
Paradigm LOCATE

Version 6.0

Reference Manual

Paradigm Systems

The authors of this software make no expressed or implied warranty of any kind
with regard to this software and in no event will be liable for incidental or
consequential damages arising from the use of this product. The software
described in this document is furnished under a license and may only be used or
copied in accordance with the terms of the licensing agreement.

The information in this document is subject to change without notice.

Copyright © 1998, 1999 Paradigm Systems. All rights reserved.

Paradigm LOCATE™, Paradigm DEBUG™, and Paradigm OMFCVT™ are
trademarks of Paradigm Systems. Other brand and product names are
trademarks or registered trademarks of their respective holders.

Version 6.0
December 21, 1999
Manual version 6.0
PDF version 6.01

No part of this document may be copied or reproduced in any form or by any
means without the prior written consent of Paradigm Systems.

Paradigm Systems
Suite 2214

3301 Country Club Road
Endwell, NY 13760

(607)748-5966
(607)748-5968 (FAX)

Sales information: info@devtools.com
Technical support: support@devtools.com

Web: http://www.devtools.com
FTP: ftp://ftp.devtools.com

Please note that free technical support is available to registered users of the
current release of any Paradigm software development tool. For prompt attention
to your technical questions, please contact our tech support team via the Internet
at support@devtools.com.

Contents 3

C O N T E N T S

Introduction
What's in Paradigm LOCATE........................ 7
New features and changes.............................. 9
Hardware/software requirements 9
The Paradigm LOCATE package10

The Reference Manual..............................10
Technical assistance11

E-mail..12
Internet ..12
FTP...12
FAX ..12

Problems and suggestions..............................13

Chapter 1 Installation
Installing Paradigm LOCATE........................16

Run-time library customization...................17
The README file19

Chapter 2 Paradigm LOCATE basics
Tutorial ...21

Files in the tutorial.....................................22
The SIEVE application22
The LOCATE configuration file23

Configuration file analysis24
Running Paradigm LOCATE.........................27

Burning EPROMs.....................................28
Debugging options.....................................29

Summary...29

Chapter 3 Relocation primer
Relocation basics..31

The linker output files...................................32
Segment aliases..32
Segment ordering and alignment33
Segment checking ..34
Absolute segments..35

Fixing absolute segments36
Groups..36
Duplicating classes37

Chapter 4 Using configuration files
Configuration file format...............................39

Directive format40
Line continuation......................................41

Directive processing priority41
The preprocessor ...42

The #define directive42
The #undef directive42
The -D option ..43
File inclusion with #include........................43
The #if, #elif, #else, and #endif directives ...43
The #ifdef and #ifndef directives................44
The operator defined.................................44
The #error directive45
Predefined macros45

Comments...45
Finding errors ..45

Chapter 5 Configuration file directives
Directive descriptions47

ABSFILE...49
CHECKSUM...51

Paradigm LOCATE Reference Manual4

CLASS ..53
COMPRESS ..54
CPUTYPE...55
DEBUG...57
DISPLAY ..61
DUPLICATE...62
HEXFILE ..63
INITCODE..67
LISTFILE..70
MAP ...73
ORDER...74
OUTPUT ..75
SEGMENT ..76
WARNINGS..77

Chapter 6, Command line options
Command line options79

LOCATE.OPT file80
Option priorities ..80

Summary of options80
Defining macros..82
Initialization..82
Diagnostics...83

Startup display83
Processing diagnostics............................83
Error/warning log...................................84
Exit code control84
Warning diagnostic control85

OMF86 debug control85
File management.......................................87

Configuration files87
EPROM files ..87
Listing files ...89
Absolute files ..91

Filename extensions92

Chapter 7 Checksums and CRCs
ROMBIOS checksums95
CRC-16 checksums......................................96
CRC-32 checksums......................................98

Tech tips ...99

Chapter 8 Using compression
Compression requirements 102
Compiler overview..................................... 102

Borland C++ .. 102
String literals 103
Initialized data..................................... 103

Microsoft C/C++ 103
String literals 103
Initialized data..................................... 104

More information.................................... 104
Compression algorithm 104

Chapter 9 Borland C++ guide
Startup code .. 108

BCPP50.ASM.. 108
FARDATA.ASM.................................... 110
BCPP50.INC... 110
STARTUP.INC 111
FARDATA.CFG 111

The Run-time library helpers....................... 112
TYPEDEFS.H 112
DOSEMU.C .. 112
DOSEMU.H .. 112
BCPPRTL.ASM 112
BCPPDMM.C 113
BCPPHEAP.ASM.................................. 113
BCPPHEAP.INC 113
BCPPSIO.C... 113
CONSOLE.C... 113
BCPPFLT.ASM..................................... 113
BCPPFLT.INC 113
FPERR.C .. 114
_MATHERR.C...................................... 114

Configuration files 114
Integrated Development Environment 115

Installing Paradigm Addon....................... 115
Makefiles .. 116

PARADIGM.MKF 116

Contents 5

Common makefile macros116
COMPDIR ...116
COMPCFG ..117
MKF..117
MODEL...117
CPU...117
DEBUG ...117
OPTIMIZE...117
WARNINGS.......................................117
CODESTRING...................................117
DUPSTRING118
CHECKSTACK..................................118
FLOAT ..118
FARDATA...118
IOSTREAMS118
EXCEPTIONS118
STACK..118
HEAPSIZE...119

Sample applications119
DEMO...119
DMMDEMO..119
FPDEMO ..120
STDIO ..120
CPPDEMO..120
COMPRESS ..120
CRCDEMO ...121
EHDEMO..121
NURAM ..122
CONST ...122

Chapter 10 Microsoft C/C++ guide
Startup code ..124

MSC80.ASM ...124
CINIT.ASM...126
MSC80.INC...126
STARTUP.INC......................................126
FARDATA.CFG.....................................127

Run-time library helpers..............................127
TYPEDEFS.H128

DOSEMU.C .. 128
DOSEMU.H .. 128
MSCRTL.ASM...................................... 128
MSCDMM.C... 129
MSCHEAP.ASM 129
MSCHEAP.INC..................................... 129
MSCSIO.C .. 129
CONSOLE.C... 129
MSCFLT.ASM 129
Configuration files................................... 130

Visual Workbench...................................... 131
Setting up the Visual Workbench.............. 131
Starting your own project 132

Makefiles .. 133
PARADIGM.MKF 133
Common makefile macros 133

COMPDIR... 133
MKF.. 133
MODEL... 133
CPU .. 134
DEBUG ... 134
WARNINGS 134
OPTIMIZE .. 134
CHECKSTACK.................................. 134
FLOAT .. 134
FARDATA... 134
IOSTREAMS 135
STACK.. 135
HEAPSIZE... 135

Sample applications.................................... 135
DEMO .. 136
DMMDEMO ... 136
FPDEMO .. 136
STDIO .. 136
CPPDEMO.. 137
COMPRESS.. 137
CRCDEMO ... 137
NURAM.. 137
CONST ... 138

Paradigm LOCATE Reference Manual6

Appendix A Warning diagnostics
Paradigm LOCATE warnings139
Preprocessor warnings146

Appendix B Error diagnostics
Paradigm LOCATE errors149

Message explanations149
Preprocessor errors157

Message explanations157

Appendix C Exit codes
Exit codes..161

Appendix D INITCODE port definitions
INITCODE port definitions.........................163

Appendix E AXE utility
AXE utility ..169

Appendix F Hex file formats
Hex file formats ...171
Intel extended hex171

Extended Address Record........................172
Data Record ...172
Start Address Record172
End of File Record..................................173

Intel hex..173
Tektronix hex...173

Data Record ...173

Index
Index...175

Introduction 7

I N T R O D U C T I O N

Paradigm LOCATE is a professional utility for preparing 16-bit
Borland C++, Microsoft C/C++, and Paradigm C++ applications for
use in embedded systems. Paradigm LOCATE is fast, easy-to-use,
and creates the exact output files you need to develop and debug
embedded system applications for the Intel, AMD or NEC x86-
compatible microprocessors.

Paradigm LOCATE is unique in its support of all the Borland,
Microsoft, and Paradigm software development tools, including all
versions of their popular C, C++, and assembly language packages.
With output file formats supporting the award-winning Paradigm
DEBUG, popular in-circuit emulators and EPROM programmers,
everything is included to help you get the most out of your embedded
system application.

What's in Paradigm LOCATE
Paradigm LOCATE, coupled with your favorite Borland, Microsoft or
Paradigm compiler, assembler, and linker, is a complete embedded
system development package. Just look at some of the many features
offered by Paradigm LOCATE:
n Fast: No other product even comes close to Paradigm LOCATE in

getting your application fully debugged and into EPROM.
n Full Borland, Microsoft, and Paradigm support: Use your

favorite Borland, Microsoft, or Paradigm compiler to get the job
done. Unlike other solutions, Paradigm LOCATE doesn't limit you
to a single compiler vendor or a single version of a compiler.

n C, C++, and assembly language: Develop your application in the
language of your choosing, knowing it is fully supported.

Chapter 1 tells you how to
install Paradigm LOCATE.
This introduction tells you

about the features of
Paradigm LOCATE.

Paradigm LOCATE Reference Manual8

n Startup code and run-time library support: Paradigm LOCATE
includes complete ROMable startup code for each supported
compiler. Comprehensive run-time library support is also included
for all memory models so you can use stream I/O, dynamic
memory management, and floating point run-times in any
embedded system without DOS or a BIOS.

n Sample applications: Plenty of sample applications, complete
with makefiles and Paradigm LOCATE configuration files, are
available to demonstrate various embedded system development
techniques for each supported compiler.

n Paradigm DEBUG support: Choose from this award-winning
family of source level debuggers that support stand-alone and in-
circuit emulator debugging using any Borland, Microsoft, or
Paradigm compiler.

n Intel OMF86 support: Absolute OMF86 output files with full
debug information are available for users having an in-circuit
emulator accepting this file format.

n EPROM programmer support: Paradigm LOCATE supports all
popular EPROM programmer file formats, including Intel extended
hex, binary and Tektronix hex. Paradigm LOCATE will also
optionally split EPROM images or fill with any background pattern.
Optimally-sized binary file output is also supported.

n Compressed initialized data: Constant and initialized data can be
compressed in EPROM and decompressed by the startup code to
save valuable EPROM space.

n Configuration files: A configuration file is how you inform
Paradigm LOCATE about your target system address space,
output file types, and other options. A full C preprocessor is
standard, with macros, include files, and conditionals available to
meet the most demanding requirements.

n Chip select, wait state, DRAM refresh initialization: Only
Paradigm LOCATE can automatically generate processor-specific
initialization code so there is no need to write custom startup code.

n Reset vector initialization: Paradigm LOCATE will, at your
request, automatically create a far jump to the program entry point
from the reset vector.

n Stack initialization: Stack initialization is also available, for
applications which require a stack be setup automatically.

Introduction 9

n Target system documentation: Create list files with any of the
following information: segments, regions, public symbols, local
symbols, or line numbers. Full application documentation is
standard with Paradigm LOCATE.

n Checksums and CRCs: Calculate a PC ROM BIOS extension
checksums or generate CRC16 or CRC32 checksums on any
region of memory.

 New features and changes
 Some of the new features in Paradigm LOCATE version 6.0 are:

n Full support for Borland C++ 5.0 including integrated IDE support
as well as new ANSI/ISO C++ language support for namesakes
and the new keywords bool and mutable

n New support for the AMD Am186/188EM/ES/ER/ED embedded
microprocessors

n Improved debug information support for Microsoft C/C++
compilers

n Continued support for all versions of Borland and Microsoft
compilers from Turbo C 2.0 to Borland C++ 5.0 and from
Microsoft C 5.1 to Visual C++ 1.52

n Full support for RTOS-aware Paradigm DEBUG, with enhanced
support for all previous versions

n FILENAME option of ABSFILE, HEXFILE and LISTFILE
directives now expects slashes (/) instead of backslashes (\) for
pathname separators

n Checksums can use class names as well as physical addresses

 Hardware/software requirements
 Paradigm LOCATE runs on the IBM PC and compatible computers
using a 486, or later, microprocessor and having a minimum of 8MB
of memory. MS-DOS 6.2, Windows 3.1, Windows 95 or Windows
NT is also required.

 Changed in version
6.0

Paradigm LOCATE Reference Manual10

 Paradigm LOCATE also requires a Borland, Microsoft, or Paradigm
compiler and an assembler to build the compiler startup code and run-
time library support packages.

 The Paradigm LOCATE package
 Your Paradigm LOCATE package consists of a diskette and this
manual. The diskette contains all the programs and files you need to
create embedded applications using the supported Borland and
Microsoft compilers. The disk also contains sample applications
demonstrating the use of the run-time libraries and Paradigm DEBUG.

 The Reference Manual introduces you to Paradigm LOCATE and
contains all the information needed to create embedded system
applications with Borland and Microsoft compilers. This manual is
arranged so you can either follow a short tutorial to quickly get up to
speed or use it as a reference, depending on your level of experience.

 Here are the key chapters in this manual:
n Introduction: introduces you to the key features of Paradigm

LOCATE and tells you how to access the Paradigm technical
support system.

n Chapter 1: Installing Paradigm LOCATE tells how to install
Paradigm LOCATE on your system and how to create ROMable
run-time libraries for your target system.

n Chapter 2: Paradigm LOCATE basics is a short tutorial of a
simple embedded application built with Paradigm LOCATE.

n Chapter 3: Relocation primer is a review of the techniques used
by Paradigm LOCATE to bind physical addresses to your
segments.

n Chapter 4: Using configuration files is a detailed introduction
into designing a custom Paradigm LOCATE configuration file for
your target system.

n Chapter 5: Configuration file directives is the detailed review of
the Paradigm LOCATE configuration file directives.

n Chapter 6: Command line options is the detailed review of the
command line options available to Paradigm LOCATE users.

 The Reference
Manual

Introduction 11

n Chapter 9: Borland C++ guide is a description of the Borland
C++ compiler support package supplied with Paradigm LOCATE.
Look here for specific tips and techniques for using Borland C++
with embedded systems.

n Chapter 10: Microsoft C/C++ guide is a description of the
Microsoft C/C++ compiler support package supplied with Paradigm
LOCATE. Look here for specific tips and techniques for using
Microsoft C/C++ with embedded systems.

 Also included in the Reference Manual are the following appendices.
These contain useful information covering the use of Paradigm
LOCATE and utilities.
n Appendix A: Warning diagnostics is a detailed description of the

warnings output by Paradigm LOCATE.
n Appendix B: Error diagnostics is a detailed reference of all

Paradigm LOCATE error messages.
n Appendix C: Exit codes lists the various exit code output by

Paradigm LOCATE as a result of processing an input file.
n Appendix D: INITCODE port definitions is a list of supported

peripheral register initializations supported by each processor.
n Appendix E: AXE utility is a short description of the Paradigm

AXE file utility.
n Appendix F: Hex file formats documents the hex file formats

supported by Paradigm LOCATE.

 Wrapping up the manual is a comprehensive index, making all
components of the Paradigm LOCATE Reference Manual available at
your fingertips.

 Technical assistance
 If you have technical questions or need assistance in setting up or
using Paradigm LOCATE, contact our technical support staff at
(800)582-0864 during normal business hours (EST) or at
(607)748-5966 if calling from outside North America. We will be
more than happy to discuss your problem and provide the fastest
possible response. Please have the following information available
before you contact us:

 Free technical support is
available to registered

users of the current release
of any Paradigm software

development tool.

Paradigm LOCATE Reference Manual12

n Product names and version numbers for all Paradigm products
n Product names and version number for third-party products, such

as Borland C++ or Microsoft C/C++
n A detailed description of the problem, and how to reproduce it
n If sending us files, be sure to include a README file with the

details of the problem, and your name, address, phone/fax numbers
so we can get back to you. Please use a compression utility to
keep the size of any files to a minimum.

 We encourage all customers to contact us with their application,
compiler, debugger, or in-circuit emulator questions. We have experts
on staff to deal with any questions relating to Paradigm LOCATE, the
use of Borland and Microsoft compilers in embedded systems, or
using Paradigm DEBUG with an in-circuit emulator. Please feel free
to contact us any time you need assistance.

 You may send technical questions or problem reports to our technical
support group via the following e-mail address:

 support@devtools.com

 You can reach us on the Web at:

 http://www.devtools.com

 Internet users can access technical support, application notes, third
party vendor information and product information on our website.

 To obtain patch files, service packs and application notes quickly,
access our anonymous FTP site at:

 ftp://ftp.devtools.com

 You may also fax your problem reports or questions to our technical
support group at (607)748-5968. This is the least desirable method
since we may lack the ability to reproduce your problem.

 The use of an on-line
service is recommended

since it offers timely
turnaround of problem

reports and maintenance
releases of software.

 E-mail

 Internet

 FTP

 FAX

Introduction 13

 Problems and suggestions
 We welcome your suggestions and feedback and hope you find that
Paradigm LOCATE meets your requirements for embedded system
software development. Paradigm LOCATE has been extensively
tested prior to its release, but unforeseen problems or incompatibilities
can arise due to the number of possible system configurations. Should
you find a problem with this software or have an idea for an
improvement, don't hesitate to contact us. We appreciate your
feedback and suggestions for improving Paradigm LOCATE.

Paradigm LOCATE Reference Manual14

 Chapter 1, Installation 15

 C H A P T E R

 1

 Installation

 Paradigm LOCATE comes with an automatic installation and
configuration utility called SETUP.EXE. SETUP.EXE will guide the
installation process, setting up Paradigm LOCATE, installing the
optional compiler support packages, and customizing ROMable run-
time libraries for each memory model.

 Now is a good time to make sure that you have filled in your product
registration card; this guarantees that we will be able to keep you up-
to-date about any new versions of Paradigm LOCATE and make you
eligible for our free technical support.

 This chapter contains the following information:
n installing Paradigm LOCATE on your system
n building ROMable libraries for your compiler
n accessing the README and FAQ files

Once you have installed Paradigm LOCATE, you'll be ready to create
your own embedded system application. Refer to the Introduction
chapter of this manual to learn more about which features of Paradigm
LOCATE you will want to explore first.

 If you are not familiar with
the Paradigm software

license agreement, please
take the time to read it now.

 Paradigm LOCATE Reference Manual 16

Installing Paradigm LOCATE
To install Paradigm LOCATE from CD to your hard drive:

1. Insert the CD into your CDROM drive
2. Run SETUP.EXE from the CD
3. Follow the instructions on the screen

The SETUP.EXE program will open a series of Install options dialog
boxes with the following selections for you to create a custom
Paradigm LOCATE installation:
n Choose a compiler and version from the compiler support package

(select this even if you are using assembly language - startup code
is still the place to begin)

n Choose LOCATE compiler support options including compiler-
specific example applications

n Choose to install ROMable run-time libraries for your compiler
(select this if you are planning to use Borland or Microsoft C/C++
run-time libraries)

 The destination path defaults to c:\LOCATE, but you can specify a
different drive and path if desired. It is recommended that you do not
use long file names for your destination paths as some older
development tools may not be compatible.

 When the installation is complete, a directory tree structure similar to
that in figure 1.1 will have been set up. The following is the
organization of Paradigm LOCATE on your system after running
SETUP with the default options and the Microsoft C/C++ 8.0 (Visual
C++) compiler.

 LOCATE ---- MSC80 ---- EXAMPLES ---- DEMO
 +-- HELPERS +-- DMMDEMO
 +-- ROMLIBS +-- STDIO
 +-- FPDEMO
 +-- CRCDEMO
 +-- COMPRESS
 +-- CPPDEMO

A README file is included
in the Information dialog of

SETUP for answers to
common questions.

 If the installation program is
not compatible with your

operating system, contact
Paradigm for assistance.

 Your system will look
slightly different, depending

on your compiler.

 Figure 1.1
Sample Paradigm

LOCATE directory tree

 Chapter 1, Installation 17

 If you wish to install multiple compiler support packages, simply run
the SETUP utility again for each compiler. For example, if we then
installed the Borland C++ 5.0 support package startup code, the
directory tree would look as shown in figure 1.2.

 LOCATE ---- BCPP50 ---- EXAMPLES ---- DEMO
 ¦ +-- ROMLIBS +-- MMDEMO
 ¦ +-- HELPERS +-- STDIO
 ¦ +-- FPDEMO
 ¦ +-- RCDEMO
 ¦ +-- COMPRESS
 ¦ +-- CPPDEMO
 ¦
 +-- MSC80 ---- EXAMPLES
 +-- ROMLIBS
 +-- HELPERS

 Following the installation session, go to the Paradigm LOCATE
directory defined during the installation process and familiarize
yourself with the compiler support package you will be using. Be sure
to put the Paradigm software CD in a safe place in case it is needed in
the future to add support for a different compiler.

 The final step performed by the SETUP utility was to configure a
subset of the compiler run-time libraries for use in an embedded
system. This is an optional step and is only required if you plan to use
the Borland/Microsoft run-time library routines in your embedded
system. You can skip this section if SETUP correctly configured your
run-time libraries.

 As shipped by Borland and Microsoft, the run-time libraries contain
many functions which are either not ROMable (functions which use
self-modifying code or store data in a read-only segment) or are
inappropriate for use in an embedded system, for example, functions
which assume the presence of a file system.

 By configuring a subset of the run-time libraries, potential
incompatibilities involving the use of unsupported run-time library
routines can be identified by the linker as an undefined external
reference. With a custom run-time library configured, you won't find

 Figure 1.2
Directory tree with Borland

C++ installed.

 First time users should
check out Chapter 2 to get
familiar with the Paradigm

LOCATE basics.

 Run-time library
customization

 Paradigm LOCATE Reference Manual 18

yourself spending time debugging an application that should never
have been built in the first place.

 If you enabled the run-time library build option, the SETUP utility
configured a single run-time library of your choosing that supports the
example programs shipped with Paradigm LOCATE. If you later
desire to change the makeup of a library or build different memory
models, the DOS batch file MAKELIBS.BAT; (found in the
ROMLIBS subdirectory of your compiler support package - see the
directory tree on page 16) can be used to create ROMable run-time
libraries that meet your specific requirements.

 The MAKELIBS.BAT batch file is very simple in its implementation.
It invokes the MAKELIBS.MKF makefile (which is customized for
the MAKE utility that came with the compiler) with one or more of
the following parameters:

 MODEL=model This is the memory model of the library to be
customized. Valid options are S, M, C, L, and
H, depending on the compiler used.

 DST=path This is the destination path for the ROMable
libraries. It is normally the same as the SRC
macro definition but can be different if desired.

 BIOS Defined if you wish to include functions
requiring an IBM PC-compatible BIOS. The
default for this option is OFF.

 EMU Defined if you wish to include functions
requiring the Paradigm run-time library helper
functions. The default for this option is ON
since the Paradigm LOCATE examples make
extensive use of the run-time libraries.

 CPP Defined if you wish to include the C++ run-time

 Edit the makefile
MAKELIBS.MKF and the
library response files (the

*.LRF files in the ROMLIBS
directory) to create fully

customized libraries.

 To build the ROMable
libraries, the compiler,

make and library utilities
must be in the path.

 SRC=path This is the path to the run-time library to be
customized, normally where you have installed
your Borland or Microsoft compiler libraries.

 Chapter 1, Installation 19

library functions (if supported by the selected
compiler).

 FLT This compiler-dependent macro is used to select
the appropriate floating point model to be used
with the embedded application.

 The MAKELIBS.BAT file always creates a copy of the run-time
library with an 'R' prefix and never modifies the original library. For
example, if you were building the Borland C++ small model libraries,
the library CS.LIB would first be copied to the file RCS.LIB, from
which the non-ROMable modules are removed.

 Figure 1.3 is a sample MAKELIBS.BAT file modified to build the
small and large run-time libraries for the Borland C++ compiler. Once
the batch file completes execution, the files RCS.LIB and RCL.LIB
will be left in the \BC\LIB directory. Because the macros BIOS and
CPP are not defined, the BIOS and C++ run-time library support are
stripped from the ROMable libraries.

 echo off
make -fmakelibs.mkf -DMODEL=s -DSRC=\bc\lib -DDST=\bc\lib -DEMU
make -fmakelibs.mkf -DMODEL=l -DSRC=\bc\lib -DDST=\bc\lib -DEMU

 The README file
 A README file and Frequently Asked Questions (FAQ) file were
installed by SETUP.EXE. The README contains last-minute
information that may not be included in the manual.

 If you did not get a chance to read the README file in the
Information dialog during the installation process, you can view this
file with any text editor or word processor. Please note any changes
that might apply to your use of Paradigm LOCATE.

 Figure 1.3
Sample MAKELIBS.BAT

file

 Paradigm LOCATE Reference Manual 20

 Chapter 2, Paradigm LOCATE basics 21

 C H A P T E R

 2

 Paradigm LOCATE basics

 Paradigm LOCATE includes everything you need to develop
embedded system applications using your favorite Borland, Microsoft,
or Paradigm compiler. Just some of the many features of Paradigm
LOCATE include:
n support for all versions of Borland C++, Microsoft C/C++, and

Paradigm C++
n comprehensive run-time library support, including floating point

arithmetic, dynamic memory management, stream I/O, and C++
exception handling

n complete, working sample applications ready for debugging or
burning into EPROM

n output file formats suitable for use with Paradigm DEBUG, in-
circuit emulators and EPROM programmers

n full control of the target system address space, with exhaustive
checking for potential problems

 Tutorial
 What better way to get started with Paradigm LOCATE than to work
through a real application. This section illustrates how a Paradigm
LOCATE configuration file is used to instruct Paradigm LOCATE to
turn an application into ROMable format. Eventually, EPROMs are
burned and the target system is up and running.

 This section covers the use
of Paradigm LOCATE in

the embedded system
software development

cycle.

 Paradigm LOCATE Reference Manual 22

 In presenting Paradigm LOCATE, the sample application has been
compiled and linked with the Borland C++ compiler, so that you can
focus on the use of Paradigm LOCATE. If you happen to be using a
different compiler or a different version of the above compiler, the
basic steps remain the same; they just happen to be implemented
slightly differently.

 The tutorial is composed of a number of files:

 SIEVE.C The sieve application source code

 SIEVE.ROM Relocatable load module created by linker

 SIEVE.MAP Segment map created by linker

 SIEVE.CFG Paradigm LOCATE configuration file

 The .ROM file may seem unfamiliar to most of you, however it is
actually the .EXE file created by the linker. We use the .ROM
extension because the relocatable module which is created for
embedded systems is not truly executable under DOS or Windows,
but has the same file format found in a DOS .EXE file. Since the
Paradigm embedded startup code has been linked-in, running the
.EXE file would most certainly crash your PC. The name change to
.ROM prevents this accident.

 The SIEVE application
 Our tutorial application is the well-known Sieve of Eratosthenes
benchmark program which is reproduced in figure 2.1. Since the same
C source code can be compiled with Borland C++, Microsoft C/C++
or Paradigm C++, we'll introduce the Sieve source code and ignore the
difference between the use of the compilers.

 1 /*
 2 // A demonstration of a simple ROMable application using
 3 // Paradigm LOCATE. This code can be built with either
 4 // Borland C++ or Microsoft C/C++.
 5 */
 6
 7 #define SIZE 1023/* Numbers to search for primes */
 8
 9 typedef enum {
10 FALSE, /* Number is not a prime */

 Files in the tutorial
 These files are located in

the \LOCATE\DEMO
subdirectory of the

Paradigm LOCATE
distribution diskette.

 The source modules are
pre-built so we can focus
exclusively on the use of

Paradigm LOCATE.

 Figure 2.1
Sieve of Eratosthenes

source code

 Chapter 2, Paradigm LOCATE basics 23

11 TRUE /* Number is a prime */
12 } BOOL ; /* Enums are better for debugging */
13
14 BOOL flags[SIZE+1] ; /* The array of BOOL flags */
15
16 void main(void)
17 {
18 unsigned int i, k, count ;
19
20 /* Loop forever once started */
21 for (;;) {
22 /* Set all numbers to prime before starting */
23 for (count = i = 0; i <= SIZE; i++)
24 flags[i] = TRUE ;
25
26 /* Run the sieve and remove the non-primes */
27 for (i = 2; i <= SIZE; i++) {
28 if (flags[i]) {
29 /* Cancel out all multiples of this prime */
30 for (k = i + i; k <= SIZE; k += i)
31 flags[k] = FALSE ;
32 count++ ;
33 }
34 }
35 }
36 }

 Since our purpose is to demonstrate the main features of Paradigm
LOCATE, the actual source code is not useful, unless you have access
to an in-circuit emulator. What is important is to see how Paradigm
LOCATE uses a configuration file to find the instructions for
mapping the application to the target system address space. Once you
understand these simple rules, you will be ready to move on to the
more advanced examples included in the compiler support packages.

 The LOCATE configuration file
 The key to using Paradigm LOCATE is the flexibility of the
configuration file. It is not necessary to define any Paradigm
LOCATE command line arguments. This means the configuration file
completely defines the processing of the application.

 Paradigm LOCATE Reference Manual 24

 Let's take a detailed look at each of the Paradigm LOCATE
configuration file directives in figure 2.2 to see their effect on the input
and output files.

 When you study the configuration file, you will notice that classes are
used to bind physical addresses to the segments in the application.
This is done to avoid the problem that the number of segments in an
application can be unbounded, yet the number of classes is almost
always constant. By using a class as the basis for address binding, we
don't have to deal with a large number of ungainly segments. Besides,
we want to hide the implementation of physical segments from the
Paradigm LOCATE user and instead focus on getting the application
burned into EPROM.

 1 //
 2 // Configuration file for the example from the
 3 // Paradigm LOCATE manual. This is about as basic
 4 // as an embedded application can get. Check out the
 5 // other examples for more sophisticated applications.
 6 //
 7
 8
 9 hexfile intel86 // Intel extended hex for EPROMs
10 absfile axe86 // Optional Paradigm DEBUG support
11 listfile segments // Segment map for documentation
12
 13
14 //
15 // Define how the target system address space is
16 // partitioned. Paradigm LOCATE will check that this
17 // mapping is followed.
18 //
19
20 map 0x00000 to 0x0ffff as rdwr
 21 map 0x10000 to 0xf7fff as reserved
22 map 0xf8000 to 0xfffff as rdonly
23
24 cputype i80C186EA // Target CPU is defined here
25
26 initcode reset \ // Reset vector
27 umcs = 0xf838 \ // 32KB EPROM
28 lmcs = 0x0ff8 // 64KB RAM
29
30 dup DATA ROMDATA // Dup initialized data
31
 32 class CODE = 0xf800 // Code at F8000H
33 class DATA = 0x0040 // Data at 00400H

 Configuration file
analysis

 Only rarely must a
segment be bound to a

physical address.

 Figure 2.2
Paradigm LOCATE

configuration file

 Chapter 2, Paradigm LOCATE basics 25

34 class ??LOCATE = 0xfff0 // 80C186EA chip select code
35
36 order DATA \ // RAM class organization
37 BSS BSSEND \
38 STACK
39
40 order CODE \ // EPROM class organization
41 INITDATA EXITDATA \
42 ROMDATA ENDROMDATA
43
44 output CODE \ // Classes containing code
45 INITDATA EXITDATA \
46 ROMDATA ENDROMDATA \
47 ??LOCATE

 Let's take a detailed look at each line of the configuration file and see
just what is going on here:

 These are comments, so you can document what your configuration
file is doing and why it needs to be done. Comments may be used
freely throughout the configuration file.

 The HEXFILE directive is used to create SIEVE.HEX, an Intel
extended hex file containing our sample application. This file can be
downloaded to an EPROM programmer for preparing a set of
EPROMs for our target system.

 The ABSFILE directive is used to create the file SIEVE.AXE, an
absolute load module complete with debugging information. Paradigm
LOCATE can create both Paradigm DEBUG and Intel OMF86
absolute load modules, ready to download and debug with an in-circuit
emulator or Paradigm DEBUG.

 The LISTFILE directive creates an absolute segment map in the
SIEVE.LOC listing file. These are the addresses where the
application will appear in the memory address space of the target
system.

 The MAP directives partition the target system memory address space
into three mutually exclusive regions. The first MAP directive covers
the 64KB of RAM found at the bottom of the memory address space
while the third defines 32KB of EPROM at the top of the memory

 Lines 1-6

 Line 9

 Line 10

 Line 11

 Other information, like
public symbols, can also
be placed in this file (see

page 70.

 Lines 20-22

 Paradigm LOCATE Reference Manual 26

address space. The second MAP directive marks as reserved the
remainder of the address space. Paradigm LOCATE uses this
information to warn if any code or data accidentally ends up in
undefined regions of the memory address space, or overlaps multiple
regions.

 The CPUTYPE directive identifies the target microprocessor as an
Intel 80C186EA. This will permit the 80C186EA peripheral registers
to be referenced in the INITCODE directive that follows.

 Line 26 instructs Paradigm LOCATE to create a reset vector at
address FFFF0H so control will be transferred to the application entry
point when reset is asserted. Lines 27 and 28 are used to create
initialization code for the 80C186EA upper and lower memory chip
selects so the target system memory can be completely accessed.

 The DUPLICATE directive makes a copy of the segments in the class
DATA, which contain the initialized data. The compiler startup code
then copies the contents of the EPROM-based ROMDATA class to
the RAM-based DATA class.

 The CLASS directive is used to bind physical segments to an
application. The first CLASS directive places the program code at the
base of the EPROM while the second CLASS directive puts the
application read/write data immediately following the interrupt vector
table. The third CLASS directive places the chip select initialization
code we created in lines 27 and 28 at address FFF00H, which is within
the 1KB block of addresses that the 80C186EA upper memory chip
select can address following reset.

 Using DATA as the anchor class, this ORDER directive binds
addresses to the other classes that are part of the RAM address space.

 Using CODE as the anchor class, this ORDER directive binds
addresses to the other classes that are in the EPROM address space.
Notice that the copy of the initialized data in class ROMDATA is
placed in the EPROM address space where it will be copied to RAM
by the startup code.

 Line 24

 Lines 26-28

 Paradigm LOCATE places
this code in the class

??LOCATE. See
INITCODE, page 67 for

more information.

 Line 30

 Lines 32-34

 If your target CPU does not
require port initialization

(lines 27 and 28), reference
to ??LOCATE can be

eliminated.

 Line 36-38

 Lines 40-42

 Chapter 2, Paradigm LOCATE basics 27

 The OUTPUT directive identifies which classes should be placed in
the output file. Note that classes containing code or copies of
initialized data are required to be named in the OUTPUT directive.
Other classes, containing uninitialized data and the state, can be left
out since they are initialized by the application.

 Running Paradigm LOCATE
 Now that we understand the basics, it's time to try out Paradigm
LOCATE and get our first embedded application ready for burning
EPROMs or debugging with Paradigm DEBUG.

 When Paradigm LOCATE is started, it reads in the SIEVE.ROM,
SIEVE.MAP, and SIEVE.CFG files to build the stand-alone
embedded application. This can be as simple as the following line
demonstrates:

 locate sieve

 When you run Paradigm LOCATE, the instructions in the
configuration file SIEVE.CFG direct the creation of the Intel extended
hex file containing the code and data at the specified addresses, along
with an AXE file suitable for use with Paradigm DEBUG and an in-
circuit emulator. An examination of the physical segment map from
the file SIEVE.LOC in figure 2.3 clearly shows the transformation to
an absolutely addressed program, ready for your target system.

 The last two segments in the segment map are the 80C186EA
peripheral register initialization code and the reset vector, both created
in the INITCODE directive on line 26. If you make any changes,
such as changing the processor type or adding stack initialization code,
your own results may be somewhat different. For example, the
segment ??CPUINIT is only present if you specified I/O operations
with the INITCODE directive.

 1 Input file: SIEVE.ROM
 2 Configuration file: SIEVE.CFG
 3 Created by Paradigm LOCATE 5.11 on Tue Jun 11 10:04:14 1996
 4 Command line options: C:\LOCATE\LOCATE.EXE sieve
 5

 Lines 44-47

 Figure 2.3
SIEVE.LOC file contents

 Paradigm LOCATE Reference Manual 28

 6 Memory Address Map for Program SIEVE
 7
 8 Start Stop Length Segment Class
 9 000400H 000403H 00004H _DATA DATA
10 000404H 000C03H 00800H _BSS BSS
11 000C04H 000C05H 00002H _BSSEND BSSEND
12 000C10H 00140FH 00800H _STACK STACK
13 0F8000H 0F8132H 00133H _TEXT CODE
14 0F8134H 0F8134H 00000H _INIT_ INITDATA
15 0F8134H 0F8134H 00000H _INITEND_ INITDATA
16 0F8134H 0F8134H 00000H _EXIT_ EXITDATA
17 0F8134H 0F8143H 00010H _EXITEND_ EXITDATA
18 0F8150H 0F8150H 00000H _RD ROMDATA
19 0F8150H 0F8153H 00004H _DATA ROMDATA
20 0F8160H 0F816FH 00010H _ERD ENDROMDATA
21 0FFF00H 0FFF12H 00013H ??CPUINIT ??LOCATE
22 0FFFF0H 0FFFF4H 00005H ??BOOT (ABSOLUTE)
23
 24 Entry point: FFFF:0000
25 Initial stack: 00C1:0800

 At this point, we have the file SIEVE.HEX which is ready to be
burned into EPROM and installed in our target system. If you don't
have an EPROM programmer that supports Intel extended hex, don't
worry - a quick edit of line 9 can create an output file in either Intel
hex, binary or Tektronix formats. Here is the replacement directive
for creating an Intel hex output file which occupies the upper 32KB of
the address space:

 hexfile intel80 offset=0xf8000

 In this example, we must specify an offset since Intel hex format can
contain at most 64KB of data. Since we have as much as 1MB of
address space to deal with, the OFFSET option informs Paradigm
LOCATE which 64KB of the 1MB address space to work with.

 If you are using a system with a 16-bit external bus, you will need a
pair of EPROMs, one containing the even addresses and one
containing the odd addresses. The following HEXFILE directive can
be used to create the files SIEVE.HX0 (containing the code on even
addresses) and SIEVE.HX1 (containing the code on odd addresses) if
your EPROM programmer can't perform the split for you.

 hexfile intel80 offset=0xf8000 split=2

 Burning EPROMs

 Chapter 2, Paradigm LOCATE basics 29

 So much can go wrong with embedded applications, and without the
right tools, figuring out what went wrong can be downright frustrating.
One area that Paradigm LOCATE excels is in providing the most
popular output file formats for debugging, using the award-winning
Paradigm DEBUG or an in-circuit emulator accepting the standard
Intel OMF86 file format.

 Our sample configuration file already set us up for a debugging session
with Paradigm DEBUG (used in conjunction with a supported in-
circuit emulator), so there is nothing left to chance. Just fire up the
hardware, run Paradigm DEBUG and have the file SIEVE.AXE
downloaded for an instant debugging session.

 If you don't have access to Paradigm DEBUG but have an in-circuit
emulator supporting the Intel OMF86 standard, changing output file
formats is as simple as changing the ABSFILE option on line 10 from
AXE86 to OMF86. Instead of the AXE86 output file, Paradigm
LOCATE will create an Intel OMF86 file, ready to download to your
emulator.

 Summary
 This completes our look at a simple embedded application and how
Paradigm LOCATE contributed to preparing files for debugging or
burning EPROMs. By applying the techniques we discussed while
progressing though the different examples, you are well on the way to
becoming fluent with the capabilities of your compiler and completing
your own embedded system application.

 Now that you are a little more comfortable using Paradigm LOCATE,
you might want to continue on and check out the more sophisticated
compiler-specific applications like C++, floating point, dynamic
memory management, or stream I/O that are part of each compiler
support package. Each example has a makefile, complete with options
for setting the memory model and debugging options. This makes it
simple to customize each example to meet your own requirements.

 Debugging options

 Paradigm DEBUG/RT
users would need to make

some minor changes to the
configuration file.

 If you haven't done so, now
is a good time to try some
the examples included in

the compiler support
packages. See chapters 9

or 10 for further information.

 Paradigm LOCATE Reference Manual 30

 Chapter 3, Relocation primer 31

 C H A P T E R

 3

 Relocation primer

 This section contains optional information provided for those
interested in the segment relocation process, handling of initialized
data, and other topics of interest to embedded system programmers.
Paradigm LOCATE can be used quite well without understanding
these underlying algorithms, so this section may be skipped at the
discretion of the user.

 Relocation basics
 When a linker processes a set of object files, it combines all segments
having the same segment name into a single physical segment which
must fit within a 64KB region of the memory address space.

 Compilers typically assign each segment to a class, and assembly
language users can do the same. Assignment to a class permits the
linker to combine together similar segments, such as all segments
containing code or initialized data, so they can be manipulated together
as a single entity. Although a member of the class, each segment
remains independently addressable and can vary in length to a
maximum of 64KB bytes. Since any number of segments can form a
class, there is no restriction on the size of a class.

 Compilers and assemblers also define a different relationship between
segments known as a group. The segments within a group do not

 A segment is the basic unit
of organization.

 A class is a collection of
related segments.

 We will cover how groups
affect the relocation

process on page 36.

 Paradigm LOCATE Reference Manual 32

have to be contiguous but are all addressed using the same segment
base; they must fit into a single 64KB physical segment. When the
linker encounters a group, it replaces the offsets from the segment
base with offsets from the group base, adjusting them upward as
necessary.

 The linker output files
 The linker has the responsibility of resolving all external references and
creating the relocation table containing the list of segment fixups.
Although all external references have been resolved, the segment
fixups are still relocatable and can be moved anywhere within the
1MB address space, which is where Paradigm LOCATE becomes
involved.

 This information, along with other loading instructions and optional
debugging information, is written out in the .ROM and .MAP files.
The .ROM file is the relocatable load module. By default, linker
names in this file have an .EXE extension. The .MAP file is the
segment map file. Both .ROM and .MAP files are required by
Paradigm LOCATE. Being a relocatable load module has certain
advantages and is a necessary requirement for DOS, since the final
physical addresses of a program are unknown until the program is
loaded.

 Of course, for designers of embedded systems, this is unacceptable
since all segments must be at fixed addresses before the code is
committed to EPROM or downloaded to an in-circuit emulator. A
utility like Paradigm LOCATE solves this problem by extracting the
segments and relocation information from the linker files and
converting the relocatable segment references to absolute addresses in
the target system address space, as directed by the configuration file.

 Segment aliases
 The virtual segment, or frame number, is used as a handle by
Paradigm LOCATE to identify the target segment referred to by a
fixup record.

 The .ROM and .EXE files
are really the same - we

just want to distinguish
them.

 Paradigm LOCATE will
automatically warn of alias

conditions.

 Chapter 3, Relocation primer 33

 It turns out that it is possible for two segments to share the same
virtual segment number, a situation known as aliasing. Since the fixup
records for aliased segments are indistinguishable, some restrictions are
placed on the developer to prevent aliases from being created.

 Segment aliases occur when a segment fails to cross a paragraph
boundary, and the start of the second segment shares the same virtual
fixup as the first. Whether or not a segment alias presents a problem
depends on whether the segments are members of the same class. If
both segments are members of the same class there is never a problem
since these segments will be located contiguously and the fixup is
unambiguous. If the offending segments are organized as a group,
there is again no problem since all segments in a group share a
common virtual segment number and the segment fixup will also be
unambiguous.

 The segment alias problem arises when the segments are members of
different classes and an attempt is being made to relocate the segments
to different regions of the memory address space by splitting them. If
a segment fixup is requested for an aliased virtual segment, the fixup is
ambiguous and Paradigm LOCATE cannot determine the correct
address translation.

 Fixing a segment alias is generally easy since a segment alias condition
can only occur when the length of the first segment and the alignment
of the next segment in the load module result in both segments having
segment bases in the same paragraph. Since the alias is a function of
segment length and alignment, adjusting either of these two parameters
can eliminate the possibility of a segment alias occurring.

 Segment ordering and alignment
 The solution to the segment alias problem involves specifying the
alignment characteristics for the first segment of each class such that
the start of the segment will be forced to the new paragraph.

 This is easily accomplished by using the assembly language startup
code to declare the segment alignment of the first segment in a class to
be on a paragraph boundary. This will allow the startup code to take

 The startup code supplied
with Paradigm LOCATE will

always prevent an alias,
unless you modify it.

 Paradigm LOCATE Reference Manual 34

advantage of the way the linker organizes segments and classes within
the load module.

 The ability to control the segment length is limited, especially when
high level languages or pre-compiled library modules are involved. We
have seen that the DOS linkers order and align the segments in the
load module in the order they are encountered in the object modules.
By making sure that the first object file input to the linker specifies the
desired segment order and alignment for all the classes in the
application, the user has complete control over the final ordering and
alignment of the segments in the load module.

 The following are sample declarations which demonstrate the
technique. Notice that the first segment in each class has been
declared to be paragraph aligned using the assembler keyword 'para'.
So long as the previous class is not empty, this will guarantee a unique
segment address for the class. Also note that the subsequent segments
in a class can use any alignment since they are always manipulated
together and never split apart:

 _TEXT segment para public 'CODE'
_TEXT ends
_DATA segment para public 'DATA'
_DATA ends

 The case where a segment will have zero length, yet must be
manipulated independently, will be examined in the next topic, where it
arises naturally.

 Segment checking
 After converting from virtual to physical segment addresses, Paradigm
LOCATE checks for overlapping segments and outputs a warning if
any are detected.

 A segment overlap warning is generally the result of the class length
increasing to the point where it overlaps with one or more of the
following classes. This problem is easily corrected by changing the
starting addresses in the configuration file CLASS directives to match
the physical memory requirements of each class.

 This is the rationale behind
the declaration of the first

segment in each class
before any code or data

declarations.

 These are only an example
- use the DefSeg macros

supplied with the startup
code whenever possible.

 Chapter 3, Relocation primer 35

 Also checked by Paradigm LOCATE is data exceeding the upper limit
of the CPU memory address space. This condition would occur if the
sum of the segment base address and the length of the segment
exceeds the 20-bit addressing capability of the microprocessor. This is
not an uncommon problem, as it is quite easy for the application code
to grow past the 1MB boundary.

 Another possibility that Paradigm LOCATE will check for is an
application completely filling the RAM or ROM address space
assigned to it. To check for code or data spilling into non-existent
regions of the address space, Paradigm LOCATE permits the user to
define regions of the memory address space which are reserved and
cannot be used.

 Absolute segments
 A potential problem with the use of DOS linkers is that segments
declared at an absolute address do not appear in the output link map.
Since any symbols defined in an absolute segment will appear as part
of the debugging record, an attempt by Paradigm LOCATE to convert
the virtual segment to a physical segment address will most likely fail.
When the virtual to physical segment translation fails, Paradigm
LOCATE assumes that the symbol is a member of an absolute
segment and does not fixup the segment component of the code or
data and issues a warning.

 The use of absolute segments is not recommended since Paradigm
LOCATE allows the user to delay the binding of the physical segment
address until the locate phase rather than when the file is assembled.
Besides leading to more portable code, error checking is enhanced
since Paradigm LOCATE can confirm that no other segments will
overlap the absolute segment.

 There is also the possibility that one of the other segments in the
application will have a logical segment index identical to the absolute
segment. Since Paradigm LOCATE has no way to verify the symbol
being absolute, the translation would take place and the address of the
symbol in the debugging records would be incorrect. While a problem
for the debugging information, this event would not affect the
correctness of the code.

 Any attempt to use the
reserved address is
flagged by Paradigm

LOCATE.

 If necessary, the warning
messages for absolute

symbols can be disabled
with the -w- command line

option.

 Absolute segments are
also very limited in that

they can only be used to
define addresses.

 Paradigm LOCATE Reference Manual 36

 The two steps needed when converting an application from using
absolute segment addressing to using Paradigm LOCATE to fix the
segment address are shown below. The first step is to change the
segment declaration in the assembly language source from the absolute
format to the relocatable format with a unique class name.

 ASEG segment at 0f000h ; Absolute
; your code
ASEG ends

ASEG segment para public 'MYSEG' ; Relocatable
; your code
ASEG ends

 The second step involves adding a directive to the Paradigm LOCATE
configuration file to set the base address of the segment to the original
segment address.

 class MYSEG = 0xf000 // Fix the address

 Groups
 Currently there is no explicit support for groups in Paradigm LOCATE
due to DOS linkers lacking sufficient information on the segments that
make up a group.

 If you are programming in assembly language, this should not cause
any problems since the groups and classes used are controlled
completely by the programmer. C and C++ application programmers
should pay careful attention to make sure that the rules for
manipulating groups are not violated.

 Paradigm LOCATE provides support for groups through the use of
the configuration file ORDER directive. After processing the object
modules, the linker adjusts the offsets within each segment in a group
relative to the start of the group. If the user supplies the class name of
the first class in a group, the other classes in the group can be
relocated relative to the base segment of the group. The location of a
group is handled by assigning the first class in the group a physical
segment with the CLASS directive and ordering the remaining classes
in the group located with the ORDER directive.

 Fixing absolute
segments

 Languages such as
Microsoft C/C++ and

Borland C++ use the group
DGROUP.

 The order of classes in a
group must follow the

ordering the .MAP file.

 Chapter 3, Relocation primer 37

 Duplicating classes
 Some programs define initial values for read/write data structures that
are assumed to be correct when a program begins execution. Since
this is not the default case for a system just powered up, Paradigm
LOCATE must provide a mechanism for initializing this memory to its
initial values.

 The startup code is responsible for the initialization of RAM-based
data from an EPROM-based copy. This technique involves the
creation of a placeholder class which has a segment address but has no
length since the actual segments in the class will be filled in by the
Paradigm LOCATE DUPLICATE directive. Since the placeholder
class will have zero length, any class that follows is guaranteed to be
aliased.

 The solution to this problem is to define a pair of classes, the first
serving as the placeholder and the second serving to mark the end of
the first.

 _rd segment para public 'ROMDATA'
ridata label byte
_rd ends

erd segment para public 'ENDROMDATA'
 db 16 dup (?)
_erd ends

 The above segment declarations define both classes to be paragraph
aligned with the second class following the first. While we cannot
avoid the alias condition, we can make it harmless by making sure that
the second class is always located contiguously to the first. The
Paradigm LOCATE ORDER directive can now be used to fix the
relationship of the classes, relative to an anchoring class.

 order CODE ROMDATA ENDROMDATA

 Finding the start of the class ROMDATA is as simple as taking the
address of the label ridata or referencing the segment name. The
end of the class is marked by the class ENDROMDATA, which also
guarantees that the following class will not be aliased. This is
determined by the length of the class being 16 bytes, guaranteeing the
following class will have a unique fixup.

 You can't compute the size
of a duplicated class, only

of the original class.

 See your compiler startup
code for an example of this

technique.

 Paradigm LOCATE Reference Manual 38

 Chapter 4, Using configuration files 39

 C H A P T E R

 4

 Using configuration files

 The process of converting the relocatable output of the linker to a
format suitable for downloading to a remote debugger, an in-circuit
emulator, or an EPROM programmer begins with the instructions
contained in a Paradigm LOCATE configuration file. A configuration
file contains any number of directives which allow you to control
where your application will reside within the target system memory
address space, the number and type of the output files, and any other
Paradigm LOCATE options of your choosing. Each directive may
also accept options which provide more specific results for the
directive.

 Because Paradigm LOCATE configuration files use a C preprocessor,
you have full control over the application with macros, conditional
processing using standard C syntax.

 Configuration file format
 The default Paradigm LOCATE configuration file is the filename of
the load module with the .CFG extension. For example, assuming you
just linked your application and have the newly created files
DEMO.ROM and DEMO.MAP, the following Paradigm LOCATE
command line would use the default configuration file DEMO.CFG

 Paradigm LOCATE Reference Manual 40

for the directives to process the DEMO.ROM input file and create the
requested output files.

 locate demo

 Often it is more convenient to use different configuration files as you
proceed through the phases of the software development cycle or to
have multiple projects share a common configuration file. Using the
Paradigm LOCATE -c command line option, the default configuration
filename can be overridden and a configuration file of your choosing
substituted. Paradigm LOCATE also offers full control over the
default file extensions. If you prefer to use a different configuration
file extension on a project basis, the Paradigm LOCATE command
line option -Xc can be placed in the LOCATE.OPT file to substitute
your own default configuration file extension when Paradigm
LOCATE is run.

 Paradigm LOCATE gives you considerable leeway in the layout of
your configuration file. With the exception of the few directives that
depend on options specified in a previous directive, Paradigm
LOCATE directives can be declared in any order in the configuration
file.

 Here is the format of a typical configuration file directive processed by
Paradigm LOCATE:

 directive option [option ...]

 Each configuration file directive accepts one or more options which
customize the actions of the directive to meet specific requirements.
Some directives accept a single option while others accept an unlimited
number of options. When a directive accepts multiple options, the
options can appear in any order unless otherwise specified.

 For example, the LISTFILE directive is used to create an absolute
listing file containing segments, publics, line numbers and local
symbols. In the following example, both LISTFILE directives are
equivalent.

 listfile segments publics lines
listfile publics lines segments

 Later on, we will see how
the preprocessor can help

manage multiple
configurations.

 Directive format

 Chapter 4, Using configuration files 41

 Paradigm LOCATE processes each configuration file directive up to
the end of the line. For readability, and to permit an arbitrary number
of options in a directive, multiple physical lines can be combined into a
single logical line using a line continuation character, the backslash (\).
The following is a simple example of using line continuation in the
WARNINGS directive, used to enable and disable specific warnings.

 warnings -w1000 \ // Turn off warning 1000
 -w1001 \ // Turn off warning 1001
 +w1002 // Turn on warning 1002

 Note that in the previous example, all text following the line
continuation character up to the end of the line is ignored. This
permits comments to be added to the source line, or allows the
formatting of the directive options in a vertical line. While the
WARNINGS directive is just as happy having all the options listed on
a single line, the line continuation feature of Paradigm LOCATE
permits a clear view of the directive options without destroying the
layout or readability of the configuration file.

 Directive processing priority
 Paradigm LOCATE options can be specified in the LOCATE.OPT;
file, on the DOS command line or in the configuration file. In the
event of conflicting options, the following processing order (lowest to
highest) is used to determine which Paradigm LOCATE options will
be enabled.
n LOCATE.OPT options
n configuration file directives
n command line options

 With the exception of the -c command line option which is processed
immediately, all other command line options are processed after the
configuration file directives have been processed. This permits the
command line to be used to override any default actions specified in
the configuration file or in the LOCATE.OPT file.

 Line continuation

 Paradigm LOCATE Reference Manual 42

 In the event of multiple directives within the configuration file,
subsequent directives will override the effect of the previous
directives, except for instances of the HEXFILE and LISTFILE
directives which always specify multiple, independent actions.
Command line options which enable an action can be disabled later by
the complementary command line option just as a later configuration
file directive can enable or disable a previous directive.

 The preprocessor
 In order to accommodate a diverse range of options, a full C
preprocessor is used to prepare configuration files for parsing by
Paradigm LOCATE. The preprocessor gives you great power and
flexibility in the following areas:
n Defining macros to reduce the development effort and improve the

readability of your configuration files
n Including directives from other files, such peripheral device

definitions
n Setting up conditional processing for improved portability and for

managing multiple builds

 Any line with a leading # is taken as preprocessing directive. The
initial # can be preceded or followed by white space if desired.

 The #define directive defines a macro, with or without parameters, as
shown in the following example:

 #define macro_indentifier <token_sequence>

 Each occurrence of macro_identifier in your configuration file will be
replaced with the token_sequence, which may be empty.

 You can undefine a previously defined macro by using the #undef
directive:

 #undef macro_identifier

 +

 Preprocessor directives
can appear anywhere in the

configuration file.

 The #define
directive

 The #undef
directive

 Chapter 4, Using configuration files 43

 Once undefined, it can be redefined with #define, using the same or a
different token sequence.

 The -D option can be used on the Paradigm LOCATE command line
to define identifiers before the start of the configuration file processing.

 The Paradigm LOCATE command line

 locate -DDEBUG=1 -DLIST test

 is equivalent to placing

 #define DEBUG 1
#define LIST

 at the start of the TEST.CFG configuration file.

 The #include directive is used to pull in other files into the original
configuration file. It uses one of the following forms, which are
treated the same by Paradigm LOCATE:

 #include <filename>
#include "filename"

 The action of the preprocessor is to remove the #include line from the
configuration file and replace it with the entire contents of the file
filename.

 Paradigm LOCATE supports conditional processing using the #if,
#elif, #else, and #endif directives. Using these directives you can
conditionally include configuration file source lines, based on the result
of an expression:

 #if expression
<section>
#elif expression
<section>
#else
<section>
#endif

 The -D option

 File inclusion with
#include

 The #if, #elif,
#else, and #endif

directives

 Paradigm LOCATE Reference Manual 44

 If an expression evaluates to non-zero (after any macro expansion),
the source lines represented by the corresponding section are
preprocessed and passed on to Paradigm LOCATE. When an
expression evaluates to zero, the corresponding section is ignored.

 The #ifdef and #ifndef conditional directives let you test whether an
identifier is defined, that is, whether a previous #define is still in force
for the identifier. The line

 #ifdef identifier

 has exactly the same result as

 #if 1

 if identifier is defined, and the same effect as

 #if 0

 if identifier is undefined.

 #ifndef is used to test for the not defined condition.

 The defined operator offers a more flexible method of testing whether
one or more identifiers are defined. It is valid only in #if and #elif
expressions.

 The expression defined(identifier) evaluates to 1 (true) if the
identifier has been previously defined and has not been undefined,
otherwise it evaluates to zero. The directive

 #if defined(aSymbol)

 is the same as

 #ifdef aSymbol

 The advantage of using the defined operator is that it can be used
repeatedly in a complex expression, such as

 #if defined(thisSymbol) && !defined(thatSymbol)

 The #ifdef and
#ifndef directives

 The operator
defined

 Chapter 4, Using configuration files 45

 The #error directive is used to terminate processing and output an
error diagnostic of your choosing. The #error directive is typically
used in a conditional clause to catch an unexpected condition, as
shown in the following example:

 #if !defined(A_MACRO)
#error Failed to define macro A_MACRO
#endif

 The following macros are predefined by Paradigm LOCATE for use in
configuration files:

 __PARADIGM__ 1
__LOCATE__ Paradigm LOCATE version number

 Comments
 Configuration files do more than instruct Paradigm LOCATE how to
process the relocatable load module; they are also a key component of
the design documentation. To help you in properly documenting your
design, comments can be added freely to the configuration file.

 The start of a comment field is defined using the C++ syntax, which is
a pair of slashes ('/') with the comment continuing to the end of the
line. Blank lines and comments can appear anywhere within the
configuration file, improving the readability while providing complete
flexibility.

 Finding errors
 Any time Paradigm LOCATE finds a discrepancy parsing a
configuration file directive, it issues a diagnostic indicating the
configuration file source line in error. A complete list of diagnostics
produced by Paradigm LOCATE, together with a description of the
probable cause and possible corrective actions, can be found in
Appendix A for warning diagnostics, and in Appendix B for error
diagnostics.

 The #error
directive

 Predefined macros

 Old-style C comments
may also be used.

 These diagnostics are
designed to pinpoint errors

or warn of hazardous
conditions.

 Paradigm LOCATE Reference Manual 46

 In the event of an error in a directive spanning multiple lines, the
source line number reported in an error diagnostic may be inaccurate.
Because the reported position may be the line following the actual
error, it is important to examine the entire directive for the error, not
just the reported line.

 Check both the reported
line and the previous line

for the error.

 Chapter 5, Configuration file directives 47

 C H A P T E R

 5

 Configuration file directives

 This chapter offers a detailed description of the Paradigm LOCATE
configuration file directives, the commands that build an absolute
load module in a file format of your choosing. Before introducing
each directive, a short review of the layout used to document the
directives is in order.

 The Paradigm LOCATE configuration file directives contain a detailed
description of the directive, the syntax and a list of options accepted
by the directive. Any command line equivalent options are also listed
to round out the detailed description. To place each directive in the
context of an application, each entry concludes with a list of examples
showing the directive as it might be used in a Paradigm LOCATE
configuration file for a typical embedded system.

 All configuration file directives are shown with the directive and any
options shown in uppercase. A valid directive or option must have at
least the significant characters although it may have more. Paradigm
LOCATE keywords are case-insensitive so you can use either upper
or lowercase in your configuration files. Options to directives are also
case-insensitive, with the exception of segment and class names which
are case-sensitive and must match the names from the link map.

 Any optional arguments for a directive are shown enclosed by square
brackets ([and]) with an ellipsis (...) used to indicate repeated
arguments. The following mnemonics are used throughout to identify
the type of argument expected by Paradigm LOCATE.

 All user input is shown in
lowercase

 Paradigm LOCATE Reference Manual 48

n data 8- or 16-bit data

n data8 8-bit data

n data16 16-bit data

n addr16 16-bit segment (paragraph) address

n addr20 20-bit physical address

n addr24 24-bit physical address

n addr A addr20 or addr24 address (depending on the
input file)

n file A filename with optional path. A valid Paradigm
LOCATE filename must begin with a letter and
be followed by any combination of letters or
numbers.

n list One or more class names

n name A segment or class name

 ABSFILE

 Chapter 5, Configuration file directives 49

 The ABSFILE directive is used to select the file type and optionally
supply a filename for the absolute output file. The ABSFILE directive
is used when you will be working with Paradigm DEBUG, or a
development tool accepting Intel OMF86 files.

 ABSFILE [AXE86 | OMF86 | NONE] \
[FORMAT=type] \
[FILENAME=file]

 The following are valid options for the ABSFILE directive:

 AXE86 Selects the Paradigm DEBUG 6.0 format for the
absolute output file. The default file extension is
.AXE and may be changed with the -Xa option.

 OMF86 Selects the Intel OMF86 format for the absolute
output file. The default file extension is .ABS
and may be changed with the -Xo option.

 NONE Disables the creation of an absolute output file.

 FILENAME This argument permits you to change the name
of the absolute output file to file. The default
filename is the same as the input file with the
extension determined by the output file type.

 Use slashes (/) instead of backslashes (\) for path name
separators. For example,
file = c:/output/test.axe

 FORMAT The FORMAT option is used to specify different
AXE file formats, for use with older versions of
Paradigm DEBUG. This option accepts a single
argument, depending on the version of the
debugger being used.

 PD60
 PD50
 PD40
 PD31

 Paradigm DEBUG 6.0
Paradigm DEBUG 5.0
Paradigm DEBUG 4.0
Paradigm DEBUG 3.1

 Description

 Syntax

 Options

 All current versions of
Paradigm DEBUG use the

default AXE file format.

 ABSFILE

 Paradigm LOCATE Reference Manual 50

 PD30
 PD20
 PD10

Paradigm DEBUG 3.0
Paradigm DEBUG 2.0
Paradigm DEBUG 1.0

 The following ABSFILE directives can be specified from the Paradigm
LOCATE command line as well as in the configuration file.
 -Apd60
 -Apd50
 -Apd40
 -Apd30
 -Apd20
 -Apd10
 -Aomf
 -Ad
 -Anfile

 AXE86 FORMAT=PD60
AXE86 FORMAT=PD50
AXE86 FORMAT=PD40
AXE86 FORMAT=PD30
AXE86 FORMAT=PD20
AXE86 FORMAT=PD10
OMF86
NONE
FILENAME=file

 absfile omf86 filename=myprog.abs
absfile axe86 format=pd40

 Command line
options

 Examples

 CHECKSUM

 Chapter 5, Configuration file directives 51

 The CHECKSUM directive is used to define a region of the memory
address space and calculate the CRC or checksum of that region. At
run-time, the target system can then compare the computed CRC or
checksum with the stored value to determine if any changes have been
made to the program or data.

 CHECKSUM addr TO addr \
[ADDRESS=addr] \
[FILL=fill] \
[ROMBIOS | CRC16 | CRC32]

 The following are valid options for the CHECKSUM directive.
 ADDRESS The ADDRESS option is used to set the

physical address of the checksum. If not
specified, the computed checksum will default
to the address immediately following the end of
the checksum region. The address can also be
the name of a class, as well as a 20-bit physical
address.

 FILL The FILL option is used to inform Paradigm
LOCATE of the background pattern of unused
bytes within the checksum region. The value
used for the fill and background contents of the
EPROM must agree for checksum calculation to
occur. If not specified, the fill pattern defaults
to 0xFF.

 ROMBIOS This option selects the IBM PC ROM BIOS
extension checksum for the defined region,
which writes a one byte checksum at the
specified address.

 CRC16 The CRC16 option selects the CRC-16
checksum for the defined region, which writes a
two byte checksum at the specified address.

 Description

 Syntax

 Options

 CHECKSUM

 Paradigm LOCATE Reference Manual 52

 CRC32 This option selects the CRC-32 checksum for
the defined region, which writes a four byte
checksum at the specified address.

 None

 checksum 0xc0000 to 0xc07fe fill=0xff rombios
checksum 0xf8000 to 0xffffd address=0xffffe crc16
checksum CODE to ROMDATA crc32

 Command line
options

 Examples

 CLASS

 Chapter 5, Configuration file directives 53

 The CLASS directive is used to assign a physical address to each of
the segments in a class.

 CLASS classname = addr16

 The 16-bit segment address in the argument addr16 is bound to the
first segment in the class classname. Each of the remaining segments
in the class are then assigned physical addresses that are relative to
preceding segments in the class.

 None

 class CODE = 0xfc00
class DATA = 0x0040

 Description

 Syntax

 Options

 Command line
options

 Examples

 COMPRESS

 Paradigm LOCATE Reference Manual 54

 The COMPRESS directive is used to compress a duplicated class,
reducing the size of the class to save space. Paradigm LOCATE will
write out a compressed version of the named class in the output file.

 Each Paradigm LOCATE compiler support package includes a
decompression module that decompresses the result during the startup
code. This module is automatically inserted into the ROMable run-
time libraries.

 Paradigm LOCATE runs a two step compression algorithm to
compress a class. During the first phase, Paradigm LOCATE
estimates the compressed size of the class, a requirement for the
binding of addresses to the segments and classes that follow the
compressed class. In the second phase, the class is compressed after
any segment fixups have been applied.

 COMPRESS classname

 classname is the name of the class to be compressed. This class must
appear in a DUP directive as it is not possible to decompress in place.

 None

 dup FARDATA ROMFARDATA
compress ROMFARDATA

 Description

 A sample application
demonstrating

compression is included
with each compiler.

 Syntax

 Options

 Command line
options

 Examples

 CPUTYPE

 Chapter 5, Configuration file directives 55

 The CPUTYPE directive informs Paradigm LOCATE of the target
system microprocessor. Paradigm LOCATE uses the CPUTYPE
directive to select the set of peripheral registers permitted in the
INITCODE directive.

 CPUTYPE cpu_id

 The following is a list of microprocessor IDs supported by the cpu_id
argument.

 I8088 D70108 (V20)
 I8086 D70116 (V30)
 I80188 D70208 (V40)
 I80186 D70216 (V50)
 I80C188 D70320 (V25)
 I80C186 D70330 (V35)
 I80C188EA D70325 (V25+)
 I80C186EA D70335 (V35+)
 I80L188EA D70136 (V33)
 I80L186EA D70236 (V53)
 I80C188EB D70423 (V55SC)
 I80C186EB D70433 (V55PI)
 I80L188EB D70208H (V40H)
 I80L186EB D70216H (V50H)
 I80C188EC
 I80C186EC AM186CC
 I80C188XL AM186EM
 I80C186XL AM188EM
 I80286 AM186ES
 I80386 AM188ES
 I80386CX AM186ER
 I80386EX AM188ER
 I80486 AM186ED

 None

 Description

 Syntax

 Options

 Command line
options

 CPUTYPE

 Paradigm LOCATE Reference Manual 56

 cputype i80c186eb
cputype i80c188xl
cpu D70325

 Examples

 DEBUG

 Chapter 5, Configuration file directives 57

 The DEBUG directive is used by Paradigm LOCATE to determine
which debug information data structures will be included in the Intel
OMF86 output file. By eliminating unnecessary debugging
information such as types, Paradigm LOCATE can run significantly
faster while producing smaller output files.

 This directive is also used to enable Paradigm DEBUG OMF86
extensions or force compatibility with the Intel iC86 C compiler.
These extensions add support for enumerations and C++ objects and
are used by third-party debugging tools that accept OMF86 files.

 DEBUG option [option ...]

 The following are valid options for the DEBUG directive.
 IC86
NOIC86

 These options enable/disable compatibility
with the Intel iC86 compiler. When
enabled, the IC86 option restricts the debug
information output and folds all symbols to
uppercase to match the output of the Intel
compiler.

 TYPES
NOTYPES

 These options enable/disable the inclusion of
type records in the output OMF86 file.

 PUBLICS
NOPUBLICS

 These options enable/disable the inclusion of
public symbol records in the output OMF86
file.

 SYMBOLS
NOSYMBOLS

 These options enable/disable the inclusion of
local symbol records in the output OMF86
file.

 LINES
NOLINES

 These options enable/disable the inclusion of
line number records in the output OMF86
file.

 ALL This option enables all debug information in
the output OMF86 file and is the same as
specifying the TYPES, PUBLICS,

 Description

 Syntax

 Options
 The default for this option is

NOIC86.

 This is the default for the
DEBUG directive.

 DEBUG

 Paradigm LOCATE Reference Manual 58

SYMBOLS and LINES options.

 NONE This option disables all debug information in
the output OMF86 file and is the same as
specifying the NOTYPES, NOPUBLICS,
NOSYMBOLS and NOLINES options.

 EXTENSIONS
NOEXTENSIONS

 This option enables or disables the Paradigm
OMF86 extensions, which include extended
enumerations and C++ support.

 The default for these options is NOEXT, as
extensions may not be compatible with third-
party debuggers.

 CLASSES
NOCLASSES

 This option enables or disables the output of
C++ class type information in the OMF86
output file.

 ENUMS
NOENUMS

 This option enables or disables the output of
extended enumeration debug information in
the OMF86 output file.

 BIGTYPES
NOBIGTYPES

 This option enables or disables the output of
extended types in the OMF86 output file.
Only enable this option if your debugger
supports 64K type records.

 MEMBER-
FUNCTION
NOMEMBER-
FUNCTION

 This option enables or disables the output of
C++ member function in the OMF86 output
file.

 DESTRUCTORS
NODESTRUCTORS

 This option enables or disables the output of
C++ destructors in the OMF86 output file.
Some tools may not be able to handle C++
destructor syntax so enable this option only if
it is supported by your tools.

 OPERATORS This option enables or disables the output of
C++ operators in the OMF86 output file.

 DEBUG

 Chapter 5, Configuration file directives 59

NOOPERATORS Some tools may not be able to handle C++
operator syntax so enable this option only if it
is supported by your tools.

 CLASSTEMPLATES
NOCLASS-
TEMPLATES

 This option enables or disables the output
of C++ templates in the OMF86 output
file.

 SPACES
NOSPACES

 This option enables or disables the removal
of spaces from symbols.

 PARAMETERS
NOPARAMETERS

 This option enables or disables the
inclusion of function parameters in C++
function names.

 SPECIALS
NOSPECIALS

 This option enables or disables the output
of special C++ characters in names.

 ALLEXTENSIONS
NOEXTENSIONS

 This option enables all C++ extensions,
except BIGTYPES or disables all
extensions.

 Because of limited support for C++ types and symbols, C++
developers may wish to enable additional C++ OMF output.

 Each of the DEBUG arguments can be specified using the Paradigm
LOCATE command line options, as shown below.

 -Od NONE
 -Od- ALL
 -Oe EXTENSIONS
 -Oe- NOEXT
 -Oi IC86
 -Oi- NOIC86
 -Ol LINES
 -Ol- NOLINES
 -Op PUBLICS
 -Op- NOPUBLICS
 -Ot TYPES
 -Ot- NOTYPES
 -Ox SYMBOLS

 +
 Command line

options

 DEBUG

 Paradigm LOCATE Reference Manual 60

 -Ox- NOSYMBOLS
 -Oea[-] Enable/disable all C++ extensions
 -Oec[-] Enable/disable C++ class translation
 -Oed[-] Enable/disable C++ destructor support
 -Oee[-] Enable/disable enumeration extensions
 -Oem[-] Enable C++ member function extensions
 -Oeo[-] Enable C++ operator extensions
 -Oep[-] Enable C++ parameter extensions
 -Oes[-] Enable space removal from C++ names
 -Oet[-] Enable/disable OMF large types
 -Oex[-] Enable/disable C++ template support
 -Oez[-] Enable C++ special symbol extensions

 This directive only affects the output of Paradigm LOCATE when the
ABSFILE OMF86 directive or -Aomf command line option is in
effect.

 debug notypes nosymbols \
 nopublics nolines

debug none // Same as above

 Notes

 Examples

 DISPLAY

 Chapter 5, Configuration file directives

 61

 The DISPLAY directive controls the level of diagnostic information
output emitted by Paradigm LOCATE during the processing of input
and output files.

 Paradigm LOCATE can display the names of each output file as it is
being written, display compression statistics, or track module names as
they are processed to indicate the progress towards completion.

 DISPLAY option [option ...]

 The option argument can be selected from one of the following
options

 NONE Disables all display diagnostics.

 FILES Displays the filenames of the output files as
they are processed.

 MODULES Displays the modules names found in the
input files as they are processed.

 COMPRESSION Enables the display of compression statistics
for compressed classes.

 ALL Enables the display of all Paradigm LOCATE
diagnostics.

 The DISPLAY directive options can also be specified from the
command line as follows

 -d0 NONE
 -d1 FILES
 -d2 MODULES
 -d3 COMPRESSION
 -d4 ALL

 display files compression
display all
display none

 Description

 Syntax

 Options

 Command line
options

 Examples

 DUPLICATE

 Paradigm LOCATE Reference Manual 62

 The DUPLICATE directive is used to make a copy of a class.
Typically, the copy of the class is located in the EPROM address
space to be used to initialize RAM by the startup code.

 DUPLICATE src_class dest_class

 DUPLICATE makes a copy of the class src_class and appends it to
the class dest_class, creating the dest_class class if it does not already
exist.

 None

 If the duplicated class already exists, the newly made copy will be
concatenated to the existing class; otherwise, the new class is simply
created. The segments in the duplicated class keep the same segment
names and offsets, but pick up the name of the new class. The same
offsets are kept to permit multiple classes to be concatenated together
into a single duplicated class while preserving the address relationships
between the classes.

 This is the method used to make copies of initialized data for
placement in EPROM. Since the first segment in the duplicated class
has been defined in the startup code and has a physical address, and
the length of the original class is known, it is a simple matter for the
compiler startup code to copy the class from EPROM to RAM.

 dup DATA ROMDATA // Copy class DATA

class DATA = 0x0040 // DATA at 00400H
class CODE = 0xfc00 // CODE at FC000H

order CODE ROMDATA // ROMDATA after CODE

 Description

 Syntax

 Options

 Command line
options

 Notes

 Example

 HEXFILE

 Chapter 5, Configuration file directives 63

 The HEXFILE directive is used to create hex and binary files suitable
for download to an EPROM programmer. You can use as many
HEXFILE directives as desired in a configuration file to create any
number of different output files.

 If you choose to create multiple output files in a single pass of
Paradigm LOCATE, be sure to use the FILENAME option to name
the output file for each HEXFILE directive so that Paradigm
LOCATE will not overwrite any of the files.

 HEXFILE [INTEL80|INTEL86|BINARY|TEKHEX] \
 [OFFSET=addr] \
 [SIZE=size] \
 [SPLIT=split] \
 [FILL=fill] \
 [LENGTH=len] \
 [TRUNCATE] \
 [FILENAME=file]

 The following is a description of the HEXFILE options.

 INTEL80
INTEL86
INTEL386
BINARY
TEKHEX

 These mutually exclusive arguments select one of
the following output file types. The number in
parentheses indicates the maximum size of the
address space supported by each file type.
 INTEL80 Intel hex (64KB)
 INTEL86 Intel extended hex (1MB)
 INTEL386 Intel 386 extended hex (1MB or
 16MB)
 BINARY Binary (1MB)
 TEKHEX Tektronix hex (64KB)

 INTEL86 is the default output file type for the
HEXFILE directive.

 OFFSET The OFFSET option is used to select a subset of
the 1MB address space. The address defined in
addr is used as the base for any subsequent file
operations.

 Description

 Syntax

 Options

 If left unspecified, the
address for the OFFSET

argument defaults to 0.

 HEXFILE

 Paradigm LOCATE Reference Manual 64

 For example, to burn a 32KB EPROM using the
Intel hex format that starts at address F8000H, the
offset field should be set to F8000H, which makes
offset 0000H within the EPROM correspond to
offset F8000H of the address space.

 SIZE The SIZE option is used to set an upper limit on
the image size (in KB), up to the upper limit
imposed by the output file type. The size field can
be any value from 1 (a 1KB EPROM image) up to
1024 (a full 1MB EPROM image).

 The default image size is the maximum size of the
selected output file type, except for binary files
which default to 32K bytes.

 SPLIT The SPLIT option is used to extract a set of 1 to 4
EPROM files from the specified region, where
each file corresponds to a memory bank. Splitting
the EPROM image is normally required when
working with 16- and 32-bit buses implemented
using 8-bit wide EPROMs. The split field can take
on the values 1, 2 or 4 with 1 being the default
value.

 FILL The FILL option is used to inform Paradigm
LOCATE of the value of the background fill
character for use in binary output. The fill
character defines the background pattern for binary
files; all other file types require that the EPROM
programmer be used to set the fill prior to
downloading the file. If not specified, the fill
character defaults to 0FFH.

 LENGTH The LENGTH options lets you change the record
length for hex output files. The default hex record
contains a maximum of 16 bytes per record. Using
this option, you can change the record length from
8 to 64 bytes in size.

 If you are creating multiple
EPROM images using the
SPLIT option, each image

will be the selected size.

 Intel extended hex files
cannot be split due to the

presence of segment
records.

 This option used to be
called PAD in previous

versions of Paradigm
LOCATE.

 HEXFILE

 Chapter 5, Configuration file directives 65

 TRUNCATE This option is used to create binary files having
only the data contained in the load module. When
this option is not in effect, the size of the binary
output files will be determined by the SIZE option.
When TRUNCATE is used, the file size will be the
minimum of the SIZE option and the offset of the
last data written into the file.

 FILENAME The FILENAME option sets the output filename
for an EPROM image. If left unspecified, the
output filename defaults to the same filename as
the input file.

 Use slashes (/) instead of backslashes (\) for path name
separators. For example,
file = c:/output/test.hex

 The Paradigm LOCATE command line can be used to set the options
for a single EPROM image using the following switches:

 -Hb BINARY
 -Hdsize SIZE=size
 -He INTEL86
 -Hffill FILL=fill
 -Hi INTEL80
 -Hllen LENGTH=len
 -Hnfile FILENAME=file
 -Hoaddr OFFSET=addr
 -Hssplit SPLIT=split
 -Ht TEKHEX

 -H options work independent of the configuration file HEXFILE
directive. If you have a HEXFILE directive(s) and -H options in one
single pass of Paradigm LOCATE, LOCATE will first create all
EPROM output based upon the HEXFILE directive, then create an
additional EPROM output based solely upon -H command options.

 The following are the file extensions used by the HEXFILE directive.
File extensions are determined by the file type and cannot be changed.

 Command line
options

 Notes

 HEXFILE

 Paradigm LOCATE Reference Manual 66

 File type/Split 1 2 4

 INTEL86 .HEX --- ---

 INTEL386 .HEX --- ---
 INTEL80 .HEX .HX? .HX?
 BINARY .BIN .BN? .BN?
 TEKHEX .TEK .TK? .TK?

 hexfile intel86

 This example creates an Intel extended output file containing all classes
identified in OUTPUT directives.

 hexfile intel80 offset=0xe0000 file=no1
hexfile intel80 offset=0xf0000 file=no2

 This example is for an 8-bit system having a pair of 64KB EPROMs
in the upper 128KB of the address space. Because the Intel hex file
format can hold at most 64KB of code/data, two HEXFILE directives
are used to create separate EPROM images. The OFFSET option is
used with each HEXFILE directive to specify which 64KB of the
address space we wish to be extracted and placed in the output file.

 hexfile intel80 offset=0xf0000 size=32 file=no1
hexfile intel80 offset=0xf8000 size=32 file=no2

 This example is similar to the preceding example except that only
64KB of address space is available and the SIZE option is used to limit
each output file to the 32KB regions of the address space occupied by
each EPROM.

 hexfile intel80 offset=0xc0000 split=2 file=no1
hexfile intel80 offset=0xe0000 split=2 file=no2

 This final example is for a 16-bit system having a total of 256KB of
EPROM divided into two 128KB banks. In this case the output files
would be NO1.HX0, NO1.HX1, NO2.HX0, and NO2.HX1,
containing the even and odd addresses for each pair of EPROMs.

 Examples

 INITCODE

 Chapter 5, Configuration file directives 67

 The INITCODE directive is used to automatically generate reset
vectors, stack initialization and peripheral register initialization code.
The INITCODE directive accepts a list of peripheral register
assignments that depend on the microprocessor type. This permits
chip select, DRAM refresh and wait state initialization code to be
handled independently of the application and startup code. This
makes it a simple task to ensure the physical ROM and RAM in the
system are addressable before the application is handed control of the
target microprocessor.

 If stack or I/O port initialization code is created using this directive,
Paradigm LOCATE will automatically change the entry point to ensure
that the initialization code, if present, is executed in the following
order: reset code, stack initialization, peripheral register initialization
code, and the startup code.

 INITCODE [RESET | NORESET] \
 [STACK | NOSTACK] \
 [ioport = data] \
 [OUTBYTE addr16 = data] \
 [OUTWORD addr16 = data] \
 [INBYTE addr16] \
 [INWORD addr16]
 [filename=file.ext CLASS = class_name]

 The INITCODE directive supports the following options:

 RESET
NORESET

 The RESET option enables the generation of a far
jump instruction at address FFFF0H to the
application entry point. The option NORESET
disables the creation of the far jump.

 STACK
NOSTACK

 The STACK option generates code to initialize the
SS:SP registers with the default stack (the segment
having the stack attribute). If enabled, the stack
initialization code will be placed in the segment
??STACKINIT in class ??LOCATE.

 Description

 Syntax

 Options

 INITCODE

 Paradigm LOCATE Reference Manual 68

 ioport

 +

 The ioport option accepts processor peripheral
registers to be initialized from the configuration file.
The order of the I/O or special function register
operations is the order of the port arguments in the
configuration file INITCODE directive. Any port
initialization code created using the INITCODE
directive will be placed in the segment ??CPUINIT
in the class ??LOCATE.

 See appendix D on page 163 for a list of supported
microprocessors and peripheral registers.

 OUTWORD
OUTBYTE
INWORD
INBYTE

 General purpose I/O can also be performed using
the generic forms for input and output. Note that
the input functions discard the input value and are
used only for any side effects.

INITCODE filename=file.ext CLASS = class_name assigns the
contents of the binary file file.ext to class class_name and places
the code in the startup code execution list by jumping to the start
and appending a far jump to the next code block in the startup code
sequence at the end of the file.

 The following INITCODE arguments can be specified on the
command line:

 -b RESET
 -b- NORESET
 -s STACK
 -s- NOSTACK

 Peripherals in the Intel 80C186-family are accessed using word-aligned
byte writes. This allows updating a 16-bit chip select register with a
single external bus cycle, even when 8-bit processors are used.

Command line
options

 Notes

 INITCODE

 Chapter 5, Configuration file directives 69

 cputype i80186
initcode reset \
 umcs = 0xf038 \ // UMCS value
 lmcs = 0x0ff8 // LMCS value

initcode outbyte 0xfffe = 0x11

 Examples

 LISTFILE

 Paradigm LOCATE Reference Manual 70

 The LISTFILE directive is used to create listing files containing
information such as a segment map, lists of public and local symbols
and source line numbers. There is no limit on the number of
LISTFILE directives used in a configuration file, permitting multiple
output files with different reports to be created in a single pass.

 If you choose to create multiple output files in a single pass of
Paradigm LOCATE, be sure to use the FILENAME option to name
the output file of each LISTFILE directive so that Paradigm LOCATE
will not overwrite any of the files.

 Paradigm LOCATE can only output listings for information to which it
has access. If there is no debugging information in the input file,
Paradigm LOCATE will be restricted to creating the segment and
region maps.

 LISTFILE[SEGMENTS] \
 [PUBLICS [(BY ADDRESS|BY NAME)] \
 [COLUMNS=(1 | 2)] \
 [WIDTH=(80 | 132)] \
 [SYMBOLS] \
 [LINES] \
 [REGIONS] \
 [CHECKSUMS] \
 [FILENAME=file]

 The following options control the different fields in the Paradigm
LOCATE map file:

 SEGMENTS The SEGMENTS option is used to create an
absolute segment map showing the starting
address, ending address and length for each
segment in the application.

 REGIONS The REGIONS option is used to include a copy of
the memory address space assignments specified
in the MAP directives and their usage.

 CHECKSUMS The CHECKSUMS option is used to include the

 Description

 Syntax

 Options

 LISTFILE

 Chapter 5, Configuration file directives 71

details of any checksums or CRCs used by the
application, including the starting addr, ending
addr and checksum value.

 PUBLICS
COLUMNS
WIDTH

 The three PUBLICS options are used to control
the output of public symbols in the Paradigm
LOCATE map file. Used alone, PUBLICS will
output the public symbol table sorted first by
name and then by address. You may also qualify
the output to get one or the other by using the
PUBLICS BY NAME or PUBLICS BY
ADDRESS arguments.

 You can use the COLUMNS and WIDTH options
to adjust the number of symbol columns (1 or 2)
or the output width (80 or 132 columns) to create
an optimally-sized public symbol table.

 SYMBOLS The SYMBOLS option controls whether the
extended debugging information, such as local
symbols, appears in the output file organized by
source module.

 LINES The LINES option controls whether or not line
number records appear in the output file organized
by source module.

 FILENAME This option permits you to change the name of the
Paradigm LOCATE listing file to file. The default
filename is the same as the input file but with the
.LOC extension.

 Use slashes (/) instead of backslashes (\) for path name
separators. For example,
file = c:/output/test.loc

 The following Paradigm LOCATE command line switches can be
used to select the options for a single LISTFILE directive:

 The default for COLUMNS
is 1 and the default for

WIDTH is 80.

 Be careful - large
applications can create

very large local symbol list
files.

 Command line
options

 LISTFILE

 Paradigm LOCATE Reference Manual 72

 -Lc COLUMNS=2
 -Ld CHECKSUMS
 -Ll LINES
 -Lnfile FILENAME=file
 -Lp PUBLICS
 -Lr REGIONS
 -Ls SEGMENTS
 -Lw WIDTH=132
 -Lx SYMBOLS

 -L options work independent of the configuration file LISTFILE
directive. If you have a LISTFILE directive(s) and -L options in one
single pass of Paradigm LOCATE, LOCATE will first create all listing
output based upon the LISTFILE directive, then create an additional
listing output based solely upon -L command options.

 listfile segments file=test.loc
listfile publics lines symbols segments

 Examples

 MAP

 Chapter 5, Configuration file directives 73

 The MAP directive is used to assign an access attribute to a region of
the memory address space. These attributes are then used by
Paradigm LOCATE to verify that reserved regions of the memory
address space are vacant. Paradigm LOCATE will report the use of
reserved regions, or a segment spanning regions with different
attributes. Warnings will also be generated if Paradigm LOCATE
detects segments mapped in read-only regions are not being output, or
segments mapped in non-read-only regions are being output.

 Please note that the MAP directive does not assign physical addresses
to segments. The purpose of the MAP directive is to describe the
target address space partitions so that Paradigm LOCATE can check
for overlaps and errors.

 MAP [name] addr TO addr AS memtype

 The following fields must be defined in each MAP directive.
 name An optional name to be associated with the region.

 addr
addr

 The first argument defines the start of the region of
the memory address space to be mapped while the
second argument defines the end of the region,
where the first address must be less than or equal to
the second.

 memtype The memtype field is used to assign one of the
following access attributes to the region.
 RDONLY Read only address space
RDWR Read/write address space
RESERVED No access
MMIO Memory-mapped I/O
IRAM Internal RAM
SFR Special function registers

 None

 map my_data 0x00000 to 0x0ffff as rdwr
map 0x10000 to 0xEFFFF as reserved
map 0xF0000 to 0xFFFFF as rdonly

 Description

 Syntax

 Options

 Command line
options

 Examples

 ORDER

 Paradigm LOCATE Reference Manual 74

 The ORDER directive is used to concatenate one or more classes
relative to the anchoring class. The ORDER directive is important
since it allows unrelated classes to be grouped together in the memory
address space, independent of the lengths of the individual classes.

 ORDER anchor_class class_list

 The first argument anchor_class is the anchor class and must appear
in a CLASS directive or in a previous ORDER directive. The classes
defined in the argument class_list are then located contiguous to the
anchor class, subject to the class alignment requirements.

 None

 order DATA BSS STACK // RAM classes

order DATA BSS // Same as above
order BSS STACK

order DATA \ // Still the same
 BSS \
 STACK

 Description

 Syntax

 Options

 Command line
options

 Examples

 OUTPUT

 Chapter 5, Configuration file directives 75

 The OUTPUT directive is used to specify the classes containing code
or data destined for any of the output files created with the ABSFILE
or HEXFILE directives.

 OUTPUT class_list

 The argument class_list is a list of one or more class names that are to
be placed in the output file.

 Classes containing program code and constant data must be named in
an OUTPUT directive to be available when the system is powered up
and initialized. Other classes, such as those containing uninitialized
data or the program stack, require only to be assigned a physical
address. While these classes are assigned a position within the
memory address space, they do not need to appear in the output file
since they contain only uninitialized data.

 Warnings will be generated if Paradigm LOCATE detects that
segments mapped in read-only regions are not in output or segments
mapped in non-read-only regions are in output.

 None

 output CODE ROMDATA // One style

output CODE // Another style
output ROMDATA

 Description

 Syntax

 Options

 Command line
options

 Examples

 SEGMENT

 Paradigm LOCATE Reference Manual 76

 The SEGMENT directive is used to assign a physical address to a
segment, independently of the segment's membership in a class.
While supported in Paradigm LOCATE, it is strongly recommended
that segments be placed in unique classes to place them anywhere in
the address space.

 SEGMENT segname=addr16

 The segment segname is assigned the 16-bit physical segment
specified by the addr16 argument.

 SEGMENT directives are always processed before CLASS directives
to allow the removal of the segment from the class before physical
addresses are assigned to the class.

 There is a restriction on the use of the SEGMENT directive in that it
cannot be used to set the address of any segment that is a member of
a group. Segments within a group have segment fixups relative to the
group base and all offsets are from the group base, not the start of the
segment.

 None

 segment MY_CODE=0xfc00
segment TEST_TEXT=0x0800

 Description

 Syntax

 Options

 +

 Command line
options

 Examples

 WARNINGS

 Chapter 6, Command line options 77

 The WARNINGS directive is used to enable or disable the warning
diagnostics output by Paradigm LOCATE. Either individual warnings
or all warnings can be enabled or disabled.

 WARNINGS ALL \
 NONE \
 EXITCODE=n \
 warn_list

 The options ALL or NONE enable or disable all warnings.

 The EXITCODE option can be used to have Paradigm LOCATE
return a non-zero exit code should any warnings be detected during the
processing of the input files.

 The option warn_list is one or more warning diagnostics identifiers,
prefixed with a '+' to enable the warning or a '-' to prevent the warning
from being displayed. A list of warnings organized by number can be
found in Appendix A of this manual.

 The WARNINGS directive is useful to eliminate certain warnings that
occur each time Paradigm LOCATE is used, such as the register
variable warning for OMF86 output. To disable a warning
permanently, you should add the appropriate command line version of
this directive to your LOCATE.OPT file.

 The following command line switches can also be used to enable or
disable warning diagnostics:

 -w+Wid WARNINGS +Wid
 -w-Wid WARNINGS -Wid
 -w+ WARNINGS ALL
 -w- WARNINGS NONE

 -W- WARNINGS EXITCODE=0
 -W WARNINGS EXITCODE=1

 warnings -w1001 -w1002 \
 +w1004
warnings exitcode=1

 Description

 Syntax

 Options

 The default state for all
warning diagnostics is

enabled.

 Command line
options

 Examples

 Paradigm LOCATE Reference Manual 78

 Chapter 6, Command line options 79

 C H A P T E R

 6

 Command line options

 In addition to the configuration file directives described in the previous
section, Paradigm LOCATE can process options from the command
line or a special file that Paradigm LOCATE searches for each time it
is run. These options enable the Paradigm LOCATE user to define
the default behavior of Paradigm LOCATE and provide a convenient
means to override the default when circumstances dictate a different
response. Whether defined on the command line or in an option file,
the syntax used for the command line options is the same.

 Command line options
 When defined on the command line, all Paradigm LOCATE options
are preceded by the hyphen ('Ä') character and are separated from the
Paradigm LOCATE program name, any other command line options,
and the application filename by one or more spaces or tabs.

 locate [option [option ...]] filename

 where the filename defaults to the extension .ROM. Paradigm
LOCATE will then look for the files filename.MAP and
filename.CFG, unless overridden by command line options.

 The following are some typical examples of Paradigm LOCATE
command line options:

 Paradigm LOCATE Reference Manual 80

 locate -b myfile
locate -Aomf -Anherfile.omf herfile

 In addition to the options specified on the command line, additional
options can be placed in the LOCATE.OPT; option file.
LOCATE.OPT options can be listed on the same line separated by
spaces or tabs or can be placed on multiple lines as shown below.

 -Xoomf -Xlmp2
-Aomf

 When you run Paradigm LOCATE, it looks for LOCATE.OPT in the
current directory. If it is not found and you are running DOS 3.3 or
higher, the directory containing Paradigm LOCATE will be searched
for this file.

 We have seen that Paradigm LOCATE can receive option input from
three different sources; the command line, the LOCATE.OPT file,
and the configuration file. Should conflicting options be specified, the
processing order (from lowest to highest priority) of options is:

n LOCATE.OPT options
n configuration file directives
n command line options

 This processing order permits options defined in either the
configuration file or on the DOS command line to override the default
options in the LOCATE.OPT file, while command line options can
also be used to override any options specified in the configuration file.

 Summary of options
 Table 6.1 is a summary of the command line options accepted by
Paradigm LOCATE. Each of the options is described in further detail
later in this section, where the different options are organized into
related groups.

 LOCATE.OPT file

 Option priorities

 Chapter 6, Command line options 81

 Option Page Function

 -Apdxx 92 Select AXE86 absolute file output
 -Ad 92 Disable absolute output file
 -Anfile 92 Supply a filename for the absolute output file
 -Aomf 92 Select OMF86 absolute file output
 -b 82 Enable reset vector generation
 -b- 83 Disable reset vector generation
 -cfile 87 Specify a different configuration file name
 -Dmacro 82 Define macro
 -Dmacro=text 82 Define macro to text
 -d0 83 Disable processing diagnostics
 -d1 83 Enable filename processing diagnostics
 -d2 83 Enable filename and module processing diagnostics
 -d3 84 Enable compression diagnostics
 -d4 84 Enable all processing diagnostics
 -Ee 84 Enable the error/warning log
 -Enfile 84 Supply a filename for the error/warning log
 -Hb 88 Select a binary EPROM output file
 -Hdsize 88 Specify the EPROM size in KB
 -He 88 Select Intel extended hex EPROM output
 -Hffill 88 Specify the EPROM fill character
 -Hi 88 Select Intel hex EPROM output
 -Hllen 89 Select hex record length
 -Hnfile 89 Supply a filename for the EPROM output file
 -Hoaddr 89 Specify the EPROM file offset
 -Hssplit 89 Specify the EPROM split size
 -Ht 89 Select Tektronix hex EPROM output
 -Lc 90 Set public symbol display columns to 2
 -Ld 90 Write checksum statistics to listing file
 -Ll 90 Write line numbers to listing file
 -Lnfile 90 Supply a filename for listing file
 -Lp 91 Write public symbols to listing file
 -Lr 91 Write the region map to listing file
 -Ls 91 Write the segment map to listing file
 -Lw 91 Set public symbol output width to 132 columns
 -Lx 91 Write extended debug information to listing file
 -Od[-] 85 Enable/disable all OMF86 debug information
 -Oe[-] 85 Enable/disable Paradigm OMF86 extensions

 Table 6.1
Command line summary

 Paradigm LOCATE Reference Manual 82

 -Ol[-] 86 Enable/disable output line number records
 -Op[-] 86 Enable/disable public records in OMF86 output
 -Ot[-] 87 Enable/disable type records in OMF86 output
 -Ox[-] 87 Enable/disable symbol records in OMF86 output
 -q 83 Disable sign on displays
 -s 83 Enable stack initialization code
 -s- 83 Disable stack initialization code
 -W 84 Enable a non-zero exit code on warnings
 -w+ 85 Enable the display of all warnings
 -w- 85 Disable the display of all warnings
 -w-Wxxxx 85 Disable the display of warning Wxxxx
 -w+Wxxxx 85 Enable the display of warning Wxxxx
 -Xaext 93 Set the default AXE86 output file extension
 -Xcext 93 Set default configuration file extension
 -Xlext 93 Set the default listing file extension
 -Xmext 93 Set the default linker map file extension
 -Xoext 93 Set the default OMF86 output file extension

 Macros for the Paradigm LOCATE configuration file can be defined
on the command line with the -D command line option.

 -Dname Defines the macro identifier name and sets its value
to 1.

 -Dname=text Defines the macro identifier name and sets its value
to text.

 The following options permit Paradigm LOCATE to automatically
generate the reset vector and stack initialization code:

 -b Enables the automatic creation of a reset vector
pointing to the program entry point and places the
code at the absolute address FFFF0H.

 Directive: INITCODE RESET

 Defining macros

 Initialization

 Chapter 6, Command line options 83

 -b- Disables any reset vector code generation (the
default).

 Directive: INITCODE NORESET

 -s Enables the automatic creation of initialization code
for the SS:SP register pair and places it in the class
??LOCATE.

 Directive: INITCODE STACK

 -s- Disables any stack initialization code (the default).

 Directive: INITCODE NOSTACK

 The following set of options control the display of diagnostic
messages. Paradigm LOCATE gives you complete control over the
display of output diagnostics and log files, plus the ability to customize
the display of individual warning messages.

 These options control the display of the Paradigm LOCATE copyright
and version information when Paradigm LOCATE is first started.

 -q Disables the output of Paradigm LOCATE
copyright and version displays.

 Processing diagnostics enable Paradigm LOCATE to keep you
informed of which files and modules are being processed and where
errors and warnings are being generated.

 -d0 Disables the output of all processing diagnostics
(the default).

 Directive: DISPLAY NONE

 -d1 Enables the display of the filename of each file as it
is processed by Paradigm LOCATE.

 Directive: DISPLAY FILES

 -d2 Enables the display of the filename of each file as it
is processed by Paradigm LOCATE, along with the

 Diagnostics

 Startup display

 Processing
diagnostics

 Paradigm LOCATE Reference Manual 84

module names from the input files. This mode is
especially useful to help identify which of the input
modules is generating errors or warnings.

 Directive: DISPLAY MODULES

 -d3 Enables the display of compression diagnostics.
Use this display mode to see how much Paradigm
LOCATE is compressing your classes.

 Directive: DISPLAY COMPRESSION

 -d4 Enables the display of all diagnostics.

 Directive: DISPLAY ALL

 Paradigm LOCATE can keep a log file containing all errors, warnings
and output diagnostics. These options allow you to enable, disable
and name the error log managed by Paradigm LOCATE.

 -Ee Enables the creation of an error/warning log file.
Unless overridden with the -En option, the log will
have the same filename as the input file with the
.ERR extension.

 -Enfile Specifies a filename to be used for the
error/warning log and enables logging diagnostic
output to the file. If no filename is specified in the
file field, Paradigm LOCATE will use the default
filename for log files.

 By default, Paradigm LOCATE returns a zero exit code if processing
is successfully completed without any errors. If it is desirable to have
Paradigm LOCATE return a non-zero exit code when warnings have
been issued, such as to stop a build by a MAKE utility, the -W
command line option can be used.

 -W Enables Paradigm LOCATE to return a non-zero exit
code when warnings have been issued.

 -W- Disables Paradigm LOCATE from returning a non-

 Error/warning log

 Use
-Ee- to disable the error log.

 Exit code control

 Chapter 6, Command line options 85

zero exit code when warnings have been issued.

 The warning control options permit individual warnings to be enabled
or disabled, making it easy to filter out any warnings which are
harmless but distracting.

 -w- Disables the display of all warning diagnostics.

 Directive: WARNINGS NONE

 -w+ Enables the display of all warning diagnostics (the
default).

 Directive: WARNINGS ALL

 -w-Wxxxx Disables the display of warning Wxxxx.

 Directive: WARNINGS -Wxxxx

 -w+Wxxxx Enables the display of warning Wxxxx.

 Directive: WARNINGS +Wxxxx

 The following group of command line options control how debug
information is treated as the input files are processed into OMF86
output files. By eliminating unnecessary debugging information, the
output file size is reduced and processing speeded up.

 -Od Places all debugging records in the OMF86 output
file (the default).

 Directive: DEBUG ALL

 -Od- Disables all debugging records from appearing in
the OMF86 output file.

 Directive: DEBUG NONE

 -Oe Enables the use of the Paradigm OMF86 debug
extensions. See the description on page 59 for the
list of supported OMF86 extensions.

 Warning diagnostic
control

 OMF86 debug
control

 Paradigm LOCATE Reference Manual 86

 -Oe- Disables the use of Paradigm OMF86 debug
extensions (the default).

 Directive: DEBUG NOEXT

 -Oi Enables the output of an Intel iC86-compatible
OMF86 file. Intel iC86 supports only one scope
per function, folds all symbols to uppercase and
does not use leading underscores on public
symbols. With this option enabled, Paradigm
LOCATE will output an OMF86 file that closely
matches the output from the Intel compiler.

 Directive: DEBUG IC86

 -Oi- Disables the output Intel iC86-compatible OMF86
(the default).

 Directive: DEBUG NOIC86

 -Ol Enables the output of line numbers in the OMF86
output file.

 Directive: DEBUG LINES

 -Ol- Disables the output line numbers in the OMF86
output file. Use this option to strip out line
numbers if they are not needed by your debugger
or in-circuit emulator.

 Directive: DEBUG NOLINES

 -Op Enables the output of public symbols in the
OMF86 output file.

 Directive: DEBUG PUBLICS

 -Op- Disables the output of public symbols in the
OMF86 output file. Use this option to strip out
public symbols if they are not needed by your
debugger or in-circuit emulator.

 Chapter 6, Command line options 87

 Directive: DEBUG NOPUBLICS

 -Ot Enables type information in OMF86 output.

 Directive: DEBUG TYPES

 -Ot- Disables the output of type information in the
OMF86 output file. Use of this option to eliminate
type information if not needed by your debugger or
in-circuit emulator.

 Directive: DEBUG NOTYPES

 -Ox Enables the output of extended debug information
(local symbols and scopes) in the OMF86 output
file.

 Directive: DEBUG SYMBOLS

 -Ox- Disables extended debug information in OMF86
output.

 Directive: DEBUG NOSYMBOLS

 The remaining options have to do with managing the files created and
used by Paradigm LOCATE.

 This option permits any file to be used in place of the default
configuration file for Paradigm LOCATE.

 -cfile Use the filename file as the Paradigm LOCATE
configuration file. If not specified in this option,
Paradigm LOCATE will use the filename from the
load module with the .CFG extension (unless
changed with the -Xc option).

 This group of options control the creation of files suitable for
download to an EPROM programmer. The output file(s) will have the
same filename as the input file with the extension determined by the
file type and number of splits.

 File management

 Configuration files

 EPROM files

 Paradigm LOCATE Reference Manual 88

 These options can process at most one EPROM image from the
command line. Using the configuration file HEXFILE directive, as
many EPROM images as desired can be created in a single pass of
Paradigm LOCATE.

 -H options work independent of the configuration file HEXFILE
directive. If you have a HEXFILE directive(s) and -H options in one
single pass of Paradigm LOCATE, LOCATE will first create all
EPROM output based upon the HEXFILE directive, then create an
additional EPROM output based solely upon -H command options.

 -Hb Selects the binary EPROM format for the output
file. This file format can hold up to 1MB of data.

 Directive: HEXFILE BINARY

 -Hdsize Allows the EPROM size to be selected. The unit
of measurement for the size argument is in KB and
can be value from 1 (1KB EPROM image) to 1024
(a 1MB EPROM image).

 Directive: HEXFILE SIZE=size

 -He Selects the Intel extended hex EPROM format for
the output file. This file format can hold up to
1MB of data.

 Directive: HEXFILE INTEL86

 -Hffill Permits the specification of the fill character for the
unused locations in the EPROM image. Only
binary output files will contain the fill character; all
other formats use it only in checksum/CRC
calculations and it must be set by the EPROM
programmer before loading the EPROM image.
The default fill character is 0xFF.

 Directive: HEXFILE FILL=fill

 -Hi Selects the Intel hex EPROM format for the output
file. This format can hold up to 64KB of data.

 Chapter 6, Command line options 89

 Directive: HEXFILE INTEL80

 -Hllen This options allows the size of the hex file data
records to be adjusted between 8 and 64 bytes per
record.

 Directive: HEXFILE LENGTH=len

 -Hnfile Specifies a filename to be used for the output
file(s). Note that the file extension is determined
by output file type and split (see the HEXFILE
directive for a table of file extensions). If no
filename is specified in the file field, Paradigm
LOCATE will use the default filename.

 Directive: HEXFILE FILENAME=file

 -Hoaddr Allows the specification of an address space offset
to permit Intel hex, binary and Tektronix hex files
to select the subset of the 1MB address to be
included in the output file. The argument addr is a
20-bit physical address and defaults to zero if not
specified.

 Directive: HEXFILE OFFSET=addr

 -Hssplit Specifies the EPROM split count (1, 2 or 4) in the
split argument. Splitting Intel extended hex files is
not allowed as they contain segment information.
The default split is 1.

 Directive: HEXFILE SPLIT=split

 -Ht Selects the Tektronix hex EPROM format for the
output file. This format can hold up to 64KB of
data.

 Directive: HEXFILE TEKHEX

 This group of options control the creation of a listing file containing
design documentation using the target system addresses. The output

 Listing files

 Paradigm LOCATE Reference Manual 90

file will have the same filename as the input file with the .LOC
extension (unless changed with the -Xl option).

 This option can process at most one listing file from the command
line. Using the configuration file LISTFILE directive, as many listing
files as desired can be created in a single pass of Paradigm LOCATE.

 -L options work independent of the configuration file LISTFILE
directive. If you have a LISTFILE directive(s) and -L options in one
single pass of Paradigm LOCATE, LOCATE will first create all listing
output based upon the LISTFILE directive, then create an additional
listing output based solely upon -L command options.

 -Lc Sets the number of symbol columns for the public
symbol tables to use two columns. This option
results in a more compact display when many
public symbols are part of the application.

 Directive: LISTFILE COLUMNS=2

 -Lc- Sets the number of symbol columns for the public
symbol tables to use a single column.

 Directive: LISTFILE COLUMNS=1

 -Ld[-] This option enables the output of the checksum
map to the listing file. If no CHECKSUM
directives are present in the configuration file, no
output will be generated.

 Directive: LISTFILE CHECKSUMS

 -Ll[-] Writes the source module name and line numbers
to the listing file. If no line numbers are present in
the input file, no output will be generated.

 Use the -Ll- option to disable the inclusion of line
number in the listing file.

 Directive: LISTFILE LINES

 -Lnfile Supplies a filename for the listing file. If no
filename is specified in the file field, Paradigm

 Chapter 6, Command line options 91

LOCATE will use the default filename.

 Directive: LISTFILE FILENAME=file

 -Lp[-] Writes the public symbols sorted by name and by
address to the listing file. If no public symbols are
present in the input file, no output will be
generated.

 Directive: LISTFILE PUBLICS

 -Lr Writes the memory address space attribute map to
the listing file.

 Directive: LISTFILE REGIONS

 -Ls Writes the absolute segment map to the listing file.

 Directive: LISTFILE SEGMENTS

 -Lw Sets the width of the output for the public symbol
table to 132 columns. Using this option can
prevent the clipping of public symbols when the
two column format is used.

 Directive: LISTFILE WIDTH=132

 -Lw- Sets the width of the output for the public symbol
table to 80 columns.

 Directive: LISTFILE WIDTH=80

 -Lx Writes the local symbols and other debugging
information to the listing file. If the extended
debug information is not available in the input file,
no output will be generated.

 Directive: LISTFILE SYMBOLS

 These options control the type of absolute output file created by
Paradigm LOCATE. Unless you plan to use a debugger (like
Paradigm DEBUG or the Turbo Debugger) or an in-circuit emulator,
there is no need to create an absolute output file with debug

 Absolute files

 Paradigm LOCATE Reference Manual 92

information. These options can be set from the configuration file
using the ABSFILE directive.

 -Ad Disables the creation of any absolute output file
(the default).

 Directive: ABSFILE NONE

 -Anfile Supplies a filename to be used for the absolute
output file. If no filename is specified in the file
field, Paradigm LOCATE will use the default
filename.

 Directive: ABSFILE FILENAME=file

 -Aomf Selects an Intel OMF86 output file. The output file
will have the same filename as the input file with
the .ABS extension (unless changed with the -Xo
option). The format and debug information
content of the OMF86 file are controlled by the
-D? options.

 Directive: ABSFILE OMF86

 -Apd60
-Apd50
-Apd40
-Apd31
-Apd30
-Apd20
-Apd10

 Selects the Paradigm AXE86 output file format for
a specific version of Paradigm DEBUG. The
output file will have the same filename as the input
file with the .AXE extension (unless changed with
the -Xa option).

 Directive: ABSFILE AXE86

 Paradigm LOCATE comes with a set of default file extensions for
input and output files but you can choose your own if you don't care
for the default extensions. While these options can be used on the
command line, they are much better suited for inclusion in the
LOCATE.OPT; file.

 The argument ext in the -X? options must be three characters or less;
otherwise an error will be reported. If no file extension is specified,

 Filename
extensions

 None of these options can
be set with configuration file

directives.

 Chapter 6, Command line options 93

the -X? switch will restore the default file extension used by Paradigm
LOCATE.

 -Xaext Sets the default file extension for files using the
Paradigm AXE86 format.

 Default: .AXE

 -Xcext Sets the default file extension for the Paradigm
LOCATE configuration file.

 Default: .CFG

 -Xlext Sets the default file extension used by listing files
created with the -L? options or the LISTFILE
directive.

 Default: .LOC

 -Xmext Sets the default file extension used to open the
segment map produced by the linker.

 Default: .MAP

 -Xoext Sets the default file extension used for output files
in the Intel OMF86 format.

 Default: .ABS

 Paradigm LOCATE Reference Manual 94

 Chapter 7, Checksums and CRCs 95

 C H A P T E R

 7

 Checksums and CRCs

 Adding checksums or CRCs (cyclic redundancy checks) to an
application can provide a higher degree of protection against the failure
of a device in the field, or the ability to detect an incorrect update of a
system employing technology such as flash EPROMs.

 Paradigm LOCATE offers a number of checksum and CRC options,
each designed to address the needs of applications using embedded
PCs, or those that need the greatest degree of fault protection in the
target system. The CHECKSUM directive is used to define a region
of the target system address space to be included in a checksum or
CRC calculation, the background fill to be used by any undefined
addresses within the region, and optionally specify the exact position to
place the calculated checksum or CRC.

 Here we introduce the general concept of a checksum or CRC but we
don't go into too much detail as there is nothing better than a working
example. For more information and for an actual application
employing checksums and CRCs, see the compiler examples available
on the Paradigm LOCATE distribution disk.

 ROMBIOS checksums
 The CHECKSUM directive uses the ROMBIOS option to select the
checksum technique used by the IBM PC ROM BIOS for ROM
BIOS extensions. This technique uses a simple sum of bytes, carries

 Look for the example
CRCDEMO in the

EXAMPLES subdirectory
for your compiler.

 Paradigm LOCATE Reference Manual 96

ignored, which must sum to zero to be accepted as a legitimate ROM
BIOS extension. The PC ROM BIOS scans the ROM BIOS address
space looking for the signature bytes, 55H, AAH, followed by the
count of 512 byte blocks when performing the extension ROM BIOS
scan during the BIOS initialization phase.

 If the ROM BIOS finds a valid signature during the expansion ROM
BIOS scan, the ROM BIOS will calculate the checksum of the region
using the block count field. If the checksum is zero, the ROM BIOS
will perform a far call to the ROM BIOS extension entry, which is
located immediately following the expansion ROM BIOS block count
field.

 Defining a PC ROM BIOS extension requires that the signature and
block size be added to the start of a segment that will be placed on a
2KB boundary. The CHECKSUM directive placed in the Paradigm
LOCATE configuration file should look like:

 CHECKSUM addr1 TO addr2 ROMBIOS

 where addr1 and addr2 define the size of the ROM BIOS extension,
minus one, since the default position for the calculated PC BIOS
extension checksum is immediately following the end of the region.
You can also place the address elsewhere using the ADDRESS option,
but the checksum byte must be within the region of the memory
address space determined by the signature and block count in order to
be recognized as a legitimate ROM BIOS extension.

 For example, the CHECKSUM directive for a ROM BIOS extension
occupying the region E0000H to 0EFFFFH would be

 CHECKSUM 0xe0000 TO 0xefffe ROMBIOS

 If a non-zero fill value is used, the CHECKSUM directive FILL option
must be used as it will affect the calculated checksum.

 CRC-16 checksums
 The CRC-16 checksum is an improvement over the simple sum of
bytes used in the expansion ROM BIOS checksum. When an
application requires better odds in detecting an error condition, a CRC

 You can also set the
background fill that will be

used so the final checksum
calculation is correct.

 Chapter 7, Checksums and CRCs 97

check is much more capable of finding not only single errors, but also
multiple errors.

 Defining a CRC-16 checksum is done in an identical fashion to that
used in the PC ROM BIOS example:

 CHECKSUM addr1 TO addr2 CRC16

 where addr1 and addr2 define the size of the address to have the
CRC-16 calculated, minus two, since the default position for the
calculated CRC-16 is immediately following the end of the region.
(We need to leave the last two bytes free to hold the calculated CRC.)
If necessary, you can specify a different address to hold the calculated
CRC using the ADDRESS option. Unlike the PC ROM BIOS
extension, you could store the calculated CRC separately, as shown in
the following example:

 CHECKSUM 0xE0000 TO 0xFFFFF CRC16 ADDRESS=0x80000
FILL=0xff

 If the checksum is included in the CRC calculation, the result should
be zero.

 The polynomial and initial value used by Paradigm LOCATE to
calculate the 16-bit CRC is

 0xA001U (polynomial)
0x0000U (initial value)
0x0000U (final value)

 The following C code can be used to calculate the 16-bit CRC in the
target system and is taken from the file CRC16.C, available in the
EXAMPLES\CRCDEMO directory on the Paradigm LOCATE
distribution disk. This is a complete working example which defines a
CRC-16 region and verifies that the checksum is correct. For more
information on the CRC-16 polynomial and the initial value, refer to
the file CHECKSUM.H in the same directory.

 /* Pass thru the buffer and add the new data to the checksum */
wCRC = CRC16_INIT ;
while (dwStart <= dwStop) {
 /* Build a pointer to the start of the next calculation */
 pByte = MK_FP((UINT)(dwStart >> 4), (UINT)(dwStart & 0xf)) ;

 You can also specify the
background fill if it is not

zero.

 CRC-16 details

 Figure 7.1
CRC-16 polynomial and

initial value.

 Figure 7.2
CRC-16 checksum

algorithm.

 Paradigm LOCATE Reference Manual 98

 /* Compute the size of the buffer */
 wSize = (UINT) min(CRC_BUFSIZE, dwStop - dwStart + 1) ;

 /* Adjust the starting position by the buffer size */
 dwStart += wSize ;

 /* Calculate the CRC on the region */
 while (wSize--) {
 wIndex = (UINT8) (*pByte++ ^ wCRC) ;
 wCRC >>= 8 ;
 wCRC ^= wCRCTable[wIndex] ;
 }
}

/* Return the computed CRC */
return wCRC ^ CRC16_FINAL ;

 CRC-32 checksums
 The CRC32 option works identically as the 16-bit CRC option, except
that a different polynomial and algorithm is used.

 Defining a CRC32 checksum is done in an identical fashion:

 CHECKSUM addr1 TO addr2 CRC32

 where addr1 and addr2 define the size of the address to have the
CRC-32 calculated, minus four, since the default position for the
calculated CRC-32 is immediately following the end of the region.
(We need to leave the last four bytes free to hold the calculated CRC.)
If necessary, you can specify a different address to hold the calculated
CRC using the ADDRESS option.

 The polynomial and initial value used by Paradigm LOCATE to
calculate the 32-bit CRC is

 0xEDB88320UL (polynomial)
0xFFFFFFFFUL (initial value)
0xFFFFFFFFUL (final value)

 The following C code is used to calculate the 32-bit CRC in the target
system and is taken from the file CRC32.C, available in the
EXAMPLES\CRCDEMO directory on the Paradigm LOCATE
distribution disk. This is a complete working example which defines a
CRC-32 region and verifies that the checksum is correct. For more

 CRC-32 details

 Figure 7.3
CRC-32 polynomial and

initial value.

 Chapter 7, Checksums and CRCs 99

information on the CRC-32 polynomial and the initial value, refer to
the file CHECKSUM.H in the same directory.

 /* Pass thru the buffer and add the new data to the checksum */
dwCRC = CRC32_INIT ;
while (dwStart <= dwStop) {
 /* Build a pointer to the start of the next calculation */
 pByte = MK_FP((UINT)(dwStart >> 4), (UINT)(dwStart & 0xf)) ;
 /* Compute the size of the buffer */
 wSize = (UINT) min(0x8000, dwStop - dwStart + 1) ;

 /* Adjust the starting position by the buffer size */
 dwStart += wSize ;

/* Calculate the CRC on the region */
 while (wSize--) {
 wIndex = (UINT8) (*pByte++ ^ dwCRC) ;
 dwCRC >>= 8 ;
 dwCRC ^= dwCRCTable[wIndex] ;
 }
}
 /* Return the computed CRC */
return dwCRC ^ CRC32_FINAL ;

 Note that the 32-bit CRC32 result will not be zero if the CRC is
included in the CRC calculation.

 Tech tips
 Here are some useful tips to help you get the most out the Paradigm
LOCATE checksum options:
n Use the CHECKSUM FILL option to set the default state for any

memory regions that are undefined (and do the same with the
debugger before loading the application)

n When debugging, avoid the use of software breakpoints in a
checksum region (they will change the checksum calculation)

n Make sure that all classes in the checksummed region are named in
OUTPUT directives

n LISTFILE CHECKSUMS option displays the details of any
checksums used including the checksum region address range and
checksum value.

 Figure 7.4
CRC-32 checksum

algorithm.

 +

 Paradigm LOCATE Reference Manual 100

Chapter 8, Using Compression 101

C H A P T E R

8

Using compression

Paradigm LOCATE offers a compressed data option for applications
that require a small EPROM footprint yet have modest amounts of
code or initialized data that must be copied from EPROM to RAM at
startup. By discussing the various tradeoffs associated with
compression, we hope to lend some insight into when it is appropriate
to use this advanced feature of Paradigm LOCATE and when it
should not be considered.

There are no concrete guidelines when an application should use and
when it is best to avoid compressed initialized data. While the impact
on the EPROM footprint can be significant, compression, (actually
decompression), will cost time as decompression can be from 20 to 50
times slower than straight copying of initialized data from EPROM.
Careful consideration of the different options available can make for
an optimally designed system if the tradeoffs are well understood.

Likewise, the selection of compiler will also prove to be an important
factor in whether compression/decompression will be part of your
embedded application. The supported compilers vary in their ability to
keep constant data and string literals in the EPROM address space,
where the need for copying or decompression can be completely
avoided. In extreme cases, it may be preferable to select the compiler
on the basis of its ability to control the placement of data, just as one
would select the fastest compiler if speed were the dominating factor.

Paradigm LOCATE Reference Manual102

Compression requirements
Adding compressed data to an application requires that Paradigm
LOCATE compress the class and output it to an address within the
EPROM address space. In the target system, the decompression
module must be given the source and destination addresses of the
compressed data, and sufficient stack space to perform the
decompression.

The interface code to the decompression routine lies in a compiler
helper file supplied as part of the Paradigm LOCATE compiler support
package. When enabled, this code will pass the default source and
destination addresses to the decompression function. If you wish to
add you own compressed classes, this code will need to be modified to
include support for the additional classes.

The final requirement is sufficient stack space for the decompression
code to do its work. While no static data is required, the class
decompression code requires slightly more than 5KB of stack space
during the actual decompression phase. Once completed the stack size
can be set to accommodate the run-time needs of the application.

Compiler overview
This section is devoted to a discussion of the Borland and Microsoft
compilers and how they can impact a decision to either use or forego
the use of compression. Because of the constantly changing compiler
scene, we can only address the latest Borland and Microsoft
compilers.

Starting with Borland C++ 4.0, embedded system developers have two
means of controlling the placement of string literals and other
initialized data. Using the -dc command line option, Borland C++ will
automatically place string literals in the code segment, a feature long
asked for by developers. Controlling the placement of other data is
done with the -z? command line options, which like the -dc option,
can be used in source code pragmas to control things on an individual
basis.

Check out the
COMPRESS example to

see the use of
compression on FAR

DATA class

Note on decompression
stack size.

See the Paradigm BBS for
compiler-specific
application notes.

Borland C++

Chapter 8, Using Compression 103

Before Borland C++ 4.0, string literals were placed in class DATA and
not much could be done about it, without resorting to segregating the
data into different source modules and compiling with the -z? options.
Now with the ability to have the compiler place string literals in the
code segment via the -dc option, Borland C++ 4.0 users (and later)
have a convenient method of getting all string literals out of class
DATA and into the code segment without changing a line of source
code.

The -z? options, either from the command line or in a #pragma
option, are used to control the placement of code or data declarations.
These options include the ability to specify the segment, class, or
group name, with command line options used to cover an entire
module, and the #pragma option to control data/code placement for
individual declarations within a module.

For example, to declare a constant array of integers in the code
segment, the following approach is taken:

#pragma option -zE_TEXT -zFCODE -zH
const int __far aIntArray[] = {
 1, 2, 3, 4, 5, 6, 7, 8, 9, 0
 } ;

Other data types are declared in a similar fashion. By using the -z?
options, in either format, complete control over the location of your
code and initialized data is yours.

The techniques for handling constant data using Microsoft C/C++ are
centered on the use of the __based keyword, which supplies the
ability to control the segment and class for the data.

Unfortunately, the Microsoft C/C++ compiler does not support placing
string literals in the code segment using a pragma or compiler option,
but it does have a useful alternative which can result in the same
effect. The trick is to use the __based keyword to declare the string

String literals

Initialized data

The #pragma option
doesn't work correctly in all
Borland C++ 3.x releases.

Microsoft C/C++

String literals

Paradigm LOCATE Reference Manual104

literals as initialized character arrays. The array is then used in place
of the string literal.

const char __based(__segname("_CODE")) aLiteral1[] = "Hello #1" ;
const char __based(__segname("_CODE")) aLiteral2[] = "Hello #2" ;

A macro can be defined to help streamline the process, while making
the code more portable should a switch to a different compiler be
desired.

#define BASED_CODE __based(__segname("_CODE"))

This macro could then be used in the above declarations

const char BASED_CODE aLiteral1[] = "Hello #1" ;
const char BASED_CODE aLiteral2[] = "Hello #2" ;

Should you later decide to change compilers, the macro can be
redefined to be an empty string, effectively eliminating the based code
from the application.

Other constant initialized data is declared in a similar fashion to that
shown for string literals. For example, if you need to declare an array
of string literals, you need to first declare the string literal character
arrays and then use each name as initializers in the array declaration.

const char far * __based(__segname("_CODE")) aStringArray[] = {
 aLiteral1,
 aLiteral2,
 } ;

Only the simplest use of the __based keyword has been presented.
Based code, data, and pointers are quite powerful and some
applications may benefit from the use of the technique in controlling
the exact placement of code and/or data. For more information, you
may wish to consult the Microsoft C/C++ documentation.

Compression algorithm
The compression algorithm used by Paradigm LOCATE is a variant of
the LZW algorithm. This algorithm was chosen over competing

Initialized data

More information

Chapter 8, Using Compression 105

algorithms for its ability to highly compress the most commonly found
initialized data types, an ability the other compression algorithm
candidates lack.

Most competing solutions use a variant of the run length encoding
(RLE) algorithm which compresses repeating sequences of 8- or 16-bit
data. While an RLE algorithm works well with segments or classes
initialized to a constant value, it fails to deliver acceptable compression
on string literals, arrays of data, or lookup tables. Since all classes
initialized to a constant value, such as the Borland or Microsoft BSS
class, have alternative initializations that are faster and occupy less
space, the RLE algorithm typically fails to deliver acceptable
performance on the most commonly encountered data types.

Paradigm LOCATE Reference Manual106

Chapter 9, Borland C++ guide 107

C H A P T E R

9

Borland C++ guide

This chapter is a comprehensive overview to using Borland C++ with
embedded system applications. Covered in detail are the individual
components of the Borland C++ compiler support package, including
the startup code, run-time library helper functions, and example
applications.

If you are just getting started with Borland C++, you will need to be
familiar with the Borland compiler, Turbo Assembler, TLINK, and
MAKE utilities in order to use this chapter. For those who would
rather develop using the Integrated Development Environment (IDE),
an add-on for using this powerful tool is available. Also covered is a
complete description of the standard makefiles shipped with each
example in the Borland C++ compiler support package.

Those readers who have worked with Borland C++ in past, should
have little trouble working with this compiler in embedded system
applications. The Borland C++ compiler brings the best of PC
application development tools to the embedded system user, at a
price/performance ratio not matched by traditional embedded system
development tools.

An understanding of the
Borland C++ memory

models is also very useful.

Paradigm LOCATE Reference Manual108

Startup code
The startup code files take an application from the reset vector to the
start of your application. Before main() can be handed control of the
processor, the application stack and segment registers must be
initialized, data copied from EPROM to RAM, and the run-time
libraries installed and initialized. Even though a lot of work must be
accomplished to prepare an application for execution, you rarely will
need to modify the startup code. Using the Paradigm LOCATE
INITCODE directive and the startup code initializers, applications can
add extensions without modifying any of the Paradigm-supplied
startup code.

If you stop and take a peek inside the startup code you will find the
following organization. Following the opening comments is a series of
DefSeg macros that define the default set of segments/classes used by
a Borland C++ embedded application.

;
; Segment and group declarations. The order of these
; declarations is used to control the order of segments in the
; .ROM file since the Borland linker copies segments in the
; same order they are encountered in the object files.
;

DefSeg _TEXT, para, public, CODE, <>
DefSeg _INIT_, para, public, INITDATA, IGROUP
DefSeg _INITEND_, byte, public, INITDATA, IGROUP
DefSeg _EXIT_, dword, public, EXITDATA, IGROUP
DefSeg _EXITEND_, byte, public, EXITDATA, IGROUP
DefSeg _rd, para, public, ROMDATA, <>
DefSeg _erd, para, public, ENDROMDATA, <>

If you were to take a closer look and examine the definition of DefSeg
(in the file STARTUP.INC), you would discover that these macros
don't define any code or data - they simply open and immediately
close the segment. Instead of defining code or data, the position of
DefSeg macros is used by the startup code to set the order and
alignment of the default segments and classes required by a Borland
C++ application.

This section covers the
files in the BCPP50 root

directory.

NOTE: Because the
startup module defines the

order and alignment of
segments, it MUST be

linked in first.

BCPP50.ASM

Figure 9.1
Segment ordering and

alignment with DefSeg.

Chapter 9, Borland C++ guide 109

Following the segment ordering code is the startup code entry point,
which also happens to be the start of the application code. At reset,
the startup code must take care of the following chores in order to
jump start the application:
1. stack initialization
2. copy the initialized data from EPROM to RAM
3. clear the uninitialized data
4. execute any initializers/constructors present
5. call main()

Steps 1 and 5 should be obvious and need no further comment. Steps
2 and 3 handle the initialization of the classes DATA and BSS, which
are defined by Borland C++ to contain the initialized and uninitialized
data for the application. Since initialized data can only exist in
EPROM when power is first applied to the system, step 2 copies any
initialized data from its position in EPROM to its position in RAM.
The size of the memory block to be copied is determined by
measuring the distance from the start of class DATA to the start of
class BSS.

Step 3 fills the class BSS, which contains all the uninitialized static
data in your application, with zero bytes. The size of the BSS class is
determined by the start of the class BSSEND. We can't use the stack
segment as the end of the BSS class because the stack is not part of
the group DGROUP in the compact and large memory models.

The work done by step 4 can seem rather complicated but really it is
quite simple. Our goal is to automatically initialize a run-time library
package without requiring source code modification. Figure 9.2 is the
assembly representation of the data structure used in the initializer
segment.

InitRec struc
ctype db ? ; 0=near, 1=far, 0ffh=not used
pri db ? ; 0=highest, 0ffh=lowest
foff dw ? ; Function offset
fseg dw ? ; Function segment
InitRec ends

Every run-time library package or C++ object requiring initialization
places an entry into the segment containing an array of these

Uninitialized data refers to
the C/C++ language

declaration. The data is
actually initialized to zero.

Figure 9.2
Initializer structure format

Paradigm LOCATE Reference Manual110

structures. The startup code then executes each initializer in order of
priority before calling main(). Creating an entry is even simpler; just
use #pragma startup to identify the function to be executed by the
startup code. Everything else is automatic. If the module is linked in,
its initializer will be called and we never have to modify any source
code.

Finally, you may be wondering where the peripheral register
initializations for chip selects, wait states, and DRAM refresh are
located in the startup code. This is handled by the Paradigm
LOCATE INITCODE directive so there is no need to modify the
startup code to adjust for different target systems. Here is a Paradigm
LOCATE configuration file fragment showing sample Intel
80C186EA/XL chip select initialization code.

initcode reset \ // Reset vector
 umcs = 0xf838 \ // 32KB EPROM
 lmcs = 0x0ff8 // 64KB RAM

The startup code not only initializes the stack, but also defines the size
of the stack using the macro STKSIZE.

This module handles the class FAR_DATA, if it is present in your
application. If you application does not use any far data, then
FARDATA.ASM does not need to be included with your application.
If used, be sure to link in this module immediately after the startup
code.

When far data is used, FARDATA.ASM inserts an initializer into the
initializer table to either copy the class FAR_DATA from its position
in EPROM, or use the Paradigm LOCATE decompression module to
decompress the class. In either case, the initialization of the
FAR_DATA class is automatic and requires no assistance from the
user.

This include file contains Borland C++-specific definitions, common to
all assembly language files included with the compiler support package.

Figure 9.3
INITCODE reset and chip
select register initialization

FARDATA.ASM

This module uses the
macro COMPRESSED to
determine how to initialize

class FAR_DATA.

BCPP50.INC

Chapter 9, Borland C++ guide 111

The STARTUP.INC include file contains general purpose macros and
definitions that can be used to streamline the assembly language
startup code and helper files.

The most important of these macros is the DefSeg macro. This
macro is used to define a segment and assign it to a class, and
optionally assign it to a group. This macro doesn't put anything in the
segment but it does set the order and alignment of the segment.

This is a Paradigm LOCATE configuration include file used to help
with the handling of the FAR_DATA class.

//
// This Paradigm LOCATE configuration file is used to handle
// Borland C++ applications that use class FAR_DATA, and
// optionally compress the data.
//
#if !defined(HASFARDATA) // Check if application has FAR_DATA

#define _FARDATACLASSES // Empty definitions if not used
#define _ROMFARDATACLASSES

#else

#define _FARDATACLASSES FAR_DATA ENDFAR_DATA
#define _ROMFARDATACLASSES ROMFARDATA ENDROMFARDATA

dup FAR_DATA ROMFARDATA // Copy of initialized far data

#if defined(COMPRESSED) // Is the data also compressed?
compress ROMFARDATA // Compress the ROMFARDATA class
display compression // Display the compression results
#endif // defined(COMPRESSED)

#endif // !defined(HASFARDATA)

If the macro HASFARDATA is defined, the macros
_FAR_DATA_CLASSES and _ROMFAR_DATA_CLASSES are
defined to be the default Borland C++ far data classes, otherwise they
are defined as empty strings. If the optional macro COMPRESSED
is defined, the class ROMFARDATA is also compressed by Paradigm
LOCATE.

STARTUP.INC

FARDATA.CFG

Figure 9.4
FARDATA.CFG

configuration file contents

Paradigm LOCATE Reference Manual112

Run-time library helpers
Helpers are the modules required to go beyond the use of the basic
compiler. With the possible exception of stack overflow checking, any
C or C++ source modules you create, and don't reference the C/C++
run-time libraries, will require no additional support. While these
applications are interesting, it's nice to know that the floating point,
dynamic memory management, and stream I/O run-time libraries are
there waiting to be put to use in your application.

These functions are not only ROMable, but you can't beat the
price/performance ratio for these hand-optimized Borland libraries.
They do need some external support since most make Int 21h calls
which must be supported by the embedded system. Here we will
review each major group of run-time library helpers so you can get the
most out of your Borland C++ compiler.

TYPEDEFS.H defines the common types used by the Borland C++
compiler support package and is used by each of the C helper
modules.

DOSEMU.C, together with DOSEMU.H, provides the basic Int 21h
support for the Borland C++ user.

You should plan on including DOSEMU.C in any application using
the Borland C++ run-time libraries. This Int 21h handler is always
installed first and services the most simple functions; reading and
writing interrupt vectors and catching unsupported operations. Any
subsequent Int 21h handlers installed will use the function
_chain_intr() to check if the service request belongs to it, otherwise
passing the call to the next interrupt handler in the chain.

These are the low-level functions and data structures that are common
to all Borland C++ run-time libraries. Functions for stack overflow
checking, exit(), and abort() are all defined here, as are the variables
_errno and _doserrno.

This section covers the
files in the HELPERS

subdirectory.

Int 21h is more appropriate
since we rarely have DOS

in the target system.

TYPEDEFS.H

DOSEMU.C
DOSEMU.H

BCPPRTL.ASM
Plan on including

BCPPRTL.ASM if you use
any run-time libraries.

Chapter 9, Borland C++ guide 113

These files are the helpers for the Borland C++ dynamic memory
management functions. These functions include support for the near
and far versions of malloc(), free(), _heapcheck(), and for those C++
users, new and delete.

Borland C++ uses a single far heap in the compact and large memory
models, and a pair of heaps (near heap and far heap) in the small or
medium memory models. The near heap is allocated in the stack
segment so dynamic memory management users with a near heap
should set the size of the stack to be the sum of the maximum-sized
near heap and the maximum-sized stack.

The size of the heap is set in BCPPHEAP.INC if it is not predefined.
The makefiles have a macro HEAPSIZE that is set to the desired
heap size in KB.

BCPPSIO.C is the device-independent stream I/O support module
used when functions from the printf() and scanf() families are
included in your application. These functions include printf(),
sprintf(), scanf(), sscanf(), puts(), and for you C++ users, cin, and
cout. You can also use fprintf() with this module but the
DOS_READ or DOS_WRITE service code must be customized to
support multiple output devices.

The module CONSOLE.C implements a physical device interface for
the DOS_READ and DOS_WRITE functions in BCPPSIO.C. The
functions in this module should be customized to support the serial,
keyboard, or display device used in your target system.

BCPPSIO.C inserts an entry in the initializer table to have the startup
code call its entry point. The initialization code hooks the Int 21h
interrupt and calls the physical console initialization function in
CONSOLE.C.

These are the floating point installation helper modules.
BCPPFLT.ASM handles the details of installing the math coprocessor
emulator or support for an 80C187 (or other math hardware). The
only option for user customization is the macro FP_INT, which selects
which interrupt vector is used to handle floating point exceptions. The

BCPPDMM.C
BCPPHEAP.ASM
BCPPHEAP.INC

BCPPSIO.C
CONSOLE.C

Paradigm DEBUG/RT has
a replacement for

CONSOLE.C that allows
the debugger to serve as

the target system console.

BCPPFLT.ASM
BCPPFLT.INC

Paradigm LOCATE Reference Manual114

default is set to 10h, which is correct for the emulator and the 80C187
chip.

While these files are required if floating point arithmetic is used, it is
unlikely that they will require customization. BCPPFLT.ASM inserts
an entry in the initializer table to have the startup code call its entry
point.

These are the floating point helpers built into the ROMable run-time
libraries that handle exceptions. They are provided for use should you
need to create custom exception handling code for your floating point
application.

The function _fperror() in FPERR.C handles the intrinsic floating
errors such as divide by zero and overflow. The function
__matherr() in _MATHERR.C handles the exceptions from the
floating point math libraries.

Configuration files
The sample applications included with Paradigm LOCATE use two
different configuration files, depending on the target system.
Configuration files with the .RM extension are used when developing
applications to execute from EPROM or for debugging with Paradigm
DEBUG and an in-circuit emulator. The configuration files with the
.RT extension assume the user will be using Paradigm DEBUG/RT to
debug the application from RAM.

There are only two subtle differences between the configuration files.
Paradigm DEBUG/RT users don't need to use the INITCODE
RESET directive since the target system is already up and running and
it doesn't make sense to start at the reset vector. Chip select
initialization is also omitted since the PDREMOTE/ROM target
system debugging kernel usually performs this function.

The second difference deals with the changes in the memory address
space. The Paradigm DEBUG/RT user must load into the RAM
address space as there is no overlay memory. The MAP directives are
adjusted to cover the RAM address space, mapping the remainder as

FPERR.C
MATHERR.C

Chapter 9, Borland C++ guide 115

reserved. The CLASS directives are also changed to reflect addresses
within the RAM address space and outside the area used by the
debugging kernel.

Integrated Development Environment
If you plan to do your application development under Windows with
the Borland Integrated Development Environment (IDE), you will
want to check out the following development guidelines. The
integrated development environment is of course designed for DOS
and Windows application development, but this does not prevent one
from putting it into service for the design of embedded applications.

Paradigm LOCATE comes with an IDE support package - Paradigm
Addon for Borland C++ IDE. Paradigm Addon streamlines your
embedded system development cycle and makes you more productive.
It enables you to develop embedded applications from within the IDE.
You can now create, build, and debug your applications without ever
leaving the environment.

Each of the Borland C++ examples includes a pre-configured project
file (having the .IDE file extension) for working under the Windows-
hosted IDE, making it easy to get started. Because of the many
options set by these files, we strongly recommend that new users
consider taking one of these example project files as the starting point
for their own application.

Paradigm Addon allows you to develop embedded applications in the
IDE. However, there are a few minor details that must be considered.
Be sure to go through the Getting Started chapter of the Paradigm
Addon help topic in the IDE Online Help. It shows you how things
are set up and how they work. It also has information on upgrading
projects created by previous versions of Borland C++ IDE.

The Paradigm Addon is installed when you install Paradigm LOCATE
for the Borland C++ 5.02 compiler. Paradigm Addon
(PARADIGM.DLL) is enabled by the Setup program. However, it
can be disabled using the Borland ADDONREG.EXE utility.

Installing Paradigm
Addon

Paradigm LOCATE Reference Manual116

Makefiles
Compared with the setup for IDE users, the makefile approach is
downright simple. Each example supplied as part of the compiler
support package includes a makefile for guaranteeing the correctness
of the build process, from compiling through the running of Paradigm
LOCATE.

The remainder of this section documents the files, and their contents,
used in the makefile approach. We welcome any new Paradigm
LOCATE users to check out the contents of each makefile, and to
incorporate those features which best suit the requirements of the
application. It is a simple matter to add new modules to any of the
makefiles, while maintaining complete control over the memory
model, floating point option, and other application-dependent build
options.

This MAKE include file processes the makefile macro definitions to
produce the list of file dependencies and compiler, assembler, linker,
and Paradigm LOCATE options. It is used primarily to hide the
routine complexity of application build options, letting the makefile
remain focused on the application dependent issues.

Because the makefiles supplied with the Borland C++ examples are
complete, we welcome you to take them and use them as the starting
point for your own applications. To help you get started, here is a
peek at the makefile for the example in EXAMPLES\FPDEMO. Each
macro includes a short description of the build options so you can
customize it to match your own target system and debugging tools.

Here is how to make quick modifications and get this application built
with a minimum of fussing. If you are not using the default Borland
C++ directory, or it is installed on a different drive, change the macro
COMPDIR to match your system. This will allow the makefile to
create a custom TURBOC.CFG file with the compiler options and
path for include files.

PARADIGM.MKF

Common makefile
macros

COMPDIR

Chapter 9, Borland C++ guide 117

This is the name of Borland C++ compiler configuration file. The
makefile will create this file any time a compiler option changes. This
file is used to make sure that another compiler configuration file
containing undesired compiler options is not used.

This macro defines the filename of the makefile and is used to
guarantee a complete rebuild of the application should the makefile be
changed.

This macro is set to select the desired memory model. You can
usually use any memory model, but there may be restrictions on the
use of huge model with some run-time library functions.

The CPU macro is used to select a code generator for the target
system. Set CPU to zero if using an 8086/88 microprocessor, or one
if using a NEC V-Series, 80186-family or higher microprocessor.

This option allows you to create three different output file types.
Setting DEBUG to 0 will select the *.RM configuration file and
disables all debug information, making for the fast builds (and the
slowest debugging sessions). Setting DEBUG to 1, will also select the
*.RM configuration file but will enable compiling and assembling with
full debug information. Setting DEBUG to 2 also enables debug
information but the *.RT configuration file will be used.

This macro can be used to select the desired level of optimizations.
Set to zero for minimal optimizations during development and to one if
you want to optimize for code size. Set OPTIMIZE to two if you
want to optimize for your application for speed. The
PARADIGM.MKF file can be edited to support other, more specific,
optimizations supported by Borland C++.

Use this macro definition to enable or disable compiler warnings.
Specific warning control can be specified by adding -wxxx command
line options to the TURBOC.CFG file definition found at the end of
the makefile.

Borland C++ supports placing string literals in the code segment with
the -dc command line option. You can enable this feature by setting

COMPCFG

MKF

MODEL

CPU

DEBUG

OPTIMIZE

WARNINGS

CODESTRING

Paradigm LOCATE Reference Manual118

CODESTRING to 1. Remember to use far pointers when string
literals are in the code segment.

Setting DUPSTRING to one is used to force the compiler to merge
duplicate strings, an excellent idea if you use lots of string literals and
you want only a single instance.

This option is used to enable or disable the compiler stack checking
logic. During development it is not a bad idea to turn this option on to
catch errors that might otherwise crash a target system.

Set the FLOAT macro to zero to select the option for no floating point
support. If you want to use the math coprocessor emulation included
in Borland C++, set FLOAT to 2. If you have a real math
coprocessor in your target system, set FLOAT to 3.

The FARDATA macro selects between the various levels of Borland
C++ far data support. When FARDATA is zero, the far data support
is disabled and not used. When FARDATA is set to 1, the application
can use far data and the class FAR_DATA will be duplicated and
placed in EPROM for copying to RAM by the initializer in the file
FARDATA.ASM. Setting FARDATA to 2 will enable the use of far
data, but it will be duplicated and compressed to minimize the
EPROM footprint of the class FAR_DATA.

Set the IOSTREAMS macro to zero to disable use of C/C++ stream
I/O. When set to 1, use of memory formatting run-time libraries are
supported (sprintf, etc). Set this to 2 to select full C/C++ I/O stream
support.

The EXCEPTIONS macro is used to enable or disable the use of
exception handling. When disabled, the appropriate Borland
NOEH?.LIB library will be linked in, minimizing the size of the
application.

This option lets you set the size of the default stack in the startup
code. The stack will be in DGROUP for the small and compact
memory models, and in its own class in the compact, large, and huge
memory models.

DUPSTRING

CHECKSTACK

FLOAT

FARDATA

If FARDATA is 1, the
makefile defines the macro

HASFARDATA. If
FARDATA is 2, the

makefile also defines the
macro COMPRESSED.

IOSTREAMS

EXCEPTIONS

STACK

Chapter 9, Borland C++ guide 119

The stack size can be set to any value but the minimum size is likely
to be 256 bytes. If you have many levels of function nesting, with lots
of automatics, or use the floating point emulation, the stack will need
to be larger. If the stack and heap are sharing the stack segment, the
stack must be set to the maximums of the desired stack and heap.

The HEAPSIZE macro sets the size of the heap, or it disables the
run-time library heap functions.

The Borland C++ far heap is used as the default heap in compact,
large, and huge memory models. In the small or medium memory
models, the default heap is part of the stack (set the stack size to
include your desired heap size) and HEAPSIZE declares the size of
the far heap.

Sample applications
This section covers the sample applications included with the Borland
C++ support package. Except for the simple application found in
DEMO, all examples have complete makefiles that permit easy setting
of the memory model, floating point option, FAR_DATA class
handling, and output files for burning EPROMs or debugging with
Paradigm DEBUG.

Each example is supplied to work with the Windows-hosted IDE or
the command line tools, allowing whichever development environment
you are most comfortable with to be used.

This is a simple demo, very similar to the example presented in
chapter 2. The main difference is that this example includes support
for building the C source file and startup code.

This is an excellent place to begin if you are just getting started with
Borland C++ and embedded systems.

DMMDEMO is a simple example demonstrating the use of the
Borland C++ dynamic memory management routines. In this

HEAPSIZE

This section covers the
files in the EXAMPLES

subdirectory.

DEMO

DMMDEMO

Paradigm LOCATE Reference Manual120

example, an array of pointers to random-sized character arrays is
maintained. If a location has already been allocated, it is released,
otherwise it is filled with data. After each allocation request, the
function heapcheck() is used to verify the integrity of the heap.

The default memory model for this application is small so a near heap
is used. If you change to compact or large memory model, the macro
HEAPEND in the file BCPPDMM.C must be changed to reflect the
paragraph address of the end of the far heap in your target system.

Also note that no other classes may follow class FARHEAP in the
ORDER directive. This is required as Paradigm LOCATE does not
know the true size of the far heap and will not catch the overlap
between the segments.

This is an example designed for users of the Borland C++ floating
point run-time libraries. It endlessly performs floating point
calculations, checking the results for accuracy. The sample code also
forces errors, divide by zero, square root of a negative number, to
verify the exception handling logic works as expected.

STDIO.C exercises the input and output streams of Borland C++.
Running the ubiquitous Sieve demo, it calculates the number primes
and displays the result.

If you have a UART or an LCD display, modify the file
CONSOLE.C to work your physical device. Since we assume
nothing about the target system, all input and output are with memory
buffers in the default version.

Besides being a C++ application, this example does everything: floating
point, C++ streams, and dynamic memory management with new.
Check out this example if you plan to use C++ or need access to a
makefile with support for all run-time library options.

This example demonstrates the use of data compression with
Paradigm LOCATE. The file COMPRESS.C allocates a number of

The method used to
implement the far heap
optimizes the available

RAM but has the
disadvantage that LOCATE

can't perform error
checking on the class.

FPDEMO

STDIO

Paradigm DEBUG users
can inspect 'outbuf' to see

the output.

CPPDEMO

COMPRESS

Chapter 9, Borland C++ guide 121

initialized and uninitialized data structures in the class FAR_DATA and
then checks that they have been correctly initialized by the startup
code.

You can build the example in any memory model and can switch
between copied far data (FARDATA = 1) and decompressed far data
(FARDATA = 2). Note that the decompression code requires at least
5KB of stack space to work correctly.

This example demonstrates the use of the checksum capabilities
supplied with Paradigm LOCATE. Paradigm LOCATE includes
complete support for IBM PC ROM BIOS extensions, and for more
critical applications, the CRC16 and CRC32 algorithms. This example
is an ideal starting point for those applications that need some form of
redundancy checking.

In the CRCDEMO example, three separate regions of the address
space are defined and the ROMBIOS, CRC16, and CRC32
checksums are computed by Paradigm LOCATE and stored
immediately following each region. As the sample code executes, it
recomputes each checksum or CRC and verifies that no errors have
been detected.

This example demonstrates the use of the C++ exception handling
capabilities of Borland C++. Paradigm LOCATE fully supports the
use of exception handling so your application can get maximum benefit
from this technology.

For those applications that need to manipulate strings, this example
also uses the C++ string class.

Borland C++ requires a far heap to use exception handling. You will
get a linker error the first time you try to build this application. Just
set the HEAPEND macro in BCPPDMM.C and you will be on your
way.

CRCDEMO

EHDEMO

+

Paradigm LOCATE Reference Manual122

This example demonstrates the handling of non-volatile data in an
embedded application. Data placed in a non-volatile segment is
untouched by the startup code and is only modified by the application.

This example demonstrates the use of constant data in a read-only
address space. By default, the compiler places all initialized data in the
default segment. By declaring the data as 'const' and '__far', it can be
moved out and stored in flash or EPROM. This technique reduces the
RAM footprint of an application.

NURAM

CONST

Chapter 10, Microsoft C/C++ guide 123

C H A P T E R

10

Microsoft C/C++ guide

This chapter is a comprehensive overview to using Microsoft C/C++
with embedded system applications. Covered in detail are the
individual components of the Microsoft C/C++ compiler support
package, including the startup code, run-time library helper functions,
and example applications.

If you are just getting started with Microsoft C/C++, you will need to
be familiar with the Microsoft compiler, macro assembler, LINK, and
NMAKE utilities in order to use this chapter. For those that would
rather use the Visual C++ Workbench as a development environment,
complete instructions for using this powerful, Windows-hosted
software development environment are available. Also covered is a
complete description of the standard makefiles shipped with each
example in the Microsoft C/C++ compiler support package.

Those readers who have worked with Microsoft C/C++ in past, should
have little trouble migrating to using it as the centerpiece of an
embedded system application. The Microsoft C/C++ compiler brings
the best of PC application development tools to the embedded system
user, at a price/performance ratio not matched by traditional
embedded system development tools.

An understanding of the
Microsoft C/C++ memory

models is also very useful.

Paradigm LOCATE Reference Manual124

Startup code
The startup code files take an application from the reset vector to the
start of your application. Before main() can be handed control of the
processor, the application stack and segment registers must be
initialized, data copied from EPROM to RAM, and the run-time
libraries installed and initialized. Even though a lot of work must be
accomplished to prepare an application for execution, you rarely will
need to modify the startup code. Using the Paradigm LOCATE
INITCODE directive and the startup code initializers, applications can
add extensions without modifying any of the Paradigm-supplied
startup code.

If you stop and take a peek inside the startup code you will find the
following organization. Following the opening comments is a series of
DefSeg macros that define the default set of segments/classes used by
a Microsoft C/C++ embedded application.
;
; Segment and group declarations. The order of these
; declarations is used to control the order of segments in the
; .ROM file since the Microsoft linker copies segments in the
; same order they are encountered in the object files.
;

DefSeg _TEXT, para, public, CODE, <> ; Default code
DefSeg _DATA, para, public, DATA, DGROUP ; Initialized data
DefSeg xiheap,word, common, DATA, DGROUP ; Heap initialization
DefSeg CONST, word, public, CONST, DGROUP ; Constant data
DefSeg HDR, word, public, MSG, DGROUP ; Misc. data
DefSeg _BSS, word, public, BSS, DGROUP ; Uninitialized data
DefSeg _STACK,para, stack, STACK, DGROUP ; Program stack

If you were to take a closer look and examine the definition of DefSeg
(in the file STARTUP.INC), you would discover that these macros
don't define any code or data, they simply open and immediately close
the segment. Instead of defining code or data, the position of DefSeg
macros is used by the startup code to set the order and alignment of
the default segments and classes required by a Microsoft C/C++
application.

This section covers the
files in the MSC80 root

directory.

NOTE: Because the
startup module defines the

order and alignment of
segments, it MUST be

linked in first.

MSC80.ASM

Figure 10.1
Segment ordering and

alignment with DefSeg.

Chapter 10, Microsoft C/C++ guide 125

Following the segment ordering code is the startup code entry point,
which also happens to be the start of the application code. At reset,
the startup code must take care of the following chores in order to
jump start the application:
1. stack initialization
2. copy the initialized data from EPROM to RAM
3. clear the uninitialized data
4. execute any initializers/constructors present
5. call main()

Steps 1 and 5 should be obvious and need no further comment. Steps
2 and 3 handle the initialization of the classes DATA and BSS which
are defined by Microsoft C/C++ to contain the initialized and
uninitialized data for the application. Since initialized data can only
exist in EPROM when power is first applied to the system, step 2
copies any initialized data from its position in EPROM to its position in
RAM. The size of the memory block to be copied is determined by
measuring the distance from the start of class DATA to the start of
class BSS.

Step 3 fills the class BSS, which contains all the uninitialized static
data in your application, with zero bytes. The size of the BSS class is
determined by the start of the class STACK.

The work done by step 4 can seem rather complicated but it is really
quite simple. Our goal is to automatically initialize a run-time library
package without requiring source code modification. Every run-time
library package or C++ object requiring initialization places a pointer
into the segment containing an array of these initializers. The startup
code then executes each initializer in order of priority before calling
main(). If the module is linked in, its initializer will be called and we
never have to modify any source code.

Finally, you may be wondering where the peripheral register
initializations for chip selects, wait states, and DRAM refresh are
located in the startup code. This is handled by the Paradigm
LOCATE INITCODE directive so there is no need to modify the
startup code to adjust for different target systems. Here is a Paradigm
LOCATE configuration file fragment showing the Intel 80C186EA/XL
chip select initialization code.

Uninitialized data refers to
the C language declaration.

The data is actually
initialized to zero.

Paradigm LOCATE Reference Manual126

initcode reset \ // Reset vector
 umcs = 0xf838 \ // 32KB EPROM
 lmcs = 0x0ff8 // 64KB RAM

The startup code not only initializes the stack, but also defines the size
of the stack using the macro STKSIZE.

This module handles the classes FAR_DATA and FAR_BSS, if they
are present in your application, plus the startup code initializers.

When far data is used, CINIT.ASM will copy the class FAR_DATA
from its position in EPROM, or use the Paradigm LOCATE
decompression module to decompress the class. The memory used in
the class FAR_BSS is also set to zero, as required by the compiler. In
either case, the initialization of the FAR_DATA class is automatic and
requires no assistance from the user.

Following the initialization of memory, the module will call any linked-
in initializers. Initializers are broken down into four groups. The
Paradigm initializers are used to install support for run-time library
helpers. These are followed by the Microsoft near/far initializers. The
last group of initializers are used by C++ applications to call the
constructors for any global objects.

This include file contains Microsoft C/C++-specific definitions,
common to all assembly language files included with the compiler
support package.

The STARTUP.INC include file contains general purpose macros and
definitions that can be used to streamline the assembly language
startup code and helper files.

The most important of these is the DefSeg macro. This macro is used
to define a segment and assign it to a class, and optionally assign it to a
group. This macro doesn't put anything in the segment but it does set
the order and alignment of the segment.

Figure 10.2
INITCODE reset and chip
select register initialization

CINIT.ASM

This module uses the
macro COMPRESSED to
determine how to initialize

class FAR_DATA.

MSC80.INC

STARTUP.INC

Chapter 10, Microsoft C/C++ guide 127

This is a Paradigm LOCATE configuration include file used to help
with the handling of the FAR_DATA and FAR_BSS classes.

//
// This Paradigm LOCATE configuration file is used to handle
// Microsoft C/C++ applications that use class FAR_DATA, and
// optionally compress the data.
//
// This file has no effect if class FAR_DATA is not used.
//
#if !defined(HASFARDATA) // Check if FAR_DATA exists

#define _START_RAM_DATA DATA // Class DATA is first

#define _FAR_DATA_CLASSES // Empty if not used
#define _ROMFAR_DATA_CLASSES

#else

#define _START_RAM_DATA FAR_DATA // Class FAR_DATA is first

#define _FAR_DATA_CLASSES FAR_DATA ENDFAR_DATA FAR_BSS
ENDFAR_BSS
#define _ROMFAR_DATA_CLASSES ROMFARDATA ENDROMFARDATA

dup FAR_DATA ROMFARDATA // Copy initialized far data

#if defined(COMPRESSED) // Is the data compressed?
compress ROMFARDATA // Compress ROMFARDATA class
display compression // Display compression
results
#endif // defined(COMPRESSED)
#endif // !defined(HASFARDATA)

If the macro HASFARDATA is defined, the macros
_FAR_DATA_CLASSES and _ROMFAR_DATA_CLASSES are
defined to be the default Microsoft C/C++ far data classes, otherwise
they are defined as empty strings. If the optional definition
COMPRESSED is defined, the class ROMFARDATA is compressed
by Paradigm LOCATE.

Run-time library helpers
Helpers are the modules required to go beyond the use of the basic
compiler. With the possible exception of stack overflow checking, any

FARDATA.CFG

Figure 10.3
FARDATA.CFG

configuration file contents

This section covers the
files in the HELPERS

subdirectory.

Paradigm LOCATE Reference Manual128

C or C++ source modules you create and don't reference the C/C++
run-time libraries, will require no additional support. While these
applications are interesting, it's nice to know that the floating point,
dynamic memory management, and stream I/O run-time libraries are
there waiting to be put to use in your application.

These functions are not only ROMable, but you can't beat the
price/performance ratio for these hand-optimized Microsoft libraries.
They do need some external support since most make Int 21h calls
which must be supported by the embedded system. Here we will
review each major group of run-time library helpers so you can get the
most out of your Microsoft C/C++ compiler.

TYPEDEFS.H defines the common types used by the Microsoft
C/C++ compiler support package and is used by each of the C helper
modules.

DOSEMU.C, together with DOSEMU.H, provides the basic Int 21h
support for the Microsoft C/C++ user.

You should plan on including DOSEMU.C in any application using
the Microsoft C/C++ run-time libraries. This Int 21h handler is always
installed first and services the most simple functions; reading and
writing interrupt vectors and catching unsupported operations. Any
subsequent Int 21h handlers installed will use the function
_chain_intr() to check if the service request belongs it, otherwise
passing the call to the next interrupt handler in the chain.

These are the low-level functions and data structures that are common
to all Microsoft C/C++ run-time libraries. Functions for stack
overflow checking, exit(), and abort() are all defined here, as are the
variables _errno and _doserrno.

MSCRTL.ASM also provides near heap support. The macro
NHEAPEND determines the size of the near heap.

Int 21h is more appropriate
since we rarely have DOS

in the target system.

TYPEDEFS.H

DOSEMU.C
DOSEMU.H

MSCRTL.ASM
Plan on including

MSCRTL.ASM if you use
any run-time libraries.

Chapter 10, Microsoft C/C++ guide 129

These files are the helpers for the Microsoft C/C++ dynamic memory
management functions. These functions include support for the near
and far versions of malloc(), free(), _heapchk(), and for those C++
users, new and delete.

Microsoft C/C++ supports both a far heap and a near heap. The near
heap is allocated immediately following the stack. You can set the size
of the near heap, which is part of the group DGROUP, by changing
the definition of NHEAPSIZE in the file MSCRTL.ASM.

The size of the heap is set in MSCHEAP.INC if it is not predefined.
The makefiles have a macro HEAPSIZE that is set to the desired
heap size in KB.

MSCSIO.C is the device-independent stream I/O support module
used should functions from the printf() and scanf() families be
included in your application. These functions include printf(),
sprintf(), scanf(), sscanf(), puts(), and for you C++ users, cin, and
cout. You can also use fprintf() with this module but the
DOS_READ or DOS_WRITE service code must be customized to
support multiple output devices.

The module CONSOLE.C implements a physical device interface for
the DOS_READ and DOS_WRITE functions in MSCSIO.C. The
functions in this module should be customized to support the serial,
keyboard, or display device used in your target system.

MSCSIO.C inserts an entry in the initializer table to have the startup
code call its entry point. The initialization code hooks the Int 21h
interrupt and calls the console initialization function in CONSOLE.C.

This is the floating point installation helper module. MSCFLT.ASM
handles the details of installing the math coprocessor emulator or
support for an 80C187 (or other math coprocessor hardware). The
only option for user customization is the macro FP_INT, which selects
which interrupt vector is used to handle floating point exceptions. The
default is set to 10h, which is correct for the emulator and the 80C187
chip.

MSCDMM.C
MSCHEAP.ASM
MSCHEAP.INC

MSCSIO.C
CONSOLE.C

Paradigm DEBUG/RT has
a replacement for

CONSOLE.C that allows
the debugger to serve as

the target system console.

MSCFLT.ASM

Paradigm LOCATE Reference Manual130

For Microsoft floating point emulation, it is required to set the target
processor register bit that causes ESC opcode to be trapped. On 186
processors, set the ET bit in RELREG. On 386 processors, set the
EM bit in CR0. On some processors including 188 and V25, this is
automatic. Sample code to enable ESC opcode trap is included in
MSCFLT.ASM. See documentation inside the file for details.

While this file is required if floating point arithmetic is used, it is
unlikely that they will require customization. MSCFLT.ASM inserts
an entry in the initializer table to have the startup code call its entry
point.

If you are using the Microsoft emulated floating point library, you
must set the processor control register bit that causes ESC opcodes to
be trapped. On 186 processors, set the ET bit in RELREG. On 386
processors, set the EM bit in CR0. DOSEMU.C must be linked to
handle the Int 7 exception. On some processors, this is automatic
(188, V25 etc).

The sample application included with Paradigm LOCATE uses two
different configuration files, depending on the target system.
Configuration files with the .RM extension are used when developing
applications to execute from EPROM or for debugging with Paradigm
DEBUG and an in-circuit emulator. The configuration files with the
.RT extension assume the user will be using Paradigm DEBUG/RT to
debug the application from RAM.

There are only two subtle differences between the configuration files.
Paradigm DEBUG/RT users don't need to use the INITCODE
RESET directive since the target system is already up and running and
it doesn't make sense to start at the reset vector. Chip select
initialization is also omitted since the PDREMOTE/ROM target
system debugging kernel usually performs this function.

The second difference deals with the changes in the memory address
space. The Paradigm DEBUG/RT user must load into the RAM
address space as there is no overlay memory. The MAP directives are
adjusted to cover the RAM address space, mapping the remainder as
reserved. The CLASS directives are also changed to reflect addresses

Note!

Configuration files

Chapter 10, Microsoft C/C++ guide 131

within the RAM address space and outside the area used by the
debugging kernel.

Visual Workbench
The major problem of using the Microsoft Visual Workbench (VWB)
to develop embedded applications is the assumption that users want to
create a PC-style application. That is, the Visual Workbench always
tries to bring in the default startup code and default libraries. As many
of the default compiler/linker options are not appropriate for
embedded applications, steps must be taken to ensure the ROMable
startup code and run-time libraries are used in building our application.

Besides not supporting MASM directly, the Visual Workbench does
not provide users with full control over the compiler, linker, and
NMAKE, making the Visual Workbench project files incompatible
with embedded applications. Fortunately, the Visual Workbench does
accept external makefiles, a capability we can exploit to use the Visual
Workbench as the basis for embedded system application
development.

Generally speaking, no special settings are needed because we are not
using the internal project files created by the VMB. Instead, the
makefile associated with each of the Paradigm examples will serve as
the external project file. Let's take the CPPDEMO application as an
example and see how easy it is to setup the Visual Workbench to build
this application using the supplied makefile.

Select Project|Open to load the application makefile into the Visual
Workbench as an external project.

File Name: makefile
[x] Use as an External Makefile

If the MAKEFILE is not in the current directory, use the directory tree
to go to where it is located.

Setting up the
Visual Workbench

Creating a project

Paradigm LOCATE Reference Manual132

The External Project Option dialog window will pop up as soon as
Open Project dialog window is closed. In this window, you can enter
the target filename and select target file type.

Debug Target Name: CPPDEMO.AXE
Project Type: Other
Debug Build: NMAKER /f MAKEFILE
Release Build: NMAKER /f MAKEFILE

This tells the project manager that CPPDEMO.AXE is the final target
to be built by the Visual Workbench and that it is not a DOS or
Windows application.

Paradigm DEBUG can also be integrated into the Visual Workbench
tool set so it can be started from the Tools pull-down menu. Select
the Options|Tools menu item and fill the fields to install Paradigm
DEBUG, as shown below.
[Add] (Use the directory tree to select Paradigm DEBUG)

Command Line: C:\PD\PDRT186.PIF
Menu Text: Paradigm &DEBUG
Arguments: CPPDEMO.AXE
Initial Directory: (your current directory)

If you do not want to pass the .AXE file name in command line, you
can leave Arguments field blank. You can also control if you want to
be prompted for arguments by enabling or disabling the Ask for
arguments field.

These final options are set to match your system and should be
adjusted accordingly.

Options:Directories: "Directories" dialog
Executable Files Path c:\msvc\bin;c:\locate

It is strongly recommended to use one of our example makefiles as a
template for your own project. This ensures that correct settings for
both the Paradigm and Microsoft tools and embedded system targets.
To customize the makefile for use with your own application, all that
is required is to add or delete modules to the source and object file
dependencies.

External project
options

Adding tools

Setting up the
environment

Starting your own
project

Chapter 10, Microsoft C/C++ guide 133

Makefiles
Each example supplied as part of the compiler support package
includes a makefile for guaranteeing the correctness of the build
process. We welcome any new Paradigm LOCATE users to check
out the contents of each makefile, and to incorporate those features
which best suit the requirements of the application. It is a simple
matter to add new modules to any of the makefiles, while maintaining
complete control over the memory model, floating point option, and
other application-dependent build options.

This MAKE include file processes the makefile macro definitions to
produce the list of file dependencies and compiler, assembler, linker,
and Paradigm LOCATE options. It is used primarily to hide the
routine complexity of application build options, letting the makefile
remain focused on the application dependent issues.

Because the makefiles supplied with the Microsoft C/C++ examples
are complete, we welcome you to take them and use them as the
starting point for your own applications. To help you get started, here
is a peek at the makefile for the example in EXAMPLES\FPDEMO.
Each macro describes the build options you can customize to meet the
requirements of your target system and debugging tools.

Here is now to make quick modifications and get this application built
with a minimum of fussing. If you are not using the default Microsoft
C/C++ directory, or it is installed on a different drive, change the
macro COMPDIR to match your system.

This macro defines the filename of the makefile and is used to
guarantee a complete rebuild of the application should the makefile be
changed.

This macro is set to select the desired memory model. You can
usually use any memory model, but there may be restrictions on the
use of huge model with some run-time library functions.

PARADIGM.MKF

Common makefile
macros

COMPDIR

MKF

MODEL

Paradigm LOCATE Reference Manual134

The CPU macro is used to select a code generator for the target
system. Set CPU to zero if using a 8086/88 microprocessor, one if
using an 80186-family or NEC V-Series microprocessor, or two for a
80286 or higher.

This option allows you to create three different output file types.
Setting DEBUG to 0 will select the *.RM configuration file and disable
all debug information, making for the fast builds (and the slowest
debugging sessions). Setting DEBUG to 1, will also select the *.RM
configuration file but will enable compiling and assembling with full
debug information. Setting DEBUG to 2 also enables debug
information but the *.RT configuration file will be used.

This option is used to select the desired level of compiler syntax
checking. Set this macro to the level which matches your coding style
and development requirements.

This macro can be used to select the desired level of optimizations.
Set to zero for minimal optimizations during development and to one if
you want to optimize for size, or two if you want to optimize for
speed. The PARADIGM.MKF file can be edited to support other,
more specific, optimizations supported by Microsoft C/C++.

This option is used to enable or disable the compiler stack checking
logic. During development it is not a bad idea to turn this option on to
catch errors that might otherwise crash a target system.

Set the FLOAT macro to zero to select the option for no floating point
support. If you want to use the alternate math library, set FLOAT to
1. If you want to use the math coprocessor emulation included in
Microsoft C/C++, set FLOAT to 2. If you have a real math
coprocessor in your target system, set FLOAT to 3.

The FARDATA macro selects between the various levels of
Microsoft C/C++ far data support. When FARDATA is zero, the far
data support is disabled and not used. When FARDATA is set to 1,
the application can use far data and the class FAR_DATA will be
duplicated and placed in EPROM for copying to RAM by the
initialization code in the file CINIT.ASM. Class FAR_BSS will also

CPU

DEBUG

WARNINGS

OPTIMIZE

CHECKSTACK

FLOAT

If you are using
FLOAT = 2, see the note

regarding ESC opcode
trapping on page 130

FARDATA

If FARDATA is 1, the
makefile defines the macro

HASFARDATA. If
FARDATA is 2, the

makefile also defines the
macro COMPRESSED.

Chapter 10, Microsoft C/C++ guide 135

be defined and the startup code will fill this class with zero. Setting
FARDATA to 2 will enable the use of far data, but it will be
duplicated and compressed to minimize the EPROM footprint of the
class FAR_DATA.

Set the IOSTREAMS macro to zero to disable use of C/C++ stream
I/O. When set to 1, use of memory formatting run-time libraries are
supported (sprintf, etc). Set this to 2 to select full C/C++ I/O stream
support.

This option lets you set the size of the default stack in the startup
code.

The stack size can be set to any value but the minimum size is likely
to be 256 bytes. If you have many levels of function nesting, with lots
of automatics, or use the floating point emulation, the stack will need
to be larger.

The HEAPSIZE macro sets the size of the heap, or it disables the
run-time library heap functions.

The Microsoft C/C++ far heap is used as the default heap in compact,
large, and huge memory models. In the small or medium memory
models, the default heap is part of the stack (set the stack size to
include your desired heap size) and HEAPSIZE declares the size of
the far heap.

Sample applications
This section covers the sample applications included with the
Microsoft C/C++ support package. Except for the simple application
found in DEMO, all examples have complete makefiles that permit
easy setting of the memory model, floating point option, FAR_DATA
and FAR_BSS class handling, and output files for burning EPROMs
or debugging with Paradigm DEBUG.

Each example is supplied to work with the Windows-hosted Visual
Workbench or the command line tools, allowing whichever
development environment you are most comfortable with to be used.

IOSTREAMS

STACK

HEAPSIZE

This section covers the
files in the EXAMPLES

subdirectory.

Paradigm LOCATE Reference Manual136

This is a simple demo, very similar to the example presented in
chapter 2. The main difference is that this example includes support
for building the C source file and startup code.

This is an excellent place to begin if you are just getting started with
Microsoft C/C++ and embedded systems.

DMMDEMO is a simple example demonstrating the use of the
Microsoft C/C++ dynamic memory management routines with near
and far heaps. In this example, an array of pointers to random-sized
character arrays is maintained. If a location has already been
allocated, it is released, otherwise it is filled with data. After each
allocation request, the function _heapchk() is used verify the integrity
of the heap.

In order for the far heap to operate properly, the macro FHEAPEND
in the file . MSCDMM.C must be changed to reflect the paragraph
address of the end of the far heap in your target system. Also note
that the class STACK, which contains the far heap, must not be
followed by any other classes as the size of the far heap is not fully
known by Paradigm LOCATE.

This is an example designed for users of the Microsoft C/C++ floating
point run-time libraries. It endlessly performs floating point
calculations, checking the results for accuracy. The sample code also
forces errors, divide by zero, square root of a negative number, to
verify the exception handling logic works as expected.

STDIO.C exercises the input and output streams of Microsoft C/C++.
Running the ubiquitous Sieve demo, it calculates the number primes
and displays the result.

If you have a UART or an LCD display, modify the file
CONSOLE.C to work your physical device. Since we assume
nothing about the target system, all input and output are with memory
buffers in the default version.

DEMO

DMMDEMO

The method used to
implement the far heap
optimizes the available

RAM but has the
disadvantage that LOCATE

can't perform error
checking on the class.

FPDEMO
If you plan to use emulated
floating point, see the note

regarding ESC opcode
trapping on page 130.

STDIO

Paradigm DEBUG users
can inspect 'outbuf' to see

the output.

Chapter 10, Microsoft C/C++ guide 137

Besides being a C++ application, this example does everything: floating
point, C++ streams, and dynamic memory management with new.
Check out this example if you plan to use C++ or need access to a
makefile with support for all run-time library options.

This example demonstrates the use of data compression with
Paradigm LOCATE. The file COMPRESS.C allocates a number of
initialized and uninitialized data structures in the classes FAR_DATA
and FAR_BSS and then checks that they have been correctly
initialized by the startup code.

You can build the example in any memory model and can switch
between copied far data (FARDATA = 1) and decompressed far data
(FARDATA = 2). Note that the decompression code requires at least
5KB of stack space to work correctly.

This example demonstrates the use of the checksum capabilities
supplied with Paradigm LOCATE. Paradigm LOCATE includes
complete support for IBM PC ROM BIOS extensions, and for more
critical applications, the CRC16 and CRC32 algorithms. This example
is an ideal starting point for those applications that need some form of
redundancy checking.

In the CRCDEMO example, three separate regions of the address
space are defined and the ROMBIOS, CRC-16, and CRC-32
checksums are computed by Paradigm LOCATE and stored
immediately following each region. As the sample code executes, it
recomputes each checksum or CRC and verifies that no errors have
been detected.

This example demonstrates the handling of non-volatile data in an
embedded application. Data placed in a non-volatile segment is
untouched by the startup code and is only modified by the application.

CPPDEMO

COMPRESS

CRCDEMO

NURAM

Paradigm LOCATE Reference Manual138

This example demonstrates the use of constant data in a read-only
address space. By default, the compiler places all initialized data in the
default segment. By declaring the data as 'const' and '__far', it can be
moved out and stored in flash or EPROM. This technique reduces the
RAM footprint of an application.

CONST

Appendix A, Warning diagnostics 139

A P P E N D I X

A

Warning diagnostics

The warnings listed in this appendix indicate potential problems or
relay diagnostic information to the user concerning the translation
process. Each warning message is listed in numerical order and may
be disabled by a command line option or in the configuration file, if
you prefer to ignore the warning.

Paradigm LOCATE warnings

The following warning diagnostics are produced by Paradigm
LOCATE while the processing the input files, command line
arguments, or configuration file.

No address assigned to segment 'seg/class'
The identified segment did not appear in a CLASS, SEGMENT or
ORDER directive and no physical address assignment has been made,
leaving the segment to start at address 0x00000.

Unable to translate debug info for 'module':'symbol'
Paradigm LOCATE does not support the translation of the type
information for the symbol and the type information is lost from the
debug records.

Message
explanations

W1000

W1001

Paradigm LOCATE Reference Manual140

Assumed absolute symbol 'name'
Paradigm LOCATE failed to successfully translate the segment
address for the specified symbol. While this can indicate a problem, it
is very likely that the symbol is already an absolute address and no
address translation is possible.

Segment constant is larger than 16-bits in 'file', line 'nnn'
The physical address assigned to a segment or class cannot be
represented as a 16-bit unsigned integer and has been truncated.
Segment fixups should have values between 0x0000 and 0xFFFF.

Address 'addr' is large in 'file', line 'nnn'
The specified address in the configuration file directive is too large to
be represented as a 20-bit unsigned integer and has been truncated.

Output data truncated in 'file', line 'nnn'
The output data used in the INITCODE I/O port output argument is
larger than 0xFFFF and has been truncated.

Linker output files have different creation times
The file dates and times for the linker output are different. This
warning may indicate that the relocatable load module (.ROM) and the
corresponding map file (.MAP) were not produced at the same time.
This warning can also occur when a post-processing utility is used to
process the relocatable load module before running Paradigm
LOCATE.

Segment 'seg' lacks a class name
The segment seg has been declared without a class name. This
segment can only have a physical address assigned using the
SEGMENT directive.

Multiple address assignments made to class 'name'
The class name appears in two or more CLASS or ORDER directives.
Paradigm LOCATE only recognizes the first address assignment made
to a class.

W1002

W1003

W1004

W1005

W1006

W1007

W1008

Appendix A, Warning diagnostics 141

Multiple address assignments made to segment 'seg'
The identified segment appears in two or more SEGMENT directives.
Paradigm LOCATE only recognizes the first address assignment made
to a segment.

'class' in multiple DUP directives in 'file', line 'nnn'
Paradigm LOCATE has found a class named in multiple DUP
directives, perhaps indicating a configuration file problem.

'class' in multiple COMPRESS directives in 'file', line 'nnn'
The named class has turned up in multiple COMPRESS directives,
where only the first directive is effective.

Alias between segments 'seg/class' and 'seg/class'
Two or more segments in different classes share a common segment
fixup and the configuration file directives have assigned unique
physical addresses. This makes the segment translation process for
these segments ambiguous and it is possible for a fixup to be
incorrectly computed. This warning is usually the result of a zero
length segment ending a class.

Overlap between segments 'seg/class' and 'seg/class'
The memory address spaces for the two named segments intersect,
causing one segment to overlap the other. This warning is most likely
due to a segment growing into another segment or an error in the
configuration file address assignments.

Segment 'seg/class' exceeds the 1MB address space
The length of the segment seg in class 'class' extends it beyond the
end of the 1MB address space, preventing all or part of the segment
from being addressed.

Reserved region violation by segment 'seg/class'
All or part of the specified segment is located in a region of the
memory address space that has been marked as reserved using the
MAP directive.

W1009

W1010

W1011

W1012
In the event of an alias,

Paradigm LOCATE will use
the address of the first non-

zero length segment.

W1013

W1014

W1015

Paradigm LOCATE Reference Manual142

Overlap between regions at 'addr' and 'addr'
Two regions defined in configuration file MAP directives share a
common portion of the memory address space yet have different
memory access attributes.

Segment 'seg/class' is mapped to multiple address spaces
The segment ‘seg’ in class 'class' spans two separate regions of the
memory address space having different memory access attributes.

Intel OMF86 does not support register variables
Intel OMF86 debug information does not support the use of register
variables and the debug information was lost. If you are using a
debugger or in-circuit emulator and wish to see the variables assigned
to registers as part of the debug record, you must disable the use of
register variables by your compiler or assembler.

Intel OMF86 does not support object languages
Intel OMF86 does not support languages like C++ or Object Pascal
and object-related debugging information may have been lost.

Intel OMF86 does not support register parameters
Intel OMF86 does not support parameters to functions and procedures
to be passed in registers and the debug information was lost.

Intel OMF86 does not support based pointers
Intel OMF86 debug information does not support the use of based
pointers and the debug information was lost.

Intel OMF86 does not support inline functions
Intel OMF86 does not support inline functions and the debug
information was lost.

Unsigned 32-bit value truncated to 24-bits
Intel OMF86 does not have support for 32-bit unsigned integers and
the corresponding debug information was truncated to 24-bits.

Ambiguous structure detected - type information lost
Paradigm LOCATE is unable to determine the size of a structure and
the debug information for the structure has been lost. This warning is

W1016

W1017

W1018
Many compilers can

disable the use of register
variables.

W1019

W1020
Pass parameters on the

stack when using Intel
OMF86 files.

W1021

W1022
Disable inline functions

while debugging.

W1023

W1024

Appendix A, Warning diagnostics 143

caused by insufficient debugging information being available, often
when unnamed structure members are used.

Ambiguous type reference in function 'name'
Due to a lack of debug information output by the compiler, the
parameter names and types for the function name have been lost.
There isn't anything you can do but disable this warning should it
occur.

Type index too large ('index') - type info lost
A type index greater than 07FFFH has been detected in the output and
has been eliminated. This warning is most likely due to an error in the
debugging information or more type records than are supported by
Intel OMF86.

Illegal type index detected for 'symbol'
The named symbol has a type index larger than the maximum defined
for the module and has been eliminated from the debug information.
This warning is caused by an error in the debug information.

Too many line number records in module 'name'
The number of line number records in the module exceed the
capabilities of Paradigm LOCATE and have been lost. To correct this
problem, split the offending source module into two or more parts and
rebuild the application.

No 'type' output was written to 'file'
This warning diagnostic occurs when an EPROM output file was
requested but no data was found in the region defined by the base
address and size of the EPROM. This warning is most likely due to
the failure to include the segments in the address space of the EPROM
image in an OUTPUT directive or the failure to define a suitable offset
and size for extracting the EPROM image.

Requested 'type' output exceeds 1MB address space
You are creating a file that exceeds the 1MB address space boundary.
Adjust the SIZE, OFFSET, and/or SPLIT parameters to stay within
the 1MB address space.

W1025

W1026

W1027

W1028

W1030
You probably need to add

OFFSET=0x????? to your
HEXFILE directive.

W1031

Paradigm LOCATE Reference Manual144

Segment 'seg/class' is output to a memtype region
Paradigm LOCATE expects that the segments identified in an
OUTPUT directive are destined for read-only memory yet the
segment seg in class 'class' is assigned to a region mapped as
memtype. While this condition is inappropriate for ROM-based
execution (the segment won't be available if not in EPROM), it is
permitted for downloading a segment to RAM and the warning can be
ignored.

Class 'class' not named in an OUTPUT directive
The named class is in a region of the memory address space defined
with the read-only attribute but the class was not named in a
configuration file OUTPUT directive. This warning may indicate a
potential problem since the class would not be in an EPROM if the
class is not part of an OUTPUT directive.

All segments have been removed from class 'class'
All of the segments in the named class have been assigned addresses
using the SEGMENT directive. Including the class in an ORDER
directive has no effect on the address assignments and can be
eliminated.

Debug information nesting error, fixup applied
Paradigm LOCATE has detected a scoping error in the input debug
information and has attempted to fix the error by supplying the missing
scopes. This warning is usually accompanied by a warning from the
compiler that debug information was lost due to the complexity of the
input source file. Fix the problem in the source module to get rid of
this warning.

Lack of debug information prevents structure padding
This warning occurs when the debug information is insufficient or
does not accurately indicate the size of a structure member. You can
use the -d2 option to identify which module is responsible for the
faulty debug information.

W1032

W1033

W1034

W1035

W1036

Appendix A, Warning diagnostics 145

Ambiguous debug information, translation not possible
The input debug information is incomplete and Paradigm LOCATE is
unable to completely translate it.

Can't translate register variable using two registers
The input debug information contains register variable pairs not
supported by Paradigm DEBUG and the debug information is lost.

Segment 'seg/class' has been truncated in file 'file'
This warning is output by the evaluation version of Paradigm
LOCATE when a segment exceeds the internally set limits. Because
the segment has been arbitrarily truncated, the application may no
longer work correctly although the debugging information attached is
still intact.

TRUNCATE option ignored in 'file', line 'nnn'
The TRUNCATE option can only be used with binary files.

'option' option in 'file', line 'nnn' is obsolete
The named option is no longer supported by Paradigm LOCATE and
has been replaced with improved capabilities.

Listing file can't process case insensitive links
Paradigm LOCATE requires that case-insensitive symbols be used in
order to demangle C++ names in the listing file.

'option' option in 'file', line 'nnn' is not supported
The named option is not supported by this version of Paradigm
LOCATE.

Bad CodeView debug information, fixup applied - 'nnn'
The CodeView debugging information on the input load module (the
.ROM or .EXE file created by the linker) was found to be corrupt.
Paradigm LOCATE has done its best to work around the problem but
some debugging information may be lost.

W1037
Assembly language

modules with absolute
segments are usually the

culprit.

W1038

W1039

W1040

W1041

W1042

W1043

W1044

Paradigm LOCATE Reference Manual146

Bad Borland debug information, fixup applied - 'nnn'
The Borland debugging information on the input load module (the
.ROM or .EXE file created by the linker) was found to be corrupt.
Paradigm LOCATE has done its best to work around the problem but
some debugging information may be lost.

'type' checksum skipped for 'segment'/'class'
The named segment is not declared in an OUTPUT directive yet
appears in a checksum calculation. Paradigm LOCATE will only
calculate checksums on segments identified in OUTPUT directives.

Unable to fixup virtual segment 'seg' at 'seg:off'
The specified segment fixup in the relocation table could not be
translated. This error usually indicates the load module and segment
map were not created on the same linker run, or the input files are
corrupt.

Mismatch in load module size and segment map size
The size of the load module and the segment map don't agree in size.
This may or may not be a problem but you can get rid of this warning
by completely defining all segments in the load module by avoiding the
use of DUP 'nnn' (?) constructs in your code.

C++ namespaces present - Paradigm DEBUG 6.0 or later
recommended
The debug information contains namespace information but the output
is for an earlier version of Paradigm DEBUG that lacks namespace
support.

Preprocessor warnings

The following warning diagnostics are produced by configuration file
preprocessor during the parsing of the configuration file.

Macro 'macro' needs argument in 'file', line 'nnn'
An argument was expected with the macro.

W1045

W1046

W1047

W1048

W1049

Message
explanations

W2000

Appendix A, Warning diagnostics 147

Wrong number of arguments 'args' in 'file', line 'nnn'
The wrong number of macro arguments was detected during macro
expansion.

Expected formal parameter in 'file', line 'nnn'
A formal parameter was expected by Paradigm LOCATE.

Undefined symbol 'symbol' in expression in 'file', line 'nnn'
A symbol that has not been defined in a configuration or on the
command line was used in an expression.

W2001

W2002

W2003

Paradigm LOCATE Reference Manual148

Appendix B, Error diagnostics 149

A P P E N D I X

B

Error diagnostics

The errors listed in this appendix indicate the existence of a serious
problem that prevents Paradigm LOCATE from producing useful
output. Each of the error messages are listed in numerical order for
easy lookup.

Paradigm LOCATE errors

The following error diagnostics are produced by Paradigm LOCATE
while the processing the input files, command line arguments, or
configuration file.

Internal error 'id' - contact Paradigm Systems
A serious internal error has been detected by Paradigm LOCATE.
Please contact Paradigm Systems with the internal error ID for
assistance in resolving the error.

Error opening 'file' - 'err_info'
Paradigm LOCATE was unable to open the specified file for the
reason given in err_info.

Message
explanations

E1000

E1001

Paradigm LOCATE Reference Manual150

Error reading 'file' - 'err_info'
Paradigm LOCATE was unable to satisfy a read of the named file for
the displayed reason. This error usually indicates an incomplete load
module or some other serious error.

Error writing 'file' - 'err_info'
Paradigm LOCATE was unable to complete a write to file for the
reason err_info. The most likely cause of this error is a device with
no space - a full disk.

Insufficient memory available for Paradigm LOCATE
The dynamic memory requirements needed by Paradigm LOCATE
are unavailable to complete the processing. Attempt to free up some
memory and retry the operation or reduce the amount of debug
information in the load module if this error is encountered.

Unable to find configuration file 'file'
The Paradigm LOCATE configuration file 'file' could not be found.
Check that the configuration file exists in the directory with the
relocatable load module or in the directory specified by the -c
command line option. If the -c command line option is not used,
Paradigm LOCATE assumes that the configuration file has the same
name as the relocatable load module with a .CFG extension and that it
is located in the same directory as the relocatable load module (.ROM
file), for example, locate -cdemo.cfg demo.rom.

Paradigm LOCATE input/output filenames must be unique
To avoid confusion and preserve all files, Paradigm LOCATE does
not permit the input and output filenames to be the same. This error
will most likely occur when the output file extension is .EXE and the
input file also has the .EXE file extension. The workaround is to have
the linker name the output file .ROM (relocatable load module) or
some other extension of your choosing.

Unable to fixup virtual segment 'seg'
The specified segment fixup in the debug information could not be
converted to an absolute segment address.

E1002

E1003

E1004

E1005

E1006

E1008
This is usually caused by

absolute segments.

Appendix B, Error diagnostics 151

Unable to fixup program entry point - 'seg:off'
The program entry point failed segment translation. Since the entry
point must be in a defined segment, this error is likely to be
accompanied by a more serious error. Often this error is caused by
trying to process an input file that was packed by the Microsoft linker.

Unable to fixup initial stack - 'seg:off'
The program stack failed segment translation. Since the stack
initialization is picked up from the segment with the stack attribute,
this error is likely due to the lack of a stack segment in the application.
Often this error is caused by trying to process an input file that was
packed by the Microsoft linker.

New executable file 'file' is not supported
Paradigm LOCATE does not support new style (Microsoft Windows
or OS/2) executable files. Check your linker options and select the
original DOS .EXE file format.

Corrupted relocatable load module in file 'file'
Paradigm LOCATE has determined the header on the load module is
corrupt or the file is not in the EXE format. Check your Paradigm
LOCATE command line options. Be sure that you pass the .ROM or
.EXE as an input file, for example, locate demo.rom
-cdemo.cfg.

Input file 'file' is already an AXE file
The named file is already in AXE format, most likely because the file
has been processed by Paradigm LOCATE.

Multiple segment fixup records detected in 'file'
Only one segment fixup for a single location is allowed. Should this
error occur, contact Paradigm Systems for assistance.

Size must be between 1 and 1024 in 'file', line 'nnn'
The EPROM size specified in the HEXFILE SIZE option must be an
integer between 1 and 1024. Note that the size value is in KB, for
example, size=8 means 8096 bytes.

E1009

E1010

E1011

E1012

E1013

E1014

E1015

Paradigm LOCATE Reference Manual152

Fill argument must be between 0 and 255 in 'file', line 'nnn'
The EPROM fill character specified in the HEXFILE FILL option
must be in the range 0x00 to 0xFF.

Offset must be in 1MB address space in 'file', line 'nnn'
The EPROM offset specified in the HEXFILE OFFSET option must
be in the range 0x00000 to 0xFFFFF.

Split argument must be 1, 2 or 4 in 'file', line 'nnn'
The EPROM split specified in the HEXFILE SPLIT option must be
either 1 for no split, 2 for a pair of EPROMs or 4 if a 32-bit wide split
is required.

Unable to split Intel extended hex in 'file', line 'nnn'
Paradigm LOCATE does not split Intel extended hex files. If your
design requires a set of EPROMs, the Intel hex, binary or Tektronix
hex output formats must be used.

Length must be between 8 and 64 bytes in 'file', line 'nnn'
The HEXFILE LENGTH option accepts a hex file record length of 8
to 64 bytes in length.

Unable to find segment map in 'file'
Paradigm LOCATE is unable to find the segment map in the linker
map file. The segment map is needed by Paradigm LOCATE to find
and extract the individual segments from the relocatable load module.

Syntax error at or near 'this' in 'file', line 'nnn'
The syntax of the specified configuration file directive is in error and
must be corrected. Note that the line number used to identify the
error may be after the point of the error if the line has been continued
one or more times.

Unknown class 'class' in 'file', line 'nnn'
Paradigm LOCATE is unable to find the class named class in the list
of classes. Make sure that the class name is spelled exactly as it
appears in the linker map (.MAP) since Paradigm LOCATE uses case-
sensitive class names.

E1016

E1017

E1018

E1019

E1020

E1021

E1022

E1023

Appendix B, Error diagnostics 153

Unknown segment 'seg' in 'file', line 'nnn'
Paradigm LOCATE is unable to find the segment named seg in the list
of segments. Make sure that the segment name is spelled exactly as it
appears in the linker map (.MAP) since Paradigm LOCATE uses case-
sensitive segment names.

Missing or unsupported CPU type in 'file', line 'nnn'
The target microprocessor field in the CPUTYPE directive is either
unsupported, missing or multiply defined.

CPU does not support the initialization in 'file', line 'nnn'
The target microprocessor specified in the CPUTYPE directive cannot
perform the identified peripheral register initialization. Either change
the target microprocessor defined in the CPUTYPE directive or use
the generic port I/O options of the INITCODE directive.

I/O port address too large in 'file', line 'nnn'
The I/O port address must be in the range of 0x0000 to 0xFFFF.

One or more classes required in 'file', line 'nnn'
The specified directive requires at least one class to be named in the
list of classes.

Two or more classes required in 'file', line 'nnn'
The specified directive requires two or more classes to be named in
the list of classes.

Illegal warning control option in 'file', line 'nnn'
One or more of the warnings specified in the WARNINGS directive
do not correspond to a valid warning ID.

MAP directive address range error in 'file', line 'nnn'
A valid region requires that the first address in a MAP directive be less
than or equal to the second address.

Class 'class' must be DUPLICATEd before compression
You are attempting to compress a class that has not been duplicated or
does not have a zero-length segment as the first segment in the class.

E1024

E1025

E1026

E1027

E1028

E1029

E1030

E1031

E1032
It is not possible for a class
to decompress on to itself.

Paradigm LOCATE Reference Manual154

Compressed class 'class' too large during pass 2
Paradigm LOCATE runs a two pass compression algorithm, the first
pass to estimate the size of the compressed class, which is needed to
apply segment fixups. A second pass is then performed, after segment
fixups have been applied, to compress the class. On pass 2, the class
compressed less than expected, generating this error.

Unknown or illegal command line option 'option'
The specified command line option is incorrect and requires fixing
before Paradigm LOCATE will continue.

SPLIT option incompatible with Intel extended hex
The command line option to split the EPROM files is incompatible
with Intel extended hex output. If your design requires a set of
EPROMs, the Intel hex, binary or Tektronix hex output formats must
be used.

SIZE argument out of range in option 'option'
The EPROM size specified in the -Hd command line option must be a
power of 2. Valid EPROM sizes (in KB) are 1, 2, 4, 8, 16, 32, 64,
128, 256, 512 and 1024.

OFFSET argument out of range in option 'option'
The offset field in the -Ho command line option must be a 20-bit
unsigned integer.

FILL argument out of range in option 'option'
The EPROM fill character specified in the -Hf option must be in the
range 0x00 to 0xFF.

SPLIT argument out of range in option 'option'
The EPROM split specified in the -Hs command line option must be
either 1 for no split, 2 for a pair of EPROMs or 4 if a four EPROM
set is required.

LENGTH argument out of range in option 'option'
The hex record length specified in the -Hl command line option must
be between 8 and 64.

E1033

E1034

E1035

E1036

E1037

E1038

E1039

E1040

Appendix B, Error diagnostics 155

Diagnostics level out of range in option 'option'
The diagnostics output level specified in the -d command line option
must be either 0 for no diagnostics, 1 for filename diagnostics, 2 for
filename and module diagnostics, 3 for compression statistics, or 4 to
enable all diagnostics.

Illegal or out of range warning argument in option 'option'
The warning ID in the -w command line option is not a valid warning
ID.

Debug information version is not supported
The debug information supplied to Paradigm LOCATE is beyond the
currently supported version. This error is most likely due to a
compiler or linker update by the compiler vendor.

Packed CodeView debugging information not supported
The Microsoft CVPACK utility was used to pack the debugging
information, preventing Paradigm LOCATE from processing the file.

Unpacked CodeView debugging information not
supported
Paradigm LOCATE expects to see packed debug information, so
something prevented CVPACK from successfully completing.

Bad or missing CV2 debug information - 'code'
An error occurred translating the Microsoft CodeView debug
information. Indication of corrupted debug information found in the
.ROM or .EXE file that was created by the linker. Please contact
Paradigm Systems with the details of this error. Uploading your
application (.ROM, .MAP and configuration file) will help our
technical support group resolve this problem more quickly.

Bad or missing CV4 debug information - 'code'
An error occurred translating the Microsoft CodeView debug
information. Indication of corrupted debug information found in the
.ROM or .EXE file that was created by the linker. Please contact
Paradigm Systems with the details of this error. Uploading your
application (.ROM, .MAP and configuration file) will help our
technical support group resolve this problem more quickly.

E1041

E1042

E1043

E1044

E1045

CVPACK usually fails to
run when there is a linker

error.

E1046

E1047

Paradigm LOCATE Reference Manual156

Bad or missing Borland TD2 debug information - 'code'
An error occurred translating the Borland debug information.
Indication of corrupted debug information found in the .ROM or .EXE
file that was created by the linker. Please contact Paradigm Systems
with the details of this error. Uploading your application (.ROM,
.MAP and configuration file) will help our technical support group
resolve this problem more quickly.

Bad or missing Borland TD3 debug information - 'code'
An error occurred translating the Borland debug information.
Indication of corrupted debug information found in the .ROM or .EXE
file that was created by the linker. Please contact Paradigm Systems
with the details of this error. Uploading your application (.ROM,
.MAP and configuration file) will help our technical support group
resolve this problem more quickly.

Bad or missing Borland TD4 debug information - 'code'
An error occurred translating the Borland debug information.
Indication of corrupted debug information found in the .ROM or .EXE
file that was created by the linker. Please contact Paradigm Systems
with the details of this error. Uploading your application (.ROM,
.MAP and configuration file) will help our technical support group
resolve this problem more quickly.

'name' debug information exceeds translation limits
The named debug records exceeds the capacity of the output file
format. The only solution is to eliminate some modules with debug
information and re-run Paradigm LOCATE.

CHECKSUM directive address range error in 'file', line
'nnn'
A valid checksum region requires that the first address in a
CHECKSUM directive be less than or equal to the second address.

CHECKSUM FILL option out of range error in 'file', line
'nnn'
The fill character specified in the CHECKSUM directive must be in
the range 0x00 to 0xFF.

E1048

E1049

E1050

E1051

E1052

E1053

Appendix B, Error diagnostics 157

CHECKSUM type option not specified in 'file', line 'nnn'
The CHECKSUM record type is incorrectly specified. Please select
one of following CHECKSUM type options: ROMBIOS, CRC16, or
CRC32.

ADDRESS option out of range error in 'file', line 'nnn'
The ADDRESS option in the CHECKSUM directive is outside the
target system memory address space.

ADDRESS cannot be part of checksum in 'file', line 'nnn'
You can not specify an address to place the checksum that is inside
the range of the checksum calculation.

Include file size cannot be greater than 64KB in 'file', line
'nnn'
The binary include file size has exceeded the 64KB limit.

DUP must copy class 'class' to a unique class in 'file', line
'nnn'
You cannot duplicate a class to itself.

Preprocessor errors

The following error diagnostics are produced by configuration file
preprocessor during the parsing of the configuration file.

Internal error 'num' - contact Paradigm Systems
This is issued by all preprocessor internal errors. Please contact
Paradigm Systems should you encounter an internal error.

Conditional block nesting error in 'file'
Your configuration file has incorrectly nested #if/#else/#endif
directives.

E1054

E1055

E1056

E1057

E1058

Message
explanations

E2000

E2001

Paradigm LOCATE Reference Manual158

Conditional without an argument in 'file', line 'nnn'
You used a conditional directive but failed to provide an expression to
evaluate.

#include syntax error in 'file', line 'nnn'
#include requires the name of the include file enclosed in either
double quotes (") or left ("<") and right angle (">") brackets.

#else may not follow #else in 'file', line 'nnn'
An #else clause can only follow an #if or #elif directive.

#endif must be in an #if block in 'file', line 'nnn'
Paradigm LOCATE found an #endif with a corresponding #if
directive.

Unsupported #control definition in 'file', line 'nnn'
An unsupported preprocessor control was found. Valid controls are
#if, #else, #endif, #elif, #define, #undef, and #include.

Include file 'incfile' not found in 'file', line 'nnn'
The named include file could not be found. Check that the path
specifies the correct location of the file.

Too many nested 'token' statements in 'file', line 'nnn'
You broke the preprocessor with a configuration file beyond
comprehension. You are going to have to simplify the file before
continuing.

Macro expansion error in 'file', line 'nnn'
An error occurred when expanding a macro. Identify the macro in
error and correct the problem.

Redefining defining variable 'var' in 'file', line 'nnn'
Another #define for the same variable has been found. Use the
#undef directive before redefining the variable.

#define syntax error in 'file', line 'nnn'
You must specify a variable name for the macro you wish to define.

E2002

E2003

E2004

E2005

E2006

E2007

E2008

E2009

E2010

E2011

Appendix B, Error diagnostics 159

Illegal #undef argument in 'file', line 'nnn'
#undef requires that a macro name be supplied.

End of file in macro argument in 'file', line 'nnn'
An end of file condition was found while processing the macro
argument list. Check the macro and correct before continuing. This
error can also occur if the end of the file is reached while processing a
C comment.

Recursive macro definition 'macro' in 'file', line 'nnn'
Recursive macros are not permitted. Correct the error before
continuing.

Empty character constant in 'file', line 'nnn'
A character constant was expected but not found.

Unterminated string or character constant in 'file', line
'nnn'
An improperly terminated string literal or character constant was
found.

Can't use string in #if in 'file', line 'nnn'
String literals are not valid in conditional expressions.

Bad #if defined in 'file', line 'nnn'
An expression that could not be evaluated was found.

Assignment not allowed in #if in 'file', line 'nnn'
Use of the assignment operator is not permitted in conditional
expressions.

Error in multiline #if in 'file', line 'nnn'
The multiline #if directive needs work before it can be accepted by
Paradigm LOCATE.

Divide by zero error in 'file', line 'nnn'
The result of an expression evaluation resulted in division by zero.

E2012

E2013

E2014

E2015

E2016

E2017

E2018

E2019

E2020

E2021

Paradigm LOCATE Reference Manual160

#if stack overflow in 'file', line 'nnn'
Too many nested #if directives has been found, you will have to
simplify the configuration file.

Operator 'op' context fault in 'file', line 'nnn'
This is an inappropriate use of the named operator.

Expression error in 'file', line 'nnn'
Paradigm LOCATE was unable to evaluate the expression. Correct or
simplify before continuing.

#define syntax error in command line option 'opt'
A macro defined with the -D command line option is incorrectly
formed.

#error in 'file', line 'nnn': 'errmsg'
A #error directive in your configuration was processed.

Macro exceeds preprocessor limit in 'file', line 'nnn'
A macro definition may have been too long and needs to be simplified
and shortened.

E2022

E2023

E2024

E2025

E2026

E2027

Appendix C, Exit codes 161

A P P E N D I X

C

Exit codes

The exit code returned by Paradigm LOCATE can be used by MAKE
utilities or batch files to determine the success or failure of the
processing. The following table indicates the meaning assigned to each
error code.

Exit Code Meaning

0 No errors, possibly warnings
1 Error(s)
2 Serious error
3 Critical or fatal error

The severity of errors depends on the action which caused the error.
Regular errors are unexpected conditions detected with the conversion
of relocatable input file to an absolute output file, including the
conversion of type information. Some errors terminate processing
immediately while others continue until other exceptional conditions
have been checked.

Serious or critical errors are associated with the operating system of
I/O operations and cause Paradigm LOCATE to immediately finish,
clean up and exit.

Table C.1
LOCATE exit codes

Paradigm LOCATE Reference Manual162

Paradigm LOCATE has the -W option to generate a non-zero exit
code should any warnings be detected during processing. This option
should be used when an environment might not display any messages
and an indication of warning is required.

The WARNINGS
EXITCODE option can also
be used to set the exit code

for warning conditions.

Appendix E, AXE utility 163

A P P E N D I X

D

INITCODE port definitions

The Paradigm LOCATE INITCODE directive can be used to initialize
peripheral registers found in the Intel 80C186 and NEC V-Series
microprocessors. This capability is especially attractive since it
permits memory and peripheral chip selects, wait states, and DRAM
refresh devices to be initialized before the application startup code
takes control of the CPU, without the need to modify the startup code.
By avoiding the need to customize the startup code with complex
segmentation and initialization code, the user can focus on more
interesting applications.

Table D.1 uses the standard peripheral register names as defined by
each microprocessor vendor. The table is ordered by microprocessor,
as it is used in the CPUTYPE directive. If a specific microprocessor
does not appear in the following table, it does not support any port
initializations.

CPUTYPE Register Port address

I80186
I80188

UMCS
LMCS
PACS
MMCS
MPCS

FFA0H
FFA2H
FFA4H
FFA6H
FFA8H

Only peripheral devices
which impact memory

initialization are supported.

Table D.1
INITCODE port definitions

Paradigm LOCATE Reference Manual164

CPUTYPE Register Port address

I80C186
I80C186XL
I80C188
I80C188XL

UMCS
LMCS
PACS
MMCS
MPCS
MDRAM
CDRAM
EDRAM

FFA0H
FFA2H
FFA4H
FFA6H
FFA8H
FFE0H
FFE2H
FFE4H

I80C186EA
I80C188EA
I80L186EA
I80L188EA

UMCS
LMCS
PACS
MMCS
MPCS

RFBASE
RFTIME
RFCON

FFA0H
FFA2H
FFA4H
FFA6H
FFA8H

FFE0H
FFE2H
FFE4H

I80C186EB
I80C188EB
I80L186EB
I80L188EB

GCS?ST
GCS?SP
LCSST
LCSSP
UCSST
UCSSP

RFBASE
RFTIME
RFCON

FF80H-FF9EH
FF80H-FF9EH
FFA0H
FFA2H
FFA4H
FFA6H

FFB0H
FFB2H
FFB4H

I80C186EC
I80C188EC

GCS?ST
GCS?SP
LCSST
LCSSP
UCSST
UCSSP

FF80H-FF9EH
FF80H-FF9EH
FFA0H
FFA2H
FFA4H
FFA6H

Appendix E, AXE utility 165

CPUTYPE Register Port address

I80C186EC/188EC
continued

RFBASE
RFTIME
RFCON

MPICP0
MPICP1
SPICP0
SPICP1

FFB0H
FFB2H
FFB4H

FF00H
FF02H
FF04H
FF06H

AM186ED
AM186EM/188EM
AM186ER/188ER
AM186ES/188ES

UMCS
LMCS
PACS
MMCS
MPCS

IMCS

PDCON
PIOMODE0
PIODIR0
PIOMODE1
PIODIR1

MDRAM
CDRAM
EDRAM

SYSCON
AUXCON
WDTCON

FFA0H
FFA2H
FFA4H
FFA6H
FFA8H

FFA0H (ER only)

FFF0H (EM ER only)
FF70H
FF72H
FF76H
FF78H

FFE0H (EM ER ES only)
FFE2H
FFE4H

FFF0H (ES ED only)
FFF2H (ES ED only)
FFE6H (ES ED only)

Paradigm LOCATE Reference Manual166

CPUTYPE Register Port address

 AM186CC UMCS
LMCS
PACS
MMCS
MPCS

PIOMODE0

PIODIR0
PIOMODE1
PIODIR1
PIOMODE2
PIODIR2

CDRAM
EDRAM

WDTCON
SYSCON

FFA0H
FFA2H
FFA4H
FFA6H
FFA8H

FFC0H

FFC2H
FFCAH
FFCCH
FFD4H
FFD6H

FFAAH
FFACH

FFE0H
FFF0H

I80386EX CS?ADL
CS?ADH
CS?MSKL
CS?MSKH
UCSADL
UCSADH
UCSMSKL
UCSMSKH

RFSBAD
RFSCIR
RFSCON
RFSADD

ICW1M
ICW2M

F400H-F436H
F400H-F436H
F400H-F436H
F400H-F436H
F438H
F43AH
F43CH
F43EH

F4A0H
F4A2H
F4A4H
F4A6H

F020H
F021H

Appendix E, AXE utility 167

CPUTYPE Register Port address

I80386EX continued ICW1S
ICW2S

P1CFG
P2CFG
P3CFG
PINCFG

REMAPCFG

F0A0H
F0A1H

F820
F822H
F824H
F826H

0022H

D70208 V40
D70216 V50

RFC
WMB
WCY1
WCY2

FFF2H
FFF4H
FFF5H
FFF6H

D70208H V40H
D70216H V50H

RFC
SCTL
WMB
WCY1
WCY2
WCY3
EXMB
WSMB
WIOB

FFF2H
FFF7H
FFF4H
FFF5H
FFF6H
FFEAH
FFEDH
FFECH
FFEBH

D70320 V25
D70325 V25+
D70330 V35
D70335 V35+

IDB
RFM
WTC
PRC

PMC0
PMC1
PMC2

[IDB]00:0FFFH
[IDB]00:0FE1H
[IDB]00:0FE8H
[IDB]00:0FEBH

[IDB]00:0F02H
[IDB]00:0F0A
[IDB]00:0F12

Paradigm LOCATE Reference Manual168

CPUTYPE Register Port address

D70236 V53 RFC
WMB0
WMB1
WCY0
WCY1
WCY2
WCY3
WCY4
WAC
SBCR

FFF2H
FFEAH
FFF3H
FFECH
FFEBH
FFF4H
FFF5H
FFF6H
FFEDH
FFF1H

D70423 V55SC
D70433 V55PI

PRC
RFM
MBC
PWC0
PWC1

FFFEFH
FFFECH
FFFEAH
FFFE8H
FFFE9H

Appendix E, AXE utility 169

A P P E N D I X

E

AXE utility

The AXE utility is a program which displays various statistics about
AXE86 files created by Paradigm LOCATE. The fields displayed
from the input AXE file are
n program entry point
n AXE header size
n region list
n segment list

 The AXE utility first looks for a file extension of .AXE before trying
to open a file with the .EXE extension. The format of the AXE
command line is

 axe filename[.ext]

 The following figure contains sample output from the AXE utility,
together with a brief description of each section in the AXE file
header.

 1) AXE Version 1.00
 Entry Point: FFFF:0000
 AXE Header Size: 256 bytes

2) \LOCATE\DEMO\SIEVE.AXE contains 3 regions
 000000 03FFFF Read/Write
 040000 0F7FFF No access
 0F8000 0FFFFF Read Only

3) \LOCATE\DEMO\SIEVE.AXE contains 6 segments

 Figure E.1
AXE header information

Paradigm LOCATE Reference Manual170

 0 F800:0000 00133 O- 000100
 1 F813:0004 00010 O- 000280
 2 F815:0000 00004 O- 000300
 3 F816:0000 00010 O- 000380
 4 FFF0:0000 00013 O- 000400
 5 FFFF:0000 00005 O- 000480

 Load module size: 367 bytes

 Section 1 is the AXE header information, containing the version of
AXE file, the program entry point, and the size of the AXE segment
descriptor buffer.

 Section 2 is the region map, displaying the mapping instruction for the
target system memory from the Paradigm LOCATE MAP directives.
The first item is the starting address of the region, the second address
is the ending address of the region followed by the access type of the
region.

 The segment map in section 3 lists the segment index, the segment
base address and segment length, segment attributes, and the offset of
the segment within the AXE file. The first segment attribute indicates
whether the segment is read-write ('-') or if it is read-only ('O'). The
second attribute indicates whether the segment is present in the AXE
file ('-') or if the segment descriptor is provided as a reference ('R') but
the segment doesn't actually exist.

 The load module size is the
sum of the sizes of each
segment in the AXE file.

 Appendix F, Hex file formats 171

 A P P E N D I X

 F

 Hex file formats

 This appendix documents the Intel hex file formats used by Paradigm
LOCATE. This information is provided to those users that need to
read Intel hex or extended hex file formats created by the Paradigm
LOCATE HEXFILE configuration file directive.

 Intel extended hex
 Intel extended hex is a file format designed to represent binary data
within the 80186-family address space using the standard ASCII
character set. The hexadecimal representation of each binary byte is
encoded in a pair of ASCII characters in the range '0' - '9' and 'A' to
'F'.

 There are four different record types which make up the Intel
extended hex file format:
n Extended Address Record
n Start Address Record
n Data Record
n End of File Record

Each Intel extended hex record begins with a colon (':') character as
the record mark. The record mark field is then followed by a record

 Paradigm LOCATE Reference Manual 172

length field which specifies the number of bytes of information that
follow the record type field.

Each record ends with a checksum field that contains the ASCII
representation of the two's complement of the binary data from the
record length field. If the record is correct, the sum of all fields,
including the checksum field, will be zero.

The Extended Address record is used to define a segment base
address (SBA) for the following Data records, which supply the
offsets for each data record from this base address.

The segment base address is zero until it is defined in an Extended
Address record. Once defined, the segment base address will remain
in effect until a subsequent Extended Address record is encountered.

Mark
':'

Length
'02'

Offset
'0000'

Type
'02'

SBA
'XXXX'

Checksum
'XX'

Each Data record defines part of the memory address space of the
application. The absolute address of a Data record is determined by
the Offset field and the segment base address in the last Extended
Address record.

Mark
':'

Length
'XX'

Offset
'XXXX'

Type
'00'

Data
'XXXXXXXX'

Checksum
'XX'

The Length field is determined by the amount of data to be output and
the LENGTH option in the configuration file HEXFILE directive.

The Start Address record is used to specify the program entry point
for the application, as computed by Paradigm LOCATE.

Mark
':'

Length
'04'

Offset
'0000'

Type
'03'

CS
'XXXX'

IP
'XXXX'

Checksum
'XX'

Paradigm LOCATE will always set this record to the program entry
point, enabling Intel extended hex file loaders to automatically set
CS:IP to the first instruction of the application.

Extended Address
Record

Data Record

Start Address
Record

 Appendix F, Hex file formats 173

This record marks the end of the Intel extended hex file and is always
the last record output by Paradigm LOCATE.

Mark
':'

Length
'00'

Offset
'0000'

Type
'01'

Checksum
'FF'

Intel hex
This is the original Intel hex file format, dating back to the days of the
8080 microprocessor. Being the original hex file format for Intel
microprocessors having a 64KB address space, the Intel extended hex
file format added the Start Address and Extended Address record
types to expand the address space to the 1MB used in the 8086/88 and
subsequent 16-bit microprocessors.

Intel hex file is often used with 16-bit data paths since Intel extended
hex can't be represented in a split format because of the Extended
Address records. Still, Intel hex has its limitations since it can never
support more than 64KB of data per file.

Tektronix hex
Tektronix hex, also referred to as Tekhex, is also a file format
designed to represent of top 64KB of binary data using the standard
ASCII character set. The hexadecimal representation of each binary
byte is encoded in a pair of ASCII characters in the range '0' - '9' and
'A' to 'F'.

Each Tekhex record begins with a slash ('/') character as the record
mark. The record mark field is then followed by the load address and
a record length fields which specify the offset and count of the data
that follow.

Both the header and data fields have a checksum field that contains
sum, modulo 256, of the data in the preceding records.

Each Data record defines part of the memory address space of the
application. The absolute address of a Data record is determined by
the Offset field.

End of File Record

Data Record

 Paradigm LOCATE Reference Manual 174

Mark
'/'

Offset
'XXXX'

Length
'XX'

Chk1
'XX'

Data
'XXXXXXXX'

Chk2
'XX'

The Length field is determined by the amount of data to be output and
the LENGTH option in the configuration file HEXFILE directive.

Index 175

I N D E X

#
??CPUINIT 68
??LOCATE 26, 67, 68, 83
??STACKINIT 67
80186/188

INITCODE support 163
80186CC

INITCODE support 166
80186ED

INITCODE support 165
80186EM/188EM

INITCODE support 165
80186ER/188ER

INITCODE support 165
80186ES/188ES

INITCODE support 165
80386EX

INITCODE support 166
80C186/188

INITCODE support 164
80C186EA/188EA

INITCODE support 164
80C186EB/188EB

INITCODE support 164
80C186EC/188EC

INITCODE support 164
80C186-family support 55

80C186XL/188XL
INITCODE support 164

A
.ABS file extension 93
.AXE file extension 93
ABSFILE

AXE86 option 49
configuration file directive 49
FILENAME option 49
FORMAT option 49
NONE option 49
OMF86 option 49

absolute files
AXE86 49, 92
AXE86 file format 49
file naming 49, 92
none 49, 92
OMF86 49, 92

absolute segments 35
-Ad 92
ADDONREG.EXE utility 115
ADDRESS

CHECKSUM directive 51
aliases

segment 32
ALL

Paradigm LOCATE Reference Manual176

DEBUG directive 57
DISPLAY directive 61
WARNINGS directive 77

-An 92
-Aomf 92
Apd10 92
Apd20 92
Apd30 92
Apd31 92
Apd40 92
Apd50 92
Apd60 92
AXE86

ABSFILE directive 49

B
-b 82
BCPP50.ASM 108
BCPP50.INC 110
BCPPDMM.C 113
BCPPFLT.ASM 113
BCPPHEAP.ASM 113
BCPPHEAP.INC 113
BCPPRTL.ASM 112
BCPPSIO.C 113
BIGTYPES

DEBUG directive 58
BINARY

HEXFILE directive 63
bootstrap vector 67
Borland C++

startup code 108
burning EPROMs 28

C
-c 87
.CFG file extension 93
??CPUINIT 68

CHECKSTACK
Borland C++ macro 118
Microsoft C/C++ macro 134

CHECKSUM
configuration file directive 51

checksums
CRC-16 96
CRC-32 98
ROMBIOS 95

CHECKSUMS
LISTFILE directive 70

checksums, in listing file 70
CINIT.ASM

Microsoft 126
CLASS

configuration file directive 53
CLASSES

DEBUG directive 58
CLASSTEMPLATES

DEBUG directive 59
CODESTRING

Borland C++ macro 117
COLUMNS

LISTFILE directive 71
command line options

priority 80
summary 80

comments, configuration file 45
COMPCFG

Borland C++ macro 117
COMPDIR

Borland C++ macro 116
Microsoft C/C++ macro 133

COMPRESS
configuration file directive 54

compressing data 101
compressing initialized data 54
COMPRESSION

DISPLAY directive 61

Index 177

compression algorithm 104
compression requirements 102
configuration file 23

comments 45
diagnostics 45
file naming 87
format 39
line continuation 41
preprocessor 42
priority 41

configuration file directives
ABSFILE 49
CHECKSUM 51
CLASS 53
COMPRESS 54
CPUTYPE 55
DEBUG 57
DISPLAY 61
DUPLICATE 62
HEXFILE 63
INTICODE 67
LISTFILE 70
MAP 73
ORDER 74
OUTPUT 75
SEGMENT 76
WARNINGS 77

CONSOLE.C
Borland 113
Microsoft 129

constant array 103
constant data

Microsoft C/C++ 103
CPU

Borland C++ macro 117
Microsoft C/C++ macro 134

CPUTYPE
configuration file directive 55, 163

CRC16

CHECKSUM directive 51
CRC-16 checksum 96
CRC32

CHECKSUM directive 52
CRC-32 checksum 98
CRCs, in listing files 70

D
#define directive 42
-D 82

command line option 43
-d0 83
-d1 83
-d2 83
-d3 84
-d4 84
DEBUG

ALL option 57
BIGTYPES option 58
Borland C++ macro 117
CLASSES option 58
CLASSTEMPLATES option 59
configuration file directive 57
DESTRUCTORS option 58
ENUMS option 58
EXTENSIONS option 58
IC86 option 57
LINES option 57
MEMBERFUNCTION option 58
Microsoft C/C++ macro 134
NOBIGTYPES option 58
NOCLASSES option 58
NOCLASSTEMPLATES option 59
NODESTRUCTORS option 58
NOENUMS option 58
NOEXTENSIONS option 58
NOIC86 option 57
NOLINES option 57

Paradigm LOCATE Reference Manual178

NOMEMBERFUNCTION option 58
NONE option 58
NOOPERATORS option 58
NOPARAMETERS option 59
NOPUBLICS option 57
NOSPACES option 59
NOSPECIALS option 59
NOSYMBOLS option 57
NOTYPES option 57
OPERATORS option 58
PARAMETERS option 59
PUBLICS option 57
SPACES option 59
SPECIALS option 59
SYMBOLS option 57
TYPES option 57

debug control 57
line numbers 86
local symbols 87
public symbols 86
types 87

debug control, OMF86 85
debugging 29
defined operator 44
DESTRUCTORS

DEBUG directive 58
diagnostics

all 61
compression 61
errors 149
file names 61, 83
log file 84
module names 61, 83, 84
none 61, 83
warnings 139

directives
ABSFILE 49
CHECKSUM 51
CLASS 53

COMPRESS 54
CPUTYPE 55
DEBUG 57
DISPLAY 61
DUPLICATE 62
HEXFILE 63
INTICODE 67
LISTFILE 70
MAP 73
ORDER 74
OUTPUT 75
SEGMENT 76
WARNINGS 77

DISPLAY
ALL option 61
COMPRESSION option 61
configuration file directive 61
FILES option 61
MODULES option 61
NONE option 61

DOSEMU.C
Borland 112
Microsoft 128

DUPLICATE
configuration file directive 62

duplicating classes 37
DUPSTRING

Borland C++ macro 118

E
#elif directive 43
#else directive 43
#endif directive 43
#error directive 45
.EXE files 22, 32
-Ee 84
-En 84
entry point 109, 125

Index 179

ENUMS
DEBUG directive 58

EPROM
binary format 63, 88
file naming 65, 89
fills 64, 88
hex record length 89
Intel extended hex format 63, 88
Intel hex format 63, 88
length 64
offsets 63, 89
sizing 64, 88
splitting 64, 89
Tektronix hex format 63, 89

error messages 149
examples

COMPRESS (Borland) 120
COMPRESS (Microsoft) 137
CONST (Borland) 122
CONST (Microsoft) 138
CPPDEMO (Borland) 120
CPPDEMO (Microsoft) 137
CRCDEMO (Borland) 121
CRCDEMO (Microsoft) 137
DEMO (Borland) 119
DEMO (Microsoft) 136
DMMDEMO (Borland) 119
DMMDEMO (Microsoft) 136
EHDEMO (Borland) 121
FPDEMO (Borland) 120
FPDEMO (Microsoft) 136
NURAM (Borland) 122
NURAM (Microsoft) 137
STDIO (Borland) 120
STDIO (Microsoft) 136

EXCEPTIONS
Borland C++ macro 118

exit codes 84, 161
EXITCODE

WARNINGS directive 77
EXTENSIONS

DEBUG directive 58
extensions, file 92

F
far heap 113, 129, 136
FAR_BSS 126
FAR_DATA 110, 126
FARDATA, See also macros

Borland C++ macro 118
Microsoft C/C++ macro 134

FARDATA.ASM
Borland 110

FARDATA.CFG
Borland 111
Microsoft 127

FARHEAP 120
FHEAPEND 136
file extensions 92

.ABS 93

.AXE 93

.CFG 93

.LOC 93

.MAP 93
AXE86 file 93
configuration file 93
listing files 93
map file 93
OMF86 files 93

FILENAME
ABSFILE directive 49
HEXFILE directive 65
LISTFILE directive 71

filenames
in configuration file directives 48

files
.EXE 22, 32

Paradigm LOCATE Reference Manual180

.MAP 32

.ROM 32
_MATHERR.C 114
ADDONREG.EXE 115
AXE.EXE 169
BCPP50.ASM 108
BCPP50.INC 110
BCPPDMM.C 113, 120, 121
BCPPFLT.ASM 113
BCPPHEAP.ASM 113
BCPPHEAP.INC 113
BCPPRTL.ASM 112
BCPPSIO.C 113
CINIT.ASM 134

Microsoft 126
CONSOLE.C

Borland 113
Microsoft 129

DOSEMU.C
Borland 112
Microsoft 128

FARDATA.ASM
Borland 110

FARDATA.CFG
Borland 111
Microsoft 127

FPERR.C 114
LOCATE.OPT 40, 41, 80, 92
MAKELIBS.BAT 18
MSC80.ASM 124
MSC80.INC 126
MSCDMM.C 129, 136
MSCFLT.ASM 129
MSCHEAP.ASM 129
MSCHEAP.INC 129
MSCRTL.ASM 128
MSCSIO.C 129
PARADIGM.DLL 115
PARADIGM.MKF

Borland 116
Micrososft 133

SETUP.EXE 16
SIEVE.C 22
SIEVE.CFG 22
SIEVE.MAP 22
SIEVE.ROM 22
STARTUP.INC

Borland 111
Microsoft 126

TURBOC.CFG 116, 117
TYPEDEFS.H

Borland 112
Microsoft 128

FILES
DISPLAY directive 61

FILL
CHECKSUM directive 51
HEXFILE directive 64

FLOAT
Borland C++ macro 118
Microsoft C/C++ macro 134

FORMAT
ABSFILE directive 49

FPERR.C 114

G
groups 36

H
hardware requirements 9
-Hb 88
-Hd 88
-He 88
HEAP

far heap 120, 136
near heap 128, 129

HEAPEND (Borland) 120, 121

Index 181

HEAPSIZE
Borland C++ macro 119
Microsoft C/C++ macro 135

HEAPSIZE (Borland) 113
HEAPSIZE (Microsoft) 129
hex file formats

Intel extended hex 171
Intel hex 173
Tektronix hex 173

HEXFILE
BINARY option 63
configuration file directive 63
FILENAME option 65
FILL option 64
INTEL386 option 63
INTEL80 option 63
INTEL86 option 63
LENGTH option 64
OFFSET option 63
SIZE option 64
SPLIT option 64
TEKHEX option 63
TRUNCATE option 65

-Hf 88
-Hi 88
-Hl 89
-Hn 89
-Ho 89
-Hs 89
-Ht 89

I
#if directive 43
#ifdef directive 44
#ifndef directive 44
#include directive 43
IC86

DEBUG directive 57

IDE (Borland C++) 115
INITCODE

80186CC registers 166
80186ED registers 165
80186EM/188EM registers 165
80186ER/188ER registers 165
80186ES/188ES registers 165
80386EX registers 166
80C186/188 registers 164
80C186EA/188EA registers 164
80C186EB/188EB registers 164
80C186EC/188EC registers 164
80C186XL/188XL registers 164
NORESET option 67
NOSTACK option 67
OUTBYTE option 68
OUTWORD option 68
RESET option 67
STACK option 67
V25/V35 registers 167
V25+/V35+ registers 167
V40/V50 registers 167
V40H/V50H registers 167
V53 registers 168
V55SC/V55PI registers 168

INITCODE directive 163
INITCODE support

80186/188 registers 163
initialization

peripheral registers 68
reset vector 67, 82
stack 67, 83

installation 16
directories 16
multiple compilers 17
run-time libraries 17
SETUP.EXE 16

Intel iC86 compatibility 57
INTEL386

Paradigm LOCATE Reference Manual182

HEXFILE directive 63
INTEL80

HEXFILE directive 63
INTEL86

HEXFILE directive 63
INTICODE

configuration file directive 67
introduction 7
IOSTREAMS

Borland C++ macro 118
Microsoft C/C++ macro 135

L
.LOC file extension 93
??LOCATE 26, 67, 68, 83
-Lc 90
-Ld 90
LENGTH

HEXFILE directive 64
line numbers, in listing file 71
LINES

DEBUG directive 57
LISTFILE directive 71

linker map 32
LISTFILE

CHECKSUMS option 70
COLUMNS option 71
configuration file directive 70
FILENAME option 71
LINES option 71
PUBLICS option 71
REGIONS option 70
SEGMENTS option 70
SYMBOLS option 71
WIDTH option 71

listing files 89
checksums 70, 90
file names 71, 90

line numbers 71, 90
local symbols 71, 91
public columns 90
public symbols 71
public width 91
publics 91
regions 70, 91
segments 70, 91

-Ll 90
-Ln 90
load module 32
local symbols, in listing file 71
LOCATE.OPT 41, 80
log file

enable 84
file naming 84

-Lp 91
-Lr 91
-Ls 91
-Lw 91
-Lx 91

M
.MAP file extension 93
.MAP files 32
_MATHERR.C 114
macros

CHECKSTACK
Borland makefile macro 118
Microsoft makefile macro 134

CODESTRING
Borland makefile macro 117

command line definition 82
COMPCFG

Borland makefile macro 117
COMPDIR

Borland makefile macro 116
Microsoft makefile macro 133

Index 183

CPU
Borland makefile macro 117
Microsoft makefile macro 134

DEBUG
Borland makefile macro 117
Microsoft makefile macro 134

defining 42
DUPSTRING

Borland makefile macro 118
EXCEPTIONS

Borland makefile macro 118
FARDATA

Borland makefile macro 118
Microsoft makefile macro 134

FLOAT
Borland makefile macro 118
Microsoft makefile macro 134

HEAPEND 120, 121
HEAPSIZE

Borland makefile macro 119
Microsoft makefile macro 135

IOSTREAMS
Borland makefile macro 118
Microsoft makefile macro 135

MKF
Borland makefile macro 117
Microsoft makefile macro 133

MODEL
Borland makefile macro 117
Microsoft makefile macro 133

OPTIMIZE
Borland makefile macro 117
Microsoft makefile macro 134

STACK
Borland makefile macro 118
Microsoft makefile macro 135

WARNINGS
Borland makefile macro 117
Microsoft makefile macro 134

makefiles (Borland C++) 116
makefiles (Microsoft C/C++) 133
MAP

configuration file directive 73
MEMBERFUNCTION

DEBUG directive 58
Microsoft C/C++

startup code 124
MKF

Borland C++ macro 117
Microsoft C/C++ macro 133

MODEL
Borland C++ macro 117
Microsoft C/C++ macro 133

MODULES
DISPLAY directive 61

MSC80.ASM 124
MSC80.INC 126
MSCDMM.C 129
MSCFLT.ASM 129
MSCHEAP.ASM 129
MSCHEAP.INC 129
MSCRTL.ASM 128, 129
MSCSIO.C 129

N
near heap 113, 128, 129
NOBIGTYPES

DEBUG directive 58
NOCLASSES

DEBUG directive 58
NOCLASSTEMPLATES

DEBUG directive 59
NODESTRUCTORS

DEBUG directive 58
NOENUMS

DEBUG directive 58
NOEXTENSIONS

Paradigm LOCATE Reference Manual184

DEBUG directive 58
NOIC86

DEBUG directive 57
NOLINES

DEBUG directive 57
NOMEMBERFUNCTION

DEBUG directive 58
NONE

ABSFILE directive 49
DEBUG directive 58
DISPLAY directive 61
WARNINGS directive 77

NOOPERATORS
DEBUG directive 58

NOPARAMETERS
DEBUG directive 59

NOPUBLICS
DEBUG directive 57

NORESET
INITCODE directive 67

NOSPACES
DEBUG directive 59

NOSPECIALS
DEBUG directive 59

NOSTACK
INITCODE directive 67

NOSYMBOLS
DEBUG directive 57

NOTYPES
DEBUG directive 57

O
-Od 85
-Oe 85
OFFSET

HEXFILE directive 63
-Oi 86
-Ol 86

OMF86
ABSFILE directive 49

-Op 86
OPERATORS

DEBUG directive 58
OPTIMIZE

Borland C++ macro 117
Microsoft C/C++ macro 134

options
command line 79
LOCATE.OPT 80
priority 80
summary 80

ORDER
configuration file directive 74

-Ot 87
OUTBYTE

INITCODE directive 68
peripheral register initialization 68

OUTPUT
configuration file directive 75

OUTWORD
INITCODE directive 68
peripheral register initialization 68

-Ox 87

P
PARADIGM.MKF

Borland 116
Micrososft 133

PARAMETERS
DEBUG directive 59

peripheral register initialization 68
predefined macros 45
preprocessor

configuration file 42
public symbols, in listing file 71
PUBLICS

Index 185

DEBUG directive 57
LISTFILE directive 71

Q
-q 83
quiet mode 83

R
.ROM files 32
REGIONS

LISTFILE directive 70
regions, in listing file 70
relocatable load module 22, 32
RESET

INITCODE directive 67
reset vector initialization 67
ROMBIOS

CHECKSUM directive 51
ROMBIOS checksum 95
run-time libraries

building 18
ROMable 17

S
-s 83
??STACKINIT 67
segment

1MB boundary 35
absolute 35
aliases 32
alignment 33
fixups 31
ordering 33
overlap 34

SEGMENT
configuration file directive 76

SEGMENTS

LISTFILE directive 70
segments, in listing file 70
SIZE

HEXFILE directive 64
Software Problem Reports 13
software requirements 10
SPACES

DEBUG directive 59
SPECIALS

DEBUG directive 59
SPLIT

HEXFILE directive 64
STACK 136

Borland C++ macro 118
INITCODE directive 67
Microsoft C/C++ macro 135
size 110, 126

stack initialization 67
startup code

BCPP50.ASM 108
MSC80.ASM 124

STARTUP.INC
Borland 111
Microsoft 126

string literals
Borland C++ 103
Microsoft C/C++ 103

suggestions 13
SYMBOLS

DEBUG directive 57
LISTFILE directive 71

T
technical support 11

E-mail 12
FAX 12
FTP 12
internet 12

Paradigm LOCATE Reference Manual186

TEKHEX
HEXFILE directive 63

TRUNCATE
HEXFILE directive 65

truncating binary files 65
TURBOC.CFG 116, 117
TYPEDEFS.H

Borland 112
Microsoft 128

TYPES
DEBUG directive 57

U
#undef directive 42
utilities

AXE file contents 169

V
V25/V35

INITCODE support 167
V25+/V35+

INITCODE support 167
V40/V50

INITCODE support 167
V40H/V50H

INITCODE support 167
V53

INITCODE support 168
V55SC/V55PI

INITCODE support 168
Visual Workbench (MSC/C++) 131
V-Series support 55

W
-w- 85
-W 84
-w+ 85
warning diagnostics 139
warnings

disable 77
disable all 85
disable warning 85
enable 77
enable all 85
enable warning 85
exit code control 84

WARNINGS
Borland C++ macro 117
configuration file directive 77
Microsoft C/C++ macro 134

WARNINGS directive
ALL option 77
EXITCODE option 77
NONE option 77

WIDTH
LISTFILE directive 71

X
-Xa 93
-Xc 93
-Xl 93
-Xm 93
-Xo 93

Index 187

