Paradigm C++
Object Scripting Guide

Version 5.0

Paradigm Systems

The authors of this software make no expressed or implied warranty of any kind with regard to this software
and in no event will be liable for incidental or consequential damages arising from the use of this product. The
software described in this document is furnished under a license and may only be used or copied in accordance
with the terms of the licensing agreement.

The information in this document is subject to change without notice.
Copyright © 1999 Paradigm Systems. All rights reserved.

Paradigm C++™ is atrademark of Paradigm Systems. Other brand and product names are trademarks or
registered trademarks of their respective holders.

Version 5.0
August 9, 1999

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of Paradigm Systems.

Paradigm Systems
3301 Country Club Road
Suite 2214
Endwell, NY 13760
USA

(607)748-5966
(607)748-5968 (FAX)

Sales information: info@devtools.com
Technical support: support@devtools.com
Web: http://www.devtools.com
FTP: ftp://ftp.devtools.com

For prompt attention to your technical questions, contact our technical support team viathe Internet at
support@devtools.com. Please note that our 90 days of free technical support is only available to registered
users of Paradigm C++. If you haven't yet done so, take this time to register your products under the Paradigm
C++ Help menu or online at http://www.devtools.com.

Paradigm'’s Survival Pak maintenance agreement will give you unlimited free technical support plus automatic
product updates for an additional 12 months. Call (800) 537-5043 to purchase this protection today.

Chapter 1 Using Object Scripting

About Object SCriptingccccveverrereereeeereee e 11
Object Scripting quick start.........ccceveveeevieneenns 11
Running script statementsinteractively................ 11
Using the print command............cccceeerveeneeinnene 11
Using the IDE Message didlog.........cccceevveeiiennenne 12
Writing and loading a script file........ccccveceenenee. 12
Developing and testing SCripts........ccceeeevveveereeenne. 13
Working With SCrHptScccveeeeeeie e 14

WIHTING SCHPES ... 14
Loading SCriPtS.....ccceveenierieenieie e 14
Unl0ading SCHPLS.....cceeivereeneeieeee e 15
Setting Object Scripting options...........cccceeee.. 15

Chapter 2 Using cScript

ADOUL CSCIIPL ...t 17
The advantages of alate-bound language............. 17
Comparing cScript and CH+....oeeeceecece e 18
CSCript COMMENES......ccivereerieeieeeeseeseeeeesreeseeeneens 19
CSCript identifiers......coovveveerecceceece e 19
CSCrpt aNd LYPES....cveeeeeeereeieee e 19
cScript modules and SCOPE.........ccevveereererreerienenns 20
CSCript SEALEMENESeoveeeeerieeie e 21
CSCIPt OPErALOrS. ...c.vveveeeeesieeieeee e reeeee e nee e 21
(oS o] o108] 0SSN 21
CSCIPL @ITAYS...veeeeecieeie e seerieeee s e see e sree e e 21

Bounded arrays.........cceveeeeneeniene e 22

ASSOCIALIVE @ITAYS ..eovveeeeeeieeie e 22
CSCrPt ProtOtYPING ...ceveeeeereeeieeeesieesie e seee e 23
cScript flow control statementscccccevceeveennne 23
CSCIPL ClasSES.......ceveeeceeceere e 24
Declaring aclass........cccccvvevvnienecce e 24
Creating instances of cScript classes.........c..c...... 25
Discovering cScript class and array members...... 26

ADOUL CIOSUIES......ceeeiieiieieiee e 26

cScript event handling.........ccocoeveeveccesceece e, 26
Using on handlers.........cccoovevevieveesesceeneee e 26
Using attach and detach...........ccccevevveceerecciecnenne, 27
Controlling accessto cScript properties............... 28

USING QEIENS....ccviiieiieieeeeeeee e 28

USING SEHENS....coiiieeeeeeee e 29
cScript pass by reference.........coccvevevvccevieneenns 30
cScript built-in functionsccceevevvecevieseenns 31
cScript reserved identifiers........ccoveveveceveeneenens 31
cScript named arguments.........ooceeeeveeeeeneenennens 31
cScript error handlingcoccevvveeneeneeee e 32

Contents

Table of Contents

cScript access to exported DLL functions............. 33
cScript and OLE2........cooovveeiieineereeee e 33
cScript and OLE2 interaction...........ccccveeeveennnne 33
OLE2 to cScript Interaction..........ccceeevvereennnnne 33
About the IDE Class Library........cccoccevvveveneeinnnnne. 33
Manipulating the keyboardccccooceevirinnnne 34
Manipulating the IDE editorcccooeeeveriiernnnne 34

Chapter 3 cScript Language Reference
cScript keywords and functions............cccceeveeeeneenee. 37
BITAY ..eeeeeeee et 37
AACH.....ceie i 38
Preakc.coceeee e 38
Preakpointccovveieeecec e 38
[0 | 38
(075 S PRSP STPRTRR 39
ClaSS.. i 39
(000 111 01U OSP 41
eClare......ooovveeeee 41
defallt. ..o 41
(015 1 42
detaCh........coeeeeeee e 42
GO 42
EXPONT ... e 43
FOF e 43
L0 1 44
S SSSRN 44
IMPOIT. ..t 44
INIETAIIZE. ... 44
] = =SSR 45
100 45
module ComMMaNdccccceervrieeriere e 46
MOdule FUNCLION.........ccceiieieee e 46
NIEW ettt 47
OF et a7
0] P PP UURTPPPRPPP 47
(0101 1 o] SRR 49
PSSt e s 49
0] | SR 49
O] PSSR 49
FElOAd......oocicee e 50
FESUIME...ceiiiitieeeestteee s esiteeeesssree e e s ssare e s s ssneeessnnnreeesenns 50
L=, (0 PRI 50
L PSPPSR 50
RIS 1= o 51
SElECHION. ... 51
3

SHEOUL <. s 52
SUPEY .ttt 52
SWITCN .. s 53
TS, e 54
117/ 0 1= o S 55
UNTOAO. .. s 55
WHITE.. et 55
WITHL e 56
VIEIO oo 57
ADOUL CSCript OPEratorS......ccvevveeeerieeeeeeesieeee e 57
cScript precedence of operators.........ccovveveeeceesveenne. 58
Binary Operators.ccoueveveereesieseeseesiesseeseeseeeeens 58
ArithmetiC OPerators.........ccoveevereneere e 59
ASSIgNMENt OPEIaOrS......ocueeveeieree e 60
BitWiSE OPEratOrScoveeeerieerieeie et 60
Reference Operatorccvceveeveeceseeseeeeseese e 61
Object-oriented Operators.........ccooveveereereeresreeseenen 62
Closure (:>) OPErator.........ccceveeereereeeeseeseeseesseeeens 62
Member(.) SEleCtor.......ooovveiiriireeeee e 63
P2 OPEIALON ...t 63
Comma (,) punctuator and operatorcceccveennen. 64
Conditional (7?:) Operator..........cccevveeereeieeseeseainens 64
LOQiCal OPEratOrS......cccvevveveesieeieeeesieesieeeesreenee e 65
ENClOSiNg OPErators........cccovevieevieeieneesieeeeseeeseeeeens 65
Array SUDSCIPL OPEFator.........cevveeeerieeieeieseeeee s 66
Parentheses Operatorccoveevereeneesieniee e 66
Preprocessor OPEratorocceeeieeeeneeesieeesieee s 66
Relational Operators.........ccoceveveveeceeneesesieeseeseeeens 67
UNary OPEIaLOrS.ccoveeeiieeeiieeesiieeesieee s e 67
Increment and decrement operators..........c.ccccueeneee. 67
Plus and MinuS Operators.........cccoeeereerierieeseeseenenns 68
Multiplicative OPerators.........cccoceeeereerierierseeseenenns 68
PUNCLUBLON'S.......coiieeiie e 69
Braces ({}) punctuatorccceeveeveneesenieeseeseenne 69
Semicolon (;) PUNCLUALONccevveveeeee e 69
Colon (2) PUNCLUALONccveevereeerieeie e e 69
Equal sign (=) punCtUatorcccoeereeeiierienseesienene 70
Lvaluesand rvalUes............ccoveeveneenensieniee e 70

IVBIUES. ... 70

PVAIUBS.....oviiiiieeeeeeee ettt 70
cScript preprocessor directives......vvvveeeeeceesveenee. 71
HAEINE....cceeeeeee 71
#ifdef, #ifndef, #else, and #endif.........cccccevveenen 72
FANCIUTE. ..o 73
FUNAE......eeeeieee e 73
FWAIMN. ..o 74
Macros with parameters..........ccccveeeveevenieeseesennens 74
Chapter 4 cScript Class Reference
BUfferOptionS Class........ccoveeveeienieneee e 77

BufferOptions class description..........ccccceeeveevenee. 77
CreateBackup Property.......ccceceveeeeeeesesseeseeseesnnens 78
4

CursorThroughTabs propertycceceeveevesieeseennnns 78
Horizontal ScrollBar propertycceeeveeeeeveenenens 78
INSErtMOdE ProPErtYcocveeeeeeeeieeee e 78
LeftGutterWidth property........ccceeceeeenieeenneeniennens 78
Margin ProOPEFtY.....cceeceeriereeseeseeeeseesaeeeesreeseeeeens 78
OverwriteBlocks propertyccceeveeeeeveeresceeseeenen. 79
PersistentBlocKS Property.......ccoceeceeeeveeceseenieninens 79
PreserveLineENnds property.......ccceceeeeviercenseeniennnns 79
SyntaxHighlight propertyccccceveeeeveenencenneenn. 79
TabRaCK Propertyccccvveererie e 79
TokenFileName property.......cccccveveveeresieeseeseeseenns 79
UseTabCharacter property.......cccceeceeeeveeeeeseeseennens 79
Vertical ScrolIBar propertyccccceeveeeveeveeseenensnenns 79
Copy MENOC.......cceeiriieee e 80
DebUQQEr ClaSS......ccceieeiirie e 80
HasProcess Propertyccceeeeeeeeeeniee e 8l
AddBreakAtCurrent method.............ccoocevevinenennne 81
AddBreakpoint method...........cccceeeeveerenieneerie e 81
AddBreakpointFileLine method...........ccccceeverieenene. 81
AddWatch method..........ccocooreiiniieeee 82
Animate method ... 82
Attach method..........coooeveriii 82
BreakpointOptions method............cccccevveeeiiesiennnne 82
Evauate method ... 83
EvaluateWindow methodcccceoeveeieninenenennns 83
FindExecutionPoint method............ccccovivieiieeienenne 83
Inspect method............coovviiiii 83
InstructionSteplnto methodccoceevereiieeiienienne 83
InstructionStepOver method...........ccceeveeeerecciecennne. 84
IsRunnable Method............coerineriiiee e 84
Load method...........ccooveviieniiiieneee e 84
PauseProgram methodccooevviieniiniineeienne 84
Resat Methodooeiiieieceee e 85
RUN MELhOC........ooiiiee e 85
RunToAddress method...........cccoereiiiienincicies 85
RunToFileLine method.............ccoovviiiiieiincsencne 85
StatementStepinto method...........cccceveceeveeveecieseenee, 86
StatementStepOver method.........ccoceeeeeveevencienieenee, 86
TerminateProgram method...........ccooeeiinenencicnenne 86
ToggleBreakpoint method.............ccooevienieneniinnenne 86
ViewBreakpoint method...........cccccceveevenieneecienene 87
ViewCallStack method.........ccccvvriivieninirenee 87
ViewCPU mMethod...........ccovvvrininiiiiee e 87
ViewCPUFileLine method...........ccoceriininininnnne 87
ViewProcess method ..o 88
ViewWatch method...........ccoooeeiiiininiincec 88
DebugeeAboutTORUN eVeNt..........ccoeeeveeceevieerieennne 88
DebugeeCreated event...........coeveeeeeieenesieseeneenens 88
DebugeeStopped event.........cocvevveceeeesesceseeseenens 89
DebugeeTerminated event...........ccccoeeevivrinneeniennne 89
EditBIOCK ClaSS......ccceiieienierieeieeeesee e 89

EditBlock class description..........ccccvveeneeienninnne 90
[SValid Property......cccceeveeveeseeriesiee e e e 90

Paradigm C++ Object Scripting Guide

EndingColumn property.......cccccceeeereeresieeseeseennens 90

EndingROW Propertycocceveeveneeneesesieeseesiesens 91
HIdE PrOPertYooeeeeeeee e 91
SIZE PrOPEITY .ot 91
StartingColumn Property.........ccceceeeeeeeeseeseesseeseenen. 91
StartingROW Propertycccecveeereeresieeseeseeseeseenens 91
SYI€ PrOPEILY ..cveeveeie et 91
TEXE PrOPEITY ..o e 92
Begin method ..o 92
Copy MENOd......ceeeeiieiee e 92
Cut MEthod.........cooeririere e 92
Delete methodccooeveiiiinineee e 93
ENd method ..o 93
Extend method ... 93
ExtendPageDown method...........c.ccooeiininiceienenne 93
ExtendPageUp method............cccooininiiniiiieiene 93
ExtendReal method............ccocovvnineniniiesece 94
ExtendRelative method............ccocverviiiiiniiencs 94
Indent MEthod..........cooeririiin 94
LowerCase method...........coceveeieniinenienee e 9
Print method ... 95
Resat Method.........ooeeiieeeeee e 95
Restore method...........cccovviiiivinineeee e 95
Save MEthOd.........coviiii s 95
SaveToFilemethodcooveiirerineee e 95
ToggleCase method...........ccoooevivinninieeeee 96
UpperCase method...........occoveeiinininiene e 96
EditBuffer Class........coovriieineeieereee e 96

EditBuffer classdescription............ccceeeevvecvnneenne. 97
BIOCK Property.......ccceeveeevieeseeieseeseese e e 98
CurrentDate Propertycccceveeeevreeesieeesnieee e 98
DIrectory pPropertycceeceeceereereseeneese e e 98
DIiVE PrOPEITY ..oceeeeeeeieeie et s 98
EXIENSION ProPertYcceeeereerieerieseeseee e 98
FileName propertycccevceeveereeeeseese e seeseeeeens 98
FUIINaME Propertyccceeceveereeeeseereeeeseeseeeeens 98
Initial Date Propertycccveeeereeeeieceereee e 99
ISModified Propertycccceeeereenenreneeseee e 99
[SPrivate ProPertyccceecvereerieeie e 99
ISReadONly Propertyccccceveeeereereeeseesee e 99
[SValid Propertyccccveeeeeereeie e e e 99
POSItION PrOPEY ...ocveeveeie e 99
TOPVIiEW PrOPErtY ...cceeeveeeeeeesieeieeeesie e see e 100
ApplyStyle method...........ccoooiiiiiiiiee, 100
BlockCreate method...........cccooveeiiniiiieee, 100
Describe method...........coooveniiiiiee, 100
Destroy method..........cccooveveeveneeie e, 100
NextBuffer method...........ccccoovennniniiriee 100
NextView methodcccooevenininieieee e 101
PositionCreate method...........ccoceveriencnnenenee, 101
Print method..........cooooviiei e 101
PriorBuffer methodcccooovviiinineeeeee, 101
Rename method............coooviiiieninenicee e 102

Contents

SAVe MELNOd ..o 102
AttemptToModifyReadOnlyBuffer event 102
AttemptToWriteReadOnlyFile event 102
HasBeenModified event...........cccooveiiveeneninnennnn. 102
Editor Class......cooviiiee e 103
Editor class description..........ccceceveeveveesieennns 103
FirstStyle propertycccceeeeveeveeieeneeie e 104
OPLioNS PrOPETYcovveeeereerieerieeiee e see e eneens 104
SearchOptioNS ProPertyccceeveeveereereeieeseesieeens 104
TopBUFfer Property......ccccceeveveenenieneee e 104
TOPVIEW PrOPELY ...ocveeeeeieeeesieesieeee s eeeseesee e 104
ApplyStyle method...........cccoovveviieeeeee, 104
BufferList method..........covvveveniniineecc e 105
BufferOptionsCreate method............ccocevenieenee. 105
BufferRedo method ..o, 105
BufferUndo method............ccocovienininneeneeeene, 105
EditBufferCreate method.............cccovveiinincniennne 105
EditOptionsCreate methodccceevveveecieceeenee. 106
EditStyleCreate method...........cccceeveveveeveececeenee, 106
EditWindowCreate method.ccccovveeveriennennen. 106
GetClipboard methodccoooeeeeneenenieseesieene 106
GetClipboardToken method...........cccccoeeceeiiecnnne 106
GetWindow method..........ccccvererierieninesese e 107
IsFileLoaded method............ccoceveriiienininencee, 107
StyleGetNext methodccceeveveeeerecce e 107
ViewRedo method..........cocoeveiieeniniieneee e 107
ViewUndo method...........cccooevernininnine e 107
BufferCreated event..........ccceevveenerienceneneneee, 108
MouseBlockCreated event...........ccoovveveneneniennne 108
MouseL eftDOWN eVent..........ccoeverereeniesiese e 108
MouseL eftup eventccceevveeereeiieseene e 108
MouseTipRequested eventccceveveerenieeneeenn. 108
OptionsChanged event...........coceeereeneninncesienens 109
OptionsChanging eventccccecvreenenieseesienenns 109
ViewActivated eVentccoeveeeeierenene e 109
ViewCreated eventccocvereeieeieienese e 109
ViewDestroyed eventcccceveeveeeeseeseeeieeseenen 110
EditOptioNS Class.......ccovveerieeiisienieee e 110
EditOptions class description...........ccocceveeveennnne 110
BackupPath propertyccceeeveveneeinneeneseseene 110
Blockindent property........cccecveeeereeveeseeniesseeseeenen 111
BufferOptions property........cccveceeeeveseenesseeseenens 111
MirrorPath property........cccccevveveneeieseeneece e 111
OriginalPath propertycccceveeeeneenesieseesesens 111
SyntaxHighlightTypes propertyccccoceeveenennnne 111
UseBRIEFCursorShapes property........cccoeeeeeeeeenee. 111
UseBRIEFRegularExpression property.................. 112
EditPOSItiON ClaSS.......cccooeviiereeeeeee e 112
EditPosition class description..........ccccceveveveennnne 113
Character Propertyccceceveevenieseesesee e 113
ColumN ProPErtY.....cccceveeeeereeie e 113
| sSpecial Character propertyccceeeveeverceeneennen. 113
[SWhiteSpace Propertycccceveveeveeseeresseesenens 113
5

IsWordCharacter property.......cccecceveeeveereseeseeenen. 113
LastROW PrOPErtYc.ceveieeiiiee e 114
ROW PrOPEItY.....ccceveiiieeiiee e 114
SearchOptioNS ProPertycceveeeereeriesceeseeneenens 114
Align Method.........coeveeveeececeee e 114
BackspaceDelete method..........ccccoveceveeieniesieenee, 115
Delete methodcccoeievinininceee e 115
DistanceToTab method..........cccceverieneenencieneene, 115
GotoLine method ..o, 116
InsertBlock method...........ccooceeiviiiiiinee, 116
InsertCharacter method...........ccooeveevienenenencniee, 116
InsertFilemethod ..., 116
InsertScrap method...........cccoocvevvcce v, 116
InsertText method ..., 117
Move Method ... 117
MoveBOL method ..., 117
MoveCursor method...........covverererienenese e 117
Move EOF method...........ccccoovveneninieiencneseie 118
MOVEEOL Method.........cccovvverienirinieeese e 118
MoveRea method...........cooeeviieiiininneeeee, 118
MoveRelative method ..o, 118
Read method..........cccoooiiiii e, 119
Replace method..........cccoeeveecenieiece e, 119
ReplaceAgain method...........ccccevveceveenecieceenee, 120
Restore method...........cccoovviiiiininineee e 120
RipText method..........ccoooiiriine e, 120
Save Method.........cccoiiierieeee e 121
Search method.........ccooooviienii e 121
SearchAgain method..........cccoovecevieveccc e 122
Tab MENOd......ccoiiie 122
Search expression definition...........ccccveeeveereennne 122
EditStyle Class.......ccooiieeneneeeeee e 123

EditStyle class description...........ccoceeeeieenennnne 124
EditMode Propertycoceveeeeneeneneeeseeseseeseeens 124
Identifier propertyccccveeveceseece e 124
NaME PrOPEITY ..o e e 124
EditVIiew Class ... 124

EditView class descriptionc.ccooeeeeieerennnne 125
BIOCK Property.......ccceoeveeneneneeseee e 125
BOttOMROW Property.......cccoeiieeiiieeeiee e 125
BUffer property......ccccceveeveeceseese e 126
Identifier propertycccoveceeeeeseece e 126
[SValid Propertyccccceeeeeeeeseeseeie e 126
|SZ0OMeEd PrOPEIYcevveeierieeriee e 126
LastEditColumn property.......ccceeeeeeeveenenenneeenen. 126
LastEditROW Propertycceceeeereeeeneeseseeseeenens 126
LeftColumn Property......cccoceeceeeereeceeseereseeseeeens 127
NEXT PrOPEITY ..ot 127
POSItION ProPEY ...ccveeeeceeereeecee e 127
Prior Propertyccoooeeeeieeneresee e 127
RightColumn propertycccceeeereeeeneenescenseeens 127
TOPROW ProPErtYccovcveeeiiieiiieeeiiee e 127
WiNdOW Propertycceeeeeeeeeeseereesieeseeeseesseessenens 127
6

AtaCh MENOd........oo oo 128

BookmarkGoto methodccooeviivieneniieee, 128
BookmarkRecord method............cceovveeiiniinenee. 128
Center method.........cocoevireenieeeee e 129
MoveCursorToView method..........ccccevevvreriennene 129
MoveViewToCursor method..........cccceverereriennne 129
PageDown method..........cccovevviieeniece e 129
PageUp method...........ccooeieiiiiie e, 129
Paint method............cooiiiiii e, 130
Scroll method..........cooeevii e 130
SetTopLeft method.........ccceveeveececeeece e 130
EditWindow Class.........ccccvvvivenirinieesie e 130

EditWindow class description............cccvevevvennnne 131
ldentifier Property.......ccceeeeeneeie e 131
ISHidden property........ccoeeveeeneenesieeneeeseeseeens 131
ISV alid Property......ccoceeveeieneeneeie e 132
NEXT PrOPEITY....coieeieeieieeiee e 132
PriOr ProPErtY.....ccceeeveecieceeseee et 132
BLLL=T oo o< 1 oY 132
VIBW PIrOPEITY ..ot 132
Activate method..........ccoveeiiniinieree e 132
Close Method..........ooeeiiriniee e 132
Paint method...........ccccoviiinincne e 133
ViewActivate method...........ccooevveeveneninenencnee, 133
ViewCreate method...........ccooeveriiiennnineneneee 133
ViewDelete method...........ccoccoveriiniininiineee 134
ViewEXxists method...........cccoceveriiniinine e 134
ViewSlidemethod ... 135
IDEApplication Class.........ccccoeveeviereeseeeeeeseene 137
Application Property.......cccceeceeeeresieeseereeseeseenens 140
Caption ProPertY......ccceceeveereeriesieeseeseeseeseeneesraenns 140
CurrentDirectory propertyccocceveeeeeeveesessenseenne 140
CurrentProjectNode propertycceceeeeereereeneene 140
DefaultFilePath propertyccccveeeeveneniencene. 141
Editor Property.....ccceeceeeeveereseere e 141
FUlINamMe property.......ccccceveeeeeveeneeseeseesesseeseenens 141
Height property........ccccoveeeveevecceese e 141
[AIETIME PrOPErtYcceeeeeeeeeeeeeiee e 141
[dIETIMEOUL PrOPEITY....ccveeeeeeeerieeie e 141
LoadTime Property......ccoueereneenernenseenieseeseeeens 142
KeyboardAssignmentFile property.........ccccccveuennen. 142
KeyboardManager property........cccceeeevverveieenueennn. 142
[0S 10 ol o 1= 1 |V 142
ModuleName Property........cccceeeereereeseenesseeseeeens 142
NaME PrOPENLY ..o 142
Parent Propertycoceeeeceeiieeenee e 142
RaiseDialogCreatedEvent propertycceeeeveenee. 143
StatusBar Propertyccccceveeeeiieee e 143
TOP PIrOPEITY ..t 143
UseCurrentWindowForSourceTracking property ..143
VErsioN PrOPEIY ...ccceeeereeieeie e 143
Visible propertyccceeeveieeneeneeeseee e 143
Width Property......cccceececeereeceseese e 144

Paradigm C++ Object Scripting Guide

AddToCredits method..........cooeeeeeeeeeeeeeeeeeeeee, 144

CloseWindow method............ccooeviniineininiee 144
DebugAddBreakpoint methodccocceeevnennee. 144
DebugAddWatch method...........ccccooeeveeieniinenee. 144
DebugAnimate methodccccooveeeveeveccieceenen, 144
DebugAttach methodcccooovevvecevececeee, 145
DebugBreakpointOptions method.............ccoen..... 145
DebugEvaluate method...........ccceveeeeveenenieneene, 145
Debuglnspect method............ccoooeiiniinnninieee, 146
DebuglnstructionStepinto method.............c.cc....... 146
DebuglnstructionStepOver method.............coc....... 146
DebugLoad method...........ccocvveeveeceveereeeseene, 146
DebugPauseProcess method............ccccoevevveiennenee. 147
DebugResetThisProcess method...........ccccceeeeeeee. 147
DebugRun method ..., 147
DebugRunTo method...........ccooeiiriinieiecee, 147
DebugSourceAtExecutionPoint method 147
DebugStatementSteplnto method.............cccoeu.ee.. 148
DebugStatementStepOver method............ccceeveee. 148
DebugTerminateProcess method............ccceeeuveeneee. 148
DirectionDialog method............ccccovreereenenenneenn. 148
DirectoryDialog method............cccoovrevinnencinncne. 149
DisplayCredits method............cccccoveeeveeienieeenee, 149
DoFileOpen method.........cccecvveevecceveereeeeeee 149
EditBufferList methodccocvvveriiiininese 149
EditCopy methodcoceeveeiiiieie e, 150
EditCut methodccoveeienieee e 150
EditPaste method............ccoveeiieenene e 150
EditRedo method...........cccooviivininineeee e 150
EditSelectAll method ... 151
EditUndo method. ... 151
EndWaitCursor method..........cccceverevennenieneene, 151
EnterContextHelpMode methodcccccveneee. 151
ExplandWindow method............ccccevevinneninneennn. 151
FileClose methodcccovviivinininieeee e 152
FileDialog method............cccoeevieeveece e, 152
FileExit method..........cccoveviniieneceee e 152
FileNew method...........cccooviriininiieeeee, 152
FileOpen method..........ccccooviiiiiii e, 152
FilePrint method..........coooveriineeeeee, 153
FilePrinterSetup method...........cccoooveceveevececee, 153
FileSave method..........ccooeviiiveninineeee e 153
FileSaveAll method............ccooviviniinier e 153
FileSaveAs methodcccoecvveenenienceeeeee, 154
FileSend method...........cccovereieeiine e, 154
GetRegionBottom methodcccceeeiiiveeiennnne 154
GetRegionLeft method...........ccccevveiviceciccec 155
GetRegionRight method............cccoooveevicienecceeee, 155
GetRegionTop method.........cccceveeveececeesecie e 155
GetWindowState methodc.ccoeeeveiceeieeienenne 155
Help method........cooooeii e, 156
HelpAbout method...........cccooiiiiiniiee, 156
HelpContents method..........cccoeveveeceveenececeene, 156

Contents

HelpKeyboard method...........ccccocevveveveerececenee, 156
HelpKeywordSearch method............ccocoieriennee. 156
HelpUsingHelp method..........cocoveeinieeneneeee, 157
HelpWindowsAPImMethod...........cccceovveeneninnieennn. 157
KeyPressDialog method..........cccccoveveveenieeciecieenee, 157
ListDialog method...........cccceevvieeneeie e 157
Menu Method.........cooviirinineee e 158
Message Method.........ccoveeveriineeneee e 158
MessageCreate method...........ccoccovieiiieneniinenee, 158
NextWindow method...........cccevenerinneenenieneene, 159
OptionsEnvironment method...........cccccveeeveeieennnne 159
OptionsProject method..........cccceeeveeereeceveeseene 159
OptionsSave Method...........ccceveeeeeiieeseee e 159
OptionsStyleSheets method...........ccceveeeeieenenenne 160
OptionsToolS MEthodccceeveeienieiene e 160
ProjectBuildAll method...........cccoveriniiinenieee, 160
ProjectCloseProject methodccccoevveveeiecienee, 160
ProjectCompile method..........ccccceeveveveeveecieceenen, 161
ProjectGenerateM akefile method............................ 161
ProjectMakeAll method...........ccccooeriiiiieniiee, 161
ProjectManagerinitialize methodcccceneee. 161
ProjectNewProject method..........cccoovveivenieniennee. 162
ProjectNewTarget method...........ccceeeveeveeciecieenee, 162
ProjectNewTarget parameter descriptions.............. 162
ProjectOpenProject method...........cccccovveveeeenennee. 163
Quit MEthOd........ccceiereiiceceeee e 163
SaveMessages method..........ccooevevneeneniencenieene 163
ScriptCommands methodccccoeeeieriiieeienne 163
ScriptCompileFile method...........ccoccvevveceveeieene 163
ScriptModules method...........cccoveeveeeveccevieceee 164
ScriptRun method.........ccocceveeveececeeece e 164
ScriptRunFile method...........cooeeiiiiiee 164
SearchBrowseSymbol method.............cccccoveienns 164
SearchFind method...........ccoieeieriiniee e 165
SearchL ocateSymbol method............ccceeveevienne 165
SearchNextMessage method............ccccoeeeeveeieenne 165
SearchPreviousMessage methodccceeeevieenn. 165
SearchReplace method ..., 166
SearchSearchAgain method.............ccoooviiiiiienene 166
SetRegion method..........cooceveeieniinieee e 166
SetWindowState methodccceeveeiininenencnene 167
SimpleDialog method...........ccccoveeeiiievecce e 167
SpeedMenu method..........ccccceeveeceneerecce e 167
StartWaitCursor method...........coeeveeierinneenenenns 167
StatusBarDialog method...........cccccooveiiniiiiiienns 168
Tool Method..........coviiiie e 168
Undo methodccooeviieniniereeee e 168
ViewActivate method..........cccooeeveeveninineneneee 168
ViewBreakpoint method............cccoevveeveervnceesieenne. 169
ViewCallStack method...........ccccoovriiiiniiiiciens 169
ViewClasses method...........ccccoveevenienininneeneee 169
ViewCPU method...........cocoiiiiiiiinineeeeeieee 169
ViewGlobals method............ccocevevinininencncnee, 170

.

ViewMessage method...........cccovevevceveececceceene, 170

ViewProcess method...........cccoveriiiieneniinienene 170
ViewSlide method............ccoooiiiniiiinieee 170
ViewProject method..........ccoceveeiineninie e 171
ViewWatch method...........ccocvoriniininineneciee 171
WindowArrangelcons method...........cccecveeeneenee. 171
WindowCascade method............ccocevevenenencnienne. 171
WindowCloseAll method..........ccccoevveieenenieneenen. 172
WindowMinimizeAll methodcccoevrenennee. 172
WindowRestoreAll method...........cccccoveeiininnnee. 172
WindowTileHorizontal methodcccocoveenee. 172
WindowTileVertical method............ccccovevvienienne. 173
YesNoDialog method...........ccccceeevvenecceiieseee 173
BuildComplete event...........cccoveeierinnennenieneenn, 173
BuildStarted event...........cooceevenienenceneeeeeeeen 173
DialogCreated eVent...........ccocvreererceeseenieseeseeen 174
EXItiNg @VENt ..o 174
HelpRequested event...........ccccoeeevveceveeneceeseenn, 174
[AI@ EVENL......oeieceee e 174
KeyboardAssignmentsChanging event................... 175
KeyboardAssignmentsChanged event.................... 175
MakeComplete eventcoccoveererceneeneneeneeen, 175
MakeStarted event.........ccovvevenenerieresese e 175
ProjectClosed event..........ccecvveevecceveese e, 176
ProjectOpened eventccccvveeveeceveeneseeseee 176
SecondElapsed event..........ccevveeieenenee e 176
Started eVeNt........cccovieeeee e 176
SubsystemActivated event..........ccooeeveeceneenenenne 177
TransferOUtputEXiStS event.........ccccevveeeveesiennnnne 177
TrandateComplete event..........ccocovvveevveceviesiennne 177
KeyboardManager Class........cccccevveeeveesiecciesieenn, 179
AreKeysWaiting propertyc.cceeeeeeereenesieesiennens 179
CurrentPlayback propertycccceeeeenveeneeinneenn 179
CurrentRecord propertycccveeveeresveesesieeseene 179
KeyboardFlags property........ccccccevveeeveenesceesnnenn. 180
KeysProcessed propertyc.cceeeeveeeeereeseesieeneeens 180
LastKeyProcessed property.......cccceeeeveereeeeneenen. 180
Recording property........ccoeeeneeneneeeseeneseeseeens 180
ScriptAbortKey property.......ccccoeeveeneeieeneenieneens 180
CodeToKey method............cooeveeieniineenece 181
Flush method..........cccooiiiniiii e 181
GetKeyboard method...........cccovveeveececeesece e 181
KeyToCode method...........ccccvveevveceviereceeee, 182
PausePlayback method............ccccoovniiiiiiie, 182
Playback method..........cccoveriininiieeeeee, 182
ProcessK eyboardAssignments method................... 182
ProcessPendingK eystrokes method 183
POP MELhOd........oceeece e 183
Push method...........ccoiiinin 183
ReadChar method...........ccooooeiiiieiieeeee, 184
ResumePlayback method...........cccoveevieiincinenee, 184
ResumeRecord methodccccoovveninienccee, 184
SendKeys method...........ccovveveiceeniese e 184
8

StartRecord method..........coovvereeeeiieiirec s 186
StopRecord methodooeeveeeinieneneveeeee 186
UnassignedKey event..........ccceeneeinneenesieeseeenens 186
Keyboard Class........ccoovveveriiieeee e 187

Keyboard class descriptionccccveveveenennne 187
ASSIgNMENLS PrOPEITY ...cvveeeeeeeeeerie e e e ee e 187
DefaultAssignment property........ccceeeveereereeseenen. 187
Assign method..........cocoveeiiii e, 188
Assign method examples...........ccoooeeeveeiencnneennn. 188
Assign Typeables method...........ccooevveeieninneenee. 189
Copy MEhOd........ccoeveeeeeeceee e 189
CountAssignments method...........cccceeveceeneecienenene 189
GetCommand method..........c.cceovieriininenene e 189
GetKeySequence methodccceeeeienciieeniennnne 190
HasUniqueMapping method.............ccoceeveniinennen. 190
Unassign method ..., 190
LiStWIindow ClasS........ccoeviririenerineiesiese e 190
Caption ProPertY......ccceceeveereeriesieeseesseseeseeneesseenns 191
COUNt PrOPEITYceiveeeeieeesiee et 191
Currentindex Propertyccceeeeeereeresieesessenseene 191
Data Propertyccceeeeieeeeieeeeee e 192
Height property........ccooeeveeieneneee e 192
Hidden property......ccccveceveececceeneese e 192
MultiSeleCt Propertycccceeveeceereeie e e 192
SOrted ProPErtYceeeeereeeieseerieereesee e eeeseee e e 192
Width Property......ccceeveeneniinee e 192
Add method ..o, 193
Clear method...........ccceiiriininieee e 193
Close MEthOd........ccoverenieee e 193
Execute methodcocovevininenenieeeee e 193
FindString method..........ccccovevveienecce e, 193
GetString Method.........ooovveeveereeieeeee e 193
Insert method ..o, 194
Remove method...........ccocoiiiiiiini e, 194
ACCEPL BVENT ... 194
CanCel BVENTccoviere 194
Closed BVENtcooeeeeeee e 194
Delete eVeNntooceviieie e 194
KeyPressed event.........ccocoveeieneenencn e 195
LeftClick event........cooveeieniiieee e 195
MOVE BVENL ... 195
RightClick event.........cccooovvevviieneee e 195
PoOpUpMeEnU Class........ccceeveeveieeneee e 196
Data Propertyccceeeeieeeiieeeee e 196
Append Method...........ccoveeiiniineee e 196
FindString method...........oooeeivieninie e, 196
GetString Method.........ccooceveeve v 197
Remove method...........cccoovinineninnceee e 197
Track method...........ccooeiiiininee 197
ProjectNOde Class.......cccoveverieieeeeie e 197
ChildNOJES Property......cccceeeereereerieeieseesieeee s 198
IncludePath property........ccceeveeienieenenreneneee, 198
INPUENEME ProPErtY......ccccveviieeiiee e 198

Paradigm C++ Object Scripting Guide

[SValid Propertycccceeveeeeeseereece e 198

LibraryPath propertyccocceeeeeenenieneenieseeneeen 198
NaME PrOPEILY ..ot 199
OutOfDate ProPertyccceeereeereneeneerie e e 199
OUutpUtNaMEe PropPeartY.......cccvereeerrrererreesneee e 199
SourcePath Property.......cccceveeeeeceeseeseseeseeseeeens 199
TYPE PrOPEITY ...t 199
Add method...........ccooveiiiii e, 199
Build method.........ocooeiiiieieee e 200
Make method...........ccooeieiiiniie e, 200
MakePreview method............ccoevererieienene e 200
Remove method ... 200
Trandate method...........covvireriieiieere e 200
BUIlt @VENt ... 201
Made eVENT........cceeiee e 201
Tranglated eVent.........ccceceveeverieneeneee e 201
RECOId ClaSS.......coeriiiiiiree e 201
| SPaUSEd PropPertY.......cccoveeeeeereerieseeseeeseeseesaeeens 202
ISReCOrding Property.......ccceeceereereereeseeseeseesseeens 202
KeyCount Property.........ccoceeeeeereeseesneeeseeseeeseeas 202
NaME PrOPEILY ..ot 202
Append Mmethod..........ccoooeeiiiineee e, 203
GetCommand methodcecevriiienesene e 203
GetKeyCode method.........cccveceveeveececeececie e 203
Next method...........ccoeveririnen e 203
SCriptENGINE ClaSS......ccveieeeeeeee e 204
AppendToLOg Property.......ccceueerereererreesieeseenens 204
DiagnosticM essageM ask property........ccccceeereenee. 204
DiagnosticM essages pPropertycveceveereeceeseeenen. 205
LogFileName property.......cccceeeereeeeeseeresseeseenens 205
(oo o[o lo10] 0= £ V2 205
SCriptPath Property.......cccoeveeveneeneese e 205
StartupDirectory Propertycccoceeveerereeeseesenenns 205
Debug mMethod..........cooeveeneneseeee e 205
Execute method..........cccoovviieneninireee e 206
ISACIass MEthod ... 206
ISAFuUNction method..........ccoceverererienenerescsee 206
ISAMethod method............ccooieiiiiiiee, 207
ISAProperty method..........ccoocevieinieneeeeee, 207
IsLoaded method.........ccooeeeiienenieeeeeee, 207
Load method...........ccooveieiininiierereeee e 207
Modules MEethod..........ccooevirerenirieee e 208
Reset method..........cooevieviiie 208
SymbolLoad methodccooeriiiiiiiieee 208
Unload method.........ccocoveeieniinieee e, 208
Loaded event.........ccoeeveenenieee e 209
Unloaded event...........cccoovveninenininieese e 209
SearchOptioNS ClasS.......ccceveeieeeieceere e 209
CaseSensitive Property ... veeveeceseesieeseeseens 210

Contents

FromCursor Propertycccceeceeeseeeeneeesneeesseee e 210
GOoFOorward Propertyccceceereeeeeseeseseeeseeseeseens 210
PromptOnReplace propertycceevvveererieeneeenen. 210
RegularEXpression propertycceeceveeresveeseeenens 210
ReplaceAll Property......cccccveeeevereeieseeseese s 210
ReplaceText Propertycocvecveveereereseesesseeseeens 210
SearchReplaceText property......cccccceeeeeevceereeeinnns 211
SearchText PropPertyccoceveererreneeneee e 211
WholeFile property........ccoeevinniinceneereeeeceee, 211
WordBoundary property......c.ccueeeeeeeeseeseesiensennens 211
Copy MEhOd........ccoeveeeeeeceee e 211
StackFrame Class........ccocveverenenineesese s 212
ATgACtUal PropeErtY.....cccceeeeeeieeeere e 212
ArgPadding Propertycccoeeceeeeresieseeseseeseeens 212
Caller Property......cccoceeveeeenerre e 213
ISV alid Property......ccoceeveeieneeneeie e 213
INgQType Method..........cooveveeeieeece e 213
GetParm method.........cccoveverinireee e 213
SetParm method...........oooovevivince 213
SEING ClaSS ...cveiiieeeieeie e 213
Character Propertyccceceeeerenieeseesesee e 214
INteger ProPertyccceeeieeeiiiee e 214
ISAIphaNUumMeric propertyccceeceeeeeveereesieeseeenen 214
Length propertycccccveeeveevesceece e 214
TEXE PrOPEITY oot 215
Compress Methodooevveeieneeneeee e 215
Contains MEthOd........cccereerieiene e 215
Index method ..o, 216
Lower method..........cccooevenenenenireeee e 216
SubString Method.........ccocceveereeieceee e 216
TrM MEhOd ..o 216
Upper Method ..o 216
TransferOUtpUL ClaSS........ooeveeveeiinieeee e 216
Messageld Propertyccoceveereneerierieeseeresee e 217
Provider Property......cccceceveeveeieeseeseseesessee e 217
ReadLine method...........ccccoovvivinininiirencne e 218
TIMeStampP Class.......cccvveverieriere e 218
Day PropPertY.....ccccceeeiiieeiiieeeiee e 218
HOUr Propertyccoeeeeeiiieecee e 218
Hundredth property........cceeveeeenersn e 219
Millisecond Propertycccceeveeeereerieseese e 219
MiNULE PrOPEITYeeeveeeeeeeseeee et eee e 219
MONth PrOPEMYcecveeeeeeecieee e 219
SeCONd ProPEItY......coveereereereenieeee e 219
Y €8I PrOPEITY ..cc.vveeiieieiiiee ettt 219
Compare method..........ccooerernenieneeee e 220
DayName method..........cccovveveneenecce e 220
MonthName method............cccvererineienese e 220
INAEX ..t 221

9

10

Paradigm C++ Object Scripting Guide

Chapter

1
Using Object Scripting

About Object Scripting

With Object Scripting, you can customize Paradigm C++ using built-in classes and a
C++-like scripting language called cScript. Almost all elements of the Paradigm C++
Integrated Development Environment (IDE) are represented in the IDE scripting
classes. Through an object called IDEA pplication which isinstantiated when Paradigm
C++ first starts up, you can access most parts of the IDE, such as the editor, the
debugger, keyboard, and the project manager, and change them to suit you.

Object Scripting quick start

The following topics give you some practical tipsto help you start writing and running
scripts:

. Running script statements interactively
. Writing and loading a script file
. Developing and testing scripts

For more detailed information on loading and unloading scripts and setting Scripting
environment options, see "Working with scripts' on page 14.

Running script statements interactively

The simplest way to see the results of your script statementsis to enter them
interactively, one at atime in the Script Command window.

1. Choose Script | Run. A text entry box opens at the bottom of the screen.
2. Enter the complete syntax of the command you want to run and press Enter.

The following two examples show how to enter statements interactively:

. Using the print command
. Using the IDE Message dialog

Using the print command: a simple command entry example

To run asimple Hello script that uses the print command,

1. Choose View | Messages and click the Script tab to open the Message window's
Script page, which is where the output of all print statements goes.

If you want to start with a clear page, you can delete the messages generated by the
IDE startup by right clicking in the Script page and choosing Delete All from the
popup menu.

2. Choose Options | Environment | Scripting and click Diagnostic Messages so the
script processor will send all scripting messages to the Script page (in case you
make an error entering a statement).

3. Choose Script | Run and enter the following statement:

Chapter 1, Using Object Scripting 11

12

"print "H'
4. Press Enter.
If you then click the Message window and scroll to the end, you see Hi .

Using the IDE Message dialog: a simple command entry example

To display output in adialog box, the IDE object, an instantiation of the standard
IDEApplication class (one of the classes that provide access to IDE functionality),
provides a Message method that does just that. Y ou can use the Script Command
window as follows:

1. Choose View | Messages and click the Script tab to open the Message window's
Script page, which is where the output of all print statements goes.
If you want to start with a clear page, you can delete the messages generated by the
IDE startup by right clicking in the Script page and choosing Delete All from the
popup menu.

2. Choose Options | Environment | Scripting and click Diagnostic Messages so the
script processor will send scripting error messages to the Script page (in case you
make an error entering a statement).

3. Choose Script | Run and enter the following statement:
| DE. Message(' Hello Wrld');

4. Press Enter.

YouseeHel | o Wor | d appear in amessage window. As with the print example, if
you made an error entering the statement, error messages appear in the Script page of
the Message window.

The reason you can simply use the IDE object has to do with the way scripts are loaded
during Paradigm C++ integrated development environment (IDE) initialization. On
startup, PCW loads a script caled STARTUP.SPP that, among other things, instantiates
an instance of IDEApplication and assignsit to the global variable IDE.

Writing and loading a script file

Typically you write a script in an editor, like the IDE editor, and save it to afile with an
.SPP extension. Y ou then load and run the script file by entering its name in the Script
Command window. The following instructions show you how to write and run a
program that displaysHel | o Wor | d in a message window:

1. Choose Options | Environment | Scripting and add your script directory path to the
Script Path so the IDE can find your scripts. For example, if your path already
contains .;C:\PC5\SCRIPT, it would look like this after you add a directory called
C\MYSCRPTS:

.; C:\ PC5\ SCRI PT; C: \ MYSCRPTS

Be sure not to insert any spaces before your path name. Doing so will stop the
search at the previous path.

2. While you're on the Scripting options page, click Diagnostic Messages so the script
processor will send scripting error messages and print statement output to the Script

page.
3. Press Enter to exit the environment settings dialog.

4. Choose View | Messages and click the Script tab to open the Message window's
Script page, then scroll to the end of the window.

Paradigm C++ Obiject Scripting Guide

If you want to start with a clear page, you can delete the messages generated by the
IDE startup by right clicking in the Script page and choosing Delete All from the
popup menu.

5. Choose File | New | Text Edit to open anew file in the IDE editor, then enter the
following script:

i mport | DE; /l'Use the | DE object and any of its methods
hel | o()
{

| DE. Message ('Hello Wrld');
}

6. Choose File | Save and save the file with an .SPP extension in a directory of your
choice (for example, C:\MY SCRPTS\HELL O.SPP).

7. Choose Script | Run File to compile and run the script.

Any statements that aren't in afunction or other block will ssimply execute the first time
you load the program. If you have afunction called_init(), that function will also run
when you load the program. If you have function with the same name as the file, that
will be the default function that runs when you load the program after any _init()
function runs.

When you load the script HELLO.SPP for the first time, it displays Hello World in the
message window and then stays in memory. If you subsequently choose hello from the
Script | Commands window, the script processor calls the function hello(), which
displaysHel | o Wor | d in the message window.

Developing and testing scripts

Asdescribed in steps 1-4 of "Writing and loading a script file€" on page 12, before you
start writing scripts, you should set your scripting environment options to add your
script directory to the script search path and to output messages to the Messages
window. Then open the Messages window's Script page. Additionally, make sure that
the Scripting option Create Token Filesis not checked. (It should be off by default.)

While you're developing a script in an edit window, you can,

. Test single statements or short lists of statements in the Script Command window,
as described in Running script statements interactively.

. Compileand run an .SPPfile that is the active editor file by choosing Script | Run
File.

If there are syntax errorsin the script, error messages are displayed in the Script page of
the Messages window. If your script doesn’t run when you try to load it or you hear
beeping, click the Messages window and scroll to the end of the Script page to see what
happened.

After you get a script working and you save it to afile, you can,

. Load existing script files by choosing Script | Modules, selecting the module you
want to run, and clicking Load. All loaded modules and all modules on your script
path are listed in the Modules window. If you want to load an aready loaded script
again, unload it first (Choose Script | Module and click Unload.)

. Runaloaded script has either an _init() function or a function with the same name
as the script file by choosing the function name from the list of commands. (If it has
_init() function, _init will be one of the commands in the list window.)

Chapter 1, Using Object Scripting 13

14

Working with scripts

The following topics provide detail s about working with scripts, such as different
methods of loading and unloading them, what Paradigm C++ does when it loads a script
file, and what all the options mean on the Scripting dialog page (View | Environment |
Scripting).

Writing scripts

Scripts are simply ASCII files. Y ou can write a script in the IDE editor or another
editor, then save it as an SPP (with an .SPP extension). Header files for scripts typically
have the extension .H.

Loading scripts

When you load a script, it also runs. If the script affects the display (for example, it
contains print statements), you see something happen on screen immediately. If you
define new behavior for the IDE, you see that behavior when you use that part of the
IDE. The script remains loaded until you unload it.

If you're developing and testing scripts, instead of loading scripts, use the Script | Run
File command.

You can load a script in any of the following ways:

. Usethe Script | Module dialog to choose and load a script file.

. Open the script in an edit window and choose Script | Run File (useful if you want
to change the script).

. Specify ascript on the PCW command line with the -s switch. It is processed after
the compl ete processing of scripts specified in the Startup Scripts entry on the
Scripting dialog page (Options | Environment | Scripting). Simple script names
require no quotation marks. If you include script parameters, put the parametersin
parentheses. To pass string parameters, enclose the strings in backslash-quotation
combinations. To start multiple scripts, use the -s parameter for each script.

Examples

pcw -sScriptl -sScript2 -sScript3(Paranil, Paran®)
pcw -sMyScript(\"string\", \"paraneters\")

Pro The script won't be affected whenever you update to a new version of
Paradigm C++.
Con To start Paradigm C++ with the script, either you have to have an icon

for Paradigm C++ that uses this command line or you have to remember
to type it each time.

. Enter the name of the script file in the Startup Scripts field of the Scripting dialog
page (Options | Environment | Scripting). For example, enter test. Y ou can specify
multiple scripts here separated with spaces. For example,
test MyScript bar

Pro Since the script names are stored in the configuration file, they can be
shared across multiple PCW users.

Con Y ou have to reenter the script names every time you install a new
version of Paradigm C++.

. Modify the source code of the STARTUP.SPP file (or any of the files that it loads.)

Paradigm C++ Obiject Scripting Guide

Pro Regardless of where you run the script, you get the same results.

Con When you update to a new version of Paradigm C++, you have to redo
the changesto STARTUP.SPP.

By convention, the source files for scripts have the extension .SPP. When you load a
script for the first time, it is compiled into an interpreted tokenized format called pcode.
By default, atokenized file is created that has the same name and the extension .SPX in
the same directory as the script file.

After a script has been successfully loaded, it is scanned for the existence of two
macros. Oneis named _init(), and the other is a macro with the same name as the script
filejust loaded. If these macros exist, they will be automatically called, _init first, then
the other. If a series of scripts are loaded at the same time (on startup or from the
command line), first all the _init()s are processed (left to right), then the named macros
are processed.

Unloading scripts
Scripts are not unloaded automatically. To unload a script, choose Script | Module, then
in the dialog box choose the script name and click Unload.

Setting Object Scripting options
The Scripting dialog (Options | Environment | Scripting) provides control over the script
environment. The following table describes the choices on this dialog:

Option Description

Stop at breakpoint If the keyword breakpoint appearsin the script, stop the script whenitis
encountered and load the script debugger.

Diagnostic M essages Specifies whether or not to display all script processor messagesin the IDE
Message window's Script page (View | Messages | Script). This option by
default is off.

Script path Describes the path to search when loading a script file. During aload, every
entry on the path will be searched for afile with the .SPX extension. If that fails,
the same directories will be searched a second time for files with the .SPP
extension. Starting the path with .; causes the current directory to be searched
first.

Startup Scripts Specifiesthe script filesto load and execute as part of the IDE startup
procedure. (Paradigm C++ alwaystriesto load STARTUP.SPP from the
SCRIPT subdirectory or any path you specify for scripts.) Use spacesto separate
multiple script names. Y ou can specify script parameters by enclosing the script
name and its arguments in quotation marks. For example,

MyStartup D splayCurProj 'Ascript Paraml'

Chapter 1, Using Object Scripting 15

16

Paradigm C++ Obiject Scripting Guide

Chapter
2

Using cScript

About cScript

The cScript language is a late-bound, object-oriented language that supports syntax and
constructs familiar to the C++ devel oper.

cScript offers C++ programmers afamiliar environment for customizing the IDE. It has
many of the same constructs as C++ and on the surface looks and feels like C++. But
under the hood the two languages are very different: They address two separate problem
domains, the early-bound environment versus late-bound, and as a result there are some
major semantic differences.

For more information, choose one of the following topics:

. "The advantages of alate-bound language" on page 17
. "cScript and types' on page 19
. "Comparing cScript and C++ on page 18

The advantages of a late-bound language

cScript is alate-bound, object-oriented language, which is roughly analogous to being
an interpreted language. This gives cScript programs more flexibility than early-bound
programs, such as those written in C++. In C++, everything about a program is known
at compile time. The types of the variables, the return types and number of parameters
to functions, the classes that will be used aswell as all their properties and behaviors are
all known when the program is compiled.

cScript is very different. While the syntax looks very similar to C++, you cannot declare
avariable's type at compile time. Variables are generic and can hold any type of data
needed at run-time. In fact, the same variable can hold different types of data as the
program executes.

Just asin C++, you create classes with properties and methods and create objects which
are instances of those classes. But in cScript, you are free to override the methods for a
given object (not the class, just the object itself) at run-time with a new implementation
of the method or a method "borrowed" from another object.

This means that an object of one class can use the methods of an object of another class
without having to know anything about the second object at compile time. Existing
objects can have their functionality extended without the need for the source code to the
object's class, and without recompiling.

The benefits of late-binding

Late-binding provide important practical benefits. Let's say that you want to create a
program to extend the functionality of the Paradigm C++ IDE. For example, you want
to create a script that automatically saves changed source filesto a central repository on
the network as well asin your project directory. Y ou want to add this functionality to
the IDE and have it behave like a built-in feature.

Chapter 2, Using cScript 17

18

The Paradigm C++ IDE is represented by a cScript object called IDE of the cScript
class IDEApplication. If the object IDE was instead created from a C++ class, you
would have to ater that C++ class and add your repository methods to it directly,
through multiple inheritance, function pointers, or through some other mechanism.
Then you would need to recompile the source for the class to create the extended object
IDE. In cScript, you do not need to touch the definition of class IDEApplication at all.
Y ou can use cScript to attach your repository methods to the IDE object at run-time.
There are no changes to the IDEApplication class and no recompilation is necessary.

So late-binding means that you can alter and extend the behavior of objects without
having to know the details of how they are implemented, without having access to the
source code, and without having to recompile.

Comparing cScript and C++

cScript differs from C++ in the following ways.

« All class members are public. There is no way to make members private or
protected as part of their declaration. Y ou can use on statements to make members
Inaccessible.

. CcScript programs have no main() or WinMain() function.
. Globally scoped statements are allowed and will be executed when the script is run.

. Executable statements are allowed within a class definition, and in conjunction with
optiona initialization arguments passed when the classis instantiated, constitute the
class's constructor. There is no constructor function per se in cScript.

. Theimplementation of a class's methods are defined within the class.

. Thedefinition (not just the declaration) of a member function must always occur in
the class declaration.

. Arraysareobjectsin cScript. When deallocating an array with the delete command,
the square brackets "[]" are not needed.

. Functions may have varying numbers of parameters. cScript truncates or pads
argument lists as necessary.

. Compound logical expressions do not short circuit. For example, in the expression
if(TRUE || Foo())..., the function Foo() will always be called even though the
constant TRUE insures that the expression will aways evaluate to true.

. CScript does not have the following C++ features (thisis not acomplete list):
. type checking (but there are type conversions with some operations)
. typecasting
. multiple inheritance
. C++-style exceptions
. class constructor functions
. function overloading
. cCharacter arrays (cScript directly supports strings)
. default arguments to functions

. templates
. default parametersin method declarations
. pointers

. direct memory access
. function declarations that support default parameters

Paradigm C++ Obiject Scripting Guide

« ENUMS

. unions
. structs or typedefs
. bitfields

. operator overloading
. const keyword (except in DLL imports)
. sStatic keyword

. global scope resolution. Y ou can access globally scoped variables, using the
module function.

. The#if preprocessor directive
. Thefollowing operators; -> * ->* *

cScript comments

cScript supports C++ comment syntax, including:

/1 This is a comment to the end of the physical |ine
/[* This is a comment to the closing */

Nested comments are permitted in cScript.

cScript identifiers

Identifier names are made up of letters, digits and underscores (). Thefirst character of
an identifier name cannot be a digit. Identifier names can be up to 64 charactersin
length. cScript is case-sensitive. Therefore foo, Foo, and FOO are three different
identifiers. Keywords, operators, and intrinsic function names are also case-sensitive.

cScript and types

cScript is not an explicitly typed language and does not allow you to declare variables
with C++ base types. When the parser encounters an unknown identifier, it makesit a
new variable (unless the identifier isimmediately followed by an open parenthesis,
which might indicate it's a function). New variables created this way are local to the
current scope.

The only declarators you can use are declare, import, and export, which are not types
but declarators that indicate a new variable. "cScript modules and scope”, page 20
discusses declare, import, and export.

Identifiers do have types, but the type of an identifier is determined by its value. For

example, x in the following code is an integer because it is assigned an integer:
declare x = 25;

X can become any other cScript native type, depending on what is assigned to it. In the

following example, x is of type IDEApplication because an object of that classis
assigned to it:

decl are Myl DE = new | DEAppl i cati on;
x = Ml DE;

Use the intrinsic function typeid to determine the type of an identifier.

Chapter 2, Using cScript 19

20

Types also come into play when you use operators with variables of different types, the
simple conversion rule with binary operators (such as + and /) is that the variable on the
left determines the type of the expression. For example,

declare x = 4;

declare y = 4.0;

print x/3; // output is 1

print y/3; // output is 1.333333

The rule becomes more complicated with conversions between strings and numbers
because cScript does some interpretation. When converting from a number to a string,
cScript represents digits as numeric strings (3 becomes "3"). When converting from a
string to a number, the string is converted to a number if the string can be interpreted as
anumber. If the string evaluates to anything but a number, it is converted to zero (33"
becomes 33, "33abc" also becomes 33, but "abc33" becomes 0).

If an object is converted to a string, it becomes the string "[OBJECT]". For example,

declare a = new | DEApplication; // create a new
/1 | DEApplication object

"Hel | o"; /] create a new string variable
/1 "add" the object to the string,
/1 converting the object to a
/] string

declare b

declare ¢ = b + a;
print c; [l prints "Hell o[OBJECT]"

cScript modules and scope

A cScript sourcefile (an .SPP file) isamodule. A variable declared or used for the first
time at the module level is global to that module, and a variable declared or used for the
first timeinside ablock islocal to that block.

Because you don't have to declare variables as you do in C++, it's easy to mistakenly
use aglobal variable in afunction or class when you intend it to be local. It's safest to
use declare with variables that you intend to be local. For example,

declare X = 2; /1 Modul e scope X

declare Y = 4; /1 Modul e scope Y

Func1(X) { /1 Parameter (local variable) X
Y = "hel |l 0"; /1 nodifies global Y.

}

Func2(X) { /1 Parameter (local variable) X
declare Y = "hello"; // New local variable Y created

/!l and set to "hello".

}

Variables created at the module level (not in afunction, method, class, control structure,
or block) are global variables of the module. They are not normally accessible to other
modules. To access a variable defined in module A from module B, three things must
occur:

. Both Module A and Module B must be loaded.
. Thevariable must be declared export in Module A, at module scope.
. Module B must contain an import statement for the variable, at module scope.

Example

Paradigm C++ Obiject Scripting Guide

Modul e A
declare varOne; [//A global variable accessible only in Mdule A
export var Two; /1A variabl e accessi bl e outside Mdule A

Modul e B
i nport var One; [/ Trying to link with exported varOne from
/I anot her nmodul e (not varOne in Mdule A
i mport var Two; [/ Trying to link with varTwo in Mdule A

var One = 33; /] Causes the run-tinme warni ng "Cannot | ocate
[l external variable var(One".

var Two = 33; /I Changes the value of varTwo in Mddule Ato
/133.

cScript statements

Asin C++, statements must terminate with a semicolon. Y ou can group multiple
statements by surrounding them with braces. Variables declared within braces are local
to those braces and go out of scope when the closing brace is reached. Y ou can chain
expressions with the comma operator.

cScript operators

The standard C operators are evaluated using the same precedencerulesasin C.
Operations may be grouped by using parentheses. The operators supported by cScript
are in the Precedence of Operators.

Strings may be concatenated with + and +=. Asin C++, you can use the colon (:) to
derive anew class from an existing class. There is a new operator in cScript that defines
aclosure, the :> operator. You can use the operator ?? to test for elements of classes and
arrays.

cScript strings

cScript strings (note the lowercase 's") work much the same as C++ strings. A string is
aseries of characters delimited by quotation marks. In cScript, astring's length is
limited to 4096 bytes. cScript automatically keeps track of the ends of strings,
appending \O' (NULL) is unnecessary.

cScript recognizes many C++ formatting characters within strings such as new line (\n)
and horizontal tab (\t).

Besides the a phanumeric and other printable characters, you can designate hexadecimal
and octal escape sequences much as you can in C++. These escape sequences are
interpreted as ASCII characters, allowing you to use characters outside the printable
range (ASCII decimal 20-126).

The format of a hexadecimal escape sequence is \x<hexnum>, where <hexnum> is up
to 2 hexadecimal digits (0-F). For example, the string "R3" can be written as "\x523" or
"\x52\x33".

Octals are a backslash followed by up to three octal digits (\000). For example, "R3" in
octal could be written "\1223" or "\122\063".

cScript arrays

cScript supports two types of arraysin cScript, bounded and unbounded (associative).

Chapter 2, Using cScript 21

22

. Bounded arrays
. Associdtive arrays

Bounded arrays

cScript bounded arrays are similar to C++ arrays and are created with a size specifier.
Run-time warnings will occur if you attempt to access a bounded array out of bounds.
Bounded arrays use a zero-based index; that is, the first element of an array is element 0
and the last element iselement size - 1.

Y ou can declare abounded array by using either of the following syntax variations:
X = new array [10];

array x[10];
Access is then as you would expect:
x[0] = 5;
x[1] = "a string";
x[2] = Foo;
x[3] = x[2];
Y ou can aso create a bounded array using the following initialization list syntax:
z[] = {"one", "two", x}; //Note the use of braces, {},

/lrather than brackets, [].

In this case, "one", "two", and the value of x are the valuesin the array, and the array
indexes start at 0 and go to 2. For example,

print z[O0]; [/ Prints one
print z[1]; [IPrints two
print z[2]; [/Prints the value of x

Y ou cannot initialize variablesin an array initialization list: Y ou must initialize them
elsewhere. For example, you cannot define an array as follows:

z = {x=1, y=3, slogan="No nore woe"} //I1llegal syntax
In this array definition, assignments to X, y, and slogan must be elsewhere in your code.

An attempt to assign values beyond array bounds causes a run-time warning, but it
works. Such an assignment doesn't increase the size of the bounded array to match the
new index, but rather creates an associative array that is attached to the original
bounded array. Y ou can use any value as the new index. For example,

X[15] = "New i ndex"; /I Run-tinme warning,
[/ creates new associ ative array.
X[16] = "Another new index "; //Run-time warning, adds to
/ l associ ative array.
print x[15]; [1Prints New i ndex
print x[14]; [/Prints UNIN Tl ALI ZED (i ndex not in

/larray, so no value is assigned)

Y ou cannot use a negative number to index into an array. Doing so causes a syntax
error.

Associative arrays

Y ou create associative arrays without a size specifier and access them on demand. They
grow as required. Associative arrays are typically sparse and do not perform aswell as
bounded arrays.

To create a new associative array, use one of the following syntax variations:

Paradigm C++ Obiject Scripting Guide

Z = new array[];
array z[];

Associative arrays can take string as their indexes as well as numbers. Typically, the
index of an associative array element is something that is related to the data the el ement
holds. For example:

H story = new array[];

H story["President"] = "Bill dinton"
H story["Vice President"] = "A Core"
H story[1776] = "U. S. | ndependence"

H story[1789] = "U S. Constitution"

Y ou aso create an associative array when you make assignments beyond the bounds of
abounded array. See the previous section for more information.

cScript prototyping

Forward referencing for functions and methods is not supported. Because scripts are
interpreted in a single pass at run-time, classes and methods and the methods in them
must be defined before they can be used. There is no function prototype mechanism.
This is because when the parser sees afunction call, it needs to know the
implementation at that time, whereas at compile-time, a C++ compiler only needs to be
able to match the name, number of parameters, the types of the parameters and the
return values. It does not really need to know anything internally about the function.

Parameter counting and type conversions are performed at run-time. cScript will pad
(with NULLYS) or truncate the argument list as necessary at run-time to ensure that the
correct number of argumentsis available on the stack.

cScript flow control statements

The following flow control statements work in cScript asthey do in C++:
break continue do

else if for

return while

The behavior of switchis dightly different. Because cScript is not a compiled language,
the expression is checked against each case exactly asif evaluating an if-else if
construct. This means that the cases need not be constants - they may be any expression
(including function calls). It also means that if a default caseisdesired, it must be the
last case.

Switch example

Chapter 2, Using cScript 23

24

switch(soneNunber) {

case 3: /I Execution continues to case bar()
case MyFunc():

DoSomeSt uf f () ;

/'l No break. Even if this case executes,

/!l the next case is still eval uated.
case WY. Z

DoSonet hi ngEl se() ;

br eak; /[l If this case executes, switch ends here.
case 42:

DoltAl();
def aul t:

/1 Anyt hing not matching previous cases conmes through here

}

cScript classes

cScript supports single inheritance. There is no support for overloaded methods
(member functions). In addition, there is no hiding of members: all properties (member
data) and methods are public and virtual. Y ou can override an instance of aclass (an
object) with on and pass, and you can bind objects events (function calls) together in an
event handling chain using attach. See "cScript event handling” on page 26 for more
information.

All methods must be defined entirely in the class definition. A class definition may be
nested in another class definition. The name of that nested class exists in the scope of
the outer class, and is thus protected from accidental collision with identifier namesin
the module and global scopes. Y ou can instantiate a nested class with the following
syntax:

/1 dass Inner is nested in class Quter
i nner bj ect = new Inner fromQuter;

There are two ways to modify the behavior of methods in script classes:

. Derive anew class from the script class, overriding the methods whose behavior
you want to change. Use this technique when you want to provide new behavior for
acollection of objects.

. Override an instance of aclass by using an on handler or attach to hook one of the
object's methods. Use this technique when you want to tweak the behavior of a
particular instance of aclass.

By the same token, there are two ways to modify the behavior of propertiesin script

classes:

. Deriveanew class from the script class, overriding the properties whose values you
want to change. Use this technique when you want to provide new behavior data
values for a collection of objects.

. Override an instance of a property by using getters and setters. Use this technique
when you want to tweak the behavior of a particular instance of aclass.

Declaring a class

There are no C++ -like constructors in cScript. (Defining a method with the same name
asthe class, as you do in C++, does not make it a constructor.) Instead, code embedded
in the class declaration that is not part of a method declaration is considered constructor
code. For this reason, constructor arguments must be defined in the class declaration.

Paradigm C++ Obiject Scripting Guide

Member functions must be defined entirely in the class declaration. Y ou cannot declare
amember function in a class and then define it later in the program.

There are destructorsin cScript, and they work as they do in C++. (Defining a method
that starts with atilde (~) and has the same name as the class makes it a destructor.)
Destructors are called when the object is being destroyed.

For example, the following classis declared without parameters:

cl ass noPar ans{

decl are aMenber;

decl are anot her Menber ;

Funcl(); /1 constructor code

for (y =1, y < 10; y++) // nore constructor code
print "hello";
~noPar ans() {
print "A noParans has been destroyed.";

}
b
The following classis declared with parameters:
cl ass Base(parntne, parniw) {
declare X = parmne; // a nenber variable

declare Y = parnifwo; // a menber variable
Met hodOne() {

X=X+Y,
}
Anot her Met hod() {
}

b
The following class is inherited from the class Base:

/1 aParm and cParm are passed through to

/1 Base as parntne and par nTwo.

class Derived(aParm bParm cParm: Base(aParm cParm ({
declare Z = bParm

b

Initialization arguments must be explicitly passed to the base class. They must also be
stated in the derived class parameter list because that isthe list referenced when a
derived class object is instantiated.

Creating instances of cScript classes

Objectsin script are created in one of two ways (assuming an aready defined class
Foo):

X = new Foo();
or
Foo x();

As with any declaration, you can use the declare and export keywords when you create
objects. For example,

declare x = new Foo();
export Foo y();

cScript has automatic garbage collection. When an object goes out of scope, it is
deallocated. Objects can be explicitly deallocated using the delete command. For
example:

Chapter 2, Using cScript 25

declare x = new Foo(); // allocate new object
del ete x; Il explicitly del ete object

Because cScript is untyped, you can destroy an object by assigning it another value. For
example, cScript does not complain when you assign 0 to the object x as follows:

declare x = new M ass();// create an object of class Myd ass
X = 0; /1 object overwitten and replaced with 0

Discovering cScript class and array members

You can use ?? and iter ate to discover the contents of classes and associative arrays.
With ?? you can test individual membersto see if they exist or if a certain value appears
inaclassor array. With iterate, you can see all members of aclass or array.

About closures

Closures provide a means to obtain a reference to a method or property without
invoking it. They provide functionality analogous to function pointersin C++.

Use the closure operator (:>) to bind a classinstance (an object) with one of its
methods in asingle reference. Y ou typically use the closure operator in on handlers and
attach and detach statements to handle a method call. Y ou can assign aclosureto a
variable and use that variable anywhere you would use the closure. An object method
call hooked using an on handler, or attached in an attach statement, need not even exist
in expanded or modified dynamically at run-time without effecting the objects
underlying class definition. It isimportant to note where event handlers are defined for
specific object instances, these handlers in no way effect any other existing objects of
that type. Only when handlers are defined within a class definition itself using the this
reference do all objects of that type inherit that event handling behavior.

Closures are powerful features of cScript. Y ou can pass a closure as afunction
argument, for example. Since it represents a member of a class instance (an object), it
carries athis pointer for that object with it and has al of the object's context
information.

Another use for closures isto declare arrays of closuresto use like arrays of function
pointers, only the functions need not do anything unless they happen to be defined.
Calling an undefined closure is not an error - nothing happens because there's nothing to
call.

cScript event handling

26

cScript uses an event handling model to override class behavior. Given an instance of a
class, you can modify its behavior by "hooking" a specified method and supplying an
alternative implementation. Y ou can use either an on handler or attach and detach to
accomplish this.

. Using on handlers

. Using attach and detach

Using on handlers

Y ou can use an on handler to hook a method call for an instance of a class and override,
or enhance, its functionality. Y ou need not call the hooked method inside the on
handler: Any code in the on handler will be executed instead of the hooked method. If
you want to invoke the original method, use pass(). If the hooked method returns a

Paradigm C++ Obiject Scripting Guide

value, that or any other value can be returned by assigning the return value of passto a
local variable, including areturn statement in the event handler.

In the on handler header, you use the closure operator (:>) to bind a class instance (an
object) with a method of the object as a closure reference.

Declare AQ ass Mybject; [// or MyQhject = new Acl ass;

/1 Gven this instance of class Ad ass, you can intercept one
/1 of its nethods.

on MyQhj ect: >Met hod1(par ml){
...
/1 Programrer may provide some preprocessing here.
/'l Programrer may del egate to original inplenentation
/1 or get original return value with pass().

Declare rv = pass(parml); // call M/Object. Methodl(parml)
/1 Progranmmer may provide sone postprocessing here.

return rv;

}

In order to be bound to an existing object method, the number of parametersin the on
handler definition must match the hooked method. Once invoked, however, pass() will
call the hooked event regardless of how many arguments it passes. Aswith all function
calls, cScript will ensure that the proper number of arguments are passed, truncating or
padding as needed.

While inside an on handler, there are afew things to keep in mind:

. Youaren't actualy in amethod of the object. Simple function calls resolve to their
global counterparts, not to the object's methods. If you want to call the method bar ()
from the Method1() on handler, you must explicitly denote the object. For example,

on MyQbj ect: >Met hod1(){
MyQbj ect . bar () ;

. Another way to explicitly denote a method of this object is to use the shorthand dot
notation, which relies on the fact that, in an on handler, the dot is a shortcut for the
controlling object. For example (given an object MyObject that has methods
Method1() and bar()),

on MyQbj ect : >Met hod1() {
.bar();
}

Using attach and detach

Anon handler is not dynamic, but stays in effect once established. If you want to make
dynamic changes to class instances, you can set up dynamic on handlers using the
closure operator with attach and detach. Attached closures are used to set up alinkage
between any member (method or property) of an instance of one class with any member
from an instance of another class.

Example

Chapter 2, Using cScript 27

28

X = new Foo(); /1l Create an instance of Foo called x
/1 and assune Color() is a nethod.

X. Color(); /1 Call x.Color().

y = new Bar(); I/l Create an instance of Bar called y
/1 and assune Notify() is a nethod.

y. Notify(); /1 Call y.Notify().

attach y:>Notify to x:>Color; // Wen x.Color() is called,

/1 instead call y.Notify().
X. Col or(); [l Call y.Notify().

/1 NOTE: In y.Notify() a pass() wll
/1 now del egate back to x.Color().

detach y:>Notify fromx:>Color; // unlink the two objects
X. Color(); /1 Call x.Color().

Controlling access to cScript properties

Y ou can use on handlers to control what happens when users get (read) or set (write)
the values of properties. These two types of on statements are called getters and setters.
This feature allows you to execute some code when a property is accessed instead of
having to implement the property as a method.

. Using getters

. Using setters

Using getters
The syntax for a getter is:

on obj ect: >property{
[optional pre-processing statenment(s)]
return [pass()| SoneVal ue];

}

Since no value is passed to the handler, no parameter is needed. There must be a

r et ur n statement because a getter is always invoked when the object's property is
used in a statement that needs to obtain its current value. When the user accesses the
property (for example, on the right hand side of an assignment operator or as an
argument in a print statement), the on-read property event handler is called and its
statements are executed.

Y ou can use a getter for various purposes, including:

. Restricting access to a property.
. Executing related methods or modifying related properties.
. Performing computations on a value before returning it.

Example
The following getter hides the property Hiddenl:

Paradigm C++ Obiject Scripting Guide

/| GETTER SPP
i mport | DE; /[llnport IDE, an |DEApplication object

class Myd ass () {
decl are Hi ddenl
decl are Publicl

"H dden: can't see this one";
"Public: can see this one";

!/l Getter
on this:>H ddenl {
return NULL;

}
} // End Myd ass decl aration

getter() {
decl are MyCl ass nyobj ;

| DE. Message (nyobj. H ddenl);
[/ Prints nothing
| DE. Message (nyobj. Publicl);
[/Prints "Public: can see this one"
}

Using setters
The syntax for a setter is

on O assl nstance: >property(parameter){
[optional pre-processing statenent(s)]
[pass(paraneter | SomeVal ue);]
[opti onal post-processing statenent(s)]

Unlike the getter syntax, parentheses and a parameter are required for the setter to
obtain the value intended to be assigned to the hooked object property. If you want the
handler to be able to set the property (rather than simply block write access to it), there
must be a pass(); statement that sets the property's value. When the user tries to set the
property (for example, when the property is used on the left hand side of the assignment
operator obj ect . property = 1), theon handler code executes.

Some uses for a setter are

. Torestrict values of a property to a certain range.

. Tolimit accessto a property (or even make it read-only).
. To execute related methods or modify related properties.
. To perform computations on avalue before setting it.

. To convert user-supplied data to an internal format.

Example
In the following example, the setter uses the value set in radius to calculate and set the
values of circumference and area. It then passes the user's value on to radius.

/1 SETTER SPP

i nport | DE; //lnmport |DE, an | DEApplication object
declare Pl = 3.141592654;

class Grcle(rad) {
decl are radius = rad;
decl are circunference;
decl are area;

Chapter 2, Using cScript 29

30

!l Setter
on this:>radius(x) {
if (x >0 {
circunference = Pl * 2 * x;
area = Pl * x * x;

pass(Xx);
el se
| DE. Message("Error: Radius nust be greater than zero.");
}
/1 Met hods
}
ShowPr operties() {
| DE. Message("radius =" + radius +
" circunference ="
+ circunference +
", area = " + area);
}
} /1l End of Grcle class declaration
declare GCrcle obj(1); [llnitialize radius to 1.

obj . ShowProperties();

//Call the | DEApplication method Sinpleb alog to pronpt
/lthe user for input and get a value for radius.

Declare radius = I DE Sinpl eD al og("Enter a radius", "10");

obj.radius = 0 + radius; //Convert string to integer
obj . ShowProperties();

cScript pass by reference

Parameters passed to methods and functions are passed by value unless explicitly made
to be passed by reference. (Passing by value does not alow changes to the value of the
caller's variable, while passing by reference does.) For example,

PassByVal ueFuncti on(aVal uePar arnet er) {
aVal ueParaneter = 100; // Value of aVal ueParaneter changed to
/1 100. Caller's value unnodified.
}

PassByRef er enceFunct i on(&aRef er encePar anet er) {
aRef erenceParaneter = 100; // Value of aReferenceParaneter
} /1 changed to 100. Caller's val ue
/1 al so updated

If you want to pass a variable by value in a pass-by-reference parameter, put it in
parentheses. For example,

x = 10;

PassByRef er enceFunction((x));

print x; [l Prints 10

PassByRef er enceFuncti on(x);

print x; [l Prints 100

Paradigm C++ Obiject Scripting Guide

cScript built-in functions

The cScript language provides the following built-in functions:

. attach

. cal

. detach

. initialized
. load

. module()
. pass

« print

. reload

. run()

. select

. typeid

. unload

. Yyied

cScript reserved identifiers

cScript reserves identifier names starting with two underscores as internal to the
language. There are additional identifiers reserved for future use. The following
identifiers are reserved and are not available for use in your scripts:

__break Factory
__const false
__cdecl FALSE
__error library
__pascal method
__refc NULL
__rundebug object
__runimmediate property
__stack system
__stdcall true
__warn TRUE
event

cScript named arguments

If you don't know the order of arguments of a function, you can use named arguments
when you call the function and cScript will ensure that the function receives the
arguments in the correct order. To use named arguments, call the function with the
parameters named and indicate the values you want to pass with a colon (:), as follows:
argumentl:valuel],argument2:value?[,...]]. You can put these parameters in any order.
For example,

Chapter 2, Using cScript 31

32

Set Pos (row, colum) {
print "row=", row, ", colum =", colum,;

}
Set Pos (5, 10); [l Qutputs "row
Set Pos (colum:5, row 10); [l Qutputs "row

5, colum = 10"
10, colum =5"

cScript error handling

cScript uses a mechanism similar to on handlers and closures to provide error handling
with proper object cleanup. The technique requires that you create an error handling
classin some module. An error israised by invoking an exception method on an object
of the error class. That method can do whatever you want (display a message, or
attempt to correct the problem), and then it can return. If it returns, control is returned
to the point at which the caller was invoked, thus exiting the caller immediately. This
effectively terminates the entire call tree. For example, a module providing error
handling contains the following code:

cl ass ErrorHandl er{

errhand = new ErrorHandl er();

onerror FileQpen(terninate) fromerrhand {
print "FileQOpen nmust have failed";
i f(termnate)
return

}

In some other module there is the following code:

i nport errhand;

Qpenl t () {
//Must be able to find the data file

TryToOpen("foo.dat", TRUE)

/1 Don't have to have a config file

TryToOpen("foo.cfg", FALSE)

print "No probl em openi ng anythi ng";
}

TryToOpen(fil enane, continueCRAbortlfFailed) {
declare filehject = Fil eOpen(fil enane);
if(fileObject == NULL)

errhand. Fi | eQpen(conti nueOr AbortlfFail ed);
}

Testlt()

{
Qpenl t();
print ("So far so good");

}

At run-time, when someone calls Testlt(), if the file FOO.DAT cannot be opened,
control will never be returned to Openlt() or Testlt(), the open on FOO.CFG will never
be attempted, and "So far so good" will never be printed. Instead the message "quitting"
will be printed. If FOO.DAT can be opened, an attempt is made to open FOO.CFG. If
file Openlt() was called, Testlt() will immediately print "So far so good". If FOO.CFG
can be opened, the message "No problem opening anything” is printed, and control is
passed (asis normally the case) back to Testlt().

Paradigm C++ Obiject Scripting Guide

cScript access to exported DLL functions

Because all needed functionality is not directly available through the language or
exposed by an object in the system, cScript allows you to access afunctioninaDLL
directly through script by using code similar to the following:

/'l expose DLL entrypoints
import "foo.dl " {
int _ pascal FooFunc(short, char, unsigned, |ong);
void Dolt();
}
I/ directly access the DLL calls
i f (FooFunc(l1l, "hello there",2,3))
print "FooFunc() succeeded";
el se
Dol t ();

ThisDLL call usesthe data type keywords short, char, unsigned, and long. Other data
type keywords available for use in DLL calls are void, int, bool, and const.

cScript supports the calling conventions __cdecl, _ pascal, and __stdcall.

cScript and OLE2

cScript to OLEZ2 interaction
If an automatabl e object has been exposed in the OLE2 registry, its functionality may
be accessed from cScript by using the special OleObject class. For example,

/'l Creates an object with all the methods of Mcrosoft Wrd BASIC
wor dBasi ¢ = new O eOhj ect ("word. basic");

/1 Call the Wrd BASIC function Applnfo() to find out what version
/1 of Wrd is installed on the system

print wordBasi c. Appl nfo(2); /1l Returns "7.0" for Wird version 7.0

OLEZ2 to cScript Interaction

The IDE registers the automation name Paradigml DE.Application with the OLE2
registry during initialization. From any automation controller, the IDE's functionality
may be accessed by creating a ParadigmIDE.Application object and using it. For
example, from a Visual dBASE program you could do the following:

Par Cppl DE = NEW d eAut od i ent (" Par adi gm DE. Appl i cati on")
Par Cppl DE. Pr oj ect QpenPr oj ect ("fo0o0.ide")
| F(Par Cppl DE. Proj ectBui |l dAI'1 ())
Par Cppl DE. Fi | eSend("success notification")
ELSE
Par Cppl DE. Fi | eSend("failure notification")
ENDI F

About the IDE Class Library

In the Paradigm C++ integrated development environment (IDE), all user commands
are directly mapped to a corresponding script. Every IDE window that uses the
keyboard API has each keystroke mapped to a script. All main menu commands have a
mapping to a script. These scripts are supplied by Paradigm and provide standard
behavior that you can enhance to provide your own custom environment. If you want to
modify the behavior of the IDE, you can write scripts that interact with the exposed IDE
components.

The primary exposed component is an object called IDE. It isan IDEApplication object.

Chapter 2, Using cScript 33

34

While the IDE object is an instance of the IDEApplication class, it has capabilities far
beyond those of anormal instantiation of IDEApplication. Many additional properties
and methods have been added to the IDE which greatly increase its power and
flexibility. Since these additional features are implemented in cScript, you are freeto
use and exploit these additional capabilities. To learn about these capabilities, and the
syntax to use them, study the cScript source code for the IDE in the SCRIPT
subdirectory.

Manipulating the keyboard

Y ou can access keyboard features through a keyboard manager, implemented by the
global KeyboardManager object. The keyboard manager manipulates Keyboard objects
(instantiations of the class Keyboard).

KeyboardManager manages individual component keyboards, such as that of the editor,
the project view, and various other subsystems. This implementation allows support of
BRIEF functionality through script simulation without predefined classes for each of
the individual IDE components. Each component has a defineable keyboard. The
desktop has a keyboard assignment that acts as a global assignment. If akey isn't found
in the local keyboard, the desktop keyboard is searched. If the key assignment isn't in
the desktop's keyboard, the default internal mapping is used.

The keyboard manager operates on the assumption of a set context. A derived classis
used in acall to SetContext() to specify the current object to be used as alocal scope.
Since different macros may mean different things to different components, this
mechanism provides a simple, straightforward approach to localizing functionality. For
example, classes A and B both have a member function called Search(). If class Aisthe
current context, class A's Search() member is called. The same goes with class B. If no
context is set, then aglobal Search() function is accessed.

Another keyboard manager responsibility is key recording. A call to the SartRecord
and StopRecord members populates a Record object with key sequences. An unlimited
number of Record objects can be named and iterated. Because Record objects are
constructed outside the context of the keyboard manager and may be built
programatically, recordings can be saved to disk and restored, and keyboard sequences
can be simulated through script.

The IDE object contains a ReadOnly member that holds the value of the
KeyboardManager. New script instances may be created; however, the will all
reference the same internal data and changes to one will be reflected in all.

Manipulating the IDE editor

The IDE editor's functionality is accessible at alow enough level that you can mimicin
script the behavior of popular editors (such a BRIEF, Epsilon, vi, and WordStar). The
editor itself is accessed through an object instantiated from the Editor class. Because the
IDE instantiates an Editor object itself, any Editor objects you instantiate points to this
internal IDE object; therefore, modifications in one Editor object's options are reflected
in all Editor objects.

Further editor access is provided through the following classes:

BufferOptions Controls characteristics of the EditBuffer, such as margin, tab rack,
syntax highlighting, and bookmarks.

EditBlock Cut, copy, delete, dimensions, and style.

Paradigm C++ Obiject Scripting Guide

EditBuffer
EditOptions
EditPosition
EditStyle

EditView
EditWindow

Chapter 2, Using cScript

Access status, save, describe, time/date stamp.

Holds characteristics of a global nature, such as the insert/overtype
setting, optimal fill, and scrap settings (how to handle blocks cut or
copied from Editor buffers).

L ocation-dependent operationsin aview or buffer: cursor movement,
text rip, search, insert.

Provide named styles that override settings in a buffer or the entire
editor.

Access to buffer, visual cursor manipulations, zoom.
Pane control, accessto views.

35

36

Paradigm C++ Obiject Scripting Guide

Chapter

3

cScript Language Reference

cScript keywords and functions

array

Keywords are reserved for use in the cScript language and cannot be used as names of
variables, methods, or classes or as any other identifier names.

cScript

Use this keyword to declare an array.

Syntax 1
array_var = new array[[size]];
array array_var|[[size]];

size The number of elementsin the bounded array. If size isomitted, the array is
associative.

Syntax 2
array array var|[[size]] = {elenmentl], element2[, ...]] };

size Anarray created with this syntax aways takes the number of elementsin the
declaration list. sizeisignored.

elementl... Creates abounded array with contents elementl, element2, and so on.
Element numbering starts at 0 and continues to size - 1. The number of elements
determines the size of the array and overrides sizeiif it is specified.

Description

In cScript, you can create two types of arrays, bounded and associative. Bounded arrays
are similar to C++ arrays. Asin C++, they use a zero-based index. (Thefirst element is
O and thelast issize -1.) Associative arrays are grown as necessary. If you assign more
members to a bounded array than its size, the rest of the array becomes an associative
array. If you create an array with alist of elements (Syntax 2), it is a bounded array and
its size is the number of elements. Arrays can contain data of any cScript type,
including objects and other arrays. An array with other arrays as elementsis multi-
dimensional. Elements of the contained arrays are accessed using additional sets of
square brackets as shown in the example below.

Example

/1l Creates a bounded array of 10 el enents
decl are nyArray;

myArray = new array[10];

myArray[1] = "Hell o";
myArray[2] = "Wirld";
print nyArray[0], nyArray[1]; [l prints "Hello Wrld"

/'l Creates an associative array

Chapter 3, cScript Language Reference 37

decl are nyAssocArray;

myAssocArray = new array|] /'l no size declared
myAssocArray["El emrent 1"] = "One";

myAssocArray["El enent2"] = "Two";

print nmyAssocArray["El enent 2"] [l prints "Two"

/1l Creates a nultidinmensional array

declare array multi Array[] = {{1,2,3}, nyArray, nyAssocArray};

print multiArray[0][2], multiArray[1][0], multiArray[2]["El enment2"];
/[l Prints: 3 Hello Two

attach cScript
Use attach to link a method of an instance of one class to a method of another instance.
Syntax
attach O asslnstl:>met hodl to d asslnst2: >net hod2

break cScript
Use the break statement within do, while, for, and iterate loops, or within aswitch
construct, to pass control to the first statement following the innermost enclosing brace.
Theimplementation of break in cScript isidentical to the implementation in C++.
Syntax
br eak;

breakpoint cScript
Syntax
br eakpoi nt ;
Description
Use the breakpoint statement to stop the program and pass control to the script
debugger. If the debugger is not active, breakpoint isignored.

call cScript
This function directly invokes a closure.
Syntax
call d osureNane(argunentlList);
Description
call permits you to directly execute a closure. The closure is invoked using the same
arguments as the method normally uses. There is no method for obtaining areturn value
when calling through closures. If the method returns a value, it will be ignored.
Example
/1 Shows creating a closure and assigning it to a
/1 variable, then calling the closure directly.
Cass Md ass {

met hod1(pl, p2)
38 Paradigm C++ Obiject Scripting Guide

print pl, p2;

}
b
decl are Myd ass instance;
decl are closure = instance: >net hodl; // declare the closure
call closure("Hello", "world"); /1 output is Hello world
case cScript
Use the case statement in a switch statement to determine which statements execute.
Syntax
switch (switch_expression){
case expr ession :

[statenentl;]

[statenent 2;]

t br eak;]

[def aul t
[statenent ;]
[statenent 2;]
-]
}
switch_expression Any valid cScript expression, including afunction call. Unlike
C++, the switch_expression is evaluated for each case in atop-down fashion until a
match is found or no more case statements remain.
expression Any valid cScript expression, including afunction call.
statement One or more statements to execute.
Description
A case statement is the branch condition of a switch statement. If the value of the
expression following case matches the value of switch_expression, the statements up to
the next break or the end of the switch execute. Note that because cScript is a late-
bound language, expression does not have to be aliteral asin C++, nor does the
expression have to be numeric. Other than this difference, case behaves exactly asit
doesin C++.
class cScript
Use the class keyword to define a cScript class.
Syntax
class classNane [(initializationList)]
[: based assNanme[(init_expression_list)]] { nmenber list}[;]
className The name of the class. className - any name unique within its
scope

baseClassName The class that this class derives from (optional). of isa synonym

for the : separator preceding this identifier.
initializationList Theinitial constructor values for the class, if any.
initExpressionList ~ Theinitialization for the class instance.

Chapter 3, cScript Language Reference 39

40

member List Declarations of the class's properties, methods, and events.

Description
A class declaration in cScript is similar to a class declaration in C++, with afew key
differences.

There are no C++-like constructorsin cScript. (Defining a method with the same name
asthe class, asyou do in C++, doesn't make it a constructor.) Instead, executable

statements embedded in the class declaration that is not part of a method declaration is
considered constructor code. For this reason, initialization parameters must be defined
in the class declaration. The base classis awaysinitialized first, before the child class.

Only one base class can be initialized in a derived class declaration since cScript does
not support multiple inheritance. Where a class is defined as being derived from a base
class and the base class requires initialization values, they must be passed to the base
class through the derived class's declaration. The base classinitializer is essentially an
implicit constructor call, and as such, expressions are allowed for its arguments.

When instantiated, the number and type of initializersis not checked (that is, function
overloading is not supported). Arguments are padded and/or truncated the same as they
are with functions.

Methods must be defined entirely in the class declaration. You can't just declare a
member function in a class and then define it later in the program. All properties and
methods of the class are public.

Destructors in cScript work as they do in C++. (Defining a method that starts with a
tilde (~) and has the same name as the class makes it a destructor.) Destructors are
called when the object is being destroyed. Destructors may not have parameters.

Where inheritance is used, the access method for base class members is the same as for
those of the derived class. However, if aderived class member has the same name as
one of the base class, you must use super must be used to clearly specify the reference.

A class cannot be instantiated as part of its declaration asin traditional C structs, so a
semicolon is optional at the end of the declaration.

Example
/1 The followi ng class is declared w thout paraneters:
cl ass noPar ans{
decl are aMenber;
decl are anot her Menber ;
Funcl(); /1 constructor code
for (y =1, y < 10; y++) // nore constructor code
print "hello";
~noPar ans() {
print "A noParans has been destroyed.";

}

/1 The following class is declared with paraneters:
cl ass Base(parntne, parniwo) {
declare X = parmne; // a menber variable
declare Y = parnifwo; // a nenber variable
Met hodOne() {

X=X+Y,
}
Anot her Met hod() {
}

Paradigm C++ Obiject Scripting Guide

continue

/1 The following class is inherited fromthe cl ass Base:
/1 aParm and cParm are passed through to
/1 Base as parntne and par nTwo.
class Derived(aParm bParm cParn) : Base(aParm cParn) {
declare Z = bParm
}
/1 exampl e using the Derived cl ass:
decl are obj = new Derived(1, 2, 3) // 1&3 passed to Base
/| Base constructed before

cScript

declare

Syntax
conti nue;

Description

Use the continue statement within do, while, for and iter ate loops to pass control to
the end of the innermost enclosing brace, alowing the loop to skip intervening
statements and re-evaluate the loop condition immediately. The behavior of continue in
cScript isidentical to C++.

cScript

default

Use declare to ensure that a variable islocal to the current scope and does not override
avariable from an enclosing scope.

Syntax
declare identifier [optional identifier syntax][, identifier...];

Description

The scope of avariableisthe block in which it isfirst used in and any blocks nested in
that block. If you are in a nested block, it is possible that a variable you think you are
using for the first time has already been used in the enclosing block. What happens in
that case isthat you override the enclosing block's variable value (and possibly its type
aswell) with what you mistakenly think isalocal variable. To ensure that this side
effect doesn't occur, use declare with any variables you intend to be local to a block.
Although not needed, declare can aso be used in conjunction with the export and
import declarators. Although multiple variables, objects, and arrays can be declared in
a single statement, they cannot be mixed in the same statement.

cScript

This keyword indicates the statements to process in a switch if none of the case
conditions apply. It isoptional. If you include a default, it must be the last condition in
the switch. If you do not include a default statement and none of the case conditions
apply, none of the statements in the switch are executed. The behavior of default in
cScript isthe same as C++.

Syntax
switch (switch_expression){
case expression :
[staterment list;]

.[b.reak;]

Chapter 3, cScript Language Reference 41

delete

[defaul t :
[staterment list;]

]

cScript

detach

This command deletes an object or array and causes an object's destructor, if any, to be
called. Deleing an array does not require "[]" in the delete command, as it doesin C++.
Unlike C++, cScript has automatic garbage collection. Therefore objects are
automatically deleted when there are no longer any references to them, or when they go
out of scope. Use delete only when you need to explicitly deallocate an object before
the references to that object have been destroyed.

Syntax
del et e obj ect _nane;

object name The name of the object to delete.

Description

Unlike C++, cScript has automatic garbage collection. Therefore, objects are
automatically deleted when there are no longer any references to them, or when they go
out of scope. Use delete only when you need to explicitly deallocate an object before
the references to that object have been destroyed.

cScript

do

Use detach to detach a method instance of one class from a method instance of the
same or another class when the two were previously linked using attach.

Syntax
det ach d assl nst 1: >net hod1l from O assl nst 2: >net hod2

Description

If you want to make dynamic changes to class instances, you can set up dynamic on
handlers using the closure operator with attach. This technique allows you to supply an
alternative implementation for an instance method. In other words, you can override an
object's method and provide an alternate implementation of that method at run-time,
without affecting the class from which the object was instantiated. The override remains
in effect for the lifetime of the object or until the link is broken using detach.

cScript

42

The do statement executes until condition becomes FALSE. Since the condition tests
after each the loop executes statement, the loop executes at least once. The behavior of
doin cScript isthe same as C++. break will cause loop execution to be terminated,
while continue will cause the condition to be evaluated immediately without any
intervening statements being executed.

Syntax
do staterment while (condition);

Description
statement Executed repeatedly as long as the value of condition remains TRUE.

Paradigm C++ Obiject Scripting Guide

export cScript
To make it possible to access a variable across modules, it must be declared export in
the module that declaresit and import in another module that needs access to it.
Syntax
export vari abl e_nane;
Description
Variables created at the module level (not in afunction, method, class, or control
structure) are global variables of the module, but are not accessible to any other
modules. To access module scope variables defined in module A from module B, three
things must occur:
. Both module A and module B must be loaded.
. The module scope (global) variable must be declared export in Module A.
. Module B must contain an import statement for the variable.
Example
/1 Exanpl e of export and inport
/'l FILEl. SPP
export myExVar; /] export variable for use in other nodul es
myLocal = 10;
myExvar = 10;
/'l FILE2. SPP
i nport nyExVar; /1 inport variable exported by another nodul e
print nylLocal; [l prints [UNI NI TI ALI ZED]
print nmyExVar; [l prints 10
for cScript

Thefor statement executes until condition becomes FAL SE. Since the condition tests
before each the loop executes statement, the loop may never execute. The behavior of
for in cScript isthe same as C++.

Syntax
for ([initialization] ; [condition] ; [expression]) statenent

Description

The cScript for statement works the same as a C++ for statement. The statement is
executed repeatedly until conditionis FAL SE. Before the first iteration of the loop,
initialization initializes variables for the loop. After each iteration of the loop,
expression executes (most commonly to increment or decrement the initialization
variable in some way). initialization can be an expression or a declaration.

The scope of any identifier declared within the for loop extends to the end of the script
module.

All the expressions are optional. If condition isleft out, it is assumed to be always
TRUE. break will cause loop execution to be terminated, while continue will cause the
condition to be evaluated immediately without any intervening statements being
executed.

Chapter 3, cScript Language Reference 43

from cScript
fromis used in a detach statement or when instantiating nested classes.
Syntax 1
i nner bj ect = new I nner from d assl nst ance;
Inner The nested class.
Classlnstance Instance of the enclosing class.
Syntax 2
detach d assl nst1:>met hodl from d assl nst 2: >et hod2;
if cScript
Syntax 1
if (condition) statenent;
Syntax 2
if (condition) statenent;
el se statenent?2;
Description
if works exactly asit doesin C++. Useit to implement a conditional statement. The
condition statement must evaluate to TRUE or FAL SE.
When condition evaluates to TRUE, statement1 executes. If condition is FAL SE,
statement2 executes. statement2 can be another if statement.
The else keyword is optional. If you use nested if statements, any else statement is
associated with the closest preceding if unless you force association with braces.
import cScript
To make it possible to access a variable across modules, the variable must be declared
export in the module that declares it and import in the module that requires accessto it.
Syntax
i nport vari abl eNane;
Description
Variables created at the module level (not in afunction, method, class, or control
structure) have module scope. They are not accessible to any other modules. To access a
variable defined in module A from module B, three things must occur:
. Both module A and module B must be loaded.
. Thevariable must be declared export in Module A.
. Module B must contain an import statement for the variable.
initialized cScript
Thisintrinsic function indicates if avariable has ever been initialized. It providesa
means for determining the state of a variable before using it. Using an uninitialized
variable is rarely dangerous (asin C++), but is aso not usually what isintended. It is
44 Paradigm C++ Obiject Scripting Guide

particularly useful in determining the state of arguments passed to afunction, and in
classinstantiation. It can also be useful to prevent divide by zero errors.

Syntax
initialized(x);

Return values
TRUE if the value has ever been initialized, FAL SE otherwise.

Example
/1l Exanple of initialized
declare x, y; [/ declares variabl es,
/1 but does not initialize then
x = 10; /1 initialized!
print initialized(x); /'l returns TRUE
print initialized(y); /'l returns FALSE

iterate cScript
Usean iterate loop to cycle through the members of a class object or an associative
array in first to last order.
Syntax
i terate(outputvar; object[;keyvar]) [statenent];
outputvar A variable to hold a copy of the contents of the array or class data
member.
object The array or class object to iterate.
keyvar Variable to hold the index or key into the array, or class object data
member name.
Description
iterate isaloop structure that alows some action to be performed on each member of
the array or property of a class object, such as printing it out. Y ou can use continue and
break to control execution inside the loop. Like afor loop, curly braces ({}) must be
used to enclose multiple loop statements. iterate can also be used to determine the
number of propertiesin an object or the number of elementsin an array.
Examples
To print al the members of associative array z using the variable x,
iterate(x; z) {
print x;
}
To print al the members and the key values of associative array z using the variable x,
iterate(x; z; k) {
print "Key =" + k + "Value =" + x;
}
load cScript

This function opens and parses the specified script file which can be subsequently
executed using run(). Although classes and functions defined in the module come into

Chapter 3, cScript Language Reference 45

existence when the module is loaded, variables declared in the module are not defined
nor are any other statements executed until the script isrun(). If thereisan _init()
function, the module executes that code first. If there is a function with the same name
as the module, that function is then executed.

Syntax
nmodul eHandl e = | oad(fil enane);
filename A string, the module to load.

Return value
A module handle (module object reference) if successful, or NULL if not.

Example
decl are nyModul e;
myModul e = | oad("deno. spp"); // loads nodule and gets a handl e

if (nyModul e) { /1 if |oaded
run(nyModul e) ; /1 run the nodul e
unl oad(nyModul e) ; /1 unl oads the nodul e
}
module command cScript

Use module to provide an aternative internal name, or alias, for amodule.

Syntax
nmodul e ["newnane"] ;

Return value
None

Description

After being parsed, every script file loaded into the IDE is assigned a module name. The
name defaults to the file name without its path or file extension. This name may be used
by other modules to explicitly access functionality in the module. Y ou can alter a
module's name by embedding nodul e " newnane"; anywherein thefile.

module function cScript

Use module() to get access to any loaded module.

Syntax
modul e (["nodul ename"]);

Return value

A reference to an object, the module handle associated with the named module, or to the
current module if no moduleName is specified. If amoduleName is specified and no
matching module isfound, it returns NULL.

Description

Use modulg() to get access to any loaded module. If you use it with the current module,
moduleName has the same value as this used at the module levdl.

46 Paradigm C++ Obiject Scripting Guide

One use for this function is to access a globally scoped variable from alocal scope. For
example,

/1 Modtest. spp

modul e "nodtest”;

declare x = 1;

decl are ModRef = this;

local x = 2;

print (nodule()).x; // prints 1

print MdRef.x; [l prints 1

new cScript
Use new to create a new object or array.
Syntax 1
obj ectname = new classNane[([initializerList])]

[fromouterd assNanme[([initializerList])]]

Syntax 2
arrayname = new array [[arraysize]];
Description
Use new as an aternate syntax for creating new class objects or arrays. See class, array,
and declare.
Unlike C++, cScript does not distinguish between static and dynamic memory
alocation. The difference between the standard declaration syntax and that using new is
syntactic only. cScript has automatic garbage collection. Therefore, objects created with
new, or otherwise, are automatically deleted when there are no longer references to
them. Use delete only when you need to explicitly destroy an object before the
references to that object have been destroyed.

of cScript
This keyword is a synonym for the colon (:) separator used when defining a class that
derives from a base class.
Syntax
class classnanme [(initialization_list)]

[of baseclass[(initialization_ list)]J] { menber _Ilist }
on cScript

Use on to set up a dynamic object method call event handler, or an object read-property
getter, or awrite-property setter.

Syntax 1
on d assl nstance: >{xe ">"} Mt hod([argunentList]){
[pre-processing statenent(s)]
[pass([argunentList]);]
[post - processi ng statenent(s)]
[return val ue;]

Chapter 3, cScript Language Reference 47

48

This syntax is for an object method call event handler. This form of dynamic event
handling allows processing to occur both before and after the optional call, through
pass(), to the hooked method, and allows alternate values to be both passed to the
hooked method and returned by the event handler.

In order to be bound to an existing object method, the number of parametersin an on
handler definition must match the hooked method. Once invoked, pass() will call the
hooked method regardless of how many arguments it passes. Aswith al function calls,
cScript will insure that the proper number of arguments are passed, truncating or
padding as needed.

Syntax 2

on d assl nstance: >propert y{
[pre-processi ng statenent(s)]
return [pass() | value];

}

Wherepass() returnsthe actual value, or, alternatively, any specified value. This
syntax is used for a property getter and would be triggered by any subsequent statement
that references that object's property for read access, such as on the right hand side of an
assignment statement.

Syntax 3

on O assl nstance: >property(parameter){
[pre-processing statement(s)]
[pass(paraneter | value);]
[post - processi ng statenent(s)]

}

This syntax is used for a property setter. The setter istriggered when the object's
property is used as an lvalue, such as on the left hand side of an assignment statement.
The value to be assigned to the property iswhat is passed to the setter as its parameter.
Thevalue passed in pass() setsthe value of the property.

Description

Use object method call event handlers (also referred as "on handlers’) to create new
methods, or redefine existing methods, on an object of agiven class. Unlike attach,
methods overridden with on cannot be detached. To call the original method from
within the overridden version with the same name, invoke the pass() function. If the
global reference variable selection has been set using select, its reference will not be
affected, but is superseded with the with block.

Example

i nport editor;

/'l create a new Debugger object called debug
decl are debug = new Debugger();

/] create a new nethod call ed RunToCurrent ()

/1 on the object debug (not the class!)

on debug: >RunToCurrent ()

{
declare fil eNane = editor. TopBuffer. Ful | Nare;
declare row = editor. TopBuffer. TopVi ew. Posi ti on. Row,
. RunToFi | eLi ne(fil eNane, row);

Paradigm C++ Obiject Scripting Guide

onerror cScript
Useonerror to set up an error handler.
Syntax 1
onerror Method(argumentList) from errorHandl er Qbj ect
{[error_handl er _code][resuneLabel]}
Syntax 2
onerror errorHandl er Ghj ect. >Met hod(ar gunment Li st)
{[error_handl er _code][resuneLabel]}
pass cScript
Use passin an on handler to invoke the original function that is being overridden.
Syntax
varnane = pass([paraml[, paranR[,...]]);
print cScript
This function prints the expression that is passes to it in the Script tab page of the IDE
Message window. (Choose View | Messages to display the window, then click the
Script tab.) If nothing is passed to it, it does nothing.
Syntax
print [expression_ list];
Description
The print function takes any string, expression, or variable as a parameter. To
concatenate expressions, separate them with commas. For example:
print "hello world";
print "the nunber is", x;
print "My nane is", nane, "and |I'nf, years, "years ol d";
A spaceis printed for each commain the expression list:
. Anuninitialized value outputs [UNINITIALIZED].
. Avariableinitialized to NULL outputs [NULL].
. An object outputs [OBJECT].
printf cScript

This function prints the string and integer expressions using the format string to the
Script tab of the IDE message window (using the internal print function).

Syntax
printf(formatString, argl, arg2, .. arg 10);
Description

This function is similar to the C run-time library function of the same name but only
%c, %d, %i, %s, %u, %x, %X format specifiers are allowed. Optional flags and width
fields are supported. This function is defined in the file MISCSCR.SPP.

Chapter 3, cScript Language Reference 49

Examples
printf("Port: 95X Data: %®94X', port, data) ;
printf("The current Paradigm C++ caption is %", |DE Caption) ;

reload cScript
This function does an unload followed by aload. It searches the module list for a
matching module. If found, it removes it and then loads it again. If it doesn't find a
module to unload, it simply loads the module for the first time.

= If there are references to global objects in the module when it is reloaded, these

references continue to refer to the older objects. (The module is not destroyed, but is
stored to maintain these references.) Global module values that are not part of an object
are destroyed and then rel oaded.
Syntax
rel oad (modul eNane) ;
Return value
A module handle if successful or NULL if not.

resume cScript
Use resume to exit from the current onerror statement and jump to a labeled location in
the same module.
Syntax
resume | abel ;

return cScript
Use return to exit from the current function, on handler, or module, optionally
returning avalue. A module, by default, returns TRUE if successfully run. However, an
explicit return statement can be provided to return a customized return value, or smply
to terminate execution prior to the end of the script.
Syntax
return [expression];
Example
sar (x)
{

return (x*x);

run cScript
This function loads and runs the module indicated, or smply runsit if it is already
loaded. The module remains loaded until explicitly unloaded using unload().
Syntax
run (nodul eNane)
moduleName The string or a module handle.

50 Paradigm C++ Obiject Scripting Guide

select

Return value

By default, run returns TRUE if successful or FAL SE if not. If the module has a global
return statement, run returns that value if the module successfully runs and then
displays a warning that the standard return value for run has been overridden.

cScript

selection

This command creates a special global variable, selection, that refers to the selected
variable. Because the variable is global to all loaded scripts, only one selection can be
activein an IDE session at atime.

Syntax
sel ect obj ect Nane;

Description

Y ou can call select on any variable that isloaded in any script. Doing so sets selection
to reference that variable for all scriptsin the session. Y ou then have access to that
object from any script by using the alias selection as the name of the variable. Variables
so selected can also be referenced using the shorthand dot (".") notation. If you call
select and there is already a selection, you override the current selection with your new
one.

cScript

This keyword is a special global reference variable created by calling select on a
variable. Because the selection variable is global to all loaded scripts, only one
selection can be active in an IDE session at atime.

Syntax
Selection can be used in the same way as any other variable.

Description

Once the selection has been made, you can use selection in any way that you normally
use the variable it refersto. Y ou can access members of the referenced object with
selection.member. The dot (".") shorthand syntax can also be used instead of selection
outside awith or iterate block or an on handler. In those situations, the dot has local
context and refersto the controlling variable for that block (usually an object).

Example

/| SELECT1. SPP

class Q0 (pl, p2, p3) {
declare vl = pl;
decl are v2
decl are v3

}

class ClL (pl, p2, p3) {
declare vl = :
declare v2 = p2;
declare v3 =

}

declare CO obj 1("One", "Two", "Three");

declare Cl obj2(1, 2, 3);

/1l Select the first object

Chapter 3, cScript Language Reference 51

sel ect obj 1;

/1 lterate across the sel ected object
/1 using selection, then dot notation.
iterate(iterator; selection; key)

print typeid(selection), "property", key, "=", iterator;
iterate(iterator; . ; key)
print typeid(.), "property", key, "=", iterator;

// Note that the dot within the with
/!l block refers to its own | ocal selection.

wi t h(obj 2)
iterate(iterator; . ; key)
print typeid(.), "property", key, "=", iterator;

/1 But the global selection has not changed.

print .v1;
print selection.v2;
print ". and selection still refer to", typeid(.);

strtol cScript
This function parses the supplied string in the specified radix and returns an integer
result.
Syntax
strtol (nunericString[, radix]);
Description
Thisfunction is similar to the C run-time library function of the same name. If no radix
is specified, hexadecimal (base 16) is used. This function is defined in thefile
MISCSCR.SPP.

strtoul cScript
This function parses the supplied string in the specified radix and returns an unsigned
result.
Syntax
strtoul (nunericString[, radix]);
Description
Thisfunction is similar to the C run-time library function of the same name. If no radix
is specified, hexadecimal (base 16) is used. This function is defined in thefile
MISCSCR.SPP.

super cScript
This function gives you access to a member of the base class with the same name asa
member of a derived class. Base class members can be directly accessed without using
super where the member name is unique within the class definition.
Syntax
obj ect Nane. super|[. super...]. menber

52 Paradigm C++ Obiject Scripting Guide

switch

Description

cScript doesn't support function overloading or the :: operator. However, you can use
super to get access to overridden class members as follows:

class Cl {
declare x = "C1";
Met hod1() {
print x;

}

}
class C2:Cl {
Met hod1() {
print "C2 derived from", x;

}
}
MQhj = new C2;

My Cbj . Met hod1(); [IPrints C2 derived fromCl
M/Qbj . super. Method1(); //Prints Cl

If abase classisitself aderived class and you want to access one of its overridden
members, use super .super (and so on for further access up the inheritance hierarchy).
For example,

class C3:C2 {

Met hod1() {
print "C3 derived fromC2";
}
}
M/ Cbj 3 = new C3;
Myoj 3. Met hod1(); [/Prints C3 derived from C2
My Qbj 3. super. Met hod1(); [IPrints C2 derived fromCl

dMyQbj 3. super . super. Method1(); //Prints Cl
class C3: 2 {

Met hod1() {
print "C3 derived fromC2";
}
}
M/Cbj 3 = new C3;
MyQoj 3. Met hod1(); [/Prints C3 derived from C2
My Qbj 3. super. Met hod1(); [IPrints C2 derived fromCl

MyCbj 3. super . super. Met hod1(); //Prints Cl

cScript

Use a switch statement to choose one of several aternatives. If switch_expression
matches one of the cases, that case's statements execute. If you don't use break asthe
last statement in the case that executes, all the remaining statements (except case or
default) in the switch execute until either abreak is encountered or the end of the
switch isreached. If you do use a break that executes, the switch statement ends there.

Syntax
switch (switch_expression){
case expression :
[statenentl;]
[statenent 2;]
[break;]
[def aul t
[statenentl;]

Chapter 3, cScript Language Reference 53

this

[statenent 2;]
-]
}

switch_expression Any valid cScript expression, including a function call. Unlike
C++, the switch_expression is evaluated for each case in atop-
down fashion until a match is found or no more case statements
remain.

expression Any valid cScript expression, including a function call.

Description

The value of the switch_variableis checked against the value of each case expression
until amatch isfound or until either default or the end of the switch statement is
reached. Asin C++, al statements but case or default following the matching case are
executed until break or the end of the switch statement is reached. If no case
expression matches switch_variable, the statements following default, if any, are
executed.

If you insert a default case, it must be the last case.

cScript

54

Description

The cScript this keyword is analogous to the C++ this pointer. It is used to provide an
object reference within a class definition. It is primarily needed to define closures used
in event handlers that will apply to al instances of that class. For example, given the
class definition:

class Myd ass {
met hod1() {}
on this:>nethodl() {}

}

All objects of that class will have a default method call event "on" defined (rather than
on a per-instance basis as when the on handler is defined outside of the class).

Since a script module can actually be treated as an object, this when used outside of a
class definition refers to the current module object. Y ou can useit to create an event
handler for aglobal function. For example,

DoNot hi ng (){} /1 dobally scoped function
on this:>DoNot hi ng() { / /' met hod of current object
print "Did sonmething else first";
pass();
}

Calls to module scope functions for which an event handler has been defined will only
trigger the handler when they are called in the same way as defined in the on handler.
For example:

this.DoNothing(); // Triggers the event handl er
DoNot hi ng() ; /1 Does not trigger an event

Paradigm C++ Obiject Scripting Guide

typeid

cScript

Usetypeid to get run-time identification of variables or the resulting value of
expressions.

Syntax
t ypei d(nane_expn) ;

name_expn Any legal variable name or expression

Return value
A string representing the type. Possible return values are:

[ARRAY]
classname
[CLOSURE]
[INTEGER]
[NULL]

[REAL]

[STRING]
[UNINITIALIZED]

Description

If the variable or expression value is a built-in type, typeid returns the type in brackets |
]. If itisan object, typeid returns the class name. If the expression is afunction or
method, typeid() indicates the type of the return value of the function.

unload cScript
This function searches the module list for a matching module. If found, it removes it,
causing al functions, classes, and local variables that were defined in it to become
invalid. However, if an object within the script is referenced from another active script
(for example where afunction in the unloaded script returned a reference to an object),
that object will not be destroyed.
Syntax
unl oad (nodul eNane) ;
moduleName A string or module handle.
Return value
TRUE if successful, otherwise FAL SE.

while cScript

Use awhile loop to repeat one or more statements until conditionis FAL SE.

Syntax
while [(condition)] [{statenent |ist}]

Description
If no condition is specified, the while clause is equivaent to while(TRUE). Because the
test takes place before any statements execute, if condition evaluatesto FAL SE on the

Chapter 3, cScript Language Reference 55

first pass, the loop does not execute. break will cause loop execution to be terminated,
while continue will cause the condition to be evaluated immediately without any
intervening statements being executed.

Example
i =0
while (p[i] < 50) {
p[i] += 10;
i += 1
}
with cScript
Use with to create a shorthand reference to avariable. Thisis particularly useful when
the variable is a deeply nested object.
Syntax
with (variable){nmenber list}
Description
For example, assume an object z, which is contained within an object y, whichis
contained within an object x. Access to z's members can be cumbersome. For example,
X.Yy.z. DoSormet hing();
X.Yy.z. DoSormet hi ngEl se();
X.Yy.z. NowDoThi s();
Y ou can decrease syntactical complexity by assigning xX. y. z to another variable. For
example,
p = X.Yy.2z; /1 Assignnent | ookup
p. DoSonet hi ng() ; /1 1 | ookup
p. DoSonet hi ngEl se(); /1 1 | ookup
p. NowDoThi s() ; /1 1 | ookup
If you use with, referencing can be made even smpler:
with (x.y.2z){ /1 1 | ookup
. DoSonet hi ng() ; /1 No | ookup
. DoSonet hi ngEl se(); /1 No | ookup
. NowDoThi s() ; /1 No | ookup
}
Scoping of with statements in functions is handled as you would expect: the scopeis
local to the current function and the correct member gets called. For example,
WFuncl1(){
with (x.y.z){
. DoSonet hi ng() ;
}
}
WFunc2(){
with (Myd ass){
Wuncl(); /1 WFuncl calls x.y.z.DoSomet hi ng()
. Func2(); [l This call is to Md ass. Func2()
}
}
56 Paradigm C++ Obiject Scripting Guide

= Using the dot operator in awith block refersto the current with assignment. If the
global reference variable selection has been set using select, its reference will not be
affected, but is superseded with the with block.

yield cScript

Syntax
yi el d;

yield forces cScript to check if the abort (Escape) key has been pressed. Imbedding
yield in atime consuming process, such as aloop that executes many times, allows the
user to be able to break out of the processif desired.

Return value
None

About cScript operators

Operators are tokens that trigger some computation when applied to variables and other
objectsin an expression. cScript uses many of the C++ operators. For the most part,
these operators have the same precedence, associativity, and functionality asin C++.

Because cScript has no structs, unions, or references to memory locations, the following
C++ operators do not exist in cScript:

> % o S* L *

For the same reason, the & operator can be used only to declare function parameters as
pass-by-reference parameters (not to dereference variables).

Additionally, cScript does not provide the following C++ operators:
sizeof const_cast reinterpret_cast

cScript does provide two new operators.

> The closure operator,cScr_closure _op typically used in oncScr_on
statements to override functions

” Thein operator,cScr_QmarkQmark_Op used to test members of arrays
and classes

The following list groups the operators by type (the first item shows all operators
ordered by precedence):

Table of Operator Precedence
Arithmetic
Assignment
Bitwise
Comma
Conditional
Logical
Object-oriented
Enclosing
Preprocessor
Relational

Chapter 3, cScript Language Reference 57

cScript precedence of operators

=

Depending on context, the same operator can have more than one meaning. For
example, the minus (-) can be interpreted as:

. Subtraction (x -
. aunary negative (-y)

y)

No spaces are allowed in compound operators (such as :>). Spaces change the meaning
of the operator and will generate an error.

Operators on the same line have equal precedence.

Binary operators

58

Operators Associativity
0.0 left to right
. left to right
>, 7? left to right
L~ + -+ - & right to | eft
* 1, % left to right
,- |eft to right
<<, >> left to right
<, <=, >,>= |eft to right
=== |eft to right
& |eft to right
n |eft to right
| left to right
&& left to right
[left to right
? left to right
=, *=, /=, %=, +=, -5, &=, =, |5, <<=, >>= right to | eft
, left to right
cScript

The binary cScript operators are as follows:
Arithmetic + Binary plus (add)

- Binary minus (subtract)

* Multiply

/ Divide

% Remainder (modulus)
Bitwisec << Shift left

>> Shift right

& Bitwise AND

A Bitwise XOR (exclusive OR)

| Bitwiseinclusive OR
Logica && Logical AND

[Logica OR
Assignment = Assignment

*= Assign product

Paradigm C++ Obiject Scripting Guide

= Assign quotient

%= Assign remainder (modulus)

+= Assign sum

-= Assign difference

<<= Assign left shift

>>= Assign right shift

&= Assign bitwise AND

N= Assign bitwise XOR

|= Assign bitwise OR
Relationa < Lessthan

> Greater than

<= Lessthan or equal to

>= Greater than or equal to

== Equal to

1= Not equal to
Conditional ?: Actualy aternary operator

ar?x:y "if athen x else y"
Comma , Evduate

Arithmetic operators

cScript

The arithmetic operators are

+ - * | % ++ --

Syntax

+ expressi on

- expression

expressi onl + expression2
expressionl - expression2
expressionl * expression2
expressionl / expression2
expressi onl % expressi on2

postfi x-expressi on ++ (posti ncrenent)
++ unary- expressi on (preincrenent)
postfi x-expression -- (post decr enent)
-- unary-expression (predecrenent)
Description

Use the arithmetic operators to perform mathematical computations. expressionl

determines the type of the result when variables of different types are used.

The unary expressions of + and - assign a positive or negative value to expression.
+ (addition), - (subtraction), * (multiplication), and / (division) perform their basic

algebraic arithmetic on all datatypes.

% (modulus operator) returns the remainder of integer division.

++ (increment) adds one to the value of the expression. Postincrement adds one to the
value of the expression after it evaluates; while preincrement adds one before it

evaluates.

Chapter 3, cScript Language Reference

59

-- (decrement) subtracts one from the value of the expression. Postdecrement subtracts
one from the value of the expression after it evaluates; while predecrement subtracts
one before it evaluates.

Assignment operators cScript
The assignment operators are
= * = /| = (o= += - =
<<= >>= &= N= | =
Syntax

unary-expr assi gnment-op assignnent-expr

Description

The = operator is the only simple assignment operator, the others are compound
assignment operators.

In the expression E1 = E2, E1 must be a modifiable Ivalue. The assignment expression
itself isnot an lvalue.

The expression
El op = B2

has the same effect as
El = E1 op E2

except the Ivalue E1 is evaluated only once. The expression's value is E1 after the
expression eval uates.

For example, the following two expressions are equivalent:

X 4=y,
X =X +y;

Any assignment can change the cScript native type of the value on the left of the
assignment, depending on the type of the value assigned. See "cScript and types' on
page 2-19 for more information.

= Do not separate compound operators with spaces (+<space>=). Doing so generates

errors.
Bitwise operators cScript
Use bitwise operators to modify individual bits of a number rather than the whole
number.
Syntax

AND- expr essi on & equal i ty-expression

excl usi ve- OR-expr ~ AND- expr essi on

i ncl usi ve- OR-expr excl usi ve- OR- expr essi on
~expr essi on

shift-expression << additive-expression
shi ft-expressi on >> additive-expression

60 Paradigm C++ Obiject Scripting Guide

Reference

Operator What it does

& Bitwise AND: compares two hits and generates a 1 result if both bits are 1; otherwise, it
returns 0.

| Bitwise inclusive OR: compares two bits and generates a 1 result if either or both bitsare 1
otherwise, it returns 0.

A Bitwise exclusive OR: compares two bits and generates a 1 result if the bitsare
complementary; otherwise, it returns 0.

~ Bitwise complement: inverts each bit. (~is aso used to create destructors.)

>> Bitwise shift right: movesthe bitsto the right, discards the far right bit and assignsthe
leftmost bit to 0.

<< Bitwise shift left: movesthe bitsto the left, it discards the far left bit and assigns the rightmost
bittoO.

Both operands in a bitwise expression must be of an integral type.

Bit value Result of &, ”, | operations

El E2 E1& E2 E1"ME2 E1|E2

0 0 0 0 0

1 0 0 1 1

0 1 0 1 1

1 1 1 0 1

operator cScript

Chapter 3,

In cScript asin C++, the default function calling convention isto pass by value. The
reference operator can be applied to parameters in a function definition header to
instead pass the argument by reference.

Syntax
met hodName(&par ameter[,...]){statenentList}

Description
cScript reference types created with the & operator, create aliases for objects and et
you pass arguments to functions by reference.

When avariable x is passed by reference to afunction, the matching formal argument in
the function receives an alias for x, (similar to an address pointer in C++). Any changes
to thisaliasin the function body are reflected in the value of x.

When avariable x is passed by value to afunction, the matching formal argument in the
function receives a copy of x. Any changesto this copy within the function body are not
reflected in the value of x itself. Of course, the function can return a value that could be
used later to change x, but the function cannot directly ater a parameter passed by
value.

The reference operator is only valid when used in function definitions as applied to one
or more of its parameters. The address of operator is not supported in cScript asitisin
C++, where it can be used to obtain the address of (create a pointer to) a variable.

cScript Language Reference 61

& Example

funcl (i){i=5;}

func2 (& r){i=5;}

/[l Ir is a reference variable

sum = 3;

funcl(suny; /1 sum passed by val ue
print sum /[l Prints 3

func2(suny; /'l sum passed by reference
print sum /Il Prints 5

sum passed by reference to func2, has its val ue changed when the
function exits. funcl, on the other hand, gets a copy of the sum
argunent (passed by value), so sumitself cannot be altered by funcl.

Object-oriented operators cScript

The cScript object-oriented operators are:
Access a class object member.

> Closure operator (binds a class i nstance and a method as a single closure
reference.
?? Tests for the existence of a class object property or array index.

In addition, thereisacolon (:) punctuator:
Refersto a base class in aderived class declaration.

Closure (:>) operator cScript

62

Use the closure operator (:>) in an on handler, an attach statement, or a detach
statement to bind a class instance with a class member as a single closure reference.

Syntax 1 (on handler)
on d assl nstance: >Met hod{[code_t o_repl ace_met hod_code] }

Syntax 2 (attach)
attach d asslnst1: >met hodl to d assl nst 2: >net hod2;

Syntax 3 (detach)
detach d asslnst 1: >met hod1l from d assl nst 2: >net hod2;

Syntax 4 (getter)

on O assl nst ance: >propert y{
/'l your code here
return [pass()| SonmeVal ue];

Syntax 5 (setter)

on O assl nstance: >property(parn{
/1 your code here
[pass(SomeVal ue) ;]

Syntax 6 (closure variable)
decl are cl osureVar = cl assl nst ance: >net hodNane;

Paradigm C++ Obiject Scripting Guide

= A closure variable as declared above can subsequently be used wherever aclosureis
needed. For example, an alternative to the attach statement (Syntax 2) using closure
variables would be:

decl are closureVarl = cl assl nst 1: >net hod1;
decl are cl osureVar2 = cl assl nst 2: >nmet hod2;
attach closureVarl to cl osureVar2;

:> Example
i mport scri pt Engi ne;
i nport | DE;

ﬁﬁdLi st = new Li st Wndow(50, 5, 100, 300, "Mdule List",
TRUE, FALSE, | oadedModul es);

/'l Hook the Accept event in order to do nothing.
/1 Default behavior is to put the |ist away.
on modLi st: >Accept () {}

Member(.) selector cScript

Use the selector operator (.) to access class members.

Syntax
cl ass-i nst ance. cl ass- nenber

Description
Suppose that the object sis of class Sand mis a property declared in S. The expression:
S.m

represents the property min s.

= Although the precedence of the . operator is the same as C++ in most respects, one
place where it doesn't work as you would expect isin cScript native function calls that
do not use parentheses. For example, pri nt nodul e " MyModul e". Dat al does
not print the Datal member of MyModule. To get this reference to work properly, you
must use parentheses with the module function, as follows:

print nodule ("MNModul e"). Datal

Example
class nyd ass {
i =0;

wn un -

= new nyd ass();
i = 3; /1 assign 3 to the i property of nydass s

?? operator cScript

You can use ?? (read "in") either to test for the existence of an object property or for an
array index.

Syntax 1
string-expression | "string" ?? objectnane |arrayname

Chapter 3, cScript Language Reference 63

Syntax 2
i nteger-expression | integer ?? arraynane

Description

Use a quoted string, or an expression that evaluates to a string, to test for the existence
of an object property or an associative array index. Use an integer, or an integer
expression, to test for the existence of an index value in anumerically indexed array.
For example,

class Md ass {
decl are propertyl
decl are property?2

}
decl are Myd ass instance;
if ("propertyl" ?? instance)
print "propertyl is a property of instance.";

declare array al[];

al[0] = "a";
al["Hello"] = 1;
if (0 ?? al)

print "Array al has an index 0.";
if ("Hello" ?? al)
print "Array al has an index \"Hello\".";

Comma (,) punctuator and operator cScript

A comma separates elements in a function argument list. It is also used as an operator in
comma expressions. Mixing the two uses of commais legal, but you must use
parentheses to distinguish them.

Syntax
expressi on , assi gnnent-expression

Remarks
The left operand E1 is evaluated as a void expression, then the right operand E2 is
evaluated to give the result and type of the comma expression. By recursion, the
expression:

El, E2, ..., En
results in the left-to-right evaluation of each Ex, with the value and type of En giving
the result of the whole expression.

To avoid ambiguity with the commas in function argument and initializer lists, use
parentheses. The following example calls func with three arguments: (i, 5, and k).

func(i, (j =1, j +4), k);

Conditional (?:) operator cScript

64

The conditional operator ?: isaternary operator used as a shorthand for if-else
statements.

Syntax
| ogi cal -OR-expr ? expr : conditional-expr

Paradigm C++ Obiject Scripting Guide

Remarks
This operator allows you to use a shorthand for
i f (expression)
st at enment 1,

el se
st at enent 2;

Intheexpresson E1 ? E2 : E3, Elevaluatesfirst. If its value is nonzero (TRUE),
then E2 evaluates and E3 isignored. If E1 evaluates to zero (FAL SE), then E3
evaluates and E2 isignored. The result of the statement is the value of either E2 or E3,
depending upon which evaluates.

?: example
If statement:
if (x <vy)
Z = X;
el se

z =y,
Ternary equivalent:
zZ = (X <y) ?2X:Yy;

Logical operators cScript

Use logical operatorsto evaluate an expression to TRUE or FAL SE.

Syntax
| ogi cal - AND- expr && incl usi ve- OR- expressi on
| ogi cal -OR-expr || |ogical-AND expression

I expression

Description

Operator Description

&& Logical AND returns TRUE (1) only if both expressions evaluate to a nonzero valug;
otherwise it returnsFAL SE (0). Unlike C++, if the first expression evaluatestoFAL SE, the
second expression is still evaluated.

I Logica OR returns TRUE (1) if either of the expressions eval uates to anonzero value;
otherwise it returnsFAL SE (0). Unlike C++, if thefirst expression evaluates to TRUE, the
second expression is still evaluated.

! Logical negation returns TRUE (1) if the entire expression eval uates to a nonzero value;
otherwise it returnsFAL SE (0). Theexpression !Eisequivalentto (0 == E).

Enclosing operators cScript

The enclosing operators are parentheses(), braces{ }, and brackets), [].

Syntax

(expression-list)

function (arg-expression-list)
array- name [expression]
{statement-1list}

compound- st at enent {statenent-|ist}

Chapter 3, cScript Language Reference 65

Description

Operator Description

O Use to groups expressions, isolate conditional expressions, or indicate function calls and
function parameters.
[] Useto indicate single and multi-dimensional array subscripts.
{1} Use asthe start and end of compound statements and indicate a code block.
Array subscript operator cScript
Syntax

[expression-1list]

Brackets ([]) indicate single and multi-dimensional array subscripts. Use brackets to
declare an array or to accessindividual array components:

declare nyArray = new array [10];
myArray[0] = 5;

myArray[1] = "Cheers";

declare array nulti Array[] = {nyArray};
print multiArray[O][1]; // prints "Cheers"

Parentheses operator cScript

Use parentheses () to

. Group expressions.
. Isolate conditional expressions.
. Indicate function calls and function parameters.

Syntax 1
(expression-list)

Description
This syntax groups expressions or isolates conditional expressions.

Syntax 2
postfix-expression (arg-expression-list)

arg-expression-list A comma-delimited list of expressions of any type representing
the actual (real) function arguments.

Description

This syntax describes a call to the function given by the postfix expression. The value of
the function call expression, if it has avalue, is determined by the return statement in
the function definition.

Preprocessor operator cScript

The # (pound sign) indicates a preprocessor directive when it occurs as the first non-
whitespace character on aline. It signifies a compiler action not necessarily associated
with code generation.

66 Paradigm C++ Obiject Scripting Guide

Relational operators

cScript

Use relational operators test equality or inequality of expressions.

Syntax

equal i ty- expression
equal i ty- expression
rel ati onal - expressi on
rel ati onal - expressi on
rel ati onal - expressi on
rel ati onal - expressi on

rel ati onal - expressi on
rel ati onal - expressi on
shi ft-expression
shi ft-expression
shi ft-expression
shi ft-expression

Description

If the statement evaluatesto TRUE it returns a nonzero value; otherwise, it returns
FAL SE (0).

Operator Description

== equal

= not equal

> greater than

< |lessthan

>= greater than or equal

<= lessthan or equal

Unary operators cScript
Syntax
unary-operat or unary-expression
Remarks
cScript provides the following unary operators:
Operator Description
! Logical negation
++ Increment
~ Bitwise complement
-- Decrement
- Unary minus
+ Unary plus
Increment and decrement operators cScript

The increment and decrement operators are ++ and --. They can be used either to
change the value of the operand expression before it is evaluated (pre) or change the
value of the whole expression after it is evaluated (post). The increment or decrement
value is appropriate to the type of the operand.

Syntax 1 (pre)

post fi x-expressi on ++

postfi x-expression --

Chapter 3, cScript Language Reference

(postincrenent)
(post decr enent)

67

Description

The value of the whole expression is the value of the postfix expression before the
increment or decrement is applied. After the postfix expression is evaluated, the
operand isincremented or decremented by 1.

Syntax 2 (post)
++ unary- expressi on (preincrenent)
-- unary-expression (predecrenent)

unary-expression The operand, which must be a modifiable lvalue.

Description

The operand is incremented or decremented by 1 before the expression is evaluated.
The value of the whole expression is the incremented or decremented value of the
operand.

Plus and minus operators cScript

The plus (+) and minus (-) operators can operate in either a unary or binary fashion on
any type of variable.

Syntax 1 (Unary)
+ unary-expression
- unary-expression

+ unary-expression Value of the operand after any required integral promotions.

- unary-expression Negative of the value of the operand after any required integral
promotions.

Syntax 2 (Binary)
expressionl + expression2
expressionl - expression2

expressionl This expression determines the type of the result.

expression2 This expression converted if necessary to a type matching expressionl,
and then the operation is carried out.

Multiplicative operators cScript

68

Syntax

mul tiplicative-expr * unary-expression
mul tiplicative-expr / unary-expression
mul tiplicative-expr % unary-expression

Remarks
There are three multiplicative operators:

* (multiplication)

/ (division)

% (modulus or remainder)

The usual type conversions are made on the operands.

Paradigm C++ Obiject Scripting Guide

(opl * op2) Product of the two operands

(opl / op2) Quotient of the two operands (opl divided by op2)

(opl % op2) Remainder of the two operands (opl divided by op2)

For / and %, op2 must be a nonzero value. If op2 is zero, the operation resultsin an
error. Note that division of a number by a string can result in this divide by zero error.

When opl is an integer, the quotient must be an integer. If the actual quotient would not
be an integer, the following rules are used to determine its value:

. If opl and op2 have the same sign, opl / op2 isthe largest integer less than the true
quotient, and opl % op2 has the sign of op1.

. If opl and op2 have opposite signs, opl / op2 is the smallest integer greater than the
true quotient, and opl % op2 has the sign of op1.

Rounding is always toward zero.

="
Punctuators cScript
The cScript punctuators (also known as separators) are:
() Parentheses
{} Braces
, Comma
; Semicolon
: Colon
= Equal sign
Pound sign
Most of these punctuators also function as operators.
Braces ({ }) punctuator cScript

Braces ({ }) indicate the start and end of a compound statement.

Semicolon (;) punctuator

The semicolon (;) is a statement terminator.

Any legal cScript expression (including the empty expression) followed by ; is
interpreted as a statement. The expression is evaluated and its value is discarded. If the
statement has no side effects, cScript can ignore it. Semicolons are often used to create
an empty statement.

Colon (:) punctuator cScript

Use the colon when declaring a child class or a class with alabel.

Syntax 1
class chil dd ass: parent d ass

Use this version to indicate the parent class when declaring a child class. For an
example of this syntax, see the class keyword.

Syntax 2
case expr essi on:

Chapter 3, cScript Language Reference 69

Use this version to indicate the end of a case expression. For example,
switch (a) {

case 1:
print "One";
br eak;

case 2:
print "Two";
br eak;

default: print "None of the above!"

}
Equal sign (=) punctuator cScript

The equal sign (=) separates variable declarations from initialization lists and
determines the type of the variable.

array x[] ={ 1, 2, 3, 4, 5} ;

X =5

In cScript, declarations of any type can appear (with some restrictions) at any point
within the code. In a cScript function argument list, the equal sign indicates the default
value for a parameter:

MyFunc(i = 0){...} //Parameter i has default value of zero

The equal sign is also used as the assignment operator.

Lvalues and rvalues cScript

70

Lvalues

Anlvalueisanidentifier or expression that can be accessed as an object and legally
changed in memory. A constant, for example, is not an lvalue. A variable, array
member, or property is an Ivalue.

Historically, the | stood for left, meaning that an Ivalue could legally stand on the | eft
(the receiving end) of an assignment statement. Only modifiable Ivalues can legally
stand on the left of an assignment statement.

For example, if aand b are variables, then they are both modifiable values and
assignments. The following are legal:

a=1
b=a+b
rvalues

Anrvalue (short for "right value") is an expression that can be assigned to an Ivalue. It
isthe"right side" of an assignment expression. While an Ivalue can also be an rvalue,
the opposite is not the case. For example, the following expression cannot be an Ivalue:

a+b

a + b = aisillegal because the expression on the left is not related to an object that
can be accessed and legally changed in memory.

However,a = a + bislegal, becauseaisavariable (an lvaue) anda+ bisan
expression that can be evaluated and assigned to a variable (an rvalue).

Paradigm C++ Obiject Scripting Guide

cScript preprocessor directives

Preprocessor directives are usually placed at the beginning of your source code, but they
can legally appear at any point in a program. The cScript preprocessor, unlike a C++
preprocessor, supports preprocessor directives in the expansion side of a macro
definition. It detects the following preprocessor directives and parses the tokens
embedded in them:

. #ifndef

. #include
. #undef

. Hwarn

Any line with aleading # is considered as a preprocessor directive unlessthe # is part of
astring literal, isin a character constant, or is embedded in acomment. The initial # can
be preceded or followed by one or more spaces (excluding new lines).

#define cScript
Syntax
#define macro_identifier <token_sequence>
Description
The #define directive defines a macro. Macros provide a mechanism for token
replacement with or without a set of formal, function-like parameters. Unlike C++
preprocessors, cScript alows you to continue aline with a backslash (\). Y ou cannot use
cScript keywords as macros.
Each occurrence of macro_identifier in your source code following the #define is
replaced with token_sequence (with some exceptions). Such replacements are known as
macro expansions. The token sequence is sometimes called the body of the macro.
If you use an empty token sequence, the macro identifier is removed wherever it occurs
in the source code.
After each individual macro expansion, the preprocessor scans the newly expanded text
to seeif there are further macro identifiers that are subject to replacement (nested
macros).
There are restrictions on macro expansion:
. Any occurrences of the macro identifier found within literal strings, character

constants, or comments in the source code are not expanded.
. A macroisnot expanded during its own expansion (so #define A A won't expand
indefinitely).

Example
#define H "Have a nice day!"
#define enpty
#define NIL ""
#defi ne CGETSTD #i ncl ude <stdi 0. h>

#ifdef, #ifndef, #else, and #endif cScript

Syntax
#i fdef /#i fndef identifier [logical-operator identifier [...]]

Chapter 3, cScript Language Reference 71

#include

<section-1>

[#el se

<final -section>]
#endi f
<next - secti on>

Description

The #ifdef and #ifndef conditional directiveslet you test whether an identifier is
currently defined or not; that is, whether a previous #define command has been
processed for that identifier and is still in force. Y ou can combine identifiers with
logical operators.

#ifdef tests TRUE for the defined condition; so the line
#ifdef identifier

meansthat if identifier is defined, include the code follows up to the next #else or
#endif. If identifier is not defined, ignore that code and skip to the next #else or #endif.

#else in this case meansthat if identifier is not defined, include the code that follows up
to the next #endif.

#ifndef tests TRUE for the not-defined condition; so the line
#i fndef identifier

means that if identifier is not defined, include the code follows up to the next #else or
#endif. If identifier isdefined, ignore that code.

#else in this case meansthat if identifier is defined, include the code that follows up to
the next #endif.

Anidentifier defined as NULL is considered to be defined.

cScript supports conditional compilation by replacing with blank lines the lines that are
not to be compiled as aresult of the directives. All conditional compilation directives
must be completed in the source or include file in which they begin.

In the TRUE case, after section-1 has been preprocessed, control passes to the matching
#endif (which ends this conditional sequence) and continues with next-section. In the
FAL SE case, control passes to the next #else line (if any), which isused as an
alternative condition for which the previous test proved false. The #endif ends the
conditional sequence.

The processed section can contain further conditional clauses, nested to any depth; each
#ifdef or #ifndef must be matched with a closing #endif.

The net result of the preceding scenario isthat only one section (possibly empty) is
passed on for further processing. The bypassed sections are relevant only for keeping
track of any nested conditionals, so that each #ifdef or #ifndef can be matched with its
correct #endif.

cScript

72

Syntax

#i ncl ude <fil e_nane>

#i ncl ude "file_name"

#i ncl ude nmacro_identifier

Paradigm C++ Obiject Scripting Guide

#undef

Description

The #include directive pulls other cScript files into the source code. The syntax has
three versions:

. Thefirst and second formats imply that no macro expansion will be attempted; in
other words, file_name is never scanned for macro identifiers. file_name must be a
valid file name with an optional path name and path delimiters.

. For thethird version, neither < nor " can appear as the first non-whitespace
character following #include. What must follow the #include is a macro definition
that expands the macro identifier into avalid delimited file name with either of the
<file_name> or "file_name" formats.

The preprocessor removes the #include line and replaces it with the entire text of the
cScript source file at that point in the source code. The source code itself is not changed,
but the compiler processes the enlarged text. The placement of the #include can
therefore influence the scope and duration of any identifiers in the included file.

If you place an explicit path in the file_name, only that directory will be searched.

Unlike the C++ #include, there is no difference between the <file_name> and
"file_name" formats. With both versions, the file is sought first in the current directory
(usuadly the directory holding the source file being compiled). If the file is not found
there, the search continuesin the script directoriesin the order in which they are defined
(as set up in the Options|Environment|Scripting|Script Path dialog box.) If the fileis not
located in any of the default directories, an error message is issued.

Example
This#include statement causes the preprocessor to ook for MYINCLUD.H in the
standard include directory.

#i ncl ude <nyi ncl ud. h>
This#include statement causes the preprocessor to ook for MYINCLUD.H in the
current directory, then in default directories

#i ncl ude "nyi ncl ud. h"
After expansion, this#include statement causes the preprocessor to look in

C:\PARADIGM\SCRIPT\INCLUDE\MY STUFF.H. Note that you must use double
backslashes in the #define statement.

#define nyinclud "C \\ PARADI GM \ SCRI PT\ \ | NCLUDE\ \ MYSTUFF. H'
#i nclude nyinclud
/* macro expansion */

cScript

Syntax
#undef macro_identifier

Description

#undef detaches any previous token sequence from the macro identifier; the macro
definition is forgotten, and the macro identifier is undefined. No macro expansion
occurs within #undef lines.

The state of being defined or undefined is an important property of an identifier,
regardless of the actual definition. The #ifdefcScr_ifdef and #ifndefcScr_ifdef

Chapter 3, cScript Language Reference 73

H#warn

conditional directives, used to test whether any identifier is currently defined or not,
offer aflexible mechanism for controlling many aspects of a compilation.

After amacro identifier is undefined, it can be redefined with #define,cScr_define using
the same or a different token sequence.

Attempting to redefine an already defined macro identifier will result in awarning
unless the new definition is exactly the same token-by-token definition as the existing
one. The preferred strategy where definitions might exist in other header filesis as
follows:

#i f ndef BLOCK_SI ZE

#defi ne BLOCK S| ZE 512
#endi f

The middlelineis bypassed if BLOCK_SIZE is currently defined; if BLOCK_SIZE is
not currently defined, the middle line isinvoked to defineit.

No semicolon (;) is needed to terminate a preprocessor directive. Any character found in
the token sequence, including semicolons, will appear in the macro expansion. The
token sequence terminates at the first non-backslashed new line encountered. Any
sequence of whitespace, including comments in the token sequence, is replaced with a
single-space character.

Example
#defi ne BLOCK_SI ZE 512

#undef BLOCK S| ZE
/* use of BLOCK SIZE now woul d be an illegal "unknown" identifier */

#défi ne BLOCK SI ZE 128 [* redefinition */

cScript

Syntax
#war n war ni ng_| evel

Description

The #warn directive sets the warning level. Warning levels range from 0 (suppress al
warnings) to 3 (show all warnings).

For example, the following statement causes al warnings to be shown when the script is
compiled:

#warn 3

Macros with parameters

74

The following syntax is used to define a macro with parameters:
#define macro_identifier(<arg_list>) token_sequence

Any commawithin parenthesesin an argument list is treated as part of the argument,
not as an argument delimiter.

Paradigm C++ Obiject Scripting Guide

There can be no whitespace between the macro identifier and the (. The optional
arg_list is asequence of identifiers separated by commas, not unlike the argument list
of a C function. Each comma-delimited identifier plays the role of aformal argument or
placeholder.

Such macros are called by writing
macro_i denti fier<whitespace>(<actual _arg |ist>)

in the subsequent source code. The syntax isidentical to that of afunction call.
However, there are some important semantic differences, side effects, and potential
pitfalls.

The optional actual _arg_list must contain the same number of comma-delimited token
sequences, known as actual arguments, as found in the formal arg_list of the #define
line. There must be an actual argument for each formal argument. An error will be
reported if the number of argumentsin the two listsis different.

A macro call resultsin two sets of replacements. First, the macro identifier and the
parenthesis-enclosed arguments are replaced by the token sequence. Next, any formal
arguments occurring in the token sequence are replaced by the corresponding real
arguments appearing in the actual_arg_list.

As with simple macro definitions, rescanning occurs to detect any embedded macro
identifiers eligible for expansion.

The similarities between function and macro calls can obscure their differences. A
macro call can give rise to unwanted side effects, especially when an actual argument is
evaluated more than once.

Nesting parentheses and commas

The actual_arg_list can contain nested parentheses provided that they are balanced;
also, commas appearing within quotes or parentheses are not treated like argument
delimiters.

Using the backslash (\) for line continuation

A long token sequence can straddle aline by using a backslash (\). The backslash and
the following newline are both stripped to provide the actual token sequence used in
expansions.

Chapter 3, cScript Language Reference 75

76

Paradigm C++ Obiject Scripting Guide

Chapter

A4

cScript Class Reference

This chapter documents the built-in properties, methods, and events of the pre-defined
cScript classes. The Paradigm C++ IDE is built using instances of these classes. Please
note, however, that the objects which make up the IDE often have a number of
additional properties, methods, and events added to them to make them even more
powerful and flexible. These additional features are implemented in cScript. You are
free to use and exploit these additional capabilities as you work with these objects. To
learn more about these additional features, study the cScript source code and cScript
examplesin the SCRIPT subdirectory.

BufferOptions class

This classis one of the editor classes. Buffer Options objects hold data controlling the
characteristics of edit buffers.

Syntax
Buf f er Opti ons()

The properties are initializaed during construction to match the global defaults.

Properties

bool CreateBackup Read-write
bool Cursor Thr oughTabs Read-write
bool Hori zontal Scrol | Bar Read-write
bool | nsertMde Read-write
int LeftGutterWdth Read-write
int Margin Read-write
bool OverwiteBl ocks Read-write
bool Persi stentBl ocks Read-write
bool PreservelLi neEnds Read-write
bool SyntaxHi ghli ght Read-write
string TabRack Read-write
string TokenFil eNane Read-write
bool UseTabChar act er Read-write
bool Vertical Scrol | Bar Read-write
Methods

voi d Copy(BufferQptions source)

BufferOptions class description

This class holds buffer options settings, such as scroll bars, right margin setting, tab
rack, syntax highlighting, cursor shape, gutter width, block style and tabbing modes.

Chapter 4, cScript Class Reference 77

Aninstance of this class exists as a member of the global editor options accessible via
Editor.Options. This class controls the settings of all edit buffers. Any change to this
object changes the settings of all edit buffers.

Y ou can instantiate a member of this class to store buffer options. They are not applied
to any edit buffers until you copy them into Editor.Options, at which point the settings
affect all edit buffers.

For example, you can store in a Buffer Options object a set of options that you want to
apply to a buffer when it is activated (such as tab stops, syntax highlighting, and color).
Applying these values to Editor.Options sets the buffer options for the new buffer and
all other edit buffers as well.

CreateBackup property BufferOptions

Thisis aread-write property.

Type expected
bool Cr eat eBackup

CursorThroughTabs property BufferOptions

Thisis aread-write property.

Type expected
bool Cursor Thr oughTabs

HorizontalScrollBar property BufferOptions

Set this property to TRUE if a horizontal scroll bar is to be associated with the buffer or
FALSE if itisnot. It is aread-write property.

Type expected
bool Hori zontal Scrol | Bar

InsertMode property BufferOptions

This property indicates if the buffer isto bein insert (TRUE) or overstrike (FAL SE)
mode. It is aread-write property.

Type expected
bool [nsert Mde

LeftGutterWidth property BufferOptions

This property indicates the width of the left gutter in pixels. It is aread-write property.

Type expected
int Left@QutterWdth

Margin property BufferOptions
This property indicates the column to use to display the right margin. It is aread-write
property.

Type expected
int Margin

78 Paradigm C++ Obiject Scripting Guide

OverwriteBlocks property BufferOptions

Thisis aread-write property.

Type expected
bool OverwiteBl ocks

PersistentBlocks property BufferOptions

Thisis aread-write property.

Type expected
bool Persi stent Bl ocks

PreservelLineEnds property BufferOptions

Thisis aread-write property.

Type expected
bool PreservelLi neEnds

SyntaxHighlight property BufferOptions

This property indicates if the syntax isto be highlighted. It is a read-write property.

Type expected
bool SyntaxHi ghli ght

TabRack property BufferOptions

This property indicates the buffer's tab settings: a space-delimited sequence of tab stops
in ascending order, for example, "3 7 12". It is aread-write property.

Type expected
string TabRack

TokenFileName property BufferOptions

This property indicates the syntax highlighter file to use. It is aread-write property.

Type expected
string TokenFi | eName

UseTabCharacter property BufferOptions

Thisis aread-write property.
Type expected

bool UseTabChar act er

VerticalScrollBar property BufferOptions

Set this property to TRUE if avertical scrollbar isto be associated with the buffer or
FALSE if itisnot. It is aread-write property.

Type expected
bool Vertical Scrol |l Bar

Chapter 4, cScript Class Reference 79

Copy method BufferOptions

This method copies the values from the source Buffer Options object into this
Buffer Options object.

Types expected
voi d Copy(Buf ferOptions source)

Return value
None

Tokenized cScript definition

After the cScript parser successfully parses a script (.SPPfile), it convertsit to
interpreted pcode (tokenizes it) and savesit in afile with a.SPX extension. When the
script isrun in the future, the .SPX fileisused if the script source file has not been
changed (does not have a later time stamp).

Debugger class

80

Syntax
Debugger ()

Properties
bool HasProcess Read-only

Methods

bool AddBreakpoi nt At Current ()

bool AddBr eakpoint ()

bool AddBreakpoi ntFil eLine(string fileName, int |ineNun

bool AddWat ch(string synbol Nane)

bool Ani mat e()

bool Attach(string processlD)

bool Breakpoi nt Options()

string Eval uate(string synbol)

bool Eval uat eW ndow(string symnbol)

bool Fi ndExecuti onPoi nt ()

bool | nspect(string synbol)

bool InstructionSteplnto()

bool InstructionStepOver ()

bool IsRunnabl e(i nt processl D)

bool Load(string exeNang)

bool PauseProgram()

bool Reset ()

bool Run()

bool RunToAddress(string addr)

bool RunToFileLine(string fileName, int |ineNum

bool Statenent Steplnto()

bool Statenent StepOver ()

bool Term nat eProgram)

bool Toggl eBreakpoint(string fileNane, int |ineNum

bool Vi ewBr eakpoi nt ()

bool Vi ewCal | St ackDebugger Vi ewCal | St ack()

bool Vi ewCpuDebugger Vi ewCpu([addr ess])

bool Vi ewCpuFi | eLi neDebugger Vi ewCpuFi | eLi ne(string fil eNanme, int
i neNum

bool Vi ewPr ocessDebugger Vi ewPr ocess()

Paradigm C++ Obiject Scripting Guide

bool Vi ewWat chDebugger Vi ewMat ch()

Events

voi d DebugeeAbout ToRunDebugger DebugeeAbout ToRun()
voi d DebugeeCr eat edDebugger DebugeeCr eat ed()

voi d DebugeeSt oppedDebugger DebugeeSt opped()

voi d DebugeeTer m nat edDebugger DebugeeTer m nat ed()

HasProcess property Debugger
This property is TRUE when the debugger has a process loaded, and is FAL SE,
otherwise.

Types expected
bool AddBr eakpoint ()

AddBreakAtCurrent method Debugger

Adds a breakpoint to the current line (indicated by the cursor) of the file in the topmost
edit buffer. If no file is open, this method opens the Add Breakpoint dialog.

Types expected
bool AddBreakAt Current ()

Return value
TRUE if successful, FAL SE otherwise.

AddBreakpoint method Debugger

This method opens the Add Breakpoint dialog.

Types expected
bool AddBr eakpoint ()

Return value
TRUE if successful, FAL SE otherwise.

AddBreakpointFileLine method Debugger

This method adds a breakpoint on the specified line of the specified file. If the
arguments are NUL L, this method opens the Add Breakpoint dialog.

Types expected
bool AddBreakpoi ntFil eLine(string fileName, int |ineNunm

Return value
TRUE if successful, FAL SE otherwise

Chapter 4, cScript Class Reference 81

AddWatch method Debugger

This method adds a watch on the specified symbolName. If argument isNULL, this
method opens the Add Watch dialog.

Types expected
bool AddwWat ch(string synbol Nare)

Return value
TRUE if successful, FAL SE otherwise.

Animate method Debugger

This method lets you watch your program's execution in "slow motion.”

Types expected
bool Ani mate()

Return value
TRUE if successful, FAL SE otherwise

Description

Animate performs a continuous series of Statement Step Into commands. To interrupt
animation, invoke one of the following methods either by menu selections or by
keystrokes tied to the script:

Debugger.Run
Debugger.RunToAddress
Debugger.RunToFileLine
Debugger.PauseProgram
Debugger.Reset
Debugger.TerminateProgram
Debugger.FindExecutionPoint

Attach method Debugger

This method invokes the debugger for the currently executing process identified by
processi D

Types expected
bool Attach(string processlD)

Return value
TRUE if successful, FAL SE otherwise

BreakpointOptions method Debugger

82

This method opens the Breakpoint Condition/Action Options dialog.

Types expected
bool Breakpoi nt Opti ons()

Paradigm C++ Obiject Scripting Guide

Return value
TRUE if successful, FAL SE otherwise

Evaluate method Debugger

This method eval uates the given expression, such as aglobal or local variable or an
arithmetic expression.

Types expected
string Eval uate(string expression)

Return value
Returns the result of the evaluation.

EvaluateWindow method Debugger

This method opens the Evaluator view with expression pasted into the Expression field
of the view.

Types expected
bool Eval uat eW ndow(string expression)

Return value
TRUE if successful, FAL SE otherwise

FindExecutionPoint method Debugger

This method displays the current execution point.

Types expected
bool Fi ndExecuti onPoi nt ()

Return value
TRUE if successful, FAL SE otherwise

Inspect method Debugger

This method attempts to open an inspector for the specified symbol. The inspector
window opens using the specified view at the given row and column positions.

Types expected
bool Inspect(string synbol, EditView view, int row, int columm)

Return value
TRUE if successful, FAL SE otherwise

InstructionSteplnto method Debugger

This method executes the next instruction, stepping into any function calls. If a process
is not loaded, InstructionSteplnto first loads the executable for the current project.

Chapter 4, cScript Class Reference 83

Types expected
bool InstructionSteplnto()

Return value
TRUE if successful, FAL SE otherwise

InstructionStepOver method Debugger

This method executes the next instruction, running any functions called at full speed. If
aprocessis not loaded, InstructionSepOver first |oads the executable for the current
project.

Types expected
bool InstructionStepOver ()

Return value
TRUE if successful, FAL SE otherwise

IsRunnable method Debugger

This method indicates if the specified process can be run or single stepped.

Types expected
bool |sRunnabl e(int processl D)

processiD The process you wish to query. If that processis not runnable or does not
exist, the current processis used.

Return value
TRUE if the EXE is runnable or can be single stepped; FAL SE otherwise

Load method Debugger
This method loads the specified executable into the debugger.

Types expected
bool Load(string exeNane)

Return value
TRUE if successful, FAL SE otherwise.

Description

Upon loading, the process runs to the starting point specified in the
Options|Environment|Debugger|Debugger Behavior dialog. If the parameter is NULL,
this method opens the Load Program dialog.

PauseProgram method Debugger

This method causes the debugger to pause the current process. It has an effect only if
the current process is running or animated.

84 Paradigm C++ Obiject Scripting Guide

Types expected
bool PauseProgram()

Return value
TRUE if successful, FAL SE otherwise

Reset method Debugger

This method causes the debugger to reset the current process to its starting point (as
specified in the Options|Environment|Debugger|Debugger Behavior dialog)

Types expected
bool Reset ()

Return value
TRUE if successful, FAL SE otherwise

Run method Debugger

This method causes the debugger to run the current process. If no processisloaded, this
method first loads the executable associated with the current project.

Types expected
bool Run()

Return value
TRUE if successful, FAL SE otherwise

RunToAddress method Debugger

This method runs the current process until the instruction at the given addressis
encountered. If no process isloaded, the method first |oads the executable associated
with the current project.

Types expected
bool RunToAddress(string address)

Return value
TRUE if successful, FAL SE otherwise

RunToFileLine method Debugger

This method runs the current process until the source at the specified linein the
specified file is encountered. If no processis loaded, this method will first load the
executabl e associated with the current project.

Types expected
bool RunToFil eLine(string fileName, int |ineNun

Chapter 4, cScript Class Reference 85

Return value
TRUE if successful, FAL SE otherwise

StatementStepinto method Debugger

This method executes the next source statement and steps through the source of any
function calls. If aprocessis not loaded, this method first loads the executable for the
current project.

Types expected
bool Statenent Steplnto()

Return value
TRUE if successful, FAL SE otherwise

StatementStepOver method Debugger

This method executes the next source statement and does not step into any functions
called, but rather runs them at full speed. If a processis not loaded, StatementStepOver
first loads the executable for the current project.

Types expected
bool Statenent StepOver ()

Return value
TRUE if successful, FAL SE otherwise

TerminateProgram method Debugger

This method terminates the current process. If no process is loaded, this method has no
effect.

Types expected
bool Term nat eProgram)

Return value
TRUE if successful, FAL SE otherwise

ToggleBreakpoint method Debugger

This method either adds a breakpoint on the specified line of the specified file or deletes
an existing breakpoint. If the arguments are NUL L, this method opens the Add
Breakpoint dialog.

Types expected
bool Toggl eBreakpoint(string fileNane, int |ineNum

Return value
TRUE if successful, FAL SE otherwise

86 Paradigm C++ Obiject Scripting Guide

ViewBreakpoint method Debugger

This method opens the breakpoint view.

Types expected
bool Vi ewBr eakpoi nt ()

Return value
TRUE if successful, FAL SE otherwise

ViewCallStack method Debugger

This method opens the Call Stack view. It works only if a processis |loaded.

Types expected
bool ViewCall Stack()

Return value
TRUE if successful, FAL SE otherwise

ViewCpu method Debugger

This method opens or selects the CPU view.

Syntax
Vi ewCPU()

Types expected
bool Vi ewCpu([address])

Return value
TRUE if successful, FAL SE otherwise

Description

If the "Allow Multiple CPU Views' option is checked in the Options | Environment |
Debugger | Debugger Behavior dialog, this method aways opens anew CPU view. If
the option is not checked, ViewCpu only opens anew CPU view if oneis not aready
open. It works only if aprocessis |loaded.

ViewCpuFileLine method Debugger

This method opens or selects the CPU view.

Types expected
bool ViewCpu(string fileNane, int |ineNum

Return value
TRUE if successful, FAL SE otherwise

Chapter 4, cScript Class Reference 87

Description

If the"Allow Multiple CPU Views' option is checked in the Options | Environment |
Debugger | Debugger Behavior dialog, ViewCpuFileLine always opens anew CPU
view. If the option is not checked, it opens anew CPU view only if oneis not already
open. After opening or selecting a CPU view, the Disassembly paneis scrolled so that
the disassembled code for the specified line of the specified fileisvisible. If the
parameters are NUL L or if the line doesn't generate code, the window displays an error
message. This method works only if aprocessis|oaded.

ViewProcess method Debugger

This method opens the Process view.

Types expected
bool Vi ewProcess()

Return value
TRUE if successful, FAL SE otherwise

ViewWatch method Debugger

This method opens the watch view.

Types expected
bool Vi ewWat ch()

Return value
TRUE if successful, FAL SE otherwise

DebugeeAboutToRun event Debugger

Thisevent israised just before a processisrun.

Types expected
voi d DebugeeAbout ToRun()

Return value
None

DebugeeCreated event Debugger

88

This event israised when anew processis created (loaded into the debugger).

Types expected
voi d DebugeeCreat ed()

Return value
None

Paradigm C++ Obiject Scripting Guide

DebugeeStopped event Debugger

This event israised when a process stops. A process can stop for any number of
reasons: upon normal termination, after a step, when a breakpoint is hit, when an
exception occurs, or when the user pauses, resets, or terminates a running application

Types expected
voi d DebugeeSt opped()

Return value
None

DebugeeTerminated event Debugger

This event israised when a process is terminated.

Types expected
voi d DebugeeTer m nat ed()

Return value
None

watch definition

A watch monitors the state of a variable. Whenever your program pauses, the debugger
evaluates all watched variables and updates the Watches window with their values.

EditBlock class

This classisone of the editor classes. It provide area-marking features for an edit buffer
or view.

Syntax
Edi t Bl ock(Edi t Buf fer);
Edi t Bl ock(Edi t Vi ew) ;

Properties

bool IsVvalid Read-only
i nt Endi ngCol um Read-only
i nt Endi ngRow Read-only
bool Hi de Read-write
int Size Read-write
int StartingCol um Read-only
int StartingRow Read-only
int Style Read-write
string Text Read-only

Chapter 4, cScript Class Reference 89

Methods

voi d Begin()

voi d Copy([bool usedipboard, bool append])
voi d Cut ([bool usedipboard, bool append])
bool Del ete()

voi d End()

bool Extend(int newRow, int newCol)

bool Ext endPageDown()

bool Ext endPageUp()

bool ExtendReal (i nt newRow, int newCol umm)
bool ExtendRel ative(int deltaRow, int deltaCol umm)
voi d I ndent (i nt magnitude)

voi d Lower Case()

bool Print()

voi d Reset ()

voi d Restore()

voi d Save()

bool SaveToFile([string fil eNane])

voi d Toggl eCase()

voi d Upper Case()

EditBlock class description

EditBlock objects alow you to mark areas of text. Because EditBlock membersexist in
both the EditView and the EditBuffer, EditView and EditBuffer support different
marked areas in different views on the same EditBuffer.

Although multiple EditBlocks can exist in script for an individual EditBuffer or
EditView, they are mapped to the same internal representation of the EditBlock.
Therefore, manipulations on one will affect the others. Use of the Extend() members
will cause the EditPosition for the owner to be updated appropriately:

IsValid property EditBlock

Becomes FAL SE in any of the following cases:

. Theowning EditBuffer or EditView is destroyed.
. A destructive operation has occurred on the block, such as delete or cui.
. Theending point is not greater than the starting point.

Thisisaread-only property.

Type expected
bool IsValid

EndingColumn property EditBlock

Initialized to the current position in the EditView or EditBuffer upon construction. May
be changed by a call to an external method. Thisis aread-only property.

Type expected
i nt Endi ngCol um

90 Paradigm C++ Obiject Scripting Guide

EndingRow property EditBlock

Initialized to the current position in the EditView or EditBuffer upon construction. May
be changed by a call to an external method. Thisis aread-only property.

Type expected
i nt Endi ngRow

Hide property EditBlock
Visually disables the block without modifying its coordinates. Thisis aread-write

property.

Type expected
bool Hi de

Size property EditBlock
If the areais not valid, the value is zero; otherwise, the value is the number of
characters contained in the marked area. A newline (CR/LF) counts as one character.

Thisis aread-write property.

Type expected
int Size

StartingColumn property EditBlock

Initialized to the current position in the EditView or EditBuffer upon construction. May
be changed by a call to an external method. Thisis aread-only property.

Type expected
int StartingCol umm

StartingRow property EditBlock

Initialized to the current position in the EditView or EditBuffer upon construction. May
be changed by a call to an external method. Thisis aread-only property.

Type expected
int Starti ngRow

Style property EditBlock

One of the following values:
INCLUSIVE_BLOCK
EXCLUSIVE_BLOCK
COLUMN_BLOCK

LINE_BLOCK
INVALID_BLOCK

Thisis aread-write property.

Chapter 4, cScript Class Reference 91

Type expected
int Style

Description

An EditBlock isinitialy set to the Style EXCLUSIVE_BLOCK. It isaso set to this
style after a Reset iscalled. If an EditBlock has a Style of INVALID_BLOCK, itis
because it was retained after the EditBuffer or EditView to which it was attached was
destroyed.

Text property EditBlock

If the marked block is valid, Text returns the marked text. If it isinvalid, Text returns
the empty string. Thisis aread-only property.

Type expected
string Text

Begin method EditBlock

Resets the StartingRow and StartingColumn values to the current location in the owning
EditBuffer or EditView. Thisis aread-only property.

Type expected
voi d Begin()

Return value
None

Copy method EditBlock

Copies the contents of the marked block to the Windows Clipboard. append defaults to
FALSE. If append is TRUE the contents of the marked block are appended to the
clipboard contents

Types expected
voi d Copy([bool append])

Return value
None

Cut method EditBlock

92

Cuts the contents of the marked block to the Windows Clipboard and invalidates the
marked block. append defaultsto FAL SE. If append is TRUE the contents of the
marked block are appended to the clipboard contents.

Types expected
voi d Cut ([bool append])

Return value
None

Paradigm C++ Obiject Scripting Guide

Delete method EditBlock

This method deletes the current block (if valid). The return value indicates if any
characters were deleted. The cursor's position is restored to the position it occupied
prior to the delete.

Types expected
bool Del ete()

Return value
None

End method EditBlock

Resets the EndingRow and EndingColumn values to the current location in the owning
EditBuffer or EditView.

Types expected
voi d End()

Return value
None

Extend method EditBlock

Extends an existing EditBlock to encompass the text delimited by newRow and newCol.

Types expected
bool Extend(int newRow, int newCol)

Return value
TRUE if the Extend successfully completes; otherwise FAL SE.

ExtendPageDown method EditBlock

This method updates the starting or ending points of the existing mark to extend the
mark to the specified location. It also causes the position in the owning EditBuffer or
EditView to be updated to the new location. ExtendPageDown works only if the block
Is associated with an EditView and isignored if the block is associated with an
EditBuffer.

Types expected
bool Ext endPageDown()

Return value
TRUE if the cursor move is successful; otherwise FAL SE.
ExtendPageUp method EditBlock

This method updates the starting or ending points of the existing mark to extend the
mark to the specified location. It also causes the position in the owning EditBuffer or

Chapter 4, cScript Class Reference 93

EditView to be updated to the new location. ExtendPageUp works only if the block is
associated with an EditView and isignored if the block is associated with an EditBuffer.

Types expected
bool Ext endPageUp()

Return value
TRUE if the cursor move is successful.

ExtendReal method EditBlock

This method updates the starting or ending points of the existing mark to extend the
mark to the specified location. It also causes the position in the owning EditBuffer or
EditView to be updated to the new location.

Types expected
bool ExtendReal (i nt newRow, int newCol umm)

Return value
TRUE if the cursor move is successful.

ExtendRelative method EditBlock

This method updates the starting or ending points of the existing mark to extend the
mark to the specified relative location. It aso causes the position in the owning
EditBuffer or EditView to be updated to the new location.

Types expected
bool ExtendRel ative(int deltaRow, int deltaCol umm)

Return value
TRUE if the cursor move is successful.

Indent method EditBlock

Moves the contents of the block Ieft/right the number of columns specified. Negative
values move to the | eft, positive move to the right.

Types expected
voi d I ndent (i nt magnitude)

Return value
None

LowerCase method EditBlock

Converts all alphabetic characters enclosed within the EditBlock to lowercase.

Types expected
voi d Lower Case()

94 Paradigm C++ Obiject Scripting Guide

Return value
None

Print method EditBlock

Prints the current block (if any).

Types expected
bool Print()

Return value

Returns TRUE if the print was successful or FAL SE if there is no marked block or if
the print failed.

Reset method EditBlock

Implicitly invoked by the constructor, Reset may also be used to reset the style to
EXCLUSIVE_BLOCK and the starting and ending points to be the same as the current
position in the owning EditBuffer or EditView.

Types expected
voi d Reset ()

Return value
None

Restore method EditBlock

Restores a block from an internal stack. The block must have been saved with Save().

Types expected
voi d Restore()

Return value
None

Save method EditBlock

Preserves the block attributes on an internal stack for future restoration with Restore().

Types expected
voi d Save()

Return value
None

SaveToFile method EditBlock

This method causes the contents of the marked block to be saved to the file fileName. If
fileName is not supplied, the user will be prompted for one.

Chapter 4, cScript Class Reference 95

Types expected
bool SaveToFile([string fil eNane])

Return value
Returns TRUE if the save was successful or FAL SE if it wasn't.

ToggleCase method EditBlock

Converts al the uppercase alphabetic characters enclosed within the EditBlock to
lowercase, and the lowercase characters to uppercase.

Types expected
voi d Toggl eCase()

Return value
None

UpperCase method EditBlock

EditBuffer

Converts all the lowercase a phabetic characters enclosed within the EditBlock to
uppercase.

Types expected
voi d Upper Case()

Return value
None

class

96

This classis one of the editor classes. An edit buffer is associated with one file and any
number of edit views.

Syntax
EditBuffer(string fileName [, bool private, bool readOnly])

fileName The name of the file associated with the edit buffer.

private Impliesthat the buffer is a hidden system buffer. Undo information is not
retained, and the EditBuffer is never attachable to an EditView. The
default value for private is FALSE.

readOnly Default valueis FAL SE.

Properties

Edi t Bl ock Bl ock Read-only
Ti meSt anp Current Dat e Read-only
string Directory Read-only
string Drive Read-only
string Extension Read-only

Paradigm C++ Obiject Scripting Guide

string Full Nane Read-only
TinmeStanp Initial Date Read-only

bool [sMdified Read-only
bool IsPrivate Read-only
bool |sReadOnly Read-only
bool IsVvalid Read-only
Edi t Position Position Read-only
Edi t Vi ew TopVi ew Read-only
Methods

void ApplyStyle(EditStyle styl eToApply)
Edi t Bl ock Bl ockCreate()

string Describe()

bool Destroy()

Edi t Buf f er Next Buf f er (bool privat eToo)
Edi t Vi ew Next Vi ew(Edi t Vi ew)

Edi t Posi ti on PositionCreate()

bool Print()

Edi t Buf fer PriorBuffer(bool privateToo)
bool Renane(string newNane)

int Save([string newNane])

Events
voi d Attenpt ToModi f yReadOnl yBuf fer ()
voi d HasBeenhMbdi fi ed()

EditBuffer class description

An EditBuffer is arepresentation of the contents of afile. An EditView isused to
provide avisual representation of the EditBuffer. The same EditBuffer can be displayed
simultaneoudly in different EditViews (for example, two edit windows open on the same
file). EditBuffer objects provide functionality for afile being edited that is independent
of the number of views associated with the buffer.

Buffers have methods allowing them to traverse the list of views containing the same
EditBuffer. They maintain access to alist of bookmarks (position markers which track
text edits). Buffers can be queried for their time and date stamps.

Buffer contains a Position member through which manipulation of the underlying
EditBuffer is performed. Typically this member will be used when manipulating an
EditBuffer through script.

A single EditBuffer object existsinternally for each loaded filename. If you create
additional representations for an edit buffer, they are attached to the existing EditBuffer
object. Any changes to one of these representations changes the others, since they refer
to the same object. All representations inherit the IsReadOnly and I sPrivate attributes of
the original, because these properties are set only when the object isfirst created.

Buffers may be made private to provide raw data storage for script usage. No undo
information is maintained for private buffers, nor are they attachable to an EditView.
Buffers may also be specified as ReadOnly.

Chapter 4, cScript Class Reference 97

Block property EditBuffer

This property contains areference to the hidden EditBlock. Thisis aread-only property.

Type expected
Edi t Bl ock Bl ock

CurrentDate property EditBuffer

This property isoriginally set to the same value as Initial Date but is updated when the
buffer's contents are altered. It is aread-only property.

Type expected
Ti meSt anp Current Dat e

Directory property EditBuffer

This property isNULL if the EditBuffer isinvalid; otherwise, it indicates the directory
path in uppercase letters. It is aread-only property.

Type expected
string Directory

Drive property EditBuffer

This property isNULL if the EditBuffer isinvalid; otherwise, it indicates the uppercase
drive letter with its associated colon (:). It isaread-only property.

Type expected
string Drive

Extension property EditBuffer

This property isNULL if the EditBuffer isinvalid; otherwise, it indicates the uppercase
file extension including the period (.), if any. It isaread-only property.

Type expected
string Extension

FileName property EditBuffer

This property isNULL if the EditBuffer isinvalid; otherwise, it indicates the file name
in uppercase letters. It is aread-only property.

Type expected
string Fil eNane

FullName property EditBuffer

This property indicates the name of the EditBuffer or NULL if the EditBuffer isinvalid.
It isaread-only property.

98 Paradigm C++ Obiject Scripting Guide

Type expected
string Ful |l Nanme

InitialDate property EditBuffer

If the buffer isinitialized from adisk file, InitialDate reflects the file's age. If the file
doesn't reside on disk, InitialDate holds the time at which the buffer was created. It isa
read-only property.

Type expected
TimeStanp Initial Date

IsModified property EditBuffer

This method indicates if the buffer was changed since it was last opened or saved,
whichever occurred most recently. It is aread-only property.

Type expected
bool |shdified

IsPrivate property EditBuffer

This property is TRUE if the buffer was created with the private parameter set to
TRUE, otherwiseit isFALSE. It isaread-only property.

Type expected
bool [sPrivate

IsReadOnly property EditBuffer

This property is TRUE if the buffer was created with the readOnly parameter set to
TRUE, otherwise it is FALSE. It isaread-only property.

Type expected
bool |sReadOnly

IsValid property EditBuffer

This property is FAL SE if the EditBuffer is destroyed, otherwiseitisTRUE. Itisa
read-only property.

Type expected
bool Isvalid

Position property EditBuffer

This property provides access to the EditPosition instance for this EditBuffer.

Type expected
Edi t Posi ti on Position

Chapter 4, cScript Class Reference 99

TopView property EditBuffer

This property indicates the topmost EditView that contains this EditBuffer, or NULL if
no view is associated with the buffer. It is aread-only property.

Type expected
Edi t Vi ew TopVi ew

ApplyStyle method EditBuffer

This method updates the EditBuffer's member with the contents of styleToApply.

Types expected
voi d ApplyStyl e(EditStyl e styl eToApply)

BlockCreate method EditBuffer

Types expected
Edi t Bl ock Bl ockCreate()

Describe method EditBuffer

This method invoked during buffer list creation by an Editor object. It returns a text
description of the buffer, asin:

FOO.CPP(modified)
BAR.CPP

Types expected
string Describe()

Destroy method EditBuffer
This method removes the buffer from the IDE's buffer list and does not save any
changes.

Types expected
bool Destroy()

Return value
TRUE if the buffer was actually destroyed, or FAL SE if viewsrelying on it still exist.

NextBuffer method EditBuffer

This method finds the next edit buffer in the buffer list. Thelist iscircular, so a buffer
will be found if one exists, unless all buffers are private and privateToo is FAL SE.

Types expected
Edi t Buf f er Next Buffer(bool privateToo)

privateToo Indicatesif private buffers are to be included.

100 Paradigm C++ Obiject Scripting Guide

Return value
The edit buffer found or NULL if it finds none.

NextView method EditBuffer

Returns the next EditView containing this EditBuffer.

Types expected
Edi t Vi ew Next Vi em Edi t Vi ew next)

next The view to use in getting the next associated view for this edit buffer.
Commonly you start walking the view list by passing the value of
TopView to this method.

Description

An EditBuffer is arepresentation of the contents of afile. An EditView isused to
provide avisual representation of the EditBuffer. The same EditBuffer can be displayed
simultaneoudly to the user in different EditViews (for example, two edit windows can be
open on the same file). This method enables you to cycle through all the EditViews
representing this EditBuffer.

PositionCreate method EditBuffer

Types expected
Edi t Position PositionCreate()

Print method EditBuffer
Prints this buffer and returns TRUE if the print was successful or FAL SE if the print
failed.

Types expected
bool Print()
PriorBuffer method EditBuffer

This method finds the previous edit buffer in the buffer list. Thelistiscircular, so a
buffer will be found if one exists, unless all buffers are private and privateToo is
FALSE.

Types expected
Edi t Buf fer PriorBuffer(bool privateToo)

privateToo Indicatesif private buffers are to be included.

Return value
The edit buffer found or NULL if it finds none.

Chapter 4, cScript Class Reference 101

Rename method EditBuffer

This method changes the edit buffer name to the one specified in newName. Rename
failswhen an EditBuffer with the new name is already in the buffer list. If afile with the
new name already exists on disk, it is overwritten when this buffer is saved.

Types expected
bool Renane(string newNane)

Return value
TRUE if the operation succeeded or FAL SE if it failed.

Save method EditBuffer

This method writes the file associated with the buffer to disk whether it was modified or
not. It uses the current name of the file or newName if it is specified.

Types expected
int Save([string newNane])

Return value
The number of bytes written or O if the save was unsuccessful.

AttemptToModifyReadOnlyBuffer event EditBuffer

This event is triggered when an attempt is made to modify a read-only buffer.

Types expected
voi d Attenpt ToModi f yReadOnl yBuf fer ()

Return value

None

AttemptToWriteReadOnlyFile event EditBuffer
This event is triggered when an attempt is made to write the contents of an EditBuffer to
aread-only file.

Types expected
void Attenpt TOWiteReadOnl yBuffer ()

Return value
None

HasBeenModified event EditBuffer

This event is triggered when a buffer has been modified for the first time.

Types expected
voi d HasBeenhMbdi fi ed()

102 Paradigm C++ Obiject Scripting Guide

Return value
None

Editor class

This class provides access to the IDE's internal editor. Editor is associated with other
classes which provide the editor with its functionality.

Syntax

Edi tor ()

Properties

EditStyle FirstStyle Read-only
Edi t Opti ons Options Read-only
Sear chOpti ons SearchQpti ons Read-only
Edi t Buf fer TopBuffer Read-only
Edi t Vi ew TopVi ew Read-only
Methods

voi d Appl yStyl e(EditStyl e newOpti ons)

voi d BufferList()

Buf f er Opti ons BufferOpti onsCreate()

bool BufferRedo(EditBuffer buffer)

bool BufferUndo(Edit Buf fer buffer)

voi d DestroyedStyl e(EditStyl e styl eToRenove)

EditBuffer EditBufferCreate(string fileNane [, bool private, bool
readnl y])

Edi t Opti ons EditOQpti onsCreate()

EditStyle EditStyl eCreate(string styleNane[,EditStyle tolnheritFroni)
Edi t Wndow Edi t W ndowCr eat e(Edi t Buf f er buf fer)

string Getd ipboard()

int GetdipboardToken()

Edi t Wndow Get W ndow [bool getLast])

bool |sFileLoaded(string fil enane)

EditStyle Styl eGet Next (Edit Style)

bool Vi ewRedo(EditVi ew vi ew)

bool Vi ewUndo(EditView view)

Events

voi d BufferCreated(EditBuffer buffer)

voi d MouseBl ockCreat ed()

voi d Mouseleft Down()

voi d Mouseleft Up()

string MuseTi pRequested(EditView theView, int line, int colum)
voi d Opti onsChanged(EditorOpti ons newOpti ons)
voi d Opti onsChangi ng(Edi t or Opti ons newQpt i ons)
voi d Vi ewActi vat ed(Edi t Vi ew vi ew)

voi d Vi ewCr eat ed(Edi t Vi ew newi ew)

voi d Vi ewDest royed(Edi t Vi ew deadVi ew)

Editor class description

The IDE instantiates an Editor object, which maintains undo and redo data and has
methods allowing accessto the list of all buffers and Edit windows. Editors have a
member of type EditOptions that controls global editor characteristics such as scrap

Chapter 4, cScript Class Reference 103

manipulation (blocks cut or copied from Editor buffers), the default regular expression
language, and destination paths for backups. Although multiple instances of Editor
objects may be created in script, they all refer to the same instance of asingle C++
object internal to the IDE; therefore, modification of one Editor object's options will be
reflected in all Editor objects.

FirstStyle property Editor

This property containsthe first stylein the list of editor styles. It isusually used in
conjunction with the Editor.StyleGetNext() method. At least one EditStyle must exist
for this property to contain avalid value. Thisis aread-only property.

Type expected
EditStyle FirstStyle

Options property Editor

This property holds the buffer options settings for all edit buffers, Changing an option
in this property affects all edit buffers. Thisis aread-only property.

Type expected
Edi t Opti ons Qptions

SearchOptions property Editor

This property provides access to the instance of SearchOptions associated with this
editor. Thisis aread-only property.

Type expected
SearchQpti ons SearchQpti ons

TopBuffer property Editor

This property indicates the current edit buffer. Thisis aread-only property.

Type expected
Edi t Buf f er TopBuffer

TopView property Editor

This property provides a quick way to get at top view associated with the current edit
buffer. Thisis aread-only property.

Type expected
Edi t Vi ew TopVi ew

ApplyStyle method Editor

This method updates the edit options with the contents of newOptions.

Types expected
void ApplyStyl e(EditStyl e newOpti ons)

104 Paradigm C++ Obiject Scripting Guide

Return value
None

BufferList method Editor

This method presents to the user alist of buffers that comes from
Edit.Buffer.Describe().

Types expected
voi d BufferlList()

Return value
None

BufferOptionsCreate method Editor

This method creates a new instance of the Buffer Options class.

Types expected
Buf f er Opti ons BufferOpti onsCreate()

Return value
A Buffer Options object

BufferRedo method Editor

This method undoes the last undo operation on the buffer or view regardless of whether
the operation was performed on the EditBuffer, the EditView, an EditBlock, or an
EditPosition.

Types expected
bool BufferRedo(EditBuffer buffer)

Return value
TRUE if there are more operations to redo, or FAL SE if there are not.

BufferUndo method Editor

This method undoes the last operation on the buffer or view regardliess of whether the
operation was performed on the EditBuffer, the EditView, an EditBlock, or an
EditPosition.

Types expected
bool BufferUndo(Edit Buf fer buffer)

Return value
TRUE if there are more operations to undo or FAL SE if there are not.

EditBufferCreate method Editor

This method creates an edit buffer corresponding to fileName.

Chapter 4, cScript Class Reference 105

Types expected
EditBuffer EditBufferCreate(string fileNane [, bool
private, bool readOnly])

Return value
The edit buffer created, or NULL if none could be created.

EditOptionsCreate method Editor
This method creates a new instance of the EditOptions class.
Types expected
Edi t Opti ons EditOpti onsCreate()
Return value
An EditOptions object.
EditStyleCreate method Editor
This method creates an edit style.
Types expected
EditStyle EditStyl eCreate(string styleNane[,EditStyle
tolnheritFrom)
Return value
The edit style created, or NULL if none could be created.
EditWindowCreate method Editor
This method creates an edit window.
Types expected
Edi t W ndow Edi t WndowCr eat e(Edi t Buf f er buffer)
Return value
The edit window created, or NULL if none could be created.
GetClipboard method Editor
This method returns the contents of the Windows Clipboard in a string.
Types expected
string Getd i pboard()
GetClipboardToken method Editor

This method returns the memory address of the Windows Clipboard contents.

Types expected
int Getd ipboardToken()

106 Paradigm C++ Obiject Scripting Guide

GetWindow method Editor

This method returns an EditWindow. If getLast is FAL SE, it returns the top level
window. If itis TRUE, GetWindow returns the last EditWindow in the Z-order. getLast
defaultsto FAL SE.

Types expected
Edi t Wndow Get W ndow [bool getlLast])

IsFileLoaded method Editor

This method returns TRUE if a buffer by that name exists or FAL SE if one doesn't.

Types expected
bool |sFileLoaded(string fil eNane)

StyleGetNext method Editor

ViewRedo

Use this method in conjunction with the FirstStyle property to access the circularly
linked list representing all the editor styles.

Types expected
EditStyle Styl eGet Next (Edit Style)

Return value
The editor style that was found, or NULL if no editor styleis found.

method Editor

ViewUndo

This method reapplies the last operation that was undone on the buffer or view
regardless of whether the operation was performed on the EditBuffer the EditView, an
EditBlock, or an EditPosition.

Types expected
bool Vi ewRedo(EditView view)

Return value
TRUE if there are more operations to redo, or FAL SE if there are not.

method Editor

Chapter 4,

This method undoes the last operation on the buffer or view regardliess of whether the
operation was performed on the EditBuffer, the EditView, an EditBlock, or an
EditPosition.

Types expected
bool Vi ewUndo(EditView vi ew)

Return value
TRUE if there are more operations to undo, or FAL SE if there are not.

cScript Class Reference 107

BufferCreated event Editor

This event is triggered when a new EditBuffer is created. buffer isthe newly created
buffer. The default action isto do nothing.

Types expected
voi d BufferCreated(EditBuffer buffer)

MouseBlockCreated event Editor

This event is triggered when the user selects a block with the mouse in the top view.

Types expected
voi d MouseBl ockCreat ed()

Return value
None

MouseLeftDown event Editor

This event is triggered when the mouse left button is pressed in an Edit window.

Types expected
voi d Mouseleft Down()

Return value
None

MouseLeftUp event Editor

This event is triggered when the mouse |eft button is released in an Edit window.

Types expected
voi d Mouseleft Up()

Return value
None

MouseTipRequested event Editor

This event is raised when the mouse has remained idle over an editor window for a
period of time.

Types expected
string MuseTi pRequested(EditView theView, int line,
i nt col um)

theView The EditView object describing the edit window that containstheidle
mouse.

line, column The position in the edit buffer of the character the mouse cursor is on.

108 Paradigm C++ Obiject Scripting Guide

Return value

If this routine returns a string, it displays the string to the user as a help hint. The default
implementation returnsa NULL.

OptionsChanged event Editor

This event is raised when the OptionsChanging event handler has completed and the
global values have been changed. This event notifies a script that needs to update the
global options that those options have changed.

Types expected
voi d Opti onsChanged(EditorOpti ons newOpti ons)

Return value
None

OptionsChanging event Editor

This event israised when leaving one of the editor MPD pages with accept. The event
contains a copy of the new values for the global editor options. An event handler may
examine these values and determine if any of the values need to be overridden with any
valuesfrom newOptions.

Types expected
voi d Opti onsChangi ng(Edi t or Opti ons newQOpt i ons)

Return value
None

ViewActivated event Editor

This event is triggered when the EditView represented by view is activated. Thereisno
default action for this event.

Types expected
voi d Vi ewActi vat ed(Edi t Vi ew vi ew)

Return value
None

ViewCreated event Editor

This event is triggered when the EditView represented by newView is created. Thereis
no default action for this event.

Types expected
voi d Vi ewCr eat ed(Edi t Vi ew newVi ew)

Return value
None

Chapter 4, cScript Class Reference 109

ViewDestroyed event Editor

This event is triggered when the EditView represented by deadView is destroyed. There
is no default action for this event.

Types expected
voi d Vi ewDestroyed(Edi t Vi ew deadVi ew)

Return value
None

EditOptions class

This classis one of the editor classes. It holds editor characteristics of aglobal nature
such as the insert/overtype setting, optimal fill, and scrap settings (how to handle blocks
cut or copied from Editor buffers).

Syntax
Edi t Opti ons()

The values are initialized from global defaults during construction.

Properties

string BackupPath Read-write
I nt Bl ockl ndent Read-write
Buf f er Opti ons BufferOQpti ons Read-only
string MrrorPath Read-write
string Oiginal Path Read-write
string SyntaxHi ghli ght Types Read-write
bool UseBRI EFCur sor Shapes Read-write
bool UseBRI EFRegul ar Expr essi on Read-write
Methods

None

EditOptions class description

The EditOptions object holds editor characteristics of a global nature, such as whether
to create backups and the option settings for all buffers (in Buffer Options).

BackupPath property EditOptions
This property contains the path where the editor stores backup files. Thisis aread-write
property.

Type expected
string BackupPat h

110 Paradigm C++ Obiject Scripting Guide

Blockindent property EditOptions

Blockindent (set in the IDE in Options|Environment|Editor|Options|Block Indent
indicates the number of charactersto indent or outdent a block of characters. The value
must be between 1 and 16. Thisis aread-write property.

Type expected
i nt Bl ockl ndent

BufferOptions property EditOptions
This property holds the buffer options settings for all edit buffers. Thisis aread-only
property.

Type expected
Buf f er Opti ons BufferOptions

MirrorPath property EditOptions
This property holds the path where the editor stores mirror copies of filesin. Thisisa
read-write property.

Type expected
string MrrorPath

OriginalPath property EditOptions

This property holds the path where the editor storesthe original filesin. Thisis aread-
write property.

Type expected
string Oiginal Path

SyntaxHighlightTypes property EditOptions

This property holds the file extensions, or file names, of the file types for which syntax
highlighting is to be enabled in the editor. Thisis aread-write property.

Type expected
string SyntaxH ghlight Types

UseBRIEFCursorShapes property EditOptions

When TRUE, the editor uses the default cursor shapes that Brief uses for insert mode
and overtype mode. Thisis aread-write property.

Type expected
bool UseBRI EFCur sor Shapes

Chapter 4, cScript Class Reference 111

UseBRIEFRegularExpression property EditOptions

When TRUE, complex search and search/replace operations can be performed using the
Brief regular expression syntax. Thisis aread-write property.

Type expected
bool UseBRI EFRegul ar Expr essi on

EditPosition class

Thisis one of the editor classes. EditPosition class members provide positioning
functionality related to the active location in an EditView or EditBuffer.

Syntax
Edi t Posi ti on(Edi t Buf f er)
Edi t Posi ti on(Edi t Vi ew)

Properties

i nt Character Read-only
i nt Col um Read-only
bool | sSpeci al Character Read-only
bool | sWhiteSpace Read-only
bool | sWbrdCharact er Read-only
I nt Last Row Read-only
i nt Row Read-only

Sear chOpti ons SearchQpti ons Read-only

Methods

void Align(int magnitude)

bool BackspaceDel ete([int howvany])

bool Del ete([int howwvany])

int DistanceToTab(int direction)

bool GotoLine(int IineNunber)

voi d I nsert Bl ock(EditBl ock bl ock)

voi d I nsert Character(int characterTol nsert)

void InsertFile(string fil eNane)

voi d I nsertScrap()

void I nsertText(string text)

bool Mwve([int row, int col])

bool MoveBOL()

bool MoveCur sor (moveMask)

bool MveEOH()

bool MoveEQOL()

bool MyveReal ([int row, int col])

bool MoveRel ative([int deltaRow, int deltaCol])

string Read([int numberO Chars])

bool Replace([string pat, string rep, bool case, bool useRE, bool dir,
int reFlavor, bool global, EditBlock bl ock])

bool Repl aceAgai n()

voi d Restore()

string R pText(string legal Chars [,int ripFlags])

voi d SaveEdit Position_Save()

i nt SearchEdi tPosition_Search([string pat, bool case, bool useRE, bool
dir, int reFlavor, EditBlock block])

i nt SearchAgai n()

voi d Tab(int nagnitude)

112 Paradigm C++ Obiject Scripting Guide

EditPosition class description

Most of the interesting editing activity takes place here, such as searching, text ripping,
character reading, and text insertion and deletion.

Character property EditPosition

Integer value of the character at this position, or one of the following values:

VIRTUAL_TAB
VIRTUAL_PAST_EOF
VIRTUAL_PAST_EOL

Thisisaread-only property.

Type expected
i nt Character

Column property EditPosition

This property represents the current column position in the buffer. To change, use one
of the Move methods. Thisis aread-only property.

Type expected
i nt Columm

IsSpecialCharacter property EditPosition

This property is TRUE if the character at the current edit position is not an
alphanumeric or whitespace character; otherwise it is FAL SE.

Thisisaread-only property.

Type expected
bool | sSpeci al Character

IsWhiteSpace property EditPosition

This property is TRUE if the character at the current edit position isaTab or Space;
otherwiseit isFAL SE.

Thisisaread-only property.

Type expected
bool | sWhiteSpace

IsWordCharacter property EditPosition

This property is TRUE if the character at the current edit position is an aphabetic
character, numeric character or underscore. Otherwise, the property is FAL SE.

Thisisaread-only property.

Type expected
bool | sWrdCharacter

Chapter 4, cScript Class Reference 113

LastRow property EditPosition

The line number of the last line in the edit buffer. Thisis aread-only property.

Type expected
i nt Last Row

Row property EditPosition

The property represents the current row position in the buffer. To change, use one of the
Move methods. Thisis aread-only property.

Type expected
i nt Row

SearchOptions property EditPosition

This property contains an instance of the SearchOptions class, the current search
optionsin force.

Thisisaread-only property.

Type expected
SearchQpti ons SearchQpti ons
Align method EditPosition

Positions the insertion point on the current line, aligning it with columns cal culated
from prior linesin thefile.

Types expected
void Align(int magnitude)

Return value
None

Description

If magnitude is a positive value, then enough characters are inserted to align the
character position as follows:. Starting with a column defined by the current character
position on the current line, the character position is aligned with the first character
following the first white space on the previous line after the column position. If the
previous line is too short to calculate a position on the current line, previous lines are
scanned until finding one that is long enough to calculate a column position. If
magnitude is negative, the column position is moved to the left.

EditPosition class, Align method example

At the start, the previous two lines contain the text "L eaning over the console, she stuck
out her hand and said,” and "'Hello there, buddy™, and the current line has the cursor
(™Min column.

114 Paradigm C++ Obiject Scripting Guide

Leani ng over the console, she stuck out her hand and said,
"How are you, buddy"
N

Calling Align(2) resultsin:

Leani ng over the console, she stuck out her hand and said,
"How are you, buddy."
N

Caling Al i gn(1) againresultsin:

Leani ng over the console, she stuck out her hand and said,
"How are you, buddy."
N

Calling Al i gn(1) againresultsin:

Leani ng over the console, she stuck out her hand and said,
"How are you buddy."
N

Caling Al i gn(-1) resultsin:

Leani ng over the console, she stuck out her hand and said,
"Hell o there, buddy."
N

BackspaceDelete method EditPosition

Deletes characters to the left of the current position. The number of charactersis
indicated by howMany and defaults to 1. Returns TRUE if any characters are deleted or
FAL SE if there are no charactersto the | eft.

Types expected
bool BackspaceDel ete([int howvany])

Delete method EditPosition

Deletes characters to the right of the current position. The number of charactersis
indicated by howMany and defaults to 1. Returns TRUE if any characters are deleted or
FALSE if there are no charactersto the left.

Types expected
bool Delete([int howvany])

DistanceToTab method EditPosition

Retrieves the number of character positions between the current cursor position and the
next/previous tab stop. direction is either SEARCH_FORWARD (default) or
SEARCH_BACKWARD.

Types expected
int DistanceToTab(int direction)

Chapter 4, cScript Class Reference 115

GotoLine method EditPosition

Moves the cursor to the line specified by lineNumber. Does not change the column
position. Prompts the user if lineNumber is not supplied.

Types expected
bool GotoLine(int IineNunber)

Return value
TRUE if the move was successful, FAL SE, otherwise

InsertBlock method EditPosition
Inserts the last marked Editblock at the current cursor position.

Types expected
voi d I nsertBl ock(EditBl ock bl ock)

Return value
None

InsertCharacter method EditPosition

Types expected
voi d I nsert Character(int characterTol nsert)

characterTolnsert ~ Theinteger value of the character that should be inserted.

Return value
None

InsertFile method EditPosition

Inserts the contents of the specified file at the current cursor location.

Types expected
void InsertFile(string fil eNane)

Return value
None

InsertScrap method EditPosition
Text to insert is taken from the Windows Clipboard.

Types expected
voi d I nsertScrap()

Return value
None

116 Paradigm C++ Obiject Scripting Guide

InsertText method EditPosition

Inserts the specified text at the current cursor position.

Types expected
void I nsertText(string text)

Return value
None

Move method EditPosition
Moves the cursor to the row and column indicated by row and col.

Types expected
bool Mwve([int row, int col])

Return value

The return value, TRUE or FAL SE, indicates whether the position actually changed.
Attempts to position either the column at O or less, or 1025 or more, or theline at O or
less, or MaxLineNumber + 1 or more areinvalid.

MoveBOL method EditPosition

Moves the cursor to the first character on the current line.

Types expected
bool MoveBOL()

Return value

The return value, TRUE or FAL SE, indicates whether the position actually changed.
Attempts to position either the column at O or less, or 1025 or more, or theline at O or
less, or MaxLineNumber + 1 or more are invalid.

MoveCursor method EditPosition

Moves the current position forward or backward in the buffer as indicated in moveMask.
The value of moveMask can be built from the one of the following: SKIP_WORD
(default), SKIP_NONWORD, SKIP_WHITE, SKIP_NONWHITE, SKIP_SPECIAL,
and SKIP_NOSPECIAL. These may be combined with SKIP_LEFT (default) or
SKIP_RIGHT. SKIP_STREAM may aso be used with any of these combinations if
line ends should be ignored.

Types expected
bool MoveCur sor (moveMask)

Return value

The return value, TRUE or FAL SE, indicates whether the position actually changed.
Attempts to position either the column at O or less, or 1025 or more, or theline at O or
less, or MaxLineNumber + 1 or more areinvalid.

Chapter 4, cScript Class Reference 117

MoveEOF method EditPosition

Moves the current position to the last character in thefile.

Types expected
bool MoveEOR()

Return value

The return value, TRUE or FAL SE, indicates whether the position actually changed.
Attempts to position either the column at O or less, or 1025 or more, or theline at O or
less, or MaxLineNumber + 1 or more areinvalid.

MoveEOL method EditPosition

Moves the current position to the last character on the line.

Types expected
bool MveEOL()

Return value

The return value, TRUE or FAL SE, indicates whether the position actually changed.
Attempts to position either the column at O or less, or 1025 or more, or theline at O or
less, or MaxLineNumber + 1 or more areinvalid.

MoveReal method EditPosition

The position assumes that the file is unedited. If edits have been made to the file, the
move isrelative to the original, unedited file. For example, the original, unedited fileis
atwo-line file with the word ONE on thefirst line and the word TWO on the second
line. The user subsequently inserts 100 lines of text after line 1. MoveReal (2, 1)
moves the cursor to the"T" in "TWO".

Types expected
bool MoveReal ([int row, int col])

Return value

The return value, TRUE or FAL SE, indicates whether the position actually changed.
Attempts to position either the column at O or less, or 1025 or more, or theline at O or
less, or MaxLineNumber + 1 or more are invalid.

MoveRelative method EditPosition

118

Moves the cursor deltaRow rows from the current row position and deltaCol columns
from the current column position.

Types expected
bool MoveRel ative([int deltaRow, int deltaCol])

Paradigm C++ Obiject Scripting Guide

Return value

The return value, TRUE or FAL SE, indicates whether the position actually changed.
Attempts to position either the column at O or less, or 1025 or more, or theline at O or
less, or MaxLineNumber + 1 or more areinvalid.

Read method EditPosition

number OfChars indicates the number of charactersto read from the current position. If
omitted, it readsto the end of theline.

Types expected
string Read([int numberO Chars])

Return value
Returns a string containing the characters read.

Replace method EditPosition

This method searches in the current edit buffer and in the direction indicated for the
search expression indicated in pat and replaced it with rep.

Types expected
bool Replace([string pat, string rep, bool case,
bool useRE, bool dir, int reFlavor, bool
gl obal , EditBl ock bl ock])

pat The string to search for.

rep The string to replace with.

case Indicates if the case of pat is significant in the search.

useRE Indicates whether or not to interpret pat as aregular expression string.
dir One of the following:

SEARCH_FORWARD (default)
SEARCH_BACKWARD

reFlavor The type of regular expression being used; it may be one of the
following:
IDE_RE (default)
BRIEF_RE

BRIEF_RE_FORWARD_MIN
BRIEF_RE_SAME_MIN
BRIEF_RE_BACK_MIN
BRIEF_RE_FORWARD MAX
BRIEF_RE_SAME_MAX
BRIEF_RE_BACK_MAX

block If given, restricts the search to the indicated block.

Return value
Either the string is replaced or the empty string (") if nothing is found.

Chapter 4, cScript Class Reference 119

ReplaceAgain method EditPosition

Repeats the most recently performed replace operation.

Types expected
bool Repl aceAgai n()

Return value
Either the string is replaced or the empty string (") if nothing is found.

Restore method EditPosition

Restores the cursor position to the position saved by the last call to the Save method.

Types expected
voi d Restore()

Return value
None

RipText method EditPosition

This method performs an edit rip operation. At most, this routine will rip an entire line.
It returns the string copied from the edit buffer.

Types expected
string Ri pText(string |egal Chars [,int ripFlags])

legalChars Determines the delimiter characters that can halt the edit rip. If omitted,
INCLUDE_ALPHA_CHARS, INCLUDE_NUMERIC_CHARS,
INCLUDE_SPECIAL_CHARS are al automatically added to the ripFlags argument,
making any character between ASCII decimal 32 and 128 a delimiter.

ripFlags A mask built by combining any or all of the following values:
BACKWARD_RIP Rip from left to right.

INVERT_LEGAL_CHARS Interpret the legal Chars string as
the inverse of the string you wish to
use for legal Chars. In other words,
specify t to mean any ASCII value
between 1 and 255 except t.

INCLUDE_LOWERCASE_ALPHA_CHARS Append the characters
abcdef ghi j kIl mopqr st uvw
Xyz to
the legal Chars string.

INCLUDE_UPPERCASE_ALPHA_CHARS Append the characters
ABCDEFGHI JKLMNOPQRSTUV
VKYZ to the legal Chars string.

120 Paradigm C++ Obiject Scripting Guide

INCLUDE_ALPHA_ CHARS Append both ppercase and

lowercase apha characters to the
legal Chars gtring.

INCLUDE_NUMERIC_CHARS Append the characters

1234567890
to the legal Chars string.

INCLUDE_SPECIAL_CHARS Append the characters ™ -

Save method

=[]\, [~ @9 & () _H{
H <2
to the legal Chars string.

EditPosition

Save the current cursor position. Use Restore to restore the cursor to this position later.

Types expected
voi d Save()

Return value

None

Search method

EditPosition

This method searches the edit buffer in the direction indicated for the search expression
indicated in pat.

Types expected

pat
case
useRE
dir

reFlavor

block

int Search(string pat [, bool case, bool useRE,

bool dir, int reFlavor, EditBlock block])
The string to search for.
Indicates if the case of pat is significant in the search.
Indicates whether or not to interpret pat as aregular expression.
One of the following:

SEARCH_FORWARD (defaullt)
SEARCH_BACKWARD

The type of regular expression in use; it may be one of the following:

IDE_RE (default)

BRIEF RE

BRIEF_RE_FORWARD_MIN / same as BRIEF_RE
BRIEF_RE_SAME_MIN

BRIEF_RE_BACK_MIN

BRIEF_RE_FORWARD MAX

BRIEF_RE_SAME_MAX

BRIEF_RE_BACK_MAX

If given, restricts the search to the indicated block.

Chapter 4, cScript Class Reference 121

If case, useRE, or reFlavor is not supplied, the value is determined by querying the
Editor object.

Return value
The size (in characters matched) of the match.

SearchAgain method EditPosition

Repeats the most recently performed search operation.

Types expected
i nt SearchAgai n()

Tab method EditPosition

Moves the current cursor location to the next or previous tab stop, depending on
whether magnitude is positive (next) or negative (previous).

Types expected
voi d Tab(int nagnitude)

Search expression definition EditPosition

122

A search expression is a set of characters that the search engine will attempt to match
against the text contained in an edit buffer. A search expression can be either aliteral
string or aregular expression.

. Inaliteral string, there are no operators. Each character istreated literally.

. Inaregular expression, certain characters have special meanings. They are
operators that govern the search.

A regular expression is either a single character or a set of characters enclosed in
brackets. A concatenation of regular expressionsis aregular expression.

Regular expressions have two formats, IDE and Brief.

Brief regular search expression symbols
The following table describes the symbols that can be used in a Brief search expression:

Symbol Description
? Any single character except anewline
* Zero or more characters (except newlines)
\t Tab character
\n Newline character
\c Position cursor after the match
\\ Literal backslash
<or% Beginning of line
>or$ End of line
@ Zero or more of the last expression
+ One or more of the last expression

Paradigm C++ Obiject Scripting Guide

| Either the last or the next expression

{} Define agroup of expressions

[1] Any one of the charactersinside[]

[~1] Any character except thosein[~]

[a-Z] Any character between aand z, inclusive

In replacement text,\ t ,\ n, and\ ¢ are allowed, aswell as
\ <n> Substitute text matched by <n>th group (0 <= n <= 9)

IDE search expression symbols
The following table describes the symbols that can be used in an IDE search expression:

Symbol Description

n A circumflex at the start of the expression matchesthe start of aline.

$ A dollar sign at the end of the expression matches the end of aline.
A period matches any single character.

* An asterisk after a string matches any humber of occurrences of that string followed by any
characters, including zero characters. For example, bo* matchesbot , boo, and bo.

+ A plus sign after a string matches any number of occurrences of that string followed by any
characters, except zero characters. For example, bo+ matchesbot and boo, but not b or bo.

{1} Characters or expressions in braces are grouped to alow for controlling evaluation of a search
pattern or referring to grouped text by number.

[1 Charactersin brackets match any single character that appearsin the brackets, but no others.
For example[bot] matchesb, 0, ort .

™ A circumflex at the start of the string in brackets meansNOT. For example, [“bot] matches
any charactersexceptb, o0, ort .

[-] A hyphen in brackets signifies arange of characters. For example, [b- 0] matches any
character from b through o.

\ A backslash before aspecia character indicatesthat the character isto beinterpreted literally.

For example, \ * matches” and does not indicate the start of aline.

Edit rip definition

Edit rip is the process by which the editor detects the current cursor position and copies
characters from the edit buffer. The IDE editor uses edit rip to find relevant Help topics
when the user press F1 in an edit window.

EditStyle class

This classis one of the editor classes. EditStyle applies styles that overrride settings for
abuffer or for the entire editor.

Syntax

EditStyle(string styleName[,EditStyle styleTolnitializeFroni)
Properties

Edi t Opti ons Edi t Mode Read-write

int ldentifier Read-only

Chapter 4, cScript Class Reference 123

string Nane Read-write

EditStyle class description

EditStyle objects provide a mechanism to collect EditOptions, name them, and apply
them across buffers, across the entire Editor, or both. EditStyle objects contain an
EditOptions member, a name, and an internal filter that indicates the characteristics that
the style controls. EdStyles are implicitly persistent. Thelist of available styles may be
traversed from the Editor object.

EditMode property EditStyle

This property contains an EditOptions object that defines the options for the style. This
is aread-write property.

Type expected
Edi t Opti ons Edi t Mode

Identifier property EditStyle

A unique integer you can use to distinguish styles. Thisis aread-only property.

Type expected
int ldentifier

Name property EditStyle

A unique name for this EditStyle. The value is taken from the styleName parameter.
Thisis aread-write property.

Type expected
string Nane

EditView class

This classis one of the editor classes. It provides the visual representation of the
EditBuffer to the user within the edit window. Each edit view has only one edit buffer
and isin an edit window.

Syntax
Edi t Vi ew (Edi t Wndow parent[, EditBuffer buffer])

If buffer is omitted, the parent's currently active EditBuffer is used.

Properties

Edi t Bl ock Bl ock Read-write
i nt BottonRow Read-only
Edi t Buf fer Buffer Read-only
int ldentifier Read-only
bool IsVvalid Read-only

124 Paradigm C++ Obiject Scripting Guide

bool |sZooned Read-write

i nt Last Edit Col um Read-only
i nt Last Edi t Row Read-only
int LeftColum Read-only
Edi t Vi ew Next Read-only
Edi t Position Position Read-only
Edi t Vi ew Pri or Read-only
i nt Ri ght Col um Read-only
i nt TopRow Read-only
Edi t W ndow W ndow Read-only
Methods

Edi t Buffer Attach(EditBuffer buffer)

bool Bookmar kCGot o(i nt bookmar kl Dor Pr evRef)
i nt Bookmar kRecord(int bookmarkl Dor PrevRef)
void Center([int row, int col])

voi d MoveCursor ToVi ew()

voi d MoveVi ewToCur sor ()

voi d PageDown()

voi d PageUp()

voi d Paint ()

int Scroll(int deltaRowf, int deltaCol])
voi d Set TopLeft(int topRow, int |eftCol)

EditView class description

EditView objects provide an editing window for a buffer being edited. Each EditView is
associated with only one EditWindow and one EditBuffer. During creation, the
EditView's Position member isinitialized from the EditBuffer's Position member. Views
have methods that allow traversal of their sibling views. They can aso be queried to
find the associated EditWindow or EditBuffer. Views have a Position member you can
use to manipulate the underlying EditBuffer. Typically this member is used by scripts
and primitives tied to the user interface. Although the underlying EditBuffer object
ownsthe list of bookmarks, the EditView object provides access (viarecord and goto),
thus providing access to a common list of bookmarks for the same buffer regardless of
the view being used.

Block property EditView

This property provides access to the instance of the EditBlock class attached to this
EditView. Thisis aread-only property.

Type expected
Edi t Bl ock Bl ock

BottomRow property EditView

Row number displayed at the last linein the view. Thisis aread-only property.

Chapter 4, cScript Class Reference 125

Type expected
i nt BottonmRow

Buffer property EditView

Returns the EditBuffer to which the view is attached. Thisis aread-only property.

Type expected
Edi t Buf f er Buffer

Identifier property EditView

A unique identifier you can useto tell views apart. Thisis aread-only property.

Type expected
int ldentifier

IsValid property EditView

The view will be invalidated if it is destroyed by the user. Thisis aread-only property.

Type expected
bool Isvalid

IsZoomed property EditView

A zoomed EditView is an EditView that has been expanded to occupy the entire
EditWindow client space. If an EditView iszoomed in an EditWindow, you can't
manipulate sibling views. (Y ou can't create, resize, or delete them.) Thisis aread-write
property.

Type expected
bool | sZooned

LastEditColumn property EditView

LastEditRow and LastEditColumn describe the character position at which the last edit
took place. An edit is defined as being a character or block insertion or a deletion
(anything that modifies the contents of the buffer). Thisis aread-only property.

Type expected
int LastEditCol um

LastEditRow property EditView

LastEditRow and LastEditColumn describe the character position at which the last edit
took place. An edit is defined as being a character or block insertion or a deletion
(anything that modifies the contents of the buffer). Thisis aread-only property.

Type expected
i nt Last Edi t Row

126 Paradigm C++ Obiject Scripting Guide

LeftColumn property EditView

Column number displayed at the left edge of the view. Thisis aread-only property.

Type expected
i nt LeftColum

Next property EditView

The next EditView embedded in the same window. Thisis aread-only property.

Type expected
Edi t Vi ew Next

Position property EditView

Provides access to the instance of the EditPosition class attached to this EditView. This
isaread-only property.

Type expected
Edi t Posi ti on Position

Prior property EditView

The previous EditView embedded in the same window. Thisis aread-only property.

Type expected
EditView Prior

RightColumn property EditView

Column number displayed at the right edge of the view. Thisis aread-only property.

Type expected
i nt Ri ght Col utm

TopRow property EditView

Row number displayed at the first line in the view. Thisis aread-only property.

Type expected
i nt TopRow

Window property EditView

Returns the window in which this view is embedded. Thisis aread-only property.

Type expected
Edi t W ndow W ndow

Chapter 4, cScript Class Reference 127

Attach method EditView

This method attaches the view to a new EditBuffer.

Types expected
Edit Buffer Attach(EditBuffer buffer)

Return value
The previous edit buffer.

Description

Y ou can Attach to replace the currently attached edit buffer. When aview is created, it
is associated with an EditBuffer. The purpose of the view isto provide a visua
representation of the edit buffer to which it is attached. Suppose you have a view that
you like (for example, you like its position in the creation history, its size and color, its
parent window, and everything else about it except that you want it to display a
different edit buffer). Instead of having to remember all these things, you can destroy
the current view, and recreate it all, and use Attach to switch its associated buffer to
another edit buffer.

BookmarkGoto method EditView

This method updates the EditBuffer's position with the value from the specified marker.

Types expected
bool Bookmar kGot o(i nt bookmar kI Dor Pr evRef)

bookmarkl Dor PrevRef Either an index (range 0-19) to the list of bookmarksin
the buffer or areference to abookmark that was returned
from a previous call to BookmarkRecord.

Return value
TRUE if the marker isvalid, or FALSE if it is not.

BookmarkRecord method EditView

128

This method returns a value suitable for passing to BookmarkGoto() or zero if there was
an error.

Types expected
i nt Bookmar kRecor d(i nt bookmar kl Dor PrevRef)

bookmarkl Dor PrevRef Either an index (range 0-19) to the list of bookmarksin
the buffer or areference to a bookmark that was returned
from a previous call to BookmarkRecord.

Description

Y ou can use BookmarkRecord() to remember a known location in abuffer. The
bookmark moves with edit inserts and deletes. For example, if you placed a bookmark
using BookMar kRecor d(1) attheain"are" in the following line, you could move
around and then return to that location with Bookmar kGot o(1) :

hel | o how are you?

Paradigm C++ Obiject Scripting Guide

If the word "how" were deleted, you would still return to theain "are".

Center method EditView

Scrolls the EditView as necessary to center the character in the view window. Centers
the character at the specified position vertically or horizontally or both. A zeroina
parameter means to leave that orientation alone. If the character is already centered,
nothing happens.

Types expected
void Center([int row, int col])

Return value
None

MoveCursorToView method EditView

This method ensures that the cursor is visible in the view by altering the cursor's
position, if necessary.

Types expected
voi d MoveCursor ToVi ew()

Return value
None

MoveViewToCursor method EditView

This method ensures that the cursor isvisible in the view by altering the view's
coordinates, if necessary.

Types expected
voi d MoveVi ewToCur sor ()

Return value
None

PageDown method EditView
This method advances the row position by the number of visible rowsin the EditView.

Types expected
voi d PageDown()

Return value
None

PageUp method EditView

This method moves the cursor toward the top of the buffer by the number of linesin the
visible rowsin the EditView.

Chapter 4, cScript Class Reference 129

Types expected
voi d PageUp()

Return value
None

Paint method EditView

During normal script execution, screen updates are suppressed. Calling Paint forces a
refresh.

Types expected
voi d Paint ()

Return value
None

Scroll method EditView

This method scrollsin the direction indicated and returns the number of lines actually
scrolled. The parameter values indicate and magnitude: A value less than O means scroll
up or left or both by that number of lines or columns or both, and a value greater than 0
means scroll down or right or both by that number of lines or columns or both.

Types expected
int Scroll(int deltaRowf, int deltaCol])

Return value
None

SetTopLeft method EditView

Attempts to position the character at the specified position in the upper |eft corner of the
EditView. Might fail if the position is outside the window's bounds. A zero in either
topRow or leftCol means to ignore the position request in that dimension (just set the

top or just set the left). A zero in both parameters causes the method to be ignored
altogether.

Types expected
voi d Set TopLeft(int topRow, int |eftCol)

Return value
None

EditWindow class

This classis one of the editor classes. It provides control of editor views.

Syntax
Edi t W ndow(Edi t Buf fer buffer)

130 Paradigm C++ Obiject Scripting Guide

Properties

int ldentifier Read-only
bool 1sHi dden Read-write
bool IsVvalid Read-only
Edi t W ndow Next Read-only
Edi t W ndow Pri or Read-only
string Title Read-write
Edi t Vi ew Vi ew Read-only
Methods

void Activate()

voi d d ose()

voi d Paint ()

EditVi ew Vi ewActivate(int direction[, EditView srcView)
EditView ViewCreate(int direction[, EditView srcView)

bool ViewDelete(int direction[, EditView srcView)
EditView Vi ewexi sts(int direction[, EditView srcView)

void ViewSlide(int direction[, int magnitude, EditView srcView)

EditWindow class description

EditWindow objects provide little functionality except for the management of panes
(views). Creation of an EditWindow does not cause a window to appear; rather, it
provides an object to which aview may be attached. As soon asthefirst view is
attached to an EditWindow, it can be displayed. Views may be zoomed, in which case
they expand to fill the client area of their EditWindow, hiding all sibling views (those
embedded in the same EditWindow). Aslong as an EditWindow contains a zoomed
view, views can't be created, destroyed or resized. EditWindows can be hidden and
unhidden to allow the user to free screen space and preserve the view layout in the
hidden EditWindows.

Identifier property EditWindow

This property is a unique value you can use to tell windows apart. It is aread-write
property.

Type expected
int ldentifier

IsHidden property EditWindow

This property indicatesif the current EditWindow is hidden. It is aread-only property.

Type expected
bool | sH dden

Chapter 4, cScript Class Reference 131

IsValid property EditWindow

This property is TRUE if the current EditWindow is ready for edit operations. It is
FAL SE if the window is not available (for example, it is closed). It is aread-only

property.

Type expected
bool Isvalid

Next property EditWindow

This property indicates the next EditWindow, if any. It isaread-only property.

Type expected
Edi t W ndow Next

Prior property EditWindow

This property indicates the previous EditWindow, if any. It isaread-only property.

Type expected
Edi t Wndow Pri or

Title property EditWindow

This property indicates the title of the current EditWindow. It is a read-write property.

Type expected
string Title

View property EditWindow

This property indicates the current EditView. It is aread-only property.

Type expected
Edit Vi ew Vi ew

Activate method EditWindow

This method brings this window to the top and gives it focus.

Types expected
void Activate()

Return value
None

Close method EditWindow

This method closes the current window.

132 Paradigm C++ Obiject Scripting Guide

Types expected
voi d d ose()

Return value

None

Paint method EditWindow
During normal script execution screen updates are suppressed. Calling Paint forces a
refresh.

Types expected
voi d Paint ()

Return value
None

ViewActivate method EditWindow

This method makes an existing view the current, active view.

Types expected
EditView ViewActivate(int direction[, EditView srcView)

direction Relative to the current EditView in an EditWindow. Can be one of the
following values:
UP
DOWN
LEFT
RIGHT

srcView If omitted, the EditWindow'scurrent EditView is activated.

Return value
The newly activated view or NULL if no view exists.

ViewCreate method EditWindow

This method creates an EditView.

Types expected
EditView ViewCreate(int direction[, EditView srcView)

direction Relative to the existing EditViews in an EditWindow and ignored for the
first view. Can be one of the following values:

Chapter 4, cScript Class Reference 133

upP
DOWN
LEFT
RIGHT

srcView The view to create. If omitted, the EditWindow'scurrent EditView is
used. The newly created EditView by default is not activated.

Return value
The new EditView or NULL if creation failed

ViewDelete method EditWindow

This method deletes the view in the direction relative to the srcView, if any. If no
srcView is specified, the currently active EditView in the EditWindow is deleted. The
target view (if any) is then removed from the EditWindow. srcView is then resized to
occupy the space previoudly held by the target view.

Types expected
bool ViewDelete(int direction[, EditView srcView)

direction Relative to the existing EditViews in an EditWindow and ignored for the
first view. Can be one of the following values:

upP
DOWN
LEFT
RIGHT

srcView If omitted, the EditWindow's current EditView is deleted.

Return value
TRUE if the view was deleted or FAL SE if it was not.

ViewExists method EditWindow

134

Get areference to an adjoining EditView, if the adjoining EditView exists.

Types expected
EditView Vi ewexi sts(int direction[, EditView srcView)

direction Relative to the current EditView in an EditWindow. Can be one of the
following values:

upP
DOWN
LEFT
RIGHT

srcView If omitted, the EditWindow's current EditView is used.

Paradigm C++ Obiject Scripting Guide

Return value
The EditView or NULL if it doesn't exist.

ViewSlide method EditWindow

Moves the view in the direction indicated.

Types expected
void ViewSlide(int direction[, int magnitude,
Edit Vi ew srcView)

direction Relative to the existing EditViews in an EditWindow. Can be one of the
following values:

upP
DOWN
LEFT
RIGHT

magnitude Thedirection (+ or -) and amount to move
srcView If omitted, the EditWindow's current EditView is used.

Return value
None

Chapter 4, cScript Class Reference 135

136 Paradigm C++ Obiject Scripting Guide

IDEApplication class

This class represents the Paradigm C++ Integrated Development Environment (IDE).
An IDEApplication object called IDE is instantiated when Paradigm C++ starts up. You

typically use this class to determine how to use or extend this IDE object.

Syntax

| DEAppl i cation()

Properties

string
string
string
string
string
Edi t or
string
int He
int 1dl
int 1dl

Application

Capti on

CurrentDirectory
Current Proj ect Node
Def aul t Fi | ePat h

Edi t or
Ful | Nane
ght

eTi ne
eTi meout

i nt LoadTi nme

string KeyboardAssi gnnentFile

Keyboar
int Lef

string Modul eNane

string
string

bool Rai seDi al ogCr eat edEvent
string StatusBar

int Top

bool UseCurrent W ndowrFor Sour ceTr acki ng

i nt Ver
bool Wi

dMvanager
t

Nane
Par ent

si on
si bl e

int Wdth

Methods

voi d AddToCredi ts()

bool O oseW ndow()

bool DebugAddBreakpoi nt ()
bool DebugAddwat ch()
bool DebugAni mat e()

bool DebugAttach()

Chapter 4, cScript Class Reference

Keyboar dManager

Read-only
Read-write
Read-only
Read-only
Read-write
Read-only
Read-only
Read-write
Read-only
Read-write
Read-only
Read-write
Read-only
Read-write
Read-only
Read-only
Read-only
Read-write
Read-write
Read-write
Read-write
Read-only
Read-write
Read-write

138

bool DebugBreakpoi nt Opti ons()

string DebugEval uate()

bool Debugl nspect ()

bool Debugl nstructionSteplnto()

bool Debugl nstructionStepQOver ()

bool DebuglLoad()

bool DebugPauseProcess()

bool DebugReset Thi sProcess()

bool DebugRun()

bool DebugRunTo()

bool DebugSour ceAt Execut i onPoi nt ()

bool DebugSt at enent St epl nt o()

bool DebugSt at enent St epOver ()

bool DebugTer m nat eProcess()

int DirectionD al og(string pronpt)

string DirectoryDial og(string pronpt, string initialVal ue)

voi d DisplayCredits()

bool DoFileQpen(string filename, string tool Nane [, ProjectNode node])

bool EditBufferList()

bool Edit Copy()

bool EditCut()

bool EditPaste()

bool EditRedo()

bool EditSelectAl()

bool EditUndo()

voi d EndWai t Cursor ()

voi d Ent er Cont ext Hel pMbde()

voi d ExpandW ndow()

bool Fil ed ose()

string FileDialog(string pronpt, string initial Val ue)

bool FileExit([int |IDEReturn])

bool FileNew([string tool Name, string fil eNane])

bool FileQpen([string name, string tool Nane])

bool Fil ePrint(bool suppressD al og)

bool FilePrinterSetup()

bool Fil eSave()

bool FileSaveAl ()

bool FileSaveAs([string newNane])

bool Fil eSend()

i nt Get Regi onBotton{(string Regi onNane)

i nt GetRegionLeft(string Regi onNane)

i nt GetRegi onRi ght (string Regi onNang)

i nt Get Regi onTop(string Regi onNane)

bool Get W ndowsSt at e()

void Hel p(string helpFile, int command, string hel pTopic)

bool Hel pAbout ()

bool Hel pCont ent s()

bool Hel pKeyboar d()

bool Hel pKeywor dSearch([string keyword])

bool Hel pUsi ngHel p()

bool Hel pW ndowsAPI ()

string KeyPressDi al og(string pronpt, string default)

string[] ListD alog(string pronpt, bool multiSelect, bool sorted,
string [] initialVal ues)

voi d Menu()

bool Message(string text, int severity)

int MessageCreate(string destinationTab, string tool Nane, int
messageType, int parent Message, string filenanme, int |ineNunber,
i nt col umNunber, stringtext, string hel pFil eName, int
hel pCont ext | d)

bool Next W ndow(bool pri or W ndow)

Paradigm C++ Obiject Scripting Guide

bool Opti onsEnvironnent ()

bool Opti onsProject()

bool OptionsSave()

bool OptionsStyl eSheets()

bool OptionsTool s()

bool ProjectBuil dA I ([bool suppressCkay, string nodeNane])

bool Projectd oseProject()

bool Project Conpile([string nodeNane])

bool Project Gener at eMakefil e([string nodeNane])

bool Project MakeAl | ([bool suppressCkay, string nodeNane])

bool ProjectManagerlnitialize()

bool Project NewProject([string pNane])

bool ProjectNewTarget([string nTarget, int targetType, int platform

int libraryMask, int nodel O Mode])

bool Project OpenProject([string pNane])

void Quit()

bool SaveMessages(string tabNane, string fil eNane)

bool Scri pt Commands()

bool ScriptConpileFile(string fil eNane)

bool Scri pt Modul es()

bool ScriptRun([string conmand])

bool ScriptRunFile([string filenane])

bool Sear chBrowseSynbol ([string sNane])

bool SearchFind([string pat])

bool Sear chLocat eSynbol ([string sNane])

bool Sear chNext Message()

bool Sear chPrevi ousMessage()

bool SearchRepl ace([string pat, string rep])

bool Sear chSear chAgai n()

bool Set Region(string RegionNane, int left, int top, int right, int
bottom

bool Set WndowSt ate(int desiredState)

string SinpleDialog(string pronpt, string initialValue [, int
maxNunChar s])

voi d SpeedMenu()

void StartWitCursor()

string StatusBarD al og(string pronpt, string initialValue [, int
maxNunChar s])

bool Tool ([string tool Nanme, string commandstring])

voi d Undo()

bool ViewActivate(int direction)
bool Vi ewBr eakpoi nt ()

bool ViewCall Stack()

bool Vi ewd asses()

bool Vi ewCpu()

bool Vi ewd obal s()

bool Vi ewmMessage([string tabNane])
bool Vi ewProcess()

bool Vi ewProj ect ()

bool Viewslide(int direction [, int amount])
bool Vi ewWat ch()

bool W ndowAr r angel cons()

bool W ndowCascade()

bool Wndowd oseAl |l ([string typeNane])

bool WndowM ninmi zeAl |l ([string typeNane])

bool WndowRestoreAl |l ([string typeNane])

bool W ndowTi | eHori zontal ()

bool W ndowTi | eVerti cal ()

string YesNoDi al og(string pronpt, string default)

Chapter 4, cScript Class Reference 139

Events

voi d Buil dConpl et e(bool status, string inputPath, string QutputPath)
voi d Buil dStarted()

voi d Di al ogCreated(string dial ogNane, int dial ogHandl e)

voi d Exiting()

voi d Hel pRequested(string filenane, int comrand, int data)

void Idle()

voi d Keyboar dAssi gnnment sChanged(string newri | enang)

voi d Keyboar dAssi gnnent sChangi ng(stri ng newri | enane)

voi d MakeConpl et e(bool status, string inputPath, string outputPath)
voi d MakeStarted()

voi d Projectd osed(string projectFileNane)

voi d Proj ect Qpened(string projectFil eNane)

voi d SecondEl apsed()

voi d Started(bool VeryFirstTine)

voi d SubsytemActi vat ed(string systemnmNane)

bool Transfer Qut put Exi st s(Transf er Qut put out put)

voi d Transl at eConpl et e(bool status, string inputPath, string

out put Pat h)

Application property IDEApplication

This property contains the IDEApplication object's internal name. The name is for use
by Windows and its presence is required by Microsoft conventions. Thisis aread-only

property.

Type expected
string Application

Caption property IDEApplication

This property indicates the caption of the Paradigm C++ IDE main window. Thisisa
read-write property.

Type expected
string Caption

CurrentDirectory property IDEApplication

This property indicates the application's current directory. Whenever a project fileis
opened, the value of CurrentDirectory changes to the directory containing the project
file. Thisisaread-only property.

Type expected
string CurrentDirectory

CurrentProjectNode property IDEApplication

This property contains the name of the currently selected node in the Project window. If
the Project window is not open, or if multiple nodes are selected in the Project window,
CurrentProjectNode contains an empty string (""). Thisis aread-only property.

Type expected
string CurrentProject Node

140 Paradigm C++ Obiject Scripting Guide

DefaultFilePath property IDEApplication

This property indicates the default file path for the Paradigm C++ IDE. Thisis aread-
only property.

Type expected
string Defaul tFil ePath

Editor property IDEApplication
This property is an instance of the Paradigm C++ IDE editor. Thisis aread-only
property.

Type expected
Editor Editor

FullName property IDEApplication

This property contains the string, "Paradigm C++ for Windows, vers. 5.0". Thisisa
read-only property.

Type expected
string Ful |l Nane

Height property IDEApplication

This property indicates the height of the Paradigm C++ IDE main window. Thisisa
read-only property.

Type expected
i nt Hei ght

IdleTime property IDEApplication

This property indicates the number of seconds since the last user-generated event. This
isaread-only property.

Type expected
int IdleTine

IdleTimeout property IDEApplication

This property specifies the number of seconds the IDE must remain idle before anidle
event will be generated. It defaults to 180 (3 minutes). Thisis aread-write property.

Type expected
int 1dleTi meout

Chapter 4, cScript Class Reference 141

LoadTime property IDEApplication

The number of milliseconds it takes for the IDE to load. The number reflects time up
through the processing of the startup script. Thereafter it remains fixed. Thisis aread-
only property.

Type expected
i nt LoadTi ne

KeyboardAssignmentFile property IDEApplication

This property indicates the file name of the keyboard file (.KBD) last selected from the
Options|Environment|Editor dialog. Thisis aread-write property.

Type expected
string KeyboardAssi gnnentFil e

KeyboardManager property IDEApplication

This property is an instance of the Paradigm C++ IDE keyboard manager. Thisisa
read-only property.

Type expected
Keyboar dManager Keyboar dManager

Left property IDEApplication

Indicates the left coordinate of the IDE's main window. This is a read-write property.

Type expected
int Left

ModuleName property IDEApplication

This property indicates the module name of the running application, including its path.
For example, "c: \ par adi gm bi n\ pcw. exe". Thisisaread-only property.

Type expected
string Modul eName

Name property IDEApplication
This property indicates the name of the Paradigm C++ IDE, "PCW". Thisis aread-only
property.

Type expected
string Nane
Parent property IDEApplication

Contains a value required by Windows. Presence required by Microsoft conventions.
Thisisaread-only property.

142 Paradigm C++ Obiject Scripting Guide

Type expected
string Parent

RaiseDialogCreatedEvent property IDEApplication

This property'svalue isinitialized to FAL SE. Setting it to TRUE causesthe
DialogCreated event to be raised whenever anew dialog is created. Thisis aread-write

property.

Type expected
bool Rai seDi al ogCr eat edEvent

StatusBar property IDEApplication
This property is used to gets or set the text displayed in the IDE's status bar. Thisisa
read-write property.

Type expected
bool StatusBar

Top property IDEApplication
This property contains the top coordinate of the IDE main window. Thisis aread-write
property.

Type expected
int Top
UseCurrentWindowForSourceTracking property IDEApplication

This property, if TRUE, the IDE replaces the contents of the active Edit window
whenever anew fileisloaded. If FAL SE, the IDE opens a new Edit window. Thisisa
read-write property.

Type expected
bool UseCurrent W ndowrFor Sour ceTr acki ng

Version property IDEApplication
This property holds the value 500 for Paradigm C++ version 5.0. Thisis aread-only
property.

Type expected
i nt Version

Visible property IDEApplication

This property, if TRUE, makes the IDE visible to the user. If FALSE, the IDE is not
visible on the screen. Thisis aread-write property.

Type expected
bool Visible

Chapter 4, cScript Class Reference 143

Width property IDEApplication

This property contains the width of the IDE's main window. Thisis aread-write
property.

Type expected
int Wdth

AddToCredits method IDEApplication

This method adds a hame to the list of developer credits in the About dialog box. It adds
the new name to the end of the existing list. To display developer credits, choose
Help|About and press Alt-1.

Types expected
voi d AddToCredits()

CloseWindow method IDEApplication
This method closes the currently selected IDE child window.

Types expected
bool C oseW ndow()

Return value
TRUE if the window closed, FAL SE if unable to close the window.

DebugAddBreakpoint method IDEApplication
This method opens the Add Breakpoint dialog.

Types expected
bool DebugAddBr eakpoi nt ()

Return value
TRUE if successful, FAL SE otherwise

DebugAddWatch method IDEApplication

This method adds a watch on the current symbol.

Types expected
bool DebugAddWat ch()

Return value
TRUE if successful, FAL SE otherwise

DebugAnimate method IDEApplication

This method lets you watch your program's execution in "slow motion.”

144 Paradigm C++ Obiject Scripting Guide

Types expected
bool DebugAni mat e()

Return value
TRUE if successful, FAL SE otherwise

Description

Animate performs a continuous series of Statement Step Into commands. To interrupt
animation, invoke one of the following Debugger methods either by menu selections or
by keystrokes tied to the script:

Debugger.Run
Debugger.RunToAddress
Debugger.RunToFileLine
Debugger.PauseProgram
Debugger.Reset
Debugger.TerminateProgram
Debugger.FindExecutionPoint

DebugAttach method IDEApplication

This method invokes the debugger for the currently executing process.

Types expected
bool DebugAttach()

Return value
TRUE if successful, FAL SE otherwise

DebugBreakpointOptions method IDEApplication

This method opens the Breakpoint Condition/Action Options dialog.

Types expected
bool DebugBr eakpoi nt Opti ons()

Return value
TRUE if successful, FALSE, otherwise

DebugEvaluate method IDEApplication

This method evaluates the current expression, such as aglobal or local variable or an
arithmetic expression.

Types expected
string DebugEval uat e()

Return value
Returns the result of the evaluation.

Chapter 4, cScript Class Reference 145

Debuglnspect method IDEApplication

This method attempts to opens an inspector for the current symbol.

Types expected
bool Debugl nspect ()

Return value
TRUE if successful, FAL SE otherwise.

DebuglinstructionStepinto method IDEApplication

This method executes the next instruction, stepping into any function calls. If a process
is not loaded, InstructionSteplnto first loads the executable for the current project.

Types expected
bool Debugl nstructionStepl nto()

Return value
TRUE if successful, FAL SE otherwise.

DebuglinstructionStepOver method IDEApplication

This method executes the next instruction, running any functions called at full speed. If
aprocessis not loaded, InstructionSepOver first loads the executable for the current
project.

Types expected
bool Debugl nstructi onSt epOver ()

Return value
TRUE if successful, FAL SE otherwise.

DebugLoad method IDEApplication

146

This method |oads the current executable into the debugger.

Types expected
bool DebugLoad([string fil eToLoad])

Return value
TRUE if successful, FAL SE otherwise.

Description

Upon loading, the processis run to the starting point as specified in the
Options|Environment|Debugger|Debugger Behavior dialog. If the parameter is NULL,
this method opens the Load Program dial og.

Paradigm C++ Obiject Scripting Guide

DebugPauseProcess method IDEApplication

This method causes the debugger to pause the current process. It has an effect only if
the current process is running or is animated.

Types expected
bool DebugPauseProcess()

Return value
TRUE if successful, FAL SE otherwise.

DebugResetThisProcess method IDEApplication

This method causes the debugger to reset the current process to its starting point as
specified in the Options|Environment|Debugger|Debugger Behavior dialog.

Types expected
bool DebugReset Thi sProcess()

Return value
TRUE if successful, FAL SE otherwise.

DebugRun method IDEApplication

This method causes the debugger to run the current process. If no processisloaded, this
method first |oads the executable associated with the current project.

Types expected
bool DebugRun()

Return value
TRUE if successful, FAL SE otherwise.

DebugRunTo method IDEApplication

If this method is called while working with an EditView, the method runs the current
process until the source at the current line in the current file is encountered. If the
current object isnot an EditView the method runs the current process until the
instruction at the current address is encountered. If no process is loaded, this method
will first load the executabl e associated with the current project.

Types expected
bool DebugRunTo()

Return value
TRUE if successful, FAL SE otherwise.

DebugSourceAtExecutionPoint method IDEApplication

This method displays the source code at the current execution point.

Chapter 4, cScript Class Reference 147

Types expected
bool DebugSour ceAt Execut i onPoi nt ()

Return value
TRUE if successful, FAL SE otherwise.

Description

The current execution point is indicated by the EIP register. If the current execution
point isin source code, the execution point is shown in an edit window. (The
appropriate source fileis opened if necessary.) If the current execution point is at an
address that has no source associated with it, the execution point is shown in a CPU
view. (Oneis opened if necessary.)

DebugStatementStepinto method IDEApplication

This method executes the next source statement and steps through the source of any
function calls. If aprocessis not loaded, the method first |oads the executable for the
current project.

Types expected
bool DebugSt at enent St epl nt o()

Return value
TRUE if successful, FAL SE otherwise.

DebugStatementStepOver method IDEApplication

This method executes the next source statement and does not step into any functions
called, but runs them at full speed. If a processis not loaded, SatementSepOver first
loads the executable for the current project.

Types expected
bool DebugSt at enent St epOver ()

Return value
TRUE if successful, FAL SE otherwise.

DebugTerminateProcess method IDEApplication

This method terminates the current process. If no process is loaded, this method has no
effect.

Types expected
bool DebugTer m nat eProcess()

Return value
TRUE if successful, FAL SE otherwise.

DirectionDialog method IDEApplication

This method invokes a dialog that allows the user to specify adirection.

148 Paradigm C++ Obiject Scripting Guide

Types expected
int DirectionD alog(string pronpt)

Return value
One of the following values: CANCEL, RIGHT, LEFT, UP, DOWN.

DirectoryDialog method IDEApplication

This method invokes a directory-browsing dialog box that allows the user to choose a
directory.

Types expected
string DirectoryD al og(string pronpt, string initial Val ue)
[, string pathSpecifier])
prompt The value to place in the caption of the diaog.
initialValue The value to initialize the edit field with.

pathSpecifier The directory in which to start browsing. If this parameter is not
specified, the current directory is used.

Return value

If successful, this method returns afully qualified directory name. If the user cancels, it
returns the empty string ("").

DisplayCredits method IDEApplication

This method displays the list of developer creditsin the About dialog box. To display
devel oper credits, choose Help|About and press Alt-I.

Types expected
voi d DisplayCredits()

DoFileOpen method IDEApplication

This method is used by the FileOpen method to open files. If the specified filename
does not exigt, it is created. The node argument is passed if the file isto be associated
with a specific node in the project.

Types expected
bool DoFil eOpen(string fileName, string tool Nane
[, ProjectNode node])

Return value
TRUE is successful, FAL SE otherwise.

EditBufferList method IDEApplication

This method displays the buffer list dialog for the user.

Chapter 4, cScript Class Reference 149

Types expected
bool EditBufferList()

Return value
TRUE if the buffer list was successfully edited or FAL SE if no edit buffers exist.

EditCopy method IDEApplication

This method copies selected text from the current edit buffer to the Windows clipboard.

Types expected
bool Edit Copy()

Return value

TRUE if the topmost window is an EditView with avalid marked block, FAL SE
otherwise.

EditCut method IDEApplication

This method copies selected text from the current edit buffer to the clipboard and
deletes the selected text.

Types expected
bool EditCut ()

Return value

TRUE if the topmost window is an EditView with avalid marked block, FAL SE
otherwise.

EditPaste method IDEApplication

This method copies selected text from the Clipboard to the current edit position in the
current edit buffer.

Types expected
bool EditPaste()

Return value

TRUE if the topmost window is an EditView with avalid marked block, FAL SE
otherwise.

EditRedo method IDEApplication

150

This method reapplies the operation that was undone with the last EditUndo.

Types expected
bool EditRedo()

Return value
TRUE if the operation was successful or FALSE if it is not.

Paradigm C++ Obiject Scripting Guide

EditSelectAll method

IDEApplication

This method selects all the text in the current edit buffer.

Types expected
bool EditSelectAll /()

Return value

TRUE if the saelect was successful or FALSE if it is not.

EditUndo method

IDEApplication

This method undoes the last edit operation.

Types expected
bool Edit Undo()

Return value

TRUE if the operation was successful or FAL SE if it is not.

EndWaitCursor method

IDEApplication

This method stops the display of the Windows wait cursor (by default, an hourglass).

Types expected
voi d EndWai t Cursor ()

Return value
None

EnterContextHelpMode method

IDEApplication

Calling this method puts the IDE in help context mode: The next click of the mouse

generates a help event for whatever the mouse pointer is on.

Types expected
voi d Ent er Cont ext Hel pMode()

Return value
None

ExpandWindow method

IDEApplication

This method increases the size of the currently selected window to its maximum view
managed size, defined by calls to SetRegion. After the window has been expanded with

this method, there is no way to decrease its size.

Types expected
voi d ExpandW ndow()

Chapter 4, cScript Class Reference

151

Return value
None

FileClose method IDEApplication

This method closes the file that is currently open and selected.

Types expected
bool Fil ed ose()

Return value
TRUE if the file was successfully closed, or FAL SE if the file could not be closed.

FileDialog method IDEApplication

Invokes aFile Open dialog and allows the user to choose afile.

Types expected
string FileD alog(string pronpt, string initial Val ue)

Return value

This method returns a fully qualified file name if successful. If the user cancels, the
method returns the empty string ("").

FileExit method IDEApplication

This method closes the application after first ensuring that al files are saved.

Types expected
bool FileExit([int |IDEReturn])

IDEReturn Thereturn value of the IDE application when it exits. By default, this
valueisO.

Return value
TRUE if the application was closed or FAL SE if it could not be closed.

FileNew method IDEApplication

This method creates anew file for the tool specified in toolName.

Types expected
bool FileNew([string tool Name, string fil eNane])

Return value
TRUE if the file was created or FAL SE if the file could not be created.

FileOpen method IDEApplication

152

This method opens afile. If the file specified by name doesn't exist, the user is
prompted for afile name. Internaly, this method uses DoFileOpen.

Paradigm C++ Obiject Scripting Guide

Types expected
bool FileQpen([string name, string tool Nane])

Return value
TRUE if the file was opened or FAL SE if the file could not be opened.

FilePrint method IDEApplication

This method prints afile. If suppressDialog is set to TRUE, this method does not

display the Printer Options dialog prior to performing the print operation but rather
reuses the last print options specified.

Types expected
bool Fil ePrint(bool suppressD al og)

Return value
TRUE if the print operation was successful or FAL SE if it was not.

FilePrinterSetup method IDEApplication

Displays the Printer Setup dialog box to allow the user to set print options.

Types expected
bool FilePrinterSetup()

Return value
TRUE if the dialog sets the options or FAL SE if the user exits with Cancel.

FileSave method IDEApplication

This method saves the currently open editor file.

Types expected
bool Fil eSave()

Return value
TRUE if the file was saved or FAL SE if the file could not be saved.

FileSaveAll method IDEApplication

This method saves all open editor files.

Types expected
bool FileSaveAl ()

Return value
TRUE if al fileswere saved or FAL SE if afile could not be saved.

Chapter 4, cScript Class Reference 153

FileSaveAs method IDEApplication

This method displays the standard File Save As dialog box so the user can save the
currently active editor file. If newName is supplied, it attempts to save the file under
that name in the current directory.

Types expected
bool Fil eSaveAs([string newNane])

Return value
TRUE if thefile was saved or FAL SE if the file could not be saved.

FileSend method IDEApplication

This method instructs the Windows MAPI to send files to another MAPI client.

Types expected
bool FileSend()

Return value
TRUE if the file was sent or FAL SE if the file could not be sent.

GetRegionBottom method IDEApplication

This method gets the bottom value of the specified region. It can be used in conjunction
with SetRegion to position awindow.

Types expected
i nt Get Regi onBotton(string Regi onNane)

RegionName See the RegionName description.

Return value

The bottom value of the specified region in display units (0 - 10000) or -1 if no such
region exists.

Region names
Available region names include:

"Breakpoint"
IICRJII
"Debugger”
"Editor"
"Evauator"
"Event Log"
"I nspector”
"Message"
"Processes’
"Project”
"Stack"

154 Paradigm C++ Obiject Scripting Guide

"Thread Count"
"Watches"

GetRegionLeft method IDEApplication

This method gets the left value of the specified region. It can be used in conjuction with
SetRegion to position awindow.

Types expected
i nt GetRegionLeft(string Regi onNane)

RegionName See the RegionName description.

Return value

The left value of the specified region in display units (O - 10000) or -1 if no such region
exists.

GetRegionRight method IDEApplication

This method gets the right value of the specified region. It can be used in conjunction
with SetRegion to position awindow.

Types expected
i nt GetRegi onRi ght (string Regi onNang)

RegionName See the RegionName description.

Return value

The right value of the specified region in display units (O - 10000) or -1 if no such
region exists.

GetRegionTop method IDEApplication

This method gets the top value of the specified region. It can be used in conjunction
with SetRegion to position awindow.

Types expected
i nt Get Regi onTop(string Regi onNane)

RegionName See the RegionName description.
Return value

The top value of the specified region in display units (0 - 10000) or -1 if no such region
exists.

GetWindowState method IDEApplication

This method retrieves the state of the currently focused window.

Types expected
bool Get W ndowst at e()

Chapter 4, cScript Class Reference 155

Return value
SW_NORMAL, SW_MINIMIZE, or SW_MAXIMIZE

Help method IDEApplication

This method invokes the Windows Help system with the specified Help file and context
ID.helpFile specifies the name (with optional path) of the Windows Help file to open.
helpCommand is a constant representing a command passes to the Windows Help
engine. The helpCommand constants begin with HEL P_and are defined in the C++
header file WINUSER.H. helpTopic is the name of the Help topic to display.

Types expected
void Help (string helpFile, int hel pCommand, string hel pTopic)

Return value
None

HelpAbout method IDEApplication

This method displays the Help About dialog box.

Types expected
bool Hel pAbout ()

Return value
TRUE if the dialog box displays, FAL SE if it cannot be displayed.

HelpContents method IDEApplication

This method displays the default Help contents screen. For Windows 95 Help systems,
this window is the Help Topics Contents page.

Types expected
bool Hel pContents()

Return value
TRUE if the Help window can be displayed or FAL SE if it cannot be displayed.

HelpKeyboard method IDEApplication
This method displays a Help window describing how to map the keyboard in the IDE.

Types expected
bool Hel pKeyboard()

Return value
TRUE if the Help window can be displayed or FAL SE if it cannot be displayed.

HelpKeywordSearch method IDEApplication

This method displays the Help Topics Index page with keyword as the default entry.

156 Paradigm C++ Obiject Scripting Guide

Types expected
bool Hel pKeywor dSearch([string keyword])

Return value
TRUE if the Help window can be displayed or FAL SE if it cannot be displayed.

HelpUsingHelp method IDEApplication

This method displays a Help window describing how to use Help.

Types expected
bool Hel pUsi ngHel p()

Return value
TRUE if the Help window can be displayed or FAL SE if it cannot be displayed.

HelpWindowsAPI method IDEApplication

This method displays the Microsoft Windows APl Help Topics dialog box.

Types expected
bool Hel pW ndowsAPI ()

Return value
TRUE if the Help window can be displayed or FAL SE if it cannot be displayed.

KeyPressDialog method IDEApplication

ListDialog

This method displays a dialog and records the keys pressed by the user in a mnemonic
format suitable for using with key assignments.

Types expected
string KeyPressDi al og(string pronpt, string default)

Return value
The mnemonic name of the key pressed by the user or the empty string (") if the user
presses Esc or Cancel.

method IDEApplication

Chapter 4,

This method dsplays a modal list dialog containing the strings as specified in the
initialValues array. Thelist is sorted asindicated by sorted and supports multiple
selection asindicated by multi Select.

Types expected
string[] ListDi alog(string pronpt, bool multi Sel ect,
bool sorted, string [] initialValues)

Return value
An array containing the strings that were selected.

cScript Class Reference 157

Menu method IDEApplication

This method activates the main menu.

Types expected
voi d Menu()

Return value
None

Message method IDEApplication

This method displays messages to the user.

Types expected
bool Message(string text, int severity)

text The message to display.

severity One of the following values: INFORMATION, WARNING, ERROR.
The value specified also determines the text for the caption.

Return value
This method returns TRUE if the message box successfully opened, FAL SE otherwise.

MessageCreate method IDEApplication

This method adds messages to the Message window.

Types expected
int MessageCreate(string destinationTab, string tool Nane,
i nt nessageType, int parent Message, string filenane,
int IineNunmber, int columNunber, string text,
string hel pFil eNane, int hel pContextld)

destinationTab The name of the tab on the page of the MessageView on which
this message should appear. The default supported values for this
parameter are "Buildtime", "Runtime", and " Script". If a non-
existant tab name is given, anew tab will be created.

toolName The name of the tool to be associated with the file to open. Tools
can be standalone programs (like GREP, the Paradigm C++
integrated debugger, or an alternate editor), or they can be
tranglators that are used for each file (or node) in a project. You
can aso use the tool name: AddOn. Y ou can run a DOS program
with the Windows IDE transfer. If toolName is not provided, a
default is used.

messageType The severity to be associated with the message. (INFORMATION
(default), WARNING, ERROR, or FATAL).

parentMessage The message that this message should be stored under. (Zero
creates a new top-level message.)

158 Paradigm C++ Obiject Scripting Guide

fileName, lineNumber, and columnNumber provide source navigation for the message.
By selecting the message the user can be taken to the specified lineNumber and
columnNumber in the filename in an editor.

helpFile and helpContext specify where the user can find Windows Help of this
message. If these parameters are set to valid values, the user will go to the given Help
topicif F1 is pressed while the message is selected.

Return value
The message ID of the generated message.

NextWindow method IDEApplication

This method advances focus and activation to the next MDI child window from the
currently selected window. If priorWindow is TRUE, focus and activation go to the
previous window. priorWindow defaultsto FAL SE.

Types expected
bool Next W ndow(bool priorW ndow)

Return value
TRUE if focus changes to another window, FAL SE if it does not.

OptionsEnvironment method IDEApplication

This method displays the Environment Options dialog box.

Types expected
bool OptionsEnvironnent ()

Return value
TRUE if the dialog box can be displayed, FAL SE if it cannot.

OptionsProject method IDEApplication

This method displays the Project Options dialog box.

Types expected
bool OptionsProject()

Return value
TRUE if the dialog box can be displayed, FAL SE if it cannot.

OptionsSave method IDEApplication

This method opens the Options Save dialog box, which allows the user to save the
contents of their project, desktop, messages and current settings for Environment.

Types expected
bool OptionsSave()

Chapter 4, cScript Class Reference 159

Return value
TRUE if the dialog can be opened, FAL SE if it cannot.

OptionsStyleSheets method IDEApplication

This method displays the Style Sheets dialog box.

Types expected
bool OptionsStyl eSheet s()

Return value
TRUE if the dialog box can be opened, FAL SE if it cannot.

OptionsTools method IDEApplication

This method displays the Tools dialog box.

Types expected
bool OptionsTool s()

Return value
TRUE if the dialog box can be opened, FAL SE if it cannot.

ProjectBuildAll method IDEApplication

This method builds all the files in the current project, regardless of whether they are out
of date (exactly the same as the Project|Build All menu selection.

Types expected
bool ProjectBuil dAI'l ([bool suppressCkay, string nodeNane])

suppressOkay Builds the project without requiring the user to respond with OK to
continue.

nodeName Build only the node specified.

Return value
TRUE if the build was successful or FAL SE if it was not.

ProjectCloseProject method IDEApplication

This method closes the current project.

Types expected
bool Projectd oseProject ()

Return value
TRUE if the project was successfully closed or FAL SE if it was not.

160 Paradigm C++ Obiject Scripting Guide

ProjectCompile method IDEApplication

This method compiles the current project. If a nodeName is indicated, what happens
depends on the type of node:

A .CPP node causes the C++ compiler to be called.

A .RC node causes resource compiler to be called.

An .EXE node causes the linker to be called.

A .LIB node causes the librarian to be called.

An .SPP node causes the cScript compiler to be called.

Types expected
bool Project Conpile([string nodeNane])

Return value
TRUE if the project was successfully closed or FAL SE if it was not.

ProjectGenerateMakefile method IDEApplication

This method generates a make file for the current project. If the nodeName is specified,
then the generated makefile contains only the commands necessary to build that node.
Otherwise, commands are generated to build the entire project.

Types expected
bool Project Gener at eMakefil e([string nodeNane])

Return value
TRUE if the makefile was successfully generated or FAL SE if it was not.

ProjectMakeAll method IDEApplication
This method makes all targets for the current project, rebuilding only those files that are
out of date.

suppressOkay Makes the project without requiring the user to respond with OK to
continue.

nodeName Makes only the node specified.

Types expected
bool Project MakeAl | ([bool suppressCkay, string nodeNane])

Return value
TRUE if the targets were successfully made or FAL SE if not.

ProjectManagerinitialize method IDEApplication

This method is called once during IDE initialization to ensure that the IDE's Project
Manager isin a stable state prior to the occurrence of any major events, such asthe
opening of files or creation of new targets.

Chapter 4, cScript Class Reference 161

Types expected
bool ProjectManagerlnitialize()

Return value
TRUE if the Project Manager has successfully initialized or FAL SE if it did not.

ProjectNewProject method IDEApplication

This method creates a new project. If pName is specified, then the project is created
with pName as its name, otherwise the user is prompted for a project name.

Types expected
bool Project NewProject([string pNane])

Return value
TRUE if the project was successfully created or FAL SE if it was not.

ProjectNewTarget method IDEApplication

This method creates a new target for the node specified in nTarget.

Types expected
bool ProjectNewTarget ([string nTarget, int targetType,
int platform int |ibraryMask, int nodel O Mode])

ProjectNewTarget parameter descriptions IDEApplication

162

nTarget is the name of the node.
targetType must be one of the following target values:

TE_APPLICATION (default)
TE_STATICLIB

platform must be one of the following platform values:
TE_AXE
libraryMask indicates which librariesto link and is one or more of the following values:

TE_STDLIBS (default: same as TE_STDLIB_RTL | TE_STDLIB_EMU)
TE_STDLIB_EMU

TE_STDLIB_MATH

TE_STDLIB_NOEH

TE_STDLIB_RTL

model OrMode is one of the following values:

TE_MM_LARGE(default if platformis TE_WIN32)
TE_ MM_SMALL

TE_MM_MEDIUM

TE_MM_COMPACT

TE_MM_HUGE

Paradigm C++ Obiject Scripting Guide

ProjectOpenProject method IDEApplication

This method opens a project. If pName is specified, it opens that project. If not, it
displays the Open Project dialog box and prompts the user for a project name.

Types expected
bool Project OpenProject([string pNane])

Return value
TRUE if the project opened or FAL SE if it did not.

Quit method IDEApplication

This method shuts down the IDE and exits.

Types expected
void Quit()

Return value
None

SaveMessages method IDEApplication

This method saves the contents of the specified Message window tab page to the
specified file.

Types expected
bool SaveMessages(string tabNane, string fil eNane)

tabName One of the following values:

"Buildtime"
"Runtime"
mn &:ri ptll

Return value
TRUE if the messages are saved or FAL SE if it cannot be saved.

ScriptCommands method IDEApplication

This method invokes the Script Commands dialog box. The dialog lists the commands
currently available in the system.

Types expected
bool Scri pt Commands()

Return value
TRUE if the user enters acommand and sdalects Run, FAL SE otherwise.

ScriptCompileFile method IDEApplication

This method compiles the script file fileName.

Chapter 4, cScript Class Reference 163

Types expected
bool Script Conpil eFile(string fil eNane)

Return value
TRUE if the compile was successful, FAL SE otherwise.

ScriptModules method IDEApplication

This method invokes the Script Modules dialog box. The dialog lists the modules
loaded or in the Script Path.

Types expected
bool Scri pt Modul es()

Return value
TRUE if amoduleis selected, FAL SE otherwise.

ScriptRun method IDEApplication

Executes the script command given in command. If no command is passed, the Script
Run dialog appears.

Types expected
bool ScriptRun(string comrand)

Return value
TRUE if the command is executed, FAL SE otherwise.

ScriptRunFile method IDEApplication

This method causes script file given in fileName to execute. If no fileName is given, the
method attempts to execute the commands in the current EditView.

Types expected
bool ScriptRunFile([string fil eNane])

Return value
TRUE if afileis executed or an EditView is found, FAL SE otherwise.

SearchBrowseSymbol method IDEApplication

164

This method searches for the symbol indicated in sName. If sSName is not provided, the
user will be prompted for it.

Types expected
bool Sear chBrowseSynbol ([string sNane])

Return value
TRUE if the symbol isfound or FAL SE if it cannot be found.

Paradigm C++ Obiject Scripting Guide

SearchFind method IDEApplication

This method searches in the current edit buffer for the pattern supplied in pat. If pat is
found, the cursor is moved to the occurrence of pat. This pattern can be a simple string
or asearch expression.

Types expected
bool SearchFind([string pat])

Return value
TRUE if the expression is found or FAL SE if it cannot be found.

SearchLocateSymbol method IDEApplication

This method searches through the current target of the current project and uses the
Browser's symbol information to locate a symbol's definition.

Types expected
bool Sear chLocat eSynbol ([string sNane])

Return value
TRUE if the expression is found or FAL SE if it cannot be found.

Description

On success, this method opens the source file and line where the symbol name sName is
defined. If sName isNULL, SearchLocateSymbol() rips the current word out of the
editor and searches for that symbol. SearchLocateSymbo()l works only with globally
defined symbols.

For afunction symbol, SearchLocateSymbol() locates the line where the function
begins. For aclass or typedef symbol, it locates the line where the typedef or classis
defined. For avariable, it locates the line where the variable is defined.

SearchNextMessage method IDEApplication

This method works only if aMessage view is displayed on the users screen. It displays
the next message listed in the Message view if there is a next message.

Types expected
bool Sear chNext Message()

Return value
TRUE if the next message is displayed, or FAL SE if there is no message to display.

SearchPreviousMessage method IDEApplication

This method displays an active Edit window and places the cursor on the line in your
source code that generated the previous error or warning listed in the Message window.
If the fileis not currently loaded, the IDE opensit in a new Edit window.

Chapter 4, cScript Class Reference 165

Types expected
bool Sear chPrevi ousMessage()

Return value
TRUE if the source lineisfound or FAL SE if it cannot be found.

SearchReplace method IDEApplication

This method searches in the current edit buffer for the pattern indicated in pat and
replacesit with the string indicated in rep. If either parameter is not specified, the
method opens the Replace Text dialog box and prompts the user for input. The pattern
can be asimple string or a search expression.

Types expected
bool SearchRepl ace([string pat, string rep])

Return value
TRUE if thetext isfound or FAL SE if it cannot be found.

SearchSearchAgain method IDEApplication

This method repeats the last SearchFind.

Types expected
bool Sear chSear chAgai n()

Return value
TRUE if thetext isfound or FAL SE if it cannot be found.

SetRegion method IDEApplication

This method determines how windows tile and cascade on the IDE desktop, as well as
their initial position when they are created.

Types expected
bool Set Region(string RegionNanme, int left, int top, int right, int
bott om

RegionName See the RegionName description.
left, top, right, bottom The dimensions of the window in display units of 1-9999.

Return value
TRUE if the region was successfully set or FAL SE if it was not.

Description

SetRegion is used in conjunction with GetRegionBottom, GetRegionTop,
GetRegionLeft, GetRegionRight to change the area where windows are placed when
tiled and cascaded.

166 Paradigm C++ Obiject Scripting Guide

For example, the default configuration of the IDE isto have al editor windows in the
upper two-thirds of the screen when you tile, and the message window and the project
window in the lower one-third. Y ou could change this default with the script statement

| DE. Set Regi on("Editor", 1, 1, 5000, 5000);

After executing this statement, the editors are in the upper left quarter of the IDE
desktop after tiling. You can look at STARTURP.SPP for other examples.

SetWindowState method IDEApplication

This method changes the style of the currently focused window.

desiredState One of the following values; SW_MINIMIZE, SW_MAXIMIZE,
SW_RESTORE

Types expected
bool Set WndowState(int desiredState)

Return value
TRUE if the state was successfully set or FAL SE if it was not.

SimpleDialog method IDEApplication

This method invokes a simple dialog containing a single text field, an OK button, and a
Cancel button.

Types expected
string Sinpleb alog(string pronpt, string initialValue
[, int maxNuntChars])

prompt The caption of the dialog.
initialValue The value that initializes the edit field.

Return value
The value in the edit field if the user clicks OK or presses Enter on the edit field, or the
empty string (") if the user clicks Cancel.

SpeedMenu method IDEApplication

Activates the SpeedMenu for the current subsystem.

Types expected
voi d SpeedMenu()

Return value
None

StartWaitCursor method IDEApplication

This method displays the Windows wait cursor.

Chapter 4, cScript Class Reference 167

Types expected
void StartWaitCursor()

Return value
None

StatusBarDialog method IDEApplication

This method displays a dialog on top of the status bar.

Types expected
string StatusBarD al og(string pronpt, string initial Val ue
[, int maxNuntChars])

prompt The caption of the dialog.
initialValue The value that initializes the edit field.

Return value

The value in the edit field if the user clicks OK or presses Enter on the edit field, or the
empty string (") if the user clicks Cancel.

Tool method IDEApplication

This method runs the tool specified in toolName using the command string specified in
commandstring. If no parameters are specified, it displays a dialog box prompting the
user for atool.

Types expected
bool Tool ([string tool Nanme, string commandString])

Return value
TRUE if the tool successfully ran or FAL SE if it did not.

Undo method IDEApplication

This method does the same thing as EditUndo. It isincluded for compliance with
Microsoft conventions.

Types expected
voi d Undo()

Return value
None

ViewActivate method IDEApplication

168

This method activates the IDE pane that is adjacent to the currently selected pane. The
direction argument indicates the direction of the adjacent pane to activate, relative to the
current pane. The supported values for direction are UP, DOWN, LEFT and RIGHT.

Paradigm C++ Obiject Scripting Guide

Types expected
bool ViewActivate(int direction)

Return value

Returns TRUE if there was avalid current pane and the method was able to activate an
adjacent pane in the direction indicated by direction, otherwise FAL SE.

ViewBreakpoint method IDEApplication

This method opens a window showing all breakpoints.

Types expected
bool Vi ewBr eakpoi nt ()

Return value
TRUE if breakpoints can be found or FAL SE if no breakpoints can be found.

ViewCallStack method IDEApplication

This method opens the Call Stack window, which shows the sequence of functions your
program called to get to the current execution point. Each entry displays the function
name and the values of any parameters passed to it.

Types expected
bool ViewCall Stack()

Return value
TRUE if the Call Stack window can be displayed or FAL SE if it cannot be displayed.

ViewClasses method IDEApplication

This method opens the Browsing Objects window, which displays all the classesin your
application arranged in a horizontal tree that shows parent-child relationships.

Types expected
bool Vi ewd asses()

Return value
TRUE if the Browsing Objects window can be displayed or FAL SE if it cannot be
displayed.

ViewCpu method IDEApplication
This method displays the Debugger's CPU view for the current application.

Types expected
bool Vi ewCpu()

Return value
TRUE if the CPU view can be displayed or FAL SE if it cannot.

Chapter 4, cScript Class Reference 169

ViewGlobals method IDEApplication

This method opens the Browsing Globals window, which lists every variable in the
program in the current Edit window or the first file in the current project. If the program
has not been compiled, the IDE first compiles it before invoking the Browser.

Types expected
bool Vi ewd obal s()

Return value
TRUE if the Browse Globals window can be displayed or FAL SE if it cannot.

ViewMessage method IDEApplication

This method displays the Message window which displays status, warning, and error
messages for C++ compilations and links, ObjectScripting module compilations, run-
time messages from the debugger, and output. If given, the page specified by tabName
is selected when Message window is opened. If tabName is not found, the currently
selected tab remains unchanged.

tabName may have one of the following values:

"Buildtime"
"Runtime"
" Script”

or tabName may be the name of a user-defined tab.

Types expected
bool Vi ewmMessage([string tabNane])

Return value

TRUE if the Message window can be displayed or FAL SE if it cannot. If tabName is
not found, the method returns FAL SE even if the Message window is successfully
displayed.

ViewProcess method IDEApplication

This method displays the debugger's Process window.

Types expected
bool Vi ewProcess()

Return value
TRUE if the Process window can be displayed or FAL SE if it cannot.

ViewSlide method IDEApplication

This method moves the border of the currently selected IDE pane amount charactersin
the given direction on the screen The size of a character is determined by the number of
pixels high and wide a character isin the font used by the pane. The default value for

170 Paradigm C++ Obiject Scripting Guide

amount is 1. The supported values for direction are the constants UP, DOWN, LEFT
and RIGHT.

Types expected
bool Viewslide(int direction [, int amount])

Return value
TRUE if thereisavalid current IDE pane, and it was successfully moved amount
charactersin the given direction, otherwise returns FAL SE.

ViewProject method IDEApplication

This method displays the Project window for the currently open project.

Types expected
bool Vi ewProj ect ()

Return value
TRUE if the Project window can be displayed or FAL SE if it cannot.

ViewWatch method IDEApplication

This method displays the Debugger's Watches window for the current program.

Types expected
bool Vi ewwat ch()

Return value
TRUE if the Watches window can be displayed or FAL SE if it cannot.

WindowArrangelcons method IDEApplication

This method rearranges any minimized window's icons on the desktop. The rearranged
icons are evenly spaced, beginning at the lower left corner of the desktop.

Types expected
bool W ndowAr r angel cons()

Return value
TRUE if there are iconsto rearrange or FAL SE if there are none.

WindowCascade method IDEApplication

This method stacks all open windows and overlaps them, making all windows the same
size and showing only part of each underlying window.

Types expected
bool W ndowCascade()

Chapter 4, cScript Class Reference 171

Return value
TRUE if there are windows to cascade or FAL SE if there are none.

WindowCloseAll method IDEApplication

This method closes all open windows if no window type is specified in typeName.
Otherwise, it closes the windows of the specified type.

typeName cam be one of the following values:

"Browser"
"Debugger”
"Editor"

Types expected
bool Wndowd oseAl | ([string typeNane])

Return value
TRUE if al windows successfully close or FAL SE if at least one does not.

WindowMinimizeAll method IDEApplication

This method minimizes al open windows if no window type is specified in typeName.
Otherwise it minimizes the windows of the specified type.

typeName can be one of the following values:

"Browser"
mn Dmugga.ll
"Editor"

Types expected
bool WndowM ninm zeAl |l ([string typeNane])

Return value
TRUE if all windows successfully minimize or FAL SE if at least one does not.

WindowRestoreAll method IDEApplication

This method restores all minimized windows if no window type is specified in
typeName. Otherwise, it restores the window type specified in typeName.

Types expected
bool W ndowRestoreAl | ([string typeNane])

Return value
TRUE if all windows successfully restore or FAL SE if at least one does not.

WindowTileHorizontal method IDEApplication

172

This method stacks al open windows horizontally.

Paradigm C++ Obiject Scripting Guide

Types expected
bool W ndowTi |l eHori zontal ()

Return value
TRUE if all windows successfully tile or FAL SE if they do not.

WindowTileVertical method IDEApplication

This method stacks all open windows vertically.

Types expected
bool W ndowTi | eVerti cal ()

Return value
TRUE if all windows successfully tile or FAL SE if they do not.

YesNoDialog method IDEApplication

This method displays a dialog box that prompts the user for ayes or no response.

Types expected
string YesNoDi al og(string pronpt, string default)

prompt The prompt that displaysin the dialog box.
default The text displayed in the text entry box.

Return value
"Yes' or "No".

BuildComplete event IDEApplication

This event israised at the end of abuild. The status parameter indicates if the build was
successful; TRUE if successful, FAL SE if there were errors. inputPath indicates the
source directory. outputPath is the directory where files created as aresult of the build
are created.

Types expected
voi d Bui | dConpl et e(bool status, string inputPath,
string out put Pat h)

Return value
None

BuildStarted event IDEApplication

This method is raised when one of this classs "Help" methods isinvoked. If passes the
appropriate parameters to the Windows Help engine. Default action isto do nothing.

Types expected
void BuildStarted()

Chapter 4, cScript Class Reference 173

Return value
None

DialogCreated event IDEApplication

This event israised as new dialogs are presented to the user.

Types expected
voi d Di al ogCreated(string dial ogNane, int dial ogHandl e)

Return value
None

Description

Use DialogCreated in conjunction with the SendKeys method of KeyboardManager to
simulate user entries to dialogs and drive the dialog. The dialogName parameter
contains the dialog's caption. The dialogHandle is an environment-specific identifier
used by the system when referring to the dialog. Under Microsoft Windows the
dialogHandle is the HWND of the dialog. Thisvalueis supplied in case you need your
script to interact directly with the system.

Exiting event IDEApplication

Raised asthe IDE is closing. Default action is to do nothing.

Types expected
voi d Exiting()

Return value
None

HelpRequested event IDEApplication

Idle event

The method is raised when one of the class's "Help" methods is invoked. It passes the
appropriate parameters to the Windows Help engine. Default action isto do nothing.

Types expected
voi d Hel pRequested(string fileNane, int conrand, int data)

Return value
None

IDEApplication

174

Raised when the number of seconds specified by IdleTimeout has elapsed without a
significant event occurring (like a user event). Default action is to do nothing.

Types expected
void Idle()

Paradigm C++ Obiject Scripting Guide

Return value

None

KeyboardAssignmentsChanging event IDEApplication
Raised when the user is exiting the MPD after having modified the keyboard file
choice.

Types expected
voi d Keyboar dAssi gnnent sChangi ng(stri ng newri | eNane)

Return value
None

KeyboardAssignmentsChanged event IDEApplication

Raised after the keyboard file name has been changed.

Types expected
voi d Keyboar dAssi gnnment sChanged(string newri | eNang)

Return value
None

MakeComplete event IDEApplication

Raised at the end of a make. The status parameter indicates if the make was successful;
TRUE if successful, FAL SE if there were errors. inputPath indicates the source
directory. outputPath is the directory where files created as aresult of the make are
created.

Types expected
voi d MakeConpl et e(bool status, string inputPath,
string out put Pat h)

Return value
None

MakeStarted event IDEApplication

Raised at the beginning of a make.

Types expected
voi d MakeStarted()

Return value
None

Chapter 4, cScript Class Reference 175

ProjectClosed event IDEApplication

Raised when a project file has been successfully closed. projectFilename contains the
absolute name of the project file. Since the IDE always has a project open (even if itis
the default project: PCWDEF.IDE), this event will always precede the ProjectOpened()
that it corresponds to. In other words, you get a ProjectClosed event followed by a
ProjectOpened event.

Types expected
voi d Projectd osed(string projectFileNane)

Return value
None

ProjectOpened event IDEApplication

Raised when a project file has been successfully opened. projectFilename contains the
fully qualified name of the project file.

Types expected
voi d Proj ect Qpened(string projectFil eNane)

Return value
None

SecondElapsed event IDEApplication

Raised once every second. Default action isto do nothing.

Types expected
voi d SecondEl apsed()

Return value
None

Started event IDEApplication

176

Raised after the IDE has been loaded and initialized and all startup scripts have been
processed. The parameter VeryFirstTime indicates whether thisis the first time the IDE
has been loaded on a particular machine. Its value is determined by the presence or
absence of the default configuration file (PCCONFIG.PCW). Thisfileis created for you
the first time you run the IDE and should be present only if the IDE has been run
previoudly.

Types expected
void Started(bool VeryFirstTine)

Return value
None

Paradigm C++ Obiject Scripting Guide

SubsystemActivated event IDEApplication

Raised when the active subsystem is changed (usually in response to the user clicking
on another window type). systemName holds the name of the subsystem acquiring fonts.
Default action isto do nothing.

Types expected
voi d SubsytemActi vated(string systemnmNane)

Return value
None

TransferOutputExists event IDEApplication

Raised when a transfer tool has created output that needs processing (usually in a Make
sequence). The return value signals an error code: FAL SE if no error occurred, TRUE
if there was an error parsing the data supplied by output. Default action is to do nothing.

Types expected
bool Transfer Qut put Exi st s(Transfer Qut put out put)

Return value
None

TranslateComplete event IDEApplication

Raised at the end of atrandation. The status parameter indicates if the trandation was
successful; TRUE if successful, FAL SE if there were errors. inputPath indicates the
source directory. outputPath is the directory where files created as aresult of the
trandation are created.

Types expected
voi d Transl at eConpl et e(bool status, string inputPath,
string out put Pat h)

Return value
None

Chapter 4, cScript Class Reference 177

178 Paradigm C++ Obiject Scripting Guide

KeyboardManager class

Syntax

Keyboar dManager ()
Properties
bool AreKeysWiting Read-only
Record Current Pl ayback Read-only
Record Current Record Read-write
i nt Keyboar dFl ags Read-only
i nt KeysProcessed Read-only
i nt Last KeyProcessed Read-only
Record Recordi ng Read-only
string Script Abort Key Read-write
Methods
string CodeToKey(int KeyCode)
voi d Fl ush()

Keyboard Get Keyboard([string Conponent Nane])

i nt KeyToCode(string KeyNane)

voi d PausePl ayback()

i nt Playback([Record RecordObject])

Keyboard Pop(string Conponent Nane)

bool ProcessKeyboar dAssi gnments(string fileNane, bool unassign)
voi d ProcessPendi ngKeyst rokes()

voi d Push(Keyboard keyboard, string Conponent Nanme, bool transparent)
i nt ReadChar(void)

voi d ResumnePl ayback()

bool ResuneRecord(Record Recordbject)

bool SendKeys(string keyStream

bool StartRecord(Record Recordoject)

voi d StopRecord()

Events
voi d Unassi gnedKey (int keyCode)

AreKeysWaiting property KeyboardManager

Returns TRUE if any keys are waiting to be processed. Thisis aread-only property.

Type expected
bool AreKeysWiting

CurrentPlayback property KeyboardManager

Only valid while in a Playback(). Thisis aread-only property.

Type expected
Record Current Pl ayback

CurrentRecord property KeyboardManager

This property contains a reference to the Record object associated with this
KeyboardManager. Thisis aread-write property.

Chapter 4, cScript Class Reference 179

Type expected
Record Current Record

KeyboardFlags property KeyboardManager

This property returns a value whose bits may be checked to determine the state of
NumLock, Caps, Ctrl, Alt, and so on. The mask values are:

0x03 - Shift pressed
0x04 - Ctrl pressed
0x08 - Alt pressed
0x10 - Scroll Lock on
0x20 - Num Lock on
0x40 - Caps Lock on

Thisisaread-only property.

Type expected
i nt Keyboar dFl ags

KeysProcessed property KeyboardManager

The total number of keys processed by any keyboard since the IDE was loaded. Thisis
aread-only property.

Type expected
i nt Last KeyProcessed

LastKeyProcessed property KeyboardManager
The keyCode of the last key that was processed by any keyboard. Thisis aread-only
property.

Type expected
i nt Last KeyProcessed

Recording property KeyboardManager

Only valid whilein a StartRecord() until StopRecord() is called.
= The return value matches cBrief'sing_kbd_flags().
Thisisaread-only property.

Type expected
Record Recordi ng

ScriptAbortKey property KeyboardManager

Contains the KeySequence of the key which, when pressed, causes the currently
running script to abort. The default value is <Escape>, except when Epsilon emulation
is enabled in which case the default is <Ctrl-G>.

180 Paradigm C++ Obiject Scripting Guide

The KeySequence is a mnemonic key name made up of a key description, such as <a>.
Key descriptions can be augmented with any (or all) of the following: "Shift", "Ctrl",
"Alt", and "Keypad".

Keys that don't map to a single character have names associated with them. Keysin this
category are: "Enter”, "Backspace”, "Tab", "Home", "End", " PageUp", "PageDown",
"Left", "Right", "Up", "Down", "Insert", "Delete", "Escape”, " Space”, "PrintScreen”,
"Center", "Pause", "CapsLock", "ScrollLock", and "NumLock".

Modifiers and names are separated by a dash (-). For example:
<Crl-Enter>

To assign the dash character in akey sequence, use the keyname <Minus>. Use the
keyname <Plus> for the '+' character.

Thisis aread-write property.

Type expected
string Script Abort Key

CodeToKey method KeyboardManager

This method accepts the integer keycode representation and returns the textual
description of the key.

Types expected
string CodeToKey(int KeyCode)

Return value
Matches the cBrief key naming conventions for ing_assignment and assign_to_key.

Flush method KeyboardManager

This method removes all waiting keystrokes from the IDE's message queue.

Types expected
voi d Fl ush()

Return value
None

GetKeyboard method KeyboardManager

This method finds the keyboard currently assigned to the IDE subsystem specified in
ComponentName. Specifying "Default" returns the internal mapping, which cannot be
remapped. If ComponentName is omitted, the method gets the current keyboard.

Valid subsystems are

Editor
Message
Project
Desktop

Chapter 4, cScript Class Reference 181

Types expected
Keyboard Get Keyboard ([string Conponent Nane])

Return value

The keyboard currently assigned to an IDE subsystem, or NULL if the subsystem is
invalid.

KeyToCode method KeyboardManager

This method accepts the textual name of a key and returns the integer keycode
equivalent. It accepts single keystroke entries such as <F> and <Ctrl-B>, but not
multikey sequences such as "Ctrl+K Ctrl+B".

Types expected
i nt KeyToCode (string KeyNane)

Return value
The integer keycode of the key.

PausePlayback method KeyboardManager

Pauses the playback of arecording object initiated with Playback(). To resume
playback, call ResumePlayback().

Types expected
voi d PausePl| ayback()

Return value
None

Playback method KeyboardManager

This method replays the series of keystrokes assigned to a Record object. If no Record
object is specified, the last recording is replayed.

Types expected
int Playback ([Record Recordbject])

Return value
One of the following values:

0 No sequence to play back

1 Playback successful

-1 Sequence is paused or being remembered

-2 Error loading disk file (macros will handle this)
-3 Canceled by user with ScriptAbortKey

ProcessKeyboardAssignments method KeyboardManager

182

Convertsa .KBD fileinto a .KBPfile.

Paradigm C++ Obiject Scripting Guide

Types expected
bool ProcessKeyboar dAssi gnnments (string fil eNane, bool unassign)

fileName The name of the .KBD formatted file. Includes the path to thefile.

unassign Specifiesif the file contents should be used to unassign keys defined in
the .KBD file. If TRUE, defined keys will be unassigned. If FALSE,
defined keys will be assigned.

Return value
TRUE if a.KBPfileisloaded and FALSE if it is not.

ProcessPendingKeystrokes method KeyboardManager

This method can be used fine tune the behavior of SendKeys. If one or more callsto
SendKeys indicated that key processing was to be delayed, these keystrokes are not
processed until ProcessPendingkeystrokesis called or until the script completes
execution.

Types expected
voi d ProcessPendi ngKeyst rokes()

Return value
None

Pop method KeyboardManager

This method restores the previously assigned keyboard mapping after a call to Push.

Types expected
Keyboard Pop(string Conponent Nane)

Return value

The keyboard that was restored or NULL, which indicates that no additional keyboard
mappings were applied and the default keyboard desktop mapping is active.

Push method KeyboardManager

This method pushes a keyboard on the keyboard stack, making the new keyboard
mapping current. A subsequent Pop operation restores the previously assigned keyboard
mapping.

Types expected
voi d Push (Keyboard keyboard, string Conponent Nane, bool
transparent)

transparent Determines the run-time behavior of keystrokes not found in the
keyboard. If transparent is set, the next keyboard on the stack is
searched. Otherwise, the key isignored.

Return value
None

Chapter 4, cScript Class Reference 183

ReadChar method KeyboardManager

This method returns either -1 (no key iswaiting) or the scan value for the key that was
pressed.

Types expected
int ReadChar (void)

Return value
The high-order byte is the scan code, and the low-order byte isthe ASCII value.

Description

ReadChar() manages two queues, alocal queue for Push() as well as the standard
Windows messaging system. It first checks the local queue for any waiting keys. If no
keys are available in the local queue, it checks the Windows message queue.

ResumePlayback method KeyboardManager

This method resumes the playback of a recording object initiated with Playback() after
the recording has been suspended by a call to PausePlayback().

Types expected
voi d ResumnePl ayback()

Return value
None

ResumeRecord method KeyboardManager

This method reinitiates record mode on a Record object, appending new keystrokes to
the end of the record buffer and updating the Recording member.

Types expected
bool ResuneRecord (Record Record(bject)

SendKeys method KeyboardManager

184

This method simulates the pressing of the keys indicated in the keyStream parameter.

Types expected
bool SendKeys(string keyStreani, bool suppresslmedi at eProcessing])

keystream A series of key presses. The limit on the number
of charactersin Windows 95 is 715. Thereisno
limit in Windows NT.

suppresslmmediateProcessing The default behavior is to process the keys
immediately, before the next line of script is
processed. If you include this parameter and set it
to TRUE, SendKeys delays processing of the keys
until ProcessPendingKeystrokesis called or until
the script compl etes execution.

Paradigm C++ Obiject Scripting Guide

Return value

TRUE if keyStream has valid syntax and can be interpreted or FAL SE if keyStream
could not be turned into a series of keypresses.

Description
SendKeys takes a key or series of keys as its parameter.

Simple displayable keys are just a string of characters that are the same as the keycaps.
For example,

SendKeys("hell o worl d");
Keys that do not have ssmple displayable counterparts, like Alt+S, have a special syntax.

The following list shows how to indicate Alt+keyname, Shift+keyname, and
Ctrl+keyname:

Alt key modifier Preface the key name with the percent character (%).
For example, Alt+s iS¥s.

Shift key modifier Either preface the key name with the plus character (+) or
capitalizeit.
For example, Shift+s is either +sor S.

Ctrl key modifier Preface the key name with the carat character (*).
For example, Ctri+s is”s.

= The SendKeys parameter is case sensitive. 2 s is Ctrl+S, but S is Ctrl+Shift+S.

To indicate the %, +, or ™ key itself, precede the key name with a backslash (\) as
below:

To indicate % use "+\\%
To indicate ~, use "+\\A"
To indicate +, use "+\\+"

To smulate non-displaying keys, use a key mnemonic (described in atable that
follows) and encloseitin braces({ }).

For example, to ssimulate the key sequence Al t+s 1 + 2 [Enter], usethe
following syntax:

SendKeys(" %1\ +2{ VK_RETURN} ") ;
The key mnemonics are:

VK_ADD VK_F3 VK_F18
VK_BACK VK_F4 VK_F19
VK_CANCEL VK_F5 VK_F20
VK_CAPI TAL VK_F6 VK_F21
VK_CLEAR VK_F7 VK_F22
VK_CONTROL VK_F8 VK_F23
VK_DECI MAL VK_F9 VK_F24
VK_DELETE VK_F10 VK_HELP
VK_DI VI DE VK_F11 VK_HOVE
VK_DOWN VK_F12 VK_I NSERT
VK_END VK_F13 VK_LBUTTON
VK_ESCAPE VK_F14 VK_LEFT
VK_EXECUTE VK_F15 VK_MBUTTON
VK_F1 VK_F16 VK_MENU
VK_F2 VK_F17 VK_MULTI PLY

Chapter 4, cScript Class Reference 185

VK_NEXT VK_NUVPAD? VK_SCROLL
VK_NUMLOCK VK_NUVPADS VK_SELECT
VK_NUVPADO VK_NUVPAD9Y VK_SEPARATCR
VK_NUVPADL VK_PAUSE VK_SHI FT
VK_NUVPAD2 VK_PRI NT VK_SNAPSHOT
VK_NUVPAD3 VK_PRI OR VK_SPACE
VK_NUVPADA VK_RBUTTON VK_SUBTRACT
VK_NUVPADS VK_RETURN VK_TAB
VK_NUVPADG VK_R GHT VK_UP

= At the current time there are two separate keyboard parsers, one for processing key
assignments and the other for processing SendKeys(). These processors accept different
formats for the same keys: For example, "<Alt-a>" versus” %a" .

SendKeys example

X = new Keyboar dvanager () ;

. SendKeys(""S"); [/* Sends Crl+S and processes it inmediately

. SendKeys(""S", FALSE); /* Sends Crl+S and processes it imediately
. SendKeys("...", TRUE); /* Sends Crl+S and del ays processing

. ProcessPendi ngKeystrokes(); /* Processes the del ayed keystrokes

X X N X

StartRecord method KeyboardManager

This method begins storing keystroke sequences in a Record object and updates the
Recording member.

Types expected
bool StartRecord (Record Recordbject)

Return value
TRUE if the key sequenceis stored or FAL SE if it is not.

Description
SartRecord replaces any key sequences aready stored in the Record object.

Y ou can record to only one Record object at atime. If you attempt a StartRecord before
calling amatching StopRecord for a previous recording, the StartRecord fails.

StopRecord method KeyboardManager

Halts recording keystrokes previoudly started with StartRecord(). This operation
updates the CurrentRecord member and updates the Recording member with an object
whose IsValid valueisfase.

Types expected
voi d StopRecord ()

UnassignedKey event KeyboardManager

This event is raised when akey having no recorded keystrokesis pressed. The default
action isto do nothing.

186 Paradigm C++ Obiject Scripting Guide

Types expected
voi d Unassi gnKey (int keyCode)

Return value
None

Keyboard class

This class works with the KeyboardManager class to manage keyboards assigned to
various |DE components, such as the Editor and the Project View.

Syntax
Keyboar d([bool transparent])

If the Keyboard is created with the transparent attribute, keystrokes having no
assignment in this keyboard are passes to the next one on the current keyboard stack.
This value defaultsto FAL SE if not supplied.

Properties
I nt Assignnents Read-only

string Defaul t Assi gnment Read-write

Methods
voi d Assign(string KeySequence, string ConmandNane, int
I mplicit Assi gnment s)
voi d Assi gnTypeabl es(string ComrandNane)
voi d Copy(Keyboard Sour ceKeyboar d)
i nt Count Assi gnnent s(stri ng ComrandNare)
string Get Command(string KeySequence)
string Get KeySequence(string CommandNane [,int whi chOne])
bool HasUni queMappi ng(string KeySequence)
voi d Unassign(string KeySequence)

Keyboard class description

Keyboard objects administer key assignments and can be assigned to IDE components,
pushed and popped from the keyboard manager's keyboard stack, and queried on
individual key assignments.

Assignments property Keyboard

This property indicates the number of key assignments contained in this keyboard. It is
aread-only property.

Type expected
i nt Assignnents

DefaultAssignment property Keyboard

This property establishes the command to execute if no other commands are assigned to
akeystroke. It returns an empty string (*") if no assignment exists. It is aread-write
property.

Chapter 4, cScript Class Reference 187

Type expected
string DefaultAssignnent

Assign method Keyboard

=

This method assigns a script to a keystroke.

Types expected
voi d Assign (string KeySequence, string ComrandNane, int
I mplicit Assi gnment s)

Return value
None

Description
CommandName is the script to be executed when the key is pressed, asin

edi t or. Mar kWbr d(TRUE) ;
KeySeguence is a mnemonic key name made up of a key description, such as <a>. Key

descriptions can be augmented with any (or al) of the following: "Shift", "Ctrl", "Alt",
and "Keypad".

Keys that do not map to a single character have names associated with them. Keysin
this category are: "Enter”, "Backspace”, "Tab", "Home", "End", "PageUp",
"P®®0Wn"’ llLeftll’ llRightll, IIUpII, IIDOWnII’ Illnytll’ IIDdaell’ IIE$apell, "%&e‘l,
"Print Screen”, "Center”, "Pause”, " CapsLock”, "ScrollLock", and "NumL ock".

Modifiers and names are separated by adash (-). For example,
<Ctrl-Enter>.

To assign the dash character in a key sequence, use the keyname <Minus>. Use the
keyname <Plus> for the + character.

implicitAssignments is one or more of the following values:

ASSIGN_EXPLICIT (default) No implicit assignments should be created.

ASSIGN_IMPLICIT_KEYPAD When an assignment is made to a sequence that
has a numeric keypad ("Keypad") equivalent, such
as PageUp, a second assignment isimplicitly
made for the equivalent. Assignments are made to
both the shifted and non-shifted versions at the
same time, but only if the implicit assignment
doesn't overwrite an existing explicit assignment.

ASSIGN_IMPLICIT_SHIFT <a> ==<A>
ASSIGN_IMPLICIT_MODIFIER <Ctrl-k><Ctlr-b> = = <Ctrl-k>

This method has no effect on the default keyboard, which is returned from a call to
Keyboar dManager . Get Keyboard("Defaul t").

Assign method examples Keyboard

188

/[l Explicit assignment to <Hone>. Inplicit assignment
/] assignnent to <Keypad- Hone>.

Paradigm C++ Obiject Scripting Guide

Assi gn(" <Home>","ToStart();", ASSIG\ | MPLICl T_KEYPAD);

/'l Explicit assignnent to <Keypad- End>.
Assi gn(" <Keypad- End>", "ToEnd();");

/1 Explicit assignment to <End>
Assi gn(" <End>", "ToEnd(TRUE); ", ASSI G_I MPLI CI T_KEYPAD) ;

[l Implicit assignnment to <Keypad-End> thwarted due to
/] existence of explicit assignment to <Keypad- End>.

AssignTypeables method Keyboard

This method assigns either a script to the predefined typeable characters (all ASCII
characters, Enter, Delete, and Backspace).

= This method has no effect on the default keyboard, which is returned from acall to
Keyboar dvanager . Get Keyboar d(" Defaul t").

Types expected
voi d Assi gnTypeabl es(string ComrandNane)

CommandName The command to assign and any parameters to the command.

Return value

None

Copy method Keyboard
This method copies all assignments made from SourceKeyboard into this keyboard,
replacing any that already exist.

= This method has no effect on the default keyboard, which is returned from acall to
Keyboar dManager . Get Keyboard("Defaul t").

Types expected
voi d Copy(Keyboard Sour ceKeyboar d)

Return value
None

CountAssignments method Keyboard

This method returns the number of key assignmentstied to the specified command.

Types expected
i nt Count Assi gnnent s(string ConmrandNarne)

GetCommand method Keyboard

This method returns the command assigned to the specified key code. It returns the
empty string (") if no script has been assigned.

Chapter 4, cScript Class Reference 189

Types expected
string Get Conmand (string KeySequence)

GetKeySequence method Keyboard

This method returns the key sequence tied to the specified command. If whichOneis
less than 1 or omitted, it is assumed to be 1.

Types expected
string GetKeySequence(string ComrandNane [,int whichOne])

HasUnigueMapping method Keyboard

Determines if akey has no mapping or maps directly to a command, or is the non-
terminating key of a multikey assignment.

Types expected
bool HasUni queMappi ng(string KeySequence)

Return value

Returns TRUE if akey either has no mapping or maps directly to a command. Returns
FAL SE if the key is anon-terminating key of a multikey assignment. For example,
WordStar <Ctrl-K> would be FAL SE since <Citrl-K> signifies the beginning of a
multikey assignment, such as <Ctrl-K><Ctrl-B> or <Ctrl-K><Ctrl-K>.

Unassign method Keyboard

This method restores a key assignment.

This method has no effect on the default keyboard, which is returned from acall to
Keyboar dvanager . Get Keyboar d(" Def aul t").

Types expected
voi d Unassign(string KeySequence)

Return value
None

ListWindow class

Syntax

Li st Wndow(int Top, int Left, int Height, int Wdth,
string Caption, bool MiltipleSelect, bool Sorted,
string[] Initial Val ues)

Top, Left, Height, Width Initial coordinates of thelist.

Caption Text to be displayed in the list title.
MultipleSel ect Determines whether the list will support multiple
selections.

190 Paradigm C++ Obiject Scripting Guide

Sorted Determines whether new additionsto the list are put in
their sorted order.

InitialVaues An array of strings specifying theinitial contents of the
list.
Properties
string Caption Read-write
i nt Count Read-only
i nt Currentl ndex Read-only
[] Data Read-only
I nt Hei ght Read-write
bool Hi dden Read-write
bool Milti Sel ect Read-only
bool Sorted Read-only
int Wdth Read-write
Methods
voi d Add(string newEl, int offset)
void O ear ()
voi d d ose()

voi d Execute()

int FindString(string toFind)
string GetString(int offset)
voi d Insert ()

bool Renove(int offset)

Events

voi d Accept ()

voi d Cancel ()

voi d d osed()

voi d Del ete()

bool KeyPressed(string keyNane)
void Leftdick(int xPos, int yPos)
voi d Move()

void Rightdick(int xPos, int yPos)

Caption property ListWindow

This property contains the title of the list window. Thisis aread-write property.

Type expected
string Caption

Count property ListWindow

This property contains the number of elementsin the list. Thisis aread-only property.

Type expected
i nt Count

Currentindex property ListWindow

This property contains the zero-based index of the currently highlighted list element, or
-1if nothing is selected. Thisis aread-only property.

Chapter 4, cScript Class Reference 191

Type expected
i nt Currentlndex

Data property ListWindow

This property contains an array of strings that represent the contents of thelist. Thisisa
read-only property.

Type expected
[]1Data

Height property ListWindow

This property contains the height, in pixels, of the list window. Thisis aread-write
property.

Type expected
i nt Hei ght

Hidden property ListWindow

This property determines if the list window can be removed from the display. This
property only has meaning after the Execute() method has been called and before the
list window is closed. Thisis aread-write property.

Type expected
bool H dden
MultiSelect property ListWindow

This property, if TRUE, allows multiple selections from thelist. If FALSE, only a
single selection can be made. Thisis aread-only property.

Type expected
bool Ml ti Sel ect

Sorted property ListWindow

This property, if TRUE, the elements of the list are sorted as new elements are added. If
FAL SE, elements appear at the offset given in the call to the Add() method. Thisisa
read-only property.

Type expected

bool Sorted
Width property ListWindow
This property contains the width, in pixels, of the list window. Thisis aread-write
property.

Type expected
int Wdth

192 Paradigm C++ Obiject Scripting Guide

Add method ListWindow

Addsthe string newEl to thelist at the zero based offset position designated by offset.
offset isignored if thelist isasorted list.

Types expected
voi d Add(string newEl, int offset)

Return value
None

Clear method ListWindow

Removes all e ements from the list.

Types expected
void dear ()

Return value
None

Close method ListWindow

Removesthe List Window from the screen.

Types expected
voi d d ose()

Execute method ListWindow

Creates the List window to be created and displayed to the user.

Types expected
voi d Execute()

FindString method ListWindow

Returns the one-based offset of the string or zero if not found.

Types expected
int FindString(string toFind)

GetString method ListWindow

Returns the string at the specified offset or " if an illegal offset.

Types expected
string GetString(int offset)

Chapter 4, cScript Class Reference 193

Insert method ListWindow

This method is invoked when the user presses Insert. The default action isto do nothing.

Types expected
void Insert()

Return value
None

Remove method ListWindow

Removes the element from the specified zero based offset.

Types expected
bool Renove(int offset)

Accept event ListWindow

This event is raised when the user presses Enter or double-clicks on alist element.
Default action isto close the list.

Types expected
voi d Accept ()

Return value
None

Cancel event ListWindow

This event is raised when the user presses Escape. Default action isto close the list.

Types expected
voi d Cancel ()

Return value
None

Closed event ListWindow

This event israised when the ListWindow is destroyed.

Types expected
voi d d osed()

Return value
None

Delete event ListWindow

This event is raised when the user presses Delete. Default action is to do nothing.

194 Paradigm C++ Obiject Scripting Guide

Types expected
voi d Del ete()

Return value
None

KeyPressed event ListWindow

This event is raised when the user presses a key other than Delete, Insert, Accept, Or
Cancel while the ListWindow is active.

Types expected
bool KeyPressed(string keyNane)

keyName Indicates a key in the standard key format (<a> or <Ctrl-a>).
Return value
A return value of TRUE indicates that the script has processed the key and that no

further processing isdesired. A return value of FAL SE indicates that normal processing
(whatever that is) should take place.

LeftClick event ListWindow

This event is raised when the user clicks the left mouse button on the list window. The
parameters describe the mouse's position at the time.

Types expected
void Leftdick(int xPos, int yPos)

Return value

None

Move event ListWindow
This event israised whenever the selection in the list is changed. Default action isto do
nothing.

Types expected
voi d Move()

Return value
None
RightClick event ListWindow

This event is raised when the user clicks the right mouse button on the list window. The
parameters describe the mouse's position at the time.

Types expected
void Rightdick(int xPos, int yPos)

Chapter 4, cScript Class Reference 195

Return value
None

PopupMenu class

The class manages pop-up menus. In the Paradigm C++ IDE, pop-up menus are known
as SpeedMenus.

Syntax
PopupMenu(int Top, int Left, string [] Initial Val ues)

Top, Left Initial coordinates of the pop-up menu.
InitialValues An array of strings specifying theinitial contents of the pop-up menu.

Properties
[] Data Read-only

Methods

voi d Append(string newChoice)
int FindString(string toFind)
string GetString(int offset)
bool Renove(int offset)
string Track()

Events
None

Data property PopupMenu

This property contains an array of strings that specifies the choices that will be offered
in the menu. Thisis aread-only property.

Type expected
[1 Data

Append method PopupMenu

This method appends a new choice to the menu's options.

Types expected
voi d Append(string newChoi ce)

Return value
None

FindString method PopupMenu

This method looks for the string indicated in toFind.

Types expected
int FindString(string toFind)

196 Paradigm C++ Obiject Scripting Guide

Return value
The one-based offset of the string found or zero if not found.

GetString method PopupMenu
This method returns the string at the specified zero based offset or "" if the offset is
illegal.

Types expected
string GetString(int offset)

Remove method PopupMenu

This method removes the specified zero based offset.

Types expected
bool Renove(int offset)

Return value
TRUE if the element is removed, FALSE, otherwise

Track method PopupMenu

This method displays the pop-up menu to the user and tracks responses. It will return
after the user has made a choice or cancelled the menu.

Types expected
string Track()

Return value
The string selected or the empty string (") if the user cancels the menu.

ProjectNode class

Syntax
Pr oj ect Node(nodeNane, EditVi ew associ at edVi ew)

nodeName A string indicating the full name of the node (asin MyProg.exe). If no
name is specified, ProjectNode uses the top level IDE node.

Properties

[T Chil dNodes Read-only
string IncludePath Read-only
string | nput Nane Read-only
bool IsVvalid Read-only
string LibraryPath Read-only
string Name Read-only
bool Qut O Dat e Read-write
string Qut put Nane Read-only
string SourcePath Read-only
string Type Read-only

Chapter 4, cScript Class Reference 197

Methods

bool Add(string nodeNane [, string type])
bool Buil d(bool suppressu)

bool Make(bool suppressuU)

voi d MakePrevi ew)

bool Renove([string nodeNane])

bool Transl at e(bool suppressu)

Events

voi d Built(bool status)

voi d Made(bool st atus)

voi d Transl at ed(bool st at us)

ChildNodes property ProjectNode

This property indicates all the child nodes of the current node. It is an array of strings
containing the InputNames of the child nodes. It is aread-only property.

Type expected
[1 Chil dNodes

IncludePath property ProjectNode

This property indicates the path to use for include files for the currently loaded project.
It isaread-only property.

Type expected
string I ncludePath

InputName property ProjectNode

The node's relative path name of the input file including extension, asin "Myfile.cpp”
or "SOURCE\MYFILE.CPP'. It isaread-only property.

Type expected
string | nput Nane

IsValid property ProjectNode

This property indicates if anodeisvalid. A node becomesinvalid if the project fileit is
associated with is closed or if the node is deleted. It is aread-only property.

Type expected
bool IsValid

LibraryPath property ProjectNode

This property indicates the path to use for libraries for the currently loaded project. It is
aread-only property.

Type expected
string LibraryPath

198 Paradigm C++ Obiject Scripting Guide

Name property ProjectNode

This property indicates the node's relative path name with an extension, asin "Myfile"
or "SOURCE\MYFILE". It isaread-only property.

Type expected
string Nane

OutOfDate property ProjectNode

This property can be checked, or set, to determine the date of anode. This property is
used by the make engine to determine if a node needs to be rebuilt. Thisis aread-write
property.

Type expected
bool Qut Of Dat e

OutputName property ProjectNode

This property indicates the relative path name of the output file including extension, as
in"MYFILE.CPP" or "Source\Myfile.cpp”. It isaread-only property. You can always
generate the absolute filename by prepending the result of the IDEApplication's
CurrentDirectory property to InputName, asin

absNanme = IDE CQurrentDirectory + node. | nput Nane;

Type expected
string Qut put Name

SourcePath property ProjectNode

This property indicates the path where the source files for the currently loaded project
reside. It isaread-only property.

Type expected
string SourcePath

Type property ProjectNode

This property indicates the type of node (".CPP", ".H", "SourcePool", ".LIB", and so
on). It contains the empty string (") when the nodeisinvalid. It is aread-only property.

Type expected
string Type
Add method ProjectNode

This method adds a node to this project node with a specified name. If type is omitted, it
is derived from the nodeName.

Types expected
bool Add(string nodeNane [, string type])

Chapter 4, cScript Class Reference 199

Build method ProjectNode

This method causes the node to be built, made, or trandated by the IDE's Make engine
according to the rules of the node. If suppressUl is TRUE, the build status dialog will
not be displayed during the build process.

Types expected
bool Buil d(bool suppressuUl)

Return value
TRUE if the node is built successfully, FAL SE otherwise.

Make method ProjectNode

This method causes the node to be built, made, or trandated by the IDE's Make engine
according to the rules of the node if the node's OutOf Date property is TRUE. If
suppressUl is TRUE, the build status dialog will not be displayed during the make
process.

Types expected
bool Make(bool suppressU)

Return value
TRUE if the node is made successfully, FAL SE otherwise

MakePreview method ProjectNode

This method provides information about what files will be processed if you Make or
Build this node. It performs the same dependency checks as a Make and generates a
report to the Message window listing the nodes that need to be rebuilt to keep the
project up to date.

Types expected
voi d MakePrevi ew()

Return value
None

Remove method ProjectNode

If nodeName is not specified, Remove removes the node from the project If nodeName
is specified, Remove finds it and removesit from the project.

Types expected
bool Renove([string nodeNane])

Translate method ProjectNode

This method causes the node to be built, made, or trandated by the IDE's Make engine
according to the rules of the node. If suppressUl is TRUE, the build status dialog will
not be displayed during the make process.

200 Paradigm C++ Obiject Scripting Guide

Types expected
bool Transl at e(bool suppressu)

Return value
TRUE if the node is trandated successfully, FAL SE otherwise.

Built event ProjectNode

This event israised after a build has been performed on the node. status describes the
result of the build. statusis set to TRUE if the build completed successfully or with
warnings, and FAL SE if there were errors. Default behavior isto do nothing.

Types expected
voi d Built(bool status)

Return value
None

Made event ProjectNode

This event israised after a make has been performed on the node. status describes the
result of the make operation. statusis set to TRUE if the build completed successfully
or with warnings, and FAL SE if there were errors. Default behavior isto do nothing.

Types expected
voi d Made(bool st atus)

Return value
None

Translated event ProjectNode

Thisevent israised after atrandate has been performed on the node. status describes
the result of the trandlate operation. statusis set to TRUE if the build completed
successfully or with warnings, and FAL SE if there were errors. This event's default
behavior isto do nothing.

When the user performs a make or a build, the ProjectNode object receives a Trandated
event before it receives the Built or Made event.

Types expected
voi d Transl at ed(bool status)

Return value
None

Record class

This class creates an empty Record object into which keystrokes are saved and assigns
it the name specified by the RecordName parameter. If no record name is specified, a
default name is automatically assigned ("Recordl”, "Record2", and so on).

Chapter 4, cScript Class Reference 201

Syntax
Record([string RecordNane])

Properties

bool | sPaused Read-only
bool | sRecording Read-only
i nt KeyCount Read-only
string Name Read-write
Methods

voi d Append(int KeyCode)
string Get Command(int offset)
i nt GetKeyCode(int offset)
Record Next(void)

Events
None

IsPaused property Record

This property is set to TRUE when KeyboardManager's PauseRecording method is
called in order to allow users to enter keystrokes, which will not become part of the
recording. Thisis aread-only property.

Type expected
bool | sPaused

IsRecording property Record

This property is set to TRUE when the KeyboardManager begins storing keystrokes to
the Record object in response to a call to KeyboardManager's StartRecord method. This
isaread-only property.

Type expected
bool |sRecording

KeyCount property Record

This property contains the number of keystrokes stored in this Record object. Thisisa
read-only property.

Type expected
i nt KeyCount

Name property Record

This property contains the name of the Record object. Thisis aread-write property.

Type expected
string Nane

202 Paradigm C++ Obiject Scripting Guide

Append method Record

This method appends a keycode to the record buffer. It allows empty record objectsto
be built programatically or added to through a script.

Types expected
voi d Append(i nt KeyCode)

Return value
None

GetCommand method Record

This method returns information describing a key stored in the Record object. Keys are
stored in the order which they are recorded. Thefirst key in the recording is at offset O.

Types expected
string Get Command(int off Set)

Return value

The information returned is transitory, because the meanings of the stored keystrokes
may have been altered by the execution of the recording. For instance, if the recording
switches to another subsystem with a different key map. The method is intended to be
used after a Record object has been executed. The answers returned reflect the values as
of the last run.

GetKeyCode method Record

This method returns information describing a key stored in the Record object. Keys are
stored in the order which they are recorded. Thefirst key in the recording is at offset O.

Types expected
i nt Get KeyCode(int offset)

Return value
Returns the keystroke of the key at the specified offset, or zero if the offset isillegal.

Next method Record

As Record objects are created, they are automatically linked together. This method
provides a mechanism for iterating the recordings.

Types expected
Record Next (voi d)

Return value
Either the next Record object or NULL indicating the end of the list.

Chapter 4, cScript Class Reference 203

ScriptEngine class

Syntax
Scri pt Engi ne()

Properties

bool AppendTolLog Read-write

i nt Di agnosti cMessageMask Read-write
bool Di aghosti cMessages Read-write
string LogFil eNane Read-write
bool Loggi ng Read-write
string ScriptPath Read-write
string StartupDirectory Read-only
Methods

voi d Debug()

i nt Execute(string conmmandLi ne, bool tenporary)
string Execute(string commandLi ne, bool tenporary)

string met hodNane)
string propertyNane)

bool |sAC ass(string cl assNane)

bool IsAFunction(string functi onNane)
bool |sAMet hod(string cl assNane,

bool |sAProperty(string classNamne,
bool |sLoaded(string scriptFileNane)
bool Load(string scriptFileNane)

[T Modul es(bool libraryOnly)

bool Reset(int resetWat)

voi d Synbol (string fil eName,
bool Unl oad(string scriptFileNane)

Events
voi d Loaded(string scriptFileNamne)
voi d Unl oaded(string scriptFil eNane)

AppendTolLog property

string synbol s)

ScriptEngine

Used when Logging is on. This property determines whether the next message logged to
the log file name should replace an existing log file (if one exists) before performing the
write. Once the write has been completed, AppendTolLog is set to TRUE, causing
subsequent messages to be appended to the log. Thisis aread-write property.

Type expected
bool AppendTolLog

DiagnosticMessageMask property

ScriptEngine

Controls which types of diagnostic messages to record. This bitmask can be any

combination of

OBJECT_DIAGNOSTICS
METHOD_DIAGNOSTICS
MEMBER_DIAGNOSTICS
ARGUMENT_DIAGNOSTICS
LANGUAGE_DIAGNOSTICS

204

Paradigm C++ Obiject Scripting Guide

MODULE_DIAGNOSTICS
FULL_DIAGNOSTICS
NO_DIAGNOSTICS

Thisis aread-write property.

Type expected
i nt Di agnosti cMessageMask

DiagnosticMessages property ScriptEngine

Controls whether diagnostic messages should be recorded in the Message window. This
is aread-write property.

Type expected
bool D agnosticMessages

LogFileName property ScriptEngine

The name of the log file. Defaults to "\SCRIPT.LOG". Thisis a read-write property.

Type expected
string LogFil eNane

Logging property ScriptEngine
If set to TRUE, script messages will be stored in the log file. Thisis aread-write
property.

Type expected
bool Loggi ng
ScriptPath property ScriptEngine

Holds a string containing the name(s) of the directory(s) to be searched for script files.
Each directory path is separated from the others by a semicolon (;). Thisis aread-write

property.

Type expected
string ScriptPath

StartupDirectory property ScriptEngine

The name of the directory in which the file STARTUP.SPX was found in during
initialization. Thisis aread-write property.

Type expected
string StartupDirectory

Debug method ScriptEngine

This method launches the Script Debugger.

Chapter 4, cScript Class Reference 205

Types expected
bool Debugger ()

Return value
TRUE if the Script Debugger can be launched, FAL SE otherwise.

Execute method ScriptEngine
Executes the string in commandLine, which must be a valid cScript command.

Types expected
i nt Execute(string conmmandLi ne, bool tenporary)
string Execute(string comandLi ne, bool tenporary)

Return value
Returns the value appropriate to whatever commandLine evaluates to. If that value is an
object, it is converted to a string.

Description

If temporary is TRUE, the command is run within a new context and must therefore use
import to access global variables declared in another module. Any global variables it
creates will be used for the purposes of the command and then discarded.

If temporary is FAL SE (the default), the command is executed with the scope of
Immediate mode and has automatic access to globals from other modules. In this case,
any variables created by the command continue to exist after the command has run and
can be accessed from Immediate mode.

IsAClass method ScriptEngine

This method is used to determine if ObjecttScript has seen the class declaration for the
classindicated by className.

Types expected
bool 1sAC ass(string classNane)

Return value
TRUE if instances of the class can be constructed, FAL SE otherwise.

IsAFunction method ScriptEngine

This method is used to determine if ObectScript has seen the function declaration for
the function indicated by functionName.

Types expected
bool IsAFunction(string functi onNane)

Return value
TRUE if the function can be called, FAL SE otherwise.

206 Paradigm C++ Obiject Scripting Guide

IsAMethod method ScriptEngine

This method is used to determine if the class className has as a member of the class
the method methodName.

Types expected
bool IsAMet hod(string className, string met hodNane)

Return value
TRUE if the method is a member of the class, FAL SE otherwise.

IsAProperty method ScriptEngine

This method is used to determine if the class className has as a member of the class
the property propertyName.

Types expected
bool |sAProperty(string classNane, string propertyNane)

Return value
TRUE if the property is amember of the class, FAL SE otherwise.

IsLoaded method ScriptEngine

This method is used to determine if the specified script file scriptFileName has been
loaded, or if the file (either the source or the binary) can be found in the ScriptPath.

Types expected
bool |sLoaded(string scriptFileNane)

Return value
TRUE if thefileisloaded or can be loaded, FAL SE otherwise.

Load method ScriptEngine

This method is used to load the script file scriptFileName. If not aready loaded, the file
(either the source or the binary) is searched for using the ScriptPath.

Types expected
bool Load(string scriptFileNamne)

Return value
TRUE if the script was located and loaded or FAL SE if the script file was not found.

Description

If the script file to be loaded has already been loaded into memory, Load() performs an
in-place Reset(). (The modul€e's position in the module chain is not affected, but all its
variables are restored to their original state.) On handlers are disconnected or
reconnected. All variables local to the module are released and reset. Any code at the
module level scope is executed again.

Chapter 4, cScript Class Reference 207

Modules method ScriptEngine

This method finds all the loaded modules.

Types expected
[T Modul es(bool libraryOnly)

libraryOnly An optional parameter indicating that the method is to fetch only the
library modules.

Return value
An array of strings containing the names of the loaded modules.

Reset method ScriptEngine

This method resets the script session by discarding all modules that match the value of
resetWhat. If no value is supplied, the method does nothing.

Types expected
bool Reset(int resetWat)

resetWhat Can be either LIBRARY_MODULE or SCRIPT_MODULE.

Return value
TRUE if the sessionisreset or FALSE if it isnot.

SymbolLoad method ScriptEngine

This method provides hints about where the definition of a given symbol might be. For
example, SymbolL oad("ScriptFile", "Foo, Bar, jump").

Types expected
voi d Synbol Load(string fileNane, string synbols)

fileName A script file that should be loaded if the lookup for any of the listed
symbolsfails.

symbols A comma delimited string of the symbols which may be resolved by
loading fileName.

Return value
None

Description

At run time when the Script Engine tries to find a class, function, method, or global
variable that it doesn't know about, it consults an internal table constructed by callsto
this method.

Unload method ScriptEngine

Tries to unload the specified script file. Future references from other scripts to
variables, functions or classes defined in the unloaded script file are no longer valid.

208 Paradigm C++ Obiject Scripting Guide

Types expected
bool Unl oad(string scriptFileNane)

Return value
FAL SE when the script file is not found to have been loaded, TRUE otherwise.

Loaded event ScriptEngine

This event israised whenever a new script module is successfully loaded.

Types expected
voi d Loaded(string scriptFil eNane)

Return value
None

Unloaded event ScriptEngine

This event is raised when a module has been unloaded.

Types expected
voi d Unl oaded(string scriptFil eNamne)

Return value
None

SearchOptions class

Syntax

Sear chQpti ons()

Properties

bool CaseSensitive Read-write
bool FromCur sor Read-write
bool GoForward Read-write
bool Pronpt OnRepl ace Read-write
bool Regul ar Expressi on Read-write
bool Repl aceAl | Read-write
string Repl aceText Read-write
string SearchRepl aceText Read-write
string SearchText Read-write
bool Whol eFile Read-write
bool Wor dBoundary Read-write
Methods

voi d Copy(SearchQptions opti onsToCopyFrom

Events
None

Chapter 4, cScript Class Reference 209

CaseSensitive property SearchOptions

If TRUE, acase-sensitive search is performed. Thisis aread-write property.

Type expected
bool CaseSensitive

FromCursor property SearchOptions

If TRUE, the search is made from the current cursor position. Thisis aread-write
property.

Type expected
bool FrontCursor

GoForward property SearchOptions

If TRUE, the search is "forward" towards the end of thefile. Thisis a read-write
property.

Type expected
bool CoForward

PromptOnReplace property SearchOptions

If TRUE, you are prompted to confirm each instance where the SearchReplaceText will
be replaced by the ReplaceText before the replacements are made. Thisis aread-write

property.

Type expected
bool Prompt OnRepl ace

RegularExpression property SearchOptions

If TRUE, regular expressions are used in matching the SearchText or
SearchReplaceText with the text to be searched. This is aread-write property.

Type expected
bool Regul ar Expr essi on

ReplaceAll property SearchOptions

If TRUE, all text which matches the SearchReplaceText is replaced with the
ReplaceText without any prompting for confirmation. Thisis aread-write property.

Type expected
bool Repl aceAl |

ReplaceText property SearchOptions

This property contains text which replaces instances of the SearchReplaceText string(s)
found in the text being searched. Thisis aread-write property.

210 Paradigm C++ Obiject Scripting Guide

Type expected
string Repl aceText

SearchReplaceText property SearchOptions

This property contains the text to search for in a search and replace operation (not a
search-only operation). Thisis aread-write property.

Type expected
string SearchRepl aceText

SearchText property SearchOptions

This property contains the text to search for in a search operation (not a search and
replace operation). Thisis aread-write property.

Type expected
string Sear chText

WholeFile property SearchOptions

If TRUE, the wholefileis searched for SearchText or SearchReplaceText, regardless of
the cursor position. Thisis aread-write property.

Type expected
bool Wol eFile

WordBoundary property SearchOptions

If TRUE, amatch between SearchText or SearchReplaceText and the text being
searched only occursiif the charactersin SearchText make up an entire word (that is,
they are surrounded by whitespace) and are not embedded in alarger word. Thisisa
read-write property.

Type expected
bool WordBoundary

Copy method SearchOptions

This method creates a copy of the current SearchOptions.

Types expected
voi d Copy(SearchQptions opti onsToCopyFrom

Return value
None

StackFrame class

Syntax
St ackFrame(i nt howrar Back)

Chapter 4, cScript Class Reference 211

howFarBack refers to the number of stack frames to go back through. O gets
information for this call. 1 retrieves the stack passed to this function's caller, and so on.
When howFarBack is less than the depth of the stack, the object is not valid.

Properties

I nt ArgActual Read-only
i nt ArgPaddi ng Read-only
string Caller Read-write
bool IsVvalid Read-only
Methods

St ackEl ement CGet Par 5t ackFr ane_Get Par (i nt par nNunber)
string I nqTypeSt ackFrane_ | nqType(int arg)
bool Set Par nfst ackFr ame_Set Par n(i nt par mNunber, newal ue)

Events
None

ArgActual property StackFrame

This property indicates the number of objects on the cScript stack belonging to this call
frame. It isaread-only property.

Type expected
i nt ArgActual

Description
ArgActual isthe number of arguments that were actually passed to a method. cScript
either pads or truncates arguments as necessary, so it must keep track of the number
actually passed.
For example, if you have a call in your codeto

MyMet hod("hi ") ;
Its declaration shows the following:

MyMet hod(first, second, third, fourth){
print first, second, third, fourth;

}

If youweretoinsert x = new St ackFranme(0); intothe call to MyMethod, the
value of x.ArgActual would be 1 since only one argument is passed.

ArgPadding property StackFrame

212

This property indicates the number of objects cScript had to pad or truncate from the
original call stack to resolve any discrepancy between the number of argumentsin the
declaration and the number of argumentsin the call. Thisis aread-only property.

Type expected
i nt ArgPaddi ng

Paradigm C++ Obiject Scripting Guide

Caller property StackFrame

This property indicates the name of the method owning the stack frame. Thisis aread-
write property.

Type expected
string Caller

Description

Caller contains the empty string (") if the call isatop level one. When the valueis set,
it isreflected in subsequent StackFrame calls until the current stack frame is popped
off, at which point the value of Caller isreset to its original value.

IsValid property StackFrame

This property is FAL SE if the object was constructed with an invalid stack frame depth
or if the stack frame has gone out of scope. It is TRUE otherwise. Thisisaread-only

property.

Type expected
bool Isvalid

IngType method StackFrame

This method returns a descriptor for the argument specified or, if argis greater than or
equal to ArgActual, for an argument that maps to "Out of range".

Types expected
string I nqType(int arg)

GetParm method StackFrame

This method returns the object at the specified stack frame offset.

Types expected
St ackEl ement Get Par (i nt par nNunber)

SetParm method StackFrame

This method sets the value of the object at the specified stack frame offset.

Types expected
bool SetParm (int parnmunber, newval ue)

String class

Syntax
String(string theText)
String(String anotherString)

Chapter 4, cScript Class Reference 213

Properties

int Character Read-write
I nt |nteger Read-write
bool | sAl phaNuneric Read-only
int Length Read-only
string Text Read-write
Methods

String Conpress()

bool Contains(string charactersToLookFor, int mask)
int Index(string substr[, int direction])

String Lower ()

String SubString(int startPos[, int |ength])

String Trim([bool fronLeft])

String Upper ()

Character property String

This property indicates the integer value of character O of the string. It is aread-write
property.

Type expected
int Character

Description

When the value of Character is set, it changes the whole string to the new value. For
example, if you start with astring Str containing the text " FOO' , the value of Str.Text is
"FOO' andthevaueof Sr.Character is' F' . If you then set the value of Str with
Str.Character = 'X ,thevaueof Sr.Textisnow " X" and not " XOO' .

Integer property String

This property indicates the numerical equivalent of the character string that this object
represents, or zero if the string does not contain numerals. Thisis aread-write property.

Type expected
int Integer

IsAlphaNumeric property String

This property is TRUE if the text of the String is made up entirely of aphanumeric
characters (determined by checking the system's current locale). Itsvalue is FAL SE
otherwise. Thisisaread-only property.

Type expected
bool | sAl phaNureric

Length property String

This property indicates the length of the string (equivalent to strlen). Thisis aread-only
property.

214 Paradigm C++ Obiject Scripting Guide

Type expected

int Length
Text property String
The character string that this object represents. Thisis aread-write property.
Type expected
string Text
Compress method String

This method returns a new String that mimics this one, but with redundant white space

removed.

Types expected
String Conpress()

Contains method

String

This method returns TRUE if the string contains one of the characters specified or

FALSE if it does not.

Types expected

bool Contains(string charactersToLookFor, [int nmask])

mask can be any of the following constants:
BACKWARD_RIP
INVERT_LEGAL_CHARS

INCLUDE_LOWERCASE_ALPHA_CHARS

INCLUDE_UPPERCASE_ALPHA_CHARS

INCLUDE_ALPHA_CHARS

INCLUDE_NUMERIC_CHARS

INCLUDE_SPECIAL_CHARS

Chapter 4, cScript Class Reference

Rip from left to right.

Interpret the legal Chars string as
the inverse of the string you wish to
use for legal Chars. In other words,
specify "t" to mean any ASCII
value between 1 and 255 except
ey

Append the characters
abcdef ghi j kI mopqr st uvw
xyz to thelegal Chars string.

Append the characters
ABCDEFGHI J KLMNOPQRSTUVW
XYZ to the legalChars string

Append both uppercase and
lowercase apha characters to the
legal Chars string.

Append the characters
1234567890 to thelegalChars
string.

Append the characters ™ -
=[]\,]~ @PW & () _+H{
}| : " <>7? tothelegalChars string.

215

Index method String

This method scans the string for an embedded occurrence of the substr in the direction
specified by direction. It defaults to SEARCH_FORWARD. It does not accept regular
expressions.

Types expected
int Index(string substr[, int direction])

Return value
0if substr is not found or, if found, the one based offset + 1 of the substring.

Lower method String

This method returns a new string that mimics this one, but is al lowercase |etters.

Types expected
String Lower ()

SubString method String

This method returns a new string consisting of the substring indicated by startPos and
optionally length.

Types expected
String SubString(int startPos[, int |ength])

startPos The starting point in the string of the substring.

length The number of characters in the substring. Defaults to
MAX_EDITOR_LINE_LEN (1024). If length is not specified, SubString
continues to the end of the string.

Trim method String

This method returns a new string that mimics this one, but either without trailing white
space or without leading white space, as indicated by the fromLeft argument. The
default isto trim trailing white space (fromLeft is FAL SE).

Types expected
String Trim([bool fronLeft])

Upper method String

This method returns a new string that mimics this one, but is al uppercase letters.

Types expected
String Upper()

TransferOutput class

Internally created by the IDE after processing atransfer tool, Transfer Output is passed
to the IDE event TransferOutputExists().

216 Paradigm C++ Obiject Scripting Guide

Syntax
Transf er Qut put ()

Properties

i nt Messageld Read-only
string Provider Read-only
Methods

string ReadLi ne()

Description

An object of type TransferOutput is internally created by the IDE whenever atransfer
operation is performed.

When the IDE starts a transfer, it outputs a message to the Message window saying
"Transferring to ToolName..."

When atransfer happens, the IDE captures al its output and storesit in an internal
buffer. The contents of this buffer may be accessed by using Transfer Output object's
ReadLine method. This method returns the next line of text until the streamis
exhausted, at which point it returns NULL.

The IDE contains built-in processing for tools it commonly transfersto. These tools
include PASM and GREP. The script sample files FILTSTUB.SPP and FILTERS.SPP
show uses of this classin action.

Transfer definition

The term used when another application is spawned from within the IDE. Command-
line tools such as the WinHelp compiler or a DOS box (COMMAND.COM) are
commonly invoked from the IDE during a build process.

Messageld property TransferOutput

This property isthe "owning" message stored to the message system. ThisID is
intended to be used as the parentM essage parameter of 1DE.MessageCreate so that the
messages produced by the transfer can be grouped with the transfer message rather than
at the same level. It isaread-only property.

Type expected
int Messageld

Provider property TransferOutput

This property indicates the name of the tool that was spawned by the transfer; for
example, "COMMAND.COM". It is aread-only property.

Type expected
string Provider

Chapter 4, cScript Class Reference 217

ReadLine method TransferOutput

This method reads the next line of text that was produced by the transfer. When a
transfer happens, the IDE captures al its output and storesit in an internal buffer. The
contents of this buffer may be accessed by repeatedly calling ReadLine, which returns
the next line of text until the stream has been exhausted, at which point it returns
NULL.

Types expected
string ReadLi ne()

Return value

ReadL.ine returns the next line of text that was produced by the transfer. If thelineis
empty, ReadLine returns the empty string (""). If there is no more input to read, it
returns NULL.

TimeStamp class

This class indicates the current time. It initializes to the system time at the time of
construction.

Syntax

Ti meSt anp()

Properties

i nt Day Read-write
i nt Hour Read-write
i nt Hundredth Read-write
int MIIlisecond Read-write
int Mnute Read-write
int Month Read-write
i nt Second Read-write
i nt Year Read-write
Methods

i nt Conpare(Ti neStanp tstanp)
string DayNane()
string Mont hNane()

Day property TimeStamp
This property indicates the current day in the range of 0 (Sunday) to 6 (Saturday). Itisa
read-write property.

Type expected
i nt Day
Hour property TimeStamp

This property indicates the current hour in the range of 0 (Midnight) to 23 (11:00 PM).
It isaread-write property.

218 Paradigm C++ Obiject Scripting Guide

Type expected
i nt Hour

Hundredth property TimeStamp

This property indicates the current hundredth of an hour in the range of 0t0 99. Itisa
read-write property.

Type expected
i nt Hundredth

Millisecond property TimeStamp

This property indicates the number of milliseconds after the current second in the range
of 0to 999. It is aread-write property.

Type expected
int MIIlisecond

Minute property TimeStamp

This property indicates the number of minutes after the current hour in the range of 0 to
59. Thisis aread-write property.

Type expected
int Mnute

Month property TimeStamp

This property indicates the current month of the year in the range of 0 (January) to 11
(December). It is aread-write property.

Type expected
i nt Month
Second property TimeStamp

This property indicates the number of seconds after the current minute in the range of 0
to 59. It is aread-write property.

Type expected
i nt Second

Year property TimeStamp

This property indicates the current year. It is aread-write property.

Type expected
i nt Year

Chapter 4, cScript Class Reference 219

Compare method TimeStamp

Compares the time properties of the calling TimeStamp object with those of the tstamp
argument.

Types expected
i nt Conpare(Ti meStanp tstanp)

Return value

-1if the calling TimeStamp is newer than tstamp, O if the calling TimeStamp is the
same age as tstamp, and 1 if the calling TimeStamp is older than tstamp.

DayName method TimeStamp
This method returns the name of the current day of the week.

Types expected
string DayName()

Return value
"Monday", "Tuesday:, and so on.

MonthName method TimeStamp

This method returns the name of the current month.

Types expected
string Mont hNane()

Return value
"January", "February"”, and so on.

220 Paradigm C++ Obiject Scripting Guide

#

- 59, 68

-- 59, 67

I 65

I= 67

66, 71
##t 74
#define 71, 74
#else 72
#endif 72
#ifdef 72
#ifndef 72
#include 73
#undef 73
#warn 74
% 59, 68
%= 60

& 60

&& 65
&= 60

() 65, 66

* 59, 60, 68
*: 60

, 64

. 62,63

/ 59, 68

/= 60

?? 62,63
?? operator 63
N 60

"= 60
__cdecl 33
___pasca 33
__Stdcall 33
_init() 13
{} 65,69

| 60

|| 65

~ 60

+ 59, 68
++ 59, 67
= 60, 70

Index

>>= 60

A

About cScript 17
About Object Scripting 11
Accept

ListWindow class 194
Activate

EditWindow class 132
Add

ListWindow class 193

ProjectNode class 199
AddBreakAtCurrent

Debugger class 81
AddBreakpoint

Debugger class 81
AddBreakpointFileLine

Debugger class 81
AddToCredits

IDEApplication class 144
AddWatch

Debugger class 82
Align

EditPosition class 114
Animate

Debugger class 82
Append

PopupMenu class 196

Record class 203
AppendToLog

ScriptEngine class 204
Application

IDEApplication class 140
ApplyStyle

EditBuffer class 100

Editor class 104
AreKeysWaiting

KeyboardManager class 179
ArgActual

StackFrame class 212
ArgPadding

StackFrame class 212
ARGUMENT_DIAGNOSTICS 204
arithmetic operators 59
array 37
array members 26
arrays

associative 22

Index

221

bounded 22
cScript 21
finding members 45
member testing 63
unbounded 22
Assign
Keyboard class 188
assignment 60
assignment identifiers 70
Assignments
Keyboard class 187
AssignTypeables
Keyboard class 189
associative arrays 22
attach 38
Attach
Debugger class 82
EditView class 128
AttemptToM odifyReadOnlyBuffer
EditBuffer class 102
AttemptToWriteReadOnlyFile
EditBuffer class 102

B

BackspaceDelete
EditPosition class 115
BackupPath
EditOptions class 110
BACKWARD RIP 120, 215
Begin
EditBlock class 92
bitwise operators 60
Block
EditBuffer class 98
EditView class 125
BlockCreate
EditBuffer class 100
Blocklndent
EditOptions class 111
BookmarkGoto
EditView class 128
BookmarkRecord
EditView class 128
bool 33
boolean 67
BottomRow
EditView class 125
bounded arrays 22
branching 39, 41
break 38
breakpoint 38
BreakpointOptions

222

Debugger class 82
Brief

search expressions 122
Buffer

EditView class 126
BufferCreated

Editor class 108
BufferList

Editor class 105
BufferOptions

EditOptionsclass 111
BufferOptions class

Copy 80

CreateBackup 78

CursorThroughTabs 78

Horizontal ScrolIBar 78

InsertMode 78

LeftGutterWidth 78

Margin 78

OverwriteBlocks 79

PersistentBlocks 79

PreservelineEnds 79

SyntaxHighlight 79

TabRack 79

TokenFileName 79

UseTabCharacter 79

VerticalScrollBar 79
BufferOptionsCreate

Editor class 105
BufferRedo

Editor class 105
BufferUndo

Editor class 105
Build

ProjectNode class 200
BuildComplete

IDEApplication class 173
BuildStarted

IDEApplication class 173
Built

ProjectNode class 201

built-in functions and variables

cScript 31
C

C++

compared to cScript 18
C++(operators) 57
call 38
Caller

StackFrame class 213
calling closures 38

Paradigm C++ Obiject Scripting Guide

Cancel 149
ListWindow class 194
CANCEL 157
Caption
IDEApplication class 140
ListWindow class 191
case 39
CaseSensitive
SearchOptions class 210
Center
EditView class 129
char 33
Character
EditPosition class 113
String class 214
ChildNodes
ProjectNode class 198
class 39
dot operator 63
class members 26
classes
cScript 24
declaring in cScript 24
IDE scripting 33
editor 34
keyboard 34
Clear
ListWindow class 193
Close
EditWindow class 132
ListWindow class 193
Closed
ListWindow class 194
CloseWindow
IDEApplication class 144
closure operator 62
on syntax 47
closures 26
attach and detach 27
invoking 38
CodeToKey
KeyboardManager class 181
colon 69
Column
EditPosition class 113
COLUMN_BLOCK 91
comments
cScript 19
Compare
TimeStamp class 220
comparing
cScript and C++ 18
Compress

Index

String class 215
const 33
Contains

String class 215
continue 41
control 41, 42, 43, 55

controlling access to cScript properties 28

Copy
BufferOptions 80
EditBlock class 92
Keyboard class 189
SearchOptions 211
Count
ListWindow class 191
CountAssignments
Keyboard class 189
CreateBackup
BufferOptions class 78
creating cScript objects 25
cScript 37
array members 26
arrays 21
associative arrays 22
attach and detach 27
bounded arrays 22
built-in functions 31
class members 26
classes 24, 26
closures 26
comments 19
compared to C++ 18
DLL access 33
error handling 32
event handling 26
flow control statments 23
identifiers 19, 31
keywords 37
late-bound language 17
modules and scope 20
named arguments 31
objects 25
OLEZ2 interaction 33
on handlers 26, 28
operators 21
overview 17
pass by reference 30
prototyping 23
statements 21
strings 21
types 19
cScript operators 62
cScript properties
controlling accessto 28

223

CurrentDate
EditBuffer class 98
CurrentDirectory
IDEApplication class 140
CurrentIndex
ListWindow class 191
CurrentPlayback
KeyboardManager class 179
CurrentProjectNode
IDEApplication class 140
CurrentRecord
KeyboardManager class 179
CursorThroughTabs
BufferOptions class 78
Cut
EditBlock class 92

D

Data

ListWindow class 192

PopupMenu class 196
Day

TimeStamp class 218
DayName

TimeStamp class 220
Debug

ScriptEngine class 205
DebugA ddBreakpoint

IDEApplication class 144
DebugAddWatch

IDEApplication class 144
DebugAnimate

IDEApplication class 144
DebugAttach

IDEApplication class 145
DebugBreakpointOptions

IDEApplication class 145
DebugeeAboutToRun

Debugger class 88
DebugeeCreated

Debugger class 88
DebugeeStopped

Debugger class 89
DebugeeT erminated

Debugger class 89
DebugEvaluate

IDEApplication class 145
Debugger 80
Debugger class

AddBreakAtCurrent 81

AddBreakpoint 81

AddBreakpointFileLine 81

224

AddWatch 82
Animate 82

Attach 82
BreakpointOptions 82
DebugeeAboutToRun 88
DebugeeCreated 88
DebugeeStopped 89
DebugeeTerminated 89
Evaluate 83
EvauateWindow 83
FindExecutionPoint 83
HasProcess 81

Inspect 83
InstructionStepinto 83
InstructionStepOver 84
IsRunnable 84

Load 84
PauseProgram 84
Reset 85

Run 85
RunToAddress 85
RunToFileLine 85
StatementStepinto 86
StatementStepOver 86
TerminateProgram 86
ToggleBreakpoint 86
ViewBreakpoint 87
ViewCallStack 87
ViewCPU 87
ViewCPUFileLine 87
ViewProcess 88
ViewWatch 88

debugging 38
Debugl nspect

IDEApplication class 146

Debugl nstructionStepinto

IDEApplication class 146

Debugl nstructionStepOver

IDEApplication class 146

DebugL oad

IDEApplication class 146

DebugPauseProcess

IDEApplication class 147

DebugReset ThisProcess

IDEApplication class 147

DebugRun

IDEApplication class 147

DebugRunTo

IDEApplication class 147

DebugSourceAtExecutionPoint

IDEApplication class 147

DebugStatementStepinto

IDEApplication class 148

Paradigm C++ Obiject Scripting Guide

DebugStatementStepOver
IDEApplication class 148
DebugTerminateProcess
IDEApplication class 148
declare 41
declaring Object Script classes 24
default method
pass 49
default statement 41
DefaultAssignment
Keyboard class 187
DefaultFilePath
IDEApplication class 141
defines 71, 74
delayed keys
processing 183
delete 42
Delete
EditBlock class 93
EditPosition class 115
ListWindow class 194
Describe
EditBuffer class 100
Destroy
EditBuffer class 100
detach 42
developing and testing scripts 13
DiagnosticM essageM ask
ScriptEngine class 204
DiagnosticM essages
ScriptEngine class 205
DialogCreated
IDEApplication class 174
DirectionDiaog
IDEApplication class 148
directives 71, 72,73, 74
cScript 71
Directory
EditBuffer class 98
DirectoryDialog
IDEApplication class 149
DisplayCredits
IDEApplication class 149
DistanceToTab
EditPosition class 115
divison 68
DLLs
cScript accessto 33
do 42
DoFileOpen
IDEApplication class 149
dot operator 63
DOWN 133, 148

Index

Drive

EditBuffer class 98
E

EditBlock 89
EditBlock class

Begin 92

Copy 92

Cut 92

Delete 93

End 93
EndingColumn 90
EndingRow 91
Extend 93
ExtendPageDown 93
ExtendPageUp 93
ExtendRea 94
ExtendRelative 94
Hide 91

Indent 94

Isvalid 90
LowerCase 94
Print 95

Reset 95

Restore 95

Save 95
SaveToFile 95
Size 91
StartingColumn 91
StartingRow 91
Style 91

Text 92
ToggleCase 96
UpperCase 96

EditBuffer 96
EditBuffer class

ApplyStyle 100
AttemptToModifyReadOnlyBuffer 102
AttemptToWriteReadOnlyFile 102
Block 98

BlockCreate 100

CurrentDate 98

Describe 100

Destroy 100

Directory 98

Drive 98

Extension 98

FileName 98

FullName 98

HasBeenModified 102

InitialDate 99

IsModified 99

225

IsPrivate 99

IsReadOnly 99

Isvalid 99

NextBuffer 100

NextView 101

Position 99

PositionCreate 101

Print 101

PriorBuffer 101

Rename 102

Save 102

TopView 100
EditBufferCreate

Editor class 105
EditBufferList

IDEApplication class 149
EditCopy

IDEApplication class 150
EditCut

IDEApplication class 150
EditMode

EditStyle class 124
EditOptions 110
EditOptions class

BackupPath 110

Blockindent 111

BufferOptions 111

MirrorPath 111

OriginaPath 111

SyntaxHighlightTypes 111

UseBRIEFCursorShapes 111

UseBRIEFRegularExpression 112
EditOptionsCreate

Editor class 106
editor

IDE scripting 34
Editor

IDEApplication class 141
Editor class

ApplyStyle 104

BufferCreated 108

BufferList 105

BufferOptionsCreate 105

BufferRedo 105

BufferUndo 105

EditBufferCreate 105

EditOptionsCreate 106

EditStyleCreate 106

EditWindowCreate 106

FirstStyle 104

GetClipboard 106

GetClipboardToken 106

GetWindow 107

226

IsFileLoaded 107
MouseBlockCreated 108
Mousel eftDown 108
Mousel eftUp 108
MouseTipRequested 108
Options 104
OptionsChanged 109
OptionsChanging 109
SearchOptions 104
StyleGetNext 107
TopBuffer 104
TopView 104
ViewActivated 109
ViewCreated 109
ViewDestroyed 110
ViewRedo 107
ViewUndo 107

EditPaste

IDEApplication class 150

EditPosition 112
EditPosition class

Align 114
BackspaceDelete 115
Character 113
Column 113
Delete 115
DistanceToTab 115
GotoLine 116
InsertBlock 116
InsertCharacter 116
InsertFile 116
InsertScrap 116
InsertText 117
IsSpecial Character 113
IswhiteSpace 113
IsWordCharacter 113
LastRow 114
Move 117
MoveBOL 117
MoveCursor 117
MoveEOF 118
MoveEOL 118
MoveRea 118
MoveRelative 118
Read 119

Replace 119
ReplaceAgain 120
Restore 120
RipText 120

Row 114

Save 121

Search 121
SearchAgain 122

Paradigm C++ Obiject Scripting Guide

SearchOptions 114
Tab 122
EditRedo
IDEApplication class 150
EditSelectAll
IDEApplication class 151
EditStyle 123
EditStyle class
EditMode 124
Identifier 124
Name 124
EditStyleCreate
Editor class 106
EditUndo
IDEApplication class 151
EditView 124
EditView class
Attach 128
Block 125
BookmarkGoto 128
BookmarkRecord 128
BottomRow 125
Buffer 126
Center 129
Identifier 126
Isvalid 126
IsZoomed 126
LastEdit Column 126
LastEditRow 126
LeftColumn 127
MoveCursorToView 129
MoveViewToCursor 129
Next 127
PageDown 129
PageUp 129
Paint 130
Position 127
Prior 127
RightColumn 127
Scroll 130
SetTopLeft 130
TopRow 127
Window 127
EditWindow 130
EditWindow class
Activate 132
Close 132
Identifier 131
IsHidden 131
Isvalid 132
Next 132
Paint 133
Prior 132

Index

Title 132
View 132
ViewActivate 133
ViewCreate 133
ViewDelete 134
ViewExists 134
ViewSlide 135
EditWindowCreate

Editor class 106

else 72
enclosing operators 65
End

EditBlock class 93

endif 72
EndingColumn

EditBlock class 90

EndingRow

EditBlock class 91

EndwWaitCursor

IDEApplication class 151

EnterContextHelpMode

IDEApplication class 151

entering commands
IDE message dialog example 12
equal sign 70
equality operators 67
ERROR 158

error handling

cScript 32

Evduate

Debugger class 83

EvauateWindow

Debugger class 83

event 31
event handling

cScript 26
pass 49

EXCLUSIVE BLOCK 91
Execute

ListWindow class 193
ScriptEngine class 206

exit functions 50
Exiting

IDEApplication class 174

ExpandWindow

IDEApplication class 151

export 43
exporting functions 43
expressions

regular 122
search 122, 123

Extend

EditBlock class 93

227

ExtendPageDown
EditBlock class 93
ExtendPageUp
EditBlock class 93
ExtendReal
EditBlock class 94
ExtendRelative
EditBlock class 94
Extension
EditBuffer class 98

F

Factory 31
FALSE 64, 67
FATAL 158
FileClose

IDEApplication class 152
FileDialog

IDEApplication class 152
FileExit

IDEApplication class 152
FileName

EditBuffer class 98
FileNew

IDEApplication class 152
FileOpen

IDEApplication class 152
FilePrint

IDEApplication class 153
FilePrinterSetup

IDEApplication class 153
FileSave

IDEApplication class 153
FileSaveAll

IDEApplication class 153
FileSaveAs

IDEApplication class 154
FileSend

IDEApplication class 154
FindExecutionPoint

Debugger class 83
FindString

ListWindow class 193

PopupMenu class 196
FirstStyle

Editor class 104
flow control statements

cScript 23
Flush

KeyboardManager class 181
for 43
from 44

228

FromCursor

SearchOptions class 210
FULL_DIAGNOSTICS 204
FullName

EditBuffer class 98

IDEApplication class 141
functions

cScript 37

G

GetClipboard

Editor class 106
GetClipboardToken

Editor class 106
GetCommand

Keyboard class 189

Record class 203
GetKeyboard

KeyboardManager class 181
GetKeyCode

Record class 203
GetK eySequence

Keyboard class 190
GetParm

StackFrame class 213
GetRegionBottom

IDEApplication class 154
GetRegionL eft

IDEApplication class 155
GetRegionRight

IDEApplication class 155
GetRegionTop

IDEApplication class 155
GetString

ListWindow class 193

PopupMenu class 197
getters 28

cScript 28
GetWindow

Editor class 107
GetWindowState

IDEApplication class 155
GoForward

SearchOptions class 210
GotoLine

EditPosition class 116

H

HasBeenM odified
EditBuffer class 102
HasProcess
Debugger class 81

Paradigm C++ Obiject Scripting Guide

HasUniqueM apping

Keyboard class 190
Height

IDEApplication class 141

ListWindow class 192
Help

IDEApplication class 156
Hel pAbout

IDEApplication class 156
HelpContents

IDEApplication class 156
HelpKeyboard

IDEApplication class 156
HelpKeywordSearch

IDEApplication class 156
HelpRequested

IDEApplication class 174
HelpUsingHelp

IDEApplication class 157
HelpwWindowsAPI

IDEApplication class 157
hexadecimals

cScript strings 21
Hidden

ListWindow class 192
Hide

EditBlock class 91
Horizontal Scrol|Bar

BufferOptions class 78
Hour

TimeStamp class 218
Hundredth

TimeStamp class 219

IDE
search expressions 123
IDE Class Library 33
IDEApplication 137
IDEApplication class
AddToCredits 144
Application 140
BuildComplete 173
BuildStarted 173
Caption 140
CloseWindow 144
CurrentDirectory 140
CurrentProjectNode 140
DebugAddBreakpoint 144
DebugAddWatch 144
DebugAnimate 144
DebugAttach 145

Index

DebugBreakpointOptions 145
DebugEvaluate 145
Debuglnspect 146
DebuglnstructionStepinto 146

DebuglnstructionStepOver 146

DebuglLoad 146
DebugPauseProcess 147
DebugResetThisProcess 147
DebugRun 147
DebugRunTo 147

DebugSourceAtExecutionPoint 147

DebugStatementStepinto 148
DebugStatementStepOver 148
DebugTerminateProcess 148
DefaultFilePath 141
DialogCreated 174
DirectionDialog 148
DirectoryDialog 149
DisplayCredits 149
DoFileOpen 149
EditBufferList 149
EditCopy 150
EditCut 150

Editor 141

EditPaste 150
EditRedo 150
EditSelectAll 151
EditUndo 151
EndWaitCursor 151
EnterContextHelpMode 151
Exiting 174
ExpandWindow 151
FileClose 152
FileDialog 152
FileExit 152

FileNew 152
FileOpen 152
FilePrint 153
FilePrinterSetup 153
FileSave 153
FileSaveAll 153
FileSend 154
FullName 141
GetRegionBottom 154
GetRegionLeft 155
GetRegionRight 155
GetRegionTop 155
GetWindowState 155
Height 141

Help 156

HelpAbout 156
HelpContents 156
HelpKeyboard 156

229

HelpKeywordSearch 156
HelpRequested 174
HelpUsingHelp 157
HelpWindowsAPI 157

Idle 174

ldleTime 141

IdleTimeout 141
KeyboardAssignmentFile 142
KeyboardAssignmentsChanged 175
KeyboardA ssignmentsChanging 175
KeyboardManager 142
KeyPressDialog 157

Left 142

ListDialog 157

LoadTime 142
MakeComplete 175
MakeStarted 175

Menu 158

Message 158
MessageCreate 158
ModuleName 142

Name 142

NextWindow 159
OptionsEnvironment 159
OptionsProject 159
OptionsSave 159
OptionsStyleSheets 160
OptionsTools 160

Parent 142

ProjectBuildAll 160
ProjectClosed 176
ProjectCloseProject 160
ProjectCompile 161
ProjectGenerateM akefile 161
ProjectMakeAll 161
ProjectManagerinitialize 161
ProjectNewProject 162
ProjectNewTarget 162
ProjectOpened 176
ProjectOpenProject 163
Quit 163
RaiseDialogCreatedEvent 143
SaveMessages 163
ScriptCommands 163
ScriptCompileFile 163
ScriptModules 164
ScriptRun 164
ScriptRunFile 164
SearchBrowseSymbol 164
SearchFind 165

SearchL ocateSymbol 165
SearchNextMessage 165
SearchPreviousM essage 165

230

SearchReplace 166
SearchSearchAgain 166
SecondElapsed 176
SetRegion 166
SetWindowState 167
SimpleDialog 167
SpeedMenu 167
Started 176
StartWaitCursor 167
StatusBar 143
StatusBarDialog 168
Tool 168
Top 143
TransferOutputExists 177
TransateComplete 177
Undo 168
UseCurrentWindowForSourceTracking 143
Version 143
ViewActivate 168
ViewBreakpoint 169
ViewCallStack 169
ViewClasses 169
ViewCPU 169
ViewGlobals 170
ViewMessage 170
ViewProcess 170
ViewProject 171
ViewSlide 170
ViewWatch 171
Visible 143
Width 144
WindowArrangelcons 171
WindowCascade 171
WindowCloseAll 172
WindowMinimizeAll 172
WindowRestoreAll 172
WindowTileHorizontal 172
WindowTileVertical 173
YesNoDialog 173
Identifier
EditStyle class 124
EditView class 126
EditWindow class 131
identifiers
cScript 19
Idle
IDEApplication class 174
IdleTime
IDEApplication class 141
IdleTimeout
IDEApplication class 141
if 44
ifdef 72

Paradigm C++ Obiject Scripting Guide

ifndef 72
import 44
importing functions 44
in operator 63
include 73
INCLUDE_ALPHA_CHARS 215
INCLUDE_LOWERCASE _ALPHA_CHARS 215
INCLUDE_NUMERIC_CHARS 215
INCLUDE_SPECIAL_CHARS 215
INCLUDE_UPPERCASE ALPHA CHARS 215
IncludePath

ProjectNode class 198
INCLUSIVE_BLOCK 91
Indent

EditBlock class 94
Index

String class 216
INFORMATION 158
InitialDate

EditBuffer class 99
initialized 44
InputName

ProjectNode class 198
InqType

StackFrame class 213
Insert

ListWindow class 194
InsertBlock

EditPosition class 116
InsertCharacter

EditPosition class 116
InsertFile

EditPosition class 116
InsertMode

BufferOptions class 78
InsertScrap

EditPosition class 116
InsertText

EditPosition class 117
I nspect

Debugger class 83
instances

cScript classes 25
InstructionStepl nto

Debugger class 83
InstructionStepOver

Debugger class 84
int 33
I nteger

String class 214
INVALID_BLOCK 91
INVERT_LEGAL_CHARS 215
ISAClass

Index

ScriptEngine class 206
|sAFunction

ScriptEngine class 206
IsAlphaNumeric

String class 214
IsAMethod

ScriptEngine class 207
| SAProperty

ScriptEngine class 207
| sFilel oaded

Editor class 107
IsHidden

EditWindow class 131
IsLoaded

ScriptEngine class 207
IsModified

EditBuffer class 99
| sPaused

Record class 202
IsPrivate

EditBuffer class 99
IsReadOnly

EditBuffer class 99
IsRecording

Record class 202
IsRunnable

Debugger class 84
| sSpecia Character

EditPosition class 113
Isvalid

EditBlock class 90

EditBuffer class 99

EditView class 126

EditWindow class 132

ProjectNode class 198

StackFrame class 213
IswWhiteSpace

EditPosition class 113
|sWordCharacter

EditPosition class 113
|sZoomed

EditView class 126
iterate 45

K

key name mnemonics 184
keyboard
IDE scripting classes 34
Keyboard 187
Keyboard class
Assign 188
Assignments 187

231

AssignTypeables 189
Copy 189
CountAssignments 189
DefaultAssignment 187
GetCommand 189
GetKeySequence 190
HasUniqueMapping 190
Unassign 190
KeyboardA ssignmentFile
IDEApplication class 142
K eyboardA ssignmentsChanged
IDEApplication class 175
K eyboardA ssignmentsChanging
IDEApplication class 175
KeyboardFags
KeyboardManager class 180
KeyboardManager 179
IDEApplication class 142
KeyboardManager class
AreKeysWaiting 179
CodeToKey 181
CurrentPlayback 179
CurrentRecord 179
Flush 181
GetKeyboard 181
KeyboardFlags 180
KeysProcessed 180
KeyToCode 182
LastKeyProcessed 180
PausePlayback 182
Playback 182
Pop 183
ProcessK eyboardA ssignments 182
ProcessPendingK eystrokes 183
Push 183
ReadChar 184
Recording 180
ResumePlayback 184
ResumeRecord 184
ScriptAbortKey 180
SendKeys 184
StartRecord 186
StopRecord 186
UnassignedKey 186
KeyCount
Record class 202
KeyPressDiaog
IDEApplication class 157
KeyPressed
ListWindow class 195
keys
processing 183
KeysProcessed

232

KeyboardManager class 180
keystrokes

processing 183
KeyToCode

KeyboardManager class 182
keywords

cScript 37

L

LANGUAGE_DIAGNOSTICS 204
LastEditColumn

EditView class 126
L astEditRow

EditView class 126
L astk eyProcessed

KeyboardManager class 180
LastRow

EditPosition class 114
late-bound language 17
Left

IDEApplication class 142
LEFT 133, 134
LeftClick

ListWindow class 195
LeftColumn

EditView class 127
L eftGutterWidth

BufferOptions class 78
Length

String class 214
library 31
LIBRARY_MODULE 208
LibraryPath

ProjectNode class 198
LINE_BLOCK 91
ListDialog

IDEApplication class 157
ListWindow 190
ListWindow class

Accept 194

Add 193

Cancd 194

Caption 191

Clear 193

Close 193

Closed 194

Count 191

Currentindex 191

Data 192

Delete 194

Execute 193

FindString 193

Paradigm C++ Obiject Scripting Guide

GetString 193

Height 192

Hidden 192

Insert 194

KeyPressed 195

LeftClick 195

Move 195

MultiSelect 192

Remove 194

RightClick 195

Sorted 192

Width 192
load 45
Load

Debugger class 84

ScriptEngine class 207
Loaded

ScriptEngine class 209
loading scripts 14
LoadTime

IDEApplication class 142
LogFileName

ScriptEngine class 205
Logging

ScriptEngine class 205
logical operators 65
long 33
loops 41, 42, 43, 55
Lower

String class 216
LowerCase

EditBlock class 94
Lvalues 70

M

macros 74
Made

ProjectNode class 201
Make

ProjectNode class 200
MakeComplete

IDEApplication class 175
MakePreview

ProjectNode class 200
MakeStarted

IDEApplication class 175
Margin

BufferOptions class 78
member selector 63
MEMBER_DIAGNOSTICS 204
Menu

IDEApplication class 158

Index

Message

IDEApplication class 158
MessageCreate

IDEApplication class 158
Messageld

TransferOutput class 217
method 31
METHOD_DIAGNOSTICS 204
Millisecond

TimeStamp class 219
Minute

TimeStamp class 219
MirrorPath

EditOptions class 111
mnemonics

key name 184
modifiable identifiers 70
module

command 46

function 46
MODULE_DIAGNOSTICS 204
ModuleName

IDEApplication class 142
modules

cScript 20
Modules

ScriptEngine class 208
modulus 68
Month

TimeStamp class 219
MonthName

TimeStamp class 220
MouseBlockCreated

Editor class 108
MouselL eftDown

Editor class 108
Mousel eftUp

Editor class 108
MouseTipRequested

Editor class 108
Move

EditPosition class 117

ListWindow class 195
MoveBOL

EditPosition class 117
MoveCursor

EditPosition class 117
MoveCursorToView

EditView class 129
MoveEOF

EditPosition class 118
MoveEOL

EditPosition class 118

233

MoveRea
EditPosition class 118
MoveRelative
EditPosition class 118
MoveViewToCursor
EditView class 129
multiplication 68
Multi Select
ListWindow class 192

N

Name
EditStyle class 124
IDEApplication class 142
ProjectNode class 199
Record class 202
named arguments
cScript 31
new 47
Next
EditView class 127
EditWindow class 132
Record class 203
NextBuffer
EditBuffer class 100
NextView
EditBuffer class 101
NextWindow
IDEApplication class 159
NO_DIAGNOSTICS 204

@)

object 31

Object Scripting
about 11
loading 14
print command 11
Quick start 11
running ascript 11
setting options 15

OBJECT_DIAGNOSTICS 204

object-oriented operators 62
objects

finding members 45

membership testing 63
Objects

cScript

creating 25

octals

cScript strings 21
of 47
OK 157

234

OLE2
cScript interaction
OLEObject 33
on 47
on handlers 26
attach 38
getters 28
pass 49
setters 29
onerror 49

operators 57, 58, 59, 60, 62, 64, 65, 67

options

Object Scripting 15
Options

Editor class 104
OptionsChanged

Editor class 109
OptionsChanging

Editor class 109
OptionsEnvironment

IDEApplication class 159
OptionsProject

IDEApplication class 159
OptionsSave

IDEApplication class 159
OptionsStyleSheets

IDEApplication class 160
OptionsTools

IDEApplication class 160
OriginalPath

EditOptionsclass 111
OutOfDate

ProjectNode class 199
OutputName

ProjectNode class 199
OverwriteBlocks

BufferOptions class 79

P

PageDown

EditView class 129
PageUp

EditView class 129
Paint

EditView class 130

EditWindow class 133
parameters 74
Parent

IDEApplication class 142
pass 26, 49
pass by reference 30
PausePlayback

Paradigm C++ Obiject Scripting Guide

KeyboardManager class 182
PauseProgram

Debugger class 84
pending keys

processing 183
period operator 63
PersistentBlocks

BufferOptions class 79
Playback

KeyboardManager class 182
Pop

KeyboardManager class 183
PopupMenu 196
PopupMenu class

Append 196

Data 196

FindString 196

GetString 197

Remove 197

Track 197
Position

EditBuffer class 99

EditView class 127
PositionCreate

EditBuffer class 101
precedence 58
preprocessor

cScript 71
preprocessor operator 66
PreserveLineEnds

BufferOptions class 79
print 49
Print

EditBlock class 95

EditBuffer class 101
print command

entering interactively 11
printf 49
Prior

EditView class 127

EditWindow class 132
PriorBuffer

EditBuffer class 101
process control 41, 42, 43, 55
ProcessK eyboardA ssignments

KeyBoardManager class 182
ProcessPendingK eystrokes 183

KeyboardManager class 183
programs

cScript

writing and loading 12

ProjectBuildAll

IDEApplication class 160

Index

ProjectClosed
IDEApplication class 176
ProjectCloseProject
IDEApplication class 160
ProjectCompile
IDEApplication class 161
ProjectGenerateM akefile
IDEApplication class 161
ProjectMakeAll
IDEApplication class 161
ProjectManagerinitialize
IDEApplication class 161
ProjectNewProject
IDEApplication class 162
ProjectNewTarget
IDEApplication class 162
ProjectNode 197
ProjectNode class
Add 199
Build 200
Built 201
ChildNodes 198
IncludePath 198
InputName 198
Isvalid 198
LibraryPath 198
Made 201
Make 200
MakePreview 200
Name 199
OutOfDate 199
OutputName 199
Remove 200
SourcePath 199
Translate 200
Trandated 201
Type 199
ProjectOpened
IDEApplication class 176
ProjectOpenProject
IDEApplication class 163
PromptOnReplace
SearchOptions class 210
properties
getting 28
setting 29
Properties
controlling accessto 28
property 31
prototyping
cScript 23
Provider
TransferOutput class 217

235

punctuators 69
Push
KeyboardManager class 183

Q

Quit
IDEApplication class 163

R

RaiseDia ogCreatedEvent
IDEApplication class 143
Read
EditPosition class 119
ReadChar
KeyboardManager class 184
ReadLine
TranferOutput class 218
Record 201
Record class
Append 203
GetCommand 203
GetKeyCode 203
IsPaused 202
IsRecording 202
KeyCount 202
Name 202
Next 203
Recording
KeyboardManager class 180
referencing 61
region names 154
regionName 154
regions 154
regular expression 122
RegularExpression
SearchOptions class 210
relational operators 67
reload 50
remainder 68
Remove
ListWindow class 194
PopupMenu class 197
ProjectNode class 200
Rename
EditBuffer class 102
Replace
EditPosition class 119
ReplaceAgain
EditPosition class 120
ReplaceAll
SearchOptions class 210
ReplaceText

236

SearchOptions class 210
reserved words

cScript 37
Reset

Debugger class 85

EditBlock class 95

ScriptEngine class 208
Restore

EditBlock class 95

EditPosition class 120
resume 50

error handling 32
ResumePlayback

KeyboardManager class 184
ResumeRecord

KeyboardManager class 184
RETRY 158
return 50

error handling 32
return statements 50
RIGHT 133, 148
RightClick

ListWindow class 195
RightColumn

EditView class 127
RipText

EditPosition class 120
Row

EditPosition class 114
run 50
Run

Debugger class 85
run-time type information 55
RunToAddress

Debugger class 85
RunToFileLine

Debugger class 85
Rvaues 70

S

Save
EditBlock class 95
EditBuffer class 102
EditPosition class 121
SaveM essages
IDEApplication class 163
SaveToFile
EditBlock class 95
scope
cScript 20
Script programs
writing and loading 12

Paradigm C++ Obiject Scripting Guide

SCRIPT_MODULE 208
ScriptAbortK ey
KeyboardManager class 180
ScriptCommands
IDEApplication class 163
ScriptCompileFile
IDEApplication class 163
ScriptEngine 204
ScriptEngine class
AppendToLog 204
Debug 205
DiagnosticMessageMask 204
DiagnosticMessages 205
Execute 206
IsAClass 206
IsAFunction 206
IsAMethod 207
ISAProperty 207
IsLoaded 207
Load 207
Loaded 209
LogFileName 205
Logging 205
Modules 208
Reset 208
ScriptPath 205
StartupDirectory 205
SymbolLoad 208
Unload 208
Unloaded 209
scripting
editor 34
keyboard 34
ScriptModules
IDEApplication class 164
ScriptPath
ScriptEngine class 205
ScriptRun
IDEApplication class 164
ScriptRunFile
IDEApplication class 164
scripts
unloading 15
Scripts
running interactively 11
Scroll
EditView class 130
Search
EditPosition class 121
search expressions
Brief 122
IDE 123
search string 122

Index

search symbols
IDE 123
SearchAgain
EditPosition class 122
SearchBrowseSymbol
IDEApplication class 164
SearchFind
IDEApplication class 165
SearchL ocateSymbol
IDEApplication class 165
SearchNextM essage
IDEApplication class 165
SearchOptions 209
Editor class 104
EditPosition class 114
SearchOptions class
CaseSensitive 210
Copy 211
FromCursor 210
GoForward 210
PromptOnReplace 210
RegularExpression 210
ReplaceAll 210
ReplaceText 210
SearchReplaceText 211
SearchText 211
WholeFile 211
WordBoundary 211
SearchPreviousMessage
IDEApplication class 165
SearchReplace
IDEApplication class 166
SearchReplaceText
SearchOptions class 211
SearchSearchAgain
IDEApplication class 166
SearchText
SearchOptions class 211
Second
TimeStamp class 219
SecondElapsed
IDEApplication class 176
select 51
selection 51
semicolon 69
SendKeys
KeyboardManager class 184
processing keystrokes 183
separators 69
SetParm
StackFrame class 213
SetRegion
IDEApplication class 166

Setters 28

cScript 29
SetTopL eft

EditView class 130
SetWindowState

IDEApplication class 167
short 33
SimpleDiaog

IDEApplication class 167
Size

EditBlock class 91
Sorted

ListWindow class 192
SourcePath

ProjectNode class 199
Sparse arrays 22
SpeedMenu

IDEApplication class 167
StackFrame 212
StackFrame class

ArgActua 212

ArgPadding 212

Caller 213

GetParm 213

InqType 213

Isvalid 213

SetParm 213
Started

IDEApplication class 176
StartingColumn

EditBlock class 91
StartingRow

EditBlock class 91
StartRecord

KeyboardManager class 186

StartupDirectory
ScriptEngine class 205
StartWaitCursor
IDEApplication class 167
statements
cScript 21
StatementStepl nto
Debugger class 86
StatementStepOver
Debugger class 86
StatusBar
IDEApplication class 143
StatusBarDialog
IDEApplication class 168
StopRecord

KeyboardManager class 186

String 213
String class

238

Character 214

Compress 215

Contains 215

Index 216

Integer 214

IsAlphaNumeric 214

Length 214

Lower 216

SubString 216

Text 215

Trim 216

Upper 216
strings

cScript 21
strtol 52
strtoul 52
Style

EditBlock class 91
StyleGetNext

Editor class 107
SubString

String class 216
SubsystemActivated

IDEApplication class 177
super 52
SW_MAXIMIZE 156, 167
SW_MINIMIZE 156, 167
SW_NORMAL 156
SW_RESTORE 167
switch 53
Symbol L oad

ScriptEngine class 208
symbols

search expression 122
SyntaxHighlight

BufferOptions class 79
SyntaxHighlightTypes

EditOptions class 111
system 31

T

Tab

EditPosition class 122
TabRack

BufferOptions class 79
TE_APPLICATION 162
TE_AXE 162
TE_MM_COMPACT 162
TE_MM_HUGE 162
TE_MM_LARGE 162
TE_MM_MEDIUM 162
TE_MM_SMALL 162

Paradigm C++ Obiject Scripting Guide

TE _STATICLIB 162
TE STDLIB_EMU 162
TE _STDLIB_MATH 162
TE _STDLIB_NOEH 162
TE STDLIB_RTL 162
TE STDLIBS 162
TerminateProgram

Debugger class 86
Text

EditBlock class 92

String class 215
this 54
TimeStamp 218
TimeStamp class

Compare 220

Day 218

DayName 220

Hour 218

Hundredth 219

Millisecond 219

Minute 219

Month 219

MonthName 220

Second 219

Year 219
Title

EditWindow class 132
ToggleBreakpoint

Debugger class 86
ToggleCase

EditBlock class 96
token pasting 74
TokenFileName

BufferOptions class 79
Tool

IDEApplication class 168
Top

IDEApplication class 143
TopBuffer

Editor class 104
TopRow

EditView class 127
TopView

EditBuffer class 100

Editor class 104
Track

PopupMenu class 197
TransferOutput 216
TransferOutput class

Messageld 217

Provider 217

ReadLine 218
TransferOutputExists

Index

IDEApplication class 177
Trandate

ProjectNode class 200
TrandateComplete

IDEApplication class 177
Translated

ProjectNode class 201
Trim

String class 216
TRUE 64, 67
Type

ProjectNode class 199
typeid 55
types

cScript 19

U

Unassign
Keyboard class 190
UnassignedK ey
KeyboardManager class 186
unbounded arrays 22
undef 73
Undo
IDEApplication class 168
unload 55
Unload
ScriptEngine class 208
Unloaded
ScriptEngine class 209
unloading scripts 15
unsigned 33
UP 134, 149
Upper
String class 216
UpperCase
EditBlock class 96
UseBRIEFCursorShapes
EditOptions class 111
UseBRIEFRegularExpression
EditOptions class 112
UseCurrentWindowForSourceTracking
IDEApplication class 143
UseTabCharacter
BufferOptions class 79
Using the IDE Message didlog 12
Using the print command 11

Vv

Version
IDEApplication class 143
Vertical Scrol|Bar

239

BufferOptions class 79
View

EditWindow class 132
ViewActivate

EditWindow class 133

IDEApplication class 168
ViewActivated

Editor class 109
ViewBreakpoint

Debugger class 87

IDEApplication class 169
ViewCallStack

Debugger class 87

IDEApplication class 169
ViewClasses

IDEApplication class 169
ViewCPU

Debugger class 87

IDEApplication class 169
ViewCPUFileLine

Debugger class 87
ViewCreate

EditWindow class 133
ViewCreated

Editor class 109
ViewDelete

EditWindow class 134
ViewDestroyed

Editor class 110
ViewExists

EditWindow class 134
ViewGlobals

IDEApplication class 170
ViewMessage

IDEApplication class 170
ViewProcess

Debugger class 88

IDEApplication class 170
ViewProject

IDEApplication class 171
ViewRedo

Editor class 107
ViewSlide

EditWindow class 135

IDEApplication class 170
ViewUndo

Editor class 107

240

ViewWatch

Debugger class 88

IDEApplication class 171
Visible

IDEApplication class 143
void 33

w

WARNING 158
warnings 74
while 55
WholeFile
SearchOptions class 211
Width
IDEApplication class 144
ListWindow class 192
Window
EditView class 127
WindowA rrangel cons
IDEApplication class 171
WindowCascade
IDEApplication class 171
WindowCloseAll
IDEApplication class 172
WindowMinimizeAll
IDEApplication class 172
WindowRestoreAll
IDEApplication class 172
WindowTileHorizontal
IDEApplication class 172
WindowTileVertical
IDEApplication class 173
with 56
WordBoundary
SearchOptions class 211
working with scripts 14

writing and loading a script file 12

writing scripts 14

Y

Y ear
TimeStamp class 219
YesNoDiaog
IDEApplication class 173
yield 57

Paradigm C++ Obiject Scripting Guide

