105
loop optimization 106
pointer aliasing 104
suppress loads 106

project tree 32
default nodes 35
navigating 33

Project View options 39
Project window 16
projects 16, 31, 40, 45, 49, 173, 174

building files 51, 173

Index 291

compiling 51
converting 39
creating 17
Make Node command 51
multi-target 37
setting preferences 27
sharing tools 47
viewing options 50

public definitions 71, 72
public symbols 93

map files 95

Q

quad word alignment 59

R

-R compile option 79
-r compiler option 74
raise 228
-rd compiler option 74
redundant loads, suppressing 106
reference nodes 38
references 127

compiling options 67, 71
register keyword 74
register variables 74
registers 105, 106

8086 241
flags 243
general-purpose 242
reloading 106
segment 243
special-purpose 243

Registers pane 161
SpeedMenu 161

reloading registers 106
repeat prefixes 212
reserved words 78
resident names 87
response files 166, 169, 193
routines

exception handling 68
-RT compiler option 68
RTM.EXE 171
RTTI 68
run-time errors 269

fixing 129
run-time support 227
run-time type information 68

S

.suffixes 188

_ _stdcall 63
Save command 27
scratch registers 209
search 227, 230

code 125
paths 83, 109, 166

Search menu
classes 126
globals 126

search.h 227
segment 39

alignment 87
compiling options 54, 55, 57, 59, 60, 61
initializing 87
linker code 87
map files 95
names 59, 60, 61

code options 59
far initialized data 61
far uninitialized data 62
far virtual tables 62
initialized data 60
uninitialized data 60

packing code 93, 94
pointers 252
registers 243

segments and offsets 255
setjmp 227
setjmp.h 227
settings

optimization 108
share.h 228
sharing objects 55
signal 228
signal.h 228
signed character types 66
single stepping 133
size, optimizing 104, 105, 106
small memory models 54, 56
sorting 227, 230
source code 94, 125
source directories 82
source files 82
Source options 77

identifier length 77
language compliance 78
nested comments 78

source pools 40
creating 40

speed
optimizing 106

speed, optimizing 102, 103, 104, 105
SpeedBar

Paradigm C++ Reference Manual292

copying 27
SpeedMenus 13
stack 80, 90, 92, 163

warning 96
Stack pane 160

SpeedMenu 161
stack segments 54
stack size 90, 92

committed 90
reserved 92

statements
optimizing 101, 105
potential C++ errrors 100

Status Bar 11, 14
stdarg.h 228
stddef.h 229
stdio FILE structures 230
stdio.h 229
stdiostr.h 230
stdlib.h 230
stepping 133, 163

step into 133
step over 134

stop after ... warnings 101
stop after… errors 101
stream classes 224, 230, 257
stream input 262

simple file 263
user-defined types 263

stream output 259
filling and padding 261
fundamental types 260
I/O formatting 260
manipulators 260
simple file 263
user-defined types 263

streambuf class 257
streams 229
string manipulation functions 231
string move instructions 106
string stream processing 264
string.h 231
strings 57, 73
structured exceptions 204
Style Sheets 39, 45

attaching 47
dialog box 46
inheriting 47
overriding options 49
setting options 45
sharing 47

between projects 48
subexpressions 102, 104, 105

subsystem version 94
switch statements 105
symbols

case-sensitive in library 192
duplication warning 96
in library 85
map files 95
public 93
stack warning 96
symbol declaration window 127
symbol tables 130
symbolic addresses 95
symbolic constants 72
viewing 126, 127
visible 128

syntax
MAKE 173, 178, 179, 180, 181, 182

syntax errors 52, 129
syntax highlighting 24, 142

color options 24
sys\locking.h 231
sys\types.h 231

T

TargetExpert 52
options 35, 38

targets
adding 38
deleting 38
Make Node command 51
multiple 177
multi-target projects 37

templates
instance generation 71
options 71

Test stack overflow option 80
third-party libraries 99
this pointer 74
threshold 54, 55
throwing exceptions 198
time.h 232
tiny memory models 54, 56
Tool Options dialog box 41
tools 41, 173

adding 41, 42
customizing 42
sharing between projects 47
TOUCH 174

TOUCH 174
command-line options 175

trailing segments 87
translators 41

Index 293

adding 41
type information

errors 277
typecasting

explicit casts 70

U

!undef 188
-u compiler option 77
underscores (_) 77
uninitialized data 60
uninitialized trailing segments 87
UNIX compatible constants 232
UNIX System V 78, 229
unreachable code 100
unsigned character types 66, 75
user-defined warnings 99
Using PLIB response files 193
Using PLINK 167

with PCC.EXE 169
utilities 173

TOUCH 174

V

-V compile option 71
-v compiler option 79
-V0 compiler option 71
-V1 compiler option 71
-Va compiler option 67
values.h 232
varargs.h 233
variable live range analysis 105
variables 156

compiling options 54, 58, 74, 77
examining 125, 155
optimizing 102, 104, 105
scope 66

-Vb compiler option 67
-VC compile option 66
-Vc compiler option 66
-Vd compiler option 66
-Ve compiler option 70
verbose, linker option 92
-Vf compiler option 55
-Vh compiler option 67
-vi compiler option 80
viewers, adding 41
viewing

breakpoints 140
errors 52
project options 50

virtual base pointers 65, 67

virtual tables 55
corrupted 87
far 55, 62
linkage 71
options 71
pointers 55, 68
segments 62

visible symbols 128
-Vmd compiler option 70
-Vmm compiler option 70
-Vmp compiler option 70
-Vms compiler option 70
-Vmv compiler option 70
-Vp compiler option 67
-Vs compiler option 71
-Vt compiler option 68
-Vv compiler option 65

W

-w compiler option 98
warnings 267

alphabetical listings 271, 276
compiler 98
disabling 98
displaying 98
general 99
inefficient C++ coding 99
inefficient coding 100
linker 96
obsolete C++ 100
portability 100
potential 101
potential C++ 100
project options 98
stop after… 101
user-defined 99

Warnings linker options 96
duplicate symbol 96
no stack 96

watch 148, 149
address error 274
changing properties 151
deleting 152
disabling and enabling 152
length error 274

Watches window 148
Windows platforms 62
Windows version 94
-wmsg compiler option 99
word alignment 59

Paradigm C++ Reference Manual294

X

-X compile option 76
-x compiler option 68
-xc compiler option 68
-xd compiler option 68
-xf compiler option 68
-xp compiler option 68

Y

-y compiler option 79

Z

-Z compiler option 106
-zA compiler option 59

-zB compiler option 60
-zC compiler option 59
-zD compiler option 60
-zE compiler option 61
-zF compiler option 61
-zG compiler option 60
-zH compiler option 61
-zP compiler option 59
-zR compiler option 60
-zS compiler option 60
-zT compiler option 60
-zV compiler option 62
-zW compiler option 62
-zX compiler option 62
-zY compiler option 62
-zZ compiler option 62

