Paradigm LOCATE

Version 6.0

Reference Manual

Paradigm Systems

The authors of this software make no expressed or implied warranty of any kind
with regard to this software and in no event will be liable for incidenta or
consequential damages arising from the use of this product. The software
described in this document is furnished under alicense and may only be used or
copied in accordance with the terms of the licensing agreement.

The information in this document is subject to change without notice.
Copyright © 1998, 1999 Paradigm Systems. All rights reserved.

Paradigm LOCATE™, Paradigm DEBUG™, and Paradigm OMFCVT™ are
trademarks of Paradigm Systems. Other brand and product names are
trademarks or registered trademarks of their respective holders.

Version 6.0
December 21, 1999
Manual version 6.0

PDF version 6.01

No part of this document may be copied or reproduced in any form or by any
means without the prior written consent of Paradigm Systems.

Paradigm Systems
Suite 2214
3301 Country Club Road
Endwell, NY 13760

(607)748-5966
(607)748-5968 (FAX)

Sdles information: info@devtools.com
Technica support: support@devtools.com
Web: http://ww.devtools.com
FTP: ftp://ftp.devtools.com

Please note that free technical support is available to registered users of the
current release of any Paradigm software development tool. For prompt attention
to your technical questions, please contact our tech support team via the Internet
at support@devtools.com

Introduction
What'sin Paradigm LOCATE.........cccccvvvnnnns 7
New features and changes............cccvvvvuvninnnnns 9
Hardware/software requirements..................... 9
The Paradigm LOCATE package................... 10
The Reference Manual............cccceeeeneeee 10
Technical assistanCecoovevvvveeeeeeeeieeeee. 11
E-mail.....ooeeeiiiiee e 12
INTEINEL ... 12
FT P e 12
FAX e 12
Problems and suggestions............ccccceeeeennnnnns 13
Chapter 1 Installation
Ingtalling Paradigm LOCATE..........cccceeinnnne 16
Run-time library customization................... 17
The READMEfil€ ...coovviiiiiiiiiee 19
Chapter 2 Paradigm LOCATE basics
QLI L0 = PR 21
Filesinthetutorial.........ccccccooviiiiiiiiinneennn. 22
The SIEVE applicationccccvvveveeeeeeenneee. 22
The LOCATE configuration file..................... 23
Configuration file analysis.........cccoeeeeeinnnns 24
Running Paradigm LOCATE..........ccccceeiinnnn. 27
Burning EPROMS...........ccvvviviiveeeieeeeeeeeeee. 28
Debugging options............eeevvveevveeeeeeeeenenee. 29
SUMMEANY ... 29

Chapter 3 Relocation primer
Relocation basiCs..........cvveeeveeeiiiiiiiiiiieeeee, 31

Contents

The linker output files...........vvviiiiininiiiiininnn, 32
Segment aliaSeS........vvvvuiiiiiiiiiiiiii. 32
Segment ordering and alignment 33
Segment checking ..., 34
Absolute segments............ccceeeeeeeeeeee, 35
Fixing absolute segments............eeeeeeeeene. 36
L1700 o TR 36
Duplicating classes ..., 37
Chapter 4 Using configuration files
Configuration file format............ccccccvvvvninnnnn. 39
Directiveformatocooceiieiieeeeiienee, 40
Line continuation............ccccoveereeeeeniinnneee. 41
Directive processing prioritycccceeeeeeennnn. 41
The PreproCESSOruuvvvrrurirrniiininnnennnenennnnnens 42
The #define directivecccovvecviieenn.n. 42
The #undef directive.........ccccccovviiiiennn.n. 42
The -D optionuvvuviininiiiniiiiiiiiiiiinnennnnns 43
Fileincluson with #include........................ 43
The #if, #elif, #else, and #endif directives...43
The #ifdef and #ifndef directives................ 14
The operator defined...........vvvvvvveiiinininnnnn, 44
The #error directive........ccccceeviiiiiiiennn... 45
Predefined macros...........ccccccevieeeeninnnee. 45
COMMENES. ...t 45
Finding erors.........ccccooeeee, 45
Chapter 5 Configuration file directives
Directive descriptions.............cccoeeeeeeeeeeeeenn. 47
ABSFILE. ... 49
CHECKSUMooiiiiiieieieieee e 51
3

CLASS .. 53 TECh tiPS. .. 99

Chapter 8 Using compression

CPUTYPE. .o 55 . \
Compression requIirements.........ccceveeeeveneeens 102
DEBUG. ..o, 57) !
Compiler OVENVIEWcuvvvviviiiiiniiiiiniiinnnnns 102
DISPLAY oo, 61
Borland CH+ ..o, 102
DUPLICATE oo, 62 nd -
String literas...........ccooo 103
HEXFEILE +oooe oo, 63 fng
Initidlized data.......cc.oveeeeeeieeiieeeean 103
TNTR e o) =S 67 .
Microsoft C/CH+oeeeeieeeeeeeiieieea, 103
LISTEILE e, 70 OOt
String literas...........ooo 103
7 =2 73 fng
Initidlized data.......cceoveeeeeeiieeeeeeean 104
[0)=101= = S 74 : :
More information..........coeeeeveeeeeeeeeaeannnen, 104
OUTPUT oo 5 combresson aaorithm 104
SEGMENT oo 76 PrESSION AGOMIAM -.covvocvvv s
WARNINGS.......oooiiiieiie e, 77 Chapter 9 Borland C++ guide
. . Startup Code......oo i 108
ghapterd?: COTma”d line options o BCPPS0ASM ..o 108
OFO%aXTE'rg;{)]!.CI’”S """"""""""""""""" 80 FARDATAASM oo 110
Ontion brirt HE e 50 BCPP50.INC .o, 110
- ption pr]lo” t'_es """""""""""""""""""" 50 STARTUPING oo 111
MMArY OF OPUONS......ooovvrce FARDATA.CEG oo, 111
Defining MaCroS.........cvvvvveeeeeeeeeeeeeeeeereneee 82 . .
nitilizat 8 The Run-time library helpers.........ccccvvvnnne. 112
S.' : Iés O o3 TYPEDEFESH oo, 112
'ggnt 'Cj:"'l' """"""""""""""""""""" o DOSEMU.C oo, 112
Prar e 'S%.ay B o DOSEMU.H v 112
Eocng. 'a‘f’”o 1CS s o BCPPRTLASM oo, 112
E;r.‘:r ij' ngt 0? """""""""""""""""" o BCPPDMM.C ..o 113
W' coae d‘.’c’” rog: """" o o BCPPHEAP.ASM ..o 113
om lf‘;g' ggb 1agno t'CICO” PO o BCPPHEAPINC ..o, 113
o U9 Cf” POl o 1el=/= T X R 113
! gom?”ag?e” o o7 CONSOLE.Corveoveeeeeeeereeeeeeeeseeeeesre. 113
Epgg&r f_'IO” HES o o7 BCPPFLT.ASM ..o, 113
L i WS oo 5 BCPPELT.ANC oo, 113
A'b 'r:%t' ﬁ """""""""""""""""""""" o1 FPERR.C oo, 114
- olute t' B o CMATHERR.C ..o, 114
ITENAME EXIENSIONS ..o Configuration fil€s...........cvvvviiiiiiiiniiiiiiinnnn, 114
Chapter 7 Checksums and CRCs Integrated Development Environment 115
ROMBIOS checksSums............vnnnnnnnnnnnnnnns 95 Installing Paradigm Addon..............cc.eeee. 115
CRC-16 checkSUMS........coveeeeeeeeeeeeeeaee 96 MaKEFIES ..., 116
CRC-32 CheCKSUMS.....voveeeoeeoeeoeoeoeeo. 08 PARADIGM.MKF oo, 116

4 Paradigm LOCATE Reference Manual

COMPDIR ..o 116
COMPCFG ...oeviiieieiiiiiieeeee e, 117
MKF e 117
MODELcooiiiiieeieee e 117
CPU. ., 117
DEBUG ... 117
OPTIMIZE.....oiiiiiiiieeiee e 117
WARNINGS........coeeeiieeiiiiiiieeeee 117
CODESTRING........ccccviiieieee e 117
DUPSTRINGoviiiiiieeiiiiiiiiieee e 118
CHECKSTACK ... 118
FLOAT oo 118
FARDATA ..o 118
IOSTREAMS ... 118
EXCEPTIONSoooiiiieiiiiieieee e 118
STACK ... 118
HEAPSIZE........ceieeeeeieeeeee e 119
Sample applications..............cccoeeeeeeee. 119
DEMO.....iiiiiiiieee e 119
DMMDEMO.........ooiiiiiieiiee e 119
FPDEMO ...oooiiiiiiiieeeee e 120
STDIO e 120
CPPDEMO....ciiiiieiiiiiieeee e 120
COMPRESS........ccoiiiiiiiieieee e 120
CRCDEMOooiiiiiiiiieieee e 121
EHDEMO.....cooiiiiiiiiieiiee e 121
NURAM ..o 122
CONST .. 122
Chapter 10 Microsoft C/C++ guide
Startup codeooooeiiiiii 124
MSCBO.ASM ..cooeeiiiiieeeee e 124
CINITASM ..o 126
MSC8BO0.INC.....oeeeiiieeeeeeee e 126
STARTUPR.INC.......ooieeeeeeee 126
FARDATA.CFG......cccieeeeeeeeeeeee 127
Run-time library helpers.......ccccoceveiiiiiiinnnnns 127
TYPEDEFSH ... 128
Contents

DOSEMU.C...oooovviieeeiiie e 128
DOSEMU.Hooiiiiieiiiie e 128
MSCRTL.ASMoviiieiiiee e 128
MSCDMM.C...ooorviveeeiieee e 129
MSCHEAP.ASMccooviiiieeiiiiee e 129
MSCHEAP.INC.......oceviiiieeeiiiee e 129
MSCSIO.C..ooeveeeiieeeeee e 129
CONSOLE.C.....coovvviveeeiiieeeciee e 129
MSCFLT.ASM ... 129
Configuration files...........cccccvvvvvviiininnnn, 130
Visual Workbench............cccooeeiiiiiiiine, 131
Setting up the Visua Workbench.............. 131
Starting your own projectcceeeeeee.. 132
MaKEFIlESvvveeeeiiie e 133
PARADIGM.MKFcccoovveiiiiiieeeeiine. 133
Common makefile macros.........cccceeeeue. 133
COMPDIR.....ooeiiiiiiieeeiee e 133

1Y R 133
MODELcooiiiiiiieeeciiiee e 133
CPU ..o 134
DEBUGcoiiiiiie e 134
WARNINGS.......coooviiiie e 134
OPTIMIZEooeeiiiieeeeeee e 134
CHECKSTACK......cotiiiiiieeeeiieee e 134
FLOAT ..t 134
FARDATA. ...t 134
IOSTREAMS......ooiiiiiiieeeeee e 135
STACK ..ottt 135
HEAPSIZE........cccccoiiiieee e 135
Sample applications..............uvvveieieieinininnnn. 135
DEMO ..ot 136
DMMDEMOcccvivieiiiiee e 136
FPDEMOooiiiiiiiiee e 136
STDIO it 136
CPPDEMO......cccoiiiiieeiiiiie e 137
COMPRESS........ccovveeiiiiee e 137
CRCDEMOocoiiiiiieeeiie e 137
NURAM ...ttt 137
CONST ..ot 138

Appendix A Warning diagnostics

Paradigm LOCATE warnings..........ccccceuue. 139

Preprocessor warnings..........coceceeeeeeennnnnns 146

Appendix B Error diagnostics

Paradigm LOCATE eTors.......cccceeeeeennnnnne 149
Message explanations...............eevvveeeeneeee. 149

Preprocessor ETOrS ... vvvvvneeeeeieeeeeeineeeenns 157
Message explanations...............eevveeeeeneeee. 157

Appendix C Exit codes

EXIt COUBS....oeiiiieeiiiiiiiiei e 161

Appendix D INITCODE port definitions

INITCODE port definitions..........ccccceeeunnnee. 163

Appendix E AXE utility

AXE UTILY woeeeeeeee e 169

Appendix F Hex file formats

Hex fileformats.........cccocevvveeiiiicieeen 171

Intel extended heXccccovveeviiiiiiiiieneens 171
Extended Address Record............cc.oeeeee... 172
Data Record..........ococvvveeeiieeeeiiiiie 172
Start Address Recordcoeeeeeiiiiienennen. 172
End of File Record.........ccccoeeevviiiiiinnenen. 173

INtEl NEX .. 173

TeKIroniX heX.....cccvvveeiieeeeieiee e 173
Data Record..........ococvvviieiieeeiiiiiie 173

Index

INOEX. .ot 175

6

Paradigm LOCATE Reference Manual

R O D U C T I O N

Paradigm LOCATE is a professional utility for preparing 16-bit
Borland C++, Microsoft C/C++, and Paradigm C++ applications for
use in embedded systems. Paradigm LOCATE is fast, easy-to-use,
and creates the exact output files you need to develop and debug
embedded system applications for the Intel, AMD or NEC x86-
compatible microprocessors.

Paradigm LOCATE is unique in its support of all the Borland,
Microsoft, and Paradigm software development tools, including all
versions of their popular C, C++, and assembly language packages.
With output file formats supporting the award-winning Paradigm
DEBUG, popular in-circuit emulators and EPROM programmers,
everything isincluded to help you get the most out of your embedded
system application.

What's in Paradigm LOCATE

Chapter 1 tells you how to
install Paradigm LOCATE.
This introduction tells you
about the features of
Paradigm LOCATE.

Introduction

Paradigm LOCATE, coupled with your favorite Borland, Microsoft or
Paradigm compiler, assembler, and linker, is a complete embedded
system development package. Just look at some of the many features
offered by Paradigm LOCATE:

m Fast: No other product even comes close to Paradigm LOCATE in
getting your application fully debugged and into EPROM.

m Full Borland, Microsoft, and Paradigm support: Use your
favorite Borland, Microsoft, or Paradigm compiler to get the job
done. Unlike other solutions, Paradigm LOCATE doesn't limit you
to asingle compiler vendor or a single version of a compiler.

m C, C++, and assembly language: Develop your application in the
language of your choosing, knowing it is fully supported.

Startup code and run-time library support: Paradigm LOCATE
includes complete ROMable startup code for each supported
compiler. Comprehensive run-time library support is also included
for al memory models so you can use stream 1/O, dynamic
memory management, and floating point run-times in any
embedded system without DOS or a BIOS.

Sample applications. Plenty of sample applications, complete
with makefiles and Paradigm LOCATE configuration files, are
available to demonstrate various embedded system devel opment
techniques for each supported compiler.

Paradigm DEBUG support: Choose from this award-winning
family of source level debuggers that support stand-alone and in-
circuit emulator debugging using any Borland, Microsoft, or
Paradigm compiler.

Intel OMF86 support: Absolute OMF86 output files with full
debug information are available for users having an in-circuit
emulator accepting this file format.

EPROM programmer support: Paradigm LOCATE supports all
popular EPROM programmer file formats, including Intel extended
hex, binary and Tektronix hex. Paradigm LOCATE will also
optionally split EPROM images or fill with any background pattern.
Optimally-sized binary file output is also supported.

Compressed initialized data: Constant and initialized data can be
compressed in EPROM and decompressed by the startup code to
save valuable EPROM space.

Configuration files: A configuration file is how you inform
Paradigm LOCATE about your target system address space,
output file types, and other options. A full C preprocessor is
standard, with macros, include files, and conditionals available to
meet the most demanding requirements.

Chip select, wait state, DRAM refresh initialization: Only
Paradigm LOCATE can automatically generate processor-specific
initialization code so there is no need to write custom startup code.
Reset vector initialization: Paradigm LOCATE will, at your
request, automatically create a far jump to the program entry point
from the reset vector.

Stack initialization: Stack initialization is also available, for
applications which require a stack be setup automatically.

Paradigm LOCATE Reference Manual

Target system documentation: Create list files with any of the
following information: segments, regions, public symbols, local
symbols, or line numbers. Full application documentation is
standard with Paradigm LOCATE.

Checksums and CRCs: Calculate a PC ROM BIOS extension
checksums or generate CRC16 or CRC32 checksums on any
region of memory.

New features and changes

Changed in version

6.0

Some of the new features in Paradigm LOCATE version 6.0 are:

Full support for Borland C++ 5.0 including integrated | DE support
aswell as new ANSI/ISO C++ language support for namesakes
and the new keywords bool and mutable

New support for the AMD Am186/188EM/ES/ER/ED embedded
Mi Croprocessors

Improved debug information support for Microsoft C/C++
compilers

Continued support for al versions of Borland and Microsoft
compilers from Turbo C 2.0 to Borland C++ 5.0 and from
Microsoft C 5.1 to Visua C++ 1.52

Full support for RTOS-aware Paradigm DEBUG, with enhanced
support for all previous versions

FILENAME option of ABSFILE, HEXFILE and LISTFILE
directives now expects dashes (/) instead of backdashes (\) for
pathname separators

Checksums can use class names as well as physical addresses

Hardware/software requirements

Introduction

Paradigm LOCATE runs on the IBM PC and compatible computers
using a 486, or later, microprocessor and having a minimum of 8MB
of memory. MS-DOS 6.2, Windows 3.1, Windows 95 or Windows
NT isalso required.

Paradigm LOCATE aso requires a Borland, Microsoft, or Paradigm
compiler and an assembler to build the compiler startup code and run-
time library support packages.

The Paradigm LOCATE package

10

The Reference
Manual

Y our Paradigm LOCATE package consists of a diskette and this
manual. The diskette contains all the programs and files you need to
create embedded applications using the supported Borland and
Microsoft compilers. The disk also contains sample applications
demonstrating the use of the run-time libraries and Paradigm DEBUG.

The Reference Manual introduces you to Paradigm LOCATE and
contains al the information needed to create embedded system
applications with Borland and Microsoft compilers. This manud is
arranged so you can either follow a short tutorial to quickly get up to
speed or use it as areference, depending on your level of experience.

Here are the key chapters in this manual:

m |ntroduction: introduces you to the key features of Paradigm
LOCATE and tells you how to access the Paradigm technical
support system.

m Chapter 1: Installing Paradigm LOCATE tells how to install
Paradigm LOCATE on your system and how to create ROMable
run-time libraries for your target system.

m Chapter 2: Paradigm LOCATE basicsis a short tutorial of a
simple embedded application built with Paradigm LOCATE.

m Chapter 3: Relocation primer isareview of the techniques used
by Paradigm LOCATE to bind physical addresses to your
segments.

m Chapter 4: Using configuration filesis a detailed introduction
into designing a custom Paradigm LOCATE configuration file for
your target system.

m Chapter 5: Configuration file directivesis the detailed review of
the Paradigm LOCATE configuration file directives.

m Chapter 6: Command line options is the detailed review of the
command line options available to Paradigm LOCATE users.

Paradigm LOCATE Reference Manual

Chapter 9: Borland C++ guide is a description of the Borland
C++ compiler support package supplied with Paradigm LOCATE.
Look here for specific tips and techniques for using Borland C++
with embedded systems.

Chapter 10: Microsoft C/C++ guide is a description of the
Microsoft C/C++ compiler support package supplied with Paradigm
LOCATE. Look here for specific tips and techniques for using
Microsoft C/C++ with embedded systems.

Also included in the Reference Manual are the following appendices.
These contain useful information covering the use of Paradigm
LOCATE and utilities.

Appendix A: Warning diagnostics is a detailed description of the
warnings output by Paradigm LOCATE.

Appendix B: Error diagnosticsis a detailed reference of dl
Paradigm LOCATE error messages.

Appendix C: Exit codes lists the various exit code output by
Paradigm LOCATE as aresult of processing an input file.
Appendix D: INITCODE port definitionsisalist of supported
peripheral register initiaizations supported by each processor.
Appendix E: AXE utility is a short description of the Paradigm
AXE file utility.

Appendix F: Hex file formats documents the hex file formats
supported by Paradigm LOCATE.

Wrapping up the manua is a comprehensive index, making al
components of the Paradigm LOCATE Reference Manual available at
your fingertips.

Technical assistance

Free technical support is
available to registered
users of the current release
of any Paradigm software
development tool.

Introduction

If you have technical questions or need assistance in setting up or
using Paradigm LOCATE, contact our technical support steff at
(800)582-0864 during normal business hours (EST) or at
(607)748-5966 if calling from outside North America. We will be
more than happy to discuss your problem and provide the fastest
possible response. Please have the following information available
before you contact us:

11

The use of an on-line
service is recommended
since it offers timely
turnaround of problem
reports and maintenance
releases of software.

E-malil

Internet

FTP

FAX

12

= Product names and version numbers for al Paradigm products

= Product names and version number for third-party products, such
as Borland C++ or Microsoft C/C++

m A detailed description of the problem, and how to reproduce it

m |f sending usfiles, be sure to include a README file with the
details of the problem, and your name, address, phone/fax numbers
S0 we can get back to you. Please use a compression utility to
keep the size of any files to a minimum.

We encourage all customers to contact us with their application,
compiler, debugger, or in-circuit emulator questions. We have experts
on staff to deal with any questions relating to Paradigm LOCATE, the
use of Borland and Microsoft compilers in embedded systems, or
using Paradigm DEBUG with an in-circuit emulator. Please fedl free
to contact us any time you need assistance.

Y ou may send technical questions or problem reports to our technical
support group via the following e-mail address:

support @evt ool s. com

Y ou can reach us on the Web at:

http://ww. devt ool s. com

Internet users can access technical support, application notes, third
party vendor information and product information on our website.

To obtain patch files, service packs and application notes quickly,
access our anonymous FTP site at:

ftp://ftp.devtool s. com

Y ou may also fax your problem reports or questions to our technical
support group at (607)748-5968. Thisis the least desirable method
since we may lack the ability to reproduce your problem.

Paradigm LOCATE Reference Manual

Problems and suggestions

Introduction

We welcome your suggestions and feedback and hope you find that
Paradigm LOCATE meets your requirements for embedded system
software development. Paradigm LOCATE has been extensively
tested prior to its release, but unforeseen problems or incompatibilities
can arise due to the number of possible system configurations. Should
you find a problem with this software or have an idea for an
improvement, don't hesitate to contact us. We appreciate your
feedback and suggestions for improving Paradigm LOCATE.

13

14

Paradigm LOCATE Reference Manual

If you are not familiar with
the Paradigm software
license agreement, please
take the time to read it now.

Chapter 1, Installation

Installation

Paradigm LOCATE comes with an automatic installation and
configuration utility called SETUP.EXE. SETUP.EXE will guide the
installation process, setting up Paradigm LOCATE, instaling the
optional compiler support packages, and customizing ROMable run-
time libraries for each memory model.

Now is a good time to make sure that you have filled in your product
registration card; this guarantees that we will be able to keep you up-
to-date about any new versions of Paradigm LOCATE and make you
eligible for our free technical support.

This chapter contains the following information:;
m instaling Paradigm LOCATE on your system

= building ROMable libraries for your compiler
m accessing the README and FAQ files

Once you have installed Paradigm LOCATE, you'll be ready to create
your own embedded system application. Refer to the Introduction
chapter of this manual to learn more about which features of Paradigm
LOCATE you will want to explore first.

15

Installing Paradigm LOCATE

A README file is included
in the Information dialog of
SETUP for answers to
common questions.

If the installation program is
not compatible with your
operating system, contact
Paradigm for assistance.

Your system will look
slightly different, depending
on your compiler.

Figure 1.1
Sample Paradigm
LOCATE directory tree

16

To ingtall Paradigm LOCATE from CD to your hard drive:

1. Insert the CD into your CDROM drive
2. Run SETUP.EXE from the CD
3. Follow the instructions on the screen

The SETUP.EXE program will open a series of Install options dialog
boxes with the following selections for you to create a custom
Paradigm LOCATE installation:

m Choose a compiler and version from the compiler support package
(select this even if you are using assembly language - startup code
is gill the place to begin)

m Choose LOCATE compiler support options including compiler-
specific example applications

m Choose to install ROMable run-time libraries for your compiler
(select thisif you are planning to use Borland or Microsoft C/C++
run-time libraries)

The destination path defaults to cA\LOCATE, but you can specify a
different drive and path if desired. It is recommended that you do not
use long file names for your destination paths as some older
development tools may not be compatible.

When the installation is complete, a directory tree structure similar to
that in figure 1.1 will have been set up. The following is the
organization of Paradigm LOCATE on your system after running
SETUP with the default options and the Microsoft C/C++ 8.0 (Visual
C++) compiler.

LOCATE ---- MSCB0 ---- EXAMPLES ---- DEMD
+-- HELPERS +--

+-- ROMLIBS +-- STDIO

+ - FPDEMD

+- -

+ - COVPRESS

+-- CPPDEND

Paradigm LOCATE Reference Manual

Figure 1.2
Directory tree with Borland
C++ installed.

First time users should
check out Chapter 2 to get
familiar with the Paradigm
LOCATE basics.

Run-time library
customization

Chapter 1, Installation

If you wish to install multiple compiler support packages, simply run
the SETUP utility again for each compiler. For example, if we then
installed the Borland C++ 5.0 support package startup code, the
directory tree would look as shown in figure 1.2.

LOCATE ---- BCPP50 ---- EXAMPLES ---- DEMD
! +-- ROMLIBS +-- MVDEMO
: +-- HELPERS +-- STDI O
! +-- FPDEND
: +-- RCDEMD
! +- - COWPRESS
: +-- CPPDEMD
I
1
+-- MSC80 ---- EXAMPLES
+ - ROWLI BS
+-- HELPERS

Following the installation session, go to the Paradigm LOCATE
directory defined during the installation process and familiarize
yourself with the compiler support package you will be using. Be sure
to put the Paradigm software CD in a safe place in case it is needed in
the future to add support for a different compiler.

The fina step performed by the SETUP utility was to configure a
subset of the compiler run-time libraries for use in an embedded
system. Thisisan optiona step and is only required if you plan to use
the Borland/Microsoft run-time library routines in your embedded
system. You can skip this section if SETUP correctly configured your
run-time libraries.

As shipped by Borland and Microsoft, the run-time libraries contain
many functions which are either not ROMable (functions which use
self-modifying code or store data in a read-only segment) or are
inappropriate for use in an embedded system, for example, functions
which assume the presence of afile system.

By configuring a subset of the run-time libraries, potential
incompatibilities involving the use of unsupported run-time library
routines can be identified by the linker as an undefined external
reference. With a custom run-time library configured, you won't find

17

Edit the makefile

MAKELIBS.MKF and the
library response files (the
* LRF files in the ROMLIBS

18

directory) to create fully
customized libraries.

To build the ROMable
libraries, the compiler,
make and library utilities
must be in the path.

yourself spending time debugging an application that should never
have been built in the first place.

If you enabled the run-time library build option, the SETUP utility
configured a single run-time library of your choosing that supports the
example programs shipped with Paradigm LOCATE. If you later
desire to change the makeup of alibrary or build different memory
models, the DOS batch file MAKELIBS.BAT; (found in the
ROMLIBS subdirectory of your compiler support package - see the
directory tree on page 16) can be used to create ROMable run-time
libraries that meet your specific requirements.

The MAKELIBS.BAT batch file is very smple in its implementation.
It invokes the MAKELIBS.M K F makefile (which is customized for
the MAKE utility that came with the compiler) with one or more of
the following parameters.

MODEL=model Thisisthe memory model of the library to be
customized. Valid optionsare S, M, C, L, and
H, depending on the compiler used.

SRC=path This is the path to the run-time library to be
customized, normally where you have installed
your Borland or Microsoft compiler libraries.

DST=path This is the destination path for the ROMable
libraries. It is normally the same as the SRC
macro definition but can be different if desired.

BIOS Defined if you wish to include functions
requiring an IBM PC-compatible BIOS. The
default for this option is OFF.

EMU Defined if you wish to include functions
requiring the Paradigm run-time library helper
functions. The default for this option is ON
since the Paradigm LOCATE examples make
extensive use of the run-time libraries.

CPP Defined if you wish to include the C++ run-time

Paradigm LOCATE Reference Manual

Figure 1.3
Sample MAKELIBS.BAT
file

library functions (if supported by the selected
compiler).

FLT This compiler-dependent macro is used to select
the appropriate floating point modd to be used
with the embedded application.

The MAKELIBS.BAT file always creates a copy of the run-time
library with an 'R’ prefix and never modifies the origind library. For
example, if you were building the Borland C++ small mode libraries,
the library CS.L1B would first be copied to the file RCS.LIB, from
which the non-ROM able modules are removed.

Figure 1.3 isasample MAKELIBS.BAT file modified to build the
small and large run-time libraries for the Borland C++ compiler. Once
the batch file completes execution, the files RCS.LIB and RCL.LIB
will be left in the \BC\LIB directory. Because the macros BIOS and
CPP are not defined, the BIOS and C++ run-time library support are
stripped from the ROMable libraries.

echo of f
make -fmakelibs. mkf - DMODEL=s -DSRC=\bc\lib -DDST=\bc\lib - DEMJ
make -fmakelibs. mkf -DMODEL=l -DSRC=\bc\lib -DDST=\bc\lib - DEMJ

The README file

Chapter 1, Installation

A README file and Frequently Asked Questions (FAQ) file were
installed by SETUP.EXE. The README contains last-minute
information that may not be included in the manual.

If you did not get a chance to read the README file in the
Information dialog during the installation process, you can view this
file with any text editor or word processor. Please note any changes
that might apply to your use of Paradigm LOCATE.

19

20

Paradigm LOCATE Reference Manual

C H A P T E R
2
Paradigm LOCATE basics
Paradigm LOCATE includes everything you need to develop
embedded system applications using your favorite Borland, Microsoft,
or Paradigm compiler. Just some of the many features of Paradigm
LOCATE include:
m support for al versions of Borland C++, Microsoft C/C++, and
Paradigm C++
m comprehensive run-time library support, including floating point
arithmetic, dynamic memory management, stream 1/O, and C++
exception handling
m complete, working sample applications ready for debugging or
burning into EPROM
m output file formats suitable for use with Paradigm DEBUG, in-
circuit emulators and EPROM programmers
m full control of the target system address space, with exhaustive
checking for potential problems
Tutorial

This section covers the use
of Paradigm LOCATE in
the embedded system
software development
cycle.

What better way to get started with Paradigm LOCATE than to work
through areal application. This section illustrates how a Paradigm
LOCATE configuration file is used to instruct Paradigm LOCATE to
turn an application into ROMable format. Eventually, EPROMs are
burned and the target system is up and running.

Chapter 2, Paradigm LOCATE basics 21

Files in the tutorial

These files are located in
the \LOCATE\DEMO
subdirectory of the
Paradigm LOCATE
distribution diskette.

In presenting Paradigm LOCATE, the sample application has been
compiled and linked with the Borland C++ compiler, so that you can
focus on the use of Paradigm LOCATE. If you happen to be using a
different compiler or a different version of the above compiler, the
basic steps remain the same; they just happen to be implemented
dightly differently.

Thetutorial is composed of a number of files:

SIEVE.C The sieve application source code
SIEVE.ROM Relocatable |load module created by linker
SIEVE.MAP Segment map created by linker
SIEVE.CFG Paradigm LOCATE configuration file

The .ROM file may seem unfamiliar to most of you, however it is
actually the .EXE file created by the linker. We use the .ROM
extension because the rel ocatable module which is created for
embedded systems is not truly executable under DOS or Windows,
but has the same file format found in a DOS .EXE file. Since the
Paradigm embedded startup code has been linked-in, running the
.EXE file would most certainly crash your PC. The name change to
.ROM prevents this accident.

The SIEVE application

22

The source modules are
pre-built so we can focus
exclusively on the use of

Paradigm LOCATE.

Figure 2.1
Sieve of Eratosthenes
source code

Our tutorial application is the well-known Sieve of Eratosthenes
benchmark program which is reproduced in figure 2.1. Since the same
C source code can be compiled with Borland C++, Microsoft C/C++
or Paradigm C++, well introduce the Sieve source code and ignore the
difference between the use of the compilers.

/*

/1 A denpnstration of a sinple ROVabl e application using
/1 Paradi gm LOCATE. This code can be built with either
/1 Borland C++ or Mcrosoft C/ C++.

*/

#define SIZE 1023/ * Numbers to search for prinmes */

typedef enum {
FALSE, /* Number is not a prime */

QOWWO~NOOODWNLE

[

Paradigm LOCATE Reference Manual

11 TRUE /* Number is a prime */

12 } BOOL ; /* Enums are better for debugging */
13

14 BOOL fl ags[SI ZE+1] ; /* The array of BOOL flags */
15

16 void mai n(voi d)

17 {

18 unsi gned i nt i, k, count ;

19

20 /* Loop forever once started */

21 for (;;) {

22 /* Set all nunbers to prime before starting */

23 for (count =i = 0; i <= SIZE;, i++)

24 flags[i] = TRUE ;

25

26 /* Run the sieve and renpve the non-prines */

27 for (i = 2; i <= SIZE;, i++) {

28 if (flags[i]) {

29 /* Cancel out all multiples of this prine */
30 for (k =i +i; k <= SIZE; k +=1i)

31 flags[k] = FALSE ;

32 count ++ ;

33 }

34 }

35 }

36 }

Since our purpose is to demonstrate the main features of Paradigm
LOCATE, the actual source code is not useful, unless you have access
to anin-circuit emulator. What isimportant is to see how Paradigm
LOCATE uses a configuration file to find the instructions for
mapping the application to the target system address space. Once you
understand these simple rules, you will be ready to move on to the
more advanced examples included in the compiler support packages.

The LOCATE configuration file

The key to using Paradigm LOCATE is the flexibility of the
configuration file. It is not necessary to define any Paradigm
LOCATE command line arguments. This means the configuration file
completely defines the processing of the application.

Chapter 2, Paradigm LOCATE basics 23

Configuration file

24

analysis

Only rarely must a
segment be bound to a
physical address.

Figure 2.2
Paradigm LOCATE
configuration file

Let's take a detailed look at each of the Paradigm LOCATE
configuration file directives in figure 2.2 to see their effect on the input
and output files.

When you study the configuration file, you will notice that classes are
used to bind physical addresses to the segments in the application.
This is done to avoid the problem that the number of segmentsin an
application can be unbounded, yet the number of classesis amost
always constant. By using a class as the basis for address binding, we
don't have to deal with alarge number of ungainly segments. Besides,
we want to hide the implementation of physical segments from the
Paradigm LOCATE user and instead focus on getting the application
burned into EPROM.

1 /1

2 /I Configuration file for the exanple fromthe

3 // Paradi gm LOCATE nmanual . This is about as basic

4 |/ as an enbedded application can get. Check out the

5 // other exanples for nore sophisticated applications.

6 //

7

8

9 hexfile intel 86 /1 Intel extended hex for EPROMVs
10 absfile axe86 /1 Optional Paradi gm DEBUG support
11 listfile segnents /'l Segment map for docunentation
12

13

14 //

15 // Define how the target system address space is

16 // partitioned. Paradigm LOCATE will check that this
17 // mapping is followed.

18 //

20 map 0x00000 to OxOffff as rdwr
21 map 0x10000 to Oxf7fff as reserved
22 map O0xf8000 to Oxfffff as rdonly

23

24 cputype i80Cl86EA /] Target CPU is defined here
25

26 initcode reset \ // Reset vector

27 uncs = Oxf 838 \ /] 32KB EPROM

28 I ncs = 0xO0ff8 /] 64KB RAM

29

30 dup DATA ROVDATA /1 Dup initialized data
31

32 class CODE = 0xf 800 /| Code at F8000H

33 class DATA = 0x0040 /] Data at 00400H

Paradigm LOCATE Reference Manual

34 class ??LOCATE = OxfffO /1 80C186EA chip sel ect code

35

36 order DATA \ // RAM cl ass organization
37 BSS BSSEND \

38 STACK

39

40 order CODE \ // EPROM cl ass organi zation
41 I Nl TDATA EXI TDATA \

42 ROVDATA ENDRONMDATA

43

44 out put CODE \ // C asses containing code
45 I Nl TDATA EXI TDATA \

46 ROVDATA ENDROVDATA \

47 ??LOCATE

Let's take a detailed look at each line of the configuration file and see
just what is going on here:

Lines 1-6 These are comments, so you can document what your configuration
fileis doing and why it needs to be done. Comments may be used
freely throughout the configuration file.

Line 9 The HEXFILE directive is used to create SIEVE.HEX, an Intel
extended hex file containing our sample application. Thisfile can be
downloaded to an EPROM programmer for preparing a set of
EPROMSs for our target system.

Line 10 The ABSFILE directive is used to create the file S EVE.AXE, an
absolute load module complete with debugging information. Paradigm
LOCATE can create both Paradigm DEBUG and Intel OMF86
absolute load modules, ready to download and debug with an in-circuit
emulator or Paradigm DEBUG.

Line 11 TheLISTFILE directive creates an absolute segment map in the
Other information, like ~ S/ EVE.LOC listing file. These are the addresses where the
public symbols, can also application will appear in the memory address space of the target
be placed in this file (see system.
page 70.

Lines 20-22 The MAP directives partition the target system memory address space
into three mutually exclusive regions. The first MAP directive covers
the 64KB of RAM found at the bottom of the memory address space
while the third defines 32KB of EPROM at the top of the memory

Chapter 2, Paradigm LOCATE basics 25

Line 24

Lines 26-28

Paradigm LOCATE places

this code in the class
??LOCATE. See
INITCODE, page 67 for
more information.

Line 30

Lines 32-34

If your target CPU does not

require port initialization

(lines 27 and 28), reference

26

to ??LOCATE can be
eliminated.

Line 36-38

Lines 40-42

address space. The second MAP directive marks as reserved the
remainder of the address space. Paradigm LOCATE uses this
information to warn if any code or data accidentally ends up in
undefined regions of the memory address space, or overlaps multiple
regions.

The CPUTY PE directive identifies the target microprocessor as an
Intel B0C186EA. Thiswill permit the B0OC186EA periphera registers
to be referenced in the INITCODE directive that follows.

Line 26 instructs Paradigm LOCATE to create a reset vector at
address FFFFOH so control will be transferred to the application entry
point when reset is asserted. Lines 27 and 28 are used to create
initialization code for the 80C186EA upper and lower memory chip
selects so the target system memory can be completely accessed.

The DUPLICATE directive makes a copy of the segments in the class
DATA, which contain the initialized data. The compiler startup code
then copies the contents of the EPROM-based ROMDATA classto
the RAM-based DATA class.

The CLASS directive is used to bind physical segmentsto an
application. The first CLASS directive places the program code at the
base of the EPROM while the second CLASS directive puts the
application read/write data immediately following the interrupt vector
table. The third CLASS directive places the chip select initidization
code we created in lines 27 and 28 at address FFFOOH, which is within
the 1KB block of addresses that the 80C186EA upper memory chip
select can address following reset.

Using DATA as the anchor class, this ORDER directive binds
addresses to the other classes that are part of the RAM address space.

Using CODE as the anchor class, this ORDER directive binds
addresses to the other classes that are in the EPROM address space.
Notice that the copy of the initialized datain class ROMDATA is
placed in the EPROM address space where it will be copied to RAM
by the startup code.

Paradigm LOCATE Reference Manual

Lines 44-47

The OUTPUT directive identifies which classes should be placed in
the output file. Note that classes containing code or copies of
initialized data are required to be named in the OUTPUT directive.
Other classes, containing uninitialized data and the state, can be left
out since they are initialized by the application.

Running Paradigm LOCATE

Figure 2.3
SIEVE.LOC file contents

Now that we understand the basics, it's time to try out Paradigm
LOCATE and get our first embedded application ready for burning
EPROMSs or debugging with Paradigm DEBUG.

When Paradigm LOCATE is started, it reads in the SIEVE.ROM,
SIEVE.MAP, and SIEVE.CFG files to build the stand-alone
embedded application. This can be as smple as the following line
demonstrates:

| ocate sieve

When you run Paradigm LOCATE, the instructions in the

configuration file SIEVE.CFG direct the creation of the Intel extended
hex file containing the code and data at the specified addresses, along

with an AXE file suitable for use with Paradigm DEBUG and an in-
circuit emulator. An examination of the physical segment map from

the file SIEVE.LOC in figure 2.3 clearly shows the transformation to

an absolutely addressed program, ready for your target system.
The last two segments in the segment map are the 8OC186EA

peripheral register initialization code and the reset vector, both created

in the INITCODE directive on line 26. If you make any changes,

such as changing the processor type or adding stack initialization code,

your own results may be somewhat different. For example, the

segment ??CPUINIT isonly present if you specified I/O operations

with the INITCODE directive.

Input file: SIEVE. ROM
Configuration file: SIEVE. CFG

Command |ine options: C:.\LOCATE\LOCATE. EXE si eve

abh wOWNPE

Chapter 2, Paradigm LOCATE basics

Created by Paradi gm LOCATE 5.11 on Tue Jun 11 10:04:14 1996

27

Burning EPROMs

28

6 Menory Address Map for Program Sl EVE
7

8 Start St op Lengt h Segnent Cl ass

9 000400H 000403H 00004H _DATA DATA
10 000404H O000CO3H 00800H _BSS BSS
11 000C04H 000CO5H 00002H _BSSEND BSSEND
12 000C10H 00140FH 00800H _STACK STACK
13 OF8000H OF8132H 00133H _TEXT CODE
14 0F8134H 0F8134H 00000H _INTT_ | NI TDATA
15 OF8134H OF8134H 00000H _I' NI TEND_ | NI TDATA
16 OF8134H OF8134H 00000H _EXIT_ EXI TDATA
17 OF8134H OF8143H 00010H _EXI TEND_ EXI TDATA
18 OF8150H OF8150H 00000H _RD ROVDATA
19 OF8150H OF8153H 00004H _DATA ROVDATA
20 OF8160H OF816FH 00010H _ERD ENDROVDATA
21 OFFFOOH OFFF12H 00013H ??CPU NI T ??LOCATE
22 OFFFFOH OFFFF4H 00005H ??BOOT (ABSOLUTE)
23
24 Entry point: FFFF: 0000

25 Initial stack: 00C1l: 0800

At this point, we have the file SIEVE.HEX which is ready to be
burned into EPROM and installed in our target system. If you don't
have an EPROM programmer that supports Intel extended hex, don't
worry - aquick edit of line 9 can create an output file in either Intel
hex, binary or Tektronix formats. Here is the replacement directive
for creating an Intel hex output file which occupies the upper 32KB of
the address space:

hexfile intel 80 offset=0xf8000

In this example, we must specify an offset since Intel hex format can
contain at most 64KB of data. Since we have as much as 1IMB of
address space to ded with, the OFFSET option informs Paradigm
LOCATE which 64KB of the 1IMB address space to work with.

If you are using a system with a 16-bit external bus, you will need a
pair of EPROMS, one containing the even addresses and one
containing the odd addresses. The following HEXFILE directive can
be used to create the files SIEVE.HXO0 (containing the code on even
addresses) and SIEVE.HX1 (containing the code on odd addresses) if
your EPROM programmer can't perform the split for you.

hexfile intel 80 offset=0xf8000 split=2

Paradigm LOCATE Reference Manual

Debugging options

Paradigm DEBUG/RT
users would need to make
some minor changes to the
configuration file.

Summary

So much can go wrong with embedded applications, and without the
right toals, figuring out what went wrong can be downright frustrating.
One areathat Paradigm LOCATE excelsisin providing the most
popular output file formats for debugging, using the award-winning
Paradigm DEBUG or an in-circuit emulator accepting the standard
Intel OMF86 file format.

Our sample configuration file already set us up for a debugging session
with Paradigm DEBUG (used in conjunction with a supported in-
circuit emulator), so there is nothing left to chance. Just fire up the
hardware, run Paradigm DEBUG and have the file SSEVE.AXE
downloaded for an instant debugging session.

If you don't have access to Paradigm DEBUG but have an in-circuit
emulator supporting the Intel OMF86 standard, changing output file
formatsis as simple as changing the ABSFILE option on line 10 from
AXES86 to OMF86. Instead of the AXES6 output file, Paradigm
LOCATE will create an Intel OMF86 file, ready to download to your
emulator.

If you haven't done so, now
is a good time to try some
the examples included in
the compiler support
packages. See chapters 9
or 10 for further information.

This completes our look at a simple embedded application and how
Paradigm LOCATE contributed to preparing files for debugging or
burning EPROMs. By applying the techniques we discussed while
progressing though the different examples, you are well on the way to
becoming fluent with the capabilities of your compiler and completing
your own embedded system application.

Now that you are a little more comfortable using Paradigm LOCATE,
you might want to continue on and check out the more sophisticated
compiler-specific applications like C++, floating point, dynamic
memory management, or stream 1/O that are part of each compiler
support package. Each example has a makefile, complete with options
for setting the memory model and debugging options. This makes it
simple to customize each example to meet your own requirements.

Chapter 2, Paradigm LOCATE basics 29

30

Paradigm LOCATE Reference Manual

Relocation primer

This section contains optional information provided for those
interested in the segment relocation process, handling of initialized
data, and other topics of interest to embedded system programmers.
Paradigm LOCATE can be used quite well without understanding
these underlying algorithms, so this section may be skipped at the
discretion of the user.

Relocation basics

A segment is the basic unit \When a linker processes a set of object files, it combines all segments
of organization. 1 ing the same segment name into a single physical segment which
must fit within a 64K B region of the memory address space.

Aclass is a collection of Compilers typically assign each segment to a class, and assembly
related segments. | quiage users can do the same. Assignment to a class permits the

linker to combine together similar segments, such as al segments
containing code or initialized data, so they can be manipulated together
asasingle entity. Although a member of the class, each segment
remains independently addressable and can vary in length to a
maximum of 64KB bytes. Since any number of segments can form a
class, there is no restriction on the size of a class.

We will cover how groups Compilers and assemblers also define a different relationship between

p?ggg;;hgnrilgggt&n segments known as agroup. The segments within a group do not

Chapter 3, Relocation primer 31

have to be contiguous but are all addressed using the same segment
base; they must fit into a single 64KB physical segment. When the
linker encounters a group, it replaces the offsets from the segment
base with offsets from the group base, adjusting them upward as
necessary.

The linker output files

The .ROM and .EXE files

are really the same - we
just want to distinguish
them.

The linker has the responsibility of resolving al external references and
creating the relocation table containing the list of segment fixups.
Although al externa references have been resolved, the segment
fixups are till relocatable and can be moved anywhere within the
1MB address space, which is where Paradigm LOCATE becomes
involved.

This information, along with other loading instructions and optional
debugging information, is written out in the .ROM and .MAP files.
The .ROM fileis the relocatable load module. By default, linker
names in thisfile have an .EXE extension. The .MAPfileisthe
segment map file. Both .ROM and .MAP files are required by
Paradigm LOCATE. Being areocatable load module has certain
advantages and is a necessary requirement for DOS, since the final
physical addresses of a program are unknown until the program is
loaded.

Of course, for designers of embedded systems, this is unacceptable
since al segments must be at fixed addresses before the code is
committed to EPROM or downloaded to an in-circuit emulator. A
utility like Paradigm LOCATE solves this problem by extracting the
segments and relocation information from the linker files and
converting the relocatable segment references to absolute addresses in
the target system address space, as directed by the configuration file.

Segment aliases

Paradigm LOCATE will

automatically warn of alias

32

conditions.

The virtual segment, or frame number, is used as a handle by
Paradigm LOCATE to identify the target segment referred to by a
fixup record.

Paradigm LOCATE Reference Manual

It turns out that it is possible for two segments to share the same
virtual segment number, a situation known as aliasing. Since the fixup
records for aliased segments are indistinguishable, some restrictions are
placed on the developer to prevent aliases from being created.

Segment aliases occur when a segment fails to cross a paragraph
boundary, and the start of the second segment shares the same virtual
fixup asthe first. Whether or not a segment alias presents a problem
depends on whether the segments are members of the same class. If
both segments are members of the same class there is never a problem
since these segments will be located contiguously and the fixup is
unambiguous. If the offending segments are organized as a group,
there is again no problem since all segments in a group share a
common virtual segment number and the segment fixup will also be
unambiguous.

The segment alias problem arises when the segments are members of
different classes and an attempt is being made to relocate the segments
to different regions of the memory address space by splitting them. |f
a segment fixup is requested for an aliased virtual segment, the fixup is
ambiguous and Paradigm LOCATE cannot determine the correct
address trandation.

The startup code supplied Fixing a segment alias is generally easy since a segment aias condition
with Paradigm LOCATE will) 1y oceur when the length of the first segment and the alignment
always prevent an alias, y X g $g 9)
unless you modify it. ~ Of the next segment in the load module result in both segments having
segment bases in the same paragraph. Since the dlias is a function of
segment length and alignment, adjusting either of these two parameters

can eliminate the possibility of a segment alias occurring.

Segment ordering and alignment

The solution to the segment alias problem involves specifying the
alignment characteristics for the first segment of each class such that
the start of the segment will be forced to the new paragraph.

Thisis easily accomplished by using the assembly language startup
code to declare the segment alignment of the first segment in a class to
be on a paragraph boundary. Thiswill alow the startup code to take

Chapter 3, Relocation primer 33

This is the rationale behind

the declaration of the first

segment in each class
before any code or data
declarations.

These are only an example

use the DefSeg macros
supplied with the startup
code whenever possible.

advantage of the way the linker organizes segments and classes within
the load module.

The ahility to control the segment length is limited, especially when
high leve languages or pre-compiled library modules are involved. We
have seen that the DOS linkers order and align the segments in the
load module in the order they are encountered in the object modules.
By making sure that the first object file input to the linker specifies the
desired segment order and alignment for all the classesin the
application, the user has complete control over the final ordering and
alignment of the segmentsin the load module.

The following are sample declarations which demonstrate the
technique. Notice that the first segment in each class has been
declared to be paragraph aligned using the assembler keyword ‘paral.
So long as the previous class is not empty, this will guarantee a unique
segment address for the class. Also note that the subsequent segments
in aclass can use any alignment since they are always manipulated
together and never split apart:

_TEXT segnment para public ' CODE'
_TEXT ends
_DATA segnment para public ' DATA
_DATA ends

The case where a segment will have zero length, yet must be
manipulated independently, will be examined in the next topic, where it
arises naturally.

Segment checking

34

After converting from virtual to physical segment addresses, Paradigm
LOCATE checks for overlapping segments and outputs a warning if
any are detected.

A segment overlap warning is generally the result of the class length
increasing to the point where it overlaps with one or more of the
following classes. This problem is easily corrected by changing the
starting addresses in the configuration file CLASS directives to match
the physical memory requirements of each class.

Paradigm LOCATE Reference Manual

Also checked by Paradigm LOCATE is data exceeding the upper limit
of the CPU memory address space. This condition would occur if the
sum of the segment base address and the length of the segment
exceeds the 20-bit addressing capability of the microprocessor. Thisis
not an uncommon problem, asit is quite easy for the application code
to grow past the IMB boundary.

Any attemptto use the Another possibility that Paradigm LOCATE will check for isan
f{aegsgé‘éegyagg:aejizr'ﬁ application completely filling the RAM or ROM address space
LOCATE. assignedtoit. To check for code or data spilling into non-existent
regions of the address space, Paradigm LOCATE permits the user to
define regions of the memory address space which are reserved and

cannot be used.

Absolute segments

If necessary, the warning A potential problem with the use of DOS linkers is that segments
Syﬁ%‘:’)slg%‘;i fgg 3%?;?;3 declared at an absolute address do not appear in the output link map.
with the -w- command line Since any symbols defined in an absolute segment will appear as part
option. of the debugging record, an attempt by Paradigm LOCATE to convert

the virtual segment to a physical segment address will most likely fail.
When the virtual to physical segment trandation fails, Paradigm
LOCATE assumes that the symbol is a member of an absolute
segment and does not fixup the segment component of the code or
data and issues a warning.

Absolute segments are The use of absolute segments is not recommended since Paradigm
thaeljcé;’grgn':%:du'snegh?; LOCATE allows the user to delay the binding of the physical segment
define addresses. address until the locate phase rather than when the file is assembled.
Besides |eading to more portable code, error checking is enhanced
since Paradigm LOCATE can confirm that no other segments will

overlap the absolute segment.

There is also the possihility that one of the other segmentsin the
application will have a logical segment index identical to the absolute
segment. Since Paradigm LOCATE has no way to verify the symbol
being absolute, the tranglation would take place and the address of the
symbol in the debugging records would be incorrect. While a problem
for the debugging information, this event would not affect the
correctness of the code.

Chapter 3, Relocation primer 35

Fixing absolute
segments

Groups

The two steps needed when converting an application from using
absolute segment addressing to using Paradigm LOCATE to fix the
segment address are shown below. The first step is to change the
segment declaration in the assembly language source from the absolute
format to the relocatable format with a unique class name.

ASEG segnent at 0f 000h ; Absol ute
; your code
ASEG ends

ASEG segnent para public ' MYSEG ; Rel ocatabl e
; your code
ASEG ends

The second step involves adding a directive to the Paradigm LOCATE
configuration file to set the base address of the segment to the original
segment address.

cl ass MYSEG = 0xf 000 /1 Fix the address

Languages such as
Microsoft C/C++ and
Borland C++ use the group
DGROUP.

The order of classes in a
group must follow the
ordering the .MAP file.

36

Currently there is no explicit support for groups in Paradigm LOCATE
due to DOS linkers lacking sufficient information on the segments that
make up a group.

If you are programming in assembly language, this should not cause
any problems since the groups and classes used are controlled
completely by the programmer. C and C++ application programmers
should pay careful attention to make sure that the rules for
manipulating groups are not violated.

Paradigm LOCATE provides support for groups through the use of
the configuration file ORDER directive. After processing the object
modules, the linker adjusts the offsets within each segment in a group
relative to the start of the group. |If the user supplies the class name of
the first class in a group, the other classes in the group can be
relocated relative to the base segment of the group. The location of a
group is handled by assigning the first class in the group a physica
segment with the CLASS directive and ordering the remaining classes
in the group located with the ORDER directive.

Paradigm LOCATE Reference Manual

Duplicating classes

Some programs define initial values for read/write data structures that
are assumed to be correct when a program begins execution. Since
thisis not the default case for a system just powered up, Paradigm
LOCATE must provide a mechanism for initializing this memory to its
initial values.

You can't compute the size The gtartup code is responsible for the initialization of RAM-based
ofa d%?';ﬁzti?i Cilsglsagrs'lg data from an EPROM-based copy. This technique involves the
? " creation of aplaceholder class which has a segment address but has no
length since the actual segments in the class will befilled in by the
Paradigm LOCATE DUPLICATE directive. Since the placeholder
class will have zero length, any class that follows is guaranteed to be
aliased.

See your compiler startup The solution to this problem is to define a pair of classes, the first
code for an example of this oy /iy a5 the placehol der and the second serving to mark the end of

technique. .
the first.

_rd segnment para public ' ROVDATA'

ridata | abel byte

_rd ends

erd segnent para public ' ENDROVDATA'
db 16 dup (?)

_erd ends

The above segment declarations define both classes to be paragraph
aligned with the second class following the first. While we cannot
avoid the aias condition, we can make it harmless by making sure that
the second class is aways located contiguoudly to the first. The
Paradigm LOCATE ORDER directive can now be used to fix the
relationship of the classes, relative to an anchoring class.

order CODE ROVDATA ENDROVDATA

Finding the start of the class ROMDATA is as simple as taking the
address of thelabel r i dat a or referencing the segment name. The
end of the class is marked by the class ENDROMDATA, which aso
guarantees that the following class will not be dliased. Thisis
determined by the length of the class being 16 bytes, guaranteeing the
following class will have a unique fixup.

Chapter 3, Relocation primer 37

38

Paradigm LOCATE Reference Manual

Using configuration files

The process of converting the relocatable output of the linker to a
format suitable for downloading to a remote debugger, an in-circuit
emulator, or an EPROM programmer begins with the instructions
contained in a Paradigm LOCATE configuration file. A configuration
file contains any number of directives which allow you to control
where your application will reside within the target system memory
address space, the number and type of the output files, and any other
Paradigm LOCATE options of your choosing. Each directive may
also accept options which provide more specific results for the
directive.

Because Paradigm LOCATE configuration files use a C preprocessor,
you have full control over the application with macros, conditional
processing using standard C syntax.

Configuration file format

The default Paradigm LOCATE configuration file is the filename of
the load module with the .CFG extension. For example, assuming you
just linked your application and have the newly created files
DEMO.ROM and DEMO.MAP, the following Paradigm LOCATE
command line would use the default configuration file DEM O.CFG

Chapter 4, Using configuration files 39

Later on, we will see how

the preprocessor can help

40

manage multiple
configurations.

Directive format

for the directives to process the DEM O.ROM input file and create the
requested output files.

| ocat e denp

Often it is more convenient to use different configuration files as you
proceed through the phases of the software development cycle or to
have multiple projects share a common configuration file. Using the
Paradigm LOCATE -c command line option, the default configuration
filename can be overridden and a configuration file of your choosing
substituted. Paradigm LOCATE aso offers full control over the
default file extensions. If you prefer to use a different configuration
file extension on a project basis, the Paradigm LOCATE command
line option -Xc can be placed in the LOCATE.OPT file to substitute
your own default configuration file extension when Paradigm
LOCATE isrun.

Paradigm LOCATE gives you considerable leeway in the layout of
your configuration file. With the exception of the few directives that
depend on options specified in a previous directive, Paradigm
LOCATE directives can be declared in any order in the configuration
file.

Here isthe format of atypical configuration file directive processed by
Paradigm LOCATE:

directive option [option ...]

Each configuration file directive accepts one or more options which
customize the actions of the directive to meet specific requirements.
Some directives accept a single option while others accept an unlimited
number of options. When a directive accepts multiple options, the
options can appear in any order unless otherwise specified.

For example, the LISTFILE directive is used to create an absolute
listing file containing segments, publics, line numbers and loca
symbols. In the following example, both LISTFILE directives are
equivaent.

listfile segnents publics lines
listfile publics lines segnents

Paradigm LOCATE Reference Manual

Line continuation Paradigm LOCATE processes each configuration file directive up to
the end of the line. For readability, and to permit an arbitrary number
of options in a directive, multiple physica lines can be combined into a
single logical line using a line continuation character, the backdash (\).
The following is a simple example of using line continuation in the
WARNINGS directive, used to enable and disable specific warnings.

war ni ngs -w1000 \ /1 Turn off warning 1000
-wl1001 \ [/ Turn off warning 1001
+w1002 /1 Turn on warning 1002

Note that in the previous example, al text following the line
continuation character up to the end of thelineisignored. This
permits comments to be added to the source line, or alows the
formatting of the directive optionsin a vertical line. While the
WARNINGS directive is just as happy having all the options listed on
asingle ling, the line continuation feature of Paradigm LOCATE
permits a clear view of the directive options without destroying the
layout or readability of the configuration file.

Directive processing priority

Paradigm LOCATE options can be specified in the LOCATE.OPT,;
file, on the DOS command line or in the configuration file. In the
event of conflicting options, the following processing order (lowest to
highest) is used to determine which Paradigm LOCATE options will
be enabled.

m LOCATE.OPT options
m configuration file directives
= command line options

With the exception of the -c command line option which is processed
immediately, al other command line options are processed after the
configuration file directives have been processed. This permits the
command line to be used to override any default actions specified in
the configuration file or in the LOCATE.OPT file.

Chapter 4, Using configuration files 41

In the event of multiple directives within the configuration file,
subsequent directives will override the effect of the previous
directives, except for instances of the HEXFILE and LISTFILE
directives which always specify multiple, independent actions.
Command line options which enable an action can be disabled later by
the complementary command line option just as a later configuration
file directive can enable or disable a previous directive.

The preprocessor

Preprocessor directives

can appear anywhere in the

42

configuration file.

The #define
directive

The #undef
directive

In order to accommodate a diverse range of options, afull C
preprocessor is used to prepare configuration files for parsing by
Paradigm LOCATE. The preprocessor gives you great power and
flexibility in the following aress:

m Defining macros to reduce the development effort and improve the
readability of your configuration files

m Including directives from other files, such peripheral device
definitions

m Setting up conditional processing for improved portability and for
managing multiple builds

Any line with aleading # is taken as preprocessing directive. The
initial # can be preceded or followed by white space if desired.

The #define directive defines a macro, with or without parameters, as
shown in the following example:

#define macro_indentifier <token_sequence>

Each occurrence of macro_identifier in your configuration file will be
replaced with the token_sequence, which may be empty.

Y ou can undefine a previoudy defined macro by using the #undef
directive:

#undef macro_identifier

Paradigm LOCATE Reference Manual

The -D option

File inclusion with
#include

The #if, #elif,
#else, and #endif
directives

Once undefined, it can be redefined with #define, using the same or a
different token sequence.

The -D option can be used on the Paradigm LOCATE command line
to define identifiers before the start of the configuration file processing.

The Paradigm LOCATE command line
| ocate - DDEBUG=1 -DLI ST test
is equivalent to placing

#def i ne DEBUG 1
#def i ne LI ST

at the start of the TEST.CFG configuration file.

The #include directive is used to pull in other files into the origina
configuration file. It uses one of the following forms, which are
treated the same by Paradigm LOCATE:

#i ncl ude <fil enanme>
#include "fil enane"

The action of the preprocessor is to remove the #include line from the
configuration file and replace it with the entire contents of the file
filename.

Paradigm LOCATE supports conditional processing using the #if,
#elif, #else, and #endif directives. Using these directives you can
conditionally include configuration file source lines, based on the result
of an expression:

#i f expression
<section>

#el i f expression
<section>

#el se

<section>

#endi f

Chapter 4, Using configuration files 43

The #ifdef and

#ifndef directives

44

The operator
defined

If an expression evaluates to hon-zero (after any macro expansion),
the source lines represented by the corresponding section are
preprocessed and passed on to Paradigm LOCATE. When an
expression evaluates to zero, the corresponding section is ignored.

The #ifdef and #ifndef conditional directives let you test whether an
identifier is defined, that is, whether a previous #define is ill in force
for the identifier. Theline

#ifdef identifier
has exactly the same result as
#if 1
if identifier is defined, and the same effect as
#f 0
if identifier is undefined.
#ifndef is used to test for the not defined condition.

The defined operator offers a more flexible method of testing whether
one or more identifiers are defined. It isvalid only in #if and #elif
expressions.

The expression defined(identifier) evaluatesto 1 (true) if the
identifier has been previously defined and has not been undefined,
otherwise it evaluates to zero. The directive

#i f defi ned(aSynbol)

is the same as

#i f def aSynbo

The advantage of using the defined operator is that it can be used
repeatedly in a complex expression, such as

#i f defined(thisSynbol) && !defined(thatSynbol)

Paradigm LOCATE Reference Manual

The #error
directive

Predefined macros

Comments

The #error directive is used to terminate processing and output an
error diagnostic of your choosing. The #error directive istypicaly
used in a conditional clause to catch an unexpected condition, as
shown in the following example:

#if !defined(A_MACRO
#error Failed to define nmacro A _MACRO
#endi f

The following macros are predefined by Paradigm LOCATE for usein
configuration files:

__PARADIGM 1
__LOCATE__ Paradi gm LOCATE versi on nunber

Old-style C comments
may also be used.

Finding errors

Configuration files do more than instruct Paradigm LOCATE how to
process the relocatable load module; they are also a key component of
the design documentation. To help you in properly documenting your
design, comments can be added freely to the configuration file.

The start of a comment field is defined using the C++ syntax, which is
apair of dashes (/") with the comment continuing to the end of the
line. Blank lines and comments can appear anywhere within the
configuration file, improving the readability while providing complete
flexibility.

These diagnostics are
designed to pinpoint errors
or warn of hazardous
conditions.

Any time Paradigm LOCATE finds a discrepancy parsing a
configuration file directive, it issues a diagnostic indicating the
configuration file source line in error. A complete list of diagnostics
produced by Paradigm LOCATE, together with a description of the
probable cause and possible corrective actions, can be found in
Appendix A for warning diagnostics, and in Appendix B for error
diagnogtics.

Chapter 4, Using configuration files 45

Check both the reported
line and the previous line
for the error.

46

In the event of an error in a directive spanning multiple lines, the
source line number reported in an error diagnostic may be inaccurate.
Because the reported position may be the line following the actual
error, it isimportant to examine the entire directive for the error, not

just the reported line.

Paradigm LOCATE Reference Manual

All user input is shown in
lowercase

Configuration file directives

This chapter offers a detailed description of the Paradigm LOCATE
configuration file directives, the commands that build an absolute
load module in a file format of your choosing. Before introducing
each directive, a short review of the layout used to document the
directivesisin order.

The Paradigm LOCATE configuration file directives contain a detailed
description of the directive, the syntax and a list of options accepted
by the directive. Any command line equivalent options are also listed
to round out the detailed description. To place each directive in the
context of an application, each entry concludes with a list of examples
showing the directive as it might be used in a Paradigm LOCATE
configuration file for atypical embedded system.

All configuration file directives are shown with the directive and any
options shown in uppercase. A valid directive or option must have at
least the significant characters although it may have more. Paradigm
LOCATE keywords are case-insensitive so you can use either upper
or lowercase in your configuration files. Optionsto directives are also
case-insensitive, with the exception of segment and class names which
are case-sensitive and must match the names from the link map.

Any optional arguments for a directive are shown enclosed by square
brackets ([and]) with an dllipsis (...) used to indicate repeated
arguments. The following mnemonics are used throughout to identify
the type of argument expected by Paradigm LOCATE.

Chapter 5, Configuration file directives 47

48

data
data8
datal6
addr16
addr20
addr24
addr

file

list

name

8- or 16-bit data

8-bit data

16-bit data

16-hit segment (paragraph) address
20-hit physical address

24-hit physical address

A addr 20 or addr 24 address (depending on the
input file)

A filename with optional path. A valid Paradigm
LOCATE filename must begin with aletter and
be followed by any combination of letters or
numbers.

One or more class names

A segment or class name

Paradigm LOCATE Reference Manual

ABSFILE

Description The ABSFILE directive is used to select the file type and optionally
supply afilename for the absolute output file. The ABSFILE directive
is used when you will be working with Paradigm DEBUG, or a
development tool accepting Intel OMF86 files.

Syntax ABSFI LE [AXE86 | OVF86 | NONE] \
[FORVAT=t ype] \
[FILENAMVE=file]

Options Thefollowing are valid options for the ABSFILE directive:

AXES86 Selects the Paradigm DEBUG 6.0 format for the
absolute output file. The default file extension is
AXE and may be changed with the -Xa option.

OMF86 Selects the Intel OMF86 format for the absolute
output file. The default file extension is .ABS
and may be changed with the -Xo option.

NONE Disables the creation of an absolute output file.

FILENAME This argument permits you to change the name
of the absolute output file to file. The default
filename is the same as the input file with the
extension determined by the output file type.

Use dashes (/) instead of backslashes (\) for path name
separators. For example,
file = c:/output/test. axe

o é“}" CugggbvgrSionSthOf FORMAT The FORMAT option is used to specify different
aradigm use the . . :
default AXE file format. AXE _flle formats, for u_se Wlt_h older vers or_1$ of
Paradigm DEBUG. This option accepts a single
argument, depending on the version of the

debugger being used.
PD60 Paradigm DEBUG 6.0
PD50 Paradigm DEBUG 5.0
PD40 Paradigm DEBUG 4.0
PD31 Paradigm DEBUG 3.1

Chapter 5, Configuration file directives 49

ABSFILE

50

Command line
options

Examples

PD30 Paradigm DEBUG 3.0
PD20 Paradigm DEBUG 2.0
PD10 Paradigm DEBUG 1.0

The following ABSFILE directives can be specified from the Paradigm
LOCATE command line as well as in the configuration file.

- Apd60 AXE86 FORMAT=PD60
- Apd50 AXE86 FORMAT=PD50
- Apd40 AXE86 FORMAT=PD40
- Apd30 AXE86 FORMAT=PD30
- Apd20 AXE86 FORMAT=PD20
- Apd10 AXE86 FORMAT=PD10
- Aonf OMF86

- Ad NONE

- Anfile FILENAME=file

absfile onf86 fil ename=nyprog. abs
absfile axe86 format=pd40

Paradigm LOCATE Reference Manual

CHECKSUM

Description The CHECKSUM directive is used to define aregion of the memory
address space and calculate the CRC or checksum of that region. At
run-time, the target system can then compare the computed CRC or
checksum with the stored value to determine if any changes have been
made to the program or data.

Syntax CHECKSUM addr TO addr \
[ADDRESS=addr] \
[FILL=fill] \

[ROMBIOS | CRC16 | CRC32]

Options Thefollowing are valid options for the CHECK SUM directive.

ADDRESS The ADDRESS option is used to set the
physical address of the checksum. If not
specified, the computed checksum will default
to the address immediately following the end of
the checksum region. The address can aso be
the name of a class, as well as a 20-hit physical
address.

FILL The FILL option is used to inform Paradigm
LOCATE of the background pattern of unused
bytes within the checksum region. The value
used for the fill and background contents of the
EPROM must agree for checksum calculation to
occur. If not specified, the fill pattern defaults
to OxFF.

ROMBIOS This option selects the IBM PC ROM BIOS
extension checksum for the defined region,
which writes a one byte checksum at the
specified address.

CRC16 The CRC16 option selects the CRC-16
checksum for the defined region, which writes a
two byte checksum at the specified address.

Chapter 5, Configuration file directives 51

CHECKSUM

CRC32 This option selects the CRC-32 checksum for
the defined region, which writes a four byte
checksum at the specified address.

Command line None
options

Examples checksum 0xc0000 to OxcO7fe fill=0xff ronbios
checksum 0xf 8000 to Oxffffd address=0xffffe crcl6
checksum CODE t o ROVDATA crc32

52 Paradigm LOCATE Reference Manual

Description

Syntax

Options

Command line
options

Examples

CLASS

The CLASS directive is used to assign a physical address to each of
the segmentsin aclass.

CLASS cl assnane = addr 16

The 16-hit segment address in the argument addr 16 is bound to the
first segment in the class classname. Each of the remaining segments
in the class are then assigned physical addresses that are relative to
preceding segments in the class.

None
class CODE = 0xfc00
class DATA = 0x0040

Chapter 5, Configuration file directives 53

COMPRESS

54

Description

A sample application
demonstrating
compression is included
with each compiler.

Syntax
Options
Command line
options

Examples

The COMPRESS directive is used to compress a duplicated class,
reducing the size of the class to save space. Paradigm LOCATE will
write out a compressed version of the named class in the output file.

Each Paradigm LOCATE compiler support package includes a
decompression module that decompresses the result during the startup
code. This module is automatically inserted into the ROMable run-
time libraries.

Paradigm LOCATE runs a two step compression algorithm to
compress aclass. During the first phase, Paradigm LOCATE
estimates the compressed size of the class, a requirement for the
binding of addresses to the segments and classes that follow the
compressed class. In the second phase, the class is compressed after
any segment fixups have been applied.

COVWPRESS cl assnane

classname is the name of the class to be compressed. This class must
appear in aDUP directive as it is not possible to decompress in place.

None

dup FARDATA ROVFARDATA
conpr ess ROMFARDATA

Paradigm LOCATE Reference Manual

CPUTYPE

Description The CPUTY PE directive informs Paradigm LOCATE of the target
system microprocessor. Paradigm LOCATE uses the CPUTY PE
directive to select the set of peripheral registers permitted in the
INITCODE directive.

Syntax CPUTYPE cpu_id

Options Thefollowing isalist of microprocessor |1Ds supported by the cpu_id

argument.
| 8088 D70108 (V20)
| 8086 D70116 (V30)
1 80188 D70208 (\40)
| 80186 D70216 (V50)
| 80C188 D70320 (V25)
| 80C186 D70330 (V35)
| S0CL88EA D70325 (V25+)
| S0CL86EA D70335 (V35+)
| SOL188EA D70136 (V33)
| SOL186EA D70236 (V53)
| 80C188EB D70423 (\/55SC)
| 80C186EB D70433 (\V55P!)
| SOL188EB D70208H (V4OH)
| SOL186EB D70216H (V50H)
| 80C188EC
| 80CL86EC AML86CC
| 80C188XL AML86EM
| 80CL86XL AML8SEM
| 80286 AMLS6ES
| 80386 AML8SES
| 80386CX AML86ER
| 80386EX AML8SER
| 80486 AML86ED

Command line None
options

Chapter 5, Configuration file directives 55

CPUTYPE

Examples

56

cput ype
cput ype
cpu

i 80c186eb
i 80c188x
D70325

Paradigm LOCATE Reference Manual

Description

Syntax

Options

The default for this option is
NOIC86.

This is the default for the
DEBUG directive.

DEBUG

The DEBUG directive is used by Paradigm LOCATE to determine
which debug information data structures will be included in the Intel
OMF86 output file. By eiminating unnecessary debugging
information such as types, Paradigm LOCATE can run significantly
faster while producing smaller outpuit files.

This directive is also used to enable Paradigm DEBUG OMF86
extensions or force compatibility with the Intel iC86 C compiler.
These extensions add support for enumerations and C++ objects and
are used by third-party debugging tools that accept OMF86 files.

DEBUG option [option ...]

The following are valid options for the DEBUG directive.

1C86 These options enable/disable compatibility

NOIC86 with the Intel iC86 compiler. When
enabled, the 1C86 option restricts the debug
information output and folds al symbols to
uppercase to match the output of the Intel

compiler.
TYPES These options enable/disable the inclusion of
NOTYPES type records in the output OMF86 file.
PUBLICS These options enable/disable the inclusion of
NOPUBLICS public symbol records in the output OMF86
file.
SYMBOLS These options enable/disable the inclusion of
NOSYMBOLS local symbol records in the output OMF86
file.
LINES These options enable/disable the inclusion of
NOLINES line number records in the output OMF86
file.
ALL This option enables al debug information in

the output OMF86 file and is the same as
specifying the TY PES, PUBLICS,

Chapter 5, Configuration file directives 57

DEBUG

58

NONE

EXTENS ONS
NOEXTENSIONS

CLASSES
NOCLASSES

ENUMS
NOENUMS

BIGTYPES
NOBIGTYPES

MEMBER-
FUNCTION
NOMEMBER-
FUNCTION

DESTRUCTORS
NODESTRUCTORS

OPERATORS

SYMBOLS and LINES options.

This option disables all debug information in
the output OMF86 file and is the same as
specifying the NOTY PES, NOPUBLICS,
NOSYMBOLS and NOLINES options.

This option enables or disables the Paradigm
OMF86 extensions, which include extended
enumerations and C++ support.

The default for these options is NOEXT, as
extensions may not be compatible with third-
party debuggers.

This option enables or disables the output of
C++ class type information in the OMF86
output file.

This option enables or disables the output of
extended enumeration debug information in
the OMF86 output file.

This option enables or disables the output of
extended types in the OMF86 outpt file.
Only enable this option if your debugger
supports 64K type records.

This option enables or disables the output of
C++ member function in the OMF86 output
file.

This option enables or disables the output of
C++ destructors in the OMF86 output file.
Some tools may not be able to handle C++
destructor syntax so enable this option only if
it is supported by your tools.

This option enables or disables the output of
C++ operators in the OMF86 output file.

Paradigm LOCATE Reference Manual

NOOPERATORS

CLASSTEMPLATES
NOCLASS
TEMPLATES

SPACES
NOSPACES

PARAMETERS
NOPARAMETERS
SPECIALS
NOSPECIALS

ALLEXTENSONS
NOEXTENSIONS

=

Command line

DEBUG

Some tools may not be able to handle C++
operator syntax so enable this option only if it
is supported by your tools.

This option enables or disables the output
of C++ templates in the OMF86 output
file.

This option enables or disables the removal
of spaces from symbols.

This option enables or disables the
inclusion of function parametersin C++
function names.

This option enables or disables the output
of special C++ charactersin names.

This option enables all C++ extensions,
except BIGTYPES or disables all
extensions.

Because of limited support for C++ types and symbols, C++
developers may wish to enable additional C++ OMF output.

Each of the DEBUG arguments can be specified using the Paradigm

options LOCATE command line options, as shown below.
-d NONE
- (d- ALL
-Ce EXTENSI ONS
- Ce- NCEXT
-a | C86
-0 - NG C86
-a LI NES
-a - NCLI NES
-p PUBLI CS
- Op- NOPUBLI CS
-Q TYPES
-Q- NOTYPES
- X SYMBOLS

Chapter 5, Configuration file directives

59

DEBUG

60

Notes

Examples

e
-Cea[-]
- Cec[-]
- Ced[-]
- Cee[-]
- Cenf -]
-Ceo[-]
- Cep[-]
- Ces[-]
-Cet[-]
- Cex[-]
-Cez[-]

NOSYMBOLS

Enabl e/ di sabl e al | C++ extensions
Enabl e/ di sabl e C++ class transl ation
Enabl e/ di sabl e C++ destructor support
Enabl e/ di sabl e enunerati on ext ensi ons
Enabl e C++ nenber function extensions
Enabl e C++ operat or extensions

Enabl e C++ paraneter extensions
Enabl e space renoval from C++ nanes
Enabl e/ di sabl e OVF | arge types
Enabl e/ di sabl e C++ tenpl ate support
Enabl e C++ special synbol extensions

This directive only affects the output of Paradigm LOCATE when the
ABSFILE OMF86 directive or -Aomf command line option isin

effect.

debug notypes nosynbol s \
nopubl i cs nol i nes

debug none

/1l Sane as above

Paradigm LOCATE Reference Manual

DISPLAY

Description The DISPLAY directive controls the level of diagnostic information
output emitted by Paradigm LOCATE during the processing of input

and output files.

Paradigm LOCATE can display the names of each output file asit is
being written, display compression statistics, or track module names as
they are processed to indicate the progress towards completion.

Syntax DI SPLAY option [option ...]

Options The opt i on argument can be sdlected from one of the following

options
NONE

FILES

MODULES

COMPRESSION

ALL

Disables dl display diagnostics.

Displays the filenames of the output files as
they are processed.

Displays the modules names found in the
input files as they are processed.

Enables the display of compression statistics
for compressed classes.

Enables the display of all Paradigm LOCATE
diagnostics.

Command line TheDISPLAY directive options can also be specified from the
options command line as follows

-do
-dl
-d2
-d3
-d4

NONE

FI LES
MODULES
COVPRESSI ON
ALL

Examples display files conpression

di splay all
di splay none

Chapter 5, Configuration file directives

61

DUPLICATE

Description

Syntax

Options

Command line
options

Notes

Example

62

The DUPLICATE directive is used to make a copy of aclass.
Typically, the copy of the classis located in the EPROM address
space to be used to initialize RAM by the startup code.

DUPLI CATE src_class dest_class

DUPLICATE makes a copy of the class src_class and appends it to
the class dest_class, creating the dest_class classif it does not already
exist.

None

If the duplicated class already exists, the newly made copy will be
concatenated to the existing class; otherwise, the new class is smply
created. The segments in the duplicated class keep the same segment
names and offsets, but pick up the name of the new class. The same
offsets are kept to permit multiple classes to be concatenated together
into a single duplicated class while preserving the address relationships
between the classes.

This is the method used to make copies of initialized data for
placement in EPROM. Since the first segment in the duplicated class
has been defined in the startup code and has a physical address, and
the length of the original class is known, it is a smple matter for the
compiler startup code to copy the class from EPROM to RAM.

dup DATA ROVDATA /'l Copy class DATA
cl ass DATA = 0x0040 /| DATA at 00400H
class CODE = 0xfc00 /1 CODE at FCOOOH
order CODE ROVDATA /1 ROVDATA after CODE

Paradigm LOCATE Reference Manual

HEXFILE

Description The HEXFILE directive is used to create hex and binary files suitable
for download to an EPROM programmer. Y ou can use as many
HEXFILE directives as desired in a configuration file to create any
number of different output files.

If you choose to create multiple output files in a single pass of
Paradigm LOCATE, be sure to use the FILENAME option to name
the output file for each HEXFILE directive so that Paradigm
LOCATE will not overwrite any of the files.

Syntax HEXFI LE | NTEL8O| | NTEL86| Bl NARY| TEKHEX] \
OFFSET=addr]
Sl ZE=si ze]
SPLI T=split]
FILL=fill]
LENGTH=Il en]
TRUNCATE]

FI LENAVE=fi | e]

— - - - - -

[
[
[
[
[
[
[
[

Options Thefollowing is a description of the HEXFILE options.

INTEL80 These mutually exclusive arguments select one of
INTEL86 the following output file types. The number in
INTEL 386 parentheses indicates the maximum size of the
BINARY address space supported by each file type.
TEKHEX INTEL8O Intel hex (64KB)

INTEL86 Intel extended hex (IMB)

INTEL386 Intel 386 extended hex (1IMB or
16MB)

BINARY Binary (IMB)

TEKHEX Tektronix hex (64KB)

INTELS86 is the default output file type for the
HEXFILE directive.

If left unspecified, the QFFSET The OFFSET option is used to select a subset of
a(ﬁ;s; éﬁi gheefaou:ig tSOEOT the IMB address space. The address defined in
' addr is used as the base for any subsequent file
operations.

Chapter 5, Configuration file directives 63

HEXFILE

If you are creating multiple
EPROM images using the
SPLIT option, each image

will be the selected size.

Intel extended hex files
cannot be split due to the
presence of segment
records.

This option used to be
called PAD in previous
versions of Paradigm
LOCATE.

64

SIZE

SPLIT

FILL

LENGTH

For example, to burn a 32KB EPROM using the
Intel hex format that starts at address F80O00H, the
offset field should be set to FBO00H, which makes
offset 0000H within the EPROM correspond to
offset FBOOOH of the address space.

The SIZE option is used to set an upper limit on
the image size (in KB), up to the upper limit
imposed by the output file type. The size field can
be any value from 1 (a 1KB EPROM image) up to
1024 (afull IMB EPROM image).

The default image size is the maximum size of the
sdlected output file type, except for binary files
which default to 32K bytes.

The SPLIT option is used to extract a set of 1to 4
EPROM files from the specified region, where
each file corresponds to a memory bank. Splitting
the EPROM image is normally required when
working with 16- and 32-hit buses implemented
using 8-bit wide EPROMSs. The split field can take
on the values 1, 2 or 4 with 1 being the default
value.

The FILL option is used to inform Paradigm
LOCATE of the value of the background fill
character for use in binary output. Thefill
character defines the background pattern for binary
files; al other file types require that the EPROM
programmer be used to set the fill prior to
downloading the file. If not specified, the fill
character defaults to OFFH.

The LENGTH options lets you change the record
length for hex output files. The default hex record
contains a maximum of 16 bytes per record. Using
this option, you can change the record length from
8to 64 bytesin size.

Paradigm LOCATE Reference Manual

TRUNCATE

FILENAME

HEXFILE

This option is used to create binary files having
only the data contained in the load module. When
this option is not in effect, the size of the binary
output files will be determined by the SIZE option.
When TRUNCATE is used, the file size will be the
minimum of the SIZE option and the offset of the
last data written into the file.

The FILENAME option sets the output filename
for an EPROM image. If |eft unspecified, the
output filename defaults to the same filename as
the input file.

Use dashes (/) instead of backslashes (\) for path name
separators. For example,
file = c:/output/test. hex

Command line The Paradigm LOCATE command line can be used to set the options
options for asingle EPROM image using the following switches:

-Ho
- Hdsi ze
-He
-HEfill
- Hi
-H I en
-Hnfile
- Hoaddr
-Hssplit
- Ht

Bl NARY

Sl ZE=si ze

| NTEL86
FILL=fill

| NTEL80
LENGTH=I en

FI LENAVE=fi | e
COFFSET=addr
SPLI T=split
TEKHEX

-H options work independent of the configuration file HEXFILE
directive. If you have a HEXFILE directive(s) and -H options in one
single pass of Paradigm LOCATE, LOCATE will first create al
EPROM output based upon the HEXFILE directive, then create an
additional EPROM output based solely upon -H command options.

Notes Thefollowing are the file extensions used by the HEXFILE directive.
File extensions are determined by the file type and cannot be changed.

Chapter 5, Configuration file directives

65

HEXFILE

66

Examples

Filetype/Split 1 2 4
INTEL86 .HEX

INTEL 386 .HEX
INTEL80 .HEX HX? HX?
BINARY .BIN .BN? .BN?
TEKHEX .TEK TK? TK?

hexfile intel 86

This example creates an Intel extended output file containing al classes
identified in OUTPUT directives.

hexfile intel 80 of fset =0xe0000 fil e=nol
hexfile intel 80 of fset=0xf0000 fil e=no2

This example is for an 8-bit system having a pair of 64KB EPROMs
in the upper 128KB of the address space. Because the Intel hex file
format can hold at most 64KB of code/data, two HEXFILE directives
are used to create separate EPROM images. The OFFSET option is
used with each HEXFILE directive to specify which 64KB of the
address space we wish to be extracted and placed in the output file.

hexfile intel 80 of fset =0xf 0000 size=32 fil e=nol
hexfile intel 80 of fset =0xf 8000 size=32 fil e=no2

This example is similar to the preceding example except that only
64K B of address space is available and the SIZE option is used to limit
each output file to the 32K B regions of the address space occupied by
each EPROM.

hexfile intel 80 of fset=0xc0000 split=2 file=nol
hexfile intel 80 of fset=0xe0000 split=2 fil e=no2

Thisfinal exampleisfor a 16-bit system having atotal of 256KB of
EPROM divided into two 128KB banks. In this case the output files
would be NO1.HX0, NO1.HX1, NO2.HXO0, and NO2.HX1,
containing the even and odd addresses for each pair of EPROMSs,

Paradigm LOCATE Reference Manual

INITCODE

Description The INITCODE directive is used to automatically generate reset
vectors, stack initialization and peripheral register initialization code.
The INITCODE directive accepts a list of peripheral register
assignments that depend on the microprocessor type. This permits
chip select, DRAM refresh and wait state initialization code to be
handled independently of the application and startup code. This
makes it a simple task to ensure the physicall ROM and RAM in the
system are addressable before the application is handed control of the
target microprocessor.

If stack or 1/O port initialization code is created using this directive,
Paradigm LOCATE will automatically change the entry point to ensure
that the initialization code, if present, is executed in the following
order: reset code, stack initialization, peripheral register initiaization
code, and the startup code.

Syntax INI TCODE [RESET | NORESET]

[STACK | NOSTACK]

[ioport = data]

[OQUTBYTE addr16 = data]
[OQUTWORD addr 16 = data]
[
[
[

— - - - - -

| NBYTE addr 16]
| NWORD addr 16]
filename=file.ext CLASS = cl ass_nane]

Options The INITCODE directive supports the following options:

RESET The RESET option enables the generation of a far

NORESET jump instruction at address FFFFOH to the
application entry point. The option NORESET
disables the creation of the far jump.

STACK The STACK option generates code to initiaize the

NOSTACK SS.SP registers with the default stack (the segment
having the stack attribute). If enabled, the stack
initidization code will be placed in the segment
??STACKINIT inclass ??2LOCATE.

Chapter 5, Configuration file directives 67

INITCODE

Command line
options

Notes

68

ioport The ioport option accepts processor peripheral
registers to be initialized from the configuration file.
The order of the 1/O or specia function register
operations is the order of the port arguments in the
configuration file INITCODE directive. Any port
initialization code created using the INITCODE
directive will be placed in the segment ??CPUINIT
inthe class ??LOCATE.

See appendix D on page 163 for alist of supported
= microprocessors and peripheral registers.

OUTWORD Generd purpose 1/0 can also be performed using

OUTBYTE the generic forms for input and output. Note that
INWORD the input functions discard the input value and are
INBYTE used only for any side effects.

INITCODE filename=file.ext CLASS = class_name assigns the
contents of the binary file file.ext to class class_name and places
the code in the startup code execution list by jumping to the start
and appending a far jump to the next code block in the startup code
seguence at the end of the file.

The following INITCODE arguments can be specified on the
command line:

-b RESET
- b- NORESET
-S STACK
-S- NOSTACK

Peripheralsin the Intel 80C186-family are accessed using word-aligned
byte writes. This allows updating a 16-bit chip sdlect register with a
single external bus cycle, even when 8-bit processors are used.

Paradigm LOCATE Reference Manual

Examples cputype
i ni tcode

initcode

Chapter 5, Configuration file directives

i 80186
reset
uncs
I ncs

INITCODE

\
Oxf038 \ // UMCS val ue
0Ox0ff 8 /1 LMCS val ue

out byte Oxfffe = 0Ox11

69

LISTFILE

70

Description

Syntax

Options

The LISTFILE directive is used to create listing files containing
information such as a segment map, lists of public and local symbols
and source line numbers. Thereis no limit on the number of
LISTFILE directives used in a configuration file, permitting multiple
output files with different reports to be created in a single pass.

If you choose to create multiple output files in a single pass of
Paradigm LOCATE, be sure to use the FILENAME option to name
the output file of each LISTFILE directive so that Paradigm LOCATE
will not overwrite any of thefiles.

Paradigm LOCATE can only output listings for information to which it
has access. If there is no debugging information in the input file,
Paradigm LOCATE will be restricted to creating the segment and

region maps.

LI STFI LE[SEGVENTS]
[PUBLICS [(BY ADDRESS| BY NAVE)]
[COLUWNS=(1 | 2)]

[WDTH=(80 | 132)]

[SYMBOLS]

[LINES]

[REG ONS]

[CHECKSUMS]

[FILENAME=file]

— - - -

The following options control the different fields in the Paradigm
LOCATE map file

SEGMENTS The SEGMENTS option is used to create an
absolute segment map showing the starting
address, ending address and length for each
segment in the application.

REGIONS The REGIONS option is used to include a copy of
the memory address space assignments specified
in the MAP directives and their usage.

CHECKSUMS The CHECKSUMS option is used to include the

Paradigm LOCATE Reference Manual

The default for COLUMNS
is 1 and the default for
WIDTH is 80.

Be careful - large
applications can create
very large local symbol list
files.

Command line
options

Chapter 5, Configuration file directives

PUBLICS
COLUMNS
WIDTH

SYMBOLS

LINES

FILENAME

LISTFILE

details of any checksums or CRCs used by the
application, including the starting addr, ending
addr and checksum value.

The three PUBLICS options are used to control
the output of public symbolsin the Paradigm
LOCATE map file. Used alone, PUBLICS will
output the public symbol table sorted first by
name and then by address. Y ou may also qualify
the output to get one or the other by using the
PUBLICSBY NAME or PUBLICS BY
ADDRESS arguments.

Y ou can use the COLUMNS and WIDTH options
to adjust the number of symbol columns (1 or 2)
or the output width (80 or 132 columns) to create
an optimally-sized public symbol table.

The SYMBOLS option controls whether the
extended debugging information, such as loca
symbols, appears in the output file organized by
source module.

The LINES option controls whether or not line
number records appear in the output file organized
by source module.

This option permits you to change the name of the
Paradigm LOCATE listing file to file. The default
filename is the same as the input file but with the
.LOC extension.

Use dashes (/) instead of backslashes (\) for path name
separators. For example,
file = c:/output/test.loc

The following Paradigm LOCATE command line switches can be
used to select the options for asingle LISTFILE directive:

71

LISTFILE

72

Examples

-Lc COLUWNS=2

-Ld CHECKSUMS

- LI LI NES

-Lnfile FI LENAMVE=f i | €
-Lp PUBLI CS

-Lr REGQ ONS

-Ls SEGQVENTS

-Lw W DTH=132

- Lx SYMBCOLS

-L options work independent of the configuration file LISTFILE
directive. If you have a LISTFILE directive(s) and -L options in one
single pass of Paradigm LOCATE, LOCATE will first create al listing
output based upon the LISTFILE directive, then create an additional
listing output based solely upon -L command options.

listfile segnents file=test.loc
listfile publics |lines synbols segnents

Paradigm LOCATE Reference Manual

MAP

Description The MAP directive is used to assign an access attribute to a region of
the memory address space. These attributes are then used by
Paradigm LOCATE to verify that reserved regions of the memory
address space are vacant. Paradigm LOCATE will report the use of
reserved regions, or a segment spanning regions with different
attributes. Warnings will also be generated if Paradigm LOCATE
detects segments mapped in read-only regions are not being output, or
segments mapped in non-read-only regions are being output.

Please note that the MAP directive does not assign physical addresses
to segments. The purpose of the MAP directive is to describe the
target address space partitions so that Paradigm LOCATE can check
for overlaps and errors.

Syntax MAP [name] addr TO addr AS nentype

Options Thefollowing fields must be defined in each MAP directive.

name An optiona name to be associated with the region.
addr The first argument defines the start of the region of
addr the memory address space to be mapped while the

second argument defines the end of the region,
where the first address must be less than or equal to
the second.

memtype The memtype field is used to assign one of the
following access attributes to the region.

RDONLY Read only address space

RDVR Read/write address space
RESERVED No access

MM O Memory-mapped 1/0

| RAM Internal RAM

SFR Specid function registers

Command line None
options

Examples map ny_data 0x00000 to OxOffff as rdw
map 0x10000 to OxEFFFF as reserved
nmap OxF0000 to OxFFFFF as rdonly

Chapter 5, Configuration file directives 73

ORDER

74

Description

Syntax

Options

Command line
options

Examples

The ORDER directive is used to concatenate one or more classes
relative to the anchoring class. The ORDER directive is important
since it allows unrelated classes to be grouped together in the memory
address space, independent of the lengths of the individual classes.

ORDER anchor_class class_list

The first argument anchor_class is the anchor class and must appear
in a CLASS directive or in a previous ORDER directive. The classes
defined in the argument class list are then located contiguous to the

anchor class, subject to the class alignment requirements.

None

order DATA BSS STACK // RAM cl asses

order DATA BSS /1l Sane as above
order BSS STACK

order DATA \ /1l Still the sane
BSS \
STACK

Paradigm LOCATE Reference Manual

OUTPUT

Description The OUTPUT directive is used to specify the classes containing code
or data destined for any of the output files created with the ABSFILE
or HEXFILE directives.

Syntax QUTPUT cl ass_li st

Options Theargument class list isalist of one or more class names that are to
be placed in the output file.

Classes containing program code and constant data must be named in
an OUTPUT directive to be available when the system is powered up
and initialized. Other classes, such as those containing uninitialized
data or the program stack, require only to be assigned a physical
address. While these classes are assigned a position within the
memory address space, they do not need to appear in the output file
since they contain only uninitialized data.

Warnings will be generated if Paradigm LOCATE detects that
segments mapped in read-only regions are not in output or segments
mapped in non-read-only regions are in output.

Command line None
options

Examples output CODE ROVMDATA // One style

out put CODE /1 Anot her style
out put ROVDATA

Chapter 5, Configuration file directives 75

SEGMENT

76

Description

Syntax

Options

Command line
options

Examples

The SEGMENT directive is used to assign a physical addressto a
segment, independently of the segment's membership in a class.
While supported in Paradigm LOCATE, it is strongly recommended
that segments be placed in unique classes to place them anywhere in
the address space.

SEGVENT segnane=addr 16

The segment segname is assigned the 16-bit physical segment
specified by the addr16 argument.

SEGMENT directives are always processed before CLASS directives
to alow the removal of the segment from the class before physical
addresses are assigned to the class.

Thereis arestriction on the use of the SEGMENT directive in that it
cannot be used to set the address of any segment that is a member of
agroup. Segments within a group have segment fixups relative to the
group base and al offsets are from the group base, not the start of the
segment.

None

segment MY_CODE=0xf c00
segnent TEST_TEXT=0x0800

Paradigm LOCATE Reference Manual

WARNINGS

Description The WARNINGS directive is used to enable or disable the warning
diagnostics output by Paradigm LOCATE. Either individua warnings
or all warnings can be enabled or disabled.

Syntax WARNI NGS ALL \
NONE \
EXI TCODE=n \
warn_| i st

Options The options ALL or NONE enable or disable all warnings.

The EXITCODE option can be used to have Paradigm LOCATE
return a non-zero exit code should any warnings be detected during the
processing of the input files.

The option warn_list is one or more warning diagnostics identifiers,
prefixed with a'+' to enable the warning or a'-' to prevent the warning
from being displayed. A list of warnings organized by number can be
found in Appendix A of this manual.

The default state forall ~ The WARNINGS directive is useful to eliminate certain warnings that
warning d'agngﬁggfezf occur each time Paradigm LOCATE is used, such as the register
" variable warning for OMF86 output. To disable awarning
permanently, you should add the appropriate command line version of
this directive to your LOCATE.OPT file.

Command line The following command line switches can also be used to enable or
options disable warning diagnostics.

-wWd WARNI NGS +W d
-wWd WARNI NGS - W d
- W+ WARNI NGS ALL
- W WARNI NGS NONE
- W WARNI NGS EXI TCCDE=0
-W WARNI NGS EXI TCCODE=1

Examples warnings -wl001 -wl002 \
+w1004
war ni ngs exitcode=1

Chapter 6, Command line options 77

78

Paradigm LOCATE Reference Manual

Command line options

In addition to the configuration file directives described in the previous
section, Paradigm LOCATE can process options from the command
line or a special file that Paradigm LOCATE searches for each time it
isrun. These options enable the Paradigm LOCATE user to define
the default behavior of Paradigm LOCATE and provide a convenient
means to override the default when circumstances dictate a different
response. Whether defined on the command line or in an option file,
the syntax used for the command line options is the same.

Command line options

When defined on the command line, all Paradigm LOCATE options
are preceded by the hyphen ('A") character and are separated from the
Paradigm LOCATE program name, any other command line options,
and the application filename by one or more spaces or tabs.

locate [option [option ...]] filenane

where the filename defaults to the extension .ROM. Paradigm
LOCATE will then look for the files filename.MAP and
filename.CFG, unless overridden by command line options.

The following are some typical examples of Paradigm LOCATE
command line options:

Chapter 6, Command line options 79

LOCATE.OPT file

Option priorities

locate -b nyfile
| ocate -Aonf -Anherfile.onf herfile

In addition to the options specified on the command line, additional
options can be placed in the LOCATE.OPT; option file.
LOCATE.OPT options can be listed on the same line separated by
spaces or tabs or can be placed on multiple lines as shown below.

- Xoonf - Xl np2

- Aonf
When you run Paradigm LOCATE, it looks for LOCATE.OPT in the
current directory. If it is not found and you are running DOS 3.3 or
higher, the directory containing Paradigm LOCATE will be searched
for thisfile.

We have seen that Paradigm LOCATE can receive option input from
three different sources; the command line, the LOCATE.OPT fileg,
and the configuration file. Should conflicting options be specified, the
processing order (from lowest to highest priority) of optionsis:

m LOCATE.OPT options
m configuration file directives
= command line options

This processing order permits options defined in either the
configuration file or on the DOS command line to override the default
optionsin the LOCATE.OPT file, while command line options can
also be used to override any options specified in the configuration file.

Summary of options

80

Table 6.1 is a summary of the command line options accepted by
Paradigm LOCATE. Each of the options is described in further detail
later in this section, where the different options are organized into
related groups.

Paradigm LOCATE Reference Manual

Table 6.1

. Option Page Function
Command line summary
-Apdxx 92 Sdect AXE86 absolute file output
-Ad 92 Disable absolute output file
-Anfile 92 Supply afilename for the absolute output file
-Aomf 92 Sedect OMF86 absolute file output
-b 82 Enablereset vector generation

-b- 83 Disable reset vector generation

-cfile 87 Specify adifferent configuration file name
-Dmacro 82 Define macro

-Dmacro=text 82 Define macro to text

-do 83 Disable processing diagnostics

-d1 83 Enable filename processing diagnostics

-d2 83 Enable filename and module processing diagnostics
-d3 84 Enable compression diagnostics

-d4 84 Enabledl processing diagnostics

-Ee 84 Enablethe error/warning log

-Enfile 84 Supply afilename for the error/warning log
-Hb 88 Sdect abinary EPROM output file

-Hdsize 88 Specify the EPROM sizein KB

-He 88 Select Intel extended hex EPROM output
-Hffill 838 Specify the EPROM fill character

-Hi 88 Seect Intel hex EPROM output

-Hllen 89 Select hex record length

-Hnfile 89 Supply afilename for the EPROM output file
-Hoaddr 89 Specify the EPROM file offset

-Hssplit 89 Specify the EPROM split Sze

-Ht 89 Select Tektronix hex EPROM output

-Lc 90 Set public symbol display columnsto 2

-Ld 90 Write checksum dtatistics to listing file

-LI 90 Writeline numbersto liging file

-Lnfile 90 Supply afilenamefor ligting file

-Lp 91 Write public symbolsto liging file

-Lr 91 Write the region map to liging file

-Ls 91 Write the segment map to ligting file

-Lw 91 Set public symbol output width to 132 columns
-Lx 91 Write extended debug information to ligting file
-Od[-] 85 Enable/disable dl OMF86 debug information
-Oe€[-] 85 Enable/disable Paradigm OMF86 extensions

Chapter 6, Command line options

82

Defining macros

Initialization

BRI BIBZIIIZY

8

Enable/disable output line number records
Enable/disable public records in OMF86 output
Enable/disable type records in OMF86 output
Enable/disable symbol records in OMF86 output
Disable sign on displays

Enable stack initidization code

Disable stack initidization code

Enable a hon-zero exit code on warnings
Enable the display of al warnings

Disable the diplay of al warnings

Disable the display of warning Wxxxx

Enable the display of warning Wxxxx

Set the default AXES6 output file extension
Set default configuration file extension

Set the default listing file extension

Set the default linker map file extension

Set the default OMF86 output file extension

Macros for the Paradigm LOCATE configuration file can be defined
on the command line with the -D command line option.

-Dname

-Dname=text

Defines the macro identifier name and sets its value
to 1.

Defines the macro identifier name and sets its value
to text.

The following options permit Paradigm LOCATE to automatically
generate the reset vector and stack initialization code:

-b

Enables the automatic creation of a reset vector
pointing to the program entry point and places the
code at the absolute address FFFFOH.

Directive: INITCODE RESET

Paradigm LOCATE Reference Manual

-b- Disables any reset vector code generation (the

default).
Directive: INITCODE NORESET

-S Enables the automatic creation of initialization code
for the SS:SP register pair and places it in the class
??LOCATE.
Directive: INITCODE STACK

-S Disables any stack initialization code (the default).
Directive: INITCODE NOSTACK

Diagnostics The following set of options control the display of diagnostic
messages. Paradigm LOCATE gives you complete control over the
display of output diagnostics and log files, plus the ahility to customize
the display of individual warning messages.

Startup display = These options control the display of the Paradigm LOCATE copyright
and version information when Paradigm LOCATE isfirst started.

-q Disables the output of Paradigm LOCATE
copyright and version displays.

Processing Processing diagnostics enable Paradigm LOCATE to keep you
diagnostics informed of which files and modules are being processed and where
errors and warnings are being generated.

-do Disables the output of all processing diagnostics
(the default).

Directive: DISPLAY NONE

-dl Enables the display of the filename of each file asiit
is processed by Paradigm LOCATE.

Directive: DISPLAY FILES

-d2 Enables the display of the filename of each file asiit
is processed by Paradigm LOCATE, aong with the

Chapter 6, Command line options 83

Error/warning log

Use
-Ee- to disable the error log.

Exit code control

84

module names from the input files. This modeis
especialy useful to help identify which of the input
modules is generating errors or warnings.

Directive: DISPLAY MODULES
-d3 Enables the display of compression diagnostics.

Use this display mode to see how much Paradigm
LOCATE is compressing your classes.

Directive: DISPLAY COMPRESSION
-d4 Enables the display of al diagnostics.
Directive: DISPLAY ALL

Paradigm LOCATE can keep alog file containing all errors, warnings
and output diagnostics. These options allow you to enable, disable
and name the error log managed by Paradigm LOCATE.

-Ee Enables the creation of an error/warning log file.
Unless overridden with the -En option, the log will
have the same filename as the input file with the
.ERR extension.

-Enfile Specifies a filename to be used for the
error/warning log and enables logging diagnostic
output to thefile. If no filename is specified in the
filefield, Paradigm LOCATE will use the default
filename for log files.

By default, Paradigm LOCATE returns a zero exit code if processing
is successfully completed without any errors. If it is desirable to have
Paradigm LOCATE return a non-zero exit code when warnings have
been issued, such as to stop a build by a MAKE utility, the -W
command line option can be used.

-W Enables Paradigm LOCATE to return a non-zero exit
code when warnings have been issued.

-W- Disables Paradigm LOCATE from returning a non-

Paradigm LOCATE Reference Manual

zero exit code when warnings have been issued.

Warning diagnostic The warning control options permit individual warnings to be enabled
control or disabled, making it easy to filter out any warnings which are
harmless but distracting.

-W- Disables the display of al warning diagnostics.
Directive: WARNINGS NONE
-w+ Enables the display of al warning diagnostics (the
default).
Directive: WARNINGS ALL
-W-WXXXX Disables the display of warning Wxxxx.
Directive: WARNINGS -Wxxxx
-WHWXXXX Enables the display of warning Wxxxx.
Directive: WARNINGS +HWxxxx

OMF86 debug The following group of command line options control how debug
control information is treated as the input files are processed into OMF86
output files. By eéiminating unnecessary debugging information, the
output file size is reduced and processing speeded up.

-Od Places all debugging records in the OMF86 output
file (the default).
Directive: DEBUG ALL

-Od- Disables all debugging records from appearing in
the OMF86 output file.
Directive: DEBUG NONE

-Oe Enables the use of the Paradigm OMF86 debug

extensions. See the description on page 59 for the
list of supported OMF86 extensions.

Chapter 6, Command line options 85

86

-Qi-

-Ol-

-Op-

Disables the use of Paradigm OMF86 debug
extensions (the default).

Directive: DEBUG NOEXT

Enables the output of an Intel iC86-compatible
OMF86 file. Intel iC86 supports only one scope
per function, folds all symbols to uppercase and
does not use leading underscores on public
symbols. With this option enabled, Paradigm
LOCATE will output an OMF86 file that closaly
matches the output from the Intel compiler.

Directive: DEBUG IC86

Disables the output Intel iC86-compatible OMF86
(the default).

Directive: DEBUG NOIC86

Enables the output of line numbers in the OMF86
output file.

Directive: DEBUG LINES

Disables the output line numbers in the OMF86
output file. Use this option to strip out line
numbers if they are not needed by your debugger
or in-circuit emulator.

Directive: DEBUG NOLINES
Enables the output of public symbolsin the
OMF86 output file.

Directive: DEBUG PUBLICS
Disables the output of public symbolsin the
OMF86 output file. Use this option to strip out

public symbols if they are not needed by your
debugger or in-circuit emulator.

Paradigm LOCATE Reference Manual

Directive: DEBUG NOPUBLICS

-Ot Enables type information in OMF86 output.
Directive: DEBUG TYPES
-Ot- Disables the output of type information in the

OMF86 output file. Use of this option to eiminate
type information if not needed by your debugger or
in-circuit emulator.

Directive: DEBUG NOTYPES

-Ox Enables the output of extended debug information
(local symbols and scopes) in the OMF86 output
file.
Directive: DEBUG SYMBOLS

-Ox- Disables extended debug information in OMF86
output.
Directive: DEBUG NOSYMBOLS

File management Theremaining options have to do with managing the files created and
used by Paradigm LOCATE.

Configuration files This option permits any file to be used in place of the default
configuration file for Paradigm LOCATE.

-cfile Use the filename file as the Paradigm LOCATE
configuration file. If not specified in this option,
Paradigm LOCATE will use the filename from the
load module with the .CFG extension (unless
changed with the -Xc option).

EPROM files This group of options control the creation of files suitable for
download to an EPROM programmer. The output file(s) will have the
same filename as the input file with the extension determined by the
file type and number of splits.

Chapter 6, Command line options 87

88

These options can process at most one EPROM image from the
command line. Using the configuration file HEXFILE directive, as
many EPROM images as desired can be created in a single pass of
Paradigm LOCATE.

-H options work independent of the configuration file HEXFILE
directive. If you have a HEXFILE directive(s) and -H options in one
single pass of Paradigm LOCATE, LOCATE will first create all
EPROM output based upon the HEXFILE directive, then create an
additional EPROM output based solely upon -H command options.

“Hb

-Hdsize

-He

-Hffill

Hi

Selects the binary EPROM format for the output
file. Thisfileformat can hold up to IMB of data.

Directive: HEXFILE BINARY

Allows the EPROM size to be selected. The unit
of measurement for the size argument isin KB and
can be value from 1 (1KB EPROM image) to 1024
(a1MB EPROM image).

Directive: HEXFILE SIZE=size

Selects the Intel extended hex EPROM format for
the output file. Thisfile format can hold up to
1MB of data.

Directive: HEXFILE INTEL86

Permits the specification of the fill character for the
unused locations in the EPROM image. Only
binary output files will contain the fill character; all
other formats use it only in checksum/CRC
calculations and it must be set by the EPROM
programmer before loading the EPROM image.
The default fill character is OXFF.

Directive: HEXFILE FILL=fill

Selects the Intel hex EPROM format for the output
file. Thisformat can hold up to 64KB of data.

Paradigm LOCATE Reference Manual

-Hllen

-Hnfile

-Hoaddr

-Hssplit

-Ht

Directive: HEXFILE INTEL80

This options alows the size of the hex file data
records to be adjusted between 8 and 64 bytes per
record.

Directive: HEXFILE LENGTH=len

Specifies a filename to be used for the output
file(s). Note that the file extension is determined
by output file type and split (see the HEXFILE
directive for atable of file extensions). If no
filename is specified in the file fidd, Paradigm
LOCATE will use the default filename.

Directive: HEXFILE FILENAME=file

Allows the specification of an address space offset
to permit Intel hex, binary and Tektronix hex files
to select the subset of the IMB address to be
included in the output file. The argument addr isa
20-hit physical address and defaults to zero if not
specified.

Directive: HEXFILE OFFSET=addr

Specifies the EPROM split count (1, 2 or 4) in the
split argument. Splitting Intel extended hex filesis
not allowed as they contain segment information.
The default splitis 1.

Directive: HEXFILE SPLIT=split
Selects the Tektronix hex EPROM format for the

output file. Thisformat can hold up to 64KB of
data.

Directive: HEXFILE TEKHEX

Listing files This group of options control the creation of alisting file containing
design documentation using the target system addresses. The output

Chapter 6, Command line options

89

90

file will have the same filename as the input file with the .LOC
extension (unless changed with the -XI option).

This option can process at most one listing file from the command
line. Using the configuration file LISTFILE directive, as many listing
files as desired can be created in a single pass of Paradigm LOCATE.

-L options work independent of the configuration file LISTFILE
directive. If you have a LISTFILE directive(s) and -L options in one
single pass of Paradigm LOCATE, LOCATE will first create al listing
output based upon the LISTFILE directive, then create an additional
listing output based solely upon -L command options.

-Lc

-Lc-

-Ld[-]

-LI[-]

-Lnfile

Sets the number of symbol columns for the public
symbol tables to use two columns. This option
results in a more compact display when many
public symbols are part of the application.

Directive: LISTFILE COLUMNS=2

Sets the number of symbol columns for the public
symbol tables to use a single column.

Directive: LISTFILE COLUMNS=1

This option enables the output of the checksum
map to the listing file. If no CHECKSUM
directives are present in the configuration file, no
output will be generated.

Directive: LISTFILE CHECKSUMS
Writes the source module name and line numbers

to the listing file. If no line numbers are present in
the input file, no output will be generated.

Use the -L |- option to disable the inclusion of line
number in the listing file.

Directive: LISTFILE LINES

Supplies a filename for the listing file. If no
filename is specified in the file fidd, Paradigm

Paradigm LOCATE Reference Manual

-Lp[-]

-Lr

-Ls

-Lw

-Lw-

-Lx

LOCATE will use the default filename.
Directive: LISTFILE FILENAME=file

Writes the public symbols sorted by name and by
address to the ligting file. If no public symbols are
present in the input file, no output will be
generated.

Directive: LISTFILE PUBLICS

Writes the memory address space attribute map to
theligting file.

Directive: LISTFILE REGIONS

Writes the absolute segment map to the listing file.
Directive: LISTFILE SEGMENTS

Sets the width of the output for the public symbol
table to 132 columns. Using this option can
prevent the clipping of public symbols when the
two column format is used.

Directive: LISTFILE WIDTH=132

Sets the width of the output for the public symbol
table to 80 columns.

Directive: LISTFILE WIDTH=80

Writes the local symbols and other debugging
information to the listing file. If the extended
debug information is not available in the input file,
no output will be generated.

Directive: LISTFILE SYMBOLS

Absolute files These options control the type of absolute output file created by
Paradigm LOCATE. Unless you plan to use a debugger (like
Paradigm DEBUG or the Turbo Debugger) or an in-circuit emulator,
there is no need to create an absolute output file with debug

Chapter 6, Command line options

91

None of these options can
be set with configuration file
directives.

92

Filename
extensions

information. These options can be set from the configuration file
using the ABSFILE directive.

-Ad

-Anfile

-Aomf

-Apd60
-Apd50
-Apd40
-Apd31
-Apd30
-Apd20
-Apd10

Disables the creation of any absolute output file
(the default).

Directive: ABSFILE NONE

Supplies afilename to be used for the absolute
output file. If no filename is specified in the file
field, Paradigm LOCATE will use the default
filename.

Directive: ABSFILE FILENAME=file

Selects an Intel OMF86 output file. The output file
will have the same filename as the input file with
the .ABS extension (unless changed with the -Xo
option). The format and debug information
content of the OMF86 file are controlled by the
-D? options.

Directive: ABSFILE OMF86

Selects the Paradigm AXEB86 output file format for
a specific version of Paradigm DEBUG. The
output file will have the same filename as the input
file with the .AXE extension (unless changed with
the -Xa option).

Directive: ABSFILE AXES86

Paradigm LOCATE comes with a set of default file extensions for
input and output files but you can choose your own if you don't care
for the default extensions. While these options can be used on the
command line, they are much better suited for inclusion in the
LOCATE.OPT; file.

The argument ext in the -X? options must be three characters or less;
otherwise an error will be reported. If no file extension is specified,

Paradigm LOCATE Reference Manual

the -X? switch will restore the default file extension used by Paradigm
LOCATE.

-Xaext Sets the default file extension for files using the
Paradigm AXE86 format.

Default: AXE

-Xcext Sets the default file extension for the Paradigm
LOCATE configuration file.
Default: .CFG

-Xlext Sets the default file extension used by listing files

created with the -L ? options or the LISTFILE
directive.

Default: .LOC

-Xmext Sets the default file extension used to open the
segment map produced by the linker.
Default: .MAP

-Xoext Sets the default file extension used for output files
in the Intel OMF86 format.
Default: ABS

Chapter 6, Command line options 93

94

Paradigm LOCATE Reference Manual

Checksums and CRCs

Adding checksums or CRCs (cyclic redundancy checks) to an
application can provide a higher degree of protection against the failure
of adevicein the field, or the ahility to detect an incorrect update of a
system employing technology such as flash EPROMs.

Paradigm LOCATE offers a number of checksum and CRC options,
each designed to address the needs of applications using embedded
PCs, or those that need the greatest degree of fault protection in the
target system. The CHECKSUM directive is used to define aregion
of the target system address space to be included in a checksum or
CRC calculation, the background fill to be used by any undefined
addresses within the region, and optionally specify the exact position to
place the calculated checksum or CRC.
Look for the example Here we introduce the general concept of a checksum or CRC but we
EXAM P?_'Egiﬁm? e'gtghr‘; don't go into too muF:h detaillas there is nothing better -tha_n aworking
for your compiler. ~ €xample. For more information and for an actual application

employing checksums and CRCs, see the compiler examples available
on the Paradigm LOCATE distribution disk.

ROMBIOS checksums

The CHECK SUM directive uses the ROMBIOS option to select the
checksum technique used by the IBM PC ROM BIOS for ROM
BIOS extensions. This technique uses a simple sum of bytes, carries

Chapter 7, Checksums and CRCs 95

You can also set the
background fill that will be
used so the final checksum
calculation is correct.

ignored, which must sum to zero to be accepted as a legitimate ROM
BIOS extension. The PC ROM BIOS scans the ROM BIOS address
space looking for the signature bytes, 55H, AAH, followed by the
count of 512 byte blocks when performing the extension ROM BIOS
scan during the BIOS initialization phase.

If the ROM BIOS finds a valid signature during the expansion ROM
BIOS scan, the ROM BIOS will calculate the checksum of the region
using the block count field. If the checksum is zero, the ROM BIOS
will perform afar call to the ROM BIOS extension entry, which is
located immediately following the expansion ROM BIOS block count
fied.

Defining a PC ROM BIOS extension requires that the signature and

block size be added to the start of a segment that will be placed on a
2KB boundary. The CHECKSUM directive placed in the Paradigm
LOCATE configuration file should look like:

CHECKSUM addr 1 TO addr2 ROVBI OS

where addr1 and addr2 define the size of the ROM BIOS extension,
minus one, since the default position for the calculated PC BIOS
extension checksum isimmediately following the end of the region.

Y ou can aso place the address el sawhere using the ADDRESS option,
but the checksum byte must be within the region of the memory
address space determined by the signature and block count in order to
be recognized as a legitimate ROM BIOS extension.

For example, the CHECKSUM directive for a ROM BIOS extension
occupying the region EOOOOH to OEFFFFH would be

CHECKSUM 0xe0000 TO Oxefffe ROVBI OS

If anon-zero fill value is used, the CHECK SUM directive FILL option
must be used as it will affect the calculated checksum.

CRC-16 checksums

96

The CRC-16 checksum is an improvement over the simple sum of
bytes used in the expansion ROM BIOS checksum. When an
application requires better odds in detecting an error condition, a CRC

Paradigm LOCATE Reference Manual

You can also specify the
background fill if it is not
zero.

CRC-16 details

Figure 7.1
CRC-16 polynomial and
initial value.

Figure 7.2
CRC-16 checksum
algorithm.

check is much more capable of finding not only single errors, but also
multiple errors.

Defining a CRC-16 checksum is done in an identical fashion to that
used in the PC ROM BIOS example:

CHECKSUM addr1 TO addr2 CRC16

where addrl1 and addr2 define the size of the address to have the
CRC-16 caculated, minus two, since the default position for the
calculated CRC-16 isimmediately following the end of the region.
(We need to leave the last two bytes free to hold the calculated CRC.)
If necessary, you can specify a different address to hold the calculated
CRC using the ADDRESS option. Unlike the PC ROM BIOS
extension, you could store the calculated CRC separately, as shown in
the following example:

CHECKSUM 0xEO000 TO OxFFFFF CRC16 ADDRESS=0x80000
FI LL=0Oxf f

If the checksum isincluded in the CRC calculation, the result should
be zero.

The polynomial and initia value used by Paradigm LOCATE to
calculate the 16-bit CRC is

O0xA001U (pol ynom al)
0x0000U (initial value)
0x0000U (final val ue)

The following C code can be used to calculate the 16-bit CRC in the
target system and is taken from the file CRC16.C, available in the
EXAMPLES\CRCDEMO directory on the Paradigm LOCATE
distribution disk. Thisis a complete working example which defines a
CRC-16 region and verifies that the checksum is correct. For more
information on the CRC-16 polynomial and the initial value, refer to
the file CHECKSUM.H in the same directory.

/* Pass thru the buffer and add the new data to the checksum */
WCRC = CRC16_INIT ;
while (dwStart <= dwsStop) {
/* Build a pointer to the start of the next calculation */
pByte = MK_FP((UINT) (dwStart >> 4), (U NT)(dwStart & 0xf)) ;

Chapter 7, Checksums and CRCs 97

/* Compute the size of the buffer */
WSi ze = (U NT) min(CRC_BUFSIZE, dwStop - dwStart + 1) ;

/* Adjust the starting position by the buffer size */
dwStart += wSi ze ;

/* Calculate the CRC on the region */
while (wSize--) {
wl ndex = (U NT8) (*pByte++ * wCRC) ;
WCRC >>= 8 ;
WCRC "= wCRCTabl e[Wl ndex] ;
}
}

/* Return the conputed CRC */
return WCRC * CRC16_FI NAL ;

CRC-32 checksums

98

CRC-32 details

Figure 7.3
CRC-32 polynomial and
initial value.

The CRC32 option works identically as the 16-bit CRC option, except
that a different polynomial and algorithm is used.

Defining a CRC32 checksum is done in an identical fashion:

CHECKSUM addr1 TO addr2 CRC32

where addr1 and addr2 define the size of the address to have the
CRC-32 calculated, minus four, since the default position for the
calculated CRC-32 is immediately following the end of the region.
(We need to leave the last four bytes free to hold the calculated CRC.)
If necessary, you can specify a different address to hold the calculated
CRC using the ADDRESS option.

The polynomial and initia value used by Paradigm LOCATE to
calculate the 32-bit CRC is

OxEDB88320UL (pol ynoni al)
OXFFFFFFFFUL (initial val ue)
OXFFFFFFFFUL (final val ue)

The following C code is used to calculate the 32-bit CRC in the target
system and is taken from the file CRC32.C, available in the
EXAMPLES\CRCDEMO directory on the Paradigm LOCATE
distribution disk. Thisis acomplete working example which defines a
CRC-32 region and verifies that the checksum is correct. For more

Paradigm LOCATE Reference Manual

Figure 7.4
CRC-32 checksum
algorithm.

Tech tips

=

information on the CRC-32 polynomial and the initial value, refer to
the file CHECK SUM .H in the same directory.

/* Pass thru the buffer and add the new data to the checksum */
dwCRC = CRC32_INIT ;
while (dwStart <= dwsStop) {
/* Build a pointer to the start of the next calculation */
pByte = MK_FP((UINT) (dwStart >> 4), (U NT)(dwStart & 0xf)) ;
/* Compute the size of the buffer */
WSi ze = (U NT) min(0x8000, dwStop - dwStart + 1) ;

/* Adjust the starting position by the buffer size */
dwStart += wSi ze ;

/* Calculate the CRC on the region */
while (wSize--) {
wl ndex = (U NT8) (*pByte++ ~ dwCRC) ;
dwCRC >>= 8 ;
dwCRC "= dwCRCTabl e[Wl ndex] ;
}
}
/* Return the conputed CRC */
return dwCRC N CRC32_FI NAL ;

Note that the 32-bit CRC32 result will not be zero if the CRC is
included in the CRC calculation.

Here are some useful tips to help you get the most out the Paradigm
LOCATE checksum options:

m Usethe CHECKSUM FILL option to set the default state for any
memory regions that are undefined (and do the same with the
debugger before loading the application)

m When debugging, avoid the use of software breakpointsin a
checksum region (they will change the checksum calculation)

m Make sure that all classes in the checksummed region are named in
OUTPUT directives

m LISTFILE CHECKSUMS option displays the details of any
checksums used including the checksum region address range and
checksum value.

Chapter 7, Checksums and CRCs 99

100 Paradigm LOCATE Reference Manual

Using compression

Paradigm LOCATE offers a compressed data option for applications
that require a small EPROM footprint yet have modest amounts of
code or initialized data that must be copied from EPROM to RAM at
startup. By discussing the various tradeoffs associated with
compression, we hope to lend some insight into when it is appropriate
to use this advanced feature of Paradigm LOCATE and when it
should not be considered.

There are no concrete guidelines when an application should use and
when it is best to avoid compressed initialized data. While the impact
on the EPROM footprint can be significant, compression, (actually
decompression), will cost time as decompression can be from 20 to 50
times slower than straight copying of initialized data from EPROM.
Careful consideration of the different options available can make for
an optimally designed system if the tradeoffs are well understood.

Likewise, the selection of compiler will also prove to be an important
factor in whether compression/decompression will be part of your
embedded application. The supported compilers vary in their ability to
keep constant data and string literals in the EPROM address space,
where the need for copying or decompression can be completely
avoided. In extreme cases, it may be preferable to select the compiler
on the basis of its ability to control the placement of data, just as one
would select the fastest compiler if speed were the dominating factor.

Chapter 8, Using Compression 101

Compression requirements

Check out the

COMPRESS example to

see the use of
compression on FAR
DATA class

Note on decompression

stack size.

Adding compressed data to an application requires that Paradigm
LOCATE compress the class and output it to an address within the
EPROM address space. |In the target system, the decompression
module must be given the source and destination addresses of the
compressed data, and sufficient stack space to perform the
decompression.

The interface code to the decompression routine lies in a compiler
helper file supplied as part of the Paradigm LOCATE compiler support
package. When enabled, this code will pass the default source and
destination addresses to the decompression function. If you wish to
add you own compressed classes, this code will need to be modified to
include support for the additional classes.

The final requirement is sufficient stack space for the decompression
code to do itswork. While no static datais required, the class
decompression code requires dightly more than 5KB of stack space
during the actual decompression phase. Once completed the stack size
can be set to accommodate the run-time needs of the application.

Compiler overview

See the Paradigm BBS for

102

compiler-specific
application notes.

Borland C++

This section is devoted to a discussion of the Borland and Microsoft
compilers and how they can impact a decision to either use or forego
the use of compression. Because of the constantly changing compiler
scene, we can only address the latest Borland and Microsoft
compilers.

Starting with Borland C++ 4.0, embedded system devel opers have two
means of controlling the placement of string literals and other
initialized data. Using the -dc command line option, Borland C++ will
automatically place string literals in the code segment, a feature long
asked for by developers. Controlling the placement of other datais
done with the -z? command line options, which like the -dc option,
can be used in source code pragmas to control things on an individual
basis.

Paradigm LOCATE Reference Manual

String literals Before Borland C++ 4.0, string literals were placed in class DATA and
not much could be done about it, without resorting to segregating the
data into different source modules and compiling with the -z? options.
Now with the ahility to have the compiler place string literals in the
code segment via the -dc option, Borland C++ 4.0 users (and later)
have a convenient method of getting all string literals out of class
DATA and into the code segment without changing a line of source
code.

Initialized data The -z? options, either from the command line or in a#pragma
The #pragma option option, are used to control the placement of code or data declarations.
doesn't work correctly inall ~ These options include the ability to specify the segment, class, or
Borland C++ 3.xreleases. group name, with command line options used to cover an entire
module, and the #pragma option to control data/code placement for
individual declarations within a module.

For example, to declare a constant array of integers in the code
segment, the following approach is taken:

#pragma option -zE TEXT -zFCODE -zH
const int _ far alntArray[] = {
1, 2, 3, 4, 5 6, 7, 8 9, 0
b
Other data types are declared in asimilar fashion. By using the -z?
options, in either format, complete control over the location of your
code and initialized datais yours.

Microsoft C/C++ Thetechniques for handling constant data using Microsoft C/C++ are
centered on the use of the __based keyword, which supplies the
ability to control the segment and class for the data.

String literals Unfortunately, the Microsoft C/C++ compiler does not support placing
string literals in the code segment using a pragma or compiler option,
but it does have a useful dternative which can result in the same
effect. Thetrick isto usethe based keyword to declare the string

Chapter 8, Using Compression 103

literals as initialized character arrays. The array is then used in place
of the string literal.

const char _ based(__segnane("_QGXIE')) aliteral 1]
const char _ based(__segnane("_GIE')) aliteral 2[]

"Hello #1" ;
"Hello #2' ;

A macro can be defined to help streamline the process, while making
the code more portable should a switch to a different compiler be
desired.

#define BASED CODE _ based(__segnanme(" _CODE"))

This macro could then be used in the above declarations

"Hel l o #1" ;
"Hello #2" ;

const char BASED CODE alLiteral 1[]
const char BASED CODE alLiteral 2[]

Should you later decide to change compilers, the macro can be
redefined to be an empty string, effectively eliminating the based code
from the application.

Initialized data Other constant initialized datais declared in a similar fashion to that
shown for string literals. For example, if you need to declare an array
of string literas, you need to first declare the string literal character
arrays and then use each name as initializers in the array declaration.

const char far * _ based(__segnane("_CODE")) aStringArray[] = {
aLiteral 1,
aLiteral 2,

}

More information Only the simplest use of the __based keyword has been presented.
Based code, data, and pointers are quite powerful and some
applications may benefit from the use of the technique in controlling
the exact placement of code and/or data. For more information, you
may wish to consult the Microsoft C/C++ documentation.

Compression algorithm

The compression agorithm used by Paradigm LOCATE is a variant of
the LZW algorithm. This algorithm was chosen over competing

104 Paradigm LOCATE Reference Manual

algorithms for its ability to highly compress the most commonly found
initialized data types, an ability the other compression algorithm
candidates lack.

Most competing solutions use a variant of the run length encoding
(RLE) algorithm which compresses repeating sequences of 8- or 16-bit
data. While an RLE algorithm works well with segments or classes
initialized to a constant value, it fails to deliver acceptable compression
on gtring literals, arrays of data, or lookup tables. Since all classes
initialized to a constant value, such as the Borland or Microsoft BSS
class, have dternative initializations that are faster and occupy less
space, the RLE agorithm typicaly fails to deliver acceptable
performance on the most commonly encountered data types.

Chapter 8, Using Compression 105

106 Paradigm LOCATE Reference Manual

Borland C++ guide

This chapter is a comprehensive overview to using Borland C++ with
embedded system applications. Covered in detail are the individual
components of the Borland C++ compiler support package, including
the startup code, run-time library helper functions, and example
applications.

An understanding of the | you are just getting started with Borland C++, you will need to be
od jgri?ggg:;;nfsrg?ﬁ familiar with the Borland compiler, Turbo Assembler, TLINK, and
MAKE utilities in order to use this chapter. For those who would
rather develop using the Integrated Devel opment Environment (IDE),
an add-on for using this powerful tool is available. Also coveredisa
complete description of the standard makefiles shipped with each
example in the Borland C++ compiler support package.

Those readers who have worked with Borland C++ in past, should
have little trouble working with this compiler in embedded system
applications. The Borland C++ compiler brings the best of PC
application development tools to the embedded system user, at a
price/performance ratio not matched by traditional embedded system
development tools.

Chapter 9, Borland C++ guide 107

Startup code

This section covers the

files in the BCPP50 root

directory.

NOTE: Because the

startup module defines the

108

order and alignment of
segments, it MUST be
linked in first.

BCPP50.ASM

Figure 9.1
Segment ordering and
alignment with DefSeg.

The startup code files take an application from the reset vector to the
start of your application. Before main() can be handed control of the
processor, the application stack and segment registers must be
initialized, data copied from EPROM to RAM, and the run-time
libraries installed and initialized. Even though a lot of work must be
accomplished to prepare an application for execution, you rarely will
need to modify the startup code. Using the Paradigm LOCATE
INITCODE directive and the startup code initiaizers, applications can
add extensions without modifying any of the Paradigm-supplied
startup code.

If you stop and take a peek inside the startup code you will find the
following organization. Following the opening comments is a series of
DefSeg macros that define the default set of segments/classes used by
a Borland C++ embedded application.

; Segment and group declarations. The order of these

; declarations is used to control the order of segments in the
; .ROMfile since the Borland |inker copies segnents in the

; same order they are encountered in the object files.

Def Seg _TEXT, para, public, CODE, <>
Def Seg _INT_, para, public, |N TDATA, | GROUP
DefSeg _INITEND_, byte, public, |N TDATA, | GROUP
DefSeg _EXIT_, dword, public, EXI TDATA, | GROUP
DefSeg _EXITEND_, byte, public, EXI TDATA, | GROUP
Def Seg _rd, para, public, ROVDATA, <>
Def Seg _erd, para, public, ENDROVDATA, <>

If you were to take a closer look and examine the definition of DefSeg
(in the file STARTUP.INC), you would discover that these macros
don't define any code or data - they simply open and immediately
close the segment. Instead of defining code or data, the position of
DefSeg macros is used by the startup code to set the order and
alignment of the default segments and classes required by a Borland
C++ application.

Paradigm LOCATE Reference Manual

Following the segment ordering code is the startup code entry point,
which also happens to be the start of the application code. At reset,
the startup code must take care of the following choresin order to
jump start the application:

1. dack initiaization

2. copy theinitialized data from EPROM to RAM
3. clear the uninitialized data

4. execute any initializers/constructors present

5. cdl main()

Steps 1 and 5 should be obvious and need no further comment. Steps
2 and 3 handle the initialization of the classes DATA and BSS, which
are defined by Borland C++ to contain the initialized and uninitialized
data for the application. Sinceinitidized data can only exist in
EPROM when power is first applied to the system, step 2 copies any
initialized data from its position in EPROM to its position in RAM.
The size of the memory block to be copied is determined by
measuring the distance from the start of class DATA to the start of
class BSS.

Uninit:ﬁﬁzg?cdat&} refersto Step 3 fills the class BSS, which contains al the uninitialized static
e ++ language
declaration Tha datae déta in your application, with zero bytes. The size of tr'1e BSSclassis
actually initialized to zero. ~ determined by the start of the class BSSEND. We can't use the stack
segment as the end of the BSS class because the stack is not part of

the group DGROUP in the compact and large memory models.

The work done by step 4 can seem rather complicated but redly it is
quite smple. Our godl is to automaticaly initidize a run-time library
package without requiring source code modification. Figure 9.2 isthe
assembly representation of the data structure used in the initializer

segment.
Figure 9.2 InitRec struc
Initializer structure format ctype db ? ; O=near, 1=far, Offh=not used
pri db ? ; 0=hi ghest, Off h=l onest
foff dw ? ; Function of fset
fseg dw ? ; Function segnent

InitRec ends

Every run-time library package or C++ object requiring initiaization
places an entry into the segment containing an array of these

Chapter 9, Borland C++ guide 109

Figure 9.3

INITCODE reset and chip
select register initialization

FARDATA.ASM

This module uses the

macro COMPRESSED to
determine how to initialize

110

class FAR_DATA.

BCPP50.INC

structures. The startup code then executes each initializer in order of
priority before calling main(). Creating an entry is even simpler; just
use #pragma startup to identify the function to be executed by the
startup code. Everything else is automatic. If the moduleis linked in,
itsinitializer will be called and we never have to modify any source
code.

Finally, you may be wondering where the peripheral register
initializations for chip selects, wait states, and DRAM refresh are
located in the startup code. Thisis handled by the Paradigm
LOCATE INITCODE directive so there is no need to modify the
startup code to adjust for different target systems. Here is a Paradigm
LOCATE configuration file fragment showing sample Intel
80C186EA/XL chip select initiaization code.

initcode reset \ /! Reset vector
uncs = Oxf 838 \ /1 32KB EPROM
I mcs = 0Ox0ff8 /1 64KB RAM

The startup code not only initializes the stack, but also defines the size
of the stack using the macro STKSIZE.

This module handles the class FAR_DATA,, if it is present in your
application. If you application does not use any far data, then
FARDATA.ASM does not need to be included with your application.
If used, be sure to link in this module immediately after the startup
code.

When far datais used, FARDATA.ASM inserts an initidizer into the
initializer table to either copy the class FAR_DATA from its position
in EPROM, or use the Paradigm LOCATE decompression module to
decompress the class. In either case, the initialization of the
FAR_DATA classis automatic and requires no assistance from the
user.

This include file contains Borland C++-specific definitions, common to
all assembly language files included with the compiler support package.

Paradigm LOCATE Reference Manual

STARTUP.INC The STARTUP.INC include file contains general purpose macros and
definitions that can be used to streamline the assembly language
startup code and helper files.

The most important of these macros is the DefSeg macro. This
macro is used to define a segment and assign it to a class, and
optionally assign it to agroup. This macro doesn't put anything in the
segment but it does set the order and alignment of the segment.

FARDATA.CFG ThisisaParadigm LOCATE configuration include file used to help
with the handling of the FAR_DATA class.

Figure 9.4 I
FARDATA.CFG /1 This Paradi gm LOCATE configuration file is used to handle

Conﬂgurat'on file contents /] Borland C++ appl ications that use cl ass FAR_DATA, and
/1 optionally conmpress the data.
/1
#if !defined(HASFARDATA) // Check if application has FAR_DATA

#defi ne _FARDATACLASSES /1 Enmpty definitions if not used
#defi ne _ROVFARDATACLASSES

#el se

#defi ne _FARDATACLASSES FAR_DATA ENDFAR_DATA
#def i ne _ROVFARDATACLASSES ROVFARDATA ENDROVFARDATA

dup FAR_DATA ROVFARDATA // Copy of initialized far data
#if defi ned(COVPRESSED) /1l I's the data al so conpressed?
conpr ess ROMFARDATA /'l Conpress the ROMWARDATA cl ass
di spl ay conpr essi on /1 Display the conpression results

#endif // defi ned(COMPRESSED)

#endif // !defined(HASFARDATA)

If the macro HASFARDATA is defined, the macros
_FAR_DATA_CLASSES and _ROMFAR_DATA_CLASSES are
defined to be the default Borland C++ far data classes, otherwise they
are defined as empty strings. If the optional macro COMPRESSED
is defined, the class ROMFARDATA is also compressed by Paradigm
LOCATE.

Chapter 9, Borland C++ guide 111

Run-time library helpers

This section covers the
files in the HELPERS
subdirectory.

Int 21h is more appropriate
since we rarely have DOS
in the target system.

TYPEDEFS.H

DOSEMU.C
DOSEMU.H

BCPPRTL.ASM

Plan on including
BCPPRTL.ASM if you use
any run-time libraries.

112

Helpers are the modules required to go beyond the use of the basic
compiler. With the possible exception of stack overflow checking, any
C or C++ source modules you create, and don't reference the C/C++
run-time libraries, will require no additional support. While these
applications are interesting, it's nice to know that the floating point,
dynamic memory management, and stream 1/O run-time libraries are
there waiting to be put to use in your application.

These functions are not only ROMable, but you can't beat the
price/performance ratio for these hand-optimized Borland libraries.
They do need some external support since most make Int 21h calls
which must be supported by the embedded system. Here we will
review each mgjor group of run-time library helpers so you can get the
most out of your Borland C++ compiler.

TYPEDEFS.H defines the common types used by the Borland C++
compiler support package and is used by each of the C helper
modules.

DOSEMU.C, together with DOSEM U.H, provides the basic Int 21h
support for the Borland C++ user.

Y ou should plan on including DOSEMU.C in any application using
the Borland C++ run-time libraries. This Int 21h handler is aways
installed first and services the most simple functions; reading and
writing interrupt vectors and catching unsupported operations. Any
subsequent Int 21h handlers installed will use the function
_chain_intr() to check if the service request belongs to it, otherwise
passing the call to the next interrupt handler in the chain.

These are the low-level functions and data structures that are common
to al Borland C++ run-time libraries. Functions for stack overflow
checking, exit(), and abort() are al defined here, as are the variables
_errno and _doserrno.

Paradigm LOCATE Reference Manual

BCPPDMM.C Thesefiles are the helpers for the Borland C++ dynamic memory
BCPPHEAP.ASM management functions. These functions include support for the near
BCPPHEAP.INC and far versions of malloc(), free(), _heapcheck(), and for those C++
users, new and delete.

Borland C++ uses asingle far heap in the compact and large memory
models, and a pair of heaps (near heap and far heap) in the small or
medium memory models. The near heap is allocated in the stack
segment so dynamic memory management users with a near heap
should set the size of the stack to be the sum of the maximum-sized
near heap and the maximum-sized stack.

The size of the heap is set in BCPPHEAP.INC if it is not predefined.
The makefiles have a macro HEAPSI ZE that is set to the desired
heap sizein KB.

BCPPSIO.C BCPPSIO.C isthe device-independent stream 1/O support module
CONSOLE.C used when functions from the printf() and scanf() families are
included in your application. These functions include printf(),
sprintf(), scanf(), sscanf(), puts(), and for you C++ users, cin, and
cout. You can aso use fprintf() with this module but the
DOS READ or DOS WRITE service code must be customized to
support multiple output devices.

Paradigm DE?UG/RT P?S The module CONSOL E.C implements a physical device interface for
areplacement ror . .
CONSOLE.C that allows the D.OS_.READ and DOS WRITE func'qons in BCPPSI O.C.. The
the debugger to serve as functionsin this module should be customized to support the serial,

the target system console. keyboard, or display device used in your target system.

BCPPSIO.C inserts an entry in the initializer table to have the startup
code call its entry point. The initialization code hooks the Int 21h
interrupt and calls the physical console initialization function in
CONSOLE.C.

BCPPFLT.ASM These are the floating point installation hel per modules.
BCPPELT.INC BCPPFLT.ASM handles the details of installing the math coprocessor
emulator or support for an 80C187 (or other math hardware). The
only option for user customization is the macro FP_INT, which selects
which interrupt vector is used to handle floating point exceptions. The

Chapter 9, Borland C++ guide 113

FPERR.C
MATHERR.C

default is set to 10h, which is correct for the emulator and the 80C187
chip.

While these files are required if floating point arithmetic is used, it is
unlikely that they will require customization. BCPPFLT.ASM inserts
an entry in the initializer table to have the startup code call its entry
point.

These are the floating point helpers built into the ROMable run-time
libraries that handle exceptions. They are provided for use should you
need to create custom exception handling code for your floating point
application.

The function _fperror() in FPERR.C handles the intrinsic floating
errors such as divide by zero and overflow. The function
__matherr() in_MATHERR.C handles the exceptions from the
floating point math libraries.

Configuration files

114

The sample applications included with Paradigm LOCATE use two
different configuration files, depending on the target system.
Configuration files with the .RM extension are used when developing
applications to execute from EPROM or for debugging with Paradigm
DEBUG and an in-circuit emulator. The configuration files with the
.RT extension assume the user will be using Paradigm DEBUG/RT to
debug the application from RAM.

There are only two subtle differences between the configuration files.
Paradigm DEBUG/RT users don't need to use the INITCODE
RESET directive since the target system is already up and running and
it doesn't make sense to start at the reset vector. Chip select
initidization is also omitted since the PDREMOTE/ROM target
system debugging kernel usually performs this function.

The second difference deals with the changes in the memory address
space. The Paradigm DEBUG/RT user must load into the RAM
address space as there is no overlay memory. The MAP directives are
adjusted to cover the RAM address space, mapping the remainder as

Paradigm LOCATE Reference Manual

reserved. The CLASS directives are also changed to reflect addresses
within the RAM address space and outside the area used by the
debugging kerndl.

Integrated Development Environment

If you plan to do your application devel opment under Windows with
the Borland Integrated Development Environment (IDE), you will
want to check out the following development guidelines. The
integrated development environment is of course designed for DOS
and Windows application development, but this does not prevent one
from putting it into service for the design of embedded applications.

Paradigm LOCATE comes with an IDE support package - Paradigm
Addon for Borland C++ IDE. Paradigm Addon streamlines your
embedded system devel opment cycle and makes you more productive.
It enables you to develop embedded applications from within the IDE.
Y ou can now create, build, and debug your applications without ever
leaving the environment.

Each of the Borland C++ examples includes a pre-configured project
file (having the .IDE file extension) for working under the Windows-
hosted IDE, making it easy to get started. Because of the many
options set by these files, we strongly recommend that new users
consider taking one of these example project files as the starting point
for their own application.

Installing Paradigm Paradigm Addon allows you to develop embedded applications in the
Addon IDE. However, there are afew minor details that must be considered.
Be sure to go through the Getting Sarted chapter of the Paradigm
Addon help topic in the IDE Online Help. It shows you how things
are set up and how they work. It also has information on upgrading
projects created by previous versions of Borland C++ IDE.

The Paradigm Addon is installed when you install Paradigm LOCATE
for the Borland C++ 5.02 compiler. Paradigm Addon
(PARADIGM.DLL) is enabled by the Setup program. However, it
can be disabled using the Borland ADDONREG.EXE tility.

Chapter 9, Borland C++ guide 115

Makefiles

PARADIGM.MKF

Common makefile

116

macros

COMPDIR

Compared with the setup for IDE users, the makefile approach is
downright smple. Each example supplied as part of the compiler
support package includes a makefile for guaranteeing the correctness
of the build process, from compiling through the running of Paradigm
LOCATE.

The remainder of this section documents the files, and their contents,
used in the makefile approach. We welcome any new Paradigm
LOCATE users to check out the contents of each makefile, and to
incorporate those features which best suit the requirements of the
application. It isasimple matter to add new modules to any of the
makefiles, while maintaining complete control over the memory
model, floating point option, and other application-dependent build
options.

This MAKE include file processes the makefile macro definitions to
produce the list of file dependencies and compiler, assembler, linker,
and Paradigm LOCATE options. It isused primarily to hide the
routine complexity of application build options, letting the makefile
remain focused on the application dependent issues.

Because the makefiles supplied with the Borland C++ examples are
complete, we welcome you to take them and use them as the starting
point for your own applications. To help you get started, hereis a
peek at the makefile for the example in EXAMPLES\FPDEMO. Each
macro includes a short description of the build options so you can
customize it to match your own target system and debugging tools.

Here is how to make quick modifications and get this application built
with a minimum of fussing. If you are not using the default Borland
C++ directory, or it isinstalled on a different drive, change the macro
COMPDIR to match your system. Thiswill allow the makefile to
create a custom TURBOC.CFG file with the compiler options and
path for include files.

Paradigm LOCATE Reference Manual

COMPCFG Thisisthe name of Borland C++ compiler configuration file. The
makefile will create this file any time a compiler option changes. This
file is used to make sure that another compiler configuration file
containing undesired compiler options is not used.

MKF This macro defines the filename of the makefile and is used to
guarantee a complete rebuild of the application should the makefile be
changed.

MODEL Thismacro is set to select the desired memory model. You can
usually use any memory model, but there may be restrictions on the
use of huge mode with some run-time library functions.

CPU The CPU macro is used to select a code generator for the target
system. Set CPU to zero if using an 8086/88 microprocessor, or one
if using aNEC V-Series, 80186-family or higher microprocessor.

DEBUG Thisoption alows you to create three different output file types.
Setting DEBUG to O will select the *.RM configuration file and
disables all debug information, making for the fast builds (and the
slowest debugging sessions). Setting DEBUG to 1, will also sdlect the
* RM configuration file but will enable compiling and assembling with
full debug information. Setting DEBUG to 2 also enables debug
information but the *.RT configuration file will be used.

OPTIMIZE This macro can be used to select the desired level of optimizations.
Set to zero for minimal optimizations during development and to one if
you want to optimize for code size. Set OPTIMIZE to two if you
want to optimize for your application for speed. The
PARADIGM .MKF file can be edited to support other, more specific,
optimizations supported by Borland C++.

WARNINGS Use this macro definition to enable or disable compiler warnings.
Specific warning control can be specified by adding -wxxx command
line options to the TURBOC.CFG file definition found at the end of
the makefile.

CODESTRING Borland C++ supports placing string literals in the code segment with
the -dc command line option. Y ou can enable this feature by setting

Chapter 9, Borland C++ guide 117

DUPSTRING

CHECKSTACK

FLOAT

FARDATA

If FARDATA is 1, the
makefile defines the macro
HASFARDATA. If
FARDATA is 2, the
makefile also defines the

macro COMPRESSED.
IOSTREAMS
EXCEPTIONS
STACK

118

CODESTRING to 1. Remember to use far pointers when string
literals are in the code segment.

Setting DUPSTRING to oneis used to force the compiler to merge
duplicate strings, an excellent idea if you use lots of string literals and
you want only a single instance.

This option is used to enable or disable the compiler stack checking
logic. During development it is not a bad idea to turn this option on to
catch errors that might otherwise crash atarget system.

Set the FLOAT macro to zero to select the option for no floating point
support. If you want to use the math coprocessor emulation included
in Borland C++, set FLOAT to 2. If you have areal math
coprocessor in your target system, set FLOAT to 3.

The FARDATA macro selects between the various levels of Borland
C++ far data support. When FARDATA is zero, the far data support
is disabled and not used. When FARDATA is set to 1, the application
can use far data and the class FAR_DATA will be duplicated and
placed in EPROM for copying to RAM by the initializer in the file
FARDATA.ASM. Setting FARDATA to 2 will enable the use of far
data, but it will be duplicated and compressed to minimize the
EPROM footprint of the class FAR_DATA.

Set the IOSTREAM S macro to zero to disable use of C/C++ stream
1/0. When set to 1, use of memory formatting run-time libraries are
supported (sprintf, etc). Set thisto 2 to select full C/C++ 1/O stream
support.

The EXCEPTIONS macro is used to enable or disable the use of
exception handling. When disabled, the appropriate Borland
NOEH?.LIB library will be linked in, minimizing the size of the
application.

This option lets you set the size of the default stack in the startup
code. The stack will be in DGROUP for the small and compact
memory models, and in its own class in the compact, large, and huge
memory models.

Paradigm LOCATE Reference Manual

The stack size can be set to any value but the minimum size is likely

to be 256 bytes. If you have many levels of function nesting, with lots
of automatics, or use the floating point emulation, the stack will need
to be larger. If the stack and heap are sharing the stack segment, the
stack must be set to the maximums of the desired stack and heap.

HEAPSIZE The HEAPSIZE macro sets the size of the heap, or it disables the
run-time library heap functions.

The Borland C++ far heap is used as the default heap in compact,
large, and huge memory models. In the small or medium memory
models, the default heap is part of the stack (set the stack size to
include your desired heap size) and HEAPSI ZE declares the size of
the far heap.

Sample applications

This section coversthe Thjs section covers the sample applications included with the Borland
files in theSEEdAi';g'ZEErS C++ support package. Except for the simple application found in
Y DEMO, al examples have complete makefiles that permit easy setting
of the memory model, floating point option, FAR_DATA class
handling, and output files for burning EPROMSs or debugging with
Paradigm DEBUG.

Each example is supplied to work with the Windows-hosted IDE or
the command line tooals, allowing whichever development environment
you are most comfortable with to be used.

DEMQO Thisisasimple demo, very similar to the example presented in
chapter 2. The main difference is that this example includes support
for building the C source file and startup code.

Thisis an excellent place to begin if you are just getting started with
Borland C++ and embedded systems.

DMMDEMO DMMDEMO isasimple example demonstrating the use of the
Borland C++ dynamic memory management routines. In this

Chapter 9, Borland C++ guide 119

The method used to
implement the far heap
optimizes the available

RAM but has the

disadvantage that LOCATE

can't perform error
checking on the class.

FPDEMO

STDIO

Paradigm DEBUG users
can inspect 'outbuf' to see

120

the output.

CPPDEMO

COMPRESS

example, an array of pointersto random-sized character arraysis
maintained. If alocation has aready been allocated, it is released,
otherwise it isfilled with data. After each allocation request, the
function heapcheck() is used to verify the integrity of the heap.

The default memory model for this application is small so a near heap
isused. If you change to compact or large memory model, the macro
HEAPEND in the file BCPPDM M .C must be changed to reflect the
paragraph address of the end of the far heap in your target system.

Also note that no other classes may follow class FARHEAP in the
ORDER directive. Thisisrequired as Paradigm LOCATE does not
know the true size of the far heap and will not catch the overlap
between the segments.

This is an example designed for users of the Borland C++ floating
point run-time libraries. It endlessly performs floating point
calculations, checking the results for accuracy. The sample code also
forces errors, divide by zero, square root of a negative number, to
verify the exception handling logic works as expected.

STDIO.C exercises the input and output streams of Borland C++.
Running the ubiquitous Sieve demo, it calculates the number primes
and displays the resuilt.

If you have a UART or an LCD display, modify the file
CONSOLE.C to work your physical device. Since we assume
nothing about the target system, all input and output are with memory
buffersin the default version.

Besides being a C++ gpplication, this example does everything: floating
point, C++ streams, and dynamic memory management with new.
Check out this example if you plan to use C++ or need accessto a
makefile with support for al run-time library options.

This example demonstrates the use of data compression with
Paradigm LOCATE. Thefile COMPRESS.C alocates a number of

Paradigm LOCATE Reference Manual

initialized and uninitialized data structures in the class FAR_DATA and
then checks that they have been correctly initialized by the startup
code.

You can build the example in any memory model and can switch
between copied far data (FARDATA = 1) and decompressed far data
(FARDATA = 2). Note that the decompression code requires at |east
5KB of stack space to work correctly.

CRCDEMO This example demonstrates the use of the checksum capabilities
supplied with Paradigm LOCATE. Paradigm LOCATE includes
complete support for IBM PC ROM BIOS extensions, and for more
critical applications, the CRC16 and CRC32 algorithms. This example
isan ideal starting point for those applications that need some form of
redundancy checking.

In the CRCDEMO example, three separate regions of the address
space are defined and the ROMBIOS, CRC16, and CRC32
checksums are computed by Paradigm LOCATE and stored
immediately following each region. As the sample code executes, it
recomputes each checksum or CRC and verifies that no errors have
been detected.

EHDEMOQO This example demonstrates the use of the C++ exception handling
capabilities of Borland C++. Paradigm LOCATE fully supports the
use of exception handling so your application can get maximum benefit
from this technology.

For those applications that need to manipulate strings, this example
also uses the C++ string class.

= Borland C++ requires afar heap to use exception handling. Y ou will
get alinker error the first time you try to build this application. Just
set the HEAPEND macro in BCPPDM M .C and you will be on your

way.

Chapter 9, Borland C++ guide 121

122

NURAM

CONST

This example demonstrates the handling of non-volatile datain an
embedded application. Data placed in a non-volatile segment is
untouched by the startup code and is only modified by the application.

This example demonstrates the use of constant datain a read-only
address space. By default, the compiler places al initialized data in the
default segment. By declaring the dataas'const' and ' far', it can be
moved out and stored in flash or EPROM. This technique reduces the
RAM footprint of an application.

Paradigm LOCATE Reference Manual

10

Microsoft C/C++ guide

This chapter is a comprehensive overview to using Microsoft C/C++
with embedded system applications. Covered in detail are the
individual components of the Microsoft C/C++ compiler support
package, including the startup code, run-time library helper functions,
and example applications.

Anunderstanding of the |f you are just getting started with Microsoft C/C++, you will need to

m“’gg;?:?;ta%/g;;yssn;%{ be familiar with the Microsoft compiler, macro assembler, LINK, and
NMAKE utilities in order to use this chapter. For those that would
rather use the Visual C++ Workbench as a devel opment environment,
complete instructions for using this powerful, Windows-hosted
software development environment are available. Also covered isa
complete description of the standard makefiles shipped with each
example in the Microsoft C/C++ compiler support package.

Those readers who have worked with Microsoft C/C++ in past, should
have little trouble migrating to using it as the centerpiece of an
embedded system application. The Microsoft C/C++ compiler brings
the best of PC application development tools to the embedded system
user, at a price/performance ratio not matched by traditional
embedded system development tools.

Chapter 10, Microsoft C/C++ guide 123

Startup code

sta

124

This section covers the
files in the MSCB80 root
directory.

NOTE: Because the
rtup module defines the
order and alignment of
segments, it MUST be
linked in first.

MSC80.ASM

Figure 10.1
Segment ordering and
alignment with DefSeg.

The startup code files take an application from the reset vector to the
start of your application. Before main() can be handed control of the
processor, the application stack and segment registers must be
initialized, data copied from EPROM to RAM, and the run-time
libraries installed and initialized. Even though a lot of work must be
accomplished to prepare an application for execution, you rarely will
need to modify the startup code. Using the Paradigm LOCATE
INITCODE directive and the startup code initiaizers, applications can
add extensions without modifying any of the Paradigm-supplied
startup code.

If you stop and take a peek inside the startup code you will find the
following organization. Following the opening comments is a series of
DefSeg macros that define the default set of segments/classes used by
a Microsoft C/C++ embedded application.

; Segment and group declarations. The order of these

; declarations is used to control the order of segments in the
.ROM file since the Mcrosoft |inker copies segnents in the

; same order they are encountered in the object files.

Def Seg _TEXT, para, public, CODE, <> ; Default code

Def Seg _DATA, para, public, DATA, DGROUP ; Initialized data
Def Seg xi heap, word, common, DATA, DGROUP ; Heap initialization
Def Seg CONST, word, public, CONST, DGROUP ; Constant data

Def Seg HDR, word, public, MSG DGROUP ; M sc. data

Def Seg _BSS, word, public, BSS, DGROUP ; Uninitialized data
Def Seg _STACK, para, stack, STACK, DGROUP ; Program stack

If you were to take a closer look and examine the definition of DefSeg
(in the file STARTUP.INC), you would discover that these macros
don't define any code or data, they simply open and immediately close
the segment. Instead of defining code or data, the position of DefSeg
macros is used by the startup code to set the order and alignment of
the default segments and classes required by a Microsoft C/C++
application.

Paradigm LOCATE Reference Manual

Following the segment ordering code is the startup code entry point,
which also happens to be the start of the application code. At reset,
the startup code must take care of the following choresin order to
jump start the application:

1. dack initiaization

2. copy theinitialized data from EPROM to RAM
3. clear the uninitialized data

4. execute any initializers/constructors present

5. cdl main()

Steps 1 and 5 should be obvious and need no further comment. Steps
2 and 3 handle the initialization of the classes DATA and BSS which
are defined by Microsoft C/C++ to contain the initialized and
uninitialized data for the application. Since initialized data can only
exist in EPROM when power is first applied to the system, step 2
copies any initialized data from its position in EPROM to its position in
RAM. The size of the memory block to be copied is determined by
measuring the distance from the start of class DATA to the start of
class BSS.

Uninitialized data refersto Step 3 fills the class BSS, which contains al the uninitialized static
the C 'agﬂiag:tgfsféfjg{; datain your application, with zero bytes. The size of the BSS classis
initialized to zero. determined by the start of the class STACK.

The work done by step 4 can seem rather complicated but it is really
quite smple. Our godl is to automaticaly initidize a run-time library
package without requiring source code modification. Every run-time
library package or C++ object requiring initialization places a pointer
into the segment containing an array of these initializers. The startup
code then executes each initializer in order of priority before calling
main(). If the moduleislinked in, itsinitiaizer will be cdled and we
never have to modify any source code.

Finally, you may be wondering where the peripheral register
initializations for chip selects, wait states, and DRAM refresh are
located in the startup code. Thisis handled by the Paradigm
LOCATE INITCODE directive so there is no need to modify the
startup code to adjust for different target systems. Hereis a Paradigm
LOCATE configuration file fragment showing the Intel 80C186EA/XL
chip select initialization code.

Chapter 10, Microsoft C/C++ guide 125

Figure 10.2

INITCODE reset and chip
select register initialization

CINIT.ASM

This module uses the

macro COMPRESSED to
determine how to initialize

126

class FAR_DATA.

MSC80.INC

STARTUP.INC

initcode reset \ /1 Reset vector
uncs Oxf 838 \ /1 32KB EPROM
I mcs 0x0f f 8 /1 64KB RAM

The startup code not only initializes the stack, but also defines the size
of the stack using the macro STKSIZE.

This module handles the classes FAR_DATA and FAR_BSS, if they
are present in your application, plus the startup code initializers.

When far datais used, CINIT.ASM will copy the class FAR_DATA
from its position in EPROM, or use the Paradigm LOCATE
decompression module to decompress the class. The memory used in
the class FAR_BSS is also set to zero, as required by the compiler. In
either case, the initiaization of the FAR_DATA classis automatic and
requires no assistance from the user.

Following the initialization of memory, the module will call any linked-
ininitializers. Initializers are broken down into four groups. The
Paradigm initializers are used to install support for run-time library
helpers. These are followed by the Microsoft near/far initializers. The
last group of initializers are used by C++ applicationsto cal the
constructors for any global objects.

This include file contains Microsoft C/C++-specific definitions,
common to all assembly language files included with the compiler
support package.

The STARTUP.INC include file contains general purpose macros and
definitions that can be used to streamline the assembly language
startup code and helper files.

The most important of these is the DefSeg macro. This macro is used
to define a segment and assign it to a class, and optionally assignitto a
group. This macro doesn't put anything in the segment but it does set
the order and alignment of the segment.

Paradigm LOCATE Reference Manual

FARDATA.CFG ThisisaParadigm LOCATE configuration include file used to help
with the handling of the FAR_DATA and FAR_BSS classes.

Figure 10.3 I
FARDATA.CFG /1 This Paradi gm LOCATE configuration file is used to handle
Conﬁgurat'on file contents 1/ M crosoft C/ C++ appl ications that use cl ass FAR_DATA, and
/1 optionally conpress the data.
/1
/1 This file has no effect if class FAR DATA is not used.
/1

#if 1defined(HASFARDATA) /1 Check if FAR_DATA exists
#define _START_RAM DATA DATA /1 Class DATA is first
#define _FAR DATA_CLASSES /'l Enmpty if not used

#define _ROWFAR_DATA CLASSES

#el se

#define _START_RAM DATA FAR DATA // Cass FAR DATA is first
#define _FAR DATA CLASSES FAR DATA ENDFAR_DATA FAR_BSS

ENDFAR_BSS
#define _ROWFAR_DATA_CLASSES ROVFARDATA ENDROVFARDATA

dup FAR_DATA ROVFARDATA /1 Copy initialized far data
#if defi ned(COVPRESSED) /1 Is the data conpressed?
conpress ROVFARDATA /1 Conpress ROVFARDATA cl ass
di spl ay conpr essi on /1 Display conpression
results

#endi f /1 defi ned(COMPRESSED)
#endi f /1 !defined(HASFARDATA)

If the macro HASFARDATA is defined, the macros

_FAR DATA CLASSES and ROMFAR_DATA CLASSES are
defined to be the default Microsoft C/C++ far data classes, otherwise
they are defined as empty strings. If the optional definition
COMPRESSED is defined, the class ROMFARDATA is compressed
by Paradigm LOCATE.

Run-time library helpers

This section covers the Helpers are the modules required to go beyond the use of the basic

files in the HELPERS
subdirectory, compiler. With the possible exception of stack overflow checking, any

Chapter 10, Microsoft C/C++ guide 127

Int 21h is more appropriate
since we rarely have DOS
in the target system.

TYPEDEFS.H

DOSEMU.C
DOSEMU.H

MSCRTL.ASM

Plan on including
MSCRTL.ASM if you use
any run-time libraries.

128

C or C++ source modules you create and don't reference the C/C++
run-time libraries, will require no additional support. While these
applications are interesting, it's nice to know that the floating point,
dynamic memory management, and stream 1/O run-time libraries are
there waiting to be put to use in your application.

These functions are not only ROMable, but you can't beat the
price/performance ratio for these hand-optimized Microsoft libraries.
They do need some external support since most make Int 21h calls
which must be supported by the embedded system. Here we will
review each mgjor group of run-time library helpers so you can get the
most out of your Microsoft C/C++ compiler.

TYPEDEFS.H defines the common types used by the Microsoft
C/C++ compiler support package and is used by each of the C helper
modules.

DOSEMU.C, together with DOSEM U.H, provides the basic Int 21h
support for the Microsoft C/C++ user.

Y ou should plan on including DOSEMU.C in any application using
the Microsoft C/C++ run-time libraries. This Int 21h handler is dways
installed first and services the most simple functions; reading and
writing interrupt vectors and catching unsupported operations. Any
subsequent Int 21h handlers installed will use the function
_chain_intr() to check if the service request belongs it, otherwise
passing the call to the next interrupt handler in the chain.

These are the low-level functions and data structures that are common
to al Microsoft C/C++ run-time libraries. Functions for stack
overflow checking, exit(), and abort() are all defined here, as are the
variables_errno and _doserrno.

MSCRTL.ASM also provides near heap support. The macro
NHEAPEND determines the size of the near heap.

Paradigm LOCATE Reference Manual

MSCDMM.C Thesefiles are the helpers for the Microsoft C/C++ dynamic memory
MSCHEAP.ASM management functions. These functions include support for the near
MSCHEAP.INC and far versions of malloc(), free(), _heapchk(), and for those C++
users, new and delete.

Microsoft C/C++ supports both a far heap and a near heap. The near
heap is alocated immediately following the stack. You can set the size
of the near heap, which is part of the group DGROUP, by changing
the definition of NHEAPSIZE in the file MSCRTL.ASM.

The size of the heap is set in MSCHEAP.INC if it is not predefined.
The makefiles have a macro HEAPSI ZE that is set to the desired
heap sizein KB.

MSCSIO.C MSCSIO.C is the device-independent stream 1/O support module
CONSOLE.C used should functions from the printf() and scanf() families be
included in your application. These functions include printf(),
sprintf(), scanf(), sscanf(), puts(), and for you C++ users, cin, and
cout. You can aso use fprintf() with this module but the
DOS READ or DOS WRITE service code must be customized to
support multiple output devices.

Paradigm DE?UG/RT P?S The module CONSOL E.C implements a physical device interface for
areplacement ror . .
CONSOLE.C that allows the D.OS_.READ and DOS WRITE func'qons inMSCSIO.C. .The
the debugger to serve as functionsin this module should be customized to support the serial,

the target system console. keyboard, or display device used in your target system.

MSCSIO.C inserts an entry in the initializer table to have the startup
code call its entry point. The initialization code hooks the Int 21h
interrupt and calls the console initialization function in CONSOLE.C.

MSCFLT.ASM Thisis the floating point installation helper module. MSCFLT.ASM
handles the details of installing the math coprocessor emulator or
support for an 80C187 (or other math coprocessor hardware). The
only option for user customization is the macro FP_INT, which selects
which interrupt vector is used to handle floating point exceptions. The
default is set to 10h, which is correct for the emulator and the 80C187
chip.

Chapter 10, Microsoft C/C++ guide 129

Note!

Configuration files

130

For Microsoft floating point emulation, it is required to set the target
processor register bit that causes ESC opcode to be trapped. On 186
processors, set the ET bit in RELREG. On 386 processors, set the
EM bit in CRO. On some processors including 188 and V25, thisis
automatic. Sample code to enable ESC opcode trap isincluded in
MSCFLT.ASM. See documentation inside the file for details.

While thisfileis required if floating point arithmetic isused, it is
unlikely that they will require customization. MSCFLT.ASM inserts
an entry in the initializer table to have the startup code call its entry
point.

If you are using the Microsoft emulated floating point library, you
must set the processor control register bit that causes ESC opcodes to
be trapped. On 186 processors, set the ET bit in RELREG. On 386
processors, set the EM bit in CRO. DOSEMU.C must be linked to
handle the Int 7 exception. On some processors, this is automatic
(188, V25 etc).

The sample application included with Paradigm LOCATE uses two
different configuration files, depending on the target system.
Configuration files with the .RM extension are used when developing
applications to execute from EPROM or for debugging with Paradigm
DEBUG and an in-circuit emulator. The configuration files with the
.RT extension assume the user will be using Paradigm DEBUG/RT to
debug the application from RAM.

There are only two subtle differences between the configuration files.
Paradigm DEBUG/RT users don't need to use the INITCODE
RESET directive since the target system is already up and running and
it doesn't make sense to start at the reset vector. Chip select
initidization is also omitted since the PDREMOTE/ROM target
system debugging kernel usually performs this function.

The second difference deals with the changes in the memory address
gpace. The Paradigm DEBUG/RT user must load into the RAM
address space as there is no overlay memory. The MAP directives are
adjusted to cover the RAM address space, mapping the remainder as
reserved. The CLASS directives are also changed to reflect addresses

Paradigm LOCATE Reference Manual

within the RAM address space and outside the area used by the
debugging kerndl.

Visual Workbench

Setting up the
Visual Workbench

Creating a project

The magjor problem of using the Microsoft Visual Workbench (VWB)
to develop embedded applications is the assumption that users want to
create a PC-style application. That is, the Visual Workbench always
tries to bring in the default startup code and default libraries. As many
of the default compiler/linker options are not appropriate for
embedded applications, steps must be taken to ensure the ROMable
startup code and run-time libraries are used in building our application.

Besides not supporting MASM directly, the Visua Workbench does
not provide users with full control over the compiler, linker, and
NMAKE, making the Visual Workbench project files incompatible
with embedded applications. Fortunately, the Visual Workbench does
accept external makefiles, a capability we can exploit to use the Visual
Workbench as the basis for embedded system application
development.

Generally speaking, no special settings are needed because we are not
using the internal project files created by the VMB. Instead, the
makefile associated with each of the Paradigm examples will serve as
the external project file. Let's take the CPPDEMO application as an
example and see how easy it is to setup the Visual Workbench to build
this application using the supplied makefile.

Select Project|Open to load the application makefile into the Visual
Workbench as an external project.

File Nane: nekefile
[x] Use as an External Makefile

If the MAKEFILE is not in the current directory, use the directory tree
to go to where it is located.

Chapter 10, Microsoft C/C++ guide 131

External project
options

Adding tools

Setting up the
environment

Starting your own

132

project

The External Project Option dialog window will pop up as soon as
Open Project dialog window is closed. In this window, you can enter
the target filename and select target file type.

Debug Target Nane: CPPDEMO. AXE

Proj ect Type: O her
Debug Bui I d: NVAKER /f MAKEFI LE
Rel ease Buil d: NMAKER /f MAKEFI LE

This tells the project manager that CPPDEM O.AXE isthe final target
to be built by the Visual Workbench and that it is not a DOS or
Windows application.

Paradigm DEBUG can aso be integrated into the Visual Workbench
tool set so it can be started from the Tools pull-down menu. Select
the Options|Tools menu item and fill the fields to install Paradigm
DEBUG, as shown below.

[Add] (Use the directory tree to sel ect Paradi gm DEBUG)
Conmand Li ne: C:\ PD\ PDRT186. PI F

Menu Text: Par adi gm &DEBUG

Argument s: CPPDEMO. AXE

Initial Directory: (your current directory)

If you do not want to pass the .AXE file name in command line, you
can leave Arguments field blank. Y ou can aso control if you want to
be prompted for arguments by enabling or disabling the Ask for
arguments field.

These final options are set to match your system and should be
adjusted accordingly.

Options:Directories: "Directories" dialog
Executable Files Path c:\nsvc\bin;c:\locate

It is strongly recommended to use one of our example makefiles as a
template for your own project. This ensures that correct settings for
both the Paradigm and Microsoft tools and embedded system targets.
To customize the makefile for use with your own application, all that
isrequired is to add or delete modules to the source and object file
dependencies.

Paradigm LOCATE Reference Manual

Makefiles

PARADIGM.MKF

Common makefile
macros

COMPDIR

MKF

MODEL

Each example supplied as part of the compiler support package
includes a makefile for guaranteeing the correctness of the build
process. We welcome any new Paradigm LOCATE users to check
out the contents of each makefile, and to incorporate those features
which best suit the requirements of the application. It isasimple
matter to add new modules to any of the makefiles, while maintaining
complete control over the memory model, floating point option, and
other application-dependent build options.

This MAKE include file processes the makefile macro definitions to
produce the list of file dependencies and compiler, assembler, linker,
and Paradigm LOCATE options. It isused primarily to hide the
routine complexity of application build options, letting the makefile
remain focused on the application dependent issues.

Because the makefiles supplied with the Microsoft C/C++ examples
are complete, we welcome you to take them and use them as the
starting point for your own applications. To help you get started, here
is apeek at the makefile for the example in EXAMPLES\FPDEMO.
Each macro describes the build options you can customize to meet the
requirements of your target system and debugging tools.

Here is now to make quick modifications and get this application built
with a minimum of fussing. If you are not using the default Microsoft
C/C++ directory, or it isinstalled on a different drive, change the
macro COMPDIR to match your system.

This macro defines the filename of the makefile and is used to
guarantee a complete rebuild of the application should the makefile be
changed.

This macro is set to select the desired memory model. You can
usually use any memory model, but there may be restrictions on the
use of huge mode with some run-time library functions.

Chapter 10, Microsoft C/C++ guide 133

CPU

DEBUG

WARNINGS

OPTIMIZE

CHECKSTACK

FLOAT

If you are using

FLOAT = 2, see the note
regarding ESC opcode
trapping on page 130

FARDATA

If FARDATA is 1, the
makefile defines the macro
HASFARDATA. If
FARDATA is 2, the
makefile also defines the
macro COMPRESSED.

134

The CPU macro is used to select a code generator for the target
system. Set CPU to zero if using a 8086/88 microprocessor, one if
using an 80186-family or NEC V-Series microprocessor, or two for a
80286 or higher.

This option allows you to create three different output file types.
Setting DEBUG to 0 will select the *.RM configuration file and disable
all debug information, making for the fast builds (and the dowest
debugging sessions). Setting DEBUG to 1, will also select the *.RM
configuration file but will enable compiling and assembling with full
debug information. Setting DEBUG to 2 also enables debug
information but the *.RT configuration file will be used.

This option is used to select the desired level of compiler syntax
checking. Set this macro to the level which matches your coding style
and development requirements.

This macro can be used to select the desired level of optimizations.
Set to zero for minimal optimizations during development and to one if
you want to optimize for size, or two if you want to optimize for
speed. The PARADIGM .MKF file can be edited to support other,
more specific, optimizations supported by Microsoft C/C++.

This option is used to enable or disable the compiler stack checking
logic. During development it is not a bad idea to turn this option on to
catch errors that might otherwise crash atarget system.

Set the FLOAT macro to zero to select the option for no floating point
support. If you want to use the alternate math library, set FLOAT to
1. If you want to use the math coprocessor emulation included in
Microsoft C/C++, set FLOAT to 2. If you have area math
coprocessor in your target system, set FLOAT to 3.

The FARDATA macro selects between the various levels of
Microsoft C/C++ far data support. When FARDATA is zero, the far
data support is disabled and not used. When FARDATA issetto 1,
the application can use far data and the class FAR_DATA will be
duplicated and placed in EPROM for copying to RAM by the
initidization code in the file CINIT.ASM. Class FAR_BSSwill dso

Paradigm LOCATE Reference Manual

be defined and the startup code will fill this class with zero. Setting
FARDATA to 2 will enable the use of far data, but it will be
duplicated and compressed to minimize the EPROM footprint of the
class FAR_DATA.

IOSTREAMS Set the IOSTREAM S macro to zero to disable use of C/C++ stream
1/0. When set to 1, use of memory formatting run-time libraries are
supported (sprintf, etc). Set thisto 2 to select full C/C++ 1/O stream
support.

STACK Thisoption lets you set the size of the default stack in the startup
code.

The stack size can be set to any value but the minimum sizeis likely

to be 256 bytes. If you have many levels of function nesting, with lots
of automatics, or use the floating point emulation, the stack will need
to be larger.

HEAPSIZE The HEAPSI ZE macro sets the size of the heap, or it disables the
run-time library heap functions.

The Microsoft C/C++ far heap is used as the default heap in compact,
large, and huge memory models. In the small or medium memory
models, the default heap is part of the stack (set the stack size to
include your desired heap size) and HEAPSI ZE declares the size of
the far heap.

Sample applications

This section coversthe Thjs section covers the sample applications included with the
files in theSEEdAi';g'ZEErS Microsoft C/C++ support package. Except for the simple application
Y found in DEMO, all examples have complete makefiles that permit
easy setting of the memory modd, floating point option, FAR_DATA
and FAR_BSS class handling, and output files for burning EPROMs
or debugging with Paradigm DEBUG.

Each example is supplied to work with the Windows-hosted Visual
Workbench or the command line tools, allowing whichever
development environment you are most comfortable with to be used.

Chapter 10, Microsoft C/C++ guide 135

DEMO

DMMDEMO

The method used to
implement the far heap
optimizes the available

RAM but has the
disadvantage that LOCATE
can't perform error
checking on the class.

FPDEMO

If you plan to use emulated
floating point, see the note
regarding ESC opcode
trapping on page 130.

STDIO

Paradigm DEBUG users
can inspect 'outbuf' to see
the output.

136

Thisis a simple demo, very similar to the example presented in
chapter 2. The main difference is that this example includes support
for building the C source file and startup code.

Thisis an excellent place to begin if you are just getting started with
Microsoft C/C++ and embedded systems.

DMMDEMO is a simple example demonstrating the use of the
Microsoft C/C++ dynamic memory management routines with near
and far heaps. In this example, an array of pointers to random-sized
character arrays is maintained. If alocation has already been
alocated, it is released, otherwise it is filled with data. After each
allocation request, the function _heapchk() is used verify the integrity
of the heap.

In order for the far heap to operate properly, the macro FHEAPEND
in the file. MSCDMM.C must be changed to reflect the paragraph
address of the end of the far heap in your target system. Also note
that the class STACK, which contains the far heap, must not be
followed by any other classes as the size of the far heap is not fully
known by Paradigm LOCATE.

Thisis an example designed for users of the Microsoft C/C++ floating
point run-time libraries. It endlessy performs floating point
calculations, checking the results for accuracy. The sample code also
forces errors, divide by zero, square root of a negative number, to
verify the exception handling logic works as expected.

STDIO.C exercises the input and output streams of Microsoft C/C++.
Running the ubiquitous Sieve demo, it calculates the number primes
and displays the resuilt.

If you have a UART or an LCD display, modify the file
CONSOLE.C to work your physical device. Since we assume
nothing about the target system, all input and output are with memory
buffersin the default version.

Paradigm LOCATE Reference Manual

CPPDEMO Besides being a C++ application, this example does everything: floating
point, C++ streams, and dynamic memory management with new.
Check out this example if you plan to use C++ or need accessto a
makefile with support for al run-time library options.

COMPRESS This example demonstrates the use of data compression with
Paradigm LOCATE. Thefile COMPRESS.C alocates a number of
initialized and uninitialized data structures in the classes FAR_DATA
and FAR_BSS and then checks that they have been correctly
initialized by the startup code.

You can build the example in any memory model and can switch
between copied far data (FARDATA = 1) and decompressed far data
(FARDATA = 2). Note that the decompression code requires at |east
5KB of stack space to work correctly.

CRCDEMO This example demonstrates the use of the checksum capabilities
supplied with Paradigm LOCATE. Paradigm LOCATE includes
complete support for IBM PC ROM BIOS extensions, and for more
critical applications, the CRC16 and CRC32 algorithms. This example
isan ideal starting point for those applications that need some form of
redundancy checking.

In the CRCDEMO example, three separate regions of the address
space are defined and the ROMBIOS, CRC-16, and CRC-32
checksums are computed by Paradigm LOCATE and stored
immediately following each region. As the sample code executes, it
recomputes each checksum or CRC and verifies that no errors have
been detected.

NURAM This example demonstrates the handling of non-volatile datain an
embedded application. Data placed in a non-volatile segment is
untouched by the startup code and is only modified by the application.

Chapter 10, Microsoft C/C++ guide 137

138

CONST

This example demonstrates the use of constant datain a read-only
address space. By default, the compiler places al initialized data in the
default segment. By declaring the dataas'const' and ' far', it can be
moved out and stored in flash or EPROM. This technique reduces the
RAM footprint of an application.

Paradigm LOCATE Reference Manual

X
A
Warning diagnostics

The warnings listed in this appendix indicate potential problems or
relay diagnostic information to the user concerning the trandation
process. Each warning message is listed in numerical order and may
be disabled by a command line option or in the configuration file, if
you prefer to ignore the warning.

Paradigm LOCATE warnings

Message The following warning diagnostics are produced by Paradigm
explanations LOCATE while the processing the input files, command line
arguments, or configuration file.

W1000 No address assigned to segment 'seg/class’
The identified segment did not appear in a CLASS, SEGMENT or
ORDER directive and no physical address assignment has been made,
leaving the segment to start at address 0x00000.

W1001 Unable to translate debug info for 'module’:'symbol’
Paradigm LOCATE does not support the trandation of the type
information for the symbol and the type information is lost from the
debug records.

Appendix A, Warning diagnostics 139

140

W1002

W1003

W1004

W1005

W1006

W1007

W1008

Assumed absolute symbol 'name'

Paradigm LOCATE failed to successfully translate the segment
address for the specified symbol. While this can indicate a problem, it
isvery likely that the symbol is already an absolute address and no
address trandation is possible.

Segment constant is larger than 16-bits in 'file', line 'nnn’
The physical address assigned to a segment or class cannot be
represented as a 16-bit unsigned integer and has been truncated.
Segment fixups should have values between 0x0000 and OxFFFF.

Address 'addr' is large in 'file', line 'nnn’
The specified address in the configuration file directive is too large to
be represented as a 20-bit unsigned integer and has been truncated.

Output data truncated in 'file', line 'nnn’
The output data used in the INITCODE 1/O port output argument is
larger than OXFFFF and has been truncated.

Linker output files have different creation times

The file dates and times for the linker output are different. This
warning may indicate that the rel ocatable load module (.ROM) and the
corresponding map file (MAP) were not produced at the same time.
This warning can also occur when a post-processing utility is used to
process the relocatable load module before running Paradigm
LOCATE.

Segment 'seg’ lacks a class hame

The segment seg has been declared without a class name. This
segment can only have a physical address assigned using the
SEGMENT directive.

Multiple address assignments made to class 'name’

The class name appears in two or more CLASS or ORDER directives.
Paradigm LOCATE only recognizes the first address assignment made
to aclass.

Paradigm LOCATE Reference Manual

W1009 Multiple address assignments made to segment 'seg'
The identified segment appears in two or more SEGMENT directives.
Paradigm LOCATE only recognizes the first address assignment made
to a segment.

W1010 ‘class' in multiple DUP directives in 'file', line 'nnn’
Paradigm LOCATE has found a class named in multiple DUP
directives, perhaps indicating a configuration file problem.

W1011 ‘class' in multiple COMPRESS directives in *file', line 'nnn’
The named class has turned up in multiple COMPRESS directives,
where only the first directive is effective.

W1012 Alias between segments 'seg/class' and 'seg/class'
In the event of an alias, Two or more segments in different classes share a common segment
;ngggrgslg?)fcglﬁir"s"t'”nﬁ? fixup and the configuration file directives have assigned unique
zero length segment. Physical addresses. This makes the segment translation process for
these segments ambiguous and it is possible for afixup to be
incorrectly computed. Thiswarning is usually the result of a zero

length segment ending a class.

W1013 Overlap between segments 'seg/class' and 'seg/class'
The memory address spaces for the two named segments intersect,
causing one segment to overlap the other. Thiswarning is most likely
due to a segment growing into another segment or an error in the
configuration file address assignments.

W1014 Segment 'seg/class' exceeds the 1MB address space
The length of the segment seg in class 'class extends it beyond the
end of the IMB address space, preventing al or part of the segment
from being addressed.

W1015 Reserved region violation by segment 'seg/class'
All or part of the specified segment is located in a region of the
memory address space that has been marked as reserved using the
MAP directive.

Appendix A, Warning diagnostics 141

W1016

W1017

W1018

Many compilers can
disable the use of register
variables.

W1019

W1020

Pass parameters on the
stack when using Intel
OMF86 files.

w1021

W1022
Disable inline functions
while debugging.

W1023

w1024

142

Overlap between regions at 'addr' and 'addr’

Two regions defined in configuration file MAP directives share a
common portion of the memory address space yet have different
memory access attributes.

Segment 'seg/class' is mapped to multiple address spaces
The segment ‘seg’ in class 'class’ spans two separate regions of the
memory address space having different memory access attributes.

Intel OMF86 does not support register variables

Intel OMF86 debug information does not support the use of register
variables and the debug information was lost. If you are using a
debugger or in-circuit emulator and wish to see the variables assigned
to registers as part of the debug record, you must disable the use of
register variables by your compiler or assembler.

Intel OMF86 does not support object languages
Intel OMF86 does not support languages like C++ or Object Pascal
and object-related debugging information may have been lost.

Intel OMF86 does not support register parameters
Intel OMF86 does not support parameters to functions and procedures
to be passed in registers and the debug information was lost.

Intel OMF86 does not support based pointers
Intel OMF86 debug information does not support the use of based
pointers and the debug information was lost.

Intel OMF86 does not support inline functions
Intel OMF86 does not support inline functions and the debug
information was logt.

Unsigned 32-bit value truncated to 24-bits
Intel OMF86 does not have support for 32-bit unsigned integers and
the corresponding debug information was truncated to 24-hits.

Ambiguous structure detected - type information lost

Paradigm LOCATE is unable to determine the size of a structure and
the debug information for the structure has been lost. Thiswarning is

Paradigm LOCATE Reference Manual

W1025

W1026

w1027

W1028

W1030
You probably need to add

HEXFILE directive.

W1031

caused by insufficient debugging information being available, often
when unnamed structure members are used.

Ambiguous type reference in function 'name'

Due to alack of debug information output by the compiler, the
parameter names and types for the function name have been lost.
There isn't anything you can do but disable this warning should it
occur.

Type index too large (‘index’) - type info lost

A type index greater than 07FFFH has been detected in the output and
has been eliminated. Thiswarning is most likely due to an error in the
debugging information or more type records than are supported by
Intel OMF86.

lllegal type index detected for 'symbol’

The named symbol has a type index larger than the maximum defined
for the module and has been eliminated from the debug information.
Thiswarning is caused by an error in the debug information.

Too many line number records in module 'name’

The number of line number records in the module exceed the
capabilities of Paradigm LOCATE and have been lost. To correct this
problem, split the offending source module into two or more parts and
rebuild the application.

No 'type' output was written to ‘file'

This warning diagnostic occurs when an EPROM output file was
requested but no data was found in the region defined by the base
address and size of the EPROM. Thiswarning is most likely due to
the failure to include the segments in the address space of the EPROM
image in an OUTPUT directive or the failure to define a suitable offset
and size for extracting the EPROM image.

Requested 'type' output exceeds 1MB address space

You are creating afile that exceeds the 1M B address space boundary.
Adjust the SIZE, OFFSET, and/or SPLIT parameters to stay within
the 1IMB address space.

Appendix A, Warning diagnostics 143

144

W1032

W1033

W1034

W1035

W1036

Segment 'seg/class' is output to a memtype region
Paradigm LOCATE expects that the segments identified in an
OUTPUT directive are destined for read-only memory yet the
segment seg in class 'class' is assigned to a region mapped as
memtype. While this condition is inappropriate for ROM-based
execution (the segment won't be available if not in EPROM), it is
permitted for downloading a segment to RAM and the warning can be
ignored.

Class 'class' not named in an OUTPUT directive

The named class isin aregion of the memory address space defined
with the read-only attribute but the class was not named in a
configuration file OUTPUT directive. Thiswarning may indicate a
potential problem since the class would not be in an EPROM if the
classis not part of an OUTPUT directive.

All segments have been removed from class 'class’

All of the segments in the named class have been assigned addresses
using the SEGMENT directive. Including the classin an ORDER
directive has no effect on the address assignments and can be
eliminated.

Debug information nesting error, fixup applied

Paradigm LOCATE has detected a scoping error in the input debug
information and has attempted to fix the error by supplying the missing
scopes. Thiswarning is usually accompanied by a warning from the
compiler that debug information was lost due to the complexity of the
input source file. Fix the problem in the source module to get rid of
this warning.

Lack of debug information prevents structure padding
This warning occurs when the debug information is insufficient or
does not accurately indicate the size of a structure member. You can
use the -d2 option to identify which module is responsible for the
faulty debug information.

Paradigm LOCATE Reference Manual

W1037

Assembly language
modules with absolute
segments are usually the
culprit.

W1038

W1039

W1040

W1041

W1042

W1043

W1044

Ambiguous debug information, translation not possible
The input debug information is incomplete and Paradigm LOCATE is
unable to completdly trandate it.

Can't translate register variable using two registers
The input debug information contains register variable pairs not
supported by Paradigm DEBUG and the debug information is lost.

Segment 'seg/class' has been truncated in file 'file'
Thiswarning is output by the evaluation version of Paradigm
LOCATE when a segment exceeds the internally set limits. Because
the segment has been arbitrarily truncated, the application may no
longer work correctly although the debugging information attached is
dtill intact.

TRUNCATE option ignored in 'file', line 'nnn’
The TRUNCATE option can only be used with binary files.

'‘option’ option in 'file’, line 'nnn' is obsolete
The named option is no longer supported by Paradigm LOCATE and
has been replaced with improved capabilities.

Listing file can't process case insensitive links
Paradigm LOCATE requires that case-insensitive symbols be used in
order to demangle C++ namesin the ligting file.

'‘option’ option in 'file', line 'nnn' is not supported
The named option is not supported by this version of Paradigm
LOCATE.

Bad CodeView debug information, fixup applied - 'nnn’
The CodeView debugging information on the input load module (the
.ROM or .EXE file created by the linker) was found to be corrupt.
Paradigm LOCATE has done its best to work around the problem but
some debugging information may be lost.

Appendix A, Warning diagnostics 145

W1045

W1046

W1047

W1048

W1049

Bad Borland debug information, fixup applied - 'nnn’

The Borland debugging information on the input load module (the
.ROM or .EXE file created by the linker) was found to be corrupt.
Paradigm LOCATE has done its best to work around the problem but
some debugging information may be lost.

'type' checksum skipped for 'segment'/'class’

The named segment is not declared in an OUTPUT directive yet
appears in a checksum calculation. Paradigm LOCATE will only
calculate checksums on segments identified in OUTPUT directives.

Unable to fixup virtual segment 'seg' at 'seg:off’

The specified segment fixup in the relocation table could not be
trandated. This error usually indicates the load module and segment
map were not created on the same linker run, or the input files are
corrupt.

Mismatch in load module size and segment map size

The size of the load module and the segment map don't agree in size.
This may or may not be a problem but you can get rid of this warning
by completely defining all segments in the load module by avoiding the
use of DUP 'nnn' (?) constructs in your code.

C++ namespaces present - Paradigm DEBUG 6.0 or later
recommended

The debug information contains namespace information but the output
isfor an earlier version of Paradigm DEBUG that lacks namespace
support.

Preprocessor warnings

146

Message
explanations

W2000

The following warning diagnostics are produced by configuration file
preprocessor during the parsing of the configuration file.

Macro 'macro' needs argument in 'file’, line 'nnn’
An argument was expected with the macro.

Paradigm LOCATE Reference Manual

W2001 Wrong number of arguments 'args' in 'file’, line 'nnn’
The wrong number of macro arguments was detected during macro
expansion.

W2002 Expected formal parameter in 'file', line 'nnn’
A formal parameter was expected by Paradigm LOCATE.

W2003 Undefined symbol 'symbol' in expression in 'file’, line 'nnn’

A symbol that has not been defined in a configuration or on the
command line was used in an expression.

Appendix A, Warning diagnostics 147

148 Paradigm LOCATE Reference Manual

Error diagnostics

The errors listed in this appendix indicate the existence of a serious
problem that prevents Paradigm LOCATE from producing useful
output. Each of the error messages are listed in numerical order for

easy lookup.

Paradigm LOCATE errors

Message
explanations

E1000

E1001

The following error diagnostics are produced by Paradigm LOCATE
while the processing the input files, command line arguments, or
configuration file.

Internal error 'id' - contact Paradigm Systems

A seriousinternal error has been detected by Paradigm LOCATE.
Please contact Paradigm Systems with the internal error 1D for
assistance in resolving the error.

Error opening 'file' - 'err_info'
Paradigm LOCATE was unable to open the specified file for the
reason given in err_info.

Appendix B, Error diagnostics 149

E1002

E1003

E1004

E1005

E1006

E1008

This is usually caused by
absolute segments.

150

Error reading 'file' - 'err_info'

Paradigm LOCATE was unable to satisfy aread of the named file for
the displayed reason. This error usually indicates an incomplete load
module or some other serious error.

Error writing 'file' - 'err_info'

Paradigm LOCATE was unable to complete a write to file for the
reason err_info. The most likely cause of this error is a device with
no space - afull disk.

Insufficient memory available for Paradigm LOCATE

The dynamic memory requirements needed by Paradigm LOCATE
are unavailable to complete the processing. Attempt to free up some
memory and retry the operation or reduce the amount of debug
information in the load module if this error is encountered.

Unable to find configuration file 'file'

The Paradigm LOCATE configuration file 'file' could not be found.
Check that the configuration file exists in the directory with the
relocatable load module or in the directory specified by the -c
command line option. If the -c command line option is not used,
Paradigm LOCATE assumes that the configuration file has the same
name as the rel ocatable load module with a .CFG extension and that it
is located in the same directory as the relocatable load module ((ROM
file), for example, | ocat e -cdenp. cfg denp.rom

Paradigm LOCATE input/output filenames must be unique
To avoid confusion and preserve al files, Paradigm LOCATE does
not permit the input and output filenames to be the same. This error
will most likely occur when the output file extension is .EXE and the
input file also has the .EXE file extension. The workaround is to have
the linker name the output file .ROM (relocatable load module) or
some other extension of your choosing.

Unable to fixup virtual segment 'seg’

The specified segment fixup in the debug information could not be
converted to an absolute segment address.

Paradigm LOCATE Reference Manual

E1009

E1010

E1011

E1012

E1013

E1014

E1015

Unable to fixup program entry point - 'seg:off'

The program entry point failed segment trandlation. Since the entry
point must be in a defined segment, this error is likely to be
accompanied by a more serious error. Often this error is caused by
trying to process an input file that was packed by the Microsoft linker.

Unable to fixup initial stack - 'seg:off'

The program stack failed segment trandation. Since the stack
initialization is picked up from the segment with the stack attribute,
this error islikely due to the lack of a stack segment in the application.
Often this error is caused by trying to process an input file that was
packed by the Microsoft linker.

New executable file 'file' is not supported

Paradigm LOCATE does not support new style (Microsoft Windows
or 0S/2) executable files. Check your linker options and select the
original DOS .EXE file format.

Corrupted relocatable load module in file *file'

Paradigm LOCATE has determined the header on the load module is
corrupt or the file is not in the EXE format. Check your Paradigm
LOCATE command line options. Be sure that you pass the .ROM or
.EXE asan input file, for example, | ocat e denp. rom

-cdeno. cfg.

Input file 'file' is already an AXE file
The named file is already in AXE format, most likely because the file
has been processed by Paradigm LOCATE.

Multiple segment fixup records detected in 'file'
Only one segment fixup for asingle location is dlowed. Should this
error occur, contact Paradigm Systems for assistance.

Size must be between 1 and 1024 in file', line 'nnn’

The EPROM size specified in the HEXFILE SIZE option must be an
integer between 1 and 1024. Note that the size valueisin KB, for
example, size=8 means 8096 bytes.

Appendix B, Error diagnostics 151

152

E1016

E1017

E1018

E1019

E1020

E1021

E1022

E1023

Fill argument must be between 0 and 255 in 'file', line 'nnn’
The EPROM fill character specified in the HEXFILE FILL option
must be in the range 0x00 to OxFF.

Offset must be in 1MB address space in 'file', line 'nnn’
The EPROM offset specified in the HEXFILE OFFSET option must
be in the range 0x00000 to OxFFFFF.

Split argument must be 1, 2 or 4 in 'file', line 'nnn’

The EPROM split specified in the HEXFILE SPLIT option must be
either 1 for no split, 2 for a pair of EPROMs or 4 if a 32-bit wide split
is required.

Unable to split Intel extended hex in *file', line 'nnn’
Paradigm LOCATE does not split Intel extended hex files. If your
design requires a set of EPROMS, the Intel hex, binary or Tektronix
hex output formats must be used.

Length must be between 8 and 64 bytes in 'file', line 'nnn’
The HEXFILE LENGTH option accepts a hex file record length of 8
to 64 bytesin length.

Unable to find segment map in 'file’

Paradigm LOCATE is unable to find the segment map in the linker
map file. The segment map is needed by Paradigm LOCATE to find
and extract the individual segments from the relocatable load module.

Syntax error at or near 'this' in 'file', line 'nnn’

The syntax of the specified configuration file directive isin error and
must be corrected. Note that the line number used to identify the
error may be after the point of the error if the line has been continued
one or more times.

Unknown class 'class' in 'file', line 'nnn'

Paradigm LOCATE is unable to find the class named class in the list
of classes. Make sure that the class name is spelled exactly as it
appears in the linker map (MAP) since Paradigm LOCATE uses case-
sendgitive class names.

Paradigm LOCATE Reference Manual

E1024

E1025

E1026

E1027

E1028

E1029

E1030

E1031

E1032

It is not possible for a class
to decompress on to itself.

Unknown segment 'seg' in 'file’, line 'nnn’

Paradigm LOCATE is unable to find the segment named seg in the list
of segments. Make sure that the segment name is spelled exactly as it
appears in the linker map (MAP) since Paradigm LOCATE uses case-
sensitive segment names.

Missing or unsupported CPU type in 'file', line 'nnn’
The target microprocessor field in the CPUTY PE directive is either
unsupported, missing or multiply defined.

CPU does not support the initialization in 'file', line 'nnn’
The target microprocessor specified in the CPUTY PE directive cannot
perform the identified periphera register initialization. Either change
the target microprocessor defined in the CPUTY PE directive or use
the generic port 1/O options of the INITCODE directive.

I/O port address too large in 'file', line 'nnn’
The /O port address must be in the range of 0x0000 to OxFFFF.

One or more classes required in 'file', line 'nnn’
The specified directive requires at least one class to be named in the
list of classes.

Two or more classes required in 'file', line 'nnn’
The specified directive requires two or more classes to be named in
the list of classes.

Illegal warning control option in 'file', line 'nnn’
One or more of the warnings specified in the WARNINGS directive
do not correspond to a valid warning ID.

MAP directive address range error in 'file’, line 'nnn’
A valid region requires that the first address in a MAP directive be less
than or equal to the second address.

Class 'class' must be DUPLICATEd before compression
Y ou are attempting to compress a class that has not been duplicated or
does not have a zero-length segment as the first segment in the class.

Appendix B, Error diagnostics 153

154

E1033

E1034

E1035

E1036

E1037

E1038

E1039

E1040

Compressed class 'class' too large during pass 2

Paradigm LOCATE runs a two pass compression algorithm, the first
pass to estimate the size of the compressed class, which is needed to
apply segment fixups. A second pass is then performed, after segment
fixups have been applied, to compress the class. On pass 2, the class
compressed |ess than expected, generating this error.

Unknown or illegal command line option 'option’
The specified command line option is incorrect and requires fixing
before Paradigm LOCATE will continue.

SPLIT option incompatible with Intel extended hex

The command line option to split the EPROM files is incompatible
with Intel extended hex output. If your design requires a set of
EPROMS, the Intel hex, binary or Tektronix hex output formats must
be used.

SIZE argument out of range in option 'option’

The EPROM size specified in the -Hd command line option must be a
power of 2. Valid EPROM sizes (in KB) are 1, 2, 4, 8, 16, 32, 64,
128, 256, 512 and 1024.

OFFSET argument out of range in option 'option’
The offset field in the -Ho command line option must be a 20-bit
unsigned integer.

FILL argument out of range in option 'option’
The EPROM fill character specified in the -Hf option must be in the
range 0x00 to OxFF.

SPLIT argument out of range in option 'option’

The EPROM split specified in the -Hs command line option must be
either 1 for no split, 2 for a pair of EPROMs or 4 if afour EPROM
set is required.

LENGTH argument out of range in option 'option’

The hex record length specified in the -HI command line option must
be between 8 and 64.

Paradigm LOCATE Reference Manual

E1041 Diagnostics level out of range in option 'option’
The diagnostics output level specified in the -d command line option
must be either O for no diagnostics, 1 for filename diagnostics, 2 for
filename and module diagnostics, 3 for compression statistics, or 4 to
enable all diagnogtics.

E1042 lllegal or out of range warning argument in option 'option’
The warning ID in the -w command line option is not a valid warning
ID.

E1043 Debug information version is not supported
The debug information supplied to Paradigm LOCATE is beyond the
currently supported version. This error is most likely dueto a
compiler or linker update by the compiler vendor.

E1044 Packed CodeView debugging information not supported
The Microsoft CVPACK utility was used to pack the debugging
information, preventing Paradigm LOCATE from processing the file.

E1045 Unpacked CodeView debugging information not
supported
CVPACK usually failsto Paradigm LOCATE expects to see packed debug information, so

run when there is agrr‘r';err something prevented CVPACK from successfully completing.

E1046 Bad or missing CV2 debug information - ‘code’
An error occurred trandating the Microsoft CodeView debug
information. Indication of corrupted debug information found in the
.ROM or .EXE file that was created by the linker. Please contact
Paradigm Systems with the details of this error. Uploading your
application ((ROM, .MAP and configuration file) will help our
technical support group resolve this problem more quickly.

E1047 Bad or missing CV4 debug information - ‘code’
An error occurred trandating the Microsoft CodeView debug
information. Indication of corrupted debug information found in the
.ROM or .EXE file that was created by the linker. Please contact
Paradigm Systems with the details of this error. Uploading your
application ((ROM, .MAP and configuration file) will help our
technical support group resolve this problem more quickly.

Appendix B, Error diagnostics 155

156

E1048

E1049

E1050

E1051

E1052

E1053

Bad or missing Borland TD2 debug information - ‘code’

An error occurred trandating the Borland debug information.
Indication of corrupted debug information found in the .ROM or .EXE
file that was created by the linker. Please contact Paradigm Systems
with the details of this error. Uploading your application (.ROM,
.MAP and configuration file) will help our technical support group
resolve this problem more quickly.

Bad or missing Borland TD3 debug information - ‘code’

An error occurred trandating the Borland debug information.
Indication of corrupted debug information found in the .ROM or .EXE
file that was created by the linker. Please contact Paradigm Systems
with the details of this error. Uploading your application (.ROM,
.MAP and configuration file) will help our technical support group
resolve this problem more quickly.

Bad or missing Borland TD4 debug information - ‘code’

An error occurred trandating the Borland debug information.
Indication of corrupted debug information found in the .ROM or .EXE
file that was created by the linker. Please contact Paradigm Systems
with the details of this error. Uploading your application (.ROM,
.MAP and configuration file) will help our technical support group
resolve this problem more quickly.

'name' debug information exceeds translation limits
The named debug records exceeds the capacity of the output file
format. The only solution is to eiminate some modules with debug
information and re-run Paradigm LOCATE.

CHECKSUM directive address range error in 'file', line
'nnn’

A valid checksum region requires that the first addressin a
CHECKSUM directive be less than or equal to the second address.

CHECKSUM FILL option out of range error in 'file', line
'nnn’

The fill character specified in the CHECKSUM directive must bein
the range 0x00 to OxFF.

Paradigm LOCATE Reference Manual

E1054 CHECKSUM type option not specified in 'file’, line 'nnn’
The CHECK SUM record type isincorrectly specified. Please select
one of following CHECKSUM type options. ROMBIOS, CRC16, or
CRC32.

E1055 ADDRESS option out of range error in ‘file', line 'nnn'
The ADDRESS option in the CHECKSUM directive is outside the
target system memory address space.

E1056 ADDRESS cannot be part of checksum in 'file’, line 'nnn’
Y ou can not specify an address to place the checksum that isinside
the range of the checksum calculation.

E1057 Include file size cannot be greater than 64KB in 'file’, line
'nnn’
The binary include file size has exceeded the 64K B limit.

E1058 DUP must copy class 'class' to a unique class in 'file’, line

'nnn’
Y ou cannot duplicate a class to itsalf.

Preprocessor errors

Message Thefollowing error diagnostics are produced by configuration file
explanations Preprocessor during the parsing of the configuration file.

E2000 Internal error 'num' - contact Paradigm Systems
Thisisissued by al preprocessor internal errors. Please contact
Paradigm Systems should you encounter an internal error.

E2001 Conditional block nesting error in file'

Your configuration file has incorrectly nested #if/#el sef#endif
directives.

Appendix B, Error diagnostics 157

E2002 Conditional without an argument in 'file’, line 'nnn’
You used a conditional directive but failed to provide an expression to
evaluate.

E2003 #include syntax error in 'file’, line 'nnn’
#include requires the name of the include file enclosed in either
double quotes (") or left ("<") and right angle (">") brackets.

E2004 #else may not follow #else in 'file', line 'nnn’
An #else clause can only follow an #if or #elif directive.

E2005 #endif must be in an #if block in 'file', line 'nnn’
Paradigm LOCATE found an #endif with a corresponding #if
directive.

E2006 Unsupported #control definition in 'file’, line 'nnn’
An unsupported preprocessor control was found. Valid controls are
#f, #else, #endif, #elif, #define, #undef, and #include.

E2007 Include file 'incfile’' not found in 'file’, line 'nnn'
The named include file could not be found. Check that the path
specifies the correct location of the file.

E2008 Too many nested 'token' statements in 'file’, line 'nnn’
Y ou broke the preprocessor with a configuration file beyond
comprehension. You are going to have to simplify the file before
continuing.

E2009 Macro expansion error in 'file', line 'nnn’
An error occurred when expanding a macro. ldentify the macro in
error and correct the problem.

E2010 Redefining defining variable 'var' in 'file’, line 'nnn’
Another #define for the same variable has been found. Use the
#undef directive before redefining the variable.

E2011 #define syntax error in 'file', line 'nnn’
Y ou must specify a variable name for the macro you wish to define.

158 Paradigm LOCATE Reference Manual

E2012

E2013

E2014

E2015

E2016

E2017

E2018

E2019

E2020

E2021

lllegal #undef argument in 'file', line 'nnn’
#undef requires that a macro name be supplied.

End of file in macro argument in 'file’, line 'nnn’

An end of file condition was found while processing the macro
argument list. Check the macro and correct before continuing. This
error can also occur if the end of thefile is reached while processing a
C comment.

Recursive macro definition 'macro' in 'file', line 'nnn’
Recursive macros are not permitted. Correct the error before
continuing.

Empty character constant in 'file', line 'nnn’
A character constant was expected but not found.

Unterminated string or character constant in 'file’, line
'nnn’
An improperly terminated string literal or character constant was
found.

Can't use string in #if in 'file', line 'nnn’
String literals are not valid in conditional expressions.

Bad #if defined in 'file’, line 'nnn'
An expression that could not be evaluated was found.

Assignment not allowed in #if in 'file’, line 'nnn’
Use of the assignment operator is not permitted in conditional
expressions.

Error in multiline #if in 'file', line 'nnn’
The multiline #if directive needs work before it can be accepted by
Paradigm LOCATE.

Divide by zero error in 'file', line 'nnn’
The result of an expression evaluation resulted in division by zero.

Appendix B, Error diagnostics 159

160

E2022

E2023

E2024

E2025

E2026

E2027

#if stack overflow in 'file', line 'nnn'
Too many nested #if directives has been found, you will have to
simplify the configuration file.

Operator 'op' context fault in 'file’, line 'nnn’
Thisis an inappropriate use of the named operator.

Expression error in 'file’, line 'nnn’
Paradigm LOCATE was unable to evaluate the expression. Correct or
simplify before continuing.

#define syntax error in command line option 'opt'
A macro defined with the -D command line option is incorrectly
formed.

#error in 'file', line 'nnn': 'errmsg’
A #error directive in your configuration was processed.

Macro exceeds preprocessor limit in 'file’, line 'nnn’

A macro definition may have been too long and needs to be ssimplified
and shortened.

Paradigm LOCATE Reference Manual

X
C
Exit codes

The exit code returned by Paradigm LOCATE can be used by MAKE
utilities or batch files to determine the success or failure of the
processing. The following table indicates the meaning assigned to each

error code.
LOCATE ezibéié:ég Exit Code Meaning
0 No errors, possibly warnings
1 Error(s)
2 Serious error
3 Critical or fatal error

The severity of errors depends on the action which caused the error.
Regular errors are unexpected conditions detected with the conversion
of relocatable input file to an absolute output file, including the
conversion of type information. Some errors terminate processing
immediately while others continue until other exceptional conditions
have been checked.

Serious or critical errors are associated with the operating system of
1/O operations and cause Paradigm LOCATE to immediately finish,
clean up and exit.

Appendix C, Exit codes 161

The WARNINGS Paradigm LOCATE has the -W option to generate a non-zero exit
EXITCODE option can also ,ye gy1d any warnings be detected during processing. This option
be used to set the exit code Y 9) . gp o 9 P

for warning conditions. should be used when an environment might not display any messages

and an indication of warning is required.

162 Paradigm LOCATE Reference Manual

X
D
INITCODE port definitions

The Paradigm LOCATE INITCODE directive can be used to initialize
periphera registers found in the Intel 80C186 and NEC V-Series
microprocessors. This capability is especialy attractive since it
permits memory and peripheral chip selects, wait states, and DRAM
refresh devices to be initialized before the application startup code
takes control of the CPU, without the need to modify the startup code.
By avoiding the need to customize the startup code with complex
segmentation and initialization code, the user can focus on more
interesting applications.

Onlg. pﬁtipherat“ devices Table D.1 usesthe standard peripheral register names as defined by

which impact memory . Aec : : e

initialization are supported. eagh-mlcrop_rocr vendor. The ta}ble is ordereq py microprocessor,
asitisused in the CPUTY PE directive. If a specific microprocessor
does not appear in the following table, it does not support any port

initidizations.
INITCODE port (;I(-E‘afit?'llﬁicl)?‘].i CPUTYPE Register Port address
180186 UMCS FFAOH
180188 LMCS FFA2H
PACS FFA4H
MMCS FFAGH
MPCS FFASH

Appendix E, AXE utility 163

CPUTYPE Register Port address

180C186 UMCS FFAQOH

180C186XL LMCS FFA2H

180C188 PACS FFA4H

180C188XL MMCS FFA6H
MPCS FFA8H
MDRAM FFEOH
CDRAM FFE2H
EDRAM FFE4H

| B0C186EA UMCS FFAQOH

|80C188EA LMCS FFA2H

| 80L 186EA PACS FFA4H

| 80L 188EA MMCS FFA6H
MPCS FFA8H
RFBASE FFEOH
RFTIME FFE2H
RFCON FFE4H

|80C186EB GCS?ST FF80H-FF9EH

I80C188EB GCS?sP FF80H-FF9EH

| 80L 186EB LCSST FFAQOH

| 80L 188EB LCSSP FFA2H
uCssT FFA4H
UCSSP FFA6H
RFBASE FFBOH
RFTIME FFB2H
RFCON FFB4H

|80C186EC GCS?ST FF80H-FF9EH

I80C188EC GCS?sP FF80H-FF9EH
LCSST FFAOH
LCSSP FFA2H
ucssT FFA4H
UCSSP FFABH

164 Paradigm LOCATE Reference Manual

CPUTYPE Register Port address
|80C186EC/188EC RFBASE FFBOH
continued RFTIME FFB2H
RFCON FFB4H
MPICPO FFOOH
MPICP1 FFO2H
SPICPO FFO4H
SPICP1 FFO6H
AM186ED uMcCs FFAOH
AM 186EM/188EM LMCS FFA2H
AM 186ER/188ER PACS FFA4H
AM 186ES/188ES MMCS FFAGH
MPCS FFA8H
IMCS FFAOH (ER only)
PDCON FFFOH (EM ER only)
PIOMODEO FF70H
PIODIRO FF72H
PIOMODE1 FF76H
PIODIR1 FF78H
MDRAM FFEOH (EM ER ESonly)
CDRAM FFE2H
EDRAM FFE4H
SYSCON FFFOH (ES ED only)
AUXCON FFF2H (ES ED only)
WDTCON FFE6H (ES ED only)

Appendix E, AXE utility

165

CPUTYPE Register Port address

AM186CC UMCS FFAOH
LMCS FFA2H
PACS FFA4H
MMCS FFAGH
MPCS FFA8H
PIOMODEO FFCOH
PIODIRO FFC2H
PIOMODE1 FFCAH
PIODIR1 FFCCH
PIOMODE2 FFD4H
PIODIR2 FFD6H
CDRAM FFAAH
EDRAM FFACH
WDTCON FFEOH
SYSCON FFFOH

B0386EX CS?ADL F400H-F436H
CS?ADH F400H-F436H
CS™MSKL F400H-F436H
CS™MSKH F400H-F436H
UCSADL F438H
UCSADH FA3AH
UCSMSKL FA3CH
UCSMSKH FA3EH
RFSBAD FAAOH
RFSCIR FAA2H
RFSCON FAA4H
RFSADD FAAGH
ICW1IM FO20H
ICW2M FO21H

166 Paradigm LOCATE Reference Manual

CPUTYPE Register Port address

180386EX continued ICW1S FOAOH
ICW2S FOA1H
P1CFG F820
P2CFG F822H
P3CFG F824H
PINCFG F826H

REMAPCFG 0022H

D70208 V40 RFC FFF2H
D70216 V50 WMB FFF4H

WCY1 FFF5H

WCY2 FFF6H
D70208H V40H RFC FFF2H
D70216H V50H SCTL FFF7H

WMB FFF4H

WCY1 FFF5H

WCY2 FFF6H

WCY3 FFEAH

EXMB FFEDH

WSMB FFECH

WIOB FFEBH
D70320 V25 IDB [IDB]00:0FFFH
D70325 V25+ RFM [IDB]00:0FE1H
D70330V35 WTC [IDB]00:0FESH
D70335 V 35+ PRC [IDB]00:0FEBH

PMCO [IDB]00:0F02H

PMC1 [IDB]00:0F0A

PMC2 [IDB]00:0F12

Appendix E, AXE utility 167

168

CPUTYPE Register Port address
D70236 V53 RFC FFF2H
WMBO FFEAH
WMB1 FFF3H
WCYO0 FFECH
WCY1 FFEBH
WCY?2 FFF4AH
WCY3 FFFSH
WCY4 FFFEH
WAC FFEDH
SBCR FFF1H
D70423 V55SC PRC FFFEFH
D70433 V55PI RFM FFFECH
MBC FFFEAH
PWCO FFFESH
PWC1 FFFESH

Paradigm LOCATE Reference Manual

Figure E.1
AXE header information

Appendix E, AXE utility

m

AXE utility

The AXE utility is a program which displays various statistics about
AXESB6 files created by Paradigm LOCATE. The fields displayed
from the input AXE file are

m program entry point

AXE header size

region list

segment list

The AXE utility first looks for afile extension of .AXE before trying
to open afile with the .EXE extension. The format of the AXE
command lineis

axe filename[.ext]

The following figure contains sample output from the AXE tility,
together with a brief description of each section in the AXE file
header.

1) AXE Version 1.00
Entry Point: FFFF: 0000
AXE Header Size: 256 bytes

2) \ LOCATE\ DEMO\ SI EVE. AXE contains 3 regions
000000 O3FFFF Read/ Wite
040000 OF7FFF No access
0F8000 OFFFFF Read Only

3) \ LOCATE\ DEMO\ SI EVE. AXE contains 6 segnments

169

The load module size is the
sum of the sizes of each
segment in the AXE file.

170

0 F800: 0000 00133 O 000100
1 F813:0004 00010 O 000280
2 F815:0000 00004 O 000300
3 F816: 0000 00010 O 000380
4 FFFO0: 0000 00013 O 000400
5 FFFF: 0000 00005 O 000480

Load nodul e size: 367 bytes

Section 1 isthe AXE header information, containing the version of
AXE file, the program entry point, and the size of the AXE segment
descriptor buffer.

Section 2 is the region map, displaying the mapping instruction for the
target system memory from the Paradigm LOCATE MAP directives.
The first item is the starting address of the region, the second address
is the ending address of the region followed by the access type of the
region.

The segment map in section 3 lists the segment index, the segment
base address and segment length, segment attributes, and the offset of
the segment within the AXE file. The first segment attribute indicates
whether the segment is read-write (*-') or if it isread-only ('O"). The
second attribute indicates whether the segment is present in the AXE
file (') or if the segment descriptor is provided as a reference (‘'R') but
the segment doesn't actually exist.

Paradigm LOCATE Reference Manual

T

Hex file formats

This appendix documents the Intel hex file formats used by Paradigm
LOCATE. Thisinformation is provided to those users that need to
read Intel hex or extended hex file formats created by the Paradigm
LOCATE HEXFILE configuration file directive.

Intel extended hex

Intel extended hex is afile format designed to represent binary data
within the 80186-family address space using the standard ASCI|
character set. The hexadecimal representation of each binary byte is
encoded in a pair of ASCII charactersin the range '0' - '9' and 'A' to
'F.

There are four different record types which make up the Intel
extended hex file format:

Extended Address Record
Start Address Record
Data Record

End of File Record

Each Intel extended hex record begins with a colon (:') character as
the record mark. The record mark field is then followed by arecord

Appendix F, Hex file formats 171

Extended Address

172

Record

Data Record

Start Address
Record

length field which specifies the number of bytes of information that
follow the record type field.

Each record ends with a checksum field that contains the ASCII
representation of the two's complement of the binary data from the
record length field. If the record is correct, the sum of all fields,
including the checksum field, will be zero.

The Extended Address record is used to define a segment base
address (SBA) for the following Data records, which supply the
offsets for each data record from this base address.

The segment base address is zero until it is defined in an Extended
Address record. Once defined, the segment base address will remain
in effect until a subsequent Extended Address record is encountered.

| Mark Length Offset Type SBA Checksum
" '02' ‘0000 '02' XXX XX

Each Data record defines part of the memory address space of the
application. The absolute address of a Data record is determined by
the Offset field and the segment base address in the last Extended
Address record.

Mark Length Offset Type Data Checksum
" XX XXX ‘00" OO XX

The Length field is determined by the amount of data to be output and
the LENGTH option in the configuration file HEXFILE directive.

The Start Address record is used to specify the program entry point
for the application, as computed by Paradigm LOCATE.

| Mark | Length | Offset | Type | CS | IP |Checksum|
" ‘04’ ‘0000 '03' XXX XXX XX

Paradigm LOCATE will always set this record to the program entry
point, enabling Intel extended hex file loaders to automatically set
CS.IP to the firgt instruction of the application.

Paradigm LOCATE Reference Manual

End of File Record Thisrecord marksthe end of the Intel extended hex file and is aways
the last record output by Paradigm LOCATE.

| Mark Length Offset Type Checksum
N ‘00’ ‘0000 ‘01’ 'FF

Intel hex

Thisisthe origina Intel hex file format, dating back to the days of the
8080 microprocessor. Being the original hex file format for Intel
microprocessors having a 64K B address space, the Intel extended hex
file format added the Start Address and Extended Address record
types to expand the address space to the 1IMB used in the 8086/88 and
subsequent 16-bit microprocessors.

Intel hex file is often used with 16-bit data paths since Intel extended
hex can't be represented in a split format because of the Extended
Address records. Still, Intel hex has its limitations since it can never
support more than 64K B of data per file.

Tektronix hex

Tektronix hex, also referred to as Tekhex, is dso afile format
designed to represent of top 64K B of binary data using the standard
ASCII character set. The hexadecimal representation of each binary
byte is encoded in a pair of ASCII charactersin the range '0' - '9' and
'‘A'to 'F.

Each Tekhex record begins with a dlash (/') character as the record
mark. The record mark field is then followed by the load address and
arecord length fields which specify the offset and count of the data
that follow.

Both the header and data fields have a checksum field that contains
sum, modulo 256, of the data in the preceding records.

Data Record Each Datarecord defines part of the memory address space of the
application. The absolute address of a Data record is determined by
the Offset field.

Appendix F, Hex file formats 173

Mark Offset Length Chk1 Data Chk2
i XXX XX XX XXX XX

The Length field is determined by the amount of data to be output and
the LENGTH option in the configuration file HEXFILE directive.

174 Paradigm LOCATE Reference Manual

#
?7?CPUINIT 68

?7?LOCATE 26, 67, 68, 83

P?STACKINIT 67
80186/188
INITCODE support
80186CC
INITCODE support
80186ED
INITCODE support
80186EM/188EM
INITCODE support
80186ER/188ER
INITCODE support
80186ES/188ES
INITCODE support
80386EX
INITCODE support
80C186/188
INITCODE support
80C186EA/188EA
INITCODE support
80C186EB/188EB
INITCODE support
80C186EC/188EC
INITCODE support

163

166

165

165

165

165

166

164

164

164

164

80C186-family support 55

Index

80C186XL/188XL

INITCODE support 164

A

ABSfile extension 93
AXE file extension 93
ABSFILE

AXEB86 option 49

configuration file directive 49
FILENAME option 49

FORMAT option 49

NONE option 49

OMF86 option 49
absolute files

AXES86 49, 92

AXESG6 file format 49

file naming 49, 92

none 49, 92

OMF86 49, 92
absolute segments 35
-Ad 92

ADDONREG.EXE utility 115

ADDRESS

CHECKSUM directive 51

aliases
segment 32
ALL

175

DEBUG directive 57
DISPLAY directive 61

WARNINGS directive 77

-An 92

-Aomf 92
Apd10 92
Apd20 92
Apd30 92
Apd31 92
Apd40 92
Apds50 92
Apd60 92
AXES6

ABSFILE directive 49

B

-b 82
BCPP50.ASM 108
BCPP50.INC 110
BCPPDMM.C 113
BCPPFLT.ASM 113
BCPPHEAP.ASM 113
BCPPHEAP.INC 113
BCPPRTL.ASM 112
BCPPSIO.C 113
BIGTYPES

DEBUG directive 58
BINARY

HEXFILE directive 63
bootstrap vector 67
Borland C++

startup code 108
burning EPROMs 28

C

-c 87
.CFG file extension 93
??CPUINIT 68

176

CHECKSTACK

Borland C++ macro 118

Microsoft C/C++ macro 134
CHECKSUM

configuration file directive 51
checksums

CRC-16 96

CRC-32 98

ROMBIOS 95
CHECKSUMS

LISTFILE directive 70
checksums, in ligting file 70
CINIT.ASM

Microsoft 126
CLASS

configuration file directive 53
CLASSES

DEBUG directive 58
CLASSTEMPLATES

DEBUG directive 59
CODESTRING

Borland C++ macro 117
COLUMNS

LISTFILE directive 71
command line options

priority 80

summary 80
comments, configuration file 45
COMPCFG

Borland C++ macro 117
COMPDIR

Borland C++ macro 116

Microsoft C/C++ macro 133
COMPRESS

configuration file directive 54
compressing data 101
compressing initialized data 54
COMPRESSION

DISPLAY directive 61

Paradigm LOCATE Reference Manual

compression algorithm 104
compression requirements 102
configuration file 23
comments 45
diagnostics 45
file naming 87
format 39
line continuation 41
preprocessor 42
priority 41
configuration file directives
ABSFILE 49
CHECKSUM 51
CLASS 53
COMPRESS 54
CPUTYPE 55
DEBUG 57
DISPLAY 61
DUPLICATE 62
HEXFILE 63
INTICODE 67
LISTFILE 70
MAP 73
ORDER 74
OUTPUT 75
SEGMENT 76
WARNINGS 77
CONSOLE.C
Borland 113
Microsoft 129
constant array 103
constant data
Microsoft C/C++ 103
CPU
Borland C++ macro 117
Microsoft C/C++ macro 134
CPUTYPE
configuration file directive 55, 163
CRC16

Index

CHECKSUM directive 51
CRC-16 checksum 96
CRC32

CHECKSUM directive 52
CRC-32 checksum 98
CRCs, in ligting files 70

D

#define directive 42

-D 82
command line option 43

-do 83

-dl 83

-d2 83

-d3 84

-d4 84

DEBUG
ALL option 57
BIGTYPES option 58
Borland C++ macro 117
CLASSES option 58
CLASSTEMPLATES option 59
configuration file directive 57
DESTRUCTORS option 58
ENUMS option 58
EXTENSIONS option 58
IC86 option 57
LINES option 57
MEMBERFUNCTION option 58
Microsoft C/C++ macro 134
NOBIGTY PES option 58
NOCLASSES option 58

NOCLASSTEMPLATES option 59

NODESTRUCTORS option 58
NOENUMS option 58
NOEXTENSIONS option 58
NOIC86 option 57

NOLINES option 57

177

NOMEMBERFUNCTION option 58
NONE option 58
NOOPERATORS option 58
NOPARAMETERS option 59
NOPUBLICS option 57
NOSPACES option 59
NOSPECIALS option 59
NOSYMBOLS option 57
NOTY PES option 57
OPERATORS option 58
PARAMETERS option 59
PUBLICS option 57
SPACES option 59
SPECIALS option 59
SYMBOLS option 57
TYPES option 57
debug contral 57
line numbers 86
local symbols 87
public symbols 86
types 87
debug control, OMF86 85
debugging 29
defined operator 44
DESTRUCTORS
DEBUG directive 58
diagnostics
al 61
compression 61
errors 149
file names 61, 83
log file 84
module names 61, 83, 84
none 61, 83
warnings 139
directives
ABSFILE 49
CHECKSUM 51
CLASS 53

178

COMPRESS 54

CPUTYPE 55

DEBUG 57

DISPLAY 61

DUPLICATE 62

HEXFILE 63

INTICODE 67

LISTFILE 70

MAP 73

ORDER 74

OUTPUT 75

SEGMENT 76

WARNINGS 77
DISPLAY

ALL option 61

COMPRESSION option 61

configuration file directive 61

FILES option 61

MODULES option 61

NONE option 61
DOSEMU.C

Borland 112

Microsoft 128
DUPLICATE

configuration file directive 62
duplicating classes 37
DUPSTRING

Borland C++ macro 118

E

#if directive 43
#else directive 43
#endif directive 43
#error directive 45
.EXE files 22, 32
-Ee 84

-En 84

entry point 109, 125

Paradigm LOCATE Reference Manual

ENUMS WARNINGS directive 77

DEBUG directive 58 EXTENSIONS
EPROM DEBUG directive 58

binary format 63, 88 extensions, file 92

file naming 65, 89

fills 64, 88 F

hex record length 89
Intel extended hex format 63, 88
Intel hex format 63, 88

far heap 113, 129, 136
FAR_BSS 126
FAR_DATA 110, 126

length 64 FARDATA, See also macros
o.ff.sets 63, 89 Borland C++ macro 118
sizing 64, 88 Microsoft C/C++ macro 134
splitting 64, 89 FARDATA.ASM
Tektronix hex format 63, 89 Borland 110

error messages 149 FARDATA.CFG

examples Borland 111
COMPRESS (Borland) 120 Microsoft 127
COMPRESS (Microsoft) 137 FARHEAP 120

CONST (Borland) 122
CONST (Microsoft) 138
CPPDEMO (Borland) 120

FHEAPEND 136
file extensons 92

: ABS 93
CPPDEMO (Microsoft) 137 AXE 93
CRCDEMO (Borland) 121 CFG 93
CRCDEMO (Microsoft) 137 LOC 93
DEMO (Borland) 119 MAP 93
DEMO (Microsoft) 136 AXES6 file 93
DMMDEMO (Borland) 119 configuration file 93
DMMDEMO (Microsoft) 136 listing files 93
EHDEMO (Borland) 121 map file 93
FPDEMO (Borland) 120 OMES6 files 93
FPDEMO (MiCI’OSOft) 136 FILENAME

NURAM (Borland) 122
NURAM (Microsoft) 137
STDIO (Borland) 120
STDIO (Microsoft) 136

ABSFILE directive 49
HEXFILE directive 65
LISTFILE directive 71

filenames
EXCEPTIONS in configuration file directives 48
Borland C++ macro 118 files
exit codes 84, 161 EXE 22, 32

EXITCODE

Index 179

.MAP 32
.ROM 32
_MATHERR.C 114
ADDONREG.EXE 115
AXE.EXE 169
BCPP50.ASM 108
BCPP50.INC 110
BCPPDMM.C 113, 120, 121
BCPPFLT.ASM 113
BCPPHEAP.ASM 113
BCPPHEAP.INC 113
BCPPRTL.ASM 112
BCPPSIO.C 113
CINIT.ASM 134
Microsoft 126
CONSOLE.C
Borland 113
Microsoft 129
DOSEMU.C
Borland 112
Microsoft 128
FARDATA.ASM
Borland 110
FARDATA.CFG
Borland 111
Microsoft 127
FPERR.C 114
LOCATE.OPT 40, 41, 80, 92
MAKELIBS.BAT 18
MSC80.ASM 124
MSCS80.INC 126
MSCDMM.C 129, 136
MSCFLT.ASM 129
MSCHEAP.ASM 129
MSCHEAP.INC 129
MSCRTL.ASM 128
MSCSIO.C 129
PARADIGM.DLL 115
PARADIGM.MKF

180

Borland 116
Micrososft 133
SETUP.EXE 16
SIEVE.C 22
SIEVE.CFG 22
SIEVE.MAP 22
SIEVE.ROM 22
STARTUP.INC
Borland 111
Microsoft 126
TURBOC.CFG 116, 117
TYPEDEFSH
Borland 112
Microsoft 128
FILES
DISPLAY directive 61
FILL
CHECKSUM directive 51
HEXFILE directive 64
FLOAT
Borland C++ macro 118
Microsoft C/C++ macro 134
FORMAT
ABSFILE directive 49
FPERR.C 114

G
groups 36

H

hardware requirements 9
-Hb 88
-Hd 88
-He 88
HEAP
far heap 120, 136
near heap 128, 129
HEAPEND (Borland) 120, 121

Paradigm LOCATE Reference Manual

HEAPSIZE
Borland C++ macro 119
Microsoft C/C++ macro 135
HEAPSIZE (Borland) 113
HEAPSIZE (Microsoft) 129
hex file formats
Intel extended hex 171
Intel hex 173
Tektronix hex 173
HEXFILE
BINARY option 63
configuration file directive 63
FILENAME option 65
FILL option 64
INTEL386 option 63
INTEL8O option 63
INTEL86 option 63
LENGTH option 64
OFFSET option 63
SIZE option 64
SPLIT option 64
TEKHEX option 63
TRUNCATE option 65
-Hf 88
-Hi 88
-HI 89
-Hn 89
-Ho 89
-Hs 89
-Ht 89

#if directive 43
#ifdef directive 44
#ifndef directive 44
#include directive 43
IC86

DEBUG directive 57

Index

IDE (Borland C++) 115
INITCODE
80186CC registers 166
80186ED registers 165
80186EM/188EM registers 165
80186ER/188ER registers 165
80186ES/188ES registers 165
80386EX registers 166
80C186/188 registers 164
80C186EA/188EA registers 164
80C186EB/188EB registers 164
80C186EC/188EC registers 164
80C186XL/188XL registers 164
NORESET option 67
NOSTACK option 67
OUTBYTE option 68
OUTWORD option 68
RESET option 67
STACK option 67
V25/V35 registers 167
V25+/V/ 35+ registers 167
VA40/V50 registers 167
VA40H/VV50H registers 167
V53 registers 168
V55SC/V55PI registers 168
INITCODE directive 163
INITCODE support
80186/188 registers 163
initiaization
peripheral registers 68
reset vector 67, 82
stack 67, 83
instalation 16
directories 16
multiple compilers 17
run-time libraries 17
SETUP.EXE 16
Intel iC86 compatibility 57
INTEL 386

181

HEXFILE directive 63
INTELS8O0

HEXFILE directive 63
INTELS86

HEXFILE directive 63
INTICODE

configuration file directive 67
introduction 7
IOSTREAMS

Borland C++ macro 118

Microsoft C/C++ macro 135

L

.LOC file extension 93
?7?LOCATE 26, 67, 68, 83
-Lc 90
-Ld 90
LENGTH
HEXFILE directive 64
line numbers, in listing file 71
LINES
DEBUG directive 57
LISTFILE directive 71
linker map 32
LISTFILE
CHECKSUMS option 70
COLUMNS option 71
configuration file directive 70
FILENAME option 71
LINES option 71
PUBLICS option 71
REGIONS option 70
SEGMENTS option 70
SYMBOLS option 71
WIDTH option 71
listing files 89
checksums 70, 90
file names 71, 90

182

line numbers 71, 90
local symbols 71, 91
public columns 90
public symbols 71
public width 91
publics 91
regions 70, 91
segments 70, 91

-LI 90

-Ln 90

load module 32

local symbals, in ligting file 71

LOCATE.OPT 41, 80

log file
enable 84
filenaming 84

-Lp 91

-Lr 91

-Ls 91

-Lw 91

-Lx 91

M

.MAP file extension 93
.MAP files 32
_MATHERR.C 114
macros
CHECKSTACK
Borland makefile macro 118
Microsoft makefile macro 134
CODESTRING
Borland makefile macro 117
command line definition 82
COMPCFG
Borland makefile macro 117
COMPDIR
Borland makefile macro 116
Microsoft makefile macro 133

Paradigm LOCATE Reference Manual

CPU

Borland makefile macro 117

Microsoft makefile macro 134
DEBUG

Borland makefile macro 117

Microsoft makefile macro 134
defining 42
DUPSTRING

Borland makefile macro 118
EXCEPTIONS

Borland makefile macro 118
FARDATA

Borland makefile macro 118

Microsoft makefile macro 134
FLOAT

Borland makefile macro 118

Microsoft makefile macro 134
HEAPEND 120, 121
HEAPSIZE

Borland makefile macro 119

Microsoft makefile macro 135
IOSTREAMS

Borland makefile macro 118

Microsoft makefile macro 135
MKF

Borland makefile macro 117

Microsoft makefile macro 133
MODEL

Borland makefile macro 117

Microsoft makefile macro 133
OPTIMIZE

Borland makefile macro 117

Microsoft makefile macro 134
STACK

Borland makefile macro 118

Microsoft makefile macro 135
WARNINGS

Borland makefile macro 117

Microsoft makefile macro 134

Index

makefiles (Borland C++) 116
makefiles (Microsoft C/C++) 133
MAP

configuration file directive 73
MEMBERFUNCTION

DEBUG directive 58
Microsoft C/C++

startup code 124
MKF

Borland C++ macro 117

Microsoft C/C++ macro 133
MODEL

Borland C++ macro 117

Microsoft C/C++ macro 133
MODULES

DISPLAY directive 61
MSC80.ASM 124
MSC80.INC 126
MSCDMM.C 129
MSCFLT.ASM 129
MSCHEAP.ASM 129
MSCHEAP.INC 129
MSCRTL.ASM 128, 129
MSCSIO.C 129

N

near heap 113, 128, 129
NOBIGTYPES

DEBUG directive 58
NOCLASSES

DEBUG directive 58
NOCLASSTEMPLATES

DEBUG directive 59
NODESTRUCTORS

DEBUG directive 58
NOENUMS

DEBUG directive 58
NOEXTENSIONS

183

DEBUG directive 58
NOIC86

DEBUG directive 57
NOLINES

DEBUG directive 57
NOMEMBERFUNCTION

DEBUG directive 58
NONE

ABSFILE directive 49

DEBUG directive 58

DISPLAY directive 61

WARNINGS directive 77
NOOPERATORS

DEBUG directive 58
NOPARAMETERS

DEBUG directive 59
NOPUBLICS

DEBUG directive 57
NORESET

INITCODE directive 67
NOSPACES

DEBUG directive 59
NOSPECIALS

DEBUG directive 59
NOSTACK

INITCODE directive 67
NOSYMBOLS

DEBUG directive 57
NOTYPES

DEBUG directive 57

O

-Od 85
-Oe 85
OFFSET
HEXFILE directive 63
-Oi 86
-0l 86

184

OMF86
ABSFILE directive 49
-Op 86
OPERATORS
DEBUG directive 58
OPTIMIZE
Borland C++ macro 117
Microsoft C/C++ macro 134
options
command line 79
LOCATE.OPT 80
priority 80
summary 80
ORDER
configuration file directive 74
-Ot 87
OUTBYTE
INITCODE directive 68
peripheral register initialization 68
OUTPUT
configuration file directive 75
OUTWORD
INITCODE directive 68
peripheral register initialization 68
-Ox 87

P

PARADIGM.MKF

Borland 116

Micrososft 133
PARAMETERS

DEBUG directive 59
peripherd register initidization 68
predefined macros 45
preprocessor

configuration file 42
public symboals, in listing file 71
PUBLICS

Paradigm LOCATE Reference Manual

DEBUG directive 57
LISTFILE directive 71

Q

-g 83
quiet mode 83

R

.ROM files 32
REGIONS

LISTFILE directive 70
regions, in listing file 70
relocatable load module 22, 32
RESET

INITCODE directive 67
reset vector initialization 67
ROMBIOS

CHECKSUM directive 51
ROMBIOS checksum 95
run-time libraries

building 18

ROMable 17

S

-s 83
??STACKINIT 67
segment
1MB boundary 35
absolute 35
aliases 32
aignment 33
fixups 31
ordering 33
overlap 34
SEGMENT
configuration file directive 76
SEGMENTS

Index

LISTFILE directive 70
segments, in listing file 70
SIZE

HEXFILE directive 64
Software Problem Reports 13
software requirements 10
SPACES

DEBUG directive 59
SPECIALS

DEBUG directive 59
SPLIT

HEXFILE directive 64
STACK 136

Borland C++ macro 118

INITCODE directive 67

Microsoft C/C++ macro 135

size 110, 126
stack initidization 67
startup code

BCPP50.ASM 108

MSC80.ASM 124
STARTUP.INC

Borland 111

Microsoft 126
string literds

Borland C++ 103

Microsoft C/C++ 103
suggestions 13
SYMBOLS

DEBUG directive 57

LISTFILE directive 71

T

technical support 11
E-mail 12
FAX 12
FTP 12
internet 12

185

TEKHEX

HEXFILE directive 63
TRUNCATE

HEXFILE directive 65
truncating binary files 65
TURBOC.CFG 116, 117
TYPEDEFS.H

Borland 112

Microsoft 128
TYPES

DEBUG directive 57

U

#undef directive 42
utilities
AXE file contents 169

Vv

V25/V35

INITCODE support 167
V25+/V 35+

INITCODE support 167
V40/V50

INITCODE support 167
V40H/V50H

INITCODE support 167
V53

INITCODE support 168
VV55SC/V55PI

INITCODE support 168

Visual Workbench (MSC/C++) 131

V-Series support 55

186

w

-w- 85
-W 84
-w+ 85
warning diagnostics 139
warnings
disable 77
disableal 85
disable warning 85
enable 77
enabledl 85
enable warning 85
exit code control 84
WARNINGS
Borland C++ macro 117
configuration file directive 77
Microsoft C/C++ macro 134
WARNINGS directive
ALL option 77
EXITCODE option 77
NONE option 77
WIDTH
LISTFILE directive 71

X

-Xa 93
-Xc 93
-XI 93
-Xm 93
-Xo 93

Paradigm LOCATE Reference Manual

Index 187

