
Paradigm C++
Object Scripting Guide

Version 5.0

Paradigm Systems

The authors of this software make no expressed or implied warranty of any kind with regard to this software
and in no event will be liable for incidental or consequential damages arising from the use of this product. The
software described in this document is furnished under a license and may only be used or copied in accordance
with the terms of the licensing agreement.

The information in this document is subject to change without notice.

Copyright © 1999 Paradigm Systems. All rights reserved.

Paradigm C++™ is a trademark of Paradigm Systems. Other brand and product names are trademarks or
registered trademarks of their respective holders.

Version 5.0

August 9, 1999

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of Paradigm Systems.

Paradigm Systems
3301 Country Club Road

Suite 2214
Endwell, NY 13760

USA

(607)748-5966
(607)748-5968 (FAX)

Sales information: info@devtools.com
Technical support: support@devtools.com

Web: http://www.devtools.com
FTP: ftp://ftp.devtools.com

For prompt attention to your technical questions, contact our technical support team via the Internet at
support@devtools.com. Please note that our 90 days of free technical support is only available to registered
users of Paradigm C++. If you haven't yet done so, take this time to register your products under the Paradigm
C++ Help menu or online at http://www.devtools.com.

Paradigm's SurvivalPak maintenance agreement will give you unlimited free technical support plus automatic
product updates for an additional 12 months. Call (800) 537-5043 to purchase this protection today.

Contents 3

Table of Contents

Chapter 1 Using Object Scripting
About Object Scripting ..11

Object Scripting quick start11
Running script statements interactively................11
Using the print command......................................11
Using the IDE Message dialog.............................12
Writing and loading a script file12
Developing and testing scripts13
Working with scripts ..14

Writing scripts ...14
Loading scripts ..14
Unloading scripts...15
Setting Object Scripting options........................15

Chapter 2 Using cScript
About cScript ...17

The advantages of a late-bound language.............17
Comparing cScript and C++18
cScript comments..19
cScript identifiers..19
cScript and types...19
cScript modules and scope....................................20
cScript statements ...21
cScript operators...21
cScript strings ...21
cScript arrays ..21

Bounded arrays..22
Associative arrays ...22

cScript prototyping ...23
cScript flow control statements23
cScript classes...24
Declaring a class...24
Creating instances of cScript classes....................25
Discovering cScript class and array members......26

About closures..26
cScript event handling..26

Using on handlers ...26
Using attach and detach..27
Controlling access to cScript properties28

Using getters..28
Using setters ..29

cScript pass by reference30
cScript built-in functions31
cScript reserved identifiers31
cScript named arguments......................................31
cScript error handling ...32

cScript access to exported DLL functions33
cScript and OLE2..33

cScript and OLE2 interaction............................33
OLE2 to cScript Interaction...............................33

About the IDE Class Library....................................33
Manipulating the keyboard34
Manipulating the IDE editor34

Chapter 3 cScript Language Reference
cScript keywords and functions................................37
array..37
attach...38
break...38
breakpoint ...38
call ..38
case ...39
class ..39
continue ..41
declare ..41
default...41
delete ..42
detach..42
do..42
export..43
for ...43
from..44
if ...44
import..44
initialized..44
iterate ..45
load...45
module command ...46
module function..46
new ...47
of...47
on..47
onerror ..49
pass ...49
print...49
printf ...49
reload..50
resume...50
return...50
run...50
select...51
selection..51

Paradigm C++ Object Scripting Guide4

strtol ...52
strtoul ...52
super...52
switch ...53
this..54
typeid..55
unload...55
while...55
with...56
yield..57
About cScript operators ...57
cScript precedence of operators58
Binary operators ...58
Arithmetic operators ..59
Assignment operators...60
Bitwise operators ...60
Reference operator ...61
Object-oriented operators...62
Closure (:>) operator..62
Member(.) selector...63
?? operator..63
Comma (,) punctuator and operator64
Conditional (?:) operator..64
Logical operators ...65
Enclosing operators..65
Array subscript operator...66
Parentheses operator ..66
Preprocessor operator ..66
Relational operators ...67
Unary operators..67
Increment and decrement operators67
Plus and minus operators ...68
Multiplicative operators...68
Punctuators...69
Braces ({}) punctuator ...69
Semicolon (;) punctuator..69
Colon (:) punctuator ...69
Equal sign (=) punctuator...70
Lvalues and rvalues..70

lvalues...70
rvalues...70

cScript preprocessor directives71
#define..71
#ifdef, #ifndef, #else, and #endif..............................72
#include..73
#undef...73
#warn..74
Macros with parameters ...74

Chapter 4 cScript Class Reference
BufferOptions class..77

BufferOptions class description............................77
CreateBackup property...78

CursorThroughTabs property...................................78
HorizontalScrollBar property78
InsertMode property...78
LeftGutterWidth property...78
Margin property..78
OverwriteBlocks property ..79
PersistentBlocks property...79
PreserveLineEnds property.......................................79
SyntaxHighlight property...79
TabRack property...79
TokenFileName property..79
UseTabCharacter property..79
VerticalScrollBar property79
Copy method...80
Debugger class ...80
HasProcess property ...81
AddBreakAtCurrent method.....................................81
AddBreakpoint method...81
AddBreakpointFileLine method...............................81
AddWatch method..82
Animate method ...82
Attach method...82
BreakpointOptions method.......................................82
Evaluate method ...83
EvaluateWindow method ...83
FindExecutionPoint method83
Inspect method..83
InstructionStepInto method83
InstructionStepOver method.....................................84
IsRunnable method...84
Load method...84
PauseProgram method ..84
Reset method ..85
Run method...85
RunToAddress method...85
RunToFileLine method...85
StatementStepInto method..86
StatementStepOver method86
TerminateProgram method.......................................86
ToggleBreakpoint method ..86
ViewBreakpoint method...87
ViewCallStack method...87
ViewCPU method...87
ViewCPUFileLine method87
ViewProcess method ..88
ViewWatch method ..88
DebugeeAboutToRun event88
DebugeeCreated event..88
DebugeeStopped event ...89
DebugeeTerminated event ..89
EditBlock class ...89

EditBlock class description...................................90
IsValid property..90

Contents 5

EndingColumn property...90
EndingRow property ..91
Hide property ...91
Size property ..91
StartingColumn property..91
StartingRow property...91
Style property...91
Text property..92
Begin method ...92
Copy method ..92
Cut method...92
Delete method ..93
End method ..93
Extend method ...93
ExtendPageDown method..93
ExtendPageUp method...93
ExtendReal method ..94
ExtendRelative method ..94
Indent method...94
LowerCase method...94
Print method...95
Reset method..95
Restore method...95
Save method...95
SaveToFile method ..95
ToggleCase method..96
UpperCase method...96
EditBuffer class..96

EditBuffer class description..................................97
Block property..98
CurrentDate property ...98
Directory property..98
Drive property..98
Extension property ...98
FileName property ...98
FullName property ...98
InitialDate property ..99
IsModified property ...99
IsPrivate property...99
IsReadOnly property..99
IsValid property ...99
Position property ..99
TopView property..100
ApplyStyle method...100
BlockCreate method...100
Describe method...100
Destroy method ..100
NextBuffer method...100
NextView method ..101
PositionCreate method ...101
Print method...101
PriorBuffer method ..101
Rename method..102

Save method ...102
AttemptToModifyReadOnlyBuffer event102
AttemptToWriteReadOnlyFile event102
HasBeenModified event ...102
Editor class ...103

Editor class description.......................................103
FirstStyle property ..104
Options property...104
SearchOptions property ..104
TopBuffer property...104
TopView property ..104
ApplyStyle method...104
BufferList method...105
BufferOptionsCreate method..................................105
BufferRedo method ..105
BufferUndo method..105
EditBufferCreate method..105
EditOptionsCreate method106
EditStyleCreate method..106
EditWindowCreate method106
GetClipboard method ...106
GetClipboardToken method106
GetWindow method..107
IsFileLoaded method ..107
StyleGetNext method ...107
ViewRedo method ..107
ViewUndo method..107
BufferCreated event..108
MouseBlockCreated event......................................108
MouseLeftDown event ...108
MouseLeftUp event ..108
MouseTipRequested event108
OptionsChanged event..109
OptionsChanging event ..109
ViewActivated event ..109
ViewCreated event ...109
ViewDestroyed event ...110
EditOptions class..110

EditOptions class description..............................110
BackupPath property ..110
BlockIndent property..111
BufferOptions property...111
MirrorPath property..111
OriginalPath property ...111
SyntaxHighlightTypes property111
UseBRIEFCursorShapes property..........................111
UseBRIEFRegularExpression property..................112
EditPosition class ...112

EditPosition class description113
Character property ..113
Column property...113
IsSpecialCharacter property113
IsWhiteSpace property ...113

Paradigm C++ Object Scripting Guide6

IsWordCharacter property......................................113
LastRow property...114
Row property..114
SearchOptions property..114
Align method..114
BackspaceDelete method115
Delete method ..115
DistanceToTab method ..115
GotoLine method ...116
InsertBlock method ..116
InsertCharacter method ..116
InsertFile method ...116
InsertScrap method...116
InsertText method ..117
Move method ...117
MoveBOL method ...117
MoveCursor method...117
Move EOF method...118
MoveEOL method..118
MoveReal method ..118
MoveRelative method ..118
Read method...119
Replace method..119
ReplaceAgain method ..120
Restore method...120
RipText method..120
Save method...121
Search method..121
SearchAgain method ..122
Tab method...122
Search expression definition..................................122
EditStyle class..123

EditStyle class description..................................124
EditMode property ...124
Identifier property ..124
Name property..124
EditView class ...124

EditView class description125
Block property..125
BottomRow property..125
Buffer property...126
Identifier property ..126
IsValid property ...126
IsZoomed property...126
LastEditColumn property.......................................126
LastEditRow property ..126
LeftColumn property..127
Next property ...127
Position property ..127
Prior property ...127
RightColumn property ...127
TopRow property ...127
Window property ...127

Attach method...128
BookmarkGoto method ..128
BookmarkRecord method.......................................128
Center method...129
MoveCursorToView method..................................129
MoveViewToCursor method..................................129
PageDown method..129
PageUp method...129
Paint method...130
Scroll method..130
SetTopLeft method...130
EditWindow class...130

EditWindow class description.............................131
Identifier property...131
IsHidden property...131
IsValid property..132
Next property..132
Prior property..132
Title property..132
View property...132
Activate method..132
Close method..132
Paint method...133
ViewActivate method...133
ViewCreate method ..133
ViewDelete method ..134
ViewExists method...134
ViewSlide method ..135
IDEApplication class..137
Application property...140
Caption property...140
CurrentDirectory property140
CurrentProjectNode property140
DefaultFilePath property ..141
Editor property..141
FullName property..141
Height property...141
IdleTime property...141
IdleTimeout property..141
LoadTime property...142
KeyboardAssignmentFile property.........................142
KeyboardManager property....................................142
Left property...142
ModuleName property..142
Name property ..142
Parent property ...142
RaiseDialogCreatedEvent property143
StatusBar property ..143
Top property ...143
UseCurrentWindowForSourceTracking property ..143
Version property...143
Visible property..143
Width property..144

Contents 7

AddToCredits method..144
CloseWindow method..144
DebugAddBreakpoint method144
DebugAddWatch method.......................................144
DebugAnimate method ..144
DebugAttach method ...145
DebugBreakpointOptions method..........................145
DebugEvaluate method ..145
DebugInspect method...146
DebugInstructionStepInto method146
DebugInstructionStepOver method........................146
DebugLoad method..146
DebugPauseProcess method...................................147
DebugResetThisProcess method............................147
DebugRun method ...147
DebugRunTo method...147
DebugSourceAtExecutionPoint method147
DebugStatementStepInto method...........................148
DebugStatementStepOver method.........................148
DebugTerminateProcess method............................148
DirectionDialog method...148
DirectoryDialog method...149
DisplayCredits method...149
DoFileOpen method...149
EditBufferList method ...149
EditCopy method ...150
EditCut method ..150
EditPaste method..150
EditRedo method..150
EditSelectAll method ...151
EditUndo method ...151
EndWaitCursor method..151
EnterContextHelpMode method151
ExplandWindow method..151
FileClose method ...152
FileDialog method..152
FileExit method..152
FileNew method...152
FileOpen method..152
FilePrint method...153
FilePrinterSetup method...153
FileSave method...153
FileSaveAll method..153
FileSaveAs method ..154
FileSend method...154
GetRegionBottom method154
GetRegionLeft method...155
GetRegionRight method...155
GetRegionTop method...155
GetWindowState method155
Help method...156
HelpAbout method...156
HelpContents method...156

HelpKeyboard method..156
HelpKeywordSearch method..................................156
HelpUsingHelp method ..157
HelpWindowsAPImethod.......................................157
KeyPressDialog method ...157
ListDialog method ..157
Menu method..158
Message method ...158
MessageCreate method...158
NextWindow method..159
OptionsEnvironment method..................................159
OptionsProject method ...159
OptionsSave method...159
OptionsStyleSheets method....................................160
OptionsTools method ...160
ProjectBuildAll method..160
ProjectCloseProject method160
ProjectCompile method ..161
ProjectGenerateMakefile method...........................161
ProjectMakeAll method..161
ProjectManagerInitialize method161
ProjectNewProject method.....................................162
ProjectNewTarget method......................................162
ProjectNewTarget parameter descriptions162
ProjectOpenProject method....................................163
Quit method..163
SaveMessages method..163
ScriptCommands method163
ScriptCompileFile method......................................163
ScriptModules method..164
ScriptRun method...164
ScriptRunFile method...164
SearchBrowseSymbol method................................164
SearchFind method...165
SearchLocateSymbol method.................................165
SearchNextMessage method...................................165
SearchPreviousMessage method165
SearchReplace method ...166
SearchSearchAgain method....................................166
SetRegion method...166
SetWindowState method ..167
SimpleDialog method...167
SpeedMenu method ..167
StartWaitCursor method...167
StatusBarDialog method...168
Tool method..168
Undo method ..168
ViewActivate method...168
ViewBreakpoint method...169
ViewCallStack method...169
ViewClasses method...169
ViewCPU method...169
ViewGlobals method ..170

Paradigm C++ Object Scripting Guide8

ViewMessage method ..170
ViewProcess method..170
ViewSlide method..170
ViewProject method...171
ViewWatch method..171
WindowArrangeIcons method171
WindowCascade method..171
WindowCloseAll method.......................................172
WindowMinimizeAll method172
WindowRestoreAll method....................................172
WindowTileHorizontal method172
WindowTileVertical method..................................173
YesNoDialog method...173
BuildComplete event..173
BuildStarted event ..173
DialogCreated event...174
Exiting event ..174
HelpRequested event..174
Idle event..174
KeyboardAssignmentsChanging event175
KeyboardAssignmentsChanged event....................175
MakeComplete event ...175
MakeStarted event..175
ProjectClosed event..176
ProjectOpened event ..176
SecondElapsed event..176
Started event...176
SubsystemActivated event177
TransferOutputExists event....................................177
TranslateComplete event..177
KeyboardManager class...179
AreKeysWaiting property......................................179
CurrentPlayback property179
CurrentRecord property ...179
KeyboardFlags property...180
KeysProcessed property...180
LastKeyProcessed property....................................180
Recording property...180
ScriptAbortKey property..180
CodeToKey method ...181
Flush method..181
GetKeyboard method ...181
KeyToCode method ...182
PausePlayback method...182
Playback method ..182
ProcessKeyboardAssignments method182
ProcessPendingKeystrokes method183
Pop method...183
Push method...183
ReadChar method...184
ResumePlayback method184
ResumeRecord method ..184
SendKeys method...184

StartRecord method ..186
StopRecord method ..186
UnassignedKey event ...186
Keyboard class ...187

Keyboard class description187
Assignments property...187
DefaultAssignment property...................................187
Assign method..188
Assign method examples..188
Assign Typeables method.......................................189
Copy method...189
CountAssignments method.....................................189
GetCommand method...189
GetKeySequence method190
HasUniqueMapping method...................................190
Unassign method ..190
ListWindow class ...190
Caption property...191
Count property..191
CurrentIndex property ..191
Data property ..192
Height property...192
Hidden property..192
MultiSelect property...192
Sorted property ...192
Width property..192
Add method ..193
Clear method...193
Close method..193
Execute method ..193
FindString method..193
GetString method..193
Insert method ..194
Remove method..194
Accept event ...194
Cancel event ...194
Closed event ...194
Delete event ..194
KeyPressed event..195
LeftClick event ...195
Move event ...195
RightClick event...195
PopupMenu class..196
Data property ..196
Append method...196
FindString method..196
GetString method..197
Remove method..197
Track method..197
ProjectNode class ...197
ChildNodes property...198
IncludePath property...198
InputName property..198

Contents 9

IsValid property ...198
LibraryPath property..198
Name property..199
OutOfDate property ...199
OutputName property...199
SourcePath property...199
Type property...199
Add method..199
Build method..200
Make method..200
MakePreview method...200
Remove method ...200
Translate method..200
Built event ..201
Made event...201
Translated event ...201
Record class ...201
IsPaused property...202
IsRecording property..202
KeyCount property...202
Name property..202
Append method ..203
GetCommand method ..203
GetKeyCode method..203
Next method...203
ScriptEngine class..204
AppendToLog property..204
DiagnosticMessageMask property.........................204
DiagnosticMessages property205
LogFileName property...205
Logging property..205
ScriptPath property...205
StartupDirectory property205
Debug method ..205
Execute method..206
IsAClass method ..206
IsAFunction method...206
IsAMethod method...207
IsAProperty method ...207
IsLoaded method..207
Load method...207
Modules method...208
Reset method..208
SymbolLoad method ..208
Unload method...208
Loaded event ..209
Unloaded event...209
SearchOptions class ...209
CaseSensitive property...210

FromCursor property..210
GoForward property ...210
PromptOnReplace property....................................210
RegularExpression property...................................210
ReplaceAll property..210
ReplaceText property ...210
SearchReplaceText property...................................211
SearchText property ...211
WholeFile property...211
WordBoundary property...211
Copy method...211
StackFrame class ..212
ArgActual property...212
ArgPadding property ..212
Caller property..213
IsValid property..213
InqType method..213
GetParm method...213
SetParm method..213
String class ...213
Character property ..214
Integer property ..214
IsAlphaNumeric property.......................................214
Length property ..214
Text property ..215
Compress method ...215
Contains method...215
Index method ..216
Lower method...216
SubString method ...216
Trim method ...216
Upper method ...216
TransferOutput class...216
MessageId property ..217
Provider property..217
ReadLine method..218
TimeStamp class...218
Day property...218
Hour property ...218
Hundredth property...219
Millisecond property ..219
Minute property ..219
Month property...219
Second property..219
Year property..219
Compare method...220
DayName method...220
MonthName method...220
Index...221

Paradigm C++ Object Scripting Guide10

Chapter 1, Using Object Scripting 11

C h a p t e r
1

Using Object Scripting

About Object Scripting

With Object Scripting, you can customize Paradigm C++ using built-in classes and a
C++-like scripting language called cScript. Almost all elements of the Paradigm C++
Integrated Development Environment (IDE) are represented in the IDE scripting
classes. Through an object called IDEApplication which is instantiated when Paradigm
C++ first starts up, you can access most parts of the IDE, such as the editor, the
debugger, keyboard, and the project manager, and change them to suit you.

Object Scripting quick start

The following topics give you some practical tips to help you start writing and running
scripts:

l Running script statements interactively
l Writing and loading a script file
l Developing and testing scripts

For more detailed information on loading and unloading scripts and setting Scripting
environment options, see "Working with scripts" on page 14.

Running script statements interactively

The simplest way to see the results of your script statements is to enter them
interactively, one at a time in the Script Command window.

 1. Choose Script | Run. A text entry box opens at the bottom of the screen.
 2. Enter the complete syntax of the command you want to run and press Enter.

The following two examples show how to enter statements interactively:

l Using the print command
l Using the IDE Message dialog

Using the print command: a simple command entry example

To run a simple Hello script that uses the print command,

 1. Choose View | Messages and click the Script tab to open the Message window's
Script page, which is where the output of all print statements goes.
If you want to start with a clear page, you can delete the messages generated by the
IDE startup by right clicking in the Script page and choosing Delete All from the
popup menu.

 2. Choose Options | Environment | Scripting and click Diagnostic Messages so the
script processor will send all scripting messages to the Script page (in case you
make an error entering a statement).

 3. Choose Script | Run and enter the following statement:

Paradigm C++ Object Scripting Guide12

'print 'Hi';

 4. Press Enter.
If you then click the Message window and scroll to the end, you see Hi.

Using the IDE Message dialog: a simple command entry example

To display output in a dialog box, the IDE object, an instantiation of the standard
IDEApplication class (one of the classes that provide access to IDE functionality),
provides a Message method that does just that. You can use the Script Command
window as follows:

 1. Choose View | Messages and click the Script tab to open the Message window's
Script page, which is where the output of all print statements goes.
If you want to start with a clear page, you can delete the messages generated by the
IDE startup by right clicking in the Script page and choosing Delete All from the
popup menu.

 2. Choose Options | Environment | Scripting and click Diagnostic Messages so the
script processor will send scripting error messages to the Script page (in case you
make an error entering a statement).

 3. Choose Script | Run and enter the following statement:
IDE.Message('Hello World');

 4. Press Enter.
You see Hello World appear in a message window. As with the print example, if
you made an error entering the statement, error messages appear in the Script page of
the Message window.

The reason you can simply use the IDE object has to do with the way scripts are loaded
during Paradigm C++ integrated development environment (IDE) initialization. On
startup, PCW loads a script called STARTUP.SPP that, among other things, instantiates
an instance of IDEApplication and assigns it to the global variable IDE.

Writing and loading a script file

Typically you write a script in an editor, like the IDE editor, and save it to a file with an
.SPP extension. You then load and run the script file by entering its name in the Script
Command window. The following instructions show you how to write and run a
program that displays Hello World in a message window:

 1. Choose Options | Environment | Scripting and add your script directory path to the
Script Path so the IDE can find your scripts. For example, if your path already
contains .;C:\PC5\SCRIPT, it would look like this after you add a directory called
C:\MYSCRPTS:
.;C:\PC5\SCRIPT;C:\MYSCRPTS

Be sure not to insert any spaces before your path name. Doing so will stop the
search at the previous path.

 2. While you're on the Scripting options page, click Diagnostic Messages so the script
processor will send scripting error messages and print statement output to the Script
page.

 3. Press Enter to exit the environment settings dialog.
 4. Choose View | Messages and click the Script tab to open the Message window's

Script page, then scroll to the end of the window.

+

Chapter 1, Using Object Scripting 13

If you want to start with a clear page, you can delete the messages generated by the
IDE startup by right clicking in the Script page and choosing Delete All from the
popup menu.

 5. Choose File | New | Text Edit to open a new file in the IDE editor, then enter the
following script:
import IDE; //Use the IDE object and any of its methods
hello()
{
 IDE.Message ('Hello World');
}

 6. Choose File | Save and save the file with an .SPP extension in a directory of your
choice (for example, C:\MYSCRPTS\HELLO.SPP).

 7. Choose Script | Run File to compile and run the script.
Any statements that aren't in a function or other block will simply execute the first time
you load the program. If you have a function called_init(), that function will also run
when you load the program. If you have function with the same name as the file, that
will be the default function that runs when you load the program after any _init()
function runs.

When you load the script HELLO.SPP for the first time, it displays Hello World in the
message window and then stays in memory. If you subsequently choose hello from the
Script | Commands window, the script processor calls the function hello(), which
displays Hello World in the message window.

Developing and testing scripts

As described in steps 1-4 of "Writing and loading a script file" on page 12, before you
start writing scripts, you should set your scripting environment options to add your
script directory to the script search path and to output messages to the Messages
window. Then open the Messages window's Script page. Additionally, make sure that
the Scripting option Create Token Files is not checked. (It should be off by default.)

While you're developing a script in an edit window, you can,

l Test single statements or short lists of statements in the Script Command window,
as described in Running script statements interactively.

l Compile and run an .SPP file that is the active editor file by choosing Script | Run
File.

If there are syntax errors in the script, error messages are displayed in the Script page of
the Messages window. If your script doesn’t run when you try to load it or you hear
beeping, click the Messages window and scroll to the end of the Script page to see what
happened.

After you get a script working and you save it to a file, you can,

l Load existing script files by choosing Script | Modules, selecting the module you
want to run, and clicking Load. All loaded modules and all modules on your script
path are listed in the Modules window. If you want to load an already loaded script
again, unload it first (Choose Script | Module and click Unload.)

l Run a loaded script has either an _init() function or a function with the same name
as the script file by choosing the function name from the list of commands. (If it has
_init() function, _init will be one of the commands in the list window.)

+

Paradigm C++ Object Scripting Guide14

Working with scripts

The following topics provide details about working with scripts, such as different
methods of loading and unloading them, what Paradigm C++ does when it loads a script
file, and what all the options mean on the Scripting dialog page (View | Environment |
Scripting).

Writing scripts
Scripts are simply ASCII files. You can write a script in the IDE editor or another
editor, then save it as an SPP (with an .SPP extension). Header files for scripts typically
have the extension .H.

Loading scripts
When you load a script, it also runs. If the script affects the display (for example, it
contains print statements), you see something happen on screen immediately. If you
define new behavior for the IDE, you see that behavior when you use that part of the
IDE. The script remains loaded until you unload it.

If you're developing and testing scripts, instead of loading scripts, use the Script | Run
File command.

You can load a script in any of the following ways:

l Use the Script | Module dialog to choose and load a script file.
l Open the script in an edit window and choose Script | Run File (useful if you want

to change the script).
l Specify a script on the PCW command line with the -s switch. It is processed after

the complete processing of scripts specified in the Startup Scripts entry on the
Scripting dialog page (Options | Environment | Scripting). Simple script names
require no quotation marks. If you include script parameters, put the parameters in
parentheses. To pass string parameters, enclose the strings in backslash-quotation
combinations. To start multiple scripts, use the -s parameter for each script.

Examples
pcw -sScript1 -sScript2 -sScript3(Param1, Param2)
pcw -sMyScript(\"string\", \"parameters\")

Pro The script won't be affected whenever you update to a new version of
Paradigm C++.

Con To start Paradigm C++ with the script, either you have to have an icon
for Paradigm C++ that uses this command line or you have to remember
to type it each time.

l Enter the name of the script file in the Startup Scripts field of the Scripting dialog
page (Options | Environment | Scripting). For example, enter test. You can specify
multiple scripts here separated with spaces. For example,
test MyScript bar

Pro Since the script names are stored in the configuration file, they can be
shared across multiple PCW users.

Con You have to reenter the script names every time you install a new
version of Paradigm C++.

l Modify the source code of the STARTUP.SPP file (or any of the files that it loads.)

Chapter 1, Using Object Scripting 15

Pro Regardless of where you run the script, you get the same results.

Con When you update to a new version of Paradigm C++, you have to redo
the changes to STARTUP.SPP.

By convention, the source files for scripts have the extension .SPP. When you load a
script for the first time, it is compiled into an interpreted tokenized format called pcode.
By default, a tokenized file is created that has the same name and the extension .SPX in
the same directory as the script file.

After a script has been successfully loaded, it is scanned for the existence of two
macros. One is named _init(), and the other is a macro with the same name as the script
file just loaded. If these macros exist, they will be automatically called, _init first, then
the other. If a series of scripts are loaded at the same time (on startup or from the
command line), first all the _init()s are processed (left to right), then the named macros
are processed.

Unloading scripts
Scripts are not unloaded automatically. To unload a script, choose Script | Module, then
in the dialog box choose the script name and click Unload.

Setting Object Scripting options
The Scripting dialog (Options | Environment | Scripting) provides control over the script
environment. The following table describes the choices on this dialog:

Option Description

Stop at breakpoint If the keyword breakpoint appears in the script, stop the script when it is
encountered and load the script debugger.

Diagnostic Messages Specifies whether or not to display all script processor messages in the IDE
Message window's Script page (View | Messages | Script). This option by
default is off.

Script path Describes the path to search when loading a script file. During a load, every
entry on the path will be searched for a file with the .SPX extension. If that fails,
the same directories will be searched a second time for files with the .SPP
extension. Starting the path with .; causes the current directory to be searched
first.

Startup Scripts Specifies the script files to load and execute as part of the IDE startup
procedure. (Paradigm C++ always tries to load STARTUP.SPP from the
SCRIPT subdirectory or any path you specify for scripts.) Use spaces to separate
multiple script names. You can specify script parameters by enclosing the script
name and its arguments in quotation marks. For example,
MyStartup DisplayCurProj 'Ascript Param1'

Paradigm C++ Object Scripting Guide16

Chapter 2, Using cScript 17

C h a p t e r
2

Using cScript

About cScript

The cScript language is a late-bound, object-oriented language that supports syntax and
constructs familiar to the C++ developer.

cScript offers C++ programmers a familiar environment for customizing the IDE. It has
many of the same constructs as C++ and on the surface looks and feels like C++. But
under the hood the two languages are very different: They address two separate problem
domains, the early-bound environment versus late-bound, and as a result there are some
major semantic differences.

For more information, choose one of the following topics:

l "The advantages of a late-bound language" on page 17
l "cScript and types" on page 19
l "Comparing cScript and C++ on page 18

The advantages of a late-bound language

cScript is a late-bound, object-oriented language, which is roughly analogous to being
an interpreted language. This gives cScript programs more flexibility than early-bound
programs, such as those written in C++. In C++, everything about a program is known
at compile time. The types of the variables, the return types and number of parameters
to functions, the classes that will be used as well as all their properties and behaviors are
all known when the program is compiled.

cScript is very different. While the syntax looks very similar to C++, you cannot declare
a variable's type at compile time. Variables are generic and can hold any type of data
needed at run-time. In fact, the same variable can hold different types of data as the
program executes.

Just as in C++, you create classes with properties and methods and create objects which
are instances of those classes. But in cScript, you are free to override the methods for a
given object (not the class, just the object itself) at run-time with a new implementation
of the method or a method "borrowed" from another object.

This means that an object of one class can use the methods of an object of another class
without having to know anything about the second object at compile time. Existing
objects can have their functionality extended without the need for the source code to the
object's class, and without recompiling.

The benefits of late-binding
Late-binding provide important practical benefits. Let's say that you want to create a
program to extend the functionality of the Paradigm C++ IDE. For example, you want
to create a script that automatically saves changed source files to a central repository on
the network as well as in your project directory. You want to add this functionality to
the IDE and have it behave like a built-in feature.

Paradigm C++ Object Scripting Guide18

The Paradigm C++ IDE is represented by a cScript object called IDE of the cScript
class IDEApplication. If the object IDE was instead created from a C++ class, you
would have to alter that C++ class and add your repository methods to it directly,
through multiple inheritance, function pointers, or through some other mechanism.
Then you would need to recompile the source for the class to create the extended object
IDE. In cScript, you do not need to touch the definition of class IDEApplication at all.
You can use cScript to attach your repository methods to the IDE object at run-time.
There are no changes to the IDEApplication class and no recompilation is necessary.

So late-binding means that you can alter and extend the behavior of objects without
having to know the details of how they are implemented, without having access to the
source code, and without having to recompile.

Comparing cScript and C++

cScript differs from C++ in the following ways:

l All class members are public. There is no way to make members private or
protected as part of their declaration. You can use on statements to make members
inaccessible.

l cScript programs have no main() or WinMain() function.
l Globally scoped statements are allowed and will be executed when the script is run.
l Executable statements are allowed within a class definition, and in conjunction with

optional initialization arguments passed when the class is instantiated, constitute the
class's constructor. There is no constructor function per se in cScript.

l The implementation of a class's methods are defined within the class.
l The definition (not just the declaration) of a member function must always occur in

the class declaration.
l Arrays are objects in cScript. When deallocating an array with the delete command,

the square brackets "[]" are not needed.
l Functions may have varying numbers of parameters. cScript truncates or pads

argument lists as necessary.
l Compound logical expressions do not short circuit. For example, in the expression

if(TRUE || Foo())..., the function Foo() will always be called even though the
constant TRUE insures that the expression will always evaluate to true.

l cScript does not have the following C++ features (this is not a complete list):
l type checking (but there are type conversions with some operations)
l type casting
l multiple inheritance
l C++-style exceptions
l class constructor functions
l function overloading
l character arrays (cScript directly supports strings)
l default arguments to functions
l templates
l default parameters in method declarations
l pointers
l direct memory access
l function declarations that support default parameters

Chapter 2, Using cScript 19

l enums
l unions
l structs or typedefs
l bitfields
l operator overloading
l const keyword (except in DLL imports)
l static keyword
l global scope resolution. You can access globally scoped variables, using the

module function.

l The #if preprocessor directive

l The following operators: -> * ->* .*

cScript comments

cScript supports C++ comment syntax, including:
// This is a comment to the end of the physical line
/* This is a comment to the closing */

Nested comments are permitted in cScript.

cScript identifiers

Identifier names are made up of letters, digits and underscores (_). The first character of
an identifier name cannot be a digit. Identifier names can be up to 64 characters in
length. cScript is case-sensitive. Therefore foo, Foo, and FOO are three different
identifiers. Keywords, operators, and intrinsic function names are also case-sensitive.

cScript and types

cScript is not an explicitly typed language and does not allow you to declare variables
with C++ base types. When the parser encounters an unknown identifier, it makes it a
new variable (unless the identifier is immediately followed by an open parenthesis,
which might indicate it's a function). New variables created this way are local to the
current scope.

The only declarators you can use are declare , import, and export, which are not types
but declarators that indicate a new variable. "cScript modules and scope", page 20
discusses declare, import, and export.

Identifiers do have types, but the type of an identifier is determined by its value. For
example, x in the following code is an integer because it is assigned an integer:

declare x = 25;

x can become any other cScript native type, depending on what is assigned to it. In the
following example, x is of type IDEApplication because an object of that class is
assigned to it:

declare MyIDE = new IDEApplication;
x = MyIDE;

Use the intrinsic function typeid to determine the type of an identifier.

Paradigm C++ Object Scripting Guide20

Types also come into play when you use operators with variables of different types, the
simple conversion rule with binary operators (such as + and /) is that the variable on the
left determines the type of the expression. For example,

declare x = 4;
declare y = 4.0;
print x/3; // output is 1
print y/3; // output is 1.333333

The rule becomes more complicated with conversions between strings and numbers
because cScript does some interpretation. When converting from a number to a string,
cScript represents digits as numeric strings (3 becomes "3"). When converting from a
string to a number, the string is converted to a number if the string can be interpreted as
a number. If the string evaluates to anything but a number, it is converted to zero ("33"
becomes 33, "33abc" also becomes 33, but "abc33" becomes 0).

If an object is converted to a string, it becomes the string "[OBJECT]". For example,
declare a = new IDEApplication; // create a new
 // IDEApplication object
declare b = "Hello"; // create a new string variable
 // "add" the object to the string,
 // converting the object to a
 // string
declare c = b + a;
print c; // prints "Hello[OBJECT]"

cScript modules and scope

A cScript source file (an .SPP file) is a module. A variable declared or used for the first
time at the module level is global to that module, and a variable declared or used for the
first time inside a block is local to that block.

Because you don't have to declare variables as you do in C++, it's easy to mistakenly
use a global variable in a function or class when you intend it to be local. It's safest to
use declare with variables that you intend to be local. For example,

declare X = 2; // Module scope X
declare Y = 4; // Module scope Y

Func1(X){ // Parameter (local variable) X
 Y = "hello"; // modifies global Y.
}
Func2(X){ // Parameter (local variable) X
 declare Y = "hello"; // New local variable Y created
 // and set to "hello".
}

Variables created at the module level (not in a function, method, class, control structure,
or block) are global variables of the module. They are not normally accessible to other
modules. To access a variable defined in module A from module B, three things must
occur:

l Both Module A and Module B must be loaded.
l The variable must be declared export in Module A, at module scope.
l Module B must contain an import statement for the variable, at module scope.

Example

Chapter 2, Using cScript 21

Module A
 declare varOne; //A global variable accessible only in Module A.
 export varTwo; //A variable accessible outside Module A.

Module B
 import varOne; //Trying to link with exported varOne from
 //another module (not varOne in Module A)
 import varTwo; //Trying to link with varTwo in Module A.

 varOne = 33; //Causes the run-time warning "Cannot locate
 //external variable varOne".
 varTwo = 33; //Changes the value of varTwo in Module A to
 //33.

cScript statements

As in C++, statements must terminate with a semicolon. You can group multiple
statements by surrounding them with braces. Variables declared within braces are local
to those braces and go out of scope when the closing brace is reached. You can chain
expressions with the comma operator.

cScript operators

The standard C operators are evaluated using the same precedence rules as in C.
Operations may be grouped by using parentheses. The operators supported by cScript
are in the Precedence of Operators.

Strings may be concatenated with + and +=. As in C++, you can use the colon (:) to
derive a new class from an existing class. There is a new operator in cScript that defines
a closure, the :> operator. You can use the operator ?? to test for elements of classes and
arrays.

cScript strings

cScript strings (note the lowercase "s") work much the same as C++ strings. A string is
a series of characters delimited by quotation marks. In cScript, a string's length is
limited to 4096 bytes. cScript automatically keeps track of the ends of strings;
appending '\0' (NULL) is unnecessary.

cScript recognizes many C++ formatting characters within strings such as new line (\n)
and horizontal tab (\t).

Besides the alphanumeric and other printable characters, you can designate hexadecimal
and octal escape sequences much as you can in C++. These escape sequences are
interpreted as ASCII characters, allowing you to use characters outside the printable
range (ASCII decimal 20-126).

The format of a hexadecimal escape sequence is \x<hexnum>, where <hexnum> is up
to 2 hexadecimal digits (0-F). For example, the string "R3" can be written as "\x523" or
"\x52\x33".

Octals are a backslash followed by up to three octal digits (\ooo). For example, "R3" in
octal could be written "\1223" or "\122\063".

cScript arrays

cScript supports two types of arrays in cScript, bounded and unbounded (associative).

Paradigm C++ Object Scripting Guide22

l Bounded arrays
l Associative arrays

Bounded arrays
cScript bounded arrays are similar to C++ arrays and are created with a size specifier.
Run-time warnings will occur if you attempt to access a bounded array out of bounds.
Bounded arrays use a zero-based index; that is, the first element of an array is element 0
and the last element is element size - 1.

You can declare a bounded array by using either of the following syntax variations:
x = new array [10];
array x[10];

Access is then as you would expect:
x[0] = 5;
x[1] = "a string";
x[2] = Foo;
x[3] = x[2];

You can also create a bounded array using the following initialization list syntax:
z[] = {"one", "two", x}; //Note the use of braces, {},
 //rather than brackets, [].

In this case, "one", "two", and the value of x are the values in the array, and the array
indexes start at 0 and go to 2. For example,

print z[0]; //Prints one
print z[1]; //Prints two
print z[2]; //Prints the value of x

You cannot initialize variables in an array initialization list: You must initialize them
elsewhere. For example, you cannot define an array as follows:

z = {x=1, y=3, slogan="No more woe"} //Illegal syntax

In this array definition, assignments to x, y, and slogan must be elsewhere in your code.

An attempt to assign values beyond array bounds causes a run-time warning, but it
works. Such an assignment doesn't increase the size of the bounded array to match the
new index, but rather creates an associative array that is attached to the original
bounded array. You can use any value as the new index. For example,

x[15] = "New index"; //Run-time warning,
 //creates new associative array.
x[16] = "Another new index "; //Run-time warning, adds to
 //associative array.
print x[15]; //Prints New index
print x[14]; //Prints UNINITIALIZED (index not in
 //array, so no value is assigned)

You cannot use a negative number to index into an array. Doing so causes a syntax
error.

Associative arrays
You create associative arrays without a size specifier and access them on demand. They
grow as required. Associative arrays are typically sparse and do not perform as well as
bounded arrays.

To create a new associative array, use one of the following syntax variations:

+

Chapter 2, Using cScript 23

z = new array[];
array z[];

Associative arrays can take string as their indexes as well as numbers. Typically, the
index of an associative array element is something that is related to the data the element
holds. For example:

History = new array[];
History["President"] = "Bill Clinton"
History["Vice President"] = "Al Gore"
History[1776] = "U.S. Independence"
History[1789] = "U.S. Constitution"

You also create an associative array when you make assignments beyond the bounds of
a bounded array. See the previous section for more information.

cScript prototyping

Forward referencing for functions and methods is not supported. Because scripts are
interpreted in a single pass at run-time, classes and methods and the methods in them
must be defined before they can be used. There is no function prototype mechanism.
This is because when the parser sees a function call, it needs to know the
implementation at that time, whereas at compile-time, a C++ compiler only needs to be
able to match the name, number of parameters, the types of the parameters and the
return values. It does not really need to know anything internally about the function.

Parameter counting and type conversions are performed at run-time. cScript will pad
(with NULLS) or truncate the argument list as necessary at run-time to ensure that the
correct number of arguments is available on the stack.

cScript flow control statements

The following flow control statements work in cScript as they do in C++:

break continue do

else if for

return while

The behavior of switch is slightly different. Because cScript is not a compiled language,
the expression is checked against each case exactly as if evaluating an if-else if
construct. This means that the cases need not be constants - they may be any expression
(including function calls). It also means that if a default case is desired, it must be the
last case.

Switch example

Paradigm C++ Object Scripting Guide24

switch(someNumber) {
 case 3: //Execution continues to case bar()
 case MyFunc():
 DoSomeStuff();
 // No break. Even if this case executes,
 // the next case is still evaluated.
 case W.Y.Z:
 DoSomethingElse();
 break; // If this case executes, switch ends here.
 case 42:
 DoItAll();
 default:
 // Anything not matching previous cases comes through here
}

cScript classes

cScript supports single inheritance. There is no support for overloaded methods
(member functions). In addition, there is no hiding of members: all properties (member
data) and methods are public and virtual. You can override an instance of a class (an
object) with on and pass, and you can bind objects' events (function calls) together in an
event handling chain using attach. See "cScript event handling" on page 26 for more
information.

All methods must be defined entirely in the class definition. A class definition may be
nested in another class definition. The name of that nested class exists in the scope of
the outer class, and is thus protected from accidental collision with identifier names in
the module and global scopes. You can instantiate a nested class with the following
syntax:

// Class Inner is nested in class Outer
innerObject = new Inner from Outer;

There are two ways to modify the behavior of methods in script classes:

l Derive a new class from the script class, overriding the methods whose behavior
you want to change. Use this technique when you want to provide new behavior for
a collection of objects.

l Override an instance of a class by using an on handler or attach to hook one of the
object's methods. Use this technique when you want to tweak the behavior of a
particular instance of a class.

By the same token, there are two ways to modify the behavior of properties in script
classes:

l Derive a new class from the script class, overriding the properties whose values you
want to change. Use this technique when you want to provide new behavior data
values for a collection of objects.

l Override an instance of a property by using getters and setters. Use this technique
when you want to tweak the behavior of a particular instance of a class.

Declaring a class

There are no C++ -like constructors in cScript. (Defining a method with the same name
as the class, as you do in C++, does not make it a constructor.) Instead, code embedded
in the class declaration that is not part of a method declaration is considered constructor
code. For this reason, constructor arguments must be defined in the class declaration.

Chapter 2, Using cScript 25

Member functions must be defined entirely in the class declaration. You cannot declare
a member function in a class and then define it later in the program.

There are destructors in cScript, and they work as they do in C++. (Defining a method
that starts with a tilde (~) and has the same name as the class makes it a destructor.)
Destructors are called when the object is being destroyed.

For example, the following class is declared without parameters:
class noParams{
 declare aMember;
 declare anotherMember;
 Func1(); // constructor code
 for (y = 1; y < 10; y++) // more constructor code
 print "hello";
 ~noParams(){
 print "A noParams has been destroyed.";
 }
};

The following class is declared with parameters:
class Base(parmOne, parmTwo) {
 declare X = parmOne; // a member variable
 declare Y = parmTwo; // a member variable
 MethodOne() {
 X = X + Y;
 }
 AnotherMethod() {
 }
};

The following class is inherited from the class Base:
// aParm and cParm are passed through to
// Base as parmOne and parmTwo.
class Derived(aParm, bParm, cParm): Base(aParm, cParm) {
 declare Z = bParm;
};

Initialization arguments must be explicitly passed to the base class. They must also be
stated in the derived class parameter list because that is the list referenced when a
derived class object is instantiated.

Creating instances of cScript classes

Objects in script are created in one of two ways (assuming an already defined class
Foo):

x = new Foo();

or
Foo x();

As with any declaration, you can use the declare and export keywords when you create
objects. For example,

declare x = new Foo();
export Foo y();

cScript has automatic garbage collection. When an object goes out of scope, it is
deallocated. Objects can be explicitly deallocated using the delete command. For
example:

+

Paradigm C++ Object Scripting Guide26

declare x = new Foo(); // allocate new object
delete x; // explicitly delete object

Because cScript is untyped, you can destroy an object by assigning it another value. For
example, cScript does not complain when you assign 0 to the object x as follows:

declare x = new MyClass();// create an object of class MyClass
x = 0; // object overwritten and replaced with 0

Discovering cScript class and array members

You can use ?? and iterate to discover the contents of classes and associative arrays.
With ?? you can test individual members to see if they exist or if a certain value appears
in a class or array. With iterate , you can see all members of a class or array.

About closures
Closures provide a means to obtain a reference to a method or property without
invoking it. They provide functionality analogous to function pointers in C++.

Use the closure operator (:>) to bind a class instance (an object) with one of its
methods in a single reference. You typically use the closure operator in on handlers and
attach and detach statements to handle a method call. You can assign a closure to a
variable and use that variable anywhere you would use the closure. An object method
call hooked using an on handler, or attached in an attach statement, need not even exist
in expanded or modified dynamically at run-time without effecting the objects'
underlying class definition. It is important to note where event handlers are defined for
specific object instances, these handlers in no way effect any other existing objects of
that type. Only when handlers are defined within a class definition itself using the this
reference do all objects of that type inherit that event handling behavior.

Closures are powerful features of cScript. You can pass a closure as a function
argument, for example. Since it represents a member of a class instance (an object), it
carries a this pointer for that object with it and has all of the object's context
information.

Another use for closures is to declare arrays of closures to use like arrays of function
pointers, only the functions need not do anything unless they happen to be defined.
Calling an undefined closure is not an error - nothing happens because there's nothing to
call.

cScript event handling
cScript uses an event handling model to override class behavior. Given an instance of a
class, you can modify its behavior by "hooking" a specified method and supplying an
alternative implementation. You can use either an on handler or attach and detach to
accomplish this.

l Using on handlers
l Using attach and detach

Using on handlers

You can use an on handler to hook a method call for an instance of a class and override,
or enhance, its functionality. You need not call the hooked method inside the on
handler: Any code in the on handler will be executed instead of the hooked method. If
you want to invoke the original method, use pass(). If the hooked method returns a

Chapter 2, Using cScript 27

value, that or any other value can be returned by assigning the return value of pass to a
local variable, including a return statement in the event handler.

In the on handler header, you use the closure operator (:>) to bind a class instance (an
object) with a method of the object as a closure reference.

Declare AClass MyObject; // or MyObject = new Aclass;

// Given this instance of class AClass, you can intercept one
// of its methods.

on MyObject:>Method1(parm1){
 // …
 // Programmer may provide some preprocessing here.
 // Programmer may delegate to original implementation
 // or get original return value with pass().

 Declare rv = pass(parm1); // call MyObject.Method1(parm1)

 // Programmer may provide some postprocessing here.

 return rv;
}

In order to be bound to an existing object method, the number of parameters in the on
handler definition must match the hooked method. Once invoked, however, pass() will
call the hooked event regardless of how many arguments it passes. As with all function
calls, cScript will ensure that the proper number of arguments are passed, truncating or
padding as needed.

While inside an on handler, there are a few things to keep in mind:

l You aren't actually in a method of the object. Simple function calls resolve to their
global counterparts, not to the object's methods. If you want to call the method bar()
from the Method1() on handler, you must explicitly denote the object. For example,
on MyObject:>Method1(){
 MyObject.bar();
 }

l Another way to explicitly denote a method of this object is to use the shorthand dot
notation, which relies on the fact that, in an on handler, the dot is a shortcut for the
controlling object. For example (given an object MyObject that has methods
Method1() and bar()),
on MyObject:>Method1(){
 .bar();
}

Using attach and detach

An on handler is not dynamic, but stays in effect once established. If you want to make
dynamic changes to class instances, you can set up dynamic on handlers using the
closure operator with attach and detach. Attached closures are used to set up a linkage
between any member (method or property) of an instance of one class with any member
from an instance of another class.

Example

+

Paradigm C++ Object Scripting Guide28

x = new Foo(); // Create an instance of Foo called x
 // and assume Color() is a method.
x.Color(); // Call x.Color().
y = new Bar(); // Create an instance of Bar called y
 // and assume Notify() is a method.
y.Notify(); // Call y.Notify().
attach y:>Notify to x:>Color; // When x.Color() is called,
 // instead call y.Notify().
x.Color(); // Call y.Notify().

// NOTE: In y.Notify() a pass() will
// now delegate back to x.Color().

detach y:>Notify from x:>Color; // unlink the two objects
x.Color(); // Call x.Color().

Controlling access to cScript properties

You can use on handlers to control what happens when users get (read) or set (write)
the values of properties. These two types of on statements are called getters and setters.
This feature allows you to execute some code when a property is accessed instead of
having to implement the property as a method.

l Using getters
l Using setters

Using getters
The syntax for a getter is:

on object:>property{
 [optional pre-processing statement(s)]
 return [pass()|SomeValue];
}

Since no value is passed to the handler, no parameter is needed. There must be a
return statement because a getter is always invoked when the object's property is
used in a statement that needs to obtain its current value. When the user accesses the
property (for example, on the right hand side of an assignment operator or as an
argument in a print statement), the on-read property event handler is called and its
statements are executed.

You can use a getter for various purposes, including:

l Restricting access to a property.
l Executing related methods or modifying related properties.
l Performing computations on a value before returning it.

Example

The following getter hides the property Hidden1:

Chapter 2, Using cScript 29

// GETTER.SPP
import IDE; //Import IDE, an IDEApplication object

class MyClass () {
 declare Hidden1 = "Hidden: can't see this one";
 declare Public1 = "Public: can see this one";

// Getter
 on this:>Hidden1 {
 return NULL;
 }
} // End MyClass declaration

getter() {
 declare MyClass myobj;
 IDE.Message (myobj.Hidden1);
 //Prints nothing
 IDE.Message (myobj.Public1);
 //Prints "Public: can see this one"
}

Using setters
The syntax for a setter is

on ClassInstance:>property(parameter){
 [optional pre-processing statement(s)]
 [pass(parameter | SomeValue);]
 [optional post-processing statement(s)]
}

Unlike the getter syntax, parentheses and a parameter are required for the setter to
obtain the value intended to be assigned to the hooked object property. If you want the
handler to be able to set the property (rather than simply block write access to it), there
must be a pass(); statement that sets the property's value. When the user tries to set the
property (for example, when the property is used on the left hand side of the assignment
operator object.property = 1), the on handler code executes.

Some uses for a setter are

l To restrict values of a property to a certain range.
l To limit access to a property (or even make it read-only).
l To execute related methods or modify related properties.
l To perform computations on a value before setting it.
l To convert user-supplied data to an internal format.

Example

In the following example, the setter uses the value set in radius to calculate and set the
values of circumference and area. It then passes the user's value on to radius.

// SETTER.SPP

import IDE; //Import IDE, an IDEApplication object
declare PI = 3.141592654;

class Circle(rad) {
 declare radius = rad;
 declare circumference;
 declare area;

Paradigm C++ Object Scripting Guide30

// Setter
 on this:>radius(x) {
 if (x > 0) {
 circumference = PI * 2 * x;
 area = PI * x * x;
 pass(x);
 }
 else
 IDE.Message("Error: Radius must be greater than zero.");
 }

// Methods

}

 ShowProperties() {
 IDE.Message("radius = " + radius +
 ", circumference = "

 + circumference +
 ", area = " + area);
 }

} // End of Circle class declaration

declare Circle obj(1); //Initialize radius to 1.
obj.ShowProperties();

//Call the IDEApplication method SimpleDialog to prompt
//the user for input and get a value for radius.
Declare radius = IDE.SimpleDialog("Enter a radius", "10");

obj.radius = 0 + radius; //Convert string to integer
obj.ShowProperties();

cScript pass by reference

Parameters passed to methods and functions are passed by value unless explicitly made
to be passed by reference. (Passing by value does not allow changes to the value of the
caller's variable, while passing by reference does.) For example,

PassByValueFunction(aValueParameter){
 aValueParameter = 100; // Value of aValueParameter changed to
 // 100. Caller's value unmodified.
}

PassByReferenceFunction(&aReferenceParameter){
 aReferenceParameter = 100; // Value of aReferenceParameter
} // changed to 100. Caller's value
 // also updated

If you want to pass a variable by value in a pass-by-reference parameter, put it in
parentheses. For example,

x = 10;
PassByReferenceFunction((x));
print x; // Prints 10
PassByReferenceFunction(x);
print x; // Prints 100

Chapter 2, Using cScript 31

cScript built-in functions

The cScript language provides the following built-in functions:

l attach
l call
l detach
l initialized
l load
l module()
l pass
l print
l reload
l run()
l select
l typeid
l unload
l yield

cScript reserved identifiers

cScript reserves identifier names starting with two underscores as internal to the
language. There are additional identifiers reserved for future use. The following
identifiers are reserved and are not available for use in your scripts:

__break Factory
__const false
__cdecl FALSE
__error library
__pascal method
__refc NULL
__rundebug object
__runimmediate property
__stack system
__stdcall true
__warn TRUE
event

cScript named arguments

If you don't know the order of arguments of a function, you can use named arguments
when you call the function and cScript will ensure that the function receives the
arguments in the correct order. To use named arguments, call the function with the
parameters named and indicate the values you want to pass with a colon (:), as follows:
argument1:value1[,argument2:value2[,…]]. You can put these parameters in any order.
For example,

Paradigm C++ Object Scripting Guide32

SetPos (row, column) {
 print "row = ", row, ", column = ", column;
}
SetPos (5,10); //Outputs "row = 5, column = 10"
SetPos (column:5, row:10); //Outputs "row = 10, column =5"

cScript error handling

cScript uses a mechanism similar to on handlers and closures to provide error handling
with proper object cleanup. The technique requires that you create an error handling
class in some module. An error is raised by invoking an exception method on an object
of the error class. That method can do whatever you want (display a message, or
attempt to correct the problem), and then it can return. If it returns, control is returned
to the point at which the caller was invoked, thus exiting the caller immediately. This
effectively terminates the entire call tree. For example, a module providing error
handling contains the following code:

class ErrorHandler{
}
errhand = new ErrorHandler();
onerror FileOpen(terminate) from errhand {
 print "FileOpen must have failed";
 if(terminate)
 return
}

In some other module there is the following code:
import errhand;
OpenIt(){
 //Must be able to find the data file
 TryToOpen("foo.dat", TRUE);

 // Don't have to have a config file
 TryToOpen("foo.cfg", FALSE);
 print "No problem opening anything";
}

TryToOpen(filename, continueORAbortIfFailed) {
 declare fileObject = FileOpen(filename);
 if(fileObject == NULL)
 errhand.FileOpen(continueOrAbortIfFailed);
}
TestIt(){
 OpenIt();
 print ("So far so good");
}

At run-time, when someone calls TestIt(), if the file FOO.DAT cannot be opened,
control will never be returned to OpenIt() or TestIt(), the open on FOO.CFG will never
be attempted, and "So far so good" will never be printed. Instead the message "quitting"
will be printed. If FOO.DAT can be opened, an attempt is made to open FOO.CFG. If
file OpenIt() was called, TestIt() will immediately print "So far so good". If FOO.CFG
can be opened, the message "No problem opening anything" is printed, and control is
passed (as is normally the case) back to TestIt().

Chapter 2, Using cScript 33

cScript access to exported DLL functions

Because all needed functionality is not directly available through the language or
exposed by an object in the system, cScript allows you to access a function in a DLL
directly through script by using code similar to the following:

// expose DLL entrypoints
import "foo.dll" {
 int __pascal FooFunc(short, char, unsigned, long);
 void DoIt();
}
// directly access the DLL calls
if (FooFunc(1, "hello there",2,3))
 print "FooFunc() succeeded";
else
 DoIt();

This DLL call uses the data type keywords short, char, unsigned, and long. Other data
type keywords available for use in DLL calls are void, int, bool, and const.

cScript supports the calling conventions __cdecl, __pascal, and __stdcall.

cScript and OLE2

cScript to OLE2 interaction
If an automatable object has been exposed in the OLE2 registry, its functionality may
be accessed from cScript by using the special OleObject class. For example,

// Creates an object with all the methods of Microsoft Word BASIC
wordBasic = new OleObject("word.basic");
// Call the Word BASIC function AppInfo() to find out what version
// of Word is installed on the system
print wordBasic.AppInfo(2); // Returns "7.0" for Word version 7.0

OLE2 to cScript Interaction
The IDE registers the automation name ParadigmIDE.Application with the OLE2
registry during initialization. From any automation controller, the IDE's functionality
may be accessed by creating a ParadigmIDE.Application object and using it. For
example, from a Visual dBASE program you could do the following:

ParCppIDE = NEW OleAutoClient("ParadigmIDE.Application")
ParCppIDE.ProjectOpenProject("foo.ide")
IF(ParCppIDE.ProjectBuildAll())
 ParCppIDE.FileSend("success notification")
ELSE
 ParCppIDE.FileSend("failure notification")
ENDIF

About the IDE Class Library

In the Paradigm C++ integrated development environment (IDE), all user commands
are directly mapped to a corresponding script. Every IDE window that uses the
keyboard API has each keystroke mapped to a script. All main menu commands have a
mapping to a script. These scripts are supplied by Paradigm and provide standard
behavior that you can enhance to provide your own custom environment. If you want to
modify the behavior of the IDE, you can write scripts that interact with the exposed IDE
components.

The primary exposed component is an object called IDE. It is an IDEApplication object.

Paradigm C++ Object Scripting Guide34

While the IDE object is an instance of the IDEApplication class, it has capabilities far
beyond those of a normal instantiation of IDEApplication. Many additional properties
and methods have been added to the IDE which greatly increase its power and
flexibility. Since these additional features are implemented in cScript, you are free to
use and exploit these additional capabilities. To learn about these capabilities, and the
syntax to use them, study the cScript source code for the IDE in the SCRIPT
subdirectory.

Manipulating the keyboard

You can access keyboard features through a keyboard manager, implemented by the
global KeyboardManager object. The keyboard manager manipulates Keyboard objects
(instantiations of the class Keyboard).

KeyboardManager manages individual component keyboards, such as that of the editor,
the project view, and various other subsystems. This implementation allows support of
BRIEF functionality through script simulation without predefined classes for each of
the individual IDE components. Each component has a defineable keyboard. The
desktop has a keyboard assignment that acts as a global assignment. If a key isn't found
in the local keyboard, the desktop keyboard is searched. If the key assignment isn't in
the desktop's keyboard, the default internal mapping is used.

The keyboard manager operates on the assumption of a set context. A derived class is
used in a call to SetContext() to specify the current object to be used as a local scope.
Since different macros may mean different things to different components, this
mechanism provides a simple, straightforward approach to localizing functionality. For
example, classes A and B both have a member function called Search(). If class A is the
current context, class A's Search() member is called. The same goes with class B. If no
context is set, then a global Search() function is accessed.

Another keyboard manager responsibility is key recording. A call to the StartRecord
and StopRecord members populates a Record object with key sequences. An unlimited
number of Record objects can be named and iterated. Because Record objects are
constructed outside the context of the keyboard manager and may be built
programatically, recordings can be saved to disk and restored, and keyboard sequences
can be simulated through script.

The IDE object contains a ReadOnly member that holds the value of the
KeyboardManager. New script instances may be created; however, the will all
reference the same internal data and changes to one will be reflected in all.

Manipulating the IDE editor

The IDE editor's functionality is accessible at a low enough level that you can mimic in
script the behavior of popular editors (such a BRIEF, Epsilon, vi, and WordStar). The
editor itself is accessed through an object instantiated from the Editor class. Because the
IDE instantiates an Editor object itself, any Editor objects you instantiate points to this
internal IDE object; therefore, modifications in one Editor object's options are reflected
in all Editor objects.

Further editor access is provided through the following classes:

BufferOptions Controls characteristics of the EditBuffer, such as margin, tab rack,
syntax highlighting, and bookmarks.

EditBlock Cut, copy, delete, dimensions, and style.

Chapter 2, Using cScript 35

EditBuffer Access status, save, describe, time/date stamp.

EditOptions Holds characteristics of a global nature, such as the insert/overtype
setting, optimal fill, and scrap settings (how to handle blocks cut or
copied from Editor buffers).

EditPosition Location-dependent operations in a view or buffer: cursor movement,
text rip, search, insert.

EditStyle Provide named styles that override settings in a buffer or the entire
editor.

EditView Access to buffer, visual cursor manipulations, zoom.

EditWindow Pane control, access to views.

Paradigm C++ Object Scripting Guide36

Chapter 3, cScript Language Reference 37

C h a p t e r
3

cScript Language Reference

cScript keywords and functions

Keywords are reserved for use in the cScript language and cannot be used as names of
variables, methods, or classes or as any other identifier names.

array cScript
Use this keyword to declare an array.

Syntax 1
array_var = new array[[size]];
 array array_var[[size]];

size The number of elements in the bounded array. If size is omitted, the array is
associative.

Syntax 2
array array_var[[size]] = {element1[, element2[, ...]] };

size An array created with this syntax always takes the number of elements in the
declaration list. size is ignored.

element1... Creates a bounded array with contents element1, element2, and so on.
Element numbering starts at 0 and continues to size - 1. The number of elements
determines the size of the array and overrides size if it is specified.

Description
In cScript, you can create two types of arrays, bounded and associative. Bounded arrays
are similar to C++ arrays. As in C++, they use a zero-based index. (The first element is
0 and the last is size -1.) Associative arrays are grown as necessary. If you assign more
members to a bounded array than its size, the rest of the array becomes an associative
array. If you create an array with a list of elements (Syntax 2), it is a bounded array and
its size is the number of elements. Arrays can contain data of any cScript type,
including objects and other arrays. An array with other arrays as elements is multi-
dimensional. Elements of the contained arrays are accessed using additional sets of
square brackets as shown in the example below.

Example
// Creates a bounded array of 10 elements
declare myArray;
myArray = new array[10];
myArray[1] = "Hello";
myArray[2] = "World";
print myArray[0], myArray[1]; // prints "Hello World"

// Creates an associative array

Paradigm C++ Object Scripting Guide38

declare myAssocArray;
myAssocArray = new array[] // no size declared
myAssocArray["Element1"] = "One";
myAssocArray["Element2"] = "Two";
print myAssocArray["Element2"] // prints "Two"

// Creates a multidimensional array
declare array multiArray[] = {{1,2,3}, myArray, myAssocArray};
print multiArray[0][2], multiArray[1][0], multiArray[2]["Element2"];
// Prints: 3 Hello Two

attach cScript
Use attach to link a method of an instance of one class to a method of another instance.

Syntax
attach ClassInst1:>method1 to ClassInst2:>method2

break cScript

Use the break statement within do, while , for, and iterate loops, or within a switch
construct, to pass control to the first statement following the innermost enclosing brace.
The implementation of break in cScript is identical to the implementation in C++.

Syntax
break;

breakpoint cScript

Syntax
breakpoint;

Description
Use the breakpoint statement to stop the program and pass control to the script
debugger. If the debugger is not active, breakpoint is ignored.

call cScript

This function directly invokes a closure.

Syntax
call ClosureName(argumentList);

Description
call permits you to directly execute a closure. The closure is invoked using the same
arguments as the method normally uses. There is no method for obtaining a return value
when calling through closures. If the method returns a value, it will be ignored.

Example
// Shows creating a closure and assigning it to a
// variable, then calling the closure directly.

Class MyClass {
 method1(p1, p2)
 {

Chapter 3, cScript Language Reference 39

 print p1, p2;
 }
};

declare MyClass instance;
declare closure = instance:>method1; // declare the closure
call closure("Hello", "world"); // output is Hello world

case cScript

Use the case statement in a switch statement to determine which statements execute.

Syntax
switch (switch_expression){
 case expression :
 [statement1;]
 [statement2;]
 ...
 [break;]
 [default :
 [statement1;]
 [statement2;]
 ...]
}

switch_expression Any valid cScript expression, including a function call. Unlike
C++, the switch_expression is evaluated for each case in a top-down fashion until a
match is found or no more case statements remain.

expression Any valid cScript expression, including a function call.

statement One or more statements to execute.

Description
A case statement is the branch condition of a switch statement. If the value of the
expression following case matches the value of switch_expression, the statements up to
the next break or the end of the switch execute. Note that because cScript is a late-
bound language, expression does not have to be a literal as in C++, nor does the
expression have to be numeric. Other than this difference, case behaves exactly as it
does in C++.

class cScript

Use the class keyword to define a cScript class.

Syntax
class className [(initializationList)]
 [:baseClassName[(init_expression_list)]] { member_list}[;]

className The name of the class. className - any name unique within its
scope

baseClassName The class that this class derives from (optional). of is a synonym
for the : separator preceding this identifier.

initializationList The initial constructor values for the class, if any.

initExpressionList The initialization for the class instance.

Paradigm C++ Object Scripting Guide40

memberList Declarations of the class's properties, methods, and events.

Description
A class declaration in cScript is similar to a class declaration in C++, with a few key
differences.

There are no C++-like constructors in cScript. (Defining a method with the same name
as the class, as you do in C++, doesn't make it a constructor.) Instead, executable
statements embedded in the class declaration that is not part of a method declaration is
considered constructor code. For this reason, initialization parameters must be defined
in the class declaration. The base class is always initialized first, before the child class.

Only one base class can be initialized in a derived class declaration since cScript does
not support multiple inheritance. Where a class is defined as being derived from a base
class and the base class requires initialization values, they must be passed to the base
class through the derived class's declaration. The base class initializer is essentially an
implicit constructor call, and as such, expressions are allowed for its arguments.

When instantiated, the number and type of initializers is not checked (that is, function
overloading is not supported). Arguments are padded and/or truncated the same as they
are with functions.

Methods must be defined entirely in the class declaration. You can't just declare a
member function in a class and then define it later in the program. All properties and
methods of the class are public.

Destructors in cScript work as they do in C++. (Defining a method that starts with a
tilde (~) and has the same name as the class makes it a destructor.) Destructors are
called when the object is being destroyed. Destructors may not have parameters.

Where inheritance is used, the access method for base class members is the same as for
those of the derived class. However, if a derived class member has the same name as
one of the base class, you must use super must be used to clearly specify the reference.

A class cannot be instantiated as part of its declaration as in traditional C structs, so a
semicolon is optional at the end of the declaration.

Example
//The following class is declared without parameters:
class noParams{
 declare aMember;
 declare anotherMember;
 Func1(); // constructor code
 for (y = 1; y < 10; y++) // more constructor code
 print "hello";
 ~noParams(){
 print "A noParams has been destroyed.";
 }
}
// The following class is declared with parameters:
class Base(parmOne, parmTwo){
 declare X = parmOne; // a member variable
 declare Y = parmTwo; // a member variable
 MethodOne(){
 X = X + Y;
 }
 AnotherMethod(){
 }
}

+

Chapter 3, cScript Language Reference 41

// The following class is inherited from the class Base:
// aParm and cParm are passed through to
// Base as parmOne and parmTwo.
class Derived(aParm, bParm, cParm) : Base(aParm, cParm) {
 declare Z = bParm;
}
// example using the Derived class:
declare obj = new Derived(1, 2, 3) // 1&3 passed to Base
 // Base constructed before

continue cScript

Syntax
continue;

Description
Use the continue statement within do, while , for and iterate loops to pass control to
the end of the innermost enclosing brace, allowing the loop to skip intervening
statements and re-evaluate the loop condition immediately. The behavior of continue in
cScript is identical to C++.

declare cScript

Use declare to ensure that a variable is local to the current scope and does not override
a variable from an enclosing scope.

Syntax
declare identifier [optional identifier_syntax][, identifier...];

Description
The scope of a variable is the block in which it is first used in and any blocks nested in
that block. If you are in a nested block, it is possible that a variable you think you are
using for the first time has already been used in the enclosing block. What happens in
that case is that you override the enclosing block's variable value (and possibly its type
as well) with what you mistakenly think is a local variable. To ensure that this side
effect doesn't occur, use declare with any variables you intend to be local to a block.
Although not needed, declare can also be used in conjunction with the export and
import declarators. Although multiple variables, objects, and arrays can be declared in
a single statement, they cannot be mixed in the same statement.

default cScript
This keyword indicates the statements to process in a switch if none of the case
conditions apply. It is optional. If you include a default, it must be the last condition in
the switch. If you do not include a default statement and none of the case conditions
apply, none of the statements in the switch are executed. The behavior of default in
cScript is the same as C++.

Syntax
switch (switch_expression){
 case expression :
 [statement_list;]
 ...
 [break;]

Paradigm C++ Object Scripting Guide42

 [default :
 [statement_list;]
 ...]
}

delete cScript

This command deletes an object or array and causes an object's destructor, if any, to be
called. Deleing an array does not require "[]" in the delete command, as it does in C++.
Unlike C++, cScript has automatic garbage collection. Therefore objects are
automatically deleted when there are no longer any references to them, or when they go
out of scope. Use delete only when you need to explicitly deallocate an object before
the references to that object have been destroyed.

Syntax
delete object_name;

object_name The name of the object to delete.

Description
Unlike C++, cScript has automatic garbage collection. Therefore, objects are
automatically deleted when there are no longer any references to them, or when they go
out of scope. Use delete only when you need to explicitly deallocate an object before
the references to that object have been destroyed.

detach cScript

Use detach to detach a method instance of one class from a method instance of the
same or another class when the two were previously linked using attach.

Syntax
detach ClassInst1:>method1 from ClassInst2:>method2

Description
If you want to make dynamic changes to class instances, you can set up dynamic on
handlers using the closure operator with attach. This technique allows you to supply an
alternative implementation for an instance method. In other words, you can override an
object's method and provide an alternate implementation of that method at run-time,
without affecting the class from which the object was instantiated. The override remains
in effect for the lifetime of the object or until the link is broken using detach.

do cScript

The do statement executes until condition becomes FALSE. Since the condition tests
after each the loop executes statement, the loop executes at least once. The behavior of
do in cScript is the same as C++. break will cause loop execution to be terminated,
while continue will cause the condition to be evaluated immediately without any
intervening statements being executed.

Syntax
do statement while (condition);

Description
statement Executed repeatedly as long as the value of condition remains TRUE.

Chapter 3, cScript Language Reference 43

export cScript
To make it possible to access a variable across modules, it must be declared export in
the module that declares it and import in another module that needs access to it.

Syntax
export variable_name;

Description
Variables created at the module level (not in a function, method, class, or control
structure) are global variables of the module, but are not accessible to any other
modules. To access module scope variables defined in module A from module B, three
things must occur:

l Both module A and module B must be loaded.
l The module scope (global) variable must be declared export in Module A.
l Module B must contain an import statement for the variable.

Example
// Example of export and import
// FILE1.SPP
export myExVar; // export variable for use in other modules
myLocal = 10;
myExVar = 10;

// FILE2.SPP
import myExVar; // import variable exported by another module
print myLocal; // prints [UNINITIALIZED]
print myExVar; // prints 10

for cScript

The for statement executes until condition becomes FALSE. Since the condition tests
before each the loop executes statement, the loop may never execute. The behavior of
for in cScript is the same as C++.

Syntax
for ([initialization] ; [condition] ; [expression]) statement

Description
The cScript for statement works the same as a C++ for statement. The statement is
executed repeatedly until condition is FALSE. Before the first iteration of the loop,
initialization initializes variables for the loop. After each iteration of the loop,
expression executes (most commonly to increment or decrement the initialization
variable in some way). initialization can be an expression or a declaration.

The scope of any identifier declared within the for loop extends to the end of the script
module.

All the expressions are optional. If condition is left out, it is assumed to be always
TRUE. break will cause loop execution to be terminated, while continue will cause the
condition to be evaluated immediately without any intervening statements being
executed.

Paradigm C++ Object Scripting Guide44

from cScript
from is used in a detach statement or when instantiating nested classes.

Syntax 1
innerObject = new Inner from ClassInstance;

Inner The nested class.

ClassInstance Instance of the enclosing class.

Syntax 2
detach ClassInst1:>method1 from ClassInst2:>method2;

if cScript

Syntax 1
if (condition) statement;

Syntax 2
if (condition) statement;
 else statement2;

Description
if works exactly as it does in C++. Use it to implement a conditional statement. The
condition statement must evaluate to TRUE or FALSE.

When condition evaluates to TRUE, statement1 executes. If condition is FALSE,
statement2 executes. statement2 can be another if statement.

The else keyword is optional. If you use nested if statements, any else statement is
associated with the closest preceding if unless you force association with braces.

import cScript
To make it possible to access a variable across modules, the variable must be declared
export in the module that declares it and import in the module that requires access to it.

Syntax
import variableName;

Description
Variables created at the module level (not in a function, method, class, or control
structure) have module scope. They are not accessible to any other modules. To access a
variable defined in module A from module B, three things must occur:

l Both module A and module B must be loaded.
l The variable must be declared export in Module A.
l Module B must contain an import statement for the variable.

initialized cScript
This intrinsic function indicates if a variable has ever been initialized. It provides a
means for determining the state of a variable before using it. Using an uninitialized
variable is rarely dangerous (as in C++), but is also not usually what is intended. It is

Chapter 3, cScript Language Reference 45

particularly useful in determining the state of arguments passed to a function, and in
class instantiation. It can also be useful to prevent divide by zero errors.

Syntax
initialized(x);

Return values
TRUE if the value has ever been initialized, FALSE otherwise.

Example
// Example of initialized
declare x, y; // declares variables,
 // but does not initialize them!
x = 10; // initialized!
print initialized(x); // returns TRUE
print initialized(y); // returns FALSE

iterate cScript

Use an iterate loop to cycle through the members of a class object or an associative
array in first to last order.

Syntax
iterate(outputvar; object[;keyvar]) [statement];

outputvar A variable to hold a copy of the contents of the array or class data
member.

object The array or class object to iterate.

keyvar Variable to hold the index or key into the array, or class object data
member name.

Description
iterate is a loop structure that allows some action to be performed on each member of
the array or property of a class object, such as printing it out. You can use continue and
break to control execution inside the loop. Like a for loop, curly braces ({}) must be
used to enclose multiple loop statements. iterate can also be used to determine the
number of properties in an object or the number of elements in an array.

Examples
To print all the members of associative array z using the variable x,
iterate(x; z) {
 print x;
}

To print all the members and the key values of associative array z using the variable x,
iterate(x; z; k) {
 print "Key = " + k + "Value = " + x;
}

load cScript

This function opens and parses the specified script file which can be subsequently
executed using run(). Although classes and functions defined in the module come into

Paradigm C++ Object Scripting Guide46

existence when the module is loaded, variables declared in the module are not defined
nor are any other statements executed until the script is run(). If there is an _init()
function, the module executes that code first. If there is a function with the same name
as the module, that function is then executed.

Syntax
moduleHandle = load(filename);

filename A string, the module to load.

Return value
A module handle (module object reference) if successful, or NULL if not.

Example
declare myModule;
myModule = load("demo.spp"); // loads module and gets a handle
if (myModule) { // if loaded
 run(myModule); // run the module
unload(myModule); // unloads the module
}

module command cScript

Use module to provide an alternative internal name, or alias, for a module.

Syntax
module ["newname"];

Return value
None

Description
After being parsed, every script file loaded into the IDE is assigned a module name. The
name defaults to the file name without its path or file extension. This name may be used
by other modules to explicitly access functionality in the module. You can alter a
module's name by embedding module "newname"; anywhere in the file.

module function cScript
Use module() to get access to any loaded module.

Syntax
module (["modulename"]);

Return value
A reference to an object, the module handle associated with the named module, or to the
current module if no moduleName is specified. If a moduleName is specified and no
matching module is found, it returns NULL.

Description
Use module() to get access to any loaded module. If you use it with the current module,
moduleName has the same value as this used at the module level.

Chapter 3, cScript Language Reference 47

One use for this function is to access a globally scoped variable from a local scope. For
example,
// Modtest.spp
module "modtest";
declare x = 1;
declare ModRef = this;
local x = 2;
print (module()).x; // prints 1
print ModRef.x; // prints 1

new cScript

Use new to create a new object or array.

Syntax 1
objectname = new className[([initializerList])]
 [from outerClassName[([initializerList])]]

Syntax 2
arrayname = new array [[arraysize]];

Description
Use new as an alternate syntax for creating new class objects or arrays. See class, array,
and declare .

Unlike C++, cScript does not distinguish between static and dynamic memory
allocation. The difference between the standard declaration syntax and that using new is
syntactic only. cScript has automatic garbage collection. Therefore, objects created with
new, or otherwise, are automatically deleted when there are no longer references to
them. Use delete only when you need to explicitly destroy an object before the
references to that object have been destroyed.

of cScript
This keyword is a synonym for the colon (:) separator used when defining a class that
derives from a base class.

Syntax
class classname [(initialization_list)]
 [of baseclass[(initialization_list)]] { member_list }

on cScript

Use on to set up a dynamic object method call event handler, or an object read-property
getter, or a write-property setter.

Syntax 1
on ClassInstance:>{xe ">"}Method([argumentList]){

[pre-processing statement(s)]
[pass([argumentList]);]
[post-processing statement(s)]
[return value;]

}

Paradigm C++ Object Scripting Guide48

This syntax is for an object method call event handler. This form of dynamic event
handling allows processing to occur both before and after the optional call, through
pass(), to the hooked method, and allows alternate values to be both passed to the
hooked method and returned by the event handler.

In order to be bound to an existing object method, the number of parameters in an on
handler definition must match the hooked method. Once invoked, pass() will call the
hooked method regardless of how many arguments it passes. As with all function calls,
cScript will insure that the proper number of arguments are passed, truncating or
padding as needed.

Syntax 2
on ClassInstance:>property{

[pre-processing statement(s)]
return [pass() | value];

}

Where pass() returns the actual value, or, alternatively, any specified value. This
syntax is used for a property getter and would be triggered by any subsequent statement
that references that object's property for read access, such as on the right hand side of an
assignment statement.

Syntax 3
on ClassInstance:>property(parameter){

[pre-processing statement(s)]
[pass(parameter | value);]
[post-processing statement(s)]

}

This syntax is used for a property setter. The setter is triggered when the object's
property is used as an lvalue, such as on the left hand side of an assignment statement.
The value to be assigned to the property is what is passed to the setter as its parameter.
The value passed in pass() sets the value of the property.

Description
Use object method call event handlers (also referred as "on handlers") to create new
methods, or redefine existing methods, on an object of a given class. Unlike attach,
methods overridden with on cannot be detached. To call the original method from
within the overridden version with the same name, invoke the pass() function. If the
global reference variable selection has been set using select, its reference will not be
affected, but is superseded with the with block.

Example
import editor;
// create a new Debugger object called debug
declare debug = new Debugger();

// create a new method called RunToCurrent()
// on the object debug (not the class!)
on debug:>RunToCurrent()
{
 declare fileName = editor.TopBuffer.FullName;
 declare row = editor.TopBuffer.TopView.Position.Row;
 .RunToFileLine(fileName, row);

+

Chapter 3, cScript Language Reference 49

}

onerror cScript
Use onerror to set up an error handler.

Syntax 1
onerror Method(argumentList) from errorHandlerObject
 {[error_handler_code][resumeLabel]}

Syntax 2
onerror errorHandlerObject.>Method(argumentList)
 {[error_handler_code][resumeLabel]}

pass cScript
Use pass in an on handler to invoke the original function that is being overridden.

Syntax
varname = pass([param1[,param2[,...]]);

print cScript

This function prints the expression that is passes to it in the Script tab page of the IDE
Message window. (Choose View | Messages to display the window, then click the
Script tab.) If nothing is passed to it, it does nothing.

Syntax
print [expression_list];

Description
The print function takes any string, expression, or variable as a parameter. To
concatenate expressions, separate them with commas. For example:

print "hello world";
print "the number is", x;
print "My name is", name, "and I'm", years, "years old";

A space is printed for each comma in the expression list:

l An uninitialized value outputs [UNINITIALIZED].
l A variable initialized to NULL outputs [NULL].
l An object outputs [OBJECT].

printf cScript

This function prints the string and integer expressions using the format string to the
Script tab of the IDE message window (using the internal print function).

Syntax
printf(formatString, arg1, arg2, …, arg 10);

Description
This function is similar to the C run-time library function of the same name but only
%c, %d, %i, %s, %u, %x, %X format specifiers are allowed. Optional flags and width
fields are supported. This function is defined in the file MISCSCR.SPP.

Paradigm C++ Object Scripting Guide50

Examples
printf("Port: %05X Data: %04X", port, data) ;
printf("The current Paradigm C++ caption is %s", IDE.Caption) ;

reload cScript
This function does an unload followed by a load. It searches the module list for a
matching module. If found, it removes it and then loads it again. If it doesn't find a
module to unload, it simply loads the module for the first time.

If there are references to global objects in the module when it is reloaded, these
references continue to refer to the older objects. (The module is not destroyed, but is
stored to maintain these references.) Global module values that are not part of an object
are destroyed and then reloaded.

Syntax
reload (moduleName);

Return value
A module handle if successful or NULL if not.

resume cScript

Use resume to exit from the current onerror statement and jump to a labeled location in
the same module.

Syntax
resume label;

return cScript

Use return to exit from the current function, on handler, or module, optionally
returning a value. A module, by default, returns TRUE if successfully run. However, an
explicit return statement can be provided to return a customized return value, or simply
to terminate execution prior to the end of the script.

Syntax
return [expression];

Example
sqr(x)
{
 return (x*x);
}

run cScript

This function loads and runs the module indicated, or simply runs it if it is already
loaded. The module remains loaded until explicitly unloaded using unload().

Syntax
run (moduleName)

moduleName The string or a module handle.

+

Chapter 3, cScript Language Reference 51

Return value
By default, run returns TRUE if successful or FALSE if not. If the module has a global
return statement, run returns that value if the module successfully runs and then
displays a warning that the standard return value for run has been overridden.

select cScript
This command creates a special global variable, selection, that refers to the selected
variable. Because the variable is global to all loaded scripts, only one selection can be
active in an IDE session at a time.

Syntax
select objectName;

Description
You can call select on any variable that is loaded in any script. Doing so sets selection
to reference that variable for all scripts in the session. You then have access to that
object from any script by using the alias selection as the name of the variable. Variables
so selected can also be referenced using the shorthand dot (".") notation. If you call
select and there is already a selection, you override the current selection with your new
one.

selection cScript

This keyword is a special global reference variable created by calling select on a
variable. Because the selection variable is global to all loaded scripts, only one
selection can be active in an IDE session at a time.

Syntax
Selection can be used in the same way as any other variable.

Description
Once the selection has been made, you can use selection in any way that you normally
use the variable it refers to. You can access members of the referenced object with
selection.member. The dot (".") shorthand syntax can also be used instead of selection
outside a with or iterate block or an on handler. In those situations, the dot has local
context and refers to the controlling variable for that block (usually an object).

Example
// SELECT1.SPP
class C0 (p1, p2, p3) {
 declare v1 = p1;
 declare v2 = p2;
 declare v3 = p3;
}
class C1 (p1, p2, p3) {
 declare v1 = p1;
 declare v2 = p2;
 declare v3 = p3;
}
declare C0 obj1("One", "Two", "Three");
declare C1 obj2(1, 2, 3);

// Select the first object

Paradigm C++ Object Scripting Guide52

select obj1;

// Iterate across the selected object
// using selection, then dot notation.
iterate(iterator; selection; key)
 print typeid(selection), "property", key, "=", iterator;

iterate(iterator; . ; key)
 print typeid(.), "property", key, "=", iterator;

// Note that the dot within the with
// block refers to its own local selection.
with(obj2)
 iterate(iterator; . ; key)
 print typeid(.), "property", key, "=", iterator;

// But the global selection has not changed.
print .v1;
print selection.v2;
print ". and selection still refer to", typeid(.);

strtol cScript
This function parses the supplied string in the specified radix and returns an integer
result.

Syntax
strtol(numericString[, radix]);

Description
This function is similar to the C run-time library function of the same name. If no radix
is specified, hexadecimal (base 16) is used. This function is defined in the file
MISCSCR.SPP.

strtoul cScript
This function parses the supplied string in the specified radix and returns an unsigned
result.

Syntax
strtoul(numericString[, radix]);

Description
This function is similar to the C run-time library function of the same name. If no radix
is specified, hexadecimal (base 16) is used. This function is defined in the file
MISCSCR.SPP.

super cScript
This function gives you access to a member of the base class with the same name as a
member of a derived class. Base class members can be directly accessed without using
super where the member name is unique within the class definition.

Syntax
objectName.super[.super...].member

Chapter 3, cScript Language Reference 53

Description
cScript doesn't support function overloading or the :: operator. However, you can use
super to get access to overridden class members as follows:
class C1 {
 declare x = "C1";
 Method1() {
 print x;
 }
 }
class C2:C1 {
 Method1() {
 print "C2 derived from ", x;
 }
}
MyObj = new C2;
MyObj.Method1(); //Prints C2 derived from C1
MyObj.super.Method1(); //Prints C1

If a base class is itself a derived class and you want to access one of its overridden
members, use super.super (and so on for further access up the inheritance hierarchy).
For example,
class C3:C2 {
 Method1() {
 print "C3 derived from C2";
 }
}
MyObj3 = new C3;
MyObj3.Method1(); //Prints C3 derived from C2
MyObj3.super.Method1(); //Prints C2 derived from C1
dMyObj3.super.super.Method1(); //Prints C1
class C3:C2 {
 Method1() {
 print "C3 derived from C2";
 }
}
MyObj3 = new C3;
MyObj3.Method1(); //Prints C3 derived from C2
MyObj3.super.Method1(); //Prints C2 derived from C1
MyObj3.super.super.Method1(); //Prints C1

switch cScript

Use a switch statement to choose one of several alternatives. If switch_expression
matches one of the cases, that case's statements execute. If you don't use break as the
last statement in the case that executes, all the remaining statements (except case or
default) in the switch execute until either a break is encountered or the end of the
switch is reached. If you do use a break that executes, the switch statement ends there.

Syntax
switch (switch_expression){
 case expression :
 [statement1;]
 [statement2;]
 ...
 [break;]
 [default :
 [statement1;]

Paradigm C++ Object Scripting Guide54

 [statement2;]
 ...]
}

switch_expression Any valid cScript expression, including a function call. Unlike
C++, the switch_expression is evaluated for each case in a top-
down fashion until a match is found or no more case statements
remain.

expression Any valid cScript expression, including a function call.

Description
The value of the switch_variable is checked against the value of each case expression
until a match is found or until either default or the end of the switch statement is
reached. As in C++, all statements but case or default following the matching case are
executed until break or the end of the switch statement is reached. If no case
expression matches switch_variable, the statements following default, if any, are
executed.

If you insert a default case, it must be the last case.

this cScript

Description
The cScript this keyword is analogous to the C++ this pointer. It is used to provide an
object reference within a class definition. It is primarily needed to define closures used
in event handlers that will apply to all instances of that class. For example, given the
class definition:
class MyClass {
 method1() {}
 on this:>method1() {}
}

All objects of that class will have a default method call event "on" defined (rather than
on a per-instance basis as when the on handler is defined outside of the class).

Since a script module can actually be treated as an object, this when used outside of a
class definition refers to the current module object. You can use it to create an event
handler for a global function. For example,
DoNothing (){} //Globally scoped function
on this:>DoNothing() { //method of current object
 print "Did something else first";
 pass();
}

Calls to module scope functions for which an event handler has been defined will only
trigger the handler when they are called in the same way as defined in the on handler.
For example:
this.DoNothing(); // Triggers the event handler
DoNothing(); // Does not trigger an event

+

Chapter 3, cScript Language Reference 55

typeid cScript
Use typeid to get run-time identification of variables or the resulting value of
expressions.

Syntax
typeid(name_expn);

name_expn Any legal variable name or expression

Return value
A string representing the type. Possible return values are:

[ARRAY]
classname
[CLOSURE]
[INTEGER]
[NULL]
[REAL]
[STRING]
[UNINITIALIZED]

Description
If the variable or expression value is a built-in type, typeid returns the type in brackets [
]. If it is an object, typeid returns the class name. If the expression is a function or
method, typeid() indicates the type of the return value of the function.

unload cScript

This function searches the module list for a matching module. If found, it removes it,
causing all functions, classes, and local variables that were defined in it to become
invalid. However, if an object within the script is referenced from another active script
(for example where a function in the unloaded script returned a reference to an object),
that object will not be destroyed.

Syntax
unload (moduleName);

moduleName A string or module handle.

Return value
TRUE if successful, otherwise FALSE.

while cScript
Use a while loop to repeat one or more statements until condition is FALSE.

Syntax
while [(condition)] [{statement_list}]

Description
If no condition is specified, the while clause is equivalent to while(TRUE). Because the
test takes place before any statements execute, if condition evaluates to FALSE on the

Paradigm C++ Object Scripting Guide56

first pass, the loop does not execute. break will cause loop execution to be terminated,
while continue will cause the condition to be evaluated immediately without any
intervening statements being executed.

Example
i = 0
while (p[i] < 50) {
 p[i] += 10;
 i += 1;
}

with cScript

Use with to create a shorthand reference to a variable. This is particularly useful when
the variable is a deeply nested object.

Syntax
with (variable){member_list}

Description
For example, assume an object z, which is contained within an object y, which is
contained within an object x. Access to z's members can be cumbersome. For example,
x.y.z.DoSomething();
x.y.z.DoSomethingElse();
x.y.z.NowDoThis();

You can decrease syntactical complexity by assigning x.y.z to another variable. For
example,
p = x.y.z; // Assignment lookup
p.DoSomething(); // 1 lookup
p.DoSomethingElse(); // 1 lookup
p.NowDoThis(); // 1 lookup

If you use with, referencing can be made even simpler:
with (x.y.z){ // 1 lookup
 .DoSomething(); // No lookup
 .DoSomethingElse(); // No lookup
 .NowDoThis(); // No lookup
}

Scoping of with statements in functions is handled as you would expect: the scope is
local to the current function and the correct member gets called. For example,
WFunc1(){
 with (x.y.z){
 .DoSomething();
 }
}

WFunc2(){
 with (MyClass){
 Wfunc1(); // WFunc1 calls x.y.z.DoSomething()
 .Func2(); // This call is to MyClass.Func2()
 }
}

Chapter 3, cScript Language Reference 57

Using the dot operator in a with block refers to the current with assignment. If the
global reference variable selection has been set using select, its reference will not be
affected, but is superseded with the with block.

yield cScript

Syntax
yield;

yield forces cScript to check if the abort (Escape) key has been pressed. Imbedding
yield in a time consuming process, such as a loop that executes many times, allows the
user to be able to break out of the process if desired.

Return value
None

About cScript operators

Operators are tokens that trigger some computation when applied to variables and other
objects in an expression. cScript uses many of the C++ operators. For the most part,
these operators have the same precedence, associativity, and functionality as in C++.

Because cScript has no structs, unions, or references to memory locations, the following
C++ operators do not exist in cScript:

-> * ->* .*

For the same reason, the & operator can be used only to declare function parameters as
pass-by-reference parameters (not to dereference variables).

Additionally, cScript does not provide the following C++ operators:
:: sizeof const_cast reinterpret_cast

cScript does provide two new operators:

:> The closure operator,cScr_closure_op typically used in oncScr_on
statements to override functions

?? The in operator,cScr_QmarkQmark_Op used to test members of arrays
and classes

The following list groups the operators by type (the first item shows all operators
ordered by precedence):

Table of Operator Precedence
Arithmetic
Assignment
Bitwise
Comma
Conditional
Logical
Object-oriented
Enclosing
Preprocessor
Relational

+

Paradigm C++ Object Scripting Guide58

Depending on context, the same operator can have more than one meaning. For
example, the minus (-) can be interpreted as:

l subtraction (x - y)
l a unary negative (-y)

No spaces are allowed in compound operators (such as :>). Spaces change the meaning
of the operator and will generate an error.

cScript precedence of operators
Operators on the same line have equal precedence.

Operators Associativity

(),[] left to right
. left to right
:>, ?? left to right
!, ~, +, -, ++, --, & right to left
*, /, % left to right
+, - left to right
<<, >> left to right
<, <=, >, >= left to right
= =, ! = left to right
& left to right
^ left to right
| left to right
&& left to right
| | left to right
?: left to right
=, *=, /=, %=, +=, -=, &=, ^=, |=, <<=, >>= right to left
, left to right

Binary operators cScript

The binary cScript operators are as follows:
Arithmetic + Binary plus (add)

- Binary minus (subtract)
* Multiply
/ Divide
% Remainder (modulus)

Bitwisec << Shift left
>> Shift right
& Bitwise AND
^ Bitwise XOR (exclusive OR)
| Bitwise inclusive OR

Logical && Logical AND
| | Logical OR

Assignment = Assignment
*= Assign product

+

Chapter 3, cScript Language Reference 59

/= Assign quotient
%= Assign remainder (modulus)
+= Assign sum
-= Assign difference
<<= Assign left shift
 >>= Assign right shift
&= Assign bitwise AND
 ^= Assign bitwise XOR
| = Assign bitwise OR

Relational < Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
= = Equal to
!= Not equal to

Conditional ? : Actually a ternary operator
a ? x : y "if a then x else y"

Comma , Evaluate

Arithmetic operators cScript

The arithmetic operators are
+ - * / % ++ --

Syntax
+ expression
- expression
expression1 + expression2
expression1 - expression2
expression1 * expression2
expression1 / expression2
expression1 % expression2
postfix-expression ++ (postincrement)
++ unary-expression (preincrement)
postfix-expression -- (postdecrement)
-- unary-expression (predecrement)

Description
Use the arithmetic operators to perform mathematical computations. expression1
determines the type of the result when variables of different types are used.

The unary expressions of + and - assign a positive or negative value to expression.

+ (addition), - (subtraction), * (multiplication), and / (division) perform their basic
algebraic arithmetic on all data types.

% (modulus operator) returns the remainder of integer division.

++ (increment) adds one to the value of the expression. Postincrement adds one to the
value of the expression after it evaluates; while preincrement adds one before it
evaluates.

Paradigm C++ Object Scripting Guide60

-- (decrement) subtracts one from the value of the expression. Postdecrement subtracts
one from the value of the expression after it evaluates; while predecrement subtracts
one before it evaluates.

Assignment operators cScript
The assignment operators are
= *= /= %= += -=
<<= >>= &= ^= |=

Syntax
unary-expr assignment-op assignment-expr

Description
The = operator is the only simple assignment operator, the others are compound
assignment operators.

In the expression E1 = E2, E1 must be a modifiable lvalue. The assignment expression
itself is not an lvalue.

The expression
E1 op = E2

has the same effect as
E1 = E1 op E2

except the lvalue E1 is evaluated only once. The expression's value is E1 after the
expression evaluates.

For example, the following two expressions are equivalent:
x += y;
x = x + y;

Any assignment can change the cScript native type of the value on the left of the
assignment, depending on the type of the value assigned. See "cScript and types" on
page 2-19 for more information.

Do not separate compound operators with spaces (+<space>=). Doing so generates
errors.

Bitwise operators cScript
Use bitwise operators to modify individual bits of a number rather than the whole
number.

Syntax
AND-expression & equality-expression
exclusive-OR-expr ^ AND-expression
inclusive-OR-expr exclusive-OR-expression
~expression
shift-expression << additive-expression
shift-expression >> additive-expression

+

Chapter 3, cScript Language Reference 61

Operator What it does

& Bitwise AND: compares two bits and generates a 1 result if both bits are 1; otherwise, it
returns 0.

| Bitwise inclusive OR: compares two bits and generates a 1 result if either or both bits are 1;
otherwise, it returns 0.

^ Bitwise exclusive OR: compares two bits and generates a 1 result if the bits are
complementary; otherwise, it returns 0.

~ Bitwise complement: inverts each bit. (~ is also used to create destructors.)
>> Bitwise shift right: moves the bits to the right, discards the far right bit and assigns the

leftmost bit to 0.
<< Bitwise shift left: moves the bits to the left, it discards the far left bit and assigns the rightmost

bit to 0.

Both operands in a bitwise expression must be of an integral type.

Bit value Result of &, ^, | operations

E1 E2 E1 & E2 E1 ^ E2 E1 | E2
0 0 0 0 0
1 0 0 1 1
0 1 0 1 1
1 1 1 0 1

Reference operator cScript

In cScript as in C++, the default function calling convention is to pass by value. The
reference operator can be applied to parameters in a function definition header to
instead pass the argument by reference.

Syntax
methodName(¶meter[,...]){statementList}

Description
cScript reference types created with the & operator, create aliases for objects and let
you pass arguments to functions by reference.

When a variable x is passed by reference to a function, the matching formal argument in
the function receives an alias for x, (similar to an address pointer in C++). Any changes
to this alias in the function body are reflected in the value of x.

When a variable x is passed by value to a function, the matching formal argument in the
function receives a copy of x. Any changes to this copy within the function body are not
reflected in the value of x itself. Of course, the function can return a value that could be
used later to change x, but the function cannot directly alter a parameter passed by
value.

The reference operator is only valid when used in function definitions as applied to one
or more of its parameters. The address of operator is not supported in cScript as it is in
C++, where it can be used to obtain the address of (create a pointer to) a variable.

+

Paradigm C++ Object Scripting Guide62

& Example
func1 (i){i=5;}
func2 (&Ir){i=5;}
// Ir is a reference variable
 ...
sum = 3;
func1(sum); // sum passed by value
print sum; // Prints 3
func2(sum); // sum passed by reference
print sum; // Prints 5
sum, passed by reference to func2, has its value changed when the
function exits. func1, on the other hand, gets a copy of the sum
argument (passed by value), so sum itself cannot be altered by func1.

Object-oriented operators cScript

The cScript object-oriented operators are:

. Access a class object member.

:> Closure operator (binds a class instance and a method as a single closure
reference.

?? Tests for the existence of a class object property or array index.

In addition, there is a colon (:) punctuator:

: Refers to a base class in a derived class declaration.

Closure (:>) operator cScript
Use the closure operator (:>) in an on handler, an attach statement, or a detach
statement to bind a class instance with a class member as a single closure reference.

Syntax 1 (on handler)
on ClassInstance:>Method{[code_to_replace_method_code]}

Syntax 2 (attach)
attach ClassInst1:>method1 to ClassInst2:>method2;

Syntax 3 (detach)
detach ClassInst1:>method1 from ClassInst2:>method2;

Syntax 4 (getter)
on ClassInstance:>property{
 // your code here
 return [pass()|SomeValue];

Syntax 5 (setter)
on ClassInstance:>property(parm){
 // your code here
 [pass(SomeValue);]
}

Syntax 6 (closure variable)
declare closureVar = classInstance:>methodName;

Chapter 3, cScript Language Reference 63

A closure variable as declared above can subsequently be used wherever a closure is
needed. For example, an alternative to the attach statement (Syntax 2) using closure
variables would be:

declare closureVar1 = classInst1:>method1;
declare closureVar2 = classInst2:>method2;
attach closureVar1 to closureVar2;

:> Example
import scriptEngine;
import IDE;
...
modList = new ListWindow(50, 5, 100, 300, "Module List",
 TRUE, FALSE, loadedModules);

// Hook the Accept event in order to do nothing.
// Default behavior is to put the list away.
on modList:>Accept(){}

Member(.) selector cScript

Use the selector operator (.) to access class members.

Syntax
class-instance.class-member

Description
Suppose that the object s is of class S and m is a property declared in S. The expression:

s.m

represents the property m in s.

Although the precedence of the . operator is the same as C++ in most respects, one
place where it doesn't work as you would expect is in cScript native function calls that
do not use parentheses. For example, print module "MyModule".Data1 does
not print the Data1 member of MyModule. To get this reference to work properly, you
must use parentheses with the module function, as follows:

print module ("MyModule").Data1

Example
class myClass {
 i = 0;
}
s = new myClass();
s.i = 3; // assign 3 to the i property of myClass s

?? operator cScript

You can use ?? (read "in") either to test for the existence of an object property or for an
array index.

Syntax 1
string-expression | "string" ?? objectname |arrayname

+

+

Paradigm C++ Object Scripting Guide64

Syntax 2
integer-expression | integer ?? arrayname

Description
Use a quoted string, or an expression that evaluates to a string, to test for the existence
of an object property or an associative array index. Use an integer, or an integer
expression, to test for the existence of an index value in a numerically indexed array.
For example,
class MyClass {
 declare property1 = 0;
 declare property2 = 1;
}

declare MyClass instance;
if ("property1" ?? instance)
 print "property1 is a property of instance.";

declare array a1[];
a1[0] = "a";
a1["Hello"] = 1;
if (0 ?? a1)
 print "Array a1 has an index 0.";
if ("Hello" ?? a1)
 print "Array a1 has an index \"Hello\".";

Comma (,) punctuator and operator cScript
A comma separates elements in a function argument list. It is also used as an operator in
comma expressions. Mixing the two uses of comma is legal, but you must use
parentheses to distinguish them.

Syntax
expression , assignment-expression

Remarks
The left operand E1 is evaluated as a void expression, then the right operand E2 is
evaluated to give the result and type of the comma expression. By recursion, the
expression:

E1, E2, ..., En

results in the left-to-right evaluation of each Ex, with the value and type of En giving
the result of the whole expression.

To avoid ambiguity with the commas in function argument and initializer lists, use
parentheses. The following example calls func with three arguments: (i, 5, and k).

func(i, (j = 1, j + 4), k);

Conditional (?:) operator cScript
The conditional operator ?: is a ternary operator used as a shorthand for if-else
statements.

Syntax
logical-OR-expr ? expr : conditional-expr

Chapter 3, cScript Language Reference 65

Remarks
This operator allows you to use a shorthand for

if (expression)
 statement1;
else
 statement2;

In the expression E1 ? E2 : E3, E1 evaluates first. If its value is nonzero (TRUE),
then E2 evaluates and E3 is ignored. If E1 evaluates to zero (FALSE), then E3
evaluates and E2 is ignored. The result of the statement is the value of either E2 or E3,
depending upon which evaluates.

?: example
If statement:

if (x < y)
 z = x;
else
 z = y;

Ternary equivalent:
z = (x < y) ? x : y;

Logical operators cScript

Use logical operators to evaluate an expression to TRUE or FALSE.

Syntax
logical-AND-expr && inclusive-OR-expression
logical-OR-expr || logical-AND-expression
! expression

Description

Operator Description

&& Logical AND returns TRUE (1) only if both expressions evaluate to a nonzero value;
otherwise it returns FALSE (0). Unlike C++, if the first expression evaluates to FALSE, the
second expression is still evaluated.

|| Logical OR returns TRUE (1) if either of the expressions evaluates to a nonzero value;
otherwise it returns FALSE (0). Unlike C++, if the first expression evaluates to TRUE, the
second expression is still evaluated.

! Logical negation returns TRUE (1) if the entire expression evaluates to a nonzero value;
otherwise it returns FALSE (0). The expression !E is equivalent to (0 == E).

Enclosing operators cScript

The enclosing operators are parentheses(), braces { }, and brackets), [].

Syntax
(expression-list)
function (arg-expression-list)
array-name [expression]
{statement-list}
compound-statement {statement-list}

Paradigm C++ Object Scripting Guide66

Description

Operator Description

() Use to groups expressions, isolate conditional expressions, or indicate function calls and
function parameters.

[] Use to indicate single and multi-dimensional array subscripts.
{ } Use as the start and end of compound statements and indicate a code block.

Array subscript operator cScript

Syntax
[expression-list]

Brackets ([]) indicate single and multi-dimensional array subscripts. Use brackets to
declare an array or to access individual array components:
declare myArray = new array [10];
myArray[0] = 5;
myArray[1] = "Cheers";
declare array multiArray[] = {myArray};
print multiArray[0][1]; // prints "Cheers"

Parentheses operator cScript
Use parentheses () to

l Group expressions.
l Isolate conditional expressions.
l Indicate function calls and function parameters.

Syntax 1
(expression-list)

Description
This syntax groups expressions or isolates conditional expressions.

Syntax 2
postfix-expression (arg-expression-list)

arg-expression-list A comma-delimited list of expressions of any type representing
the actual (real) function arguments.

Description
This syntax describes a call to the function given by the postfix expression. The value of
the function call expression, if it has a value, is determined by the return statement in
the function definition.

Preprocessor operator cScript
The # (pound sign) indicates a preprocessor directive when it occurs as the first non-
whitespace character on a line. It signifies a compiler action not necessarily associated
with code generation.

Chapter 3, cScript Language Reference 67

Relational operators cScript
Use relational operators test equality or inequality of expressions.

Syntax
equality-expression == relational-expression
equality-expression != relational-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

Description
If the statement evaluates to TRUE it returns a nonzero value; otherwise, it returns
FALSE (0).

Operator Description

= = equal
!= not equal
> greater than
< less than
>= greater than or equal
<= less than or equal

Unary operators cScript

Syntax
unary-operator unary-expression

Remarks
cScript provides the following unary operators:

Operator Description

! Logical negation
++ Increment
~ Bitwise complement
-- Decrement
- Unary minus
+ Unary plus

Increment and decrement operators cScript

The increment and decrement operators are ++ and --. They can be used either to
change the value of the operand expression before it is evaluated (pre) or change the
value of the whole expression after it is evaluated (post). The increment or decrement
value is appropriate to the type of the operand.

Syntax 1 (pre)
postfix-expression ++ (postincrement)
postfix-expression -- (postdecrement)

Paradigm C++ Object Scripting Guide68

Description
The value of the whole expression is the value of the postfix expression before the
increment or decrement is applied. After the postfix expression is evaluated, the
operand is incremented or decremented by 1.

Syntax 2 (post)
++ unary-expression (preincrement)
-- unary-expression (predecrement)

unary-expression The operand, which must be a modifiable lvalue.

Description
The operand is incremented or decremented by 1 before the expression is evaluated.
The value of the whole expression is the incremented or decremented value of the
operand.

Plus and minus operators cScript

The plus (+) and minus (-) operators can operate in either a unary or binary fashion on
any type of variable.

Syntax 1 (Unary)
+ unary-expression
- unary-expression

+ unary-expression Value of the operand after any required integral promotions.

- unary-expression Negative of the value of the operand after any required integral
promotions.

Syntax 2 (Binary)
expression1 + expression2
expression1 - expression2

expression1 This expression determines the type of the result.

expression2 This expression converted if necessary to a type matching expression1,
and then the operation is carried out.

Multiplicative operators cScript

Syntax
multiplicative-expr * unary-expression
multiplicative-expr / unary-expression
multiplicative-expr % unary-expression

Remarks
There are three multiplicative operators:

* (multiplication)
/ (division)
% (modulus or remainder)

The usual type conversions are made on the operands.

Chapter 3, cScript Language Reference 69

(op1 * op2) Product of the two operands
(op1 / op2) Quotient of the two operands (op1 divided by op2)
(op1 % op2) Remainder of the two operands (op1 divided by op2)

For / and %, op2 must be a nonzero value. If op2 is zero, the operation results in an
error. Note that division of a number by a string can result in this divide by zero error.

When op1 is an integer, the quotient must be an integer. If the actual quotient would not
be an integer, the following rules are used to determine its value:

l If op1 and op2 have the same sign, op1 / op2 is the largest integer less than the true
quotient, and op1 % op2 has the sign of op1.

l If op1 and op2 have opposite signs, op1 / op2 is the smallest integer greater than the
true quotient, and op1 % op2 has the sign of op1.

Rounding is always toward zero.

Punctuators cScript
The cScript punctuators (also known as separators) are:

() Parentheses
{ } Braces
, Comma
; Semicolon
: Colon
= Equal sign
Pound sign

Most of these punctuators also function as operators.

Braces ({ }) punctuator cScript

Braces ({ }) indicate the start and end of a compound statement.

Semicolon (;) punctuator

The semicolon (;) is a statement terminator.

Any legal cScript expression (including the empty expression) followed by ; is
interpreted as a statement. The expression is evaluated and its value is discarded. If the
statement has no side effects, cScript can ignore it. Semicolons are often used to create
an empty statement.

Colon (:) punctuator cScript

Use the colon when declaring a child class or a class with a label.

Syntax 1
class childClass:parentClass

Use this version to indicate the parent class when declaring a child class. For an
example of this syntax, see the class keyword.

Syntax 2
case expression:

+

Paradigm C++ Object Scripting Guide70

Use this version to indicate the end of a case expression. For example,
switch (a) {
 case 1:
 print "One";
 break;
 case 2:
 print "Two";
 break;
 default: print "None of the above!";
}

Equal sign (=) punctuator cScript

The equal sign (=) separates variable declarations from initialization lists and
determines the type of the variable.

array x[] = { 1, 2, 3, 4, 5 } ;
x = 5;

In cScript, declarations of any type can appear (with some restrictions) at any point
within the code. In a cScript function argument list, the equal sign indicates the default
value for a parameter:

MyFunc(i = 0){...} //Parameter i has default value of zero

The equal sign is also used as the assignment operator.

Lvalues and rvalues cScript

Lvalues

An lvalue is an identifier or expression that can be accessed as an object and legally
changed in memory. A constant, for example, is not an lvalue. A variable, array
member, or property is an lvalue.

Historically, the l stood for left, meaning that an lvalue could legally stand on the left
(the receiving end) of an assignment statement. Only modifiable lvalues can legally
stand on the left of an assignment statement.

For example, if a and b are variables, then they are both modifiable values and
assignments. The following are legal:

a = 1
b = a + b

rvalues

An rvalue (short for "right value") is an expression that can be assigned to an lvalue. It
is the "right side" of an assignment expression. While an lvalue can also be an rvalue,
the opposite is not the case. For example, the following expression cannot be an lvalue:

a + b

a + b = a is illegal because the expression on the left is not related to an object that
can be accessed and legally changed in memory.

However, a = a + b is legal, because a is a variable (an lvalue) and a + b is an
expression that can be evaluated and assigned to a variable (an rvalue).

Chapter 3, cScript Language Reference 71

cScript preprocessor directives
Preprocessor directives are usually placed at the beginning of your source code, but they
can legally appear at any point in a program. The cScript preprocessor, unlike a C++
preprocessor, supports preprocessor directives in the expansion side of a macro
definition. It detects the following preprocessor directives and parses the tokens
embedded in them:

l #ifndef
l #include
l #undef
l #warn

Any line with a leading # is considered as a preprocessor directive unless the # is part of
a string literal, is in a character constant, or is embedded in a comment. The initial # can
be preceded or followed by one or more spaces (excluding new lines).

#define cScript

Syntax
#define macro_identifier <token_sequence>

Description
The #define directive defines a macro. Macros provide a mechanism for token
replacement with or without a set of formal, function-like parameters. Unlike C++
preprocessors, cScript allows you to continue a line with a backslash (\). You cannot use
cScript keywords as macros.

Each occurrence of macro_identifier in your source code following the #define is
replaced with token_sequence (with some exceptions). Such replacements are known as
macro expansions. The token sequence is sometimes called the body of the macro.

If you use an empty token sequence, the macro identifier is removed wherever it occurs
in the source code.

After each individual macro expansion, the preprocessor scans the newly expanded text
to see if there are further macro identifiers that are subject to replacement (nested
macros).

There are restrictions on macro expansion:

l Any occurrences of the macro identifier found within literal strings, character
constants, or comments in the source code are not expanded.

l A macro is not expanded during its own expansion (so #define A A won't expand
indefinitely).

Example
#define HI "Have a nice day!"
#define empty
#define NIL ""
#define GETSTD #include <stdio.h>

#ifdef, #ifndef, #else, and #endif cScript

Syntax
#ifdef/#ifndef identifier [logical-operator identifier [...]]

Paradigm C++ Object Scripting Guide72

<section-1>
[#else
<final-section>]
#endif
<next-section>

Description
The #ifdef and #ifndef conditional directives let you test whether an identifier is
currently defined or not; that is, whether a previous #define command has been
processed for that identifier and is still in force. You can combine identifiers with
logical operators.

#ifdef tests TRUE for the defined condition; so the line
#ifdef identifier

means that if identifier is defined, include the code follows up to the next #else or
#endif. If identifier is not defined, ignore that code and skip to the next #else or #endif.

#else in this case means that if identifier is not defined, include the code that follows up
to the next #endif.

#ifndef tests TRUE for the not-defined condition; so the line
#ifndef identifier

means that if identifier is not defined, include the code follows up to the next #else or
#endif. If identifier is defined, ignore that code.

#else in this case means that if identifier is defined, include the code that follows up to
the next #endif.

An identifier defined as NULL is considered to be defined.

cScript supports conditional compilation by replacing with blank lines the lines that are
not to be compiled as a result of the directives. All conditional compilation directives
must be completed in the source or include file in which they begin.

In the TRUE case, after section-1 has been preprocessed, control passes to the matching
#endif (which ends this conditional sequence) and continues with next-section. In the
FALSE case, control passes to the next #else line (if any), which is used as an
alternative condition for which the previous test proved false. The #endif ends the
conditional sequence.

The processed section can contain further conditional clauses, nested to any depth; each
#ifdef or #ifndef must be matched with a closing #endif.

The net result of the preceding scenario is that only one section (possibly empty) is
passed on for further processing. The bypassed sections are relevant only for keeping
track of any nested conditionals, so that each #ifdef or #ifndef can be matched with its
correct #endif.

#include cScript

Syntax
#include <file_name>
#include "file_name"
#include macro_identifier

Chapter 3, cScript Language Reference 73

Description
The #include directive pulls other cScript files into the source code. The syntax has
three versions:

l The first and second formats imply that no macro expansion will be attempted; in
other words, file_name is never scanned for macro identifiers. file_name must be a
valid file name with an optional path name and path delimiters.

l For the third version, neither < nor " can appear as the first non-whitespace
character following #include . What must follow the #include is a macro definition
that expands the macro identifier into a valid delimited file name with either of the
<file_name> or "file_name" formats.

The preprocessor removes the #include line and replaces it with the entire text of the
cScript source file at that point in the source code. The source code itself is not changed,
but the compiler processes the enlarged text. The placement of the #include can
therefore influence the scope and duration of any identifiers in the included file.

If you place an explicit path in the file_name, only that directory will be searched.

Unlike the C++ #include , there is no difference between the <file_name> and
"file_name" formats. With both versions, the file is sought first in the current directory
(usually the directory holding the source file being compiled). If the file is not found
there, the search continues in the script directories in the order in which they are defined
(as set up in the Options|Environment|Scripting|Script Path dialog box.) If the file is not
located in any of the default directories, an error message is issued.

Example
This #include statement causes the preprocessor to look for MYINCLUD.H in the
standard include directory.

#include <myinclud.h>

This #include statement causes the preprocessor to look for MYINCLUD.H in the
current directory, then in default directories

#include "myinclud.h"

After expansion, this #include statement causes the preprocessor to look in
C:\PARADIGM\SCRIPT\INCLUDE\MYSTUFF.H. Note that you must use double
backslashes in the #define statement.

#define myinclud "C:\\PARADIGM\\SCRIPT\\INCLUDE\\MYSTUFF.H"
#include myinclud
/* macro expansion */

#undef cScript

Syntax
#undef macro_identifier

Description
#undef detaches any previous token sequence from the macro identifier; the macro
definition is forgotten, and the macro identifier is undefined. No macro expansion
occurs within #undef lines.

The state of being defined or undefined is an important property of an identifier,
regardless of the actual definition. The #ifdefcScr_ifdef and #ifndefcScr_ifdef

Paradigm C++ Object Scripting Guide74

conditional directives, used to test whether any identifier is currently defined or not,
offer a flexible mechanism for controlling many aspects of a compilation.

After a macro identifier is undefined, it can be redefined with #define,cScr_define using
the same or a different token sequence.

Attempting to redefine an already defined macro identifier will result in a warning
unless the new definition is exactly the same token-by-token definition as the existing
one. The preferred strategy where definitions might exist in other header files is as
follows:

#ifndef BLOCK_SIZE
 #define BLOCK_SIZE 512
#endif

The middle line is bypassed if BLOCK_SIZE is currently defined; if BLOCK_SIZE is
not currently defined, the middle line is invoked to define it.

No semicolon (;) is needed to terminate a preprocessor directive. Any character found in
the token sequence, including semicolons, will appear in the macro expansion. The
token sequence terminates at the first non-backslashed new line encountered. Any
sequence of whitespace, including comments in the token sequence, is replaced with a
single-space character.

Example
#define BLOCK_SIZE 512
 .
 .
 .
#undef BLOCK_SIZE
/* use of BLOCK_SIZE now would be an illegal "unknown" identifier */
 .
 .
 .
#define BLOCK_SIZE 128 /* redefinition */

#warn cScript

Syntax
#warn warning_level

Description
The #warn directive sets the warning level. Warning levels range from 0 (suppress all
warnings) to 3 (show all warnings).

For example, the following statement causes all warnings to be shown when the script is
compiled:

#warn 3

Macros with parameters

The following syntax is used to define a macro with parameters:
#define macro_identifier(<arg_list>) token_sequence

Any comma within parentheses in an argument list is treated as part of the argument,
not as an argument delimiter.

Chapter 3, cScript Language Reference 75

There can be no whitespace between the macro identifier and the (. The optional
arg_list is a sequence of identifiers separated by commas, not unlike the argument list
of a C function. Each comma-delimited identifier plays the role of a formal argument or
placeholder.

Such macros are called by writing
macro_identifier<whitespace>(<actual_arg_list>)

in the subsequent source code. The syntax is identical to that of a function call.
However, there are some important semantic differences, side effects, and potential
pitfalls.

The optional actual_arg_list must contain the same number of comma-delimited token
sequences, known as actual arguments, as found in the formal arg_list of the #define
line. There must be an actual argument for each formal argument. An error will be
reported if the number of arguments in the two lists is different.

A macro call results in two sets of replacements. First, the macro identifier and the
parenthesis-enclosed arguments are replaced by the token sequence. Next, any formal
arguments occurring in the token sequence are replaced by the corresponding real
arguments appearing in the actual_arg_list.

As with simple macro definitions, rescanning occurs to detect any embedded macro
identifiers eligible for expansion.

The similarities between function and macro calls can obscure their differences. A
macro call can give rise to unwanted side effects, especially when an actual argument is
evaluated more than once.

Nesting parentheses and commas
The actual_arg_list can contain nested parentheses provided that they are balanced;
also, commas appearing within quotes or parentheses are not treated like argument
delimiters.

Using the backslash (\) for line continuation
A long token sequence can straddle a line by using a backslash (\). The backslash and
the following newline are both stripped to provide the actual token sequence used in
expansions.

+

Paradigm C++ Object Scripting Guide76

Chapter 4, cScript Class Reference 77

C h a p t e r
4

cScript Class Reference
This chapter documents the built-in properties, methods, and events of the pre-defined
cScript classes. The Paradigm C++ IDE is built using instances of these classes. Please
note, however, that the objects which make up the IDE often have a number of
additional properties, methods, and events added to them to make them even more
powerful and flexible. These additional features are implemented in cScript. You are
free to use and exploit these additional capabilities as you work with these objects. To
learn more about these additional features, study the cScript source code and cScript
examples in the SCRIPT subdirectory.

BufferOptions class
This class is one of the editor classes. BufferOptions objects hold data controlling the
characteristics of edit buffers.

Syntax
BufferOptions()

The properties are initializaed during construction to match the global defaults.

Properties
bool CreateBackup Read-write
bool CursorThroughTabs Read-write
bool HorizontalScrollBar Read-write
bool InsertMode Read-write
int LeftGutterWidth Read-write
int Margin Read-write
bool OverwriteBlocks Read-write
bool PersistentBlocks Read-write
bool PreserveLineEnds Read-write
bool SyntaxHighlight Read-write
string TabRack Read-write
string TokenFileName Read-write
bool UseTabCharacter Read-write
bool VerticalScrollBar Read-write

Methods
void Copy(BufferOptions source)

BufferOptions class description

This class holds buffer options settings, such as scroll bars, right margin setting, tab
rack, syntax highlighting, cursor shape, gutter width, block style and tabbing modes.

Paradigm C++ Object Scripting Guide78

An instance of this class exists as a member of the global editor options accessible via
Editor.Options. This class controls the settings of all edit buffers. Any change to this
object changes the settings of all edit buffers.

You can instantiate a member of this class to store buffer options. They are not applied
to any edit buffers until you copy them into Editor.Options, at which point the settings
affect all edit buffers.

For example, you can store in a BufferOptions object a set of options that you want to
apply to a buffer when it is activated (such as tab stops, syntax highlighting, and color).
Applying these values to Editor.Options sets the buffer options for the new buffer and
all other edit buffers as well.

CreateBackup property BufferOptions

This is a read-write property.

Type expected
boolCreateBackup

CursorThroughTabs property BufferOptions
This is a read-write property.

Type expected
bool CursorThroughTabs

HorizontalScrollBar property BufferOptions

Set this property to TRUE if a horizontal scroll bar is to be associated with the buffer or
FALSE if it is not. It is a read-write property.

Type expected
bool HorizontalScrollBar

InsertMode property BufferOptions

This property indicates if the buffer is to be in insert (TRUE) or overstrike (FALSE)
mode. It is a read-write property.

Type expected
bool InsertMode

LeftGutterWidth property BufferOptions

This property indicates the width of the left gutter in pixels. It is a read-write property.

Type expected
int LeftGutterWidth

Margin property BufferOptions

This property indicates the column to use to display the right margin. It is a read-write
property.

Type expected
int Margin

Chapter 4, cScript Class Reference 79

OverwriteBlocks property BufferOptions
This is a read-write property.

Type expected
bool OverwriteBlocks

PersistentBlocks property BufferOptions

This is a read-write property.

Type expected
bool PersistentBlocks

PreserveLineEnds property BufferOptions

This is a read-write property.

Type expected
bool PreserveLineEnds

SyntaxHighlight property BufferOptions
This property indicates if the syntax is to be highlighted. It is a read-write property.

Type expected
bool SyntaxHighlight

TabRack property BufferOptions

This property indicates the buffer's tab settings: a space-delimited sequence of tab stops
in ascending order, for example, "3 7 12". It is a read-write property.

Type expected
string TabRack

TokenFileName property BufferOptions

This property indicates the syntax highlighter file to use. It is a read-write property.

Type expected
string TokenFileName

UseTabCharacter property BufferOptions

This is a read-write property.

Type expected

bool UseTabCharacter

VerticalScrollBar property BufferOptions

Set this property to TRUE if a vertical scrollbar is to be associated with the buffer or
FALSE if it is not. It is a read-write property.

Type expected
bool VerticalScrollBar

Paradigm C++ Object Scripting Guide80

Copy method BufferOptions
This method copies the values from the source BufferOptions object into this
BufferOptions object.

Types expected
void Copy(BufferOptions source)

Return value
None

Tokenized cScript definition
After the cScript parser successfully parses a script (.SPP file), it converts it to
interpreted pcode (tokenizes it) and saves it in a file with a .SPX extension. When the
script is run in the future, the .SPX file is used if the script source file has not been
changed (does not have a later time stamp).

Debugger class

Syntax
Debugger()

Properties
bool HasProcess Read-only

Methods
bool AddBreakpointAtCurrent()
bool AddBreakpoint()
bool AddBreakpointFileLine(string fileName, int lineNum)
bool AddWatch(string symbolName)
bool Animate()
bool Attach(string processID)
bool BreakpointOptions()
string Evaluate(string symbol)
bool EvaluateWindow(string symbol)
bool FindExecutionPoint()
bool Inspect(string symbol)
bool InstructionStepInto()
bool InstructionStepOver()
bool IsRunnable(int processID)
bool Load(string exeName)
bool PauseProgram()
bool Reset()
bool Run()
bool RunToAddress(string addr)
bool RunToFileLine(string fileName, int lineNum)
bool StatementStepInto()
bool StatementStepOver()
bool TerminateProgram()
bool ToggleBreakpoint(string fileName, int lineNum)
bool ViewBreakpoint()
bool ViewCallStackDebugger_ViewCallStack()
bool ViewCpuDebugger_ViewCpu([address])
bool ViewCpuFileLineDebugger_ViewCpuFileLine(string fileName, int
 lineNum)
bool ViewProcessDebugger_ViewProcess()

Chapter 4, cScript Class Reference 81

bool ViewWatchDebugger_ViewWatch()

Events
void DebugeeAboutToRunDebugger_DebugeeAboutToRun()
void DebugeeCreatedDebugger_DebugeeCreated()
void DebugeeStoppedDebugger_DebugeeStopped()
void DebugeeTerminatedDebugger_DebugeeTerminated()

HasProcess property Debugger

This property is TRUE when the debugger has a process loaded, and is FALSE,
otherwise.

Types expected
bool AddBreakpoint()

AddBreakAtCurrent method Debugger

Adds a breakpoint to the current line (indicated by the cursor) of the file in the topmost
edit buffer. If no file is open, this method opens the Add Breakpoint dialog.

Types expected
bool AddBreakAtCurrent()

Return value
TRUE if successful, FALSE otherwise.

AddBreakpoint method Debugger
This method opens the Add Breakpoint dialog.

Types expected
bool AddBreakpoint()

Return value
TRUE if successful, FALSE otherwise.

AddBreakpointFileLine method Debugger
This method adds a breakpoint on the specified line of the specified file. If the
arguments are NULL, this method opens the Add Breakpoint dialog.

Types expected
bool AddBreakpointFileLine(string fileName, int lineNum)

Return value
TRUE if successful, FALSE otherwise

Paradigm C++ Object Scripting Guide82

AddWatch method Debugger
This method adds a watch on the specified symbolName. If argument is NULL, this
method opens the Add Watch dialog.

Types expected
bool AddWatch(string symbolName)

Return value
TRUE if successful, FALSE otherwise.

Animate method Debugger

This method lets you watch your program's execution in "slow motion."

Types expected
bool Animate()

Return value
TRUE if successful, FALSE otherwise

Description
Animate performs a continuous series of Statement Step Into commands. To interrupt
animation, invoke one of the following methods either by menu selections or by
keystrokes tied to the script:

Debugger.Run
Debugger.RunToAddress
Debugger.RunToFileLine
Debugger.PauseProgram
Debugger.Reset
Debugger.TerminateProgram
Debugger.FindExecutionPoint

Attach method Debugger

This method invokes the debugger for the currently executing process identified by
processID

Types expected
bool Attach(string processID)

Return value
TRUE if successful, FALSE otherwise

BreakpointOptions method Debugger
This method opens the Breakpoint Condition/Action Options dialog.

Types expected
bool BreakpointOptions()

Chapter 4, cScript Class Reference 83

Return value
TRUE if successful, FALSE otherwise

Evaluate method Debugger

This method evaluates the given expression, such as a global or local variable or an
arithmetic expression.

Types expected
string Evaluate(string expression)

Return value
Returns the result of the evaluation.

EvaluateWindow method Debugger

This method opens the Evaluator view with expression pasted into the Expression field
of the view.

Types expected
bool EvaluateWindow(string expression)

Return value
TRUE if successful, FALSE otherwise

FindExecutionPoint method Debugger
This method displays the current execution point.

Types expected
bool FindExecutionPoint()

Return value
TRUE if successful, FALSE otherwise

Inspect method Debugger
This method attempts to open an inspector for the specified symbol. The inspector
window opens using the specified view at the given row and column positions.

Types expected
bool Inspect(string symbol, EditView view, int row, int column)

Return value
TRUE if successful, FALSE otherwise

InstructionStepInto method Debugger

This method executes the next instruction, stepping into any function calls. If a process
is not loaded, InstructionStepInto first loads the executable for the current project.

Paradigm C++ Object Scripting Guide84

Types expected
bool InstructionStepInto()

Return value
TRUE if successful, FALSE otherwise

InstructionStepOver method Debugger

This method executes the next instruction, running any functions called at full speed. If
a process is not loaded, InstructionStepOver first loads the executable for the current
project.

Types expected
bool InstructionStepOver()

Return value
TRUE if successful, FALSE otherwise

IsRunnable method Debugger
This method indicates if the specified process can be run or single stepped.

Types expected
bool IsRunnable(int processID)

processID The process you wish to query. If that process is not runnable or does not
exist, the current process is used.

Return value
TRUE if the EXE is runnable or can be single stepped; FALSE otherwise

Load method Debugger

This method loads the specified executable into the debugger.

Types expected
bool Load(string exeName)

Return value
TRUE if successful, FALSE otherwise.

Description
Upon loading, the process runs to the starting point specified in the
Options|Environment|Debugger|Debugger Behavior dialog. If the parameter is NULL,
this method opens the Load Program dialog.

PauseProgram method Debugger

This method causes the debugger to pause the current process. It has an effect only if
the current process is running or animated.

Chapter 4, cScript Class Reference 85

Types expected
bool PauseProgram()

Return value
TRUE if successful, FALSE otherwise

Reset method Debugger

This method causes the debugger to reset the current process to its starting point (as
specified in the Options|Environment|Debugger|Debugger Behavior dialog)

Types expected
bool Reset()

Return value
TRUE if successful, FALSE otherwise

Run method Debugger

This method causes the debugger to run the current process. If no process is loaded, this
method first loads the executable associated with the current project.

Types expected
bool Run()

Return value
TRUE if successful, FALSE otherwise

RunToAddress method Debugger
This method runs the current process until the instruction at the given address is
encountered. If no process is loaded, the method first loads the executable associated
with the current project.

Types expected
bool RunToAddress(string address)

Return value
TRUE if successful, FALSE otherwise

RunToFileLine method Debugger

This method runs the current process until the source at the specified line in the
specified file is encountered. If no process is loaded, this method will first load the
executable associated with the current project.

Types expected
bool RunToFileLine(string fileName, int lineNum)

Paradigm C++ Object Scripting Guide86

Return value
TRUE if successful, FALSE otherwise

StatementStepInto method Debugger

This method executes the next source statement and steps through the source of any
function calls. If a process is not loaded, this method first loads the executable for the
current project.

Types expected
bool StatementStepInto()

Return value
TRUE if successful, FALSE otherwise

StatementStepOver method Debugger
This method executes the next source statement and does not step into any functions
called, but rather runs them at full speed. If a process is not loaded, StatementStepOver
first loads the executable for the current project.

Types expected
bool StatementStepOver()

Return value
TRUE if successful, FALSE otherwise

TerminateProgram method Debugger

This method terminates the current process. If no process is loaded, this method has no
effect.

Types expected
bool TerminateProgram()

Return value
TRUE if successful, FALSE otherwise

ToggleBreakpoint method Debugger
This method either adds a breakpoint on the specified line of the specified file or deletes
an existing breakpoint. If the arguments are NULL, this method opens the Add
Breakpoint dialog.

Types expected
bool ToggleBreakpoint(string fileName, int lineNum)

Return value
TRUE if successful, FALSE otherwise

Chapter 4, cScript Class Reference 87

ViewBreakpoint method Debugger
This method opens the breakpoint view.

Types expected
bool ViewBreakpoint()

Return value
TRUE if successful, FALSE otherwise

ViewCallStack method Debugger
This method opens the Call Stack view. It works only if a process is loaded.

Types expected
bool ViewCallStack()

Return value
TRUE if successful, FALSE otherwise

ViewCpu method Debugger
This method opens or selects the CPU view.

Syntax
ViewCPU()

Types expected
bool ViewCpu([address])

Return value
TRUE if successful, FALSE otherwise

Description
If the "Allow Multiple CPU Views" option is checked in the Options | Environment |
Debugger | Debugger Behavior dialog, this method always opens a new CPU view. If
the option is not checked, ViewCpu only opens a new CPU view if one is not already
open. It works only if a process is loaded.

ViewCpuFileLine method Debugger

This method opens or selects the CPU view.

Types expected
bool ViewCpu(string fileName, int lineNum)

Return value
TRUE if successful, FALSE otherwise

Paradigm C++ Object Scripting Guide88

Description
If the "Allow Multiple CPU Views" option is checked in the Options | Environment |
Debugger | Debugger Behavior dialog, ViewCpuFileLine always opens a new CPU
view. If the option is not checked, it opens a new CPU view only if one is not already
open. After opening or selecting a CPU view, the Disassembly pane is scrolled so that
the disassembled code for the specified line of the specified file is visible. If the
parameters are NULL or if the line doesn't generate code, the window displays an error
message. This method works only if a process is loaded.

ViewProcess method Debugger

This method opens the Process view.

Types expected
bool ViewProcess()

Return value
TRUE if successful, FALSE otherwise

ViewWatch method Debugger

This method opens the watch view.

Types expected
bool ViewWatch()

Return value
TRUE if successful, FALSE otherwise

DebugeeAboutToRun event Debugger

This event is raised just before a process is run.

Types expected
void DebugeeAboutToRun()

Return value
None

DebugeeCreated event Debugger

This event is raised when a new process is created (loaded into the debugger).

Types expected
void DebugeeCreated()

Return value
None

Chapter 4, cScript Class Reference 89

DebugeeStopped event Debugger
This event is raised when a process stops. A process can stop for any number of
reasons: upon normal termination, after a step, when a breakpoint is hit, when an
exception occurs, or when the user pauses, resets, or terminates a running application

Types expected
void DebugeeStopped()

Return value
None

DebugeeTerminated event Debugger

This event is raised when a process is terminated.

Types expected
void DebugeeTerminated()

Return value
None

watch definition
A watch monitors the state of a variable. Whenever your program pauses, the debugger
evaluates all watched variables and updates the Watches window with their values.

EditBlock class

This class is one of the editor classes. It provide area-marking features for an edit buffer
or view.

Syntax
EditBlock(EditBuffer);
EditBlock(EditView);

Properties
bool IsValid Read-only

int EndingColumn Read-only

int EndingRow Read-only

bool Hide Read-write

int Size Read-write

int StartingColumn Read-only

int StartingRow Read-only

int Style Read-write

string Text Read-only

Paradigm C++ Object Scripting Guide90

Methods
void Begin()
void Copy([bool useClipboard, bool append])
void Cut([bool useClipboard, bool append])
bool Delete()
void End()
bool Extend(int newRow, int newCol)
bool ExtendPageDown()
bool ExtendPageUp()
bool ExtendReal(int newRow, int newColumn)
bool ExtendRelative(int deltaRow, int deltaColumn)
void Indent(int magnitude)
void LowerCase()
bool Print()
void Reset()
void Restore()
void Save()
bool SaveToFile([string fileName])
void ToggleCase()
void UpperCase()

EditBlock class description

EditBlock objects allow you to mark areas of text. Because EditBlock members exist in
both the EditView and the EditBuffer, EditView and EditBuffer support different
marked areas in different views on the same EditBuffer.

Although multiple EditBlocks can exist in script for an individual EditBuffer or
EditView, they are mapped to the same internal representation of the EditBlock.
Therefore, manipulations on one will affect the others. Use of the Extend() members
will cause the EditPosition for the owner to be updated appropriately:

IsValid property EditBlock

Becomes FALSE in any of the following cases:

l The owning EditBuffer or EditView is destroyed.
l A destructive operation has occurred on the block, such as delete or cut.
l The ending point is not greater than the starting point.

This is a read-only property.

Type expected
bool IsValid

EndingColumn property EditBlock

Initialized to the current position in the EditView or EditBuffer upon construction. May
be changed by a call to an external method. This is a read-only property.

Type expected
int EndingColumn

Chapter 4, cScript Class Reference 91

EndingRow property EditBlock
Initialized to the current position in the EditView or EditBuffer upon construction. May
be changed by a call to an external method. This is a read-only property.

Type expected
int EndingRow

Hide property EditBlock
Visually disables the block without modifying its coordinates. This is a read-write
property.

Type expected
bool Hide

Size property EditBlock
If the area is not valid, the value is zero; otherwise, the value is the number of
characters contained in the marked area. A newline (CR/LF) counts as one character.
This is a read-write property.

Type expected
int Size

StartingColumn property EditBlock

Initialized to the current position in the EditView or EditBuffer upon construction. May
be changed by a call to an external method. This is a read-only property.

Type expected
int StartingColumn

StartingRow property EditBlock

Initialized to the current position in the EditView or EditBuffer upon construction. May
be changed by a call to an external method. This is a read-only property.

Type expected
int StartingRow

Style property EditBlock

One of the following values:

INCLUSIVE_BLOCK
EXCLUSIVE_BLOCK
COLUMN_BLOCK
LINE_BLOCK
INVALID_BLOCK

This is a read-write property.

Paradigm C++ Object Scripting Guide92

Type expected
int Style

Description
An EditBlock is initially set to the Style EXCLUSIVE_BLOCK. It is also set to this
style after a Reset is called. If an EditBlock has a Style of INVALID_BLOCK, it is
because it was retained after the EditBuffer or EditView to which it was attached was
destroyed.

Text property EditBlock

If the marked block is valid, Text returns the marked text. If it is invalid, Text returns
the empty string. This is a read-only property.

Type expected
string Text

Begin method EditBlock

Resets the StartingRow and StartingColumn values to the current location in the owning
EditBuffer or EditView. This is a read-only property.

Type expected
void Begin()

Return value
None

Copy method EditBlock

Copies the contents of the marked block to the Windows Clipboard. append defaults to
FALSE. If append is TRUE the contents of the marked block are appended to the
clipboard contents

Types expected
void Copy([bool append])

Return value
None

Cut method EditBlock

Cuts the contents of the marked block to the Windows Clipboard and invalidates the
marked block. append defaults to FALSE. If append is TRUE the contents of the
marked block are appended to the clipboard contents.

Types expected
void Cut([bool append])

Return value
None

Chapter 4, cScript Class Reference 93

Delete method EditBlock
This method deletes the current block (if valid). The return value indicates if any
characters were deleted. The cursor's position is restored to the position it occupied
prior to the delete.

Types expected
bool Delete()

Return value
None

End method EditBlock

Resets the EndingRow and EndingColumn values to the current location in the owning
EditBuffer or EditView.

Types expected
void End()

Return value
None

Extend method EditBlock
Extends an existing EditBlock to encompass the text delimited by newRow and newCol.

Types expected
bool Extend(int newRow, int newCol)

Return value
TRUE if the Extend successfully completes; otherwise FALSE.

ExtendPageDown method EditBlock
This method updates the starting or ending points of the existing mark to extend the
mark to the specified location. It also causes the position in the owning EditBuffer or
EditView to be updated to the new location. ExtendPageDown works only if the block
is associated with an EditView and is ignored if the block is associated with an
EditBuffer.

Types expected
bool ExtendPageDown()

Return value
TRUE if the cursor move is successful; otherwise FALSE.

ExtendPageUp method EditBlock

This method updates the starting or ending points of the existing mark to extend the
mark to the specified location. It also causes the position in the owning EditBuffer or

Paradigm C++ Object Scripting Guide94

EditView to be updated to the new location. ExtendPageUp works only if the block is
associated with an EditView and is ignored if the block is associated with an EditBuffer.

Types expected
bool ExtendPageUp()

Return value
TRUE if the cursor move is successful.

ExtendReal method EditBlock
This method updates the starting or ending points of the existing mark to extend the
mark to the specified location. It also causes the position in the owning EditBuffer or
EditView to be updated to the new location.

Types expected
bool ExtendReal(int newRow, int newColumn)

Return value
TRUE if the cursor move is successful.

ExtendRelative method EditBlock

This method updates the starting or ending points of the existing mark to extend the
mark to the specified relative location. It also causes the position in the owning
EditBuffer or EditView to be updated to the new location.

Types expected
bool ExtendRelative(int deltaRow, int deltaColumn)

Return value
TRUE if the cursor move is successful.

Indent method EditBlock

Moves the contents of the block left/right the number of columns specified. Negative
values move to the left, positive move to the right.

Types expected
void Indent(int magnitude)

Return value
None

LowerCase method EditBlock

Converts all alphabetic characters enclosed within the EditBlock to lowercase.

Types expected
void LowerCase()

Chapter 4, cScript Class Reference 95

Return value
None

Print method EditBlock

Prints the current block (if any).

Types expected
bool Print()

Return value
Returns TRUE if the print was successful or FALSE if there is no marked block or if
the print failed.

Reset method EditBlock

Implicitly invoked by the constructor, Reset may also be used to reset the style to
EXCLUSIVE_BLOCK and the starting and ending points to be the same as the current
position in the owning EditBuffer or EditView.

Types expected
void Reset()

Return value
None

Restore method EditBlock

Restores a block from an internal stack. The block must have been saved with Save().

Types expected
void Restore()

Return value
None

Save method EditBlock

Preserves the block attributes on an internal stack for future restoration with Restore().

Types expected
void Save()

Return value
None

SaveToFile method EditBlock

This method causes the contents of the marked block to be saved to the file fileName. If
fileName is not supplied, the user will be prompted for one.

Paradigm C++ Object Scripting Guide96

Types expected
bool SaveToFile([string fileName])

Return value
Returns TRUE if the save was successful or FALSE if it wasn't.

ToggleCase method EditBlock

Converts all the uppercase alphabetic characters enclosed within the EditBlock to
lowercase, and the lowercase characters to uppercase.

Types expected
void ToggleCase()

Return value
None

UpperCase method EditBlock

Converts all the lowercase alphabetic characters enclosed within the EditBlock to
uppercase.

Types expected
void UpperCase()

Return value
None

EditBuffer class
This class is one of the editor classes. An edit buffer is associated with one file and any
number of edit views.

Syntax
EditBuffer(string fileName [, bool private, bool readOnly])

fileName The name of the file associated with the edit buffer.

private Implies that the buffer is a hidden system buffer. Undo information is not
retained, and the EditBuffer is never attachable to an EditView. The
default value for private is FALSE.

readOnly Default value is FALSE.

Properties
EditBlock Block Read-only

TimeStamp CurrentDate Read-only

string Directory Read-only

string Drive Read-only

string Extension Read-only

Chapter 4, cScript Class Reference 97

string FullName Read-only

TimeStamp InitialDate Read-only

bool IsModified Read-only

bool IsPrivate Read-only

bool IsReadOnly Read-only

bool IsValid Read-only

EditPosition Position Read-only

EditView TopView Read-only

Methods
void ApplyStyle(EditStyle styleToApply)
EditBlock BlockCreate()
string Describe()
bool Destroy()
EditBuffer NextBuffer(bool privateToo)
EditView NextView(EditView)
EditPosition PositionCreate()
bool Print()
EditBuffer PriorBuffer(bool privateToo)
bool Rename(string newName)
int Save([string newName])

Events
void AttemptToModifyReadOnlyBuffer()
void HasBeenModified()

EditBuffer class description

An EditBuffer is a representation of the contents of a file. An EditView is used to
provide a visual representation of the EditBuffer. The same EditBuffer can be displayed
simultaneously in different EditViews (for example, two edit windows open on the same
file). EditBuffer objects provide functionality for a file being edited that is independent
of the number of views associated with the buffer.

Buffers have methods allowing them to traverse the list of views containing the same
EditBuffer. They maintain access to a list of bookmarks (position markers which track
text edits). Buffers can be queried for their time and date stamps.

Buffer contains a Position member through which manipulation of the underlying
EditBuffer is performed. Typically this member will be used when manipulating an
EditBuffer through script.

A single EditBuffer object exists internally for each loaded filename. If you create
additional representations for an edit buffer, they are attached to the existing EditBuffer
object. Any changes to one of these representations changes the others, since they refer
to the same object. All representations inherit the IsReadOnly and IsPrivate attributes of
the original, because these properties are set only when the object is first created.

Buffers may be made private to provide raw data storage for script usage. No undo
information is maintained for private buffers, nor are they attachable to an EditView.
Buffers may also be specified as ReadOnly.

Paradigm C++ Object Scripting Guide98

Block property EditBuffer
This property contains a reference to the hidden EditBlock. This is a read-only property.

Type expected
EditBlock Block

CurrentDate property EditBuffer

This property is originally set to the same value as InitialDate but is updated when the
buffer's contents are altered. It is a read-only property.

Type expected
TimeStamp CurrentDate

Directory property EditBuffer

This property is NULL if the EditBuffer is invalid; otherwise, it indicates the directory
path in uppercase letters. It is a read-only property.

Type expected
string Directory

Drive property EditBuffer

This property is NULL if the EditBuffer is invalid; otherwise, it indicates the uppercase
drive letter with its associated colon (:). It is a read-only property.

Type expected
string Drive

Extension property EditBuffer

This property is NULL if the EditBuffer is invalid; otherwise, it indicates the uppercase
file extension including the period (.), if any. It is a read-only property.

Type expected
string Extension

FileName property EditBuffer

This property is NULL if the EditBuffer is invalid; otherwise, it indicates the file name
in uppercase letters. It is a read-only property.

Type expected
string FileName

FullName property EditBuffer

This property indicates the name of the EditBuffer or NULL if the EditBuffer is invalid.
It is a read-only property.

Chapter 4, cScript Class Reference 99

Type expected
string FullName

InitialDate property EditBuffer
If the buffer is initialized from a disk file, InitialDate reflects the file's age. If the file
doesn't reside on disk, InitialDate holds the time at which the buffer was created. It is a
read-only property.

Type expected
TimeStamp InitialDate

IsModified property EditBuffer

This method indicates if the buffer was changed since it was last opened or saved,
whichever occurred most recently. It is a read-only property.

Type expected
bool IsModified

IsPrivate property EditBuffer

This property is TRUE if the buffer was created with the private parameter set to
TRUE, otherwise it is FALSE. It is a read-only property.

Type expected
bool IsPrivate

IsReadOnly property EditBuffer

This property is TRUE if the buffer was created with the readOnly parameter set to
TRUE, otherwise it is FALSE. It is a read-only property.

Type expected
bool IsReadOnly

IsValid property EditBuffer

This property is FALSE if the EditBuffer is destroyed, otherwise it is TRUE. It is a
read-only property.

Type expected
bool IsValid

Position property EditBuffer

This property provides access to the EditPosition instance for this EditBuffer.

Type expected
EditPosition Position

Paradigm C++ Object Scripting Guide100

TopView property EditBuffer
This property indicates the topmost EditView that contains this EditBuffer, or NULL if
no view is associated with the buffer. It is a read-only property.

Type expected
EditView TopView

ApplyStyle method EditBuffer
This method updates the EditBuffer's member with the contents of styleToApply.

Types expected
void ApplyStyle(EditStyle styleToApply)

BlockCreate method EditBuffer

Types expected
EditBlock BlockCreate()

Describe method EditBuffer

This method invoked during buffer list creation by an Editor object. It returns a text
description of the buffer, as in:

FOO.CPP(modified)
BAR.CPP

Types expected
string Describe()

Destroy method EditBuffer
This method removes the buffer from the IDE's buffer list and does not save any
changes.

Types expected
bool Destroy()

Return value
TRUE if the buffer was actually destroyed, or FALSE if views relying on it still exist.

NextBuffer method EditBuffer

This method finds the next edit buffer in the buffer list. The list is circular, so a buffer
will be found if one exists, unless all buffers are private and privateToo is FALSE.

Types expected
EditBuffer NextBuffer(bool privateToo)

privateToo Indicates if private buffers are to be included.

Chapter 4, cScript Class Reference 101

Return value
The edit buffer found or NULL if it finds none.

NextView method EditBuffer

Returns the next EditView containing this EditBuffer.

Types expected
EditView NextView(EditView next)

next The view to use in getting the next associated view for this edit buffer.
Commonly you start walking the view list by passing the value of
TopView to this method.

Description
An EditBuffer is a representation of the contents of a file. An EditView is used to
provide a visual representation of the EditBuffer. The same EditBuffer can be displayed
simultaneously to the user in different EditViews (for example, two edit windows can be
open on the same file). This method enables you to cycle through all the EditViews
representing this EditBuffer.

PositionCreate method EditBuffer

Types expected
EditPosition PositionCreate()

Print method EditBuffer

Prints this buffer and returns TRUE if the print was successful or FALSE if the print
failed.

Types expected
bool Print()

PriorBuffer method EditBuffer

This method finds the previous edit buffer in the buffer list. The list is circular, so a
buffer will be found if one exists, unless all buffers are private and privateToo is
FALSE.

Types expected
EditBuffer PriorBuffer(bool privateToo)

privateToo Indicates if private buffers are to be included.

Return value
The edit buffer found or NULL if it finds none.

Paradigm C++ Object Scripting Guide102

Rename method EditBuffer
This method changes the edit buffer name to the one specified in newName. Rename
fails when an EditBuffer with the new name is already in the buffer list. If a file with the
new name already exists on disk, it is overwritten when this buffer is saved.

Types expected
bool Rename(string newName)

Return value
TRUE if the operation succeeded or FALSE if it failed.

Save method EditBuffer

This method writes the file associated with the buffer to disk whether it was modified or
not. It uses the current name of the file or newName if it is specified.

Types expected
int Save([string newName])

Return value
The number of bytes written or 0 if the save was unsuccessful.

AttemptToModifyReadOnlyBuffer event EditBuffer
This event is triggered when an attempt is made to modify a read-only buffer.

Types expected
void AttemptToModifyReadOnlyBuffer()

Return value
None

AttemptToWriteReadOnlyFile event EditBuffer
This event is triggered when an attempt is made to write the contents of an EditBuffer to
a read-only file.

Types expected
void AttemptToWriteReadOnlyBuffer()

Return value
None

HasBeenModified event EditBuffer

This event is triggered when a buffer has been modified for the first time.

Types expected
void HasBeenModified()

Chapter 4, cScript Class Reference 103

Return value
None

Editor class

This class provides access to the IDE's internal editor. Editor is associated with other
classes which provide the editor with its functionality.

Syntax
Editor()

Properties
EditStyle FirstStyle Read-only
EditOptions Options Read-only
SearchOptions SearchOptions Read-only
EditBuffer TopBuffer Read-only
EditView TopView Read-only

Methods
void ApplyStyle(EditStyle newOptions)
void BufferList()
BufferOptions BufferOptionsCreate()
bool BufferRedo(EditBuffer buffer)
bool BufferUndo(EditBuffer buffer)
void DestroyedStyle(EditStyle styleToRemove)
EditBuffer EditBufferCreate(string fileName [, bool private, bool
readOnly])
EditOptions EditOptionsCreate()
EditStyle EditStyleCreate(string styleName[,EditStyle toInheritFrom])
EditWindow EditWindowCreate(EditBuffer buffer)
string GetClipboard()
int GetClipboardToken()
EditWindow GetWindow([bool getLast])
bool IsFileLoaded(string filename)
EditStyle StyleGetNext(EditStyle)
bool ViewRedo(EditView view)
bool ViewUndo(EditView view)

Events
void BufferCreated(EditBuffer buffer)
void MouseBlockCreated()
void MouseLeftDown()
void MouseLeftUp()
string MouseTipRequested(EditView theView, int line, int column)
void OptionsChanged(EditorOptions newOptions)
void OptionsChanging(EditorOptions newOptions)
void ViewActivated(EditView view)
void ViewCreated(EditView newView)
void ViewDestroyed(EditView deadView)

Editor class description

The IDE instantiates an Editor object, which maintains undo and redo data and has
methods allowing access to the list of all buffers and Edit windows. Editors have a
member of type EditOptions that controls global editor characteristics such as scrap

Paradigm C++ Object Scripting Guide104

manipulation (blocks cut or copied from Editor buffers), the default regular expression
language, and destination paths for backups. Although multiple instances of Editor
objects may be created in script, they all refer to the same instance of a single C++
object internal to the IDE; therefore, modification of one Editor object's options will be
reflected in all Editor objects.

FirstStyle property Editor

This property contains the first style in the list of editor styles. It is usually used in
conjunction with the Editor.StyleGetNext() method. At least one EditStyle must exist
for this property to contain a valid value. This is a read-only property.

Type expected
EditStyle FirstStyle

Options property Editor
This property holds the buffer options settings for all edit buffers, Changing an option
in this property affects all edit buffers. This is a read-only property.

Type expected
EditOptions Options

SearchOptions property Editor
This property provides access to the instance of SearchOptions associated with this
editor. This is a read-only property.

Type expected
SearchOptions SearchOptions

TopBuffer property Editor
This property indicates the current edit buffer. This is a read-only property.

Type expected
EditBuffer TopBuffer

TopView property Editor

This property provides a quick way to get at top view associated with the current edit
buffer. This is a read-only property.

Type expected
EditView TopView

ApplyStyle method Editor

This method updates the edit options with the contents of newOptions.

Types expected
void ApplyStyle(EditStyle newOptions)

Chapter 4, cScript Class Reference 105

Return value
None

BufferList method Editor

This method presents to the user a list of buffers that comes from
Edit.Buffer.Describe().

Types expected
void BufferList()

Return value
None

BufferOptionsCreate method Editor

This method creates a new instance of the BufferOptions class.

Types expected
BufferOptions BufferOptionsCreate()

Return value
A BufferOptions object

BufferRedo method Editor

This method undoes the last undo operation on the buffer or view regardless of whether
the operation was performed on the EditBuffer, the EditView, an EditBlock, or an
EditPosition.

Types expected
bool BufferRedo(EditBuffer buffer)

Return value
TRUE if there are more operations to redo, or FALSE if there are not.

BufferUndo method Editor

This method undoes the last operation on the buffer or view regardless of whether the
operation was performed on the EditBuffer, the EditView, an EditBlock, or an
EditPosition.

Types expected
bool BufferUndo(EditBuffer buffer)

Return value
TRUE if there are more operations to undo or FALSE if there are not.

EditBufferCreate method Editor
This method creates an edit buffer corresponding to fileName.

Paradigm C++ Object Scripting Guide106

Types expected
EditBuffer EditBufferCreate(string fileName [, bool
 private, bool readOnly])

Return value
The edit buffer created, or NULL if none could be created.

EditOptionsCreate method Editor

This method creates a new instance of the EditOptions class.

Types expected
EditOptions EditOptionsCreate()

Return value
An EditOptions object.

EditStyleCreate method Editor
This method creates an edit style.

Types expected
EditStyle EditStyleCreate(string styleName[,EditStyle
 toInheritFrom])

Return value
The edit style created, or NULL if none could be created.

EditWindowCreate method Editor

This method creates an edit window.

Types expected
EditWindow EditWindowCreate(EditBuffer buffer)

Return value
The edit window created, or NULL if none could be created.

GetClipboard method Editor

This method returns the contents of the Windows Clipboard in a string.

Types expected
string GetClipboard()

GetClipboardToken method Editor
This method returns the memory address of the Windows Clipboard contents.

Types expected
int GetClipboardToken()

Chapter 4, cScript Class Reference 107

GetWindow method Editor
This method returns an EditWindow. If getLast is FALSE, it returns the top level
window. If it is TRUE, GetWindow returns the last EditWindow in the Z-order. getLast
defaults to FALSE.

Types expected
EditWindow GetWindow([bool getLast])

IsFileLoaded method Editor

This method returns TRUE if a buffer by that name exists or FALSE if one doesn't.

Types expected
bool IsFileLoaded(string fileName)

StyleGetNext method Editor
Use this method in conjunction with the FirstStyle property to access the circularly
linked list representing all the editor styles.

Types expected
EditStyle StyleGetNext(EditStyle)

Return value
The editor style that was found, or NULL if no editor style is found.

ViewRedo method Editor

This method reapplies the last operation that was undone on the buffer or view
regardless of whether the operation was performed on the EditBuffer the EditView, an
EditBlock, or an EditPosition.

Types expected
bool ViewRedo(EditView view)

Return value
TRUE if there are more operations to redo, or FALSE if there are not.

ViewUndo method Editor
This method undoes the last operation on the buffer or view regardless of whether the
operation was performed on the EditBuffer, the EditView, an EditBlock, or an
EditPosition.

Types expected
bool ViewUndo(EditView view)

Return value
TRUE if there are more operations to undo, or FALSE if there are not.

Paradigm C++ Object Scripting Guide108

BufferCreated event Editor
This event is triggered when a new EditBuffer is created. buffer is the newly created
buffer. The default action is to do nothing.

Types expected
void BufferCreated(EditBuffer buffer)

MouseBlockCreated event Editor
This event is triggered when the user selects a block with the mouse in the top view.

Types expected
void MouseBlockCreated()

Return value
None

MouseLeftDown event Editor
This event is triggered when the mouse left button is pressed in an Edit window.

Types expected
void MouseLeftDown()

Return value
None

MouseLeftUp event Editor
This event is triggered when the mouse left button is released in an Edit window.

Types expected
void MouseLeftUp()

Return value
None

MouseTipRequested event Editor
This event is raised when the mouse has remained idle over an editor window for a
period of time.

Types expected
string MouseTipRequested(EditView theView, int line,
 int column)

theView The EditView object describing the edit window that contains the idle
mouse.

line, column The position in the edit buffer of the character the mouse cursor is on.

Chapter 4, cScript Class Reference 109

Return value
If this routine returns a string, it displays the string to the user as a help hint. The default
implementation returns a NULL.

OptionsChanged event Editor

This event is raised when the OptionsChanging event handler has completed and the
global values have been changed. This event notifies a script that needs to update the
global options that those options have changed.

Types expected
void OptionsChanged(EditorOptions newOptions)

Return value
None

OptionsChanging event Editor

This event is raised when leaving one of the editor MPD pages with accept. The event
contains a copy of the new values for the global editor options. An event handler may
examine these values and determine if any of the values need to be overridden with any
values from newOptions.

Types expected
void OptionsChanging(EditorOptions newOptions)

Return value
None

ViewActivated event Editor

This event is triggered when the EditView represented by view is activated. There is no
default action for this event.

Types expected
void ViewActivated(EditView view)

Return value
None

ViewCreated event Editor

This event is triggered when the EditView represented by newView is created. There is
no default action for this event.

Types expected
void ViewCreated(EditView newView)

Return value
None

Paradigm C++ Object Scripting Guide110

ViewDestroyed event Editor
This event is triggered when the EditView represented by deadView is destroyed. There
is no default action for this event.

Types expected
void ViewDestroyed(EditView deadView)

Return value
None

EditOptions class

This class is one of the editor classes. It holds editor characteristics of a global nature
such as the insert/overtype setting, optimal fill, and scrap settings (how to handle blocks
cut or copied from Editor buffers).

Syntax
EditOptions()

The values are initialized from global defaults during construction.

Properties
string BackupPath Read-write
int BlockIndent Read-write
BufferOptions BufferOptions Read-only
string MirrorPath Read-write
string OriginalPath Read-write
string SyntaxHighlightTypes Read-write
bool UseBRIEFCursorShapes Read-write
bool UseBRIEFRegularExpression Read-write

Methods
None

EditOptions class description

The EditOptions object holds editor characteristics of a global nature, such as whether
to create backups and the option settings for all buffers (in BufferOptions).

BackupPath property EditOptions

This property contains the path where the editor stores backup files. This is a read-write
property.

Type expected
string BackupPath

Chapter 4, cScript Class Reference 111

BlockIndent property EditOptions
BlockIndent (set in the IDE in Options|Environment|Editor|Options|Block Indent
indicates the number of characters to indent or outdent a block of characters. The value
must be between 1 and 16. This is a read-write property.

Type expected
int BlockIndent

BufferOptions property EditOptions

This property holds the buffer options settings for all edit buffers. This is a read-only
property.

Type expected
BufferOptions BufferOptions

MirrorPath property EditOptions

This property holds the path where the editor stores mirror copies of files in. This is a
read-write property.

Type expected
string MirrorPath

OriginalPath property EditOptions

This property holds the path where the editor stores the original files in. This is a read-
write property.

Type expected
string OriginalPath

SyntaxHighlightTypes property EditOptions

This property holds the file extensions, or file names, of the file types for which syntax
highlighting is to be enabled in the editor. This is a read-write property.

Type expected
string SyntaxHighlightTypes

UseBRIEFCursorShapes property EditOptions

When TRUE, the editor uses the default cursor shapes that Brief uses for insert mode
and overtype mode. This is a read-write property.

Type expected
bool UseBRIEFCursorShapes

Paradigm C++ Object Scripting Guide112

UseBRIEFRegularExpression property EditOptions
When TRUE, complex search and search/replace operations can be performed using the
Brief regular expression syntax. This is a read-write property.

Type expected
bool UseBRIEFRegularExpression

EditPosition class
This is one of the editor classes. EditPosition class members provide positioning
functionality related to the active location in an EditView or EditBuffer.

Syntax
EditPosition(EditBuffer)
EditPosition(EditView)

Properties
int Character Read-only
int Column Read-only
bool IsSpecialCharacter Read-only
bool IsWhiteSpace Read-only
bool IsWordCharacter Read-only
int LastRow Read-only
int Row Read-only
SearchOptions SearchOptions Read-only

Methods
void Align(int magnitude)
bool BackspaceDelete([int howMany])
bool Delete([int howMany])
int DistanceToTab(int direction)
bool GotoLine(int lineNumber)
void InsertBlock(EditBlock block)
void InsertCharacter(int characterToInsert)
void InsertFile(string fileName)
void InsertScrap()
void InsertText(string text)
bool Move([int row, int col])
bool MoveBOL()
bool MoveCursor(moveMask)
bool MoveEOF()
bool MoveEOL()
bool MoveReal([int row, int col])
bool MoveRelative([int deltaRow, int deltaCol])
string Read([int numberOfChars])
bool Replace([string pat, string rep, bool case, bool useRE, bool dir,
 int reFlavor, bool global, EditBlock block])
bool ReplaceAgain()
void Restore()
string RipText(string legalChars [,int ripFlags])
void SaveEditPosition_Save()
int SearchEditPosition_Search([string pat, bool case, bool useRE, bool
 dir, int reFlavor, EditBlock block])
int SearchAgain()
void Tab(int magnitude)

Chapter 4, cScript Class Reference 113

EditPosition class description

Most of the interesting editing activity takes place here, such as searching, text ripping,
character reading, and text insertion and deletion.

Character property EditPosition

Integer value of the character at this position, or one of the following values:

VIRTUAL_TAB
VIRTUAL_PAST_EOF
VIRTUAL_PAST_EOL

This is a read-only property.

Type expected
int Character

Column property EditPosition

This property represents the current column position in the buffer. To change, use one
of the Move methods. This is a read-only property.

Type expected
int Column

IsSpecialCharacter property EditPosition

This property is TRUE if the character at the current edit position is not an
alphanumeric or whitespace character; otherwise it is FALSE.

This is a read-only property.

Type expected
bool IsSpecialCharacter

IsWhiteSpace property EditPosition
This property is TRUE if the character at the current edit position is a Tab or Space;
otherwise it is FALSE.

This is a read-only property.

Type expected
bool IsWhiteSpace

IsWordCharacter property EditPosition

This property is TRUE if the character at the current edit position is an alphabetic
character, numeric character or underscore. Otherwise, the property is FALSE.

This is a read-only property.

Type expected
bool IsWordCharacter

Paradigm C++ Object Scripting Guide114

LastRow property EditPosition
The line number of the last line in the edit buffer. This is a read-only property.

Type expected
int LastRow

Row property EditPosition

The property represents the current row position in the buffer. To change, use one of the
Move methods. This is a read-only property.

Type expected
int Row

SearchOptions property EditPosition

This property contains an instance of the SearchOptions class, the current search
options in force.

This is a read-only property.

Type expected
SearchOptions SearchOptions

Align method EditPosition
Positions the insertion point on the current line, aligning it with columns calculated
from prior lines in the file.

Types expected
void Align(int magnitude)

Return value
None

Description
If magnitude is a positive value, then enough characters are inserted to align the
character position as follows: Starting with a column defined by the current character
position on the current line, the character position is aligned with the first character
following the first white space on the previous line after the column position. If the
previous line is too short to calculate a position on the current line, previous lines are
scanned until finding one that is long enough to calculate a column position. If
magnitude is negative, the column position is moved to the left.

EditPosition class, Align method example
At the start, the previous two lines contain the text "Leaning over the console, she stuck
out her hand and said," and "'Hello there, buddy'", and the current line has the cursor
()̂in column.

Chapter 4, cScript Class Reference 115

Leaning over the console, she stuck out her hand and said,
"How are you, buddy"
 ^

Calling Align(1) results in:
Leaning over the console, she stuck out her hand and said,
"How are you, buddy."
 ^

Calling Align(1) again results in:
Leaning over the console, she stuck out her hand and said,
"How are you, buddy."
 ^

Calling Align(1) again results in:
Leaning over the console, she stuck out her hand and said,
"How are you buddy."
 ^

Calling Align(-1) results in:
Leaning over the console, she stuck out her hand and said,
"Hello there, buddy."
 ^

BackspaceDelete method EditPosition
Deletes characters to the left of the current position. The number of characters is
indicated by howMany and defaults to 1. Returns TRUE if any characters are deleted or
FALSE if there are no characters to the left.

Types expected
bool BackspaceDelete([int howMany])

Delete method EditPosition

Deletes characters to the right of the current position. The number of characters is
indicated by howMany and defaults to 1. Returns TRUE if any characters are deleted or
FALSE if there are no characters to the left.

Types expected
bool Delete([int howMany])

DistanceToTab method EditPosition

Retrieves the number of character positions between the current cursor position and the
next/previous tab stop. direction is either SEARCH_FORWARD (default) or
SEARCH_BACKWARD.

Types expected
int DistanceToTab(int direction)

Paradigm C++ Object Scripting Guide116

GotoLine method EditPosition
Moves the cursor to the line specified by lineNumber. Does not change the column
position. Prompts the user if lineNumber is not supplied.

Types expected
bool GotoLine(int lineNumber)

Return value
TRUE if the move was successful, FALSE, otherwise

InsertBlock method EditPosition

Inserts the last marked Editblock at the current cursor position.

Types expected
void InsertBlock(EditBlock block)

Return value
None

InsertCharacter method EditPosition

Types expected
void InsertCharacter(int characterToInsert)

characterToInsert The integer value of the character that should be inserted.

Return value
None

InsertFile method EditPosition

Inserts the contents of the specified file at the current cursor location.

Types expected
void InsertFile(string fileName)

Return value
None

InsertScrap method EditPosition

Text to insert is taken from the Windows Clipboard.

Types expected
void InsertScrap()

Return value
None

Chapter 4, cScript Class Reference 117

InsertText method EditPosition
Inserts the specified text at the current cursor position.

Types expected
void InsertText(string text)

Return value
None

Move method EditPosition
Moves the cursor to the row and column indicated by row and col.

Types expected
bool Move([int row, int col])

Return value
The return value, TRUE or FALSE, indicates whether the position actually changed.
Attempts to position either the column at 0 or less, or 1025 or more, or the line at 0 or
less, or MaxLineNumber + 1 or more are invalid.

MoveBOL method EditPosition

Moves the cursor to the first character on the current line.

Types expected
bool MoveBOL()

Return value
The return value, TRUE or FALSE, indicates whether the position actually changed.
Attempts to position either the column at 0 or less, or 1025 or more, or the line at 0 or
less, or MaxLineNumber + 1 or more are invalid.

MoveCursor method EditPosition

Moves the current position forward or backward in the buffer as indicated in moveMask.
The value of moveMask can be built from the one of the following: SKIP_WORD
(default), SKIP_NONWORD, SKIP_WHITE, SKIP_NONWHITE, SKIP_SPECIAL,
and SKIP_NOSPECIAL. These may be combined with SKIP_LEFT (default) or
SKIP_RIGHT. SKIP_STREAM may also be used with any of these combinations if
line ends should be ignored.

Types expected
bool MoveCursor(moveMask)

Return value
The return value, TRUE or FALSE, indicates whether the position actually changed.
Attempts to position either the column at 0 or less, or 1025 or more, or the line at 0 or
less, or MaxLineNumber + 1 or more are invalid.

Paradigm C++ Object Scripting Guide118

MoveEOF method EditPosition
Moves the current position to the last character in the file.

Types expected
bool MoveEOF()

Return value
The return value, TRUE or FALSE, indicates whether the position actually changed.
Attempts to position either the column at 0 or less, or 1025 or more, or the line at 0 or
less, or MaxLineNumber + 1 or more are invalid.

MoveEOL method EditPosition

Moves the current position to the last character on the line.

Types expected
bool MoveEOL()

Return value
The return value, TRUE or FALSE, indicates whether the position actually changed.
Attempts to position either the column at 0 or less, or 1025 or more, or the line at 0 or
less, or MaxLineNumber + 1 or more are invalid.

MoveReal method EditPosition

The position assumes that the file is unedited. If edits have been made to the file, the
move is relative to the original, unedited file. For example, the original, unedited file is
a two-line file with the word ONE on the first line and the word TWO on the second
line. The user subsequently inserts 100 lines of text after line 1. MoveReal(2,1)
moves the cursor to the "T" in "TWO".

Types expected
bool MoveReal([int row, int col])

Return value
The return value, TRUE or FALSE, indicates whether the position actually changed.
Attempts to position either the column at 0 or less, or 1025 or more, or the line at 0 or
less, or MaxLineNumber + 1 or more are invalid.

MoveRelative method EditPosition

Moves the cursor deltaRow rows from the current row position and deltaCol columns
from the current column position.

Types expected
bool MoveRelative([int deltaRow, int deltaCol])

Chapter 4, cScript Class Reference 119

Return value
The return value, TRUE or FALSE, indicates whether the position actually changed.
Attempts to position either the column at 0 or less, or 1025 or more, or the line at 0 or
less, or MaxLineNumber + 1 or more are invalid.

Read method EditPosition
numberOfChars indicates the number of characters to read from the current position. If
omitted, it reads to the end of the line.

Types expected
string Read([int numberOfChars])

Return value
Returns a string containing the characters read.

Replace method EditPosition

This method searches in the current edit buffer and in the direction indicated for the
search expression indicated in pat and replaced it with rep.

Types expected
bool Replace([string pat, string rep, bool case,
 bool useRE, bool dir, int reFlavor, bool
 global, EditBlock block])

pat The string to search for.

rep The string to replace with.

case Indicates if the case of pat is significant in the search.

useRE Indicates whether or not to interpret pat as a regular expression string.

dir One of the following:

SEARCH_FORWARD (default)
SEARCH_BACKWARD

reFlavor The type of regular expression being used; it may be one of the
following:

IDE_RE (default)
BRIEF_RE
BRIEF_RE_FORWARD_MIN
BRIEF_RE_SAME_MIN
BRIEF_RE_BACK_MIN
BRIEF_RE_FORWARD_MAX
BRIEF_RE_SAME_MAX
BRIEF_RE_BACK_MAX

block If given, restricts the search to the indicated block.

Return value
Either the string is replaced or the empty string ("") if nothing is found.

Paradigm C++ Object Scripting Guide120

ReplaceAgain method EditPosition
Repeats the most recently performed replace operation.

Types expected
bool ReplaceAgain()

Return value
Either the string is replaced or the empty string ("") if nothing is found.

Restore method EditPosition
Restores the cursor position to the position saved by the last call to the Save method.

Types expected
void Restore()

Return value
None

RipText method EditPosition
This method performs an edit rip operation. At most, this routine will rip an entire line.
It returns the string copied from the edit buffer.

Types expected
string RipText(string legalChars [,int ripFlags])

Determines the delimiter characters that can halt the edit rip. If omitted,
INCLUDE_ALPHA_CHARS, INCLUDE_NUMERIC_CHARS,
INCLUDE_SPECIAL_CHARS are all automatically added to the ripFlags argument,
making any character between ASCII decimal 32 and 128 a delimiter.

A mask built by combining any or all of the following values:

BACKWARD_RIP Rip from left to right.

INVERT_LEGAL_CHARS Interpret the legalChars string as
the inverse of the string you wish to
use for legalChars. In other words,
specify t to mean any ASCII value
between 1 and 255 except t.

INCLUDE_LOWERCASE_ALPHA_CHARS Append the characters
abcdefghijklmnopqrstuvw
xyz to
the legalChars string.

INCLUDE_UPPERCASE_ALPHA_CHARS Append the characters
ABCDEFGHIJKLMNOPQRSTUV
WXYZ to the legalChars string.

legalChars

ripFlags

Chapter 4, cScript Class Reference 121

INCLUDE_ALPHA_CHARS Append both ppercase and
lowercase alpha characters to the
legalChars string.

INCLUDE_NUMERIC_CHARS Append the characters
1234567890
to the legalChars string.

INCLUDE_SPECIAL_CHARS Append the characters `-
=[]\;',./~!@#$%^&*()_+{
}|:"<>?
to the legalChars string.

Save method EditPosition

Save the current cursor position. Use Restore to restore the cursor to this position later.

Types expected
void Save()

Return value
None

Search method EditPosition

This method searches the edit buffer in the direction indicated for the search expression
indicated in pat.

Types expected
int Search(string pat [, bool case, bool useRE,
 bool dir, int reFlavor, EditBlock block])

pat The string to search for.

case Indicates if the case of pat is significant in the search.

useRE Indicates whether or not to interpret pat as a regular expression.

dir One of the following:

SEARCH_FORWARD (default)
SEARCH_BACKWARD

reFlavor The type of regular expression in use; it may be one of the following:

IDE_RE (default)
BRIEF_RE
BRIEF_RE_FORWARD_MIN // same as BRIEF_RE
BRIEF_RE_SAME_MIN
BRIEF_RE_BACK_MIN
BRIEF_RE_FORWARD_MAX
BRIEF_RE_SAME_MAX
BRIEF_RE_BACK_MAX

block If given, restricts the search to the indicated block.

Paradigm C++ Object Scripting Guide122

If case, useRE, or reFlavor is not supplied, the value is determined by querying the
Editor object.

Return value
The size (in characters matched) of the match.

SearchAgain method EditPosition
Repeats the most recently performed search operation.

Types expected
int SearchAgain()

Tab method EditPosition

Moves the current cursor location to the next or previous tab stop, depending on
whether magnitude is positive (next) or negative (previous).

Types expected
void Tab(int magnitude)

Search expression definition EditPosition

A search expression is a set of characters that the search engine will attempt to match
against the text contained in an edit buffer. A search expression can be either a literal
string or a regular expression.

l In a literal string, there are no operators: Each character is treated literally.
l In a regular expression, certain characters have special meanings: They are

operators that govern the search.

A regular expression is either a single character or a set of characters enclosed in
brackets. A concatenation of regular expressions is a regular expression.

Regular expressions have two formats, IDE and Brief.

Brief regular search expression symbols
The following table describes the symbols that can be used in a Brief search expression:

Symbol Description

? Any single character except a newline
 * Zero or more characters (except newlines)
 \t Tab character
 \n Newline character
 \c Position cursor after the match
 \\ Literal backslash
 < or % Beginning of line
 > or $ End of line
 @ Zero or more of the last expression
 + One or more of the last expression

+

Chapter 4, cScript Class Reference 123

 | Either the last or the next expression
 {} Define a group of expressions
 [] Any one of the characters inside []
 [~] Any character except those in [~]
 [a-z] Any character between a and z, inclusive

In replacement text, \t, \n, and \c are allowed, as well as

 \<n> Substitute text matched by <n>th group (0 <= n <= 9)

IDE search expression symbols
The following table describes the symbols that can be used in an IDE search expression:

Symbol Description

 ^ A circumflex at the start of the expression matches the start of a line.
 $ A dollar sign at the end of the expression matches the end of a line.
 . A period matches any single character.
 * An asterisk after a string matches any number of occurrences of that string followed by any

characters, including zero characters. For example, bo* matches bot, boo, and bo.

 + A plus sign after a string matches any number of occurrences of that string followed by any
characters, except zero characters. For example, bo+ matches bot and boo, but not b or bo.

 { } Characters or expressions in braces are grouped to allow for controlling evaluation of a search
pattern or referring to grouped text by number.

 [] Characters in brackets match any single character that appears in the brackets, but no others.
For example [bot] matches b, o, or t.

 [^] A circumflex at the start of the string in brackets means NOT. For example, [^bot] matches
any characters except b, o, or t.

 [-] A hyphen in brackets signifies a range of characters. For example, [b-o] matches any
character from b through o.

 \ A backslash before a special character indicates that the character is to be interpreted literally.
For example, \^ matches ̂ and does not indicate the start of a line.

Edit rip definition
Edit rip is the process by which the editor detects the current cursor position and copies
characters from the edit buffer. The IDE editor uses edit rip to find relevant Help topics
when the user press F1 in an edit window.

EditStyle class

This class is one of the editor classes. EditStyle applies styles that overrride settings for
a buffer or for the entire editor.

Syntax
EditStyle(string styleName[,EditStyle styleToInitializeFrom])

Properties
EditOptions EditMode Read-write

int Identifier Read-only

Paradigm C++ Object Scripting Guide124

string Name Read-write

EditStyle class description

EditStyle objects provide a mechanism to collect EditOptions, name them, and apply
them across buffers, across the entire Editor, or both. EditStyle objects contain an
EditOptions member, a name, and an internal filter that indicates the characteristics that
the style controls. EdStyles are implicitly persistent. The list of available styles may be
traversed from the Editor object.

EditMode property EditStyle
This property contains an EditOptions object that defines the options for the style. This
is a read-write property.

Type expected
EditOptions EditMode

Identifier property EditStyle
A unique integer you can use to distinguish styles. This is a read-only property.

Type expected
int Identifier

Name property EditStyle

A unique name for this EditStyle. The value is taken from the styleName parameter.
This is a read-write property.

Type expected
string Name

EditView class

This class is one of the editor classes. It provides the visual representation of the
EditBuffer to the user within the edit window. Each edit view has only one edit buffer
and is in an edit window.

Syntax
EditView (EditWindow parent[, EditBuffer buffer])

If buffer is omitted, the parent's currently active EditBuffer is used.

Properties
EditBlock Block Read-write

int BottomRow Read-only

EditBuffer Buffer Read-only

int Identifier Read-only

bool IsValid Read-only

Chapter 4, cScript Class Reference 125

bool IsZoomed Read-write

int LastEditColumn Read-only

int LastEditRow Read-only

int LeftColumn Read-only

EditView Next Read-only

EditPosition Position Read-only

EditView Prior Read-only

int RightColumn Read-only

int TopRow Read-only

EditWindow Window Read-only

Methods
EditBuffer Attach(EditBuffer buffer)
bool BookmarkGoto(int bookmarkIDorPrevRef)
int BookmarkRecord(int bookmarkIDorPrevRef)
void Center([int row, int col])
void MoveCursorToView()
void MoveViewToCursor()
void PageDown()
void PageUp()
void Paint()
int Scroll(int deltaRow[, int deltaCol])
void SetTopLeft(int topRow, int leftCol)

EditView class description

EditView objects provide an editing window for a buffer being edited. Each EditView is
associated with only one EditWindow and one EditBuffer. During creation, the
EditView's Position member is initialized from the EditBuffer's Position member. Views
have methods that allow traversal of their sibling views. They can also be queried to
find the associated EditWindow or EditBuffer. Views have a Position member you can
use to manipulate the underlying EditBuffer. Typically this member is used by scripts
and primitives tied to the user interface. Although the underlying EditBuffer object
owns the list of bookmarks, the EditView object provides access (via record and goto),
thus providing access to a common list of bookmarks for the same buffer regardless of
the view being used.

Block property EditView
This property provides access to the instance of the EditBlock class attached to this
EditView. This is a read-only property.

Type expected
EditBlock Block

BottomRow property EditView
Row number displayed at the last line in the view. This is a read-only property.

Paradigm C++ Object Scripting Guide126

Type expected
int BottomRow

Buffer property EditView
Returns the EditBuffer to which the view is attached. This is a read-only property.

Type expected
EditBuffer Buffer

Identifier property EditView

A unique identifier you can use to tell views apart. This is a read-only property.

Type expected
int Identifier

IsValid property EditView

The view will be invalidated if it is destroyed by the user. This is a read-only property.

Type expected
bool IsValid

IsZoomed property EditView
A zoomed EditView is an EditView that has been expanded to occupy the entire
EditWindow client space. If an EditView is zoomed in an EditWindow, you can't
manipulate sibling views. (You can't create, resize, or delete them.) This is a read-write
property.

Type expected
bool IsZoomed

LastEditColumn property EditView
LastEditRow and LastEditColumn describe the character position at which the last edit
took place. An edit is defined as being a character or block insertion or a deletion
(anything that modifies the contents of the buffer). This is a read-only property.

Type expected
int LastEditColumn

LastEditRow property EditView

LastEditRow and LastEditColumn describe the character position at which the last edit
took place. An edit is defined as being a character or block insertion or a deletion
(anything that modifies the contents of the buffer). This is a read-only property.

Type expected
int LastEditRow

Chapter 4, cScript Class Reference 127

LeftColumn property EditView
Column number displayed at the left edge of the view. This is a read-only property.

Type expected
int LeftColumn

Next property EditView

The next EditView embedded in the same window. This is a read-only property.

Type expected
EditView Next

Position property EditView

Provides access to the instance of the EditPosition class attached to this EditView. This
is a read-only property.

Type expected
EditPosition Position

Prior property EditView

The previous EditView embedded in the same window. This is a read-only property.

Type expected
EditView Prior

RightColumn property EditView
Column number displayed at the right edge of the view. This is a read-only property.

Type expected
int RightColumn

TopRow property EditView

Row number displayed at the first line in the view. This is a read-only property.

Type expected
int TopRow

Window property EditView

Returns the window in which this view is embedded. This is a read-only property.

Type expected
EditWindow Window

Paradigm C++ Object Scripting Guide128

Attach method EditView
This method attaches the view to a new EditBuffer.

Types expected
EditBuffer Attach(EditBuffer buffer)

Return value
The previous edit buffer.

Description
You can Attach to replace the currently attached edit buffer. When a view is created, it
is associated with an EditBuffer. The purpose of the view is to provide a visual
representation of the edit buffer to which it is attached. Suppose you have a view that
you like (for example, you like its position in the creation history, its size and color, its
parent window, and everything else about it except that you want it to display a
different edit buffer). Instead of having to remember all these things, you can destroy
the current view, and recreate it all, and use Attach to switch its associated buffer to
another edit buffer.

BookmarkGoto method EditView

This method updates the EditBuffer's position with the value from the specified marker.

Types expected
bool BookmarkGoto(int bookmarkIDorPrevRef)

bookmarkIDorPrevRef Either an index (range 0-19) to the list of bookmarks in
the buffer or a reference to a bookmark that was returned
from a previous call to BookmarkRecord.

Return value
TRUE if the marker is valid, or FALSE if it is not.

BookmarkRecord method EditView

This method returns a value suitable for passing to BookmarkGoto() or zero if there was
an error.

Types expected
int BookmarkRecord(int bookmarkIDorPrevRef)

bookmarkIDorPrevRef Either an index (range 0-19) to the list of bookmarks in
the buffer or a reference to a bookmark that was returned
from a previous call to BookmarkRecord.

Description
You can use BookmarkRecord() to remember a known location in a buffer. The
bookmark moves with edit inserts and deletes. For example, if you placed a bookmark
using BookMarkRecord(1) at the a in "are" in the following line, you could move
around and then return to that location with BookmarkGoto(1):

 hello how are you?

Chapter 4, cScript Class Reference 129

If the word "how" were deleted, you would still return to the a in "are".

Center method EditView

Scrolls the EditView as necessary to center the character in the view window. Centers
the character at the specified position vertically or horizontally or both. A zero in a
parameter means to leave that orientation alone. If the character is already centered,
nothing happens.

Types expected
void Center([int row, int col])

Return value
None

MoveCursorToView method EditView

This method ensures that the cursor is visible in the view by altering the cursor's
position, if necessary.

Types expected
void MoveCursorToView()

Return value
None

MoveViewToCursor method EditView

This method ensures that the cursor is visible in the view by altering the view's
coordinates, if necessary.

Types expected
void MoveViewToCursor()

Return value
None

PageDown method EditView
This method advances the row position by the number of visible rows in the EditView.

Types expected
void PageDown()

Return value
None

PageUp method EditView
This method moves the cursor toward the top of the buffer by the number of lines in the
visible rows in the EditView.

Paradigm C++ Object Scripting Guide130

Types expected
void PageUp()

Return value
None

Paint method EditView

During normal script execution, screen updates are suppressed. Calling Paint forces a
refresh.

Types expected
void Paint()

Return value
None

Scroll method EditView

This method scrolls in the direction indicated and returns the number of lines actually
scrolled. The parameter values indicate and magnitude: A value less than 0 means scroll
up or left or both by that number of lines or columns or both, and a value greater than 0
means scroll down or right or both by that number of lines or columns or both.

Types expected
int Scroll(int deltaRow[, int deltaCol])

Return value
None

SetTopLeft method EditView

Attempts to position the character at the specified position in the upper left corner of the
EditView. Might fail if the position is outside the window's bounds. A zero in either
topRow or leftCol means to ignore the position request in that dimension (just set the
top or just set the left). A zero in both parameters causes the method to be ignored
altogether.

Types expected
void SetTopLeft(int topRow, int leftCol)

Return value
None

EditWindow class
This class is one of the editor classes. It provides control of editor views.

Syntax
EditWindow(EditBuffer buffer)

Chapter 4, cScript Class Reference 131

Properties
int Identifier Read-only

bool IsHidden Read-write

bool IsValid Read-only

EditWindow Next Read-only

EditWindow Prior Read-only

string Title Read-write

EditView View Read-only

Methods
void Activate()
void Close()
void Paint()
EditView ViewActivate(int direction[, EditView srcView])
EditView ViewCreate(int direction[, EditView srcView])
bool ViewDelete(int direction[, EditView srcView])
EditView ViewExists(int direction[, EditView srcView])
void ViewSlide(int direction[, int magnitude, EditView srcView])

EditWindow class description

EditWindow objects provide little functionality except for the management of panes
(views). Creation of an EditWindow does not cause a window to appear; rather, it
provides an object to which a view may be attached. As soon as the first view is
attached to an EditWindow, it can be displayed. Views may be zoomed, in which case
they expand to fill the client area of their EditWindow, hiding all sibling views (those
embedded in the same EditWindow). As long as an EditWindow contains a zoomed
view, views can't be created, destroyed or resized. EditWindows can be hidden and
unhidden to allow the user to free screen space and preserve the view layout in the
hidden EditWindows.

Identifier property EditWindow

This property is a unique value you can use to tell windows apart. It is a read-write
property.

Type expected
int Identifier

IsHidden property EditWindow

This property indicates if the current EditWindow is hidden. It is a read-only property.

Type expected
bool IsHidden

Paradigm C++ Object Scripting Guide132

IsValid property EditWindow
This property is TRUE if the current EditWindow is ready for edit operations. It is
FALSE if the window is not available (for example, it is closed). It is a read-only
property.

Type expected
bool IsValid

Next property EditWindow

This property indicates the next EditWindow, if any. It is a read-only property.

Type expected
EditWindow Next

Prior property EditWindow
This property indicates the previous EditWindow, if any. It is a read-only property.

Type expected
EditWindow Prior

Title property EditWindow

This property indicates the title of the current EditWindow. It is a read-write property.

Type expected
string Title

View property EditWindow

This property indicates the current EditView. It is a read-only property.

Type expected
EditView View

Activate method EditWindow
This method brings this window to the top and gives it focus.

Types expected
void Activate()

Return value
None

Close method EditWindow
This method closes the current window.

Chapter 4, cScript Class Reference 133

Types expected
void Close()

Return value
None

Paint method EditWindow

During normal script execution screen updates are suppressed. Calling Paint forces a
refresh.

Types expected
void Paint()

Return value
None

ViewActivate method EditWindow

This method makes an existing view the current, active view.

Types expected
EditView ViewActivate(int direction[, EditView srcView])

direction Relative to the current EditView in an EditWindow. Can be one of the
following values:

UP
DOWN
LEFT
RIGHT

srcView If omitted, the EditWindow's current EditView is activated.

Return value
The newly activated view or NULL if no view exists.

ViewCreate method EditWindow
This method creates an EditView.

Types expected
EditView ViewCreate(int direction[, EditView srcView])

direction Relative to the existing EditViews in an EditWindow and ignored for the
first view. Can be one of the following values:

Paradigm C++ Object Scripting Guide134

UP
DOWN
LEFT
RIGHT

srcView The view to create. If omitted, the EditWindow's current EditView is
used. The newly created EditView by default is not activated.

Return value
The new EditView or NULL if creation failed

ViewDelete method EditWindow

This method deletes the view in the direction relative to the srcView, if any. If no
srcView is specified, the currently active EditView in the EditWindow is deleted. The
target view (if any) is then removed from the EditWindow. srcView is then resized to
occupy the space previously held by the target view.

Types expected
bool ViewDelete(int direction[, EditView srcView])

direction Relative to the existing EditViews in an EditWindow and ignored for the
first view. Can be one of the following values:

UP
DOWN
LEFT
RIGHT

srcView If omitted, the EditWindow's current EditView is deleted.

Return value
TRUE if the view was deleted or FALSE if it was not.

ViewExists method EditWindow

Get a reference to an adjoining EditView, if the adjoining EditView exists.

Types expected
EditView ViewExists(int direction[, EditView srcView])

direction Relative to the current EditView in an EditWindow. Can be one of the
following values:

UP
DOWN
LEFT
RIGHT

srcView If omitted, the EditWindow's current EditView is used.

Chapter 4, cScript Class Reference 135

Return value
The EditView or NULL if it doesn't exist.

ViewSlide method EditWindow

Moves the view in the direction indicated.

Types expected
void ViewSlide(int direction[, int magnitude,
 EditView srcView])

direction Relative to the existing EditViews in an EditWindow. Can be one of the
following values:

UP
DOWN
LEFT
RIGHT

magnitude The direction (+ or -) and amount to move

srcView If omitted, the EditWindow's current EditView is used.

Return value
None

Paradigm C++ Object Scripting Guide136

Chapter 4, cScript Class Reference 137

IDEApplication class
This class represents the Paradigm C++ Integrated Development Environment (IDE).
An IDEApplication object called IDE is instantiated when Paradigm C++ starts up. You
typically use this class to determine how to use or extend this IDE object.

Syntax
IDEApplication()

Properties
string Application Read-only

string Caption Read-write

string CurrentDirectory Read-only

string CurrentProjectNode Read-only

string DefaultFilePath Read-write

Editor Editor Read-only

string FullName Read-only

int Height Read-write

int IdleTime Read-only

int IdleTimeout Read-write

int LoadTime Read-only

string KeyboardAssignmentFile Read-write

KeyboardManager KeyboardManager Read-only

int Left Read-write

string ModuleName Read-only

string Name Read-only

string Parent Read-only

bool RaiseDialogCreatedEvent Read-write

string StatusBar Read-write

int Top Read-write

bool UseCurrentWindowForSourceTracking Read-write

int Version Read-only

bool Visible Read-write

int Width Read-write

Methods
void AddToCredits()
bool CloseWindow()
bool DebugAddBreakpoint()
bool DebugAddWatch()
bool DebugAnimate()
bool DebugAttach()

Paradigm C++ Object Scripting Guide138

bool DebugBreakpointOptions()
string DebugEvaluate()
bool DebugInspect()
bool DebugInstructionStepInto()
bool DebugInstructionStepOver()
bool DebugLoad()
bool DebugPauseProcess()
bool DebugResetThisProcess()
bool DebugRun()
bool DebugRunTo()
bool DebugSourceAtExecutionPoint()
bool DebugStatementStepInto()
bool DebugStatementStepOver()
bool DebugTerminateProcess()
int DirectionDialog(string prompt)
string DirectoryDialog(string prompt, string initialValue)
void DisplayCredits()
bool DoFileOpen(string filename, string toolName [, ProjectNode node])
bool EditBufferList()
bool EditCopy()
bool EditCut()
bool EditPaste()
bool EditRedo()
bool EditSelectAll()
bool EditUndo()
void EndWaitCursor()
void EnterContextHelpMode()
void ExpandWindow()
bool FileClose()
string FileDialog(string prompt, string initialValue)
bool FileExit([int IDEReturn])
bool FileNew([string toolName, string fileName])
bool FileOpen([string name, string toolName])
bool FilePrint(bool suppressDialog)
bool FilePrinterSetup()
bool FileSave()
bool FileSaveAll()
bool FileSaveAs([string newName])
bool FileSend()
int GetRegionBottom(string RegionName)
int GetRegionLeft(string RegionName)
int GetRegionRight(string RegionName)
int GetRegionTop(string RegionName)
bool GetWindowState()
void Help(string helpFile, int command, string helpTopic)
bool HelpAbout()
bool HelpContents()
bool HelpKeyboard()
bool HelpKeywordSearch([string keyword])
bool HelpUsingHelp()
bool HelpWindowsAPI()
string KeyPressDialog(string prompt, string default)
string[] ListDialog(string prompt, bool multiSelect, bool sorted,
 string [] initialValues)
void Menu()
bool Message(string text, int severity)
int MessageCreate(string destinationTab, string toolName, int
 messageType, int parentMessage, string filename, int lineNumber,
 int columnNumber, stringtext, string helpFileName, int
 helpContextId)
bool NextWindow(bool priorWindow)

Chapter 4, cScript Class Reference 139

bool OptionsEnvironment()
bool OptionsProject()
bool OptionsSave()
bool OptionsStyleSheets()
bool OptionsTools()
bool ProjectBuildAll([bool suppressOkay, string nodeName])
bool ProjectCloseProject()
bool ProjectCompile([string nodeName])
bool ProjectGenerateMakefile([string nodeName])
bool ProjectMakeAll([bool suppressOkay, string nodeName])
bool ProjectManagerInitialize()
bool ProjectNewProject([string pName])
bool ProjectNewTarget([string nTarget, int targetType, int platform,
int libraryMask, int modelOrMode])
bool ProjectOpenProject([string pName])
void Quit()
bool SaveMessages(string tabName, string fileName)
bool ScriptCommands()
bool ScriptCompileFile(string fileName)
bool ScriptModules()
bool ScriptRun([string command])
bool ScriptRunFile([string filename])
bool SearchBrowseSymbol([string sName])
bool SearchFind([string pat])
bool SearchLocateSymbol([string sName])
bool SearchNextMessage()
bool SearchPreviousMessage()
bool SearchReplace([string pat, string rep])
bool SearchSearchAgain()
bool SetRegion(string RegionName, int left, int top, int right, int
 bottom)
bool SetWindowState(int desiredState)
string SimpleDialog(string prompt, string initialValue [, int
 maxNumChars])
void SpeedMenu()
void StartWaitCursor()
string StatusBarDialog(string prompt, string initialValue [, int
 maxNumChars])
bool Tool([string toolName, string commandstring])
void Undo()
bool ViewActivate(int direction)
bool ViewBreakpoint()
bool ViewCallStack()
bool ViewClasses()
bool ViewCpu()
bool ViewGlobals()
bool ViewMessage([string tabName])
bool ViewProcess()
bool ViewProject()
bool ViewSlide(int direction [, int amount])
bool ViewWatch()
bool WindowArrangeIcons()
bool WindowCascade()
bool WindowCloseAll([string typeName])
bool WindowMinimizeAll([string typeName])
bool WindowRestoreAll([string typeName])
bool WindowTileHorizontal()
bool WindowTileVertical()
string YesNoDialog(string prompt, string default)

Paradigm C++ Object Scripting Guide140

Events
void BuildComplete(bool status, string inputPath, string OutputPath)
void BuildStarted()
void DialogCreated(string dialogName, int dialogHandle)
void Exiting()
void HelpRequested(string filename, int command, int data)
void Idle()
void KeyboardAssignmentsChanged(string newFilename)
void KeyboardAssignmentsChanging(string newFilename)
void MakeComplete(bool status, string inputPath, string outputPath)
void MakeStarted()
void ProjectClosed(string projectFileName)
void ProjectOpened(string projectFileName)
void SecondElapsed()
void Started(bool VeryFirstTime)
void SubsytemActivated(string systemName)
bool TransferOutputExists(TransferOutput output)
void TranslateComplete(bool status, string inputPath, string
outputPath)

Application property IDEApplication
This property contains the IDEApplication object's internal name. The name is for use
by Windows and its presence is required by Microsoft conventions. This is a read-only
property.

Type expected
string Application

Caption property IDEApplication

This property indicates the caption of the Paradigm C++ IDE main window. This is a
read-write property.

Type expected
string Caption

CurrentDirectory property IDEApplication

This property indicates the application's current directory. Whenever a project file is
opened, the value of CurrentDirectory changes to the directory containing the project
file. This is a read-only property.

Type expected
string CurrentDirectory

CurrentProjectNode property IDEApplication
This property contains the name of the currently selected node in the Project window. If
the Project window is not open, or if multiple nodes are selected in the Project window,
CurrentProjectNode contains an empty string (""). This is a read-only property.

Type expected
string CurrentProjectNode

Chapter 4, cScript Class Reference 141

DefaultFilePath property IDEApplication
This property indicates the default file path for the Paradigm C++ IDE. This is a read-
only property.

Type expected
string DefaultFilePath

Editor property IDEApplication
This property is an instance of the Paradigm C++ IDE editor. This is a read-only
property.

Type expected
Editor Editor

FullName property IDEApplication
This property contains the string, "Paradigm C++ for Windows, vers. 5.0". This is a
read-only property.

Type expected
string FullName

Height property IDEApplication
This property indicates the height of the Paradigm C++ IDE main window. This is a
read-only property.

Type expected
int Height

IdleTime property IDEApplication
This property indicates the number of seconds since the last user-generated event. This
is a read-only property.

Type expected
int IdleTime

IdleTimeout property IDEApplication
This property specifies the number of seconds the IDE must remain idle before an idle
event will be generated. It defaults to 180 (3 minutes). This is a read-write property.

Type expected
int IdleTimeout

Paradigm C++ Object Scripting Guide142

LoadTime property IDEApplication
The number of milliseconds it takes for the IDE to load. The number reflects time up
through the processing of the startup script. Thereafter it remains fixed. This is a read-
only property.

Type expected
int LoadTime

KeyboardAssignmentFile property IDEApplication

This property indicates the file name of the keyboard file (.KBD) last selected from the
Options|Environment|Editor dialog. This is a read-write property.

Type expected
string KeyboardAssignmentFile

KeyboardManager property IDEApplication

This property is an instance of the Paradigm C++ IDE keyboard manager. This is a
read-only property.

Type expected
KeyboardManager KeyboardManager

Left property IDEApplication

Indicates the left coordinate of the IDE's main window. This is a read-write property.

Type expected
int Left

ModuleName property IDEApplication
This property indicates the module name of the running application, including its path.
For example, "c:\paradigm\bin\pcw.exe". This is a read-only property.

Type expected
string ModuleName

Name property IDEApplication
This property indicates the name of the Paradigm C++ IDE, "PCW". This is a read-only
property.

Type expected
string Name

Parent property IDEApplication
Contains a value required by Windows. Presence required by Microsoft conventions.
This is a read-only property.

Chapter 4, cScript Class Reference 143

Type expected
string Parent

RaiseDialogCreatedEvent property IDEApplication
This property's value is initialized to FALSE. Setting it to TRUE causes the
DialogCreated event to be raised whenever a new dialog is created. This is a read-write
property.

Type expected
bool RaiseDialogCreatedEvent

StatusBar property IDEApplication

This property is used to gets or set the text displayed in the IDE's status bar. This is a
read-write property.

Type expected
bool StatusBar

Top property IDEApplication

This property contains the top coordinate of the IDE main window. This is a read-write
property.

Type expected
int Top

UseCurrentWindowForSourceTracking property IDEApplication

This property, if TRUE, the IDE replaces the contents of the active Edit window
whenever a new file is loaded. If FALSE, the IDE opens a new Edit window. This is a
read-write property.

Type expected
bool UseCurrentWindowForSourceTracking

Version property IDEApplication
This property holds the value 500 for Paradigm C++ version 5.0. This is a read-only
property.

Type expected
int Version

Visible property IDEApplication
This property, if TRUE, makes the IDE visible to the user. If FALSE, the IDE is not
visible on the screen. This is a read-write property.

Type expected
bool Visible

Paradigm C++ Object Scripting Guide144

Width property IDEApplication
This property contains the width of the IDE's main window. This is a read-write
property.

Type expected
int Width

AddToCredits method IDEApplication
This method adds a name to the list of developer credits in the About dialog box. It adds
the new name to the end of the existing list. To display developer credits, choose
Help|About and press Alt-I.

Types expected
void AddToCredits()

CloseWindow method IDEApplication

This method closes the currently selected IDE child window.

Types expected
bool CloseWindow()

Return value
TRUE if the window closed, FALSE if unable to close the window.

DebugAddBreakpoint method IDEApplication

This method opens the Add Breakpoint dialog.

Types expected
bool DebugAddBreakpoint()

Return value
TRUE if successful, FALSE otherwise

DebugAddWatch method IDEApplication

This method adds a watch on the current symbol.

Types expected
bool DebugAddWatch()

Return value
TRUE if successful, FALSE otherwise

DebugAnimate method IDEApplication

This method lets you watch your program's execution in "slow motion."

Chapter 4, cScript Class Reference 145

Types expected
bool DebugAnimate()

Return value
TRUE if successful, FALSE otherwise

Description
Animate performs a continuous series of Statement Step Into commands. To interrupt
animation, invoke one of the following Debugger methods either by menu selections or
by keystrokes tied to the script:

Debugger.Run
Debugger.RunToAddress
Debugger.RunToFileLine
Debugger.PauseProgram
Debugger.Reset
Debugger.TerminateProgram
Debugger.FindExecutionPoint

DebugAttach method IDEApplication

This method invokes the debugger for the currently executing process.

Types expected
bool DebugAttach()

Return value
TRUE if successful, FALSE otherwise

DebugBreakpointOptions method IDEApplication

This method opens the Breakpoint Condition/Action Options dialog.

Types expected
bool DebugBreakpointOptions()

Return value
TRUE if successful, FALSE, otherwise

DebugEvaluate method IDEApplication

This method evaluates the current expression, such as a global or local variable or an
arithmetic expression.

Types expected
string DebugEvaluate()

Return value
Returns the result of the evaluation.

Paradigm C++ Object Scripting Guide146

DebugInspect method IDEApplication
This method attempts to opens an inspector for the current symbol.

Types expected
bool DebugInspect()

Return value
TRUE if successful, FALSE otherwise.

DebugInstructionStepInto method IDEApplication
This method executes the next instruction, stepping into any function calls. If a process
is not loaded, InstructionStepInto first loads the executable for the current project.

Types expected
bool DebugInstructionStepInto()

Return value
TRUE if successful, FALSE otherwise.

DebugInstructionStepOver method IDEApplication

This method executes the next instruction, running any functions called at full speed. If
a process is not loaded, InstructionStepOver first loads the executable for the current
project.

Types expected
bool DebugInstructionStepOver()

Return value
TRUE if successful, FALSE otherwise.

DebugLoad method IDEApplication
This method loads the current executable into the debugger.

Types expected
bool DebugLoad([string fileToLoad])

Return value
TRUE if successful, FALSE otherwise.

Description
Upon loading, the process is run to the starting point as specified in the
Options|Environment|Debugger|Debugger Behavior dialog. If the parameter is NULL,
this method opens the Load Program dialog.

Chapter 4, cScript Class Reference 147

DebugPauseProcess method IDEApplication
This method causes the debugger to pause the current process. It has an effect only if
the current process is running or is animated.

Types expected
bool DebugPauseProcess()

Return value
TRUE if successful, FALSE otherwise.

DebugResetThisProcess method IDEApplication

This method causes the debugger to reset the current process to its starting point as
specified in the Options|Environment|Debugger|Debugger Behavior dialog.

Types expected
bool DebugResetThisProcess()

Return value
TRUE if successful, FALSE otherwise.

DebugRun method IDEApplication

This method causes the debugger to run the current process. If no process is loaded, this
method first loads the executable associated with the current project.

Types expected
bool DebugRun()

Return value
TRUE if successful, FALSE otherwise.

DebugRunTo method IDEApplication
If this method is called while working with an EditView, the method runs the current
process until the source at the current line in the current file is encountered. If the
current object is not an EditView the method runs the current process until the
instruction at the current address is encountered. If no process is loaded, this method
will first load the executable associated with the current project.

Types expected
bool DebugRunTo()

Return value
TRUE if successful, FALSE otherwise.

DebugSourceAtExecutionPoint method IDEApplication

This method displays the source code at the current execution point.

Paradigm C++ Object Scripting Guide148

Types expected
bool DebugSourceAtExecutionPoint()

Return value
TRUE if successful, FALSE otherwise.

Description
The current execution point is indicated by the EIP register. If the current execution
point is in source code, the execution point is shown in an edit window. (The
appropriate source file is opened if necessary.) If the current execution point is at an
address that has no source associated with it, the execution point is shown in a CPU
view. (One is opened if necessary.)

DebugStatementStepInto method IDEApplication
This method executes the next source statement and steps through the source of any
function calls. If a process is not loaded, the method first loads the executable for the
current project.

Types expected
bool DebugStatementStepInto()

Return value
TRUE if successful, FALSE otherwise.

DebugStatementStepOver method IDEApplication

This method executes the next source statement and does not step into any functions
called, but runs them at full speed. If a process is not loaded, StatementStepOver first
loads the executable for the current project.

Types expected
bool DebugStatementStepOver()

Return value
TRUE if successful, FALSE otherwise.

DebugTerminateProcess method IDEApplication

This method terminates the current process. If no process is loaded, this method has no
effect.

Types expected
bool DebugTerminateProcess()

Return value
TRUE if successful, FALSE otherwise.

DirectionDialog method IDEApplication

This method invokes a dialog that allows the user to specify a direction.

Chapter 4, cScript Class Reference 149

Types expected
int DirectionDialog(string prompt)

Return value
One of the following values: CANCEL, RIGHT, LEFT, UP, DOWN.

DirectoryDialog method IDEApplication

This method invokes a directory-browsing dialog box that allows the user to choose a
directory.

Types expected
string DirectoryDialog(string prompt, string initialValue)
 [, string pathSpecifier])

prompt The value to place in the caption of the dialog.

initialValue The value to initialize the edit field with.

pathSpecifier The directory in which to start browsing. If this parameter is not
specified, the current directory is used.

Return value
If successful, this method returns a fully qualified directory name. If the user cancels, it
returns the empty string ("").

DisplayCredits method IDEApplication
This method displays the list of developer credits in the About dialog box. To display
developer credits, choose Help|About and press Alt-I.

Types expected
void DisplayCredits()

DoFileOpen method IDEApplication
This method is used by the FileOpen method to open files. If the specified filename
does not exist, it is created. The node argument is passed if the file is to be associated
with a specific node in the project.

Types expected
bool DoFileOpen(string fileName, string toolName
 [, ProjectNode node])

Return value
TRUE is successful, FALSE otherwise.

EditBufferList method IDEApplication

This method displays the buffer list dialog for the user.

Paradigm C++ Object Scripting Guide150

Types expected
bool EditBufferList()

Return value
TRUE if the buffer list was successfully edited or FALSE if no edit buffers exist.

EditCopy method IDEApplication

This method copies selected text from the current edit buffer to the Windows clipboard.

Types expected
bool EditCopy()

Return value
TRUE if the topmost window is an EditView with a valid marked block, FALSE
otherwise.

EditCut method IDEApplication

This method copies selected text from the current edit buffer to the clipboard and
deletes the selected text.

Types expected
bool EditCut()

Return value
TRUE if the topmost window is an EditView with a valid marked block, FALSE
otherwise.

EditPaste method IDEApplication

This method copies selected text from the Clipboard to the current edit position in the
current edit buffer.

Types expected
bool EditPaste()

Return value
TRUE if the topmost window is an EditView with a valid marked block, FALSE
otherwise.

EditRedo method IDEApplication
This method reapplies the operation that was undone with the last EditUndo.

Types expected
bool EditRedo()

Return value
TRUE if the operation was successful or FALSE if it is not.

Chapter 4, cScript Class Reference 151

EditSelectAll method IDEApplication
This method selects all the text in the current edit buffer.

Types expected
bool EditSelectAll()

Return value
TRUE if the select was successful or FALSE if it is not.

EditUndo method IDEApplication
This method undoes the last edit operation.

Types expected
bool EditUndo()

Return value
TRUE if the operation was successful or FALSE if it is not.

EndWaitCursor method IDEApplication
This method stops the display of the Windows wait cursor (by default, an hourglass).

Types expected
void EndWaitCursor()

Return value
None

EnterContextHelpMode method IDEApplication
Calling this method puts the IDE in help context mode: The next click of the mouse
generates a help event for whatever the mouse pointer is on.

Types expected
void EnterContextHelpMode()

Return value
None

ExpandWindow method IDEApplication

This method increases the size of the currently selected window to its maximum view
managed size, defined by calls to SetRegion. After the window has been expanded with
this method, there is no way to decrease its size.

Types expected
void ExpandWindow()

Paradigm C++ Object Scripting Guide152

Return value
None

FileClose method IDEApplication

This method closes the file that is currently open and selected.

Types expected
bool FileClose()

Return value
TRUE if the file was successfully closed, or FALSE if the file could not be closed.

FileDialog method IDEApplication

Invokes a File Open dialog and allows the user to choose a file.

Types expected
string FileDialog(string prompt, string initialValue)

Return value
This method returns a fully qualified file name if successful. If the user cancels, the
method returns the empty string ("").

FileExit method IDEApplication

This method closes the application after first ensuring that all files are saved.

Types expected
bool FileExit([int IDEReturn])

IDEReturn The return value of the IDE application when it exits. By default, this
value is 0.

Return value
TRUE if the application was closed or FALSE if it could not be closed.

FileNew method IDEApplication

This method creates a new file for the tool specified in toolName.

Types expected
bool FileNew([string toolName, string fileName])

Return value
TRUE if the file was created or FALSE if the file could not be created.

FileOpen method IDEApplication

This method opens a file. If the file specified by name doesn't exist, the user is
prompted for a file name. Internally, this method uses DoFileOpen.

Chapter 4, cScript Class Reference 153

Types expected
bool FileOpen([string name, string toolName])

Return value
TRUE if the file was opened or FALSE if the file could not be opened.

FilePrint method IDEApplication

This method prints a file. If suppressDialog is set to TRUE, this method does not
display the Printer Options dialog prior to performing the print operation but rather
reuses the last print options specified.

Types expected
bool FilePrint(bool suppressDialog)

Return value
TRUE if the print operation was successful or FALSE if it was not.

FilePrinterSetup method IDEApplication
Displays the Printer Setup dialog box to allow the user to set print options.

Types expected
bool FilePrinterSetup()

Return value
TRUE if the dialog sets the options or FALSE if the user exits with Cancel.

FileSave method IDEApplication
This method saves the currently open editor file.

Types expected
bool FileSave()

Return value
TRUE if the file was saved or FALSE if the file could not be saved.

FileSaveAll method IDEApplication
This method saves all open editor files.

Types expected
bool FileSaveAll()

Return value
TRUE if all files were saved or FALSE if a file could not be saved.

Paradigm C++ Object Scripting Guide154

FileSaveAs method IDEApplication
This method displays the standard File Save As dialog box so the user can save the
currently active editor file. If newName is supplied, it attempts to save the file under
that name in the current directory.

Types expected
bool FileSaveAs([string newName])

Return value
TRUE if the file was saved or FALSE if the file could not be saved.

FileSend method IDEApplication

This method instructs the Windows MAPI to send files to another MAPI client.

Types expected
bool FileSend()

Return value
TRUE if the file was sent or FALSE if the file could not be sent.

GetRegionBottom method IDEApplication

This method gets the bottom value of the specified region. It can be used in conjunction
with SetRegion to position a window.

Types expected
int GetRegionBottom(string RegionName)

RegionName See the RegionName description.

Return value
The bottom value of the specified region in display units (0 - 10000) or -1 if no such
region exists.

Region names
Available region names include:

"Breakpoint"
"CPU"
"Debugger"
"Editor"
"Evaluator"
"Event Log"
"Inspector"
"Message"
"Processes"
"Project"
"Stack"

Chapter 4, cScript Class Reference 155

"Thread Count"
"Watches"

GetRegionLeft method IDEApplication

This method gets the left value of the specified region. It can be used in conjuction with
SetRegion to position a window.

Types expected
int GetRegionLeft(string RegionName)

RegionName See the RegionName description.

Return value
The left value of the specified region in display units (0 - 10000) or -1 if no such region
exists.

GetRegionRight method IDEApplication

This method gets the right value of the specified region. It can be used in conjunction
with SetRegion to position a window.

Types expected
int GetRegionRight(string RegionName)

RegionName See the RegionName description.

Return value
The right value of the specified region in display units (0 - 10000) or -1 if no such
region exists.

GetRegionTop method IDEApplication

This method gets the top value of the specified region. It can be used in conjunction
with SetRegion to position a window.

Types expected
int GetRegionTop(string RegionName)

RegionName See the RegionName description.

Return value
The top value of the specified region in display units (0 - 10000) or -1 if no such region
exists.

GetWindowState method IDEApplication

This method retrieves the state of the currently focused window.

Types expected
bool GetWindowState()

Paradigm C++ Object Scripting Guide156

Return value
SW_NORMAL, SW_MINIMIZE, or SW_MAXIMIZE

Help method IDEApplication

This method invokes the Windows Help system with the specified Help file and context
ID.helpFile specifies the name (with optional path) of the Windows Help file to open.
helpCommand is a constant representing a command passes to the Windows Help
engine. The helpCommand constants begin with HELP_ and are defined in the C++
header file WINUSER.H. helpTopic is the name of the Help topic to display.

Types expected
void Help (string helpFile, int helpCommand, string helpTopic)

Return value
None

HelpAbout method IDEApplication

This method displays the Help About dialog box.

Types expected
bool HelpAbout()

Return value
TRUE if the dialog box displays, FALSE if it cannot be displayed.

HelpContents method IDEApplication

This method displays the default Help contents screen. For Windows 95 Help systems,
this window is the Help Topics Contents page.

Types expected
bool HelpContents()

Return value
TRUE if the Help window can be displayed or FALSE if it cannot be displayed.

HelpKeyboard method IDEApplication
This method displays a Help window describing how to map the keyboard in the IDE.

Types expected
bool HelpKeyboard()

Return value
TRUE if the Help window can be displayed or FALSE if it cannot be displayed.

HelpKeywordSearch method IDEApplication
This method displays the Help Topics Index page with keyword as the default entry.

Chapter 4, cScript Class Reference 157

Types expected
bool HelpKeywordSearch([string keyword])

Return value
TRUE if the Help window can be displayed or FALSE if it cannot be displayed.

HelpUsingHelp method IDEApplication

This method displays a Help window describing how to use Help.

Types expected
bool HelpUsingHelp()

Return value
TRUE if the Help window can be displayed or FALSE if it cannot be displayed.

HelpWindowsAPI method IDEApplication

This method displays the Microsoft Windows API Help Topics dialog box.

Types expected
bool HelpWindowsAPI()

Return value
TRUE if the Help window can be displayed or FALSE if it cannot be displayed.

KeyPressDialog method IDEApplication

This method displays a dialog and records the keys pressed by the user in a mnemonic
format suitable for using with key assignments.

Types expected
string KeyPressDialog(string prompt, string default)

Return value
The mnemonic name of the key pressed by the user or the empty string ("") if the user
presses Esc or Cancel.

ListDialog method IDEApplication
This method dsplays a modal list dialog containing the strings as specified in the
initialValues array. The list is sorted as indicated by sorted and supports multiple
selection as indicated by multiSelect.

Types expected
string[] ListDialog(string prompt, bool multiSelect,
 bool sorted, string [] initialValues)

Return value
An array containing the strings that were selected.

Paradigm C++ Object Scripting Guide158

Menu method IDEApplication
This method activates the main menu.

Types expected
void Menu()

Return value
None

Message method IDEApplication
This method displays messages to the user.

Types expected
bool Message(string text, int severity)

text The message to display.

severity One of the following values: INFORMATION, WARNING, ERROR.
The value specified also determines the text for the caption.

Return value
This method returns TRUE if the message box successfully opened, FALSE otherwise.

MessageCreate method IDEApplication
This method adds messages to the Message window.

Types expected
int MessageCreate(string destinationTab, string toolName,
 int messageType, int parentMessage, string filename,
 int lineNumber, int columnNumber, string text,
 string helpFileName, int helpContextId)

destinationTab The name of the tab on the page of the MessageView on which
this message should appear. The default supported values for this
parameter are "Buildtime", "Runtime", and "Script". If a non-
existant tab name is given, a new tab will be created.

toolName The name of the tool to be associated with the file to open. Tools
can be standalone programs (like GREP, the Paradigm C++
integrated debugger, or an alternate editor), or they can be
translators that are used for each file (or node) in a project. You
can also use the tool name: AddOn. You can run a DOS program
with the Windows IDE transfer. If toolName is not provided, a
default is used.

messageType The severity to be associated with the message. (INFORMATION
(default), WARNING, ERROR, or FATAL).

parentMessage The message that this message should be stored under. (Zero
creates a new top-level message.)

Chapter 4, cScript Class Reference 159

fileName, lineNumber, and columnNumber provide source navigation for the message.
By selecting the message the user can be taken to the specified lineNumber and
columnNumber in the filename in an editor.

helpFile and helpContext specify where the user can find Windows Help of this
message. If these parameters are set to valid values, the user will go to the given Help
topic if F1 is pressed while the message is selected.

Return value
The message ID of the generated message.

NextWindow method IDEApplication

This method advances focus and activation to the next MDI child window from the
currently selected window. If priorWindow is TRUE, focus and activation go to the
previous window. priorWindow defaults to FALSE.

Types expected
bool NextWindow(bool priorWindow)

Return value
TRUE if focus changes to another window, FALSE if it does not.

OptionsEnvironment method IDEApplication
This method displays the Environment Options dialog box.

Types expected
bool OptionsEnvironment()

Return value
TRUE if the dialog box can be displayed, FALSE if it cannot.

OptionsProject method IDEApplication
This method displays the Project Options dialog box.

Types expected
bool OptionsProject()

Return value
TRUE if the dialog box can be displayed, FALSE if it cannot.

OptionsSave method IDEApplication
This method opens the Options Save dialog box, which allows the user to save the
contents of their project, desktop, messages and current settings for Environment.

Types expected
bool OptionsSave()

Paradigm C++ Object Scripting Guide160

Return value
TRUE if the dialog can be opened, FALSE if it cannot.

OptionsStyleSheets method IDEApplication

This method displays the Style Sheets dialog box.

Types expected
bool OptionsStyleSheets()

Return value
TRUE if the dialog box can be opened, FALSE if it cannot.

OptionsTools method IDEApplication

This method displays the Tools dialog box.

Types expected
bool OptionsTools()

Return value
TRUE if the dialog box can be opened, FALSE if it cannot.

ProjectBuildAll method IDEApplication

This method builds all the files in the current project, regardless of whether they are out
of date (exactly the same as the Project|Build All menu selection.

Types expected
bool ProjectBuildAll([bool suppressOkay, string nodeName])

suppressOkay Builds the project without requiring the user to respond with OK to
continue.

nodeName Build only the node specified.

Return value
TRUE if the build was successful or FALSE if it was not.

ProjectCloseProject method IDEApplication

This method closes the current project.

Types expected
bool ProjectCloseProject()

Return value
TRUE if the project was successfully closed or FALSE if it was not.

Chapter 4, cScript Class Reference 161

ProjectCompile method IDEApplication
This method compiles the current project. If a nodeName is indicated, what happens
depends on the type of node:

A .CPP node causes the C++ compiler to be called.
A .RC node causes resource compiler to be called.
An .EXE node causes the linker to be called.
A .LIB node causes the librarian to be called.
An .SPP node causes the cScript compiler to be called.

Types expected
bool ProjectCompile([string nodeName])

Return value
TRUE if the project was successfully closed or FALSE if it was not.

ProjectGenerateMakefile method IDEApplication
This method generates a make file for the current project. If the nodeName is specified,
then the generated makefile contains only the commands necessary to build that node.
Otherwise, commands are generated to build the entire project.

Types expected
bool ProjectGenerateMakefile([string nodeName])

Return value
TRUE if the makefile was successfully generated or FALSE if it was not.

ProjectMakeAll method IDEApplication

This method makes all targets for the current project, rebuilding only those files that are
out of date.

suppressOkay Makes the project without requiring the user to respond with OK to
continue.

nodeName Makes only the node specified.

Types expected
bool ProjectMakeAll([bool suppressOkay, string nodeName])

Return value
TRUE if the targets were successfully made or FALSE if not.

ProjectManagerInitialize method IDEApplication
This method is called once during IDE initialization to ensure that the IDE's Project
Manager is in a stable state prior to the occurrence of any major events, such as the
opening of files or creation of new targets.

Paradigm C++ Object Scripting Guide162

Types expected
bool ProjectManagerInitialize()

Return value
TRUE if the Project Manager has successfully initialized or FALSE if it did not.

ProjectNewProject method IDEApplication

This method creates a new project. If pName is specified, then the project is created
with pName as its name, otherwise the user is prompted for a project name.

Types expected
bool ProjectNewProject([string pName])

Return value
TRUE if the project was successfully created or FALSE if it was not.

ProjectNewTarget method IDEApplication

This method creates a new target for the node specified in nTarget.

Types expected
bool ProjectNewTarget ([string nTarget, int targetType,
 int platform, int libraryMask, int modelOrMode])

ProjectNewTarget parameter descriptions IDEApplication

nTarget is the name of the node.

targetType must be one of the following target values:

TE_APPLICATION (default)
TE_STATICLIB

platform must be one of the following platform values:

TE_AXE

libraryMask indicates which libraries to link and is one or more of the following values:

TE_STDLIBS (default: same as TE_STDLIB_RTL | TE_STDLIB_EMU)
TE_STDLIB_EMU
TE_STDLIB_MATH
TE_STDLIB_NOEH
TE_STDLIB_RTL

modelOrMode is one of the following values:

TE_MM_LARGE(default if platform is TE_WIN32)
TE_MM_SMALL
TE_MM_MEDIUM
TE_MM_COMPACT
TE_MM_HUGE

Chapter 4, cScript Class Reference 163

ProjectOpenProject method IDEApplication
This method opens a project. If pName is specified, it opens that project. If not, it
displays the Open Project dialog box and prompts the user for a project name.

Types expected
bool ProjectOpenProject([string pName])

Return value
TRUE if the project opened or FALSE if it did not.

Quit method IDEApplication

This method shuts down the IDE and exits.

Types expected
void Quit()

Return value
None

SaveMessages method IDEApplication

This method saves the contents of the specified Message window tab page to the
specified file.

Types expected
bool SaveMessages(string tabName, string fileName)

tabName One of the following values:

"Buildtime"
"Runtime"
"Script"

Return value
TRUE if the messages are saved or FALSE if it cannot be saved.

ScriptCommands method IDEApplication
This method invokes the Script Commands dialog box. The dialog lists the commands
currently available in the system.

Types expected
bool ScriptCommands()

Return value
TRUE if the user enters a command and selects Run, FALSE otherwise.

ScriptCompileFile method IDEApplication

This method compiles the script file fileName.

Paradigm C++ Object Scripting Guide164

Types expected
bool ScriptCompileFile(string fileName)

Return value
TRUE if the compile was successful, FALSE otherwise.

ScriptModules method IDEApplication
This method invokes the Script Modules dialog box. The dialog lists the modules
loaded or in the Script Path.

Types expected
bool ScriptModules()

Return value
TRUE if a module is selected, FALSE otherwise.

ScriptRun method IDEApplication

Executes the script command given in command. If no command is passed, the Script
Run dialog appears.

Types expected
bool ScriptRun(string command)

Return value
TRUE if the command is executed, FALSE otherwise.

ScriptRunFile method IDEApplication

This method causes script file given in fileName to execute. If no fileName is given, the
method attempts to execute the commands in the current EditView.

Types expected
bool ScriptRunFile([string fileName])

Return value
TRUE if a file is executed or an EditView is found, FALSE otherwise.

SearchBrowseSymbol method IDEApplication
This method searches for the symbol indicated in sName. If sName is not provided, the
user will be prompted for it.

Types expected
bool SearchBrowseSymbol([string sName])

Return value
TRUE if the symbol is found or FALSE if it cannot be found.

Chapter 4, cScript Class Reference 165

SearchFind method IDEApplication
This method searches in the current edit buffer for the pattern supplied in pat. If pat is
found, the cursor is moved to the occurrence of pat. This pattern can be a simple string
or a search expression.

Types expected
bool SearchFind([string pat])

Return value
TRUE if the expression is found or FALSE if it cannot be found.

SearchLocateSymbol method IDEApplication

This method searches through the current target of the current project and uses the
Browser's symbol information to locate a symbol's definition.

Types expected
bool SearchLocateSymbol([string sName])

Return value
TRUE if the expression is found or FALSE if it cannot be found.

Description
On success, this method opens the source file and line where the symbol name sName is
defined. If sName is NULL, SearchLocateSymbol() rips the current word out of the
editor and searches for that symbol. SearchLocateSymbo()l works only with globally
defined symbols.

For a function symbol, SearchLocateSymbol() locates the line where the function
begins. For a class or typedef symbol, it locates the line where the typedef or class is
defined. For a variable, it locates the line where the variable is defined.

SearchNextMessage method IDEApplication

This method works only if a Message view is displayed on the users screen. It displays
the next message listed in the Message view if there is a next message.

Types expected
bool SearchNextMessage()

Return value
TRUE if the next message is displayed, or FALSE if there is no message to display.

SearchPreviousMessage method IDEApplication

This method displays an active Edit window and places the cursor on the line in your
source code that generated the previous error or warning listed in the Message window.
If the file is not currently loaded, the IDE opens it in a new Edit window.

Paradigm C++ Object Scripting Guide166

Types expected
bool SearchPreviousMessage()

Return value
TRUE if the source line is found or FALSE if it cannot be found.

SearchReplace method IDEApplication

This method searches in the current edit buffer for the pattern indicated in pat and
replaces it with the string indicated in rep. If either parameter is not specified, the
method opens the Replace Text dialog box and prompts the user for input. The pattern
can be a simple string or a search expression.

Types expected
bool SearchReplace([string pat, string rep])

Return value
TRUE if the text is found or FALSE if it cannot be found.

SearchSearchAgain method IDEApplication

This method repeats the last SearchFind.

Types expected
bool SearchSearchAgain()

Return value
TRUE if the text is found or FALSE if it cannot be found.

SetRegion method IDEApplication

This method determines how windows tile and cascade on the IDE desktop, as well as
their initial position when they are created.

Types expected
bool SetRegion(string RegionName, int left, int top, int right, int
 bottom)

RegionName See the RegionName description.

left, top, right, bottom The dime nsions of the window in display units of 1-9999.

Return value
TRUE if the region was successfully set or FALSE if it was not.

Description
SetRegion is used in conjunction with GetRegionBottom, GetRegionTop,
GetRegionLeft, GetRegionRight to change the area where windows are placed when
tiled and cascaded.

Chapter 4, cScript Class Reference 167

For example, the default configuration of the IDE is to have all editor windows in the
upper two-thirds of the screen when you tile, and the message window and the project
window in the lower one-third. You could change this default with the script statement

IDE.SetRegion("Editor", 1, 1, 5000, 5000);

After executing this statement, the editors are in the upper left quarter of the IDE
desktop after tiling. You can look at STARTUP.SPP for other examples.

SetWindowState method IDEApplication

This method changes the style of the currently focused window.

desiredState One of the following values: SW_MINIMIZE, SW_MAXIMIZE,
SW_RESTORE

Types expected
bool SetWindowState(int desiredState)

Return value
TRUE if the state was successfully set or FALSE if it was not.

SimpleDialog method IDEApplication

This method invokes a simple dialog containing a single text field, an OK button, and a
Cancel button.

Types expected
string SimpleDialog(string prompt, string initialValue
 [, int maxNumChars])

prompt The caption of the dialog.

initialValue The value that initializes the edit field.

Return value
The value in the edit field if the user clicks OK or presses Enter on the edit field, or the
empty string ("") if the user clicks Cancel.

SpeedMenu method IDEApplication
Activates the SpeedMenu for the current subsystem.

Types expected
void SpeedMenu()

Return value
None

StartWaitCursor method IDEApplication
This method displays the Windows wait cursor.

Paradigm C++ Object Scripting Guide168

Types expected
void StartWaitCursor()

Return value
None

StatusBarDialog method IDEApplication

This method displays a dialog on top of the status bar.

Types expected
string StatusBarDialog(string prompt, string initialValue
 [, int maxNumChars])

prompt The caption of the dialog.

initialValue The value that initializes the edit field.

Return value
The value in the edit field if the user clicks OK or presses Enter on the edit field, or the
empty string ("") if the user clicks Cancel.

Tool method IDEApplication

This method runs the tool specified in toolName using the command string specified in
commandstring. If no parameters are specified, it displays a dialog box prompting the
user for a tool.

Types expected
bool Tool([string toolName, string commandString])

Return value
TRUE if the tool successfully ran or FALSE if it did not.

Undo method IDEApplication

This method does the same thing as EditUndo. It is included for compliance with
Microsoft conventions.

Types expected
void Undo()

Return value
None

ViewActivate method IDEApplication

This method activates the IDE pane that is adjacent to the currently selected pane. The
direction argument indicates the direction of the adjacent pane to activate, relative to the
current pane. The supported values for direction are UP, DOWN, LEFT and RIGHT.

Chapter 4, cScript Class Reference 169

Types expected
bool ViewActivate(int direction)

Return value
Returns TRUE if there was a valid current pane and the method was able to activate an
adjacent pane in the direction indicated by direction, otherwise FALSE.

ViewBreakpoint method IDEApplication

This method opens a window showing all breakpoints.

Types expected
bool ViewBreakpoint()

Return value
TRUE if breakpoints can be found or FALSE if no breakpoints can be found.

ViewCallStack method IDEApplication

This method opens the Call Stack window, which shows the sequence of functions your
program called to get to the current execution point. Each entry displays the function
name and the values of any parameters passed to it.

Types expected
bool ViewCallStack()

Return value
TRUE if the Call Stack window can be displayed or FALSE if it cannot be displayed.

ViewClasses method IDEApplication

This method opens the Browsing Objects window, which displays all the classes in your
application arranged in a horizontal tree that shows parent-child relationships.

Types expected
bool ViewClasses()

Return value
TRUE if the Browsing Objects window can be displayed or FALSE if it cannot be
displayed.

ViewCpu method IDEApplication
This method displays the Debugger's CPU view for the current application.

Types expected
bool ViewCpu()

Return value
TRUE if the CPU view can be displayed or FALSE if it cannot.

Paradigm C++ Object Scripting Guide170

ViewGlobals method IDEApplication
This method opens the Browsing Globals window, which lists every variable in the
program in the current Edit window or the first file in the current project. If the program
has not been compiled, the IDE first compiles it before invoking the Browser.

Types expected
bool ViewGlobals()

Return value
TRUE if the Browse Globals window can be displayed or FALSE if it cannot.

ViewMessage method IDEApplication

This method displays the Message window which displays status, warning, and error
messages for C++ compilations and links, ObjectScripting module compilations, run-
time messages from the debugger, and output. If given, the page specified by tabName
is selected when Message window is opened. If tabName is not found, the currently
selected tab remains unchanged.

tabName may have one of the following values:

"Buildtime"
"Runtime"
"Script"

or tabName may be the name of a user-defined tab.

Types expected
bool ViewMessage([string tabName])

Return value
TRUE if the Message window can be displayed or FALSE if it cannot. If tabName is
not found, the method returns FALSE even if the Message window is successfully
displayed.

ViewProcess method IDEApplication

This method displays the debugger's Process window.

Types expected
bool ViewProcess()

Return value
TRUE if the Process window can be displayed or FALSE if it cannot.

ViewSlide method IDEApplication

This method moves the border of the currently selected IDE pane amount characters in
the given direction on the screen The size of a character is determined by the number of
pixels high and wide a character is in the font used by the pane. The default value for

Chapter 4, cScript Class Reference 171

amount is 1. The supported values for direction are the constants UP, DOWN, LEFT
and RIGHT.

Types expected
bool ViewSlide(int direction [, int amount])

Return value
TRUE if there is a valid current IDE pane, and it was successfully moved amount
characters in the given direction, otherwise returns FALSE.

ViewProject method IDEApplication

This method displays the Project window for the currently open project.

Types expected
bool ViewProject()

Return value
TRUE if the Project window can be displayed or FALSE if it cannot.

ViewWatch method IDEApplication

This method displays the Debugger's Watches window for the current program.

Types expected
bool ViewWatch()

Return value
TRUE if the Watches window can be displayed or FALSE if it cannot.

WindowArrangeIcons method IDEApplication

This method rearranges any minimized window's icons on the desktop. The rearranged
icons are evenly spaced, beginning at the lower left corner of the desktop.

Types expected
bool WindowArrangeIcons()

Return value
TRUE if there are icons to rearrange or FALSE if there are none.

WindowCascade method IDEApplication

This method stacks all open windows and overlaps them, making all windows the same
size and showing only part of each underlying window.

Types expected
bool WindowCascade()

Paradigm C++ Object Scripting Guide172

Return value
TRUE if there are windows to cascade or FALSE if there are none.

WindowCloseAll method IDEApplication

This method closes all open windows if no window type is specified in typeName.
Otherwise, it closes the windows of the specified type.

typeName cam be one of the following values:

"Browser"
"Debugger"
"Editor"

Types expected
bool WindowCloseAll([string typeName])

Return value
TRUE if all windows successfully close or FALSE if at least one does not.

WindowMinimizeAll method IDEApplication
This method minimizes all open windows if no window type is specified in typeName.
Otherwise it minimizes the windows of the specified type.

typeName can be one of the following values:

"Browser"
"Debugger"
"Editor"

Types expected
bool WindowMinimizeAll([string typeName])

Return value
TRUE if all windows successfully minimize or FALSE if at least one does not.

WindowRestoreAll method IDEApplication

This method restores all minimized windows if no window type is specified in
typeName. Otherwise, it restores the window type specified in typeName.

Types expected
bool WindowRestoreAll([string typeName])

Return value
TRUE if all windows successfully restore or FALSE if at least one does not.

WindowTileHorizontal method IDEApplication
This method stacks all open windows horizontally.

Chapter 4, cScript Class Reference 173

Types expected
bool WindowTileHorizontal()

Return value
TRUE if all windows successfully tile or FALSE if they do not.

WindowTileVertical method IDEApplication

This method stacks all open windows vertically.

Types expected
bool WindowTileVertical()

Return value
TRUE if all windows successfully tile or FALSE if they do not.

YesNoDialog method IDEApplication

This method displays a dialog box that prompts the user for a yes or no response.

Types expected
string YesNoDialog(string prompt, string default)

prompt The prompt that displays in the dialog box.

default The text displayed in the text entry box.

Return value
"Yes" or "No".

BuildComplete event IDEApplication
This event is raised at the end of a build. The status parameter indicates if the build was
successful; TRUE if successful, FALSE if there were errors. inputPath indicates the
source directory. outputPath is the directory where files created as a result of the build
are created.

Types expected
void BuildComplete(bool status, string inputPath,
 string outputPath)

Return value
None

BuildStarted event IDEApplication

This method is raised when one of this class's "Help" methods is invoked. If passes the
appropriate parameters to the Windows Help engine. Default action is to do nothing.

Types expected
void BuildStarted()

Paradigm C++ Object Scripting Guide174

Return value
None

DialogCreated event IDEApplication

This event is raised as new dialogs are presented to the user.

Types expected
void DialogCreated(string dialogName, int dialogHandle)

Return value
None

Description
Use DialogCreated in conjunction with the SendKeys method of KeyboardManager to
simulate user entries to dialogs and drive the dialog. The dialogName parameter
contains the dialog's caption. The dialogHandle is an environment-specific identifier
used by the system when referring to the dialog. Under Microsoft Windows the
dialogHandle is the HWND of the dialog. This value is supplied in case you need your
script to interact directly with the system.

Exiting event IDEApplication

Raised as the IDE is closing. Default action is to do nothing.

Types expected
void Exiting()

Return value
None

HelpRequested event IDEApplication

The method is raised when one of the class's "Help" methods is invoked. It passes the
appropriate parameters to the Windows Help engine. Default action is to do nothing.

Types expected
void HelpRequested(string fileName, int command, int data)

Return value
None

Idle event IDEApplication

Raised when the number of seconds specified by IdleTimeout has elapsed without a
significant event occurring (like a user event). Default action is to do nothing.

Types expected
void Idle()

Chapter 4, cScript Class Reference 175

Return value
None

KeyboardAssignmentsChanging event IDEApplication

Raised when the user is exiting the MPD after having modified the keyboard file
choice.

Types expected
void KeyboardAssignmentsChanging(string newFileName)

Return value
None

KeyboardAssignmentsChanged event IDEApplication

Raised after the keyboard file name has been changed.

Types expected
void KeyboardAssignmentsChanged(string newFileName)

Return value
None

MakeComplete event IDEApplication

Raised at the end of a make. The status parameter indicates if the make was successful;
TRUE if successful, FALSE if there were errors. inputPath indicates the source
directory. outputPath is the directory where files created as a result of the make are
created.

Types expected
void MakeComplete(bool status, string inputPath,
 string outputPath)

Return value
None

MakeStarted event IDEApplication

Raised at the beginning of a make.

Types expected
void MakeStarted()

Return value
None

Paradigm C++ Object Scripting Guide176

ProjectClosed event IDEApplication
Raised when a project file has been successfully closed. projectFilename contains the
absolute name of the project file. Since the IDE always has a project open (even if it is
the default project: PCWDEF.IDE), this event will always precede the ProjectOpened()
that it corresponds to. In other words, you get a ProjectClosed event followed by a
ProjectOpened event.

Types expected
void ProjectClosed(string projectFileName)

Return value
None

ProjectOpened event IDEApplication

Raised when a project file has been successfully opened. projectFilename contains the
fully qualified name of the project file.

Types expected
void ProjectOpened(string projectFileName)

Return value
None

SecondElapsed event IDEApplication

Raised once every second. Default action is to do nothing.

Types expected
void SecondElapsed()

Return value
None

Started event IDEApplication

Raised after the IDE has been loaded and initialized and all startup scripts have been
processed. The parameter VeryFirstTime indicates whether this is the first time the IDE
has been loaded on a particular machine. Its value is determined by the presence or
absence of the default configuration file (PCCONFIG.PCW). This file is created for you
the first time you run the IDE and should be present only if the IDE has been run
previously.

Types expected
void Started(bool VeryFirstTime)

Return value
None

Chapter 4, cScript Class Reference 177

SubsystemActivated event IDEApplication
Raised when the active subsystem is changed (usually in response to the user clicking
on another window type). systemName holds the name of the subsystem acquiring fonts.
Default action is to do nothing.

Types expected
void SubsytemActivated(string systemName)

Return value
None

TransferOutputExists event IDEApplication

Raised when a transfer tool has created output that needs processing (usually in a Make
sequence). The return value signals an error code: FALSE if no error occurred, TRUE
if there was an error parsing the data supplied by output. Default action is to do nothing.

Types expected
bool TransferOutputExists(TransferOutput output)

Return value
None

TranslateComplete event IDEApplication

Raised at the end of a translation. The status parameter indicates if the translation was
successful; TRUE if successful, FALSE if there were errors. inputPath indicates the
source directory. outputPath is the directory where files created as a result of the
translation are created.

Types expected
void TranslateComplete(bool status, string inputPath,
 string outputPath)

Return value
None

Paradigm C++ Object Scripting Guide178

Chapter 4, cScript Class Reference 179

KeyboardManager class

Syntax
KeyboardManager()

Properties
bool AreKeysWaiting Read-only
Record CurrentPlayback Read-only
Record CurrentRecord Read-write
int KeyboardFlags Read-only
int KeysProcessed Read-only
int LastKeyProcessed Read-only
Record Recording Read-only
string ScriptAbortKey Read-write

Methods
string CodeToKey(int KeyCode)
void Flush()
Keyboard GetKeyboard([string ComponentName])
int KeyToCode(string KeyName)
void PausePlayback()
int Playback([Record RecordObject])
Keyboard Pop(string ComponentName)
bool ProcessKeyboardAssignments(string fileName, bool unassign)
void ProcessPendingKeystrokes()
void Push(Keyboard keyboard, string ComponentName, bool transparent)
int ReadChar(void)
void ResumePlayback()
bool ResumeRecord(Record RecordObject)
bool SendKeys(string keyStream)
bool StartRecord(Record RecordObject)
void StopRecord()

Events
void UnassignedKey (int keyCode)

AreKeysWaiting property KeyboardManager

Returns TRUE if any keys are waiting to be processed. This is a read-only property.

Type expected
bool AreKeysWaiting

CurrentPlayback property KeyboardManager

Only valid while in a Playback(). This is a read-only property.

Type expected
Record CurrentPlayback

CurrentRecord property KeyboardManager

This property contains a reference to the Record object associated with this
KeyboardManager. This is a read-write property.

Paradigm C++ Object Scripting Guide180

Type expected
Record CurrentRecord

KeyboardFlags property KeyboardManager
This property returns a value whose bits may be checked to determine the state of
NumLock, Caps, Ctrl, Alt, and so on. The mask values are:

0x03 - Shift pressed
0x04 - Ctrl pressed
0x08 - Alt pressed
0x10 - Scroll Lock on
0x20 - Num Lock on
0x40 - Caps Lock on

This is a read-only property.

Type expected
int KeyboardFlags

KeysProcessed property KeyboardManager

The total number of keys processed by any keyboard since the IDE was loaded. This is
a read-only property.

Type expected
int LastKeyProcessed

LastKeyProcessed property KeyboardManager

The keyCode of the last key that was processed by any keyboard. This is a read-only
property.

Type expected
int LastKeyProcessed

Recording property KeyboardManager

Only valid while in a StartRecord() until StopRecord() is called.

The return value matches cBrief's inq_kbd_flags().

This is a read-only property.

Type expected
Record Recording

ScriptAbortKey property KeyboardManager
Contains the KeySequence of the key which, when pressed, causes the currently
running script to abort. The default value is <Escape>, except when Epsilon emulation
is enabled in which case the default is <Ctrl-G>.

+

Chapter 4, cScript Class Reference 181

The KeySequence is a mnemonic key name made up of a key description, such as <a>.
Key descriptions can be augmented with any (or all) of the following: "Shift", "Ctrl",
"Alt", and "Keypad".

Keys that don't map to a single character have names associated with them. Keys in this
category are: "Enter", "Backspace", "Tab", "Home", "End", "PageUp", "PageDown",
"Left", "Right", "Up", "Down", "Insert", "Delete", "Escape", "Space", "PrintScreen",
"Center", "Pause", "CapsLock", "ScrollLock", and "NumLock".

Modifiers and names are separated by a dash (-). For example:
<Ctrl-Enter>

To assign the dash character in a key sequence, use the keyname <Minus>. Use the
keyname <Plus> for the '+' character.

This is a read-write property.

Type expected
string ScriptAbortKey

CodeToKey method KeyboardManager

This method accepts the integer keycode representation and returns the textual
description of the key.

Types expected
string CodeToKey(int KeyCode)

Return value
Matches the cBrief key naming conventions for inq_assignment and assign_to_key.

Flush method KeyboardManager

This method removes all waiting keystrokes from the IDE's message queue.

Types expected
void Flush()

Return value
None

GetKeyboard method KeyboardManager

This method finds the keyboard currently assigned to the IDE subsystem specified in
ComponentName. Specifying "Default" returns the internal mapping, which cannot be
remapped. If ComponentName is omitted, the method gets the current keyboard.

Valid subsystems are

Editor
Message
Project
Desktop

Paradigm C++ Object Scripting Guide182

Types expected
Keyboard GetKeyboard ([string ComponentName])

Return value
The keyboard currently assigned to an IDE subsystem, or NULL if the subsystem is
invalid.

KeyToCode method KeyboardManager

This method accepts the textual name of a key and returns the integer keycode
equivalent. It accepts single keystroke entries such as <F> and <Ctrl-B>, but not
multikey sequences such as "Ctrl+K Ctrl+B".

Types expected
int KeyToCode (string KeyName)

Return value
The integer keycode of the key.

PausePlayback method KeyboardManager

Pauses the playback of a recording object initiated with Playback(). To resume
playback, call ResumePlayback().

Types expected
void PausePlayback()

Return value
None

Playback method KeyboardManager

This method replays the series of keystrokes assigned to a Record object. If no Record
object is specified, the last recording is replayed.

Types expected
int Playback ([Record RecordObject])

Return value
One of the following values:

0 No sequence to play back
1 Playback successful
-1 Sequence is paused or being remembered
-2 Error loading disk file (macros will handle this)
-3 Canceled by user with ScriptAbortKey

ProcessKeyboardAssignments method KeyboardManager

Converts a .KBD file into a .KBP file.

Chapter 4, cScript Class Reference 183

Types expected
bool ProcessKeyboardAssignments (string fileName, bool unassign)

fileName The name of the .KBD formatted file. Includes the path to the file.

unassign Specifies if the file contents should be used to unassign keys defined in
the .KBD file. If TRUE, defined keys will be unassigned. If FALSE,
defined keys will be assigned.

Return value
TRUE if a .KBP file is loaded and FALSE if it is not.

ProcessPendingKeystrokes method KeyboardManager

This method can be used fine tune the behavior of SendKeys. If one or more calls to
SendKeys indicated that key processing was to be delayed, these keystrokes are not
processed until ProcessPendingkeystrokes is called or until the script completes
execution.

Types expected
void ProcessPendingKeystrokes()

Return value
None

Pop method KeyboardManager

This method restores the previously assigned keyboard mapping after a call to Push.

Types expected
Keyboard Pop(string ComponentName)

Return value
The keyboard that was restored or NULL, which indicates that no additional keyboard
mappings were applied and the default keyboard desktop mapping is active.

Push method KeyboardManager
This method pushes a keyboard on the keyboard stack, making the new keyboard
mapping current. A subsequent Pop operation restores the previously assigned keyboard
mapping.

Types expected
void Push (Keyboard keyboard, string ComponentName, bool
 transparent)

transparent Determines the run-time behavior of keystrokes not found in the
keyboard. If transparent is set, the next keyboard on the stack is
searched. Otherwise, the key is ignored.

Return value
None

Paradigm C++ Object Scripting Guide184

ReadChar method KeyboardManager
This method returns either -1 (no key is waiting) or the scan value for the key that was
pressed.

Types expected
int ReadChar (void)

Return value
The high-order byte is the scan code, and the low-order byte is the ASCII value.

Description
ReadChar() manages two queues, a local queue for Push() as well as the standard
Windows messaging system. It first checks the local queue for any waiting keys. If no
keys are available in the local queue, it checks the Windows message queue.

ResumePlayback method KeyboardManager

This method resumes the playback of a recording object initiated with Playback() after
the recording has been suspended by a call to PausePlayback().

Types expected
void ResumePlayback()

Return value
None

ResumeRecord method KeyboardManager

This method reinitiates record mode on a Record object, appending new keystrokes to
the end of the record buffer and updating the Recording member.

Types expected
bool ResumeRecord (Record RecordObject)

SendKeys method KeyboardManager

This method simulates the pressing of the keys indicated in the keyStream parameter.

Types expected
bool SendKeys(string keyStream[, bool suppressImmediateProcessing])

keystream A series of key presses. The limit on the number
of characters in Windows 95 is 715. There is no
limit in Windows NT.

suppressImmediateProcessing The default behavior is to process the keys
immediately, before the next line of script is
processed. If you include this parameter and set it
to TRUE, SendKeys delays processing of the keys
until ProcessPendingKeystrokes is called or until
the script completes execution.

Chapter 4, cScript Class Reference 185

Return value
TRUE if keyStream has valid syntax and can be interpreted or FALSE if keyStream
could not be turned into a series of keypresses.

Description
SendKeys takes a key or series of keys as its parameter.

Simple displayable keys are just a string of characters that are the same as the keycaps.
For example,

SendKeys("hello world");

Keys that do not have simple displayable counterparts, like Alt+S, have a special syntax.

The following list shows how to indicate Alt+keyname, Shift+keyname, and
Ctrl+keyname:

Alt key modifier Preface the key name with the percent character (%).
For example, Alt+s is %s.

Shift key modifier Either preface the key name with the plus character (+) or
capitalize it.
For example, Shift+s is either +s or S.

Ctrl key modifier Preface the key name with the carat character (^).
For example, Ctrl+s is ^s.

The SendKeys parameter is case sensitive. ^s is Ctrl+S, but ^S is Ctrl+Shift+S.

To indicate the %, +, or ^ key itself, precede the key name with a backslash (\) as
below:

To indicate %, use "+\\%"
To indicate ^, use "+\\^"
To indicate +, use "+\\+"

To simulate non-displaying keys, use a key mnemonic (described in a table that
follows) and enclose it in braces ({ }).

For example, to simulate the key sequence Alt+s 1 + 2 [Enter], use the
following syntax:

SendKeys("%s1\+2{VK_RETURN}");

The key mnemonics are:
VK_ADD VK_F3 VK_F18
VK_BACK VK_F4 VK_F19
VK_CANCEL VK_F5 VK_F20
VK_CAPITAL VK_F6 VK_F21
VK_CLEAR VK_F7 VK_F22
VK_CONTROL VK_F8 VK_F23
VK_DECIMAL VK_F9 VK_F24
VK_DELETE VK_F10 VK_HELP
VK_DIVIDE VK_F11 VK_HOME
VK_DOWN VK_F12 VK_INSERT
VK_END VK_F13 VK_LBUTTON
VK_ESCAPE VK_F14 VK_LEFT
VK_EXECUTE VK_F15 VK_MBUTTON
VK_F1 VK_F16 VK_MENU
VK_F2 VK_F17 VK_MULTIPLY

+

Paradigm C++ Object Scripting Guide186

VK_NEXT VK_NUMPAD7 VK_SCROLL
VK_NUMLOCK VK_NUMPAD8 VK_SELECT
VK_NUMPAD0 VK_NUMPAD9 VK_SEPARATOR
VK_NUMPAD1 VK_PAUSE VK_SHIFT
VK_NUMPAD2 VK_PRINT VK_SNAPSHOT
VK_NUMPAD3 VK_PRIOR VK_SPACE
VK_NUMPAD4 VK_RBUTTON VK_SUBTRACT
VK_NUMPAD5 VK_RETURN VK_TAB
VK_NUMPAD6 VK_RIGHT VK_UP

At the current time there are two separate keyboard parsers, one for processing key
assignments and the other for processing SendKeys(). These processors accept different
formats for the same keys: For example, "<Alt-a>" versus "%a".

SendKeys example
x = new KeyboardManager();
x.SendKeys("^S"); /* Sends Ctrl+S and processes it immediately
z.SendKeys("^S", FALSE); /* Sends Ctrl+S and processes it immediately
x.SendKeys("...", TRUE); /* Sends Ctrl+S and delays processing
x.ProcessPendingKeystrokes(); /* Processes the delayed keystrokes

StartRecord method KeyboardManager

This method begins storing keystroke sequences in a Record object and updates the
Recording member.

Types expected
bool StartRecord (Record RecordObject)

Return value
TRUE if the key sequence is stored or FALSE if it is not.

Description
StartRecord replaces any key sequences already stored in the Record object.

You can record to only one Record object at a time. If you attempt a StartRecord before
calling a matching StopRecord for a previous recording, the StartRecord fails.

StopRecord method KeyboardManager
Halts recording keystrokes previously started with StartRecord(). This operation
updates the CurrentRecord member and updates the Recording member with an object
whose IsValid value is false.

Types expected
void StopRecord ()

UnassignedKey event KeyboardManager
This event is raised when a key having no recorded keystrokes is pressed. The default
action is to do nothing.

+

Chapter 4, cScript Class Reference 187

Types expected
void UnassignKey (int keyCode)

Return value
None

Keyboard class

This class works with the KeyboardManager class to manage keyboards assigned to
various IDE components, such as the Editor and the Project View.

Syntax
Keyboard([bool transparent])

If the Keyboard is created with the transparent attribute, keystrokes having no
assignment in this keyboard are passes to the next one on the current keyboard stack.
This value defaults to FALSE if not supplied.

Properties
int Assignments Read-only

string DefaultAssignment Read-write

Methods
void Assign(string KeySequence, string CommandName, int
 ImplicitAssignments)
void AssignTypeables(string CommandName)
void Copy(Keyboard SourceKeyboard)
int CountAssignments(string CommandName)
string GetCommand(string KeySequence)
string GetKeySequence(string CommandName [,int whichOne])
bool HasUniqueMapping(string KeySequence)
void Unassign(string KeySequence)

Keyboard class description

Keyboard objects administer key assignments and can be assigned to IDE components,
pushed and popped from the keyboard manager's keyboard stack, and queried on
individual key assignments.

Assignments property Keyboard

This property indicates the number of key assignments contained in this keyboard. It is
a read-only property.

Type expected
int Assignments

DefaultAssignment property Keyboard

This property establishes the command to execute if no other commands are assigned to
a keystroke. It returns an empty string ("") if no assignment exists. It is a read-write
property.

Paradigm C++ Object Scripting Guide188

Type expected
string DefaultAssignment

Assign method Keyboard
This method assigns a script to a keystroke.

Types expected
void Assign (string KeySequence, string CommandName, int
 ImplicitAssignments)

Return value
None

Description
CommandName is the script to be executed when the key is pressed, as in

editor.MarkWord(TRUE) ;

KeySequence is a mnemonic key name made up of a key description, such as <a>. Key
descriptions can be augmented with any (or all) of the following: "Shift", "Ctrl", "Alt",
and "Keypad".

Keys that do not map to a single character have names associated with them. Keys in
this category are: "Enter", "Backspace", "Tab", "Home", "End", "PageUp",
"PageDown", "Left", "Right", "Up", "Down", "Insert", "Delete", "Escape", "Space",
"Print Screen", "Center", "Pause", "CapsLock", "ScrollLock", and "NumLock".

Modifiers and names are separated by a dash (-). For example,

<Ctrl-Enter>.

To assign the dash character in a key sequence, use the keyname <Minus>. Use the
keyname <Plus> for the + character.

implicitAssignments is one or more of the following values:

ASSIGN_EXPLICIT (default) No implicit assignments should be created.

ASSIGN_IMPLICIT_KEYPAD When an assignment is made to a sequence that
has a numeric keypad ("Keypad") equivalent, such
as PageUp, a second assignment is implicitly
made for the equivalent. Assignments are made to
both the shifted and non-shifted versions at the
same time, but only if the implicit assignment
doesn't overwrite an existing explicit assignment.

ASSIGN_IMPLICIT_SHIFT <a> == <A>

ASSIGN_IMPLICIT_MODIFIER <Ctrl-k><Ctlr-b> = = <Ctrl-k>

This method has no effect on the default keyboard, which is returned from a call to
KeyboardManager.GetKeyboard("Default").

Assign method examples Keyboard
// Explicit assignment to <Home>. Implicit assignment
// assignment to <Keypad-Home>.

+

Chapter 4, cScript Class Reference 189

Assign("<Home>","ToStart();", ASSIGN_IMPLICIT_KEYPAD);

// Explicit assignment to <Keypad-End>.
Assign("<Keypad-End>","ToEnd();");

// Explicit assignment to <End>
Assign("<End>","ToEnd(TRUE);", ASSIGN_IMPLICIT_KEYPAD);

// Implicit assignment to <Keypad-End> thwarted due to
// existence of explicit assignment to <Keypad-End>.

AssignTypeables method Keyboard
This method assigns either a script to the predefined typeable characters (all ASCII
characters, Enter, Delete, and Backspace).

This method has no effect on the default keyboard, which is returned from a call to
KeyboardManager.GetKeyboard("Default").

Types expected
void AssignTypeables(string CommandName)

CommandName The command to assign and any parameters to the command.

Return value
None

Copy method Keyboard

This method copies all assignments made from SourceKeyboard into this keyboard,
replacing any that already exist.

This method has no effect on the default keyboard, which is returned from a call to
KeyboardManager.GetKeyboard("Default").

Types expected
void Copy(Keyboard SourceKeyboard)

Return value
None

CountAssignments method Keyboard
This method returns the number of key assignments tied to the specified command.

Types expected
int CountAssignments(string CommandName)

GetCommand method Keyboard

This method returns the command assigned to the specified key code. It returns the
empty string ("") if no script has been assigned.

+

+

Paradigm C++ Object Scripting Guide190

Types expected
string GetCommand (string KeySequence)

GetKeySequence method Keyboard
This method returns the key sequence tied to the specified command. If whichOne is
less than 1 or omitted, it is assumed to be 1.

Types expected
string GetKeySequence(string CommandName [,int whichOne])

HasUniqueMapping method Keyboard
Determines if a key has no mapping or maps directly to a command, or is the non-
terminating key of a multikey assignment.

Types expected
bool HasUniqueMapping(string KeySequence)

Return value
Returns TRUE if a key either has no mapping or maps directly to a command. Returns
FALSE if the key is a non-terminating key of a multikey assignment. For example,
WordStar <Ctrl-K> would be FALSE since <Ctrl-K> signifies the beginning of a
multikey assignment, such as <Ctrl-K><Ctrl-B> or <Ctrl-K><Ctrl-K>.

Unassign method Keyboard

This method restores a key assignment.

This method has no effect on the default keyboard, which is returned from a call to
KeyboardManager.GetKeyboard("Default").

Types expected
void Unassign(string KeySequence)

Return value
None

ListWindow class

Syntax
ListWindow(int Top, int Left, int Height, int Width,
 string Caption, bool MultipleSelect, bool Sorted,
 string[] InitialValues)

Top, Left, Height, Width Initial coordinates of the list.

Caption Text to be displayed in the list title.

MultipleSelect Determines whether the list will support multiple
selections.

+

Chapter 4, cScript Class Reference 191

Sorted Determines whether new additions to the list are put in
their sorted order.

InitialValues An array of strings specifying the initial contents of the
list.

Properties
string Caption Read-write
int Count Read-only
int CurrentIndex Read-only
[]Data Read-only
int Height Read-write
bool Hidden Read-write
bool MultiSelect Read-only
bool Sorted Read-only
int Width Read-write

Methods
void Add(string newEl, int offset)
void Clear()
void Close()
void Execute()
int FindString(string toFind)
string GetString(int offset)
void Insert()
bool Remove(int offset)

Events
void Accept()
void Cancel()
void Closed()
void Delete()
bool KeyPressed(string keyName)
void LeftClick(int xPos, int yPos)
void Move()
void RightClick(int xPos, int yPos)

Caption property ListWindow

This property contains the title of the list window. This is a read-write property.

Type expected
string Caption

Count property ListWindow
This property contains the number of elements in the list. This is a read-only property.

Type expected
int Count

CurrentIndex property ListWindow

This property contains the zero-based index of the currently highlighted list element, or
-1 if nothing is selected. This is a read-only property.

Paradigm C++ Object Scripting Guide192

Type expected
int CurrentIndex

Data property ListWindow
This property contains an array of strings that represent the contents of the list. This is a
read-only property.

Type expected
[]Data

Height property ListWindow
This property contains the height, in pixels, of the list window. This is a read-write
property.

Type expected
int Height

Hidden property ListWindow
This property determines if the list window can be removed from the display. This
property only has meaning after the Execute() method has been called and before the
list window is closed. This is a read-write property.

Type expected
bool Hidden

MultiSelect property ListWindow

This property, if TRUE, allows multiple selections from the list. If FALSE, only a
single selection can be made. This is a read-only property.

Type expected
bool MultiSelect

Sorted property ListWindow

This property, if TRUE, the elements of the list are sorted as new elements are added. If
FALSE, elements appear at the offset given in the call to the Add() method. This is a
read-only property.

Type expected
bool Sorted

Width property ListWindow
This property contains the width, in pixels, of the list window. This is a read-write
property.

Type expected
int Width

Chapter 4, cScript Class Reference 193

Add method ListWindow
Adds the string newEl to the list at the zero based offset position designated by offset.
offset is ignored if the list is a sorted list.

Types expected
void Add(string newEl, int offset)

Return value
None

Clear method ListWindow

Removes all elements from the list.

Types expected
void Clear()

Return value
None

Close method ListWindow

Removes the List Window from the screen.

Types expected
void Close()

Execute method ListWindow
Creates the List window to be created and displayed to the user.

Types expected
void Execute()

FindString method ListWindow

Returns the one-based offset of the string or zero if not found.

Types expected
int FindString(string toFind)

GetString method ListWindow

Returns the string at the specified offset or "" if an illegal offset.

Types expected
string GetString(int offset)

Paradigm C++ Object Scripting Guide194

Insert method ListWindow
This method is invoked when the user presses Insert. The default action is to do nothing.

Types expected
void Insert()

Return value
None

Remove method ListWindow
Removes the element from the specified zero based offset.

Types expected
bool Remove(int offset)

Accept event ListWindow

This event is raised when the user presses Enter or double-clicks on a list element.
Default action is to close the list.

Types expected
void Accept()

Return value
None

Cancel event ListWindow
This event is raised when the user presses Escape. Default action is to close the list.

Types expected
void Cancel()

Return value
None

Closed event ListWindow
This event is raised when the ListWindow is destroyed.

Types expected
void Closed()

Return value
None

Delete event ListWindow
This event is raised when the user presses Delete. Default action is to do nothing.

Chapter 4, cScript Class Reference 195

Types expected
void Delete()

Return value
None

KeyPressed event ListWindow

This event is raised when the user presses a key other than Delete, Insert, Accept, or
Cancel while the ListWindow is active.

Types expected
bool KeyPressed(string keyName)

keyName Indicates a key in the standard key format (<a> or <Ctrl-a>).

Return value
A return value of TRUE indicates that the script has processed the key and that no
further processing is desired. A return value of FALSE indicates that normal processing
(whatever that is) should take place.

LeftClick event ListWindow

This event is raised when the user clicks the left mouse button on the list window. The
parameters describe the mouse's position at the time.

Types expected
void LeftClick(int xPos, int yPos)

Return value
None

Move event ListWindow
This event is raised whenever the selection in the list is changed. Default action is to do
nothing.

Types expected
void Move()

Return value
None

RightClick event ListWindow

This event is raised when the user clicks the right mouse button on the list window. The
parameters describe the mouse's position at the time.

Types expected
void RightClick(int xPos, int yPos)

Paradigm C++ Object Scripting Guide196

Return value
None

PopupMenu class

The class manages pop-up menus. In the Paradigm C++ IDE, pop-up menus are known
as SpeedMenus.

Syntax
PopupMenu(int Top, int Left, string [] InitialValues)

Top, Left Initial coordinates of the pop-up menu.

InitialValues An array of strings specifying the initial contents of the pop-up menu.

Properties
[] Data Read-only

Methods
void Append(string newChoice)
int FindString(string toFind)
string GetString(int offset)
bool Remove(int offset)
string Track()

Events
None

Data property PopupMenu

This property contains an array of strings that specifies the choices that will be offered
in the menu. This is a read-only property.

Type expected
[] Data

Append method PopupMenu

This method appends a new choice to the menu's options.

Types expected
void Append(string newChoice)

Return value
None

FindString method PopupMenu

This method looks for the string indicated in toFind.

Types expected
int FindString(string toFind)

Chapter 4, cScript Class Reference 197

Return value
The one-based offset of the string found or zero if not found.

GetString method PopupMenu

This method returns the string at the specified zero based offset or "" if the offset is
illegal.

Types expected
string GetString(int offset)

Remove method PopupMenu

This method removes the specified zero based offset.

Types expected
bool Remove(int offset)

Return value
TRUE if the element is removed, FALSE, otherwise

Track method PopupMenu

This method displays the pop-up menu to the user and tracks responses. It will return
after the user has made a choice or cancelled the menu.

Types expected
string Track()

Return value
The string selected or the empty string ("") if the user cancels the menu.

ProjectNode class

Syntax
ProjectNode(nodeName, EditView associatedView)

nodeName A string indicating the full name of the node (as in MyProg.exe). If no
name is specified, ProjectNode uses the top level IDE node.

Properties
[] ChildNodes Read-only
string IncludePath Read-only
string InputName Read-only
bool IsValid Read-only
string LibraryPath Read-only
string Name Read-only
bool OutOfDate Read-write
string OutputName Read-only
string SourcePath Read-only
string Type Read-only

Paradigm C++ Object Scripting Guide198

Methods
bool Add(string nodeName [, string type])
bool Build(bool suppressUI)
bool Make(bool suppressUI)
void MakePreview()
bool Remove([string nodeName])
bool Translate(bool suppressUI)

Events
void Built(bool status)
void Made(bool status)
void Translated(bool status)

ChildNodes property ProjectNode
This property indicates all the child nodes of the current node. It is an array of strings
containing the InputNames of the child nodes. It is a read-only property.

Type expected
[] ChildNodes

IncludePath property ProjectNode
This property indicates the path to use for include files for the currently loaded project.
It is a read-only property.

Type expected
string IncludePath

InputName property ProjectNode
The node's relative path name of the input file including extension, as in "Myfile.cpp"
or "SOURCE\MYFILE.CPP". It is a read-only property.

Type expected
string InputName

IsValid property ProjectNode
This property indicates if a node is valid. A node becomes invalid if the project file it is
associated with is closed or if the node is deleted. It is a read-only property.

Type expected
bool IsValid

LibraryPath property ProjectNode
This property indicates the path to use for libraries for the currently loaded project. It is
a read-only property.

Type expected
string LibraryPath

Chapter 4, cScript Class Reference 199

Name property ProjectNode
This property indicates the node's relative path name with an extension, as in "Myfile"
or "SOURCE\MYFILE". It is a read-only property.

Type expected
string Name

OutOfDate property ProjectNode
This property can be checked, or set, to determine the date of a node. This property is
used by the make engine to determine if a node needs to be rebuilt. This is a read-write
property.

Type expected
bool OutOfDate

OutputName property ProjectNode

This property indicates the relative path name of the output file including extension, as
in "MYFILE.CPP" or "Source\Myfile.cpp". It is a read-only property. You can always
generate the absolute filename by prepending the result of the IDEApplication's
CurrentDirectory property to InputName, as in

absName = IDE.CurrentDirectory + node.InputName;

Type expected
string OutputName

SourcePath property ProjectNode
This property indicates the path where the source files for the currently loaded project
reside. It is a read-only property.

Type expected
string SourcePath

Type property ProjectNode

This property indicates the type of node (".CPP", ".H", "SourcePool", ".LIB", and so
on). It contains the empty string ("") when the node is invalid. It is a read-only property.

Type expected
string Type

Add method ProjectNode

This method adds a node to this project node with a specified name. If type is omitted, it
is derived from the nodeName.

Types expected
bool Add(string nodeName [, string type])

Paradigm C++ Object Scripting Guide200

Build method ProjectNode
This method causes the node to be built, made, or translated by the IDE's Make engine
according to the rules of the node. If suppressUI is TRUE, the build status dialog will
not be displayed during the build process.

Types expected
bool Build(bool suppressUI)

Return value
TRUE if the node is built successfully, FALSE otherwise.

Make method ProjectNode

This method causes the node to be built, made, or translated by the IDE's Make engine
according to the rules of the node if the node's OutOfDate property is TRUE. If
suppressUI is TRUE, the build status dialog will not be displayed during the make
process.

Types expected
bool Make(bool suppressUI)

Return value
TRUE if the node is made successfully, FALSE otherwise

MakePreview method ProjectNode

This method provides information about what files will be processed if you Make or
Build this node. It performs the same dependency checks as a Make and generates a
report to the Message window listing the nodes that need to be rebuilt to keep the
project up to date.

Types expected
void MakePreview()

Return value
None

Remove method ProjectNode

If nodeName is not specified, Remove removes the node from the project If nodeName
is specified, Remove finds it and removes it from the project.

Types expected
bool Remove([string nodeName])

Translate method ProjectNode

This method causes the node to be built, made, or translated by the IDE's Make engine
according to the rules of the node. If suppressUI is TRUE, the build status dialog will
not be displayed during the make process.

Chapter 4, cScript Class Reference 201

Types expected
bool Translate(bool suppressUI)

Return value
TRUE if the node is translated successfully, FALSE otherwise.

Built event ProjectNode

This event is raised after a build has been performed on the node. status describes the
result of the build. status is set to TRUE if the build completed successfully or with
warnings, and FALSE if there were errors. Default behavior is to do nothing.

Types expected
void Built(bool status)

Return value
None

Made event ProjectNode
This event is raised after a make has been performed on the node. status describes the
result of the make operation. status is set to TRUE if the build completed successfully
or with warnings, and FALSE if there were errors. Default behavior is to do nothing.

Types expected
void Made(bool status)

Return value
None

Translated event ProjectNode

This event is raised after a translate has been performed on the node. status describes
the result of the translate operation. status is set to TRUE if the build completed
successfully or with warnings, and FALSE if there were errors. This event's default
behavior is to do nothing.

When the user performs a make or a build, the ProjectNode object receives a Translated
event before it receives the Built or Made event.

Types expected
void Translated(bool status)

Return value
None

Record class

This class creates an empty Record object into which keystrokes are saved and assigns
it the name specified by the RecordName parameter. If no record name is specified, a
default name is automatically assigned ("Record1", "Record2", and so on).

Paradigm C++ Object Scripting Guide202

Syntax
Record([string RecordName])

Properties
bool IsPaused Read-only
bool IsRecording Read-only
int KeyCount Read-only
string Name Read-write

Methods
void Append(int KeyCode)
string GetCommand(int offset)
int GetKeyCode(int offset)
Record Next(void)

Events
None

IsPaused property Record

This property is set to TRUE when KeyboardManager's PauseRecording method is
called in order to allow users to enter keystrokes, which will not become part of the
recording. This is a read-only property.

Type expected
bool IsPaused

IsRecording property Record

This property is set to TRUE when the KeyboardManager begins storing keystrokes to
the Record object in response to a call to KeyboardManager's StartRecord method. This
is a read-only property.

Type expected
bool IsRecording

KeyCount property Record
This property contains the number of keystrokes stored in this Record object. This is a
read-only property.

Type expected
int KeyCount

Name property Record
This property contains the name of the Record object. This is a read-write property.

Type expected
string Name

Chapter 4, cScript Class Reference 203

Append method Record
This method appends a keycode to the record buffer. It allows empty record objects to
be built programatically or added to through a script.

Types expected
void Append(int KeyCode)

Return value
None

GetCommand method Record

This method returns information describing a key stored in the Record object. Keys are
stored in the order which they are recorded. The first key in the recording is at offset 0.

Types expected
string GetCommand(int offSet)

Return value
The information returned is transitory, because the meanings of the stored keystrokes
may have been altered by the execution of the recording. For instance, if the recording
switches to another subsystem with a different key map. The method is intended to be
used after a Record object has been executed. The answers returned reflect the values as
of the last run.

GetKeyCode method Record
This method returns information describing a key stored in the Record object. Keys are
stored in the order which they are recorded. The first key in the recording is at offset 0.

Types expected
int GetKeyCode(int offset)

Return value
Returns the keystroke of the key at the specified offset, or zero if the offset is illegal.

Next method Record

As Record objects are created, they are automatically linked together. This method
provides a mechanism for iterating the recordings.

Types expected
Record Next(void)

Return value
Either the next Record object or NULL indicating the end of the list.

Paradigm C++ Object Scripting Guide204

ScriptEngine class

Syntax
ScriptEngine()

Properties
bool AppendToLog Read-write
int DiagnosticMessageMask Read-write
bool DiagnosticMessages Read-write
string LogFileName Read-write
bool Logging Read-write
string ScriptPath Read-write
string StartupDirectory Read-only

Methods
void Debug()
int Execute(string commandLine, bool temporary)
string Execute(string commandLine, bool temporary)
bool IsAClass(string className)
bool IsAFunction(string functionName)
bool IsAMethod(string className, string methodName)
bool IsAProperty(string className, string propertyName)
bool IsLoaded(string scriptFileName)
bool Load(string scriptFileName)
[] Modules(bool libraryOnly)
bool Reset(int resetWhat)
void Symbol(string fileName, string symbols)
bool Unload(string scriptFileName)

Events
void Loaded(string scriptFileName)
void Unloaded(string scriptFileName)

AppendToLog property ScriptEngine

Used when Logging is on. This property determines whether the next message logged to
the log file name should replace an existing log file (if one exists) before performing the
write. Once the write has been completed, AppendToLog is set to TRUE, causing
subsequent messages to be appended to the log. This is a read-write property.

Type expected
bool AppendToLog

DiagnosticMessageMask property ScriptEngine
Controls which types of diagnostic messages to record. This bitmask can be any
combination of

OBJECT_DIAGNOSTICS
METHOD_DIAGNOSTICS
MEMBER_DIAGNOSTICS
ARGUMENT_DIAGNOSTICS
LANGUAGE_DIAGNOSTICS

Chapter 4, cScript Class Reference 205

MODULE_DIAGNOSTICS
FULL_DIAGNOSTICS
NO_DIAGNOSTICS

This is a read-write property.

Type expected
int DiagnosticMessageMask

DiagnosticMessages property ScriptEngine
Controls whether diagnostic messages should be recorded in the Message window. This
is a read-write property.

Type expected
bool DiagnosticMessages

LogFileName property ScriptEngine
The name of the log file. Defaults to "\SCRIPT.LOG". This is a read-write property.

Type expected
string LogFileName

Logging property ScriptEngine

If set to TRUE, script messages will be stored in the log file. This is a read-write
property.

Type expected
bool Logging

ScriptPath property ScriptEngine

Holds a string containing the name(s) of the directory(s) to be searched for script files.
Each directory path is separated from the others by a semicolon (;). This is a read-write
property.

Type expected
string ScriptPath

StartupDirectory property ScriptEngine

The name of the directory in which the file STARTUP.SPX was found in during
initialization. This is a read-write property.

Type expected
string StartupDirectory

Debug method ScriptEngine

This method launches the Script Debugger.

Paradigm C++ Object Scripting Guide206

Types expected
bool Debugger()

Return value
TRUE if the Script Debugger can be launched, FALSE otherwise.

Execute method ScriptEngine

Executes the string in commandLine, which must be a valid cScript command.

Types expected
int Execute(string commandLine, bool temporary)
string Execute(string commandLine, bool temporary)

Return value
Returns the value appropriate to whatever commandLine evaluates to. If that value is an
object, it is converted to a string.

Description
If temporary is TRUE, the command is run within a new context and must therefore use
import to access global variables declared in another module. Any global variables it
creates will be used for the purposes of the command and then discarded.

If temporary is FALSE (the default), the command is executed with the scope of
Immediate mode and has automatic access to globals from other modules. In this case,
any variables created by the command continue to exist after the command has run and
can be accessed from Immediate mode.

IsAClass method ScriptEngine

This method is used to determine if ObjecttScript has seen the class declaration for the
class indicated by className.

Types expected
bool IsAClass(string className)

Return value
TRUE if instances of the class can be constructed, FALSE otherwise.

IsAFunction method ScriptEngine

This method is used to determine if ObectScript has seen the function declaration for
the function indicated by functionName.

Types expected
bool IsAFunction(string functionName)

Return value
TRUE if the function can be called, FALSE otherwise.

Chapter 4, cScript Class Reference 207

IsAMethod method ScriptEngine
This method is used to determine if the class className has as a member of the class
the method methodName.

Types expected
bool IsAMethod(string className, string methodName)

Return value
TRUE if the method is a member of the class, FALSE otherwise.

IsAProperty method ScriptEngine

This method is used to determine if the class className has as a member of the class
the property propertyName.

Types expected
bool IsAProperty(string className, string propertyName)

Return value
TRUE if the property is a member of the class, FALSE otherwise.

IsLoaded method ScriptEngine

This method is used to determine if the specified script file scriptFileName has been
loaded, or if the file (either the source or the binary) can be found in the ScriptPath.

Types expected
bool IsLoaded(string scriptFileName)

Return value
TRUE if the file is loaded or can be loaded, FALSE otherwise.

Load method ScriptEngine
This method is used to load the script file scriptFileName. If not already loaded, the file
(either the source or the binary) is searched for using the ScriptPath.

Types expected
bool Load(string scriptFileName)

Return value
TRUE if the script was located and loaded or FALSE if the script file was not found.

Description
If the script file to be loaded has already been loaded into memory, Load() performs an
in-place Reset(). (The module's position in the module chain is not affected, but all its
variables are restored to their original state.) On handlers are disconnected or
reconnected. All variables local to the module are released and reset. Any code at the
module level scope is executed again.

Paradigm C++ Object Scripting Guide208

Modules method ScriptEngine
This method finds all the loaded modules.

Types expected
[] Modules(bool libraryOnly)

libraryOnly An optional parameter indicating that the method is to fetch only the
library modules.

Return value
An array of strings containing the names of the loaded modules.

Reset method ScriptEngine

This method resets the script session by discarding all modules that match the value of
resetWhat. If no value is supplied, the method does nothing.

Types expected
bool Reset(int resetWhat)

resetWhat Can be either LIBRARY_MODULE or SCRIPT_MODULE.

Return value
TRUE if the session is reset or FALSE if it is not.

SymbolLoad method ScriptEngine

This method provides hints about where the definition of a given symbol might be. For
example, SymbolLoad("ScriptFile", "Foo, Bar, jump").

Types expected
void SymbolLoad(string fileName, string symbols)

fileName A script file that should be loaded if the lookup for any of the listed
symbols fails.

symbols A comma delimited string of the symbols which may be resolved by
loading fileName.

Return value
None

Description
At run time when the Script Engine tries to find a class, function, method, or global
variable that it doesn't know about, it consults an internal table constructed by calls to
this method.

Unload method ScriptEngine
Tries to unload the specified script file. Future references from other scripts to
variables, functions or classes defined in the unloaded script file are no longer valid.

Chapter 4, cScript Class Reference 209

Types expected
bool Unload(string scriptFileName)

Return value
FALSE when the script file is not found to have been loaded, TRUE otherwise.

Loaded event ScriptEngine

This event is raised whenever a new script module is successfully loaded.

Types expected
void Loaded(string scriptFileName)

Return value
None

Unloaded event ScriptEngine

This event is raised when a module has been unloaded.

Types expected
void Unloaded(string scriptFileName)

Return value
None

SearchOptions class

Syntax
SearchOptions()

Properties
bool CaseSensitive Read-write
bool FromCursor Read-write
bool GoForward Read-write
bool PromptOnReplace Read-write
bool RegularExpression Read-write
bool ReplaceAll Read-write
string ReplaceText Read-write
string SearchReplaceText Read-write
string SearchText Read-write
bool WholeFile Read-write
bool WordBoundary Read-write

Methods
void Copy(SearchOptions optionsToCopyFrom)

Events
None

Paradigm C++ Object Scripting Guide210

CaseSensitive property SearchOptions
If TRUE, a case-sensitive search is performed. This is a read-write property.

Type expected
bool CaseSensitive

FromCursor property SearchOptions

If TRUE, the search is made from the current cursor position. This is a read-write
property.

Type expected
bool FromCursor

GoForward property SearchOptions

If TRUE, the search is "forward" towards the end of the file. This is a read-write
property.

Type expected
bool GoForward

PromptOnReplace property SearchOptions

If TRUE, you are prompted to confirm each instance where the SearchReplaceText will
be replaced by the ReplaceText before the replacements are made. This is a read-write
property.

Type expected
bool PromptOnReplace

RegularExpression property SearchOptions
If TRUE, regular expressions are used in matching the SearchText or
SearchReplaceText with the text to be searched. This is a read-write property.

Type expected
bool RegularExpression

ReplaceAll property SearchOptions
If TRUE, all text which matches the SearchReplaceText is replaced with the
ReplaceText without any prompting for confirmation. This is a read-write property.

Type expected
bool ReplaceAll

ReplaceText property SearchOptions
This property contains text which replaces instances of the SearchReplaceText string(s)
found in the text being searched. This is a read-write property.

Chapter 4, cScript Class Reference 211

Type expected
string ReplaceText

SearchReplaceText property SearchOptions
This property contains the text to search for in a search and replace operation (not a
search-only operation). This is a read-write property.

Type expected
string SearchReplaceText

SearchText property SearchOptions
This property contains the text to search for in a search operation (not a search and
replace operation). This is a read-write property.

Type expected
string SearchText

WholeFile property SearchOptions
If TRUE, the whole file is searched for SearchText or SearchReplaceText, regardless of
the cursor position. This is a read-write property.

Type expected
bool WholeFile

WordBoundary property SearchOptions

If TRUE, a match between SearchText or SearchReplaceText and the text being
searched only occurs if the characters in SearchText make up an entire word (that is,
they are surrounded by whitespace) and are not embedded in a larger word. This is a
read-write property.

Type expected
bool WordBoundary

Copy method SearchOptions

This method creates a copy of the current SearchOptions.

Types expected
void Copy(SearchOptions optionsToCopyFrom)

Return value
None

StackFrame class

Syntax
StackFrame(int howFarBack)

Paradigm C++ Object Scripting Guide212

howFarBack refers to the number of stack frames to go back through. 0 gets
information for this call. 1 retrieves the stack passed to this function's caller, and so on.
When howFarBack is less than the depth of the stack, the object is not valid.

Properties
int ArgActual Read-only
int ArgPadding Read-only
string Caller Read-write
bool IsValid Read-only

Methods
StackElement GetParmStackFrame_GetParm(int parmNumber)
string InqTypeStackFrame_InqType(int arg)
bool SetParmStackFrame_SetParm(int parmNumber, newValue)

Events
None

ArgActual property StackFrame

This property indicates the number of objects on the cScript stack belonging to this call
frame. It is a read-only property.

Type expected
int ArgActual

Description
ArgActual is the number of arguments that were actually passed to a method. cScript
either pads or truncates arguments as necessary, so it must keep track of the number
actually passed.

For example, if you have a call in your code to
MyMethod("hi");

Its declaration shows the following:
MyMethod(first, second, third, fourth){
 print first, second, third, fourth;
}

If you were to insert x = new StackFrame(0); into the call to MyMethod, the
value of x.ArgActual would be 1 since only one argument is passed.

ArgPadding property StackFrame

This property indicates the number of objects cScript had to pad or truncate from the
original call stack to resolve any discrepancy between the number of arguments in the
declaration and the number of arguments in the call. This is a read-only property.

Type expected
int ArgPadding

Chapter 4, cScript Class Reference 213

Caller property StackFrame
This property indicates the name of the method owning the stack frame. This is a read-
write property.

Type expected
string Caller

Description
Caller contains the empty string ("") if the call is a top level one. When the value is set,
it is reflected in subsequent StackFrame calls until the current stack frame is popped
off, at which point the value of Caller is reset to its original value.

IsValid property StackFrame
This property is FALSE if the object was constructed with an invalid stack frame depth
or if the stack frame has gone out of scope. It is TRUE otherwise. This is a read-only
property.

Type expected
bool IsValid

InqType method StackFrame

This method returns a descriptor for the argument specified or, if arg is greater than or
equal to ArgActual, for an argument that maps to "Out of range".

Types expected
string InqType(int arg)

GetParm method StackFrame

This method returns the object at the specified stack frame offset.

Types expected
StackElement GetParm(int parmNumber)

SetParm method StackFrame
This method sets the value of the object at the specified stack frame offset.

Types expected
bool SetParm (int parmNumber, newValue)

String class

Syntax
String(string theText)
String(String anotherString)

Paradigm C++ Object Scripting Guide214

Properties
int Character Read-write
int Integer Read-write
bool IsAlphaNumeric Read-only
int Length Read-only
string Text Read-write

Methods
String Compress()
bool Contains(string charactersToLookFor, int mask)
int Index(string substr[, int direction])
String Lower()
String SubString(int startPos[, int length])
String Trim([bool fromLeft])
String Upper()

Character property String

This property indicates the integer value of character 0 of the string. It is a read-write
property.

Type expected
int Character

Description
When the value of Character is set, it changes the whole string to the new value. For
example, if you start with a string Str containing the text "FOO", the value of Str.Text is
"FOO" and the value of Str.Character is 'F'. If you then set the value of Str with
Str.Character = 'X', the value of Str.Text is now "X" and not "XOO".

Integer property String

This property indicates the numerical equivalent of the character string that this object
represents, or zero if the string does not contain numerals. This is a read-write property.

Type expected
int Integer

IsAlphaNumeric property String
This property is TRUE if the text of the String is made up entirely of alphanumeric
characters (determined by checking the system's current locale). Its value is FALSE
otherwise. This is a read-only property.

Type expected
bool IsAlphaNumeric

Length property String

This property indicates the length of the string (equivalent to strlen). This is a read-only
property.

Chapter 4, cScript Class Reference 215

Type expected
int Length

Text property String
The character string that this object represents. This is a read-write property.

Type expected
string Text

Compress method String

This method returns a new String that mimics this one, but with redundant white space
removed.

Types expected
String Compress()

Contains method String

This method returns TRUE if the string contains one of the characters specified or
FALSE if it does not.

Types expected
bool Contains(string charactersToLookFor, [int mask])

mask can be any of the following constants:

BACKWARD_RIP Rip from left to right.

INVERT_LEGAL_CHARS Interpret the legalChars string as
the inverse of the string you wish to
use for legalChars. In other words,
specify "t" to mean any ASCII
value between 1 and 255 except
't'.

INCLUDE_LOWERCASE_ALPHA_CHARS Append the characters
abcdefghijklmnopqrstuvw
xyz to the legalChars string.

INCLUDE_UPPERCASE_ALPHA_CHARS Append the characters
ABCDEFGHIJKLMNOPQRSTUVW
XYZ to the legalChars string

INCLUDE_ALPHA_CHARS Append both uppercase and
lowercase alpha characters to the
legalChars string.

INCLUDE_NUMERIC_CHARS Append the characters
1234567890 to the legalChars
string.

INCLUDE_SPECIAL_CHARS Append the characters `-
=[]\;',./~!@#$%^&*()_+{
}|:"<>? to the legalChars string.

Paradigm C++ Object Scripting Guide216

Index method String
This method scans the string for an embedded occurrence of the substr in the direction
specified by direction. It defaults to SEARCH_FORWARD. It does not accept regular
expressions.

Types expected
int Index(string substr[, int direction])

Return value
0 if substr is not found or, if found, the one based offset + 1 of the substring.

Lower method String

This method returns a new string that mimics this one, but is all lowercase letters.

Types expected
String Lower()

SubString method String

This method returns a new string consisting of the substring indicated by startPos and
optionally length.

Types expected
String SubString(int startPos[, int length])

startPos The starting point in the string of the substring.

length The number of characters in the substring. Defaults to
MAX_EDITOR_LINE_LEN (1024). If length is not specified, SubString
continues to the end of the string.

Trim method String

This method returns a new string that mimics this one, but either without trailing white
space or without leading white space, as indicated by the fromLeft argument. The
default is to trim trailing white space (fromLeft is FALSE).

Types expected
String Trim([bool fromLeft])

Upper method String
This method returns a new string that mimics this one, but is all uppercase letters.

Types expected
String Upper()

TransferOutput class

Internally created by the IDE after processing a transfer tool, TransferOutput is passed
to the IDE event TransferOutputExists().

Chapter 4, cScript Class Reference 217

Syntax
TransferOutput()

Properties
int MessageId Read-only

string Provider Read-only

Methods
string ReadLine()

Description
An object of type TransferOutput is internally created by the IDE whenever a transfer
operation is performed.

When the IDE starts a transfer, it outputs a message to the Message window saying
"Transferring to ToolName..."

When a transfer happens, the IDE captures all its output and stores it in an internal
buffer. The contents of this buffer may be accessed by using TransferOutput object's
ReadLine method. This method returns the next line of text until the stream is
exhausted, at which point it returns NULL.

The IDE contains built-in processing for tools it commonly transfers to. These tools
include PASM and GREP. The script sample files FILTSTUB.SPP and FILTERS.SPP
show uses of this class in action.

Transfer definition
The term used when another application is spawned from within the IDE. Command-
line tools such as the WinHelp compiler or a DOS box (COMMAND.COM) are
commonly invoked from the IDE during a build process.

MessageId property TransferOutput

This property is the "owning" message stored to the message system. This ID is
intended to be used as the parentMessage parameter of IDE.MessageCreate so that the
messages produced by the transfer can be grouped with the transfer message rather than
at the same level. It is a read-only property.

Type expected
int MessageId

Provider property TransferOutput

This property indicates the name of the tool that was spawned by the transfer; for
example, "COMMAND.COM". It is a read-only property.

Type expected
string Provider

Paradigm C++ Object Scripting Guide218

ReadLine method TransferOutput
This method reads the next line of text that was produced by the transfer. When a
transfer happens, the IDE captures all its output and stores it in an internal buffer. The
contents of this buffer may be accessed by repeatedly calling ReadLine, which returns
the next line of text until the stream has been exhausted, at which point it returns
NULL.

Types expected
string ReadLine()

Return value
ReadLine returns the next line of text that was produced by the transfer. If the line is
empty, ReadLine returns the empty string (""). If there is no more input to read, it
returns NULL.

TimeStamp class
This class indicates the current time. It initializes to the system time at the time of
construction.

Syntax
TimeStamp()

Properties
int Day Read-write
int Hour Read-write
int Hundredth Read-write
int Millisecond Read-write
int Minute Read-write
int Month Read-write
int Second Read-write
int Year Read-write

Methods
int Compare(TimeStamp tstamp)
string DayName()
string MonthName()

Day property TimeStamp
This property indicates the current day in the range of 0 (Sunday) to 6 (Saturday). It is a
read-write property.

Type expected
int Day

Hour property TimeStamp
This property indicates the current hour in the range of 0 (Midnight) to 23 (11:00 PM).
It is a read-write property.

Chapter 4, cScript Class Reference 219

Type expected
int Hour

Hundredth property TimeStamp
This property indicates the current hundredth of an hour in the range of 0 to 99. It is a
read-write property.

Type expected
int Hundredth

Millisecond property TimeStamp
This property indicates the number of milliseconds after the current second in the range
of 0 to 999. It is a read-write property.

Type expected
int Millisecond

Minute property TimeStamp
This property indicates the number of minutes after the current hour in the range of 0 to
59. This is a read-write property.

Type expected
int Minute

Month property TimeStamp
This property indicates the current month of the year in the range of 0 (January) to 11
(December). It is a read-write property.

Type expected
int Month

Second property TimeStamp

This property indicates the number of seconds after the current minute in the range of 0
to 59. It is a read-write property.

Type expected
int Second

Year property TimeStamp

This property indicates the current year. It is a read-write property.

Type expected
int Year

Paradigm C++ Object Scripting Guide220

Compare method TimeStamp
Compares the time properties of the calling TimeStamp object with those of the tstamp
argument.

Types expected
int Compare(TimeStamp tstamp)

Return value
-1 if the calling TimeStamp is newer than tstamp, 0 if the calling TimeStamp is the
same age as tstamp, and 1 if the calling TimeStamp is older than tstamp.

DayName method TimeStamp

This method returns the name of the current day of the week.

Types expected
string DayName()

Return value
"Monday", "Tuesday:, and so on.

MonthName method TimeStamp

This method returns the name of the current month.

Types expected
string MonthName()

Return value
"January", "February", and so on.

Index 221

Index

#

- 59, 68
-- 59, 67
! 65
!= 67
66, 71
74
#define 71, 74
#else 72
#endif 72
#ifdef 72
#ifndef 72
#include 73
#undef 73
#warn 74
% 59, 68
%= 60
& 60
&& 65
&= 60
() 65, 66
* 59, 60, 68
*= 60
, 64
. 62, 63
/ 59, 68
/= 60
?? 62, 63
?? operator 63
^ 60
^= 60
_ _cdecl 33
_ _pascal 33
_ _stdcall 33
_init() 13
{} 65, 69
| 60
| | 65
~ 60
+ 59, 68
++ 59, 67
= 60, 70
-= 60
== 67
> 67
>= 67
>> 60

>>= 60

A

About cScript 17
About Object Scripting 11
Accept

ListWindow class 194
Activate

EditWindow class 132
Add

ListWindow class 193
ProjectNode class 199

AddBreakAtCurrent
Debugger class 81

AddBreakpoint
Debugger class 81

AddBreakpointFileLine
Debugger class 81

AddToCredits
IDEApplication class 144

AddWatch
Debugger class 82

Align
EditPosition class 114

Animate
Debugger class 82

Append
PopupMenu class 196
Record class 203

AppendToLog
ScriptEngine class 204

Application
IDEApplication class 140

ApplyStyle
EditBuffer class 100
Editor class 104

AreKeysWaiting
KeyboardManager class 179

ArgActual
StackFrame class 212

ArgPadding
StackFrame class 212

ARGUMENT_DIAGNOSTICS 204
arithmetic operators 59
array 37
array members 26
arrays

associative 22

Paradigm C++ Object Scripting Guide222

bounded 22
cScript 21
finding members 45
member testing 63
unbounded 22

Assign
Keyboard class 188

assignment 60
assignment identifiers 70
Assignments

Keyboard class 187
AssignTypeables

Keyboard class 189
associative arrays 22
attach 38
Attach

Debugger class 82
EditView class 128

AttemptToModifyReadOnlyBuffer
EditBuffer class 102

AttemptToWriteReadOnlyFile
EditBuffer class 102

B

BackspaceDelete
EditPosition class 115

BackupPath
EditOptions class 110

BACKWARD_RIP 120, 215
Begin

EditBlock class 92
bitwise operators 60
Block

EditBuffer class 98
EditView class 125

BlockCreate
EditBuffer class 100

BlockIndent
EditOptions class 111

BookmarkGoto
EditView class 128

BookmarkRecord
EditView class 128

bool 33
boolean 67
BottomRow

EditView class 125
bounded arrays 22
branching 39, 41
break 38
breakpoint 38
BreakpointOptions

Debugger class 82
Brief

search expressions 122
Buffer

EditView class 126
BufferCreated

Editor class 108
BufferList

Editor class 105
BufferOptions

EditOptions class 111
BufferOptions class

Copy 80
CreateBackup 78
CursorThroughTabs 78
HorizontalScrollBar 78
InsertMode 78
LeftGutterWidth 78
Margin 78
OverwriteBlocks 79
PersistentBlocks 79
PreserveLineEnds 79
SyntaxHighlight 79
TabRack 79
TokenFileName 79
UseTabCharacter 79
VerticalScrollBar 79

BufferOptionsCreate
Editor class 105

BufferRedo
Editor class 105

BufferUndo
Editor class 105

Build
ProjectNode class 200

BuildComplete
IDEApplication class 173

BuildStarted
IDEApplication class 173

Built
ProjectNode class 201

built-in functions and variables
cScript 31

C

C++
compared to cScript 18

C++(operators) 57
call 38
Caller

StackFrame class 213
calling closures 38

Index 223

Cancel 149
ListWindow class 194

CANCEL 157
Caption

IDEApplication class 140
ListWindow class 191

case 39
CaseSensitive

SearchOptions class 210
Center

EditView class 129
char 33
Character

EditPosition class 113
String class 214

ChildNodes
ProjectNode class 198

class 39
dot operator 63

class members 26
classes

cScript 24
declaring in cScript 24
IDE scripting 33

editor 34
keyboard 34

Clear
ListWindow class 193

Close
EditWindow class 132
ListWindow class 193

Closed
ListWindow class 194

CloseWindow
IDEApplication class 144

closure operator 62
on syntax 47

closures 26
attach and detach 27
invoking 38

CodeToKey
KeyboardManager class 181

colon 69
Column

EditPosition class 113
COLUMN_BLOCK 91
comments

cScript 19
Compare

TimeStamp class 220
comparing

cScript and C++ 18
Compress

String class 215
const 33
Contains

String class 215
continue 41
control 41, 42, 43, 55
controlling access to cScript properties 28
Copy

BufferOptions 80
EditBlock class 92
Keyboard class 189
SearchOptions 211

Count
ListWindow class 191

CountAssignments
Keyboard class 189

CreateBackup
BufferOptions class 78

creating cScript objects 25
cScript 37

array members 26
arrays 21
associative arrays 22
attach and detach 27
bounded arrays 22
built-in functions 31
class members 26
classes 24, 26
closures 26
comments 19
compared to C++ 18
DLL access 33
error handling 32
event handling 26
flow control statments 23
identifiers 19, 31
keywords 37
late-bound language 17
modules and scope 20
named arguments 31
objects 25
OLE2 interaction 33
on handlers 26, 28
operators 21
overview 17
pass by reference 30
prototyping 23
statements 21
strings 21
types 19

cScript operators 62
cScript properties

controlling access to 28

Paradigm C++ Object Scripting Guide224

CurrentDate
EditBuffer class 98

CurrentDirectory
IDEApplication class 140

CurrentIndex
ListWindow class 191

CurrentPlayback
KeyboardManager class 179

CurrentProjectNode
IDEApplication class 140

CurrentRecord
KeyboardManager class 179

CursorThroughTabs
BufferOptions class 78

Cut
EditBlock class 92

D

Data
ListWindow class 192
PopupMenu class 196

Day
TimeStamp class 218

DayName
TimeStamp class 220

Debug
ScriptEngine class 205

DebugAddBreakpoint
IDEApplication class 144

DebugAddWatch
IDEApplication class 144

DebugAnimate
IDEApplication class 144

DebugAttach
IDEApplication class 145

DebugBreakpointOptions
IDEApplication class 145

DebugeeAboutToRun
Debugger class 88

DebugeeCreated
Debugger class 88

DebugeeStopped
Debugger class 89

DebugeeTerminated
Debugger class 89

DebugEvaluate
IDEApplication class 145

Debugger 80
Debugger class

AddBreakAtCurrent 81
AddBreakpoint 81
AddBreakpointFileLine 81

AddWatch 82
Animate 82
Attach 82
BreakpointOptions 82
DebugeeAboutToRun 88
DebugeeCreated 88
DebugeeStopped 89
DebugeeTerminated 89
Evaluate 83
EvaluateWindow 83
FindExecutionPoint 83
HasProcess 81
Inspect 83
InstructionStepInto 83
InstructionStepOver 84
IsRunnable 84
Load 84
PauseProgram 84
Reset 85
Run 85
RunToAddress 85
RunToFileLine 85
StatementStepInto 86
StatementStepOver 86
TerminateProgram 86
ToggleBreakpoint 86
ViewBreakpoint 87
ViewCallStack 87
ViewCPU 87
ViewCPUFileLine 87
ViewProcess 88
ViewWatch 88

debugging 38
DebugInspect

IDEApplication class 146
DebugInstructionStepInto

IDEApplication class 146
DebugInstructionStepOver

IDEApplication class 146
DebugLoad

IDEApplication class 146
DebugPauseProcess

IDEApplication class 147
DebugResetThisProcess

IDEApplication class 147
DebugRun

IDEApplication class 147
DebugRunTo

IDEApplication class 147
DebugSourceAtExecutionPoint

IDEApplication class 147
DebugStatementStepInto

IDEApplication class 148

Index 225

DebugStatementStepOver
IDEApplication class 148

DebugTerminateProcess
IDEApplication class 148

declare 41
declaring Object Script classes 24
default method

pass 49
default statement 41
DefaultAssignment

Keyboard class 187
DefaultFilePath

IDEApplication class 141
defines 71, 74
delayed keys

processing 183
delete 42
Delete

EditBlock class 93
EditPosition class 115
ListWindow class 194

Describe
EditBuffer class 100

Destroy
EditBuffer class 100

detach 42
developing and testing scripts 13
DiagnosticMessageMask

ScriptEngine class 204
DiagnosticMessages

ScriptEngine class 205
DialogCreated

IDEApplication class 174
DirectionDialog

IDEApplication class 148
directives 71, 72, 73, 74

cScript 71
Directory

EditBuffer class 98
DirectoryDialog

IDEApplication class 149
DisplayCredits

IDEApplication class 149
DistanceToTab

EditPosition class 115
division 68
DLLs

cScript access to 33
do 42
DoFileOpen

IDEApplication class 149
dot operator 63
DOWN 133, 148

Drive
EditBuffer class 98

E

EditBlock 89
EditBlock class

Begin 92
Copy 92
Cut 92
Delete 93
End 93
EndingColumn 90
EndingRow 91
Extend 93
ExtendPageDown 93
ExtendPageUp 93
ExtendReal 94
ExtendRelative 94
Hide 91
Indent 94
IsValid 90
LowerCase 94
Print 95
Reset 95
Restore 95
Save 95
SaveToFile 95
Size 91
StartingColumn 91
StartingRow 91
Style 91
Text 92
ToggleCase 96
UpperCase 96

EditBuffer 96
EditBuffer class

ApplyStyle 100
AttemptToModifyReadOnlyBuffer 102
AttemptToWriteReadOnlyFile 102
Block 98
BlockCreate 100
CurrentDate 98
Describe 100
Destroy 100
Directory 98
Drive 98
Extension 98
FileName 98
FullName 98
HasBeenModified 102
InitialDate 99
IsModified 99

Paradigm C++ Object Scripting Guide226

IsPrivate 99
IsReadOnly 99
IsValid 99
NextBuffer 100
NextView 101
Position 99
PositionCreate 101
Print 101
PriorBuffer 101
Rename 102
Save 102
TopView 100

EditBufferCreate
Editor class 105

EditBufferList
IDEApplication class 149

EditCopy
IDEApplication class 150

EditCut
IDEApplication class 150

EditMode
EditStyle class 124

EditOptions 110
EditOptions class

BackupPath 110
BlockIndent 111
BufferOptions 111
MirrorPath 111
OriginalPath 111
SyntaxHighlightTypes 111
UseBRIEFCursorShapes 111
UseBRIEFRegularExpression 112

EditOptionsCreate
Editor class 106

editor
IDE scripting 34

Editor
IDEApplication class 141

Editor class
ApplyStyle 104
BufferCreated 108
BufferList 105
BufferOptionsCreate 105
BufferRedo 105
BufferUndo 105
EditBufferCreate 105
EditOptionsCreate 106
EditStyleCreate 106
EditWindowCreate 106
FirstStyle 104
GetClipboard 106
GetClipboardToken 106
GetWindow 107

IsFileLoaded 107
MouseBlockCreated 108
MouseLeftDown 108
MouseLeftUp 108
MouseTipRequested 108
Options 104
OptionsChanged 109
OptionsChanging 109
SearchOptions 104
StyleGetNext 107
TopBuffer 104
TopView 104
ViewActivated 109
ViewCreated 109
ViewDestroyed 110
ViewRedo 107
ViewUndo 107

EditPaste
IDEApplication class 150

EditPosition 112
EditPosition class

Align 114
BackspaceDelete 115
Character 113
Column 113
Delete 115
DistanceToTab 115
GotoLine 116
InsertBlock 116
InsertCharacter 116
InsertFile 116
InsertScrap 116
InsertText 117
IsSpecialCharacter 113
IsWhiteSpace 113
IsWordCharacter 113
LastRow 114
Move 117
MoveBOL 117
MoveCursor 117
MoveEOF 118
MoveEOL 118
MoveReal 118
MoveRelative 118
Read 119
Replace 119
ReplaceAgain 120
Restore 120
RipText 120
Row 114
Save 121
Search 121
SearchAgain 122

Index 227

SearchOptions 114
Tab 122

EditRedo
IDEApplication class 150

EditSelectAll
IDEApplication class 151

EditStyle 123
EditStyle class

EditMode 124
Identifier 124
Name 124

EditStyleCreate
Editor class 106

EditUndo
IDEApplication class 151

EditView 124
EditView class

Attach 128
Block 125
BookmarkGoto 128
BookmarkRecord 128
BottomRow 125
Buffer 126
Center 129
Identifier 126
IsValid 126
IsZoomed 126
LastEdit Column 126
LastEditRow 126
LeftColumn 127
MoveCursorToView 129
MoveViewToCursor 129
Next 127
PageDown 129
PageUp 129
Paint 130
Position 127
Prior 127
RightColumn 127
Scroll 130
SetTopLeft 130
TopRow 127
Window 127

EditWindow 130
EditWindow class

Activate 132
Close 132
Identifier 131
IsHidden 131
IsValid 132
Next 132
Paint 133
Prior 132

Title 132
View 132
ViewActivate 133
ViewCreate 133
ViewDelete 134
ViewExists 134
ViewSlide 135

EditWindowCreate
Editor class 106

else 72
enclosing operators 65
End

EditBlock class 93
endif 72
EndingColumn

EditBlock class 90
EndingRow

EditBlock class 91
EndWaitCursor

IDEApplication class 151
EnterContextHelpMode

IDEApplication class 151
entering commands

IDE message dialog example 12
equal sign 70
equality operators 67
ERROR 158
error handling

cScript 32
Evaluate

Debugger class 83
EvaluateWindow

Debugger class 83
event 31
event handling

cScript 26
pass 49

EXCLUSIVE_BLOCK 91
Execute

ListWindow class 193
ScriptEngine class 206

exit functions 50
Exiting

IDEApplication class 174
ExpandWindow

IDEApplication class 151
export 43
exporting functions 43
expressions

regular 122
search 122, 123

Extend
EditBlock class 93

Paradigm C++ Object Scripting Guide228

ExtendPageDown
EditBlock class 93

ExtendPageUp
EditBlock class 93

ExtendReal
EditBlock class 94

ExtendRelative
EditBlock class 94

Extension
EditBuffer class 98

F

Factory 31
FALSE 64, 67
FATAL 158
FileClose

IDEApplication class 152
FileDialog

IDEApplication class 152
FileExit

IDEApplication class 152
FileName

EditBuffer class 98
FileNew

IDEApplication class 152
FileOpen

IDEApplication class 152
FilePrint

IDEApplication class 153
FilePrinterSetup

IDEApplication class 153
FileSave

IDEApplication class 153
FileSaveAll

IDEApplication class 153
FileSaveAs

IDEApplication class 154
FileSend

IDEApplication class 154
FindExecutionPoint

Debugger class 83
FindString

ListWindow class 193
PopupMenu class 196

FirstStyle
Editor class 104

flow control statements
cScript 23

Flush
KeyboardManager class 181

for 43
from 44

FromCursor
SearchOptions class 210

FULL_DIAGNOSTICS 204
FullName

EditBuffer class 98
IDEApplication class 141

functions
cScript 37

G

GetClipboard
Editor class 106

GetClipboardToken
Editor class 106

GetCommand
Keyboard class 189
Record class 203

GetKeyboard
KeyboardManager class 181

GetKeyCode
Record class 203

GetKeySequence
Keyboard class 190

GetParm
StackFrame class 213

GetRegionBottom
IDEApplication class 154

GetRegionLeft
IDEApplication class 155

GetRegionRight
IDEApplication class 155

GetRegionTop
IDEApplication class 155

GetString
ListWindow class 193
PopupMenu class 197

getters 28
cScript 28

GetWindow
Editor class 107

GetWindowState
IDEApplication class 155

GoForward
SearchOptions class 210

GotoLine
EditPosition class 116

H

HasBeenModified
EditBuffer class 102

HasProcess
Debugger class 81

Index 229

HasUniqueMapping
Keyboard class 190

Height
IDEApplication class 141
ListWindow class 192

Help
IDEApplication class 156

HelpAbout
IDEApplication class 156

HelpContents
IDEApplication class 156

HelpKeyboard
IDEApplication class 156

HelpKeywordSearch
IDEApplication class 156

HelpRequested
IDEApplication class 174

HelpUsingHelp
IDEApplication class 157

HelpWindowsAPI
IDEApplication class 157

hexadecimals
cScript strings 21

Hidden
ListWindow class 192

Hide
EditBlock class 91

HorizontalScrollBar
BufferOptions class 78

Hour
TimeStamp class 218

Hundredth
TimeStamp class 219

I

IDE
search expressions 123

IDE Class Library 33
IDEApplication 137
IDEApplication class

AddToCredits 144
Application 140
BuildComplete 173
BuildStarted 173
Caption 140
CloseWindow 144
CurrentDirectory 140
CurrentProjectNode 140
DebugAddBreakpoint 144
DebugAddWatch 144
DebugAnimate 144
DebugAttach 145

DebugBreakpointOptions 145
DebugEvaluate 145
DebugInspect 146
DebugInstructionStepInto 146
DebugInstructionStepOver 146
DebugLoad 146
DebugPauseProcess 147
DebugResetThisProcess 147
DebugRun 147
DebugRunTo 147
DebugSourceAtExecutionPoint 147
DebugStatementStepInto 148
DebugStatementStepOver 148
DebugTerminateProcess 148
DefaultFilePath 141
DialogCreated 174
DirectionDialog 148
DirectoryDialog 149
DisplayCredits 149
DoFileOpen 149
EditBufferList 149
EditCopy 150
EditCut 150
Editor 141
EditPaste 150
EditRedo 150
EditSelectAll 151
EditUndo 151
EndWaitCursor 151
EnterContextHelpMode 151
Exiting 174
ExpandWindow 151
FileClose 152
FileDialog 152
FileExit 152
FileNew 152
FileOpen 152
FilePrint 153
FilePrinterSetup 153
FileSave 153
FileSaveAll 153
FileSend 154
FullName 141
GetRegionBottom 154
GetRegionLeft 155
GetRegionRight 155
GetRegionTop 155
GetWindowState 155
Height 141
Help 156
HelpAbout 156
HelpContents 156
HelpKeyboard 156

Paradigm C++ Object Scripting Guide230

HelpKeywordSearch 156
HelpRequested 174
HelpUsingHelp 157
HelpWindowsAPI 157
Idle 174
IdleTime 141
IdleTimeout 141
KeyboardAssignmentFile 142
KeyboardAssignmentsChanged 175
KeyboardAssignmentsChanging 175
KeyboardManager 142
KeyPressDialog 157
Left 142
ListDialog 157
LoadTime 142
MakeComplete 175
MakeStarted 175
Menu 158
Message 158
MessageCreate 158
ModuleName 142
Name 142
NextWindow 159
OptionsEnvironment 159
OptionsProject 159
OptionsSave 159
OptionsStyleSheets 160
OptionsTools 160
Parent 142
ProjectBuildAll 160
ProjectClosed 176
ProjectCloseProject 160
ProjectCompile 161
ProjectGenerateMakefile 161
ProjectMakeAll 161
ProjectManagerInitialize 161
ProjectNewProject 162
ProjectNewTarget 162
ProjectOpened 176
ProjectOpenProject 163
Quit 163
RaiseDialogCreatedEvent 143
SaveMessages 163
ScriptCommands 163
ScriptCompileFile 163
ScriptModules 164
ScriptRun 164
ScriptRunFile 164
SearchBrowseSymbol 164
SearchFind 165
SearchLocateSymbol 165
SearchNextMessage 165
SearchPreviousMessage 165

SearchReplace 166
SearchSearchAgain 166
SecondElapsed 176
SetRegion 166
SetWindowState 167
SimpleDialog 167
SpeedMenu 167
Started 176
StartWaitCursor 167
StatusBar 143
StatusBarDialog 168
Tool 168
Top 143
TransferOutputExists 177
TranslateComplete 177
Undo 168
UseCurrentWindowForSourceTracking 143
Version 143
ViewActivate 168
ViewBreakpoint 169
ViewCallStack 169
ViewClasses 169
ViewCPU 169
ViewGlobals 170
ViewMessage 170
ViewProcess 170
ViewProject 171
ViewSlide 170
ViewWatch 171
Visible 143
Width 144
WindowArrangeIcons 171
WindowCascade 171
WindowCloseAll 172
WindowMinimizeAll 172
WindowRestoreAll 172
WindowTileHorizontal 172
WindowTileVertical 173
YesNoDialog 173

Identifier
EditStyle class 124
EditView class 126
EditWindow class 131

identifiers
cScript 19

Idle
IDEApplication class 174

IdleTime
IDEApplication class 141

IdleTimeout
IDEApplication class 141

if 44
ifdef 72

Index 231

ifndef 72
import 44
importing functions 44
in operator 63
include 73
INCLUDE_ALPHA_CHARS 215
INCLUDE_LOWERCASE_ALPHA_CHARS 215
INCLUDE_NUMERIC_CHARS 215
INCLUDE_SPECIAL_CHARS 215
INCLUDE_UPPERCASE_ALPHA_CHARS 215
IncludePath

ProjectNode class 198
INCLUSIVE_BLOCK 91
Indent

EditBlock class 94
Index

String class 216
INFORMATION 158
InitialDate

EditBuffer class 99
initialized 44
InputName

ProjectNode class 198
InqType

StackFrame class 213
Insert

ListWindow class 194
InsertBlock

EditPosition class 116
InsertCharacter

EditPosition class 116
InsertFile

EditPosition class 116
InsertMode

BufferOptions class 78
InsertScrap

EditPosition class 116
InsertText

EditPosition class 117
Inspect

Debugger class 83
instances

cScript classes 25
InstructionStepInto

Debugger class 83
InstructionStepOver

Debugger class 84
int 33
Integer

String class 214
INVALID_BLOCK 91
INVERT_LEGAL_CHARS 215
IsAClass

ScriptEngine class 206
IsAFunction

ScriptEngine class 206
IsAlphaNumeric

String class 214
IsAMethod

ScriptEngine class 207
IsAProperty

ScriptEngine class 207
IsFileLoaded

Editor class 107
IsHidden

EditWindow class 131
IsLoaded

ScriptEngine class 207
IsModified

EditBuffer class 99
IsPaused

Record class 202
IsPrivate

EditBuffer class 99
IsReadOnly

EditBuffer class 99
IsRecording

Record class 202
IsRunnable

Debugger class 84
IsSpecialCharacter

EditPosition class 113
IsValid

EditBlock class 90
EditBuffer class 99
EditView class 126
EditWindow class 132
ProjectNode class 198
StackFrame class 213

IsWhiteSpace
EditPosition class 113

IsWordCharacter
EditPosition class 113

IsZoomed
EditView class 126

iterate 45

K

key name mnemonics 184
keyboard

IDE scripting classes 34
Keyboard 187
Keyboard class

Assign 188
Assignments 187

Paradigm C++ Object Scripting Guide232

AssignTypeables 189
Copy 189
CountAssignments 189
DefaultAssignment 187
GetCommand 189
GetKeySequence 190
HasUniqueMapping 190
Unassign 190

KeyboardAssignmentFile
IDEApplication class 142

KeyboardAssignmentsChanged
IDEApplication class 175

KeyboardAssignmentsChanging
IDEApplication class 175

KeyboardFlags
KeyboardManager class 180

KeyboardManager 179
IDEApplication class 142

KeyboardManager class
AreKeysWaiting 179
CodeToKey 181
CurrentPlayback 179
CurrentRecord 179
Flush 181
GetKeyboard 181
KeyboardFlags 180
KeysProcessed 180
KeyToCode 182
LastKeyProcessed 180
PausePlayback 182
Playback 182
Pop 183
ProcessKeyboardAssignments 182
ProcessPendingKeystrokes 183
Push 183
ReadChar 184
Recording 180
ResumePlayback 184
ResumeRecord 184
ScriptAbortKey 180
SendKeys 184
StartRecord 186
StopRecord 186
UnassignedKey 186

KeyCount
Record class 202

KeyPressDialog
IDEApplication class 157

KeyPressed
ListWindow class 195

keys
processing 183

KeysProcessed

KeyboardManager class 180
keystrokes

processing 183
KeyToCode

KeyboardManager class 182
keywords

cScript 37

L

LANGUAGE_DIAGNOSTICS 204
LastEditColumn

EditView class 126
LastEditRow

EditView class 126
LastKeyProcessed

KeyboardManager class 180
LastRow

EditPosition class 114
late-bound language 17
Left

IDEApplication class 142
LEFT 133, 134
LeftClick

ListWindow class 195
LeftColumn

EditView class 127
LeftGutterWidth

BufferOptions class 78
Length

String class 214
library 31
LIBRARY_MODULE 208
LibraryPath

ProjectNode class 198
LINE_BLOCK 91
ListDialog

IDEApplication class 157
ListWindow 190
ListWindow class

Accept 194
Add 193
Cancel 194
Caption 191
Clear 193
Close 193
Closed 194
Count 191
CurrentIndex 191
Data 192
Delete 194
Execute 193
FindString 193

Index 233

GetString 193
Height 192
Hidden 192
Insert 194
KeyPressed 195
LeftClick 195
Move 195
MultiSelect 192
Remove 194
RightClick 195
Sorted 192
Width 192

load 45
Load

Debugger class 84
ScriptEngine class 207

Loaded
ScriptEngine class 209

loading scripts 14
LoadTime

IDEApplication class 142
LogFileName

ScriptEngine class 205
Logging

ScriptEngine class 205
logical operators 65
long 33
loops 41, 42, 43, 55
Lower

String class 216
LowerCase

EditBlock class 94
Lvalues 70

M

macros 74
Made

ProjectNode class 201
Make

ProjectNode class 200
MakeComplete

IDEApplication class 175
MakePreview

ProjectNode class 200
MakeStarted

IDEApplication class 175
Margin

BufferOptions class 78
member selector 63
MEMBER_DIAGNOSTICS 204
Menu

IDEApplication class 158

Message
IDEApplication class 158

MessageCreate
IDEApplication class 158

MessageId
TransferOutput class 217

method 31
METHOD_DIAGNOSTICS 204
Millisecond

TimeStamp class 219
Minute

TimeStamp class 219
MirrorPath

EditOptions class 111
mnemonics

key name 184
modifiable identifiers 70
module

command 46
function 46

MODULE_DIAGNOSTICS 204
ModuleName

IDEApplication class 142
modules

cScript 20
Modules

ScriptEngine class 208
modulus 68
Month

TimeStamp class 219
MonthName

TimeStamp class 220
MouseBlockCreated

Editor class 108
MouseLeftDown

Editor class 108
MouseLeftUp

Editor class 108
MouseTipRequested

Editor class 108
Move

EditPosition class 117
ListWindow class 195

MoveBOL
EditPosition class 117

MoveCursor
EditPosition class 117

MoveCursorToView
EditView class 129

MoveEOF
EditPosition class 118

MoveEOL
EditPosition class 118

Paradigm C++ Object Scripting Guide234

MoveReal
EditPosition class 118

MoveRelative
EditPosition class 118

MoveViewToCursor
EditView class 129

multiplication 68
MultiSelect

ListWindow class 192

N

Name
EditStyle class 124
IDEApplication class 142
ProjectNode class 199
Record class 202

named arguments
cScript 31

new 47
Next

EditView class 127
EditWindow class 132
Record class 203

NextBuffer
EditBuffer class 100

NextView
EditBuffer class 101

NextWindow
IDEApplication class 159

NO_DIAGNOSTICS 204

O

object 31
Object Scripting

about 11
loading 14
print command 11
Quick start 11
running a script 11
setting options 15

OBJECT_DIAGNOSTICS 204
object-oriented operators 62
objects

finding members 45
membership testing 63

Objects
cScript

creating 25
octals

cScript strings 21
of 47
OK 157

OLE2
cScript interaction

OLEObject 33
on 47
on handlers 26

attach 38
getters 28
pass 49
setters 29

onerror 49
operators 57, 58, 59, 60, 62, 64, 65, 67
options

Object Scripting 15
Options

Editor class 104
OptionsChanged

Editor class 109
OptionsChanging

Editor class 109
OptionsEnvironment

IDEApplication class 159
OptionsProject

IDEApplication class 159
OptionsSave

IDEApplication class 159
OptionsStyleSheets

IDEApplication class 160
OptionsTools

IDEApplication class 160
OriginalPath

EditOptions class 111
OutOfDate

ProjectNode class 199
OutputName

ProjectNode class 199
OverwriteBlocks

BufferOptions class 79

P

PageDown
EditView class 129

PageUp
EditView class 129

Paint
EditView class 130
EditWindow class 133

parameters 74
Parent

IDEApplication class 142
pass 26, 49
pass by reference 30
PausePlayback

Index 235

KeyboardManager class 182
PauseProgram

Debugger class 84
pending keys

processing 183
period operator 63
PersistentBlocks

BufferOptions class 79
Playback

KeyboardManager class 182
Pop

KeyboardManager class 183
PopupMenu 196
PopupMenu class

Append 196
Data 196
FindString 196
GetString 197
Remove 197
Track 197

Position
EditBuffer class 99
EditView class 127

PositionCreate
EditBuffer class 101

precedence 58
preprocessor

cScript 71
preprocessor operator 66
PreserveLineEnds

BufferOptions class 79
print 49
Print

EditBlock class 95
EditBuffer class 101

print command
entering interactively 11

printf 49
Prior

EditView class 127
EditWindow class 132

PriorBuffer
EditBuffer class 101

process control 41, 42, 43, 55
ProcessKeyboardAssignments

KeyBoardManager class 182
ProcessPendingKeystrokes 183

KeyboardManager class 183
programs

cScript
writing and loading 12

ProjectBuildAll
IDEApplication class 160

ProjectClosed
IDEApplication class 176

ProjectCloseProject
IDEApplication class 160

ProjectCompile
IDEApplication class 161

ProjectGenerateMakefile
IDEApplication class 161

ProjectMakeAll
IDEApplication class 161

ProjectManagerInitialize
IDEApplication class 161

ProjectNewProject
IDEApplication class 162

ProjectNewTarget
IDEApplication class 162

ProjectNode 197
ProjectNode class

Add 199
Build 200
Built 201
ChildNodes 198
IncludePath 198
InputName 198
IsValid 198
LibraryPath 198
Made 201
Make 200
MakePreview 200
Name 199
OutOfDate 199
OutputName 199
Remove 200
SourcePath 199
Translate 200
Translated 201
Type 199

ProjectOpened
IDEApplication class 176

ProjectOpenProject
IDEApplication class 163

PromptOnReplace
SearchOptions class 210

properties
getting 28
setting 29

Properties
controlling access to 28

property 31
prototyping

cScript 23
Provider

TransferOutput class 217

Paradigm C++ Object Scripting Guide236

punctuators 69
Push

KeyboardManager class 183

Q

Quit
IDEApplication class 163

R

RaiseDialogCreatedEvent
IDEApplication class 143

Read
EditPosition class 119

ReadChar
KeyboardManager class 184

ReadLine
TranferOutput class 218

Record 201
Record class

Append 203
GetCommand 203
GetKeyCode 203
IsPaused 202
IsRecording 202
KeyCount 202
Name 202
Next 203

Recording
KeyboardManager class 180

referencing 61
region names 154
regionName 154
regions 154
regular expression 122
RegularExpression

SearchOptions class 210
relational operators 67
reload 50
remainder 68
Remove

ListWindow class 194
PopupMenu class 197
ProjectNode class 200

Rename
EditBuffer class 102

Replace
EditPosition class 119

ReplaceAgain
EditPosition class 120

ReplaceAll
SearchOptions class 210

ReplaceText

SearchOptions class 210
reserved words

cScript 37
Reset

Debugger class 85
EditBlock class 95
ScriptEngine class 208

Restore
EditBlock class 95
EditPosition class 120

resume 50
error handling 32

ResumePlayback
KeyboardManager class 184

ResumeRecord
KeyboardManager class 184

RETRY 158
return 50

error handling 32
return statements 50
RIGHT 133, 148
RightClick

ListWindow class 195
RightColumn

EditView class 127
RipText

EditPosition class 120
Row

EditPosition class 114
run 50
Run

Debugger class 85
run-time type information 55
RunToAddress

Debugger class 85
RunToFileLine

Debugger class 85
Rvalues 70

S

Save
EditBlock class 95
EditBuffer class 102
EditPosition class 121

SaveMessages
IDEApplication class 163

SaveToFile
EditBlock class 95

scope
cScript 20

Script programs
writing and loading 12

Index 237

SCRIPT_MODULE 208
ScriptAbortKey

KeyboardManager class 180
ScriptCommands

IDEApplication class 163
ScriptCompileFile

IDEApplication class 163
ScriptEngine 204
ScriptEngine class

AppendToLog 204
Debug 205
DiagnosticMessageMask 204
DiagnosticMessages 205
Execute 206
IsAClass 206
IsAFunction 206
IsAMethod 207
IsAProperty 207
IsLoaded 207
Load 207
Loaded 209
LogFileName 205
Logging 205
Modules 208
Reset 208
ScriptPath 205
StartupDirectory 205
SymbolLoad 208
Unload 208
Unloaded 209

scripting
editor 34
keyboard 34

ScriptModules
IDEApplication class 164

ScriptPath
ScriptEngine class 205

ScriptRun
IDEApplication class 164

ScriptRunFile
IDEApplication class 164

scripts
unloading 15

Scripts
running interactively 11

Scroll
EditView class 130

Search
EditPosition class 121

search expressions
Brief 122
IDE 123

search string 122

search symbols
IDE 123

SearchAgain
EditPosition class 122

SearchBrowseSymbol
IDEApplication class 164

SearchFind
IDEApplication class 165

SearchLocateSymbol
IDEApplication class 165

SearchNextMessage
IDEApplication class 165

SearchOptions 209
Editor class 104
EditPosition class 114

SearchOptions class
CaseSensitive 210
Copy 211
FromCursor 210
GoForward 210
PromptOnReplace 210
RegularExpression 210
ReplaceAll 210
ReplaceText 210
SearchReplaceText 211
SearchText 211
WholeFile 211
WordBoundary 211

SearchPreviousMessage
IDEApplication class 165

SearchReplace
IDEApplication class 166

SearchReplaceText
SearchOptions class 211

SearchSearchAgain
IDEApplication class 166

SearchText
SearchOptions class 211

Second
TimeStamp class 219

SecondElapsed
IDEApplication class 176

select 51
selection 51
semicolon 69
SendKeys

KeyboardManager class 184
processing keystrokes 183

separators 69
SetParm

StackFrame class 213
SetRegion

IDEApplication class 166

Paradigm C++ Object Scripting Guide238

setters 28
cScript 29

SetTopLeft
EditView class 130

SetWindowState
IDEApplication class 167

short 33
SimpleDialog

IDEApplication class 167
Size

EditBlock class 91
Sorted

ListWindow class 192
SourcePath

ProjectNode class 199
sparse arrays 22
SpeedMenu

IDEApplication class 167
StackFrame 212
StackFrame class

ArgActual 212
ArgPadding 212
Caller 213
GetParm 213
InqType 213
IsValid 213
SetParm 213

Started
IDEApplication class 176

StartingColumn
EditBlock class 91

StartingRow
EditBlock class 91

StartRecord
KeyboardManager class 186

StartupDirectory
ScriptEngine class 205

StartWaitCursor
IDEApplication class 167

statements
cScript 21

StatementStepInto
Debugger class 86

StatementStepOver
Debugger class 86

StatusBar
IDEApplication class 143

StatusBarDialog
IDEApplication class 168

StopRecord
KeyboardManager class 186

String 213
String class

Character 214
Compress 215
Contains 215
Index 216
Integer 214
IsAlphaNumeric 214
Length 214
Lower 216
SubString 216
Text 215
Trim 216
Upper 216

strings
cScript 21

strtol 52
strtoul 52
Style

EditBlock class 91
StyleGetNext

Editor class 107
SubString

String class 216
SubsystemActivated

IDEApplication class 177
super 52
SW_MAXIMIZE 156, 167
SW_MINIMIZE 156, 167
SW_NORMAL 156
SW_RESTORE 167
switch 53
SymbolLoad

ScriptEngine class 208
symbols

search expression 122
SyntaxHighlight

BufferOptions class 79
SyntaxHighlightTypes

EditOptions class 111
system 31

T

Tab
EditPosition class 122

TabRack
BufferOptions class 79

TE_APPLICATION 162
TE_AXE 162
TE_MM_COMPACT 162
TE_MM_HUGE 162
TE_MM_LARGE 162
TE_MM_MEDIUM 162
TE_MM_SMALL 162

Index 239

TE_STATICLIB 162
TE_STDLIB_EMU 162
TE_STDLIB_MATH 162
TE_STDLIB_NOEH 162
TE_STDLIB_RTL 162
TE_STDLIBS 162
TerminateProgram

Debugger class 86
Text

EditBlock class 92
String class 215

this 54
TimeStamp 218
TimeStamp class

Compare 220
Day 218
DayName 220
Hour 218
Hundredth 219
Millisecond 219
Minute 219
Month 219
MonthName 220
Second 219
Year 219

Title
EditWindow class 132

ToggleBreakpoint
Debugger class 86

ToggleCase
EditBlock class 96

token pasting 74
TokenFileName

BufferOptions class 79
Tool

IDEApplication class 168
Top

IDEApplication class 143
TopBuffer

Editor class 104
TopRow

EditView class 127
TopView

EditBuffer class 100
Editor class 104

Track
PopupMenu class 197

TransferOutput 216
TransferOutput class

MessageId 217
Provider 217
ReadLine 218

TransferOutputExists

IDEApplication class 177
Translate

ProjectNode class 200
TranslateComplete

IDEApplication class 177
Translated

ProjectNode class 201
Trim

String class 216
TRUE 64, 67
Type

ProjectNode class 199
typeid 55
types

cScript 19

U

Unassign
Keyboard class 190

UnassignedKey
KeyboardManager class 186

unbounded arrays 22
undef 73
Undo

IDEApplication class 168
unload 55
Unload

ScriptEngine class 208
Unloaded

ScriptEngine class 209
unloading scripts 15
unsigned 33
UP 134, 149
Upper

String class 216
UpperCase

EditBlock class 96
UseBRIEFCursorShapes

EditOptions class 111
UseBRIEFRegularExpression

EditOptions class 112
UseCurrentWindowForSourceTracking

IDEApplication class 143
UseTabCharacter

BufferOptions class 79
Using the IDE Message dialog 12
Using the print command 11

V

Version
IDEApplication class 143

VerticalScrollBar

Paradigm C++ Object Scripting Guide240

BufferOptions class 79
View

EditWindow class 132
ViewActivate

EditWindow class 133
IDEApplication class 168

ViewActivated
Editor class 109

ViewBreakpoint
Debugger class 87
IDEApplication class 169

ViewCallStack
Debugger class 87
IDEApplication class 169

ViewClasses
IDEApplication class 169

ViewCPU
Debugger class 87
IDEApplication class 169

ViewCPUFileLine
Debugger class 87

ViewCreate
EditWindow class 133

ViewCreated
Editor class 109

ViewDelete
EditWindow class 134

ViewDestroyed
Editor class 110

ViewExists
EditWindow class 134

ViewGlobals
IDEApplication class 170

ViewMessage
IDEApplication class 170

ViewProcess
Debugger class 88
IDEApplication class 170

ViewProject
IDEApplication class 171

ViewRedo
Editor class 107

ViewSlide
EditWindow class 135
IDEApplication class 170

ViewUndo
Editor class 107

ViewWatch
Debugger class 88
IDEApplication class 171

Visible
IDEApplication class 143

void 33

W

WARNING 158
warnings 74
while 55
WholeFile

SearchOptions class 211
Width

IDEApplication class 144
ListWindow class 192

Window
EditView class 127

WindowArrangeIcons
IDEApplication class 171

WindowCascade
IDEApplication class 171

WindowCloseAll
IDEApplication class 172

WindowMinimizeAll
IDEApplication class 172

WindowRestoreAll
IDEApplication class 172

WindowTileHorizontal
IDEApplication class 172

WindowTileVertical
IDEApplication class 173

with 56
WordBoundary

SearchOptions class 211
working with scripts 14
writing and loading a script file 12
writing scripts 14

Y

Year
TimeStamp class 219

YesNoDialog
IDEApplication class 173

yield 57

