dollz

Programmable Indicator

rite

Programming Reference

RICE LAKE WEIGHING SYSTEMS %)
Industrial Solutions on a Global Scale

67888

Contents

ADOUL TRIS IMANUA ... bbb bbbttt e bbbt et e s ens 1
1.0 T i goTo [N Tod 1 o] o USSP ORTRRPRP 1
L What IS R . . . oo 1
L2 WY R 7 . o e 1
1.3 ADOUL IRItE PrOgrames.t e e e 1
How Do | write and Compile IRIte Programs? oo e 2

How Do | Get My Program into the 92002 o e 2

1.4 RUNNING YOUI PrOQramottt ittt e e e e e e e e e e e e e e e e 3
1.5 Sound Programming PractiCes i 3
P00 V1 o] - | SRR 4
2.1 Getting Startedo 4
2.2 Program Example with Constants and Variables 5
3.0 I L0 U E=To oIS) Y] €= OSSPSR 9
3.l LeXical Elementst e 9
B L Identifiers 9

B L 2 KYWOIAS . .« oottt et e e e e 9
3. L 3 CONS NS . . . e 9

B LA DEliMIterS . . . e e 10
PUNCIUALION . . . e e e 10
Relational OPerators.ottt 11
EQUAlity OPEIatorsottt e e 11
LogiCal OPEratorS.o ottt e e e e e e 11
ArthmMEtiC OPEratorSttt e e e 11
ASSIGNMENT OPEratOr (12) . . .ttt ittt et e e e e e e 12
Structure Member Operator (“Aot”)o e e 12

3.2 Program SHUCKUIE oo e e e e e 12
3.3 DECIArAtiONS. . . . ot e 14
3.3, Type DeClarations.ot 14
Enumeration Type Definitions 15
Record Type Definitionso 15
Database Type Definitionst 16

Array Type Definitions.o 16

3.3.2 Variable DeClarations e e 16
3.3.3 Subprogram DecClarations.ot e 17
Handler DECIaratiOnsot e 17
Procedure DecClarationsottt 18
FUNCHON DECIarationsSttt e e 18

34 SHAIEMENLS 19
3.4.1 ASSIGNMENT STALEMENT ottt e e e 19
3.4.2 Call Statement e 20
B4 B S At EMENt . . . o 21
344 LOOP StatEMENT oo e 23
345 RetUn StateMENt. e 24
S4B EXIE STAEMENT . . . o .ot 25

4.0 BuUilt-In TYpes and FUNCLIONSciiiiiiieciec ittt reesnbeenree s 26
4. BUI-IN TYPES. . oo e e 26
4.1.1UsSiNg SYSCOAE Data o oottt et e 27

4.2 Scale Data ACQUISIEION ottt e e e e e e 27
4.2. 1 Weight ACQUISITION e e 27
GBEGIOSS . . v vttt 27
GBIN L . . . 27
LT I P 28

Copyright © 2002 Rice Lake Weighing Systems. All rights reserved. Printed in the United States of America.
Specifications subject to change without notice.
Version 1.0, July 2002

4.2.2 Tare Manipulation.o e 28

ACUITETAIE . . . ottt ettt e e e e e e e e e e e 28
S TN . . e e 28
G A Y P . . .ttt e 29
(O =T L 1= (A 29
423 Rate Of Change e 29
GEIRO C . . .o 29
4.2.4 Accumulator Operations.ttt e 29
GEIAC UM . . o e 29
S ACCUM . . o e 30
GEIAVOACCUIM . . oottt et e e e e e e e e e 30
GEtACCUMC OUNE . . ottt e e e 30
GetACCUMD L. o e e 30
GEtACCUMTIMIE . . ettt e e e e e e e e e e e e e 31
ClBAIACCUM .« . oottt e e e e e 31
4.2.5 Scale OPerationsttt e e 31
CUIMENES CAlE . . . vttt e e e e e 31
SElECESCalE . . . 31
GetMOAE . . .o e 31
G tUNIES. . . oo e 32
GetUNIESSIIING . . . o oottt e e e e e e e 32
INCOZ . .o e 32
IOt N . . e 33
RN . . o 33
SEtMOOE . . oo e 33
S UNIES .« . . oo e 33
Y (01 Yo7 [34
4.2.6 A/D and Calibration Data oo 34
GetFilteredCoUNto 34
GetRAWC OUNL . .. 34
GEILC D . . . e 34
Gl W, L o e 35
Gt VAL, . oo e 35
GetZerOCOUNE . . . e e 35
4.3 SYSteM SUPPOI. .« . oot 35
D7 1= 35
DisSplaylSSUSPENTE ottt e 35
EVENtCNar . ..o e 35
EVeNtKRY . oo 35
EVENEP Ot . . . e 36
BV N S NG, . . . oot 36
Gl ONSECNUM . . o ottt e e e e 36
Gt OUNIBYo e 36
GalDatE 36
(7= (1= T £ 36
Gt Ot WAIEV BISION . . . o oo e 36
Gt . . o ot e e e 37
GtUID . . . e 37
LOCKK Y . . . ot 37
LOCKKRY DA . . . oo 37
RESUMEDISPIAY. e e 37
SElCONSECNUM . . Lo e e e 37
S DALE . .. e 37
S S Ot KEY T XL . . . o ottt 37
S TIME .« . ot e 38
S UID . . .o e 38
STICK . o e 38
SUSPENADISPIAY . . . oottt e 38
SV M TIME . . .t e e 38
TIME . . ottt 38
UNIOCKKBY . . o e 38

920i Programming Reference

UnlockKeypad e 38

4.4 Setpoints and BatChing i e e 39
DISabIE S P e e 39
ENableS P . . . 39
GetBatChingMOE. e 39
GEtBatCN S atUSo e 39
GetCUITENES P e 39
GetSPBaNd e e 40
GetSPCAPIUIEd . . . oot 40
GO S PHY S T e 40
GOES P PIACT. . . . e 40
GBS PV alUE . . . e 41
GEtSPNSaAMPlE . . . 41
Gt P TIME . . e e e 41
GEESPDUIALION ottt et e e e e e e e 41
GBS PV OV . . o 42
G S PV UNAET . . .t e e 42
PaUsSEBalCh 42
RESEIBaAtCh. e 42
SetBatChingMOode. 42
SO S P BaAN. . . . o 43
S S P HY Sl 43
SIS P P ACT e 43
S S PValUE. . . o 43
SEtS PN S AMPIE. . . .o 44
SO S PV OVl . .o e 44
SO S PVUNAET . . et 44
SO S P TIMIE .« . . ottt 44
SEESPDUIALION .« . . .ottt 45
StartBatCh e e 45
StOPBaALCh . .. 45
PaUSEBalCh e 45
RESEIBACh. . . . o 45

A5 Serial /O .. e e e 46
PNt . L 46
StA S I AMING . . . oot e 46
STOPSIIEAMING . . . o ottt et e e e e e e e 46
. . o 46
BN . L oo 47

4.6 Digital I/0 Control. e e 47
[T =] (T o 47
G DIgOUL. .« . oot e a7
S D gOUL . . . oo e a7

4.7 Analog OULPULt OPEratioNSottt e et e e e e e 48
SEtAIGOUL . . o e 48

4.8 Pulse INpUt OPEIatioNS o oottt et e e e e 48
PUISERATE 48
PUISECOUNL. . . . e e 48
ClearPUlSECOUNL. e 48

4.9 Display OperationSttt e e e 48
DISPIAYSTALUS ottt 48
PrOMPtUSEr . . 48
ClOSEPIOMPL. .« . e 48
G BN Y . . . 49
=1 (= o 1 -1 49
SO NIy . o 49

4.10 Display Programmingvv it e 49
SetBargraphLevelo 49
SetLabe T XL, . . o 49
SEtNUMENCVAIUE . . . o o e e e e 49

S SYMBOIS At 49

SetWidgetVisibilityo 49

4.11 Database OpPerationNS v v oot e 50
DB A . . . 50

DB Gl . . ottt 50

DB DI . ..ttt e e e 50

DB FINAFIrSt . . . oo 50

DB FINALASTo 50

DB FINANEXE . . oo 50

DB FINAPTOV. . . o e 51

DB GetIrSt . o .t 51

D > 1= 1 I L 51
B> GetNEXE . . . oot 51
B> Gt PV . . . oot 51

DB SO . . ot e 51

DB UPdate. . ..o e 52

412 TIimMer CONtrOlS o 52
RSB TIMET . . . oo 52
SO T IMIET . L o ot e 52
SetTIMErMOGE o 52
SHAMTIMEr . . o 52

SEOP T . et 52

4.13 Mathematical Operationst e e 53
RS e 53

AT AN o 53

Gl o e e 53

G0 e 53

XD o 53

0 o 53
OG0 .o e 53

SION oo 53

SIN L e 53

SOt . . 53

TN, e 53

4,14 Bit-WiSE OPEIatiONS . . o v ottt it e 54
BI AN . . o e 54

2] (] 54

BIEN O, . . o 54
212 54

4.15 StrNG OPEratiONS o vttt e e e e 54
S . o ot e 54

G . L 54

HEXE o 54
LCaSE S . o i 54

L . . . e 54

00 54

M. . . o e 55

0 T 1 55
RIS . 55
SPACE S . . o 55
UGS . . ittt e 55

4.16 Data CONVEISIONttt ettt e e e e e e e e e 55
INEEGEITOSHING. « o o ettt e e e e e e e e e 55

REAIT 0SNG, . . . oot 55
SHNGT O Nt . .« . o ot e e e e 55
SHNGTOREAL oo 55

5.0 Programming EXamPIEs ... 56
5.1 Handler EXampleso 56
5.2 "Hello": A Simple Handler Program 57

iv 920i Programming Reference

5.3 MLo0OPteSt” Programo e e 57

5.4 "HelloWorld" Program e 58
5.5 "CircAreaVol": Computation Programt 60
5.6 "NumTools": iRev Import File e 63
5.7 Simple Checkweigher Program 67
5.8 WriteLn EXample e 78
5.9 Database Exampleo 80
Y o] 0 1= 0L SRR 90
6.1 Event Handlers.o 90
6.2 Compiler ErmMOr MeSSagES . .« o o oottt et e et e 91

Vi 920i Programming Reference

About This Manual

This manual is intended for use by programmers who
write iRite applications for 920i digital weight
indicators.

This manual should be used in conjunction with the
920i Installation Manual. See that manual for detailed
descriptions of indicator capability and operation.

1.0 Introduction

All programs should be thoroughly tested
before implementation in a live system. To
prevent personal injury and equipment
damage, software-based interrupts must
always be supplemented by emergency
stop switches and other safety devices
necessary for the application.

AWarning

Authorized distributors and their
employees can view or download this
manual from the Rice Lake Weighing
Systems distributor site at www.rlws.com.

1.1 What is iRite?

iRite is a programming language developed by Rice
Lake Weighing Systems and used for the purpose of
programming the 920i programmable indicator.
Similar to other programming languages, iRite is a set
of rules, called syntax, for composing instructions in a
format that a compiler can understand.

An iRite program is nothing more than a text file,
which contains statements composed following the
iRite language syntax. The text file created using the
iRite programming language isn’t much use until it is
compiled. Compiling is done using a compiler
program.

The compiler reads the text file written in iRite and
translates the program’s intent into commands that are
understandable to the 920i’s serial interface. In
addition, with an ample amount of appropriate
comments, the same iRite program that is
understandable to the compiler should also relate, to
any person reading the file, what the program is meant
to accomplish.

1.2 Why iRite?

Although there are many different programming
languages already established in the programming
world, some of which you may already be familiar
with, none of them were "the right tool for the job."

Most other programming languages are very general
and try to maximize flexibility in unknown or
unforeseen applications; hence they carry a lot of
overhead and functionality that the 920i programmer
might not ever use.

Considering the varying backgrounds and experiences
of the people that will be doing most of the iRite
programming, we wanted a language that was easy to
learn and use for the first-time programmer, but also
familiar in syntax to an experienced programmer.
Furthermore, we wanted to eliminate some of the
unnecessary features that are troublesome in other
languages, namely the pointer data type. In addition,
we added some items that are very useful when
programming the 920i, the database data type and the
handler subprogram, for example.

Also by creating a new language, we had the luxury of
picking the best features from other languages, with
the advantage of hindsight. The result is iRite: a
compact language (only six discrete statement types,
three data types) with a general syntax similar to
Pascal and Ada, the string manipulation of Basic, and
arich set of function calls and built-in types specific to
the weighing and batching industry. A Pascal-like
syntax was adopted because Pascal was originally
developed as a teaching language and its syntax is
unambiguous.

1.3 About iRite Programs

The 920i indicator has, at any given moment, many
time critical tasks it must accomplish. It is always
calculated new weight from new analog information,
updating the display, watching for key press events,
running the setpoint engine, watching for serial input,
streaming weight data, or sending print data out one or
more serial ports. In addition to these tasks, it also
runs user programmed custom event handlers, i.e. an
iRite program.

Introduction 1

Writing custom event handlers is what iRite is for.
Each of the 920i tasks share processor time, but some
tasks have higher priorities than other tasks. If a low
priority task is taking more than its share of processor
time (1/1200 of a second, it will be suspended so a
higher priority task can be given processor time when
it needs it. Then, when all the other higher priority
tasks have completed, the low priority task will be
resumed.

Gathering analog weight signals and converting it to
weight data is the 920i’s highest priority. Running a
user-defined program has a very low priority.
Streaming data out a serial port is the lowest priority
task, because of its minimal computational
requirements. This means that if your iRite program
"hangs", the task of streaming out the serial ports will
never get and CPU time and streaming will never
happen. An example of interrupting a task would be if
a user program included an event handler for SP1Trip
(Setpoint 1 Trip Event) and this event "fired".

Let’s assume the logic for the SP1Trip event is
executing at a given moment in time. In this example,
the programmer wanted to display the message
"Setpoint 1 Tripped" on the display. If the SP1Trip
event logic doesn’t complete by the time the 920i
needs to calculate a new weight, for example, the
SP1Trip handler will be interrupted immediately, a
new weight will be calculated, and the SP1Trip event
will resume executing exactly where it was
interrupted. In most circumstances, this happens so
quickly the user will never know that the SP1Trip
handler was ever interrupted.

How Do | write and Compile iRite Programs?
You can use any flat ASCII text editor to create iRite

source files, but use of the iRev Editor is strongly
recommended because of its many iRite-specific
utilities. An editor like Microsoft Word should not be
used unless you specifically tell it to save the files as
text only (*.txt).

iRite source files are named with the .src extension.
Once you have the iRev Editor open, you are ready to
start writing a program.

At this point it is worth mentioning the templates and
sample programs RLWS has made available. In order
to get started with the skeleton of a working program,
a program that demonstrates the recommended
indentation and commenting, it would be best to start
by opening an existing program with your editor.

In addition to writing .src files you may write include
files with an extension .iri. The iRite language doesn’t
have the ability to include files, but when using iRev
you can. An include file can be helpful in keeping
your .src program from getting cluttered with small

unrelated functions and procedures that get used in
many different programs. For example, you could
create a file named math.iri and put only functions
that perform some kind of math operation not
supported in the iRite library already. When the
program is compiled through iRev, the .iri file is
placed where you told it to be placed in iRev. Because
iRite enforces "declaration before use", the iri file
needs to be placed before any of the subprograms in
your .src file.

When you are ready to compile your program, use the
"Compile" feature from the "Tools" menu in the iRev
Editor. If the program compiles without errors a new
text file is created. This new text file has the same
name but an extension of .cod. The new file named
your_program.cod is a text file containing commands
that can be sent to the 920i via an RS232 serial
communication connection between your computer
and the 920i. Although the .cod file is a text file, most
of it will not be understandable. There is really no
reason to edit the .cod file and we strongly discourage
doing so.

How Do | Get My Program into the 920i?
The 920i indicator must be in configuration mode

before the .cod file can be sent. The easiest way to
send the .cod file to the 920i is to use iRev. You can
use the send the Send .COD file to Indicator option
under the Tools menu in the iRev Editor, or you can
send the .cod file directly from iRev by using the
Download Configuration... selection on the
Communications menu and specifying that you want
to send the .cod file.

If the 920i indicator is not in configuration mode, iRev
will pop-up a message informing you of this
condition. It is strongly recommended that you use
iRev or the iRev Editor to send the compiled program
to the 920i. This method implements error checking
on each string sent to the indicator and helps protect
from data transmission errors corrupting the program.

You can also send the .cod file with a communication
program like Procomm Plus or Terminal. Simply use
the send file tool and set the protocol to RAW ASCII.
However, with this method there is no error checking
and you can’t be sure that the program was sent
correctly.

2 920i Programming Reference

1.4 Running Your Program

A program written for the 920i is simply a collection
of one or more custom event handlers and their
supporting subprograms. A custom event handler is
run whenever the associated event occurs. The
ProgramStartup event is called whenever the indicator
is powered up, is taken out of configuration mode, or
is sent the RS serial command. It should be
straightforward when the other event handlers are
called. For example, the DotKeyPressed event handler
is called when ever the "." key is pressed.

All events have built-in intrinsic functionality
associated with them, although, the intrinsic
functionality may be to do nothing. If you write a
custom event handler for an event, your custom event
handler will be called instead of the intrinsic function,
and the default action will be suppressed.

For example, the built-in intrinsic function of the
UNITS key is to switch between primary, secondary,
and tertiary units. If the handler UnitsKeyPressed was
defined in a user program, then the UNITS key no
longer switches between primary, secondary, and
tertiary units, but instead does what ever is written in
the handler UnitsKeyPressed. The ability to turn off
the custom event handler and return to the intrinsic
functionality is provided by the DisableHandler
function.

It is important to note that only one event handler can
be running at a time. This means that if an event
occurs while another event handler is running, the new
event will not be serviced immediately but instead will
be placed in a queue and serviced after the current
event is done executing.

This means that if you are executing within an infinite
loop in an event handler, then no other event handlers
will ever get serviced. This doesn’t mean that the
indicator will be totally locked-up: The 920i will still
be executing its other tasks, like calculating current
weights, and running the setpoint engine. But it will
not run any other custom event handlers while one
event is executing in an infinite loop.

There are some fatal errors that an iRite program can
make that will completely disable the 920i. Some of
these errors are "...divide by zero", "string space
exhausted", and "array bounds violation". When they
occur, the 920i stops processing and displays a fatal
error message on the display. Power must be cycled to
reset the indicator.

After the indicator has been restarted, it should be put
into setup mode, and a new version (without the fatal
error) of the iRite program should be loaded. If you
are unfortunate enough to program a fatal error in
your ProgramStartup Handler, then cycling power to
the unit will only cause the ProgramStartup Handler
to be run again and repeat the fatal error.

In this case you must perform a
RESETCONFIGURATION. Your program, along
with the configuration, will be erased and set to the
defaults. This will allow you to reload your iRite
program after you have corrected the code that
generated the fatal error and re-compiled the program.

1.5 Sound Programming Practices

The most important thing to remember about writing
source code is that it has two very important
functions: it must work, and it must clearly
communicate how it works. At first glance, especially
to a beginning programmer, it may seem that getting
the program to work is more important than clearly
commenting and documenting how it works.

As a professional programmer, you will realize that a
higher quality product is produced, which is less
costly to maintain, when the source code is well
documented. You, somebody else at your
organization, the customer, or RLWS Support
Personnel, may need to look at some iRite source
code, months or years from now, long after the
original author has forgotten how the program worked
or isn’t around to ask. This is why we advocate
programming to a specific standard. The template
programs, example programs, and purchased custom
programs that are available from RLWS follow a
single standard. You are welcome to download this
standard from our website, or you can write your own.

The purpose of a standard is to document the way all
programmers will create software for the 920i
indicator. When the standard is followed, the source
code will be easy to follow and understand. The
standard will document: the recommended style and
form for module, program, and subprogram headers,
proper naming conventions for variables and
functions, guidelines for function size and purpose,
commenting guidelines, and coding conventions.

NOTE: Some of the examples in this manual have had
some or all the comments removed. This was done only
for the purpose of emphasizing the actual iRite language
source code. The English description accompanying
each example should be sufficient to explain the example.

Introduction 3

2.0 Tutorial

2.1 Getting Started

Traditionally, the first program a programmer writes
in every language is the famous “Hello World!”
program. Being able to write, compile, download, and
run even the simple “Hello World!” program is a
major milestone. Once you have accomplished this,
the basics components will be in place, and the door
will be open for you and your imagination to start
writing real world solutions to some challenging
tasks.

Here is the “Hello World!” program in iRite:

01 program HelloWorld;

02
03 begin
04 DisplayStatus("Hello, world!");

05 end HelloWorld;

This program will display the text Hello, world! on the
920i’s display in the status message area, every time
the indicator is turned on, taken out of configuration
mode, or reset. Let’s take a closer look at each line of
the program.

Line 1:

The first line is the program header. The program
header consists of the keyword program followed by
the name of the program. The name of the program is
arbitrary and made up by the programmer. The
program name; however, must follow the identifier
naming rules (i.e. an identifier can’t start with a
number or contain a space).

program HelloWorld;

The second line is an optional blank line. Blank lines
can be placed anywhere in the program to separate
important lines and to make the program easier to read
and understand.

Line 3:

The begin keyword is the start of the optional main
code body. The optional main code body is actually
the ProgramStartup event handler. The
ProgramStartup handler is the only event handler that
doesn’t have to be specifically named.

Line 4:
DisplayStatus("Hello, world!");

begin

The statement DisplayStatus("Hello,
world!") is the only statement in the main code
body. It is a call to the built-in procedure
DisplayStatus with the string constant “Hello, world!”
passed as a parameter. The result is the text, "Hello,
world!" will be shown in the status area of the display
(lower left corner), whenever the startup event is fired.

Line 5: end HelloWorld;

The keyword end followed by the same identifier for
the program name used in line one, HelloWorld, is
required to end the program.

From this analysis, you may have gathered that only
the first and last lines were required. This is true, the
program would compile, but it would do nothing and
be totally useless. At a minimum, a working program
must have at least one event handler, though it doesn’t
have to be the ProgramStartup handler. We could have
written the HelloWorld program to display “Hello,
world!” whenever any key on the keypad was pressed.
It would look like this:

01 program HelloWorld;

02

03 handler KeyPressed;

04 begin

05 DisplayStatus("Hello, world!");
06 end;

07

08 end HelloWorld;

In this version, we chose to use the KeyPressed event
handler to call the DisplayStatus procedure. The
KeyPressed event will fire any time any key on the
keypad is pressed. Also notice that the begin keyword
that started the main code body, and the DisplayStatus
call have been removed and replaced with the four
lines making up the KeyPressed event handler
definition.

Using the iRev Editor, write the original version of the
“Hello, world!” program on your system. After you
have compiled the program successfully, download it
to your 920i. After the program has been downloaded
and the indicator is put back in run mode, then the text
Hello, world! should appear on the display.

4 920i Programming Reference

2.2 Program Example with Constants and Variables

The “Hello, world!” program didn’t use any explicitly declared constants or variables (the string “Hello, world!”
is actually a constant, but not explicitly declared). Most useful programs use many constants and variables. Let’s
look at a program that will calculate the area of a circle for various length radii. The program, named
“PrintCircleAreas”, is listed below.

01 program PrintCircleAreas;

02

03 -- Declare constants and aliases here.

04 g _ciPrinterPort : constant integer := 2;

05

06 —- Declare global variables here.

07 g_iCount : integer := 1;

08 g_rRadius : real;

09 g_rArea : real;

10 g_sPrintText: string;

11

12

13 function CircleArea(rRadius : real) : real;
14 crPie : constant real := 3.141592654;

15 begin

16 -- The area of a circle is defined by: area = pie*(r"2).
17 return (crPie * rRadius * rRadius);

18 end;

19

20

21 begin

22

23 for g_iCount := 1 to 10

24 loop

25

26 g _rRadius := g_iCount;

27 g _rArea := CircleArea(g_rRadius);

28

29 g_sPrintText := "The area of a circle with radius " + RealToString(g_rRadius, 4, 1)
30 + " is " + RealToString(g_rArea, 7, 2);
31

32 Writeln(g_ciPrinterPort, g_sPrintText);
33

34 end loop;

35

36 end PrintCircleAreas;

The PrintCircleAreas program demonstrates variables and constants as well as introducing these important ideas:
for loop, assignment statement, function declarations, function calling and return parameters, string
concatenation, WriteLn procedure, a naming convention, comments, and a couple of data conversion functions.

You probably know by now that this program will calculate the areas of circles with radius from 1 to 10 (counting
by 1s) and send text like, “The area of a circle with radius 1 is 3.14,” once for each radius, out the communication
port 2.

01 program PrintCircleAreas;

Line 1 is the program header with the keyword program and the program identifier “PrintCircleAreas”. This is
the same in theory as the “HelloWorld” program header.

Line 3 is a comment. In iRite all comments are started with a —- (double dash). All text after the double dash up
to the end of the line is considered a comment. Comments are used to communicate to any reader what is going
on in the program on the specific lines with the comment or immediately following the comment. The —- can
start on any column in a line and can be after, on the same line, as other valid program statements.

Tutorial 5

Line 4 is a global constant declaration for the communication port that a printer may be connected to. This simple
line has many important parts:

04 g ciPrinterPort : constant integer := 2;

First, an identifier name is given. Identifier names are made up by the programmer and should accurately
describe what the identifier is used for. In the name g_ciPrinterPort the “PrinterPort™ part tells us that this
identifier will hold the value of a port where a printer should be connected. The “g_ci” is a prefix used to describe
the type of the identifier. When “g_ciPrinterPort” is used later on in the program, the prefix may help someone
reading the program, even the program’s author, to easily determine the identifier’s data type without having to
look back at the declaration.

The “g_" in the prefix helps tell us that the identifier is “global”. Global identifiers are declared outside of any
subprogram (handler, function, procedure) and have global scope. The term “scope” refers to the region of the
program text in which the identifier is known and understood. The term “global” means that the identifier is
“visible” or “known” everywhere in the program. Global identifiers can be used within an event handler body, or
any procedure or function body. Global identifiers also have “program duration”. The duration of an identifier
refers to when or at what point in the program the identifier is understood, and when their memory is allocated
and freed. Identifiers with global duration, in a 920i program, are understood in all text regions of the program,
and their memory is allocated at program start-up and is re-allocated when the indicator is powered up.

The “c” in the prefix helps us recognize that the identifier is a constant. Constants are a special type of identifier
that are initialized to a specific value in the declaration and may not be changed anytime or anywhere in the
program. Constants are declared by adding the keyword constant before the type.

Constants are very useful and make the program more understandable. In this example, we defined the printer
port as port 2. If we would have just used the number 2 in the call to WriteLn, then a reader of the program would
not have any idea that the programmer intended a printer to be connected to the 920i’s port 2.

Also, in a larger program, port 2 may be used hundreds of times in Write and WriteLn calls. Then, if it were
decided to change the printer port from port 2 to port 3, hundreds of changes would have to be made. With port 2
being a constant, only one change in the declaration of g_ciPrinterPort would be required to change the printer
port from 2 to 3.

11331
1

The type of the constant is an integer. The in the prefix helps us identify g_ciPrinterPort as an integer. The
keyword integer follows the keyword constant and specifies the type compatibility of the identifier as an integer
and also determines how much memory will be required to store the value (a value of 2 in this example). In the
iRite programming language, there are only 3 basic data types: integer, real and string.

The initialization of the constant is accomplished with the “:=2” part of the statement. Initialization of constants
is done in the declaration, with the assignment operator, :=, followed by the initial value.

[T}

Finally, the statement is terminated by a semicolon. The “;” is used in iRite and other languages as a statement
terminator and separator. Every statement must be terminated with a semicolon. Don’t read this to mean “every
line must end in a semicolon”; this is not true. A statement may be written on one line, but it is usually easier to
read if the statement is broken down into enough lines to make some keywords stand out and to keep the length
of each line less than 80 characters.

Some statements contain one or more other statements. In our example, the statement:

g _ciPrinterPort : constant integer := 2;

is an example of a simple statement that easily fit on one line of code. The 1loop statement in the program startup
handler (main code body) is spread out over several lines and contains many additional statements. It does,
however, end with line end loop;, and ends in a semicolon.

06 —-- Declare global variables here.
07 g_iCount : integer := 1;

08 g_rRadius : real;

09 g_rArea : real;

10 g_sPrintText: string;

Line 6 is another comment to let us know that the global variables are going to be declared.

6 920i Programming Reference

Lines 7—10 are global variable declarations. One integer, g_iCounter, two reals, g_rRadius and g_rArea, and
one string, g_sPrintText, are needed during the execution of this program. Like the constant g_ciPrinterPort,
these identifiers are global in scope and duration; however, they are not constants. They may have an optional
initial value assigned to them, but it is not required. Their value may be changed any time they are “in scope”,
they may be changed in every region of the program anytime the program is loaded in the 920i.

Lines 13—18 are our first look at a function declaration. A function is a subprogram that can be invoked (or
called) by other subprograms. In the PrintCircleAreas program, the function CircleArea is invoked in the
program startup event handler. The radius of a circle is passed into the function when it is invoked. In iRite there
are three types of subprograms: functions, procedures, and handlers.

13 function CircleArea(rRadius : real) : real;

14 crPie : constant real := 3.141592654;

15 begin

16 -- The area of a circle is defined by: area = pie*(r"2).
17 return (crPie * rRadius * rRadius);

18 end;

On line 13, the function declaration starts with the keyword function followed by the function name. The
function name is an identifier chosen by the programmer. We chose the name “CircleArea” for this function
because the name tells us that we are going to return the area of a circle. Our function CircleArea has an optional
formal arguments (or parameters) list. The formal argument list is enclosed in parenthesis, like this: (rRadius
: real). Our example has one argument, but functions and procedures may have zero or more.

Argument declarations must be separated by a semicolon. Each argument is declared just like any other variable
declaration: starting with an identifier followed by a colon followed by the data type. The exception is that no
initialization is allowed. Initialization wouldn’t make sense, since a value is passed into the formal argument each
time the function is called (invoked).

The rRadius parameters are passed by value. This means that the radius value in the call is copied in rRadius. If
rRadius is changed, there is no effect on the value passed into the function. Unlike procedures, functions may
return a value. Our function CircleArea returns the area of a circle. The area is a real number. The data type of the
value returned is specified after the optional formal argument list. The type is separated with a colon, just like in
other variable declarations, and terminated with a semicolon.

Up to this point in our program, we have only encountered global declarations. On line 14 we have a local
declaration. A local declaration is made inside a subprogram and its scope and duration are limited. So the
declaration: crPie : constant real := 3.141592654; on line 14 declares a constant real named
crPie with a value of 3.141592654. The identifier crPie is only known—and only has meaning—inside the text
body of the function CircleArea. The memory for crPie is initialized to the value 3.141592654 each time the
function is called.

Line 15 contains the keyword begin and signals the start of the function code body. A function code body
contains one or more statements.

Line 16 is a comment that explains what we are about to do in line 17. Comments are skipped over by the
compiler, and are not considered part of the code. This doesn’t mean they are not necessary; they are, but are not
required by the compiler.

Every function must return a value. The value returned must be compatible with the return type declared on line
14. The keyword return followed by a value, is used to return a value and end execution of the function. The
return statement is always the last statement a function runs before returning. A function may have more then
one return statement, one in each conditional execution path; however, it is good programming practice to have
only one return statement per function and use a temporary variable to hold the value of different possible return
values.

The function code body, or statement lists, is terminated with the end keyword on line 18.

In this program we do all the work in the program startup handler. We start this unnamed handler with the begin
keyword on line 21.

23 for g_iCount := 1 to 10
24 loop

Tutorial 7

25

26 g_rRadius := g_iCount;

27 g_rArea := CircleArea(g_rRadius);

28

29 g_sPrintText := "The area of a circle with radius " + RealToString(g_rRadius, 4, 1)
30 + " is " + RealToString(g_rArea, 7, 2);

31

32 WritelLn(g_ciPrinterPort, g _sPrintText);

33

34 end loop;

On line 23 we see a for loop to start the first statement in the startup handler. In iRite there are two kinds of
looping constructs. The for loop and the while loop. For loops are generally used when you want to repeat a
section of code for a predetermined number of times. Since we want to calculate the area of 10 different circles,
we chose to use a for loop.

For loops use an optional iteration clause that starts with the keyword for followed by the name of variable,
followed by an assignment statement, followed by the keyword to, then an expression, and finally an optional
step clause. Our example doesn’t use a step clause, but instead uses the implicit step of 1. This means that lines
26 through 32 will be executed ten times. The first time g_iCount will have a value of 1, and during the last
iteration, g_iCount will have a value of 10.

All looping constructs (the for and the while) start with the keyword loop and end with the keywords end loop,
followed by a semicolon. In our example, loop is on line 24 and end loop is on line 34. In between these two, are
found, the statements that make up the body of the loop.

Line 26 is an assignment of an integer data type into a real data type. This line is unnecessary and the assignment
could have been made automatically if the integer g_iCount was passed into the function CircleArea directly on
line 27, since CircleArea is expecting a real value. Calls to functions like CircleArea are usually done in an
assignment statement if the functions return value need to be used later in the program. The return value of
CircleArea (the area of a circle with radius g_rRadius) is stored in g_rArea.

The assignment on lines 29 and 30 uses two lines strictly for readability. This single assignment statement does
quite a bit. We are trying to create a string of plain English text that will say: “The area of a circle with
radius xxX.x is yyyy.yy , where the radius value will be substituted for xx.x and the calculated area will
be substituted for yyyy.yy. The global variable g_sPrintText is a string data type. The constants (or literals):
“The area of a circle with radius ”and “ is ” are also strings.

However, g_rRadius and g_iArea are real values. We had to use a function from the API to convert the real values
to strings. The API function RealToString is passed a real and a width integer and a precision integer. The width
parameter specifies the minimum length to reserve in the string for the value. The precision parameter specifies
how many places to report to the right of the decimal place. To concatenate all the small strings into one string we
use the string concatenation operator, “+”.

Finally, we want to send the new string we made to a printer. The Write and WriteLn procedures from the API
send text data to a specified port. Earlier in the program we decided the printer port will be stored in
g_ciPrinterPort. So the WriteLn call on line 32 send the text stored in g_sPrintText, followed by a carriage return
character, out port 2.

If we had a printer connected to port 2 on the 920i, every time the program startup handler is fired, we would see
the following printed output:

The area of a circle with radius 1.0 is 3.14
The area of a circle with radius 2.0 is 12.57
The area of a circle with radius 3.0 is 28.27
The area of a circle with radius 4.0 is 50.27
The area of a circle with radius 5.0 is 78.54
The area of a circle with radius 6.0 is 113.10
The area of a circle with radius 7.0 is 153.94
The area of a circle with radius 8.0 is 201.06
The area of a circle with radius 9.0 is 254.47
The area of a circle with radius 10.0 is 314.16

8 920i Programming Reference

3.0 Language Syntax

3.1 Lexical Elements

3.1.1 Identifiers

An identifier is a sequence of letters, digits, and underscores. The first character of an identifier must be a letter or
an underscore, and the length of an identifier cannot exceed 100 characters. Identifiers are not case-sensitive:
“HELLO” and “hell0” are both interpreted as “HELLO”.

Examples:
Valid identifiers: Variablel?2
_underscore
Std Deviation
Not valid identifiers: 9abc First character must be a letter or an underscore.

ABC DEF Space (blank) is not a valid character in an identifier.

Identifiers are used by the programmer to name programs, data types, constants, variables, and subprograms. You
can name your identifiers anything you want as long as they follow the rules above and the identifiers is not
already used as a keyword or as a built-in type or built-in function. Identifiers provide the “name” of an entity.
Names are bound to program entities by declarations and provide a simple method of entity reference. For
example, an integer variable iCounter (declared iCounter : integer) is referred to by the name iCounter.

3.1.2 Keywords

Keywords are special identifiers that are reserved by the language definition and can only be used as defined by
the language. The keywords are listed below for reference purposes. More detail about the use of each keyword is
provided later in this manual.

and array begin builtin constant database
else elsif end exit for function
handler if integer is loop mod

not of or procedure program real
record return step stored string then

to type var while

3.1.3 Constants

Constants are tokens representing fixed numeric or character values and are a necessary and important part of
writing code. Here we are referring to constants placed in the code when a value or string is known at the time of
programming and will never change once the program is compiled. The compiler automatically figures out the
data type for each constant.

NOTE: Be careful not to confuse the constants in this discussion with identifiers declared with the keyword constant,
although they may both be referred to as constants.

Three types of constants are defined by the language:

Integer Constants: An integer constant is a sequence of decimal digits. The value of an integer constant is
limited to the range 0...23! — 1. Any values outside the allowed range are silently truncated.

Literally, any time a whole number is used in the text of the program, the compiler creates an integer constant.
The following gives examples of situations where an integer constant is used:

iCount : integer := 25;

for iIndex := 1 to 3

sResultString := IntegerToString(12345);
sysResult := StartTimer(4);

Language Syntax 9

Real Constants:A real constant is an integer constant immediately followed by a decimal point and another
integer constant. Real constants conform to the requirements of IEEE-754 for double-precision floating point
values. When the compiler “sees” a number in the format n.n then a real constant is created. The value .56 will
generate a compiler error. Instead compose real constants between —1 and +1 with a leading zero like this: 0.56
and —0.667. The following gives examples of situations where a real constant is used:

rLength := 9.25;

if rvalue <= 0.004 then

sResultString := RealToString(98.765);
rLogResult := Log(345.67);

String Constants:A string constant is a sequence of printable characters delimited by quotation marks (double
quotes, " "). The maximum length allowed for a string constant is 1000 characters, including the delimiters. The
following gives examples of situations where a string constant (or string literal) is used:

sUserPrompt := "Please enter the maximum barrel weight:";
WriteLn(iPrinter, "Production Report (lst Shift));
if sUserEntry = "QUIT" then

DisplayStatus("Thank You!");
3.1.4 Delimiters
Delimiters include all tokens other than identifiers and keywords, including the arithmetic operators listed below:
>= <= <> := <> = + - * /
. ’ ; : () [] !
Delimiters include all tokens other than identifiers and keywords. Below is a functional grouping of all of the
delimiters in iRite.
Punctuation

Parentheses

() (open and close parentheses) group expressions, isolate conditional expressions, and indicate function
parameters:

iFarenheit := ((9.0/5.0) * iCelcius) + 32; -- enforce proper precedence
if (ival >= 12) and (ival <= 34) or (iMaxVal > 200) -- conditional expr.
EnableSP(5); -- function parameters

Brackets

[] (open and close brackets) indicate single and multidimensional array subscripts:
type CheckerBoard is array [8, 8] of recSquare;
iThirdElement := aiValueArray[3];
Comma
The comma(,) separates the elements of a function argument list and elements of a multidimensional array:
type Matrix is array [4,8] of integer;
GetFilteredCount(iScale, iCounts);
Semicolon
The semicolon (;) is a statement terminator. Any legal iRite expression followed by a semicolon is interpreted as
a statement. Look around at other examples, its used all over the place.
Colon
The colon (:) is used to separate an identifier from its data type. The colon is also used in front of the equal sign
(=) to make the assignment operator:
function GetAverageWeight(iScale : integer) : real;
iIndex : integer;
csCopyright : constant string := "2002 Rice Lake Weighing Systems";

10 920i Programming Reference

Quotation Mark
Quotation marks ("") are used to signal the start and end of string constants:

if sCommand = "download data" then
Write(iPCPort, "Data download in progress. Please wait..");

Relational Operators
Greater than (>)

Greater than or equal to (>=)
Less than (<)
Less than or equal to (<=)

Equality Operators
Equal to (=)

Not equal to (<>)

The relational and equality operators are only used in an if expression. They may only be used between two
objects of compatible type, and the resulting construct will be evaluated by the compiler to be either true or false;

if iPointsScored = 6 then
if iSpeed > 65 then
if rGPA <= 3.0 then
if sEntry <> "2" then
NOTE: Be careful when using the equal to (=) operator with real data. Because of the way real data is stored

and the amount of precision retained, it may not contain what you would expect. For example, given a real
variable named rTolerance:

rTolerance := 10.0 / 3.0

if rTolerance * 3 = 10 then
-- do something
end if;
The evaluation of the if statement will resolve to false. The real value assigned to rTolerance by the expression
10.0/ 3.0 will be a real value (3.333333) that, when multiplied by 3, is not quite equal to 10.

Logical Operators
Although they are keywords and not delimiters, this is a good place to talk about “Logical Operators”. In iRite
the logical operators are and, or, and not and are named “logical and”, “logical or”, and “logical negation”

respectively. They too are only used in an if expression. They can only be used with expressions or values that
evaluate to true or false:

if (iSpeed > 55) and (not flgInterstate) or (strOfficer = "Cranky") then
sDriverStatus := "Busted";

Arithmetic Operators

The arithmetic operators (+, —,* , /, and mod) are used in expression to add, subtract, multiply, and divide integer
and real values. Multiplication and division take precedence over addition and subtraction. A sequence of
operations with equal precedence is evaluated from left to right.

The keyword mod is not a delimiter, but is included here because it is also an arithmetic operator. The modulus
(or remainder) operator returns the remainder when operand 1 is divided by operand 2. For example:
rResult : 7 mod 3; -- rResult should equal 1
NOTE: Both division (/) and mod operations can cause the fatal divide-by-zero error if the second operand is zero.
When using the divide operator with integers, be careful of losing significant digits. For example, if you are

dividing a smaller integer by a larger integer then the result is an integer zero: 4/7 = 0. If you were hoping to
assign the result to a real like in the following example:

rSlope : real;
rSlope := 4/7;

Language Syntax 11

rSlope will still equal 0, not 0.571428671 as might be expected. This is because the compiler does integer math
when both operands are integers, and stores the result in a temporary integer. To make the previous statement
work in iRite, one of the operands must be a real data type or one of the operands must evaluate to a real. So we
could write the assignment statement like:

rSlope := 4.0/7;

If we were dividing two integer variables, we could multiply one of the operands by 1.0 to force the compile to
resolve the expression to a real:

rSlope : real;
iRise : integer := 4;
iRun : integer := 7;

rSlope := (iRise * 1.0) / iRun;

Now rSlope will equal 0.571428671.

NOTE: The plus sign (+) is also used as the string concatenation operator. The minus sign (-) is also used as a unary
minus operator that has the result equal to the negative of its operand.

Assignment Operator (:=)
The assignment operator is used to assign a value to a compatible program variable or to initialize a constant. The

value on the left of the “:=” must be a modifiable value. The following are some invalid examples:
3 :=1+ 1; -- not valid
ciMaxAge := 67; -- where ciMaxAge was declared with keyword constant
iInteger := "This is a string, not an integer!"; -- incompatible types

Structure Member Operator (“dot™)
The “dot” (.) is used to access the name of a field of a record or database types.

3.2 Program Structure

A program is delimited by a program header and a matching end statement. The body of a program contains a
declarations section, which may be empty, and an optional main code body. The declaration section and the main
code body may not both be empty.
<program>:
program IDENTIFIER ’;’
<decl-section>
<optional-main-body>
end IDENTIFIER ';'

4
<optional-main-body>:
/* NULL */
| begin <stmt-list>

.
14

—< PROGRAM >—| IDENTIFIER |—®—| decl-section |—| optional-main-body l—
(-oO——
{_ END >—| IDENTIFIER

Figure 3-1. Program Statement Syntax

The declaration section contains declarations defining global program types, variables, and subprograms. The
main code body, if present, is assumed to be the declaration of the program startup event handler. A program
startup event is generated when the instrument personality enters operational mode at initial power-up and when
exiting setup mode.

Example:
program MyProgram;
KeyCounter : Integer;
handler AnyKeyPressed;

12 920i Programming Reference

begin
KeyCounter := KeyCounter + 1;
end;

begin
KeyCounter := 0
end MyProgram;
The iRite language requires declaration before use so the order of declarations in a program is very important.

The “declaration before use” requirement is imposed to prevent recursion, which is difficult for the compiler to
detect.

In general, it make sense for certain types of declarations to always come before others types of declarations. For
example, functions and procedures must always be declared before the handlers. Handlers cannot be called or
invoked from within the program, only by the event dispatching system. But functions and procedures can be
called from within event handlers; therefore, always declare the functions and procedures before handlers.

Another example would be to always declare constants before type definitions. This way you can size an array
with named constants.

Here is an example program with a logical ordering for various elements:

program Template; -- program name is always first!

—— Put include (.iri) files here.
#include template.iri

-- Constants and aliases go here.

g_csProgName : constant string := "Template Program";
g _csVersion : constant string := "0.01";
g _ciArraySize : integer := 100;

—— User defined type definitions go here.
type tShape is (Circle, Square, Triangle, Rectangle, Octagon, Pentagon, Dodecahedron);

type tColor is (Blue, Red, Green, Yellow, Purple);

type tDescription is

record
eColor : tColor;
eShape : tShape;
end record;

type tBigArray is array [g _ciArraySize] of tDescription;

—-- Variable declarations go here.
g_iBuild : integer;

g_srcResult : SysCode;

g_aArray : tBigArray;
g_rSingleRecord : tDescription;

-- Start functions and procedures definitions here.

function MakeVersionString : string;
sTemp : string;

begin
if g iBuild > 9 then
sTemp := ("Ver " + g csVersion + "." + IntegerToString(g_iBuild, 2));
else
sTemp := ("Ver " + g csVersion + ".0" + IntegerToString(g_iBuild, 1));
end if;

return sTemp;
end;

procedure DisplayVersion;
begin

DisplayStatus(g_csProgName + " " + MakeVersionString);
end;

Language Syntax 13

-- Begin event handler definitions here.
handler UserlKeyPressed;
begin
DisplayVersion;
end;

-- This chunk of code is the system startup event handler.
begin

-- Initialize all global variables here.
-- Increment the build number every time you make a change to a new version.
g_iBuild := 3;

—— Display the version number to the display.
DisplayVersion;

end Template;

3.3 Declarations

3.3.1 Type Declarations

Type declarations provide the mechanism for specifying the details of enumeration and aggregate types. The
identifier representing the type name must be unique within the scope in which the type declaration appears. All
user-defined types must be declared prior to being used.

<type-declaration>:
type IDENTIFIER is <type-definition> ';'

14
<type-definition>:
<record-type-definition>
<array-type-definition>
<database-type-definition>
<enum-type-definition>

7
_< TYPE >—| IDENTIFIER l—(IS >—| type-definition |—®—>

Figure 3-2. Type Declaration Syntax

’ stored-option |—| constant-option |—| type |—>

Figure 3-3. Identifier Syntax

——| type-declaration I yy >

—| variable-declaration |—| optional-initial-value I @

—| procedure-declaration I

—| function-declaration I

—| handler-declaration I

Figure 3-4. Type Declaration Syntax

14 920i Programming Reference

Enumeration Type Definitions
An enumeration type definition defines a finite ordered set of values. Each value, represented by an identifier,
must be unique within the scope in which the type definition appears.

<enum-type-definition>:

'"(' <identifier-list> ")’

<identifier-list>:
IDENTIFIER
<identifier-list> ',' IDENTIFIER

I
Examples:
type StopLightColors is (Green, Yellow, Red);

type BatchStates is (NotStarted, OpenFeedGate, CloseGate, WaitforSS, PrintTicket, AllDone);

Record Type Definitions

A record type definition describes the structure and layout of a record type. Each field declaration describes a
named component of the record type. Each component name must be unique within the scope of the record; no
two components can have the same name. Enumeration, record and array type definitions are not allowed as the
type of a component: only previously defined user- or system-defined type names are allowed.

<record-type-definition>:
record
<field-declaration-list>
end record
4
<field-declaration-list>:
<field-declaration>
| <field declaration-list>
<field declaration>
<field-declaration>:
IDENTIFIER ':' <type> ';'

.
14

—(RECORD >—| field-declaration-list l—(END >—< RECORD >—>

Figure 3-5. Record Type Definition Syntax

Examples:

type MyRecord is
record
A : integer;
B : real;
end record;

The EmployeeRecord record type definition, below, incorporates two enumeration type definitions, tDepartment
and tEmptype:

type tDepartment is (Shipping, Sales, Engineering, Management);
type tEmptype is (Hourly, Salaried);

type EmployeeRecord is
record
ID : integer;
Last : string;
First : string;
Dept : tDepartment;
EmployeeType : tEmptype;
end record;

Language Syntax 15

Database Type Definitions
A database type definition describes a database structure, including an alias used to reference the database.

<database-type-definition>:
database (STRING_CONSTANT)
<field-declaration-list>
end database

14
<field-declaration-list>:
<field-declaration>
| <field declaration-list>
<field declaration>

7
<field-declaration>:
IDENTIFIER ':' <type> ';'

.
4

DATABASE 0 STRING-CONSTANT |—®—| field-declaration-list |7

(END >_< DATABASE >—>

Figure 3-6. Database Type Definition Syntax

Example: A database consisting of two fields, an integer field and a real number, could be defined as follows:

type MyDB is
database ("DBALIAS")
A : integer
B : real
end database;

Array Type Definitions
An array type definition describes a container for an ordered collection of identically typed objects. The
container is organized as an array of one or more dimensions. All dimensions begin at index 1.

<array-type-definition>:
array '[' <expr-list> ']' of <type>

oy (D oo DA o0 O om —

Figure 3-7. Array Type Definition Syntax

Examples:
type Weights is array [25] of Real;

An array consisting of user-defined records could be defined as follows:
type Employees is array [100] of EmployeeRecord;

A two-dimensional array in which each dimension has an index range of 10 (1...10), for a total of 100 elements
could be defined as follows:

type MyArray is array [10,10] of Integer;

NOTE: In all of the preceding examples, no variables (objects) are created, no memory is allocated by the type
definitions. The type definition only defines a type for use in a later variable declaration, at which time memory is
allocated.

3.3.2 Variable Declarations

A variable declaration creates an object of a particular type. The type specified must be a previously defined user-
or system-defined type name. The initial value, if specified, must be type-compatible with the declared object
type. All user-defined variables must be declared before being used.

16 920i Programming Reference

Variables declared with the keyword stored cause memory to be allocated in battery-backed RAM. Stored data
values are retained even after the indicator is powered down.

Variables declared with the keyword constant must have an initial value.

<variable-declaration>:
IDENTIFIER ':' <stored-option> <constant-option> <type>
<optional-initial-value>
14
<stored-option>:
/* NULL */
stored

7
<constant-option>:
/* NULL */
constant

7
<optional-initial-value>:
/* NULL */

:= <expr>

Example:
MyVariable : StopLightColor;

3.3.3 Subprogram Declarations
A subprogram declaration defines the formal parameters, return type, local types and variables, and the
executable code of a subprogram. Subprograms include handlers, procedures, and functions.

Handler Declarations
A handler declaration defines a subprogram that is to be installed as an event handler. An event handler does not
permit parameters or a return type, and can only be invoked by the event dispatching system.

<handler-declaration>:
handler IDENTIFIER ';'
<decl-section>
begin
<stmt-list>

end ';

—< HANDLER >—| IDENTIFIER l—@—' decl-section l—
|—< BEGIN >—| stmt-list |—< END)—@—»

Figure 3-8. Handler Declaration Syntax

~e

Example:
handler SP1Trip;

I : Integer;

begin
for I := 1 to 10
loop
Writeln (1, "Setpoint Tripped!");
if I=2 then
return;
endif;
end loop;
end;

Language Syntax 17

Procedure Declarations

A procedure declaration defines a subprogram that can be invoked by other subprograms. A procedure allows
parameters but not a return type. A procedure must be declared before it can be referenced; recursion is not

supported.

<procedure-declaration>:
procedure IDENTIFIER
<optional-formal-args>
<decl-section>
begin
<stmt-list>

end ';

7
<optional-formal-args>:
/* NULL */
<formal-args>

14
<formal-args>:
'"(' <arg-list>

14
<arg-list>:
<optional-var-spec>
<variable-declaration>
| <arg-list> ';'
<variable-declaration>

|)|

7
<optional-var-spec>:
/* NULL */
var

~e

4

<optional-var-spec>

IDENTIFIER

—(PROCEDURE)—'

H optional-formal-args Hsubprogram—completi0n|—>

Figure 3-9. Procedure Declaration Syntax

Examples:

procedure PrintString (S :
begin

Writeln (1,
end;

procedure ShowVersion;
begin

DisplayStatus ("Version
end;

procedure Inc (var iVariable :

begin
ivariable
end;

Function Declarations

String);

"The String is => ",S);

1.42");

Integer);

:= iVariable + 1;

A function declaration defines a subprogram that can be invoked by other subprograms. A function allows
parameters and requires a return type. A function must be declared before it can be referenced; recursion is not
supported. A function must return to the point of call using a return-with-value statement.

<function-declaration>:
function IDENTIFIER
<optional-formal-args>
<decl-section>
begin
<stmt-list>

end ';

~e

:' <type> ';

18 920i Programming Reference

—< FUNCTION >—| IDENTIFIER |—| optional-formal-args l—@—

I type |_| subprogram-completion I >

Figure 3-10. Function Declaration Syntax

Examples:
function Sum (A : integer; B : integer) : Integer;
begin
return A + B;
end;

function PoundsPerGallon : Real;
begin

return 8.34;
end;

3.4 Statements

There are only six discrete statements in iRite. Some statements, like the if, call, and assignment (:=) are used
extensively even in the simplest program, while the exit statement should be used rarely. The if and the loop
statements have variations and can be quite complex. Let’s take a closer look at each of the six:
<stmt>:

<assign-stmt>

<call-stmt>

<if-stmt>

<return-stmt>

<loop-stmt>

exit-stmt>

.
14

3.4.1 Assignment Statement

(:) | >
expr I yy >

Figure 3-11. Assignment Statement Syntax

The assignment statement uses the assignment operator (:=) to assign the expression on the right-hand side to the
object or component on the left-hand side. The types of the left-hand and right-hand sides must be compatible.
The value on the left of the “:=” must be a modifiable value. Here are some examples:

Simple assignments:

iMaxPieces := 12000;
rRotations := 25.3456
sPlaceChickenPrompt :

1| ~e

"Please place the chicken on the scale..";

Assignments in declarations (initialization):

iRevision : integer := 1;
rPricePerPound : real := 4.99;
csProgramName : constant string := "Pig and Chicken Weigher";

Assignments in for loop initialization:

for iCounter := 1 to 25
for iTries := ciFirstTry to ciMaxTries

Language Syntax 19

Assignment of function return value:

sysReturn := GetSPTime(4, dtDateTime);
rCosine := Cos(1.234);

Assignment with complex expression on right-hand side:

iTotalLivestock := iNumChickens + iNumPigs + GetNumCows;
rTotalCost := ((iNumBolt * rBoltPrice) + (iNumNuts * rNutPrice)) * (1 + rTaxRate);
sOutputText := The total cost is : " + RealToString(rTotalCost, 4, 2) + " dollars.";

Assignment of different but compatible types:

ivalue := 34.867; -- Loss of significant digits! ivalue will equal 34, no rounding!
rDegrees := 212; -- No problem! rDegrees will equal 212.000000000000000000

3.4.2 Call Statement

The call statement is used to initiate a subprogram invocation. The number and type of any actual parameters are
compared against the number and type of the formal parameters that were defined in the subprogram declaration.
The number of parameters must match exactly. The types of the actual and formal parameters must also be
compatible. Parameter passing is accomplished by copy-in, or by copy-in/copy-out for var parameters.

<call-stmt>:
<name> ';'

14
Copy-in refers to the way value parameters are copied into their corresponding formal parameters. The default
way to pass a parameter in iRite is “by value”. By value means that a copy of actual parameter is made to use in
the function or procedure. The copy may be changed inside the function or procedure but these changes will
never affect the value of the actual parameter outside of the function or procedure, since only the copy may be
changed.

The other way to pass a parameter is to use a copy-in/copy-out method. To specify the copy-in/copy-out method,
a formal parameter must be preceded by the keyword var in the subprogram declaration. Var stands for
“variable”, which means the parameter may be changed. Just like with a value parameter, a copy is made.
However, when the function or procedure is done executing, the value of the copy is then copied, or assigned,
back into the actual parameter. This is the copy-out part. The result is that if the formal var parameter was
changed within the subprogram, then the actual parameter will also be changed after the subprogram returns.
Actual var parameters must be values: a constant cannot be passed as a var parameter.

One potentially troublesome issue occurs when passing a global parameter as a var parameter. If a global
parameter is passed to a function or procedure as a var parameter, then the system makes a copy of it to use in the
function body. Let’s say that the value of the formal parameter is changed and then some other function or
procedure call is made after the change to the formal parameter. If the function or procedure called uses, by
name, the same global parameter that was passed into the original function, then the value of the global
parameter in the second function will be the value of the global when it was pass into the original function. This
is because the changes made to the formal parameter (only a copy of the actual parameter passed in) have not yet
been copied-out, since the function or procedure has not returned yet. This is better demonstrated with an
example:

program GlobalAsVar;

g ciPrinterPort : constant integer := 2;

g_sString : string := "Initialized, not changed yet";
procedure PrintGlobalString;
begin

WriteLn(g_ciPrinterPort, g sString);
end;

procedure SetGlobalString (var vsStringCopy : string);

20 920i Programming Reference

begin
vsStringCopy := "String has been changed";

Write(g_ciPrinterPort, "In function call: ");
PrintGlobalString;

end;
begin
Write(g_ciPrinterPort, "Before function call: ");
PrintGlobalString;
SetGlobalString(g_sString);

Write(g ciPrinterPort, "After function call: ");
PrintGlobalString;

end GlobalAsVar;
When run, the program prints the following:
Before function call: Initialized, not changed yet

In function call: Initialized, not changed yet
After function call: String has been changed

3.4.3 If Statement

—< IF >—| expr |—<THEN>

—| stmt-list |—| optional-elsif-list |—| optional-else-part l—

—(END)—(IF >—©

A

Figure 3-12. If Statement Syntax

The if statement is one of the programmer’s most useful tools. The if statement is used to force the program to
execute different paths based on a decision. In its simplest form, the if statement looks like this:

if <expression> then
<statement list>
end if;

The decision is made after evaluating the expression. The expression is most often a “conditional expression”. If
the expression evaluates to true, then the statements in <statement list> are executed. This form of the if

statement is used primarily when you only want to do something if a certain condition is true. Here is an
example:

if iStrikes = 3 then
sResponse := "You’'re out!";
end if;

——< ELSE >—| stmt-list I -

v

Figure 3-13. Optional Else Statement Syntax

Language Syntax 21

Another form of the if statement, known as the if-else statement has the general form:

if <expression> then
<statement list 1>
else
<statement list 2>
end if;

The if-else is used when the program must decide which of exactly two different paths of execution must be
executed. The path that will execute the statement or statements in <statement list 1> will be chosen if
<expression> evaluates to true. Here is an example:
if iAge => 18 then
sStatus := "Adult";
else

sStatus := "Minor";
end if;

If the statement is false, then the statement or statements in <statement list 2> will be executed. Once the
expression is evaluated and one of the paths is chosen, the expression is not evaluated again. This means the
statement will terminate after one of the paths has been executed.

For example, if the expression was true and we were executing <statement list 1>, and within the code in
<statement list 1> we change some part of <expression> so it would at that moment evaluate to false,
<statement list 2> would still not be executed. This point is more relevant in the next form called the if-elsif.

—“—C ELSIF >—| expr |—< THEN >—| stmt-list |——>

Figure 3-14. Optional Else-If Statement Syntax

The if-elsif version is used when a multi-way decision is necessary and has this general form:

if <expression> then
<statement list 1>
elsif <expression> then
<statement list 2>
elsif <expression> then
<statement list 3>
elsif <expression> then
<statement list 4>
else
<statement list 5>
end if;

Here is an example of the if-elsif form:

if rWeight <= 2.0 then
iGrade := 1;

elsif (rWeight > 2.0) and (rWeight < 4.5) then
iGrade := 2;

elsif (rWeight > 4.5) and (rWeight < 9.25) then
iGrade := 3;

elsif (rWeight > 9.25) and (rWeight < 11.875) then
iGrade := 4;

else

iGrade := 0;

sErrorString := "Invalid Weight!";
end if;

22 920i Programming Reference

3.4.4 Loop Statement

—| optional-iteration-clause |—< LOOP >—| stmt-list I

(END)—(LOOP >_© >

Figure 3-15. Loop Statement Syntax

The loop statement is also quite important in programming. The loop statement is used to execute a statement list
0 or more times. An optional expression is evaluated and the statement list is executed. The expression is then
re-evaluated and as long as the expression is true the statements will continue to get executed. The loop statement
in iRite has three general forms. One way is to write a loop with no conditional expression. The loop will keep
executing the loop body (the statement list) until the exit statement is encountered. The exit statement can be
used in any loop, but is most often used in this version without a conditional expression to evaluate. It has this
form:

loop

<statement list>

end loop;
This version is most often used with an if statement at the end of the statement list. This way the statement list
will always execute at least once. This is referred to as a loop-until. Here is an example:

rGrossWeight : real;

loop
WriteLn(2, "I'm in a loop.");
GetGross(1l, Primary, rGrossWeight);
if rGrossWeight > 200 then
exit;
end if;
end loop;
A similar version uses an optional while clause at the start of the loop. The while-loop version is used when you
want the loop to execute zero or more times. Since the expression is evaluated before the loop is entered, the
statement list may not get executed even once. Here is the general form for the while-loop statement:
while <expression>
loop

<statement list>
end loop;

Here is the same example from above, but with a while clause. Keep in mind that if the gross weight is greater
than 200 pounds, then the loop body will never execute:

rGrossWeight : real;
GetGross(1l, Primary, rGrossWeight);

while rGrossWeight <= 200
loop
WriteLn(2, "I'm in a loop.");
GetGross(1l, Primary, rGrossWeight);
end loop;

Here we see that we had to get the weight before we could evaluate the expression. In addition we have to get the
weight in the loop. In this example, it would be better programming to use the loop-until version.

Another version is known as the for-loop. The for-loop is best used when you want to execute a chunk of code
for a known or predetermined number of times. In its general form the for-loop looks like this:

for <name> := <expression> to <expression> step <expression>
loop

<statement list>
end loop;

Language Syntax 23

——< FOR >—| name I—(= >—| expr |—< TO >—| expr

l__4 opﬁonabstep—dause! yy >

—(WHILE>—| expr I

Figure 3-16. Optional Loop Iteration Clause Syntax

The optional step clause can be omitted if you want <name> to increment by 1 after each run of the statement
list. If you want to increment <name> by 2 or 3, or decrement it by 1 or 2, then you have to use the step clause.
The step expression (-1 in the second example below) must be a constant.

for iCount := 97 to 122

loop

strAlpha := strAlpha + chr$(iCount);
end loop;

for iCount := 10 to 0 step -1

loop
if iCount = 0 then
strMissionControl := "Blast off!";
else
strMissionControl := IntegerToString(iCount, 2);
end if;

end loop;

STEP expr I y >

Figure 3-17. Optional Step Clause Syntax

3.4.5 Return Statement

The return statement can only be used inside of subprograms (functions, procedures, and event handlers). The
return statement in procedures and handlers cannot return a value. An explicit return statement inside a procedure
or handler is not required since the compiler will insert one if the return statement is missing. If you want to
return from a procedure or handler before the code body is done executing, then you can use the return
statement to exit at that point.

procedure DontDoMuch;
begin
if PromptUser("circle: ") <> SysOK then
return;
end if;
end;

Functions must return a value and an explicit return statement is required. The data type of the expression
returned must be compatible with the return type specified in the function declaration.

function Inc(var viNumber : integer) : integer;
begin

viNumber := viNumber + 1;

return viNumber;
end;

24 920i Programming Reference

It is permissible to have more then one return statement in a subprogram, but not recommended. In most
instances it is better programming practice to use conditional execution (using the if statement) with one return
statement at the end of the function than it is to use a return statement multiple times. Return statements
liberally dispersed through a subprogram body can result in “dead code” (code that never gets executed) and
hard-to-find bugs.

—< RETURN >—| optional-return-valuel @ &

Figure 3-18. Return Statement Syntax

3.4.6 Exit Statement

The exit statement is only allowed in loops. It is used to immediately exit any loop (loop-until, for-loop,
while-loop) it is called from. Sometimes it is convenient to be able to exit from a loop instead of testing at the
top. In the case of nested loops (a loop inside another loop), only the innermost enclosing loop will be exited. See
the loop examples in Section 3.4.4 on page 23 for the exit statement in action.

N
— o 0

\

Figure 3-19. Exit Statement Syntax

Language Syntax 25

4.0 Built-in Types and Functions

This section describes the built-in types and functions provided for programming the 920i indicator. Functions are grouped
according to the kinds of operations they support.

4.1 Built-in Types

The following built-in types are used in parameters passed to and from the functions described in this section. Most built-in
types are declared in the system.src file found in the iRev application directory. Some built-in types are defined by the
compiler and are not declared in the system.src file.

type SysCode is (SysOK,
SysLFTViolation,
SysOutOfRange,
SysPermissionDenied,
SysInvalidScale,
SysBatchRunning,
SysBatchNotRunning,
SysNoTare,
SysInvalidPort,
SysQFull,
SysInvalidUnits,
SysInvalidSetpoint,
SysInvalidRequest,
SysInvalidMode,
SysRequestFailed,
SysInvalidKey,
SysInvalidwWidget,
SysInvalidState,
SysInvalidTimer,
SysNoSuchDatabase,
SysNoSuchRecord,
SysDatabaseFull,
SysNoSuchColumn,
SysInvalidCounter,
SysDeviceError);
type Mode is (GrossMode, NetMode);
type Units is (Primary, Secondary, Tertiary)
type TareType is (NoTare, PushButton, Keyed)
type BatchingMode is (0Off, Manual, Auto);
type BatchStatus is (BatchComplete, BatchStopped, BatchRunning, BatchPaused);
type PrintFormat is (GrossFmt, NetFmt,
AuxFmt,
TrWInFmt, TrRegFmt, TrWoutFmt,
SPFmt,
AccumFmt) ;
type TimerMode is (TimerOneShot, TimerContinuous);
type Keys is (Soft4Key, Soft5Key, GrossNetKey, UnitsKey,
Soft3Key, Soft2Key, SoftlKey, ZeroKey,
Undefined3Key, Undefined4Key, TareKey, PrintKey,
N1lKey, N4Key, N7Key, DecpntKey,
NavUpKey, NavLeftKey, EnterKey, Undefined5Key,
N2Key, N5Key, N8Key, NOKey,
UndefinedlKey, Undefined2Key, NavRightKey, NavDownKey,
N3Key, N6Key, N9Key, ClearKey);
type DT Component is (DateTimeYear,
DateTimeMonth,
DateTimeDay,
DateTimeHour,
DateTimeMinute,
DateTimeSecond) ;
type OnOffType (Voff,Von);

.
4
.
14

26 920i Programming Reference

4.1.1 Using SysCode Data

SysCode data can be used to take some action based on whether or not a function completed successfully. For example, the
following code checks the SysCode result following a GetTare function. If the function completed successfully, the
retrieved tare weight is written to Port 1:

Scalel : constant Integer := 1;
Portl : constant Integer := 1;
SysResult : SysCode;

TareWeight : Real;

SysResult:= GetTare (Scalel, Primary, TareWeight);
if SysResult = SysOK then

WriteLn (Portl, "The current tare weight is
end if;

, TareWeight)’

4.2 Scale Data Acquisition

NOTE: Unless otherwise stated, when an API with a VAR parameter returns a SysCode value other than SysOK, the VAR
parameter is not changed.

4.2.1 Weight Acquisition
See the GetStableWeight function on page 72 for an example of using the GetGross, GetNet, and GetTare functions in a

program.

GetGross
Sets W to the current gross weight value of scale S, in the units specified by U. W will contain a weight value even if the

scale is in programmed overload.

Syntax:
function GetGross (S : Integer; U : Units; VAR W : Real) : SysCode;

SysCode values returned:

SysInvalidScale The scale specified by S does not exist.

SysInvalidUnits The units specified by U is not valid.

SysInvalidRequest The requested value is not available.

SysDeviceError The scale is reporting an error condition.

SysOK The function completed successfully.
Example:

GrossWeight : Real;

GetGross (Scalel, Primary, GrossWeight);
WriteLn (Portl, "Current gross weight is", GrossWeight);

GetNet
Sets W to the current net weight value of scale S, in the units specified by U. W will contain a weight value even if the scale

is in programmed overload.

Syntax:
function GetNet (S : Integer; U : Units; VAR W : Real) : SysCode;

SysCode values returned:

SysInvalidScale The scale specified by S does not exist.

SysInvalidUnits The units specified by U is not valid.

SysInvalidRequest The requested value is not available.

SysDeviceError The scale is reporting an error condition.

SysOK The function completed successfully.
Example:

NetWeight : Real;

GetNet (Scale2, Secondary, NetWeight);
WriteLn (Portl, "Current net weight is", NetWeight);

Built-in Types and Functions 27

GetTare
Sets W to the tare weight of scale S in weight units specified by U.

function GetTare (S : Integer; U : Units; VAR W : Real) : SysCode;

SysCode values returned:

SysInvalidScale The scale specified by S does not exist.

SysInvalidUnits The units specified by U is not valid.

SysInvalidRequest The requested value is not available.

SysNoTare The specified scale has no tare. W is set to 0.0.

SysDeviceError The scale is reporting an error condition.

SysOK The function completed successfully.
Example:

TareWeight : Real;

GetTare (Scale3, Tertiary, TareWeight);
WriteLn (Portl, "Current tare weight is

, TareWeight);

4.2.2 Tare Manipulation

AcquireTare
Acquires a pushbutton tare from scale S.

Syntax:
function AcquireTare (S : Integer) : SysCode;

SysCode values returned:

SysInvalidScale The scale specified by S does not exist

SysLFTViolation The tare operation would violate configured legal-for-trade restrictions for the specified
scale. No tare is acquired.

SysOutOfRange The tare operation would acquire a tare that may cause a display overload. No tare is
acquired.

SysPermissionDenied The tare operation would violate configured tare acquisition restrictions for the specified
scale. No tare is acquired.

SysDeviceError The scale is reporting an error condition.
SysOK The function completed successfully.
Example:

AcquireTare (Scalel);

SetTare
Sets the tare weight for the specified channel.

Syntax:
function SetTare (S : Integer; U : Units; W : Real) : SysCode;

SysCode values returned:

SysInvalidScale The scale specified by S does not exist.

SysInvalidUnits The units specified by U is not valid.

SysLFTViolation The tare operation would violate configured legal-for-trade restrictions for the specified
scale. No tare is acquired.

SysOutOfRange The tare operation would acquire a tare that may cause a display overload. No tare is
acquired.

SysDeviceError The scale is reporting an error condition.

SysOK The function completed successfully.

Example:

DesiredTare : Real;

DesiredTare := 1234.5;
SetTare (Scalel, Primary, DesiredTare);

28 920i Programming Reference

GetTareType
Sets T to indicate the type of tare currently on scale S.

Syntax:
function GetTareType (S : Integer; VAR T : TareType) : SysCode;
TareType values returned:
NoTare There is no tare value associated with the specified scale.
PushbuttonTare The current tare was acquired by pushbutton.
Keyed The current tare was acquired by key entry or by setting the tare.
SysCode values returned:
SysInvalidScale The scale specified by S does not exist. T' is unchanged.
SysOK The function completed successfully.
ClearTare

Removes the tare associated with scale S and sets the tare type associated with the scale to NoTare .

Syntax:
function ClearTare (S : Integer) : SysCode;

SysCode values returned:

SysInvalidScale The scale specified by S does not exist.

SysNoTare The scale specified by S has no tare.

SysDeviceError The scale is reporting an error condition.

SysOK The function completed successfully.
Example:

ClearTare (Scalel);

4.2.3 Rate of Change

GetROC
Sets R to the current rate-of-change value of scale S. Syntax:

function GetROC (S : Integer; VAR R : Real) : SysCode;

SysCode values returned:

SysInvalidScale The scale specified by S does not exist.

SysDeviceError The scale is reporting an error condition.

SysOK The function completed successfully.
Example:

ROC : Real;

GetROC (Scale3, ROC);
WriteLn (Portl, "Current ROC is", ROC);

4.2.4 Accumulator Operations

GetAccum
Sets W to the value of the accumulator associated with scale S, in the units specified by U.

Syntax:
function GetAccum (S : Integer; U : Units; VAR W ; Real) : SysCode;

SysCode values returned:

SysInvalidScale The scale specified by S does not exist.
SysInvalidUnits The units specified by U is not valid.
SysDeviceError The scale is reporting an error condition.
SysPermissionDenied The accumulator is not enabled for the specified scale.
SysOK The function completed successfully.

Example:

AccumValue : Real;

GetAccum (Scalel, AccumValue);

Built-in Types and Functions

29

SetAccum
Sets the value of the accumulator associated with scale S to weight W, in units specified by U.

Syntax:
function SetAccum (S : Integer; U : Units; W : Real) : SysCode;

SysCode values returned:

SysInvalidScale The scale specified by S does not exist.
SysInvalidUnits The units specified by U is not valid.
SysDeviceError The scale is reporting an error condition.
SysPermissionDenied The accumulator is not enabled for the specified scale.
SysOK The function completed successfully.

Example:

AccumValue : Real;

AccumValue := 110.5
SetAccum (Scalel, Primary, AccumValue);

GetAvgAccum
Sets W to the average accumulator value associated with scale S, in the units specified by U, since the accumulator was last

cleared.

Syntax:

function GetAvgAccum (S : Integer; U : Units; VAR W ; Real) SysCode;

SysCode values returned:

SysInvalidScale The scale specified by S does not exist.
SysInvalidUnits The units specified by U is not valid.
SysDeviceError The scale is reporting an error condition.
SysPermissionDenied The accumulator is not enabled for the specified scale.
SysOK The function completed successfully.

Example:

AvgAccum : Real;

GetAvgAccum (Scalel, AvgAccum);

GetAccumCount
Sets NV to the number of accumulations performed for scale S since its accumulator was last cleared.
Syntax:
function GetAccumCount (S : Integer; VAR N ; Integer) : SysCode;
SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysPermissionDenied The accumulator is not enabled for the specified scale.
SysDeviceError The scale is reporting an error condition.
SysOK The function completed successfully.
Example:

NumAccums : Integer;
GetAccumCount (Scalel, NumAccums);

GetAccumbDate
Sets D to the date of the most recent accumulation performed by scale S.

Syntax:
function GetAccumDate (S : Integer; VAR D ; String) : SysCode;

SysCode values returned:

SysInvalidScale The scale specified by S does not exist.
SysPermissionDenied The accumulator is not enabled for the specified scale.
SysDeviceError The scale is reporting an error condition.
SysOK The function completed successfully.

Example:

AccumDate : String;

GetAccumDate (Scalel, AccumDate);

30 920i Programming Reference

GetAccumTime
Sets T to the time of the most recent accumulation performed by scale S.

Syntax:
function GetAccumTime (S : Integer; VAR T ; String) : SysCode;

SysCode values returned:

SysInvalidScale The scale specified by S does not exist.
SysPermissionDenied The accumulator is not enabled for the specified scale.
SysDeviceError The scale is reporting an error condition.
SysOK The function completed successfully.

Example:

AccumTime : String;

GetAccumTime (Scalel, AccumTime);

ClearAccum
Sets the value of the accumulator for scale S to zero.

Syntax:
function ClearAccum (S : Integer) : SysCode;

SysCode values returned:

SysInvalidScale The scale specified by S does not exist.
SysPermissionDenied The accumulator is not enabled for the specified scale.
SysDeviceError The scale is reporting an error condition.
SysOK The function completed successfully.

Example:

ClearAccum (Scalel);

4.2.5 Scale Operations

CurrentScale
Sets S to the numeric ID of the currently displayed scale.

Syntax:
function CurrentScale : Integer;

Example:
ScaleNumber : Integer;

ScaleNumber=CurrentScale;

SelectScale
Sets scale S as the current scale.

Syntax:
function SelectScale (S : Integer) : SysCode;

SysCode values returned:

SysInvalidScale The scale specified by S does not exist. The current scale is not changed
SysOK The function completed successfully.
Example:

SelectScale (Scalel);

GetMode
Sets M to the value representing the current display mode for scale S.

Syntax:
function GetMode (S : Integer; VAR M : Mode) : SysCode;

Mode values returned:

GrossMode Scale § is currently in gross mode.
NetMode Scale S is currently in net mode.

SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysDeviceError The scale is reporting an error condition.
SysOK The function completed successfully.

Built-in Types and Functions

31

Example:
CurrentMode : Mode;

GetMode (Scalel, CurrentMode);

Example:
TT : TareType;

GetTareType (Scalel, TT);
if TT=KeyedTare then ..

GetUnits
Sets U to the value representing the current display units for scale S.

Syntax:
function GetUnits (S : Integer; VAR U : Units) : SysCode;

Units values returned:

Primary Primary units are currently displayed on scale S .

Secondary Secondary units are currently displayed on scale S

Tertiary Tertiary units are currently displayed on scale S.
SysCode values returned:

SysInvalidScale The scale specified by S does not exist.

SysDeviceError The scale is reporting an error condition.

SysOK The function completed successfully.
Example:

CurrentUnits : Units;
GetUnits (Scalel, CurrentUnits);

GetUnitsString
Sets V to the text string representing the current display units for scale S.

Syntax:
function GetUnitsString (S : Integer; U : Units; VAR V : String)
Units values sent:
Primary Primary units are currently displayed on scale S .
Secondary Secondary units are currently displayed on scale S
Tertiary Tertiary units are currently displayed on scale S.
SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysInvalidUnits The units value specified by U does not exist.
SysOK The function completed successfully.
Example:

CurrentUnitsString : Units;

GetUnitsString (Scalel, Primary, CurrentUnitsString);

InCOZ

SysCode;

Sets V to a non-zero value if scale S is within 0.25 grads of gross zero. If the condition is not met, V is set to zero.

Syntax:
function InCOZ (S : Integer; VAR V : Integer) : SysCode;

SysCode values returned:

SysInvalidScale The scale specified by S does not exist.

SysDeviceError The scale is reporting an error condition.

SysOK The function completed successfully
Example:

ScaleAtCOZ : Integer;

InCOZ (Scalel, ScaleAtC0Z);

32 920i Programming Reference

InMotion
Sets V to a non-zero value if scale S is in motion. Otherwise, V is set to zero.

Syntax:
function InMotion (S : Integer; VAR V : Integer) : SysCode;

SysCode values returned:

SysInvalidScale The scale specified by S does not exist.

SysDeviceError The scale is reporting an error condition.

SysOK The function completed successfully
Example:

ScaleInMotion : Integer;

InMotion (Scalel, ScaleInMotion);
See the GetStableWeight function on page 72 for an example of using the InMotion function in a program.

InRange
Sets V to zero value if scale S is in an overload or underload condition. Otherwise, V is set to a non-zero value.

Syntax:
function InRange (S : Integer; VAR V : Integer) : SysCode;

SysCode values returned:

SysInvalidScale The scale specified by S does not exist.

SysDeviceError The scale is reporting an error condition.

SysOK The function completed successfully
Example:

ScaleInRange : Integer;

InRange (Scalel, ScaleInRange);

SetMode
Sets the current display mode on scale S to M.

Syntax:
function SetMode (S : Integer; M : Mode) : SysCode;

Mode values sent:

GrossMode Scale S is set to gross mode.
NetMode Scale S is set to net mode.
SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysInvalidMode The mode value M is not valid.
SysDeviceError The scale is reporting an error condition. M is not changed.
SysOK The function completed successfully.
Example:

SetMode (Scalel, Gross);

SetUnits
Sets the current display units on scale S to U.

Syntax:
function SetUnits (S : Integer; U : Units) : SysCode;

Units values sent:

Primary Primary units will be displayed on scale S.
Secondary Secondary units will be displayed on scale S.
Tertiary Tertiary units will be displayed on scale S .
SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysInvalidUnits The units value U is not valid.
SysDeviceError The scale is reporting an error condition.
SysOK The function completed successfully.
Example:

SetUnits (Scalel, Secondary);

Built-in Types and Functions

33

ZeroScale
Performs a gross zero scale operation for S.

Syntax:
function ZeroScale (S : Integer) : SysCode;

SysCode values returned:

SysInvalidScale The scale specified by S does not exist
SysLFTViolation The zero operation would violate configured legal-for-trade restrictions for the specified
scale. No zero is performed.
SysOutOfRange The zero operation would exceed the configured zeroing limit. No zero is acquired.
SysDeviceError The scale is reporting an error condition.
SysOK The function completed successfully.
Example:

ZeroScale (Scalel);

4.2.6 A/D and Calibration Data

GetFilteredCount
Sets C to the current filtered A/D count for scale S.

Syntax:
function GetFilteredCount (S : Integer; VAR C : Integer) : SysCode;

SysCode values returned:

SysInvalidScale The scale specified by S does not exist.
SysInvalidRequest The scale specified by S is not an A/D-based scale.
SysDeviceError The scale is reporting an error condition.
SysOK The function completed successfully.

Example:

FilterCount : Integer;

GetFilteredCount (1l; FilterCount);

GetRawCount
Sets C to the current raw A/D count for scale S.

Syntax:
function GetRawCount (S : Integer; VAR C : Integer) : SysCode;

SysCode values returned:

SysInvalidScale The scale specified by S does not exist.
SysInvalidRequest The scale specified by S is not an A/D-based scale.
SysDeviceError The scale is reporting an error condition.
SysOK The function completed successfully.

Example:

RawCount : Integer;

GetRawCount (1l; RawCount);

GetLCCD
Sets V to the calibrated deadload count for scale S.

Syntax:
function GetLCCD (S : Integer; VAR V : Integer) : SysCode;

SysCode values returned:

SysInvalidScale The scale specified by S does not exist.
SysInvalidRequest The scale specified by S is not an A/D-based scale.
SysOK The function completed successfully.

34 920i Programming Reference

GetLCCW
Sets V to the calibrated span count for scale S.

Syntax:
function GetLCCW (S : Integer; VAR V : Integer) : SysCode;

SysCode values returned:

SysInvalidScale The scale specified by S does not exist.
SysInvalidRequest The scale specified by S is not an A/D-based scale.
SysOK The function completed successfully.

GetWval
Sets V to the configured WVAL (test weight value) for scale S.

Syntax:
function GetWval (S : Integer; VAR V : Real) : SysCode;

SysCode values returned:

SysInvalidScale The scale specified by S does not exist.

SysInvalidRequest The scale specified by S is not an A/D-based scale.

SysOK The function completed successfully.
GetZeroCount

Sets V to the acquired zero count for scale S.

Syntax:
function GetWval (S : Integer; VAR V : Integer) : SysCode;

SysCode values returned:

SysInvalidScale The scale specified by S does not exist.
SysInvalidRequest The scale specified by S is not an A/D-based scale.
SysOK The function completed successfully.

4.3 System Support

Date$
Returns a string representing the system date contained in DT .

Syntax:
function Date$ (DT : DateTime) : String;

DisplaylsSuspended
Returns a true (non-zero) value if the display is suspended (using the SuspendDisplay procedure), or a false (zero) value if
the display is not suspended.

Syntax:
function DisplayIsSuspended : Integer;

EventChar

Returns a one-character string representing the character received on a communications port that caused the
PortxCharReceived event. If EventChar is called outside the scope of a PortxCharReceived event, EventChar returns a string
of length zero. See Section 6.1 on page 90 for information about the PortxCharReceived event handler.

Syntax:
function EventChar : String;

Example:
handler Port4CharReceived;
strOneChar : string;
begin
strOneChar := EventChar;
end;

EventKey
Returns an enumeration of type Keys with the value corresponding to the key press that generated the event. See Section 4.1
on page 26 for a definition of the Keys data type.

Syntax:
function EventKey : Keys;

Example:
handler KeyPressed;

Built-in Types and Functions 35

begin
if EventKey = ClearKey then

end if;
end;

EventPort

Returns the communications port number that received an F#x serial command. This function extracts data from the
CmdxHandler event for the F#x command, if enabled. (The CmdxHandler, if enabled, runs whenever a F#x command is
received on any serial port.) If the CmdxHandler is not enabled, this function returns O as the port number. See the
Cmd1Handler definition in the HelloWorld program on page 59 for an example of the EventPort function.

Syntax:
function EventPort : Integer;

EventString

Returns the string sent with an F#x serial command.This function extracts data from the CmdxHandler event for the F#x
command, if enabled. (The CmdxHandler, if enabled, runs whenever a F#x command is received on any serial port.) If the
CmdxHandler is not enabled, or if no string is defined for the F#x command, this function returns a string of length zero. See
the Cmd1Handler definition in the HelloWorld program on page 59 for an example of the EventString function.

Syntax:
function EventString : String;

GetConsecNum
Returns the value of the consecutive number counter.

Syntax:
function GetConsecNum : Integer;

GetCountBy
Sets C to the real count-by value on scale S, in units U.

Syntax:
function GetCountBy (S : Integer; U : Units; VAR C : Real) : SysCode;

SysCode values returned:

SysInvalidScale The scale specified by S does not exist.

SysInvalidUnits The units specified by U is not recognized.

SysInvalidRequest The scale specified by S does not support this operation (serial scale).
SysDeviceError The scale is reporting an error condition.

SysOK The function completed successfully.

GetDate
Extracts date information from DT and places the data in variables Year , Month , and Day .

Syntax:
procedure GetDate (DT : DateTime; VAR Year : Integer; VAR Month : Integer;
VAR Day : Integer);

GetGrads
Sets G to the configured grad value of scale S.

Syntax:
function GetGrads (S : Integer; VAR G : Integer) : SysCode;

SysCode values returned:

SysInvalidScale The scale specified by S does not exist.

SysInvalidRequest The scale specified by S does not support this operation (serial scale).
SysDeviceError The scale is reporting an error condition.

SysOK The function completed successfully.

GetSoftwareVersion
Returns the current software version.

Syntax:
function GetSoftwareVersion : String;

36 920i Programming Reference

GetTime
Extracts time information from DT and places the data in variables Hour , Minute , and Second .

Syntax:
procedure GetTime (DT : DateTime; VAR Hour : Integer; VAR Minute : Integer;
VAR Second : Integer);

GetUID
Returns the current unit identifier.

Syntax:
function GetUID : Integer;

LockKey

Disables the specified front panel key. Possible values are: ZeroKey, GrossNetKey, TareKey, UnitsKey, PrintKey, Soft1Key,
Soft2Key, Soft3Key, Soft4Key, Soft5Key, NavUpKey, NavRightKey, NavDownKey, NavLeftKey, EnterKey, N1Key,
N2Key, N3Key, N4Key, N5Key, N6Key, N7Key, N8Key, N9Key, NOKey, DecpntKey, ClearKey.

Syntax:
function LockKey (K : Keys) : SysCode;

SysCode values returned:

SysInvalidKey The key specified is not valid.
SysOK The function completed successfully.
LockKeypad

Disables operation of the entire front panel keypad.

Syntax:
function LockKeypad : SysCode;

SysCode values returned:
SysPermissionDenied
SysOK The function completed successfully.

ResumeDisplay
Resumes a suspended display.

Syntax:
procedure ResumeDisplay

SetConsecNum
Sets V to the value of the consecutive number counter.

Syntax:
function SetConsecNum (V : Integer) : SysCode;

SysCode values returned:
SysOutOfRange The value specified is not in the allowed range. The consecutive number is not changed.
SysOK The function completed successfully.

SetDate
Sets the date in DT to the values specified by Year , Month , and Day .

Syntax:
function SetDate (VAR DT : DateTime; VAR Year : Integer; VAR Month : Integer;
VAR Day : Integer) : SysCode;

SysCode values returned:

SysInvalidRequest Year, month, or day entry not valid.
SysOK The function completed successfully.
SetSoftkeyText

Sets the text of softkey K (representing F1-F10) to the text specified by S.

Syntax:
function SetSoftkeyText (K : Integer; S : String) : SysCode;

SysCode values returned:

SysInvalidRequest The value specified for K is less than 1 or greater than 10, or does not represent a
configured softkey.
SysOK The function completed successfully.

Built-in Types and Functions 37

SetTime
Sets the time in DT to the values specified by Hour , Minute , and Second .

Syntax:
function SetTime (VAR DT : DateTime; VAR Hour : Integer; VAR Minute
Integer; VAR Second : Integer) : SysCode;

SysCode values returned:
SysInvalidRequest Hour or minute entry not valid.
SysOK The function completed successfully.

SetUID
Sets the unit identifier.

Syntax:
function SetUID (newid : Integer) : SysCode;

SysCode values returned:

SysOutOfRange The unit identifier specified for newid is not in the allowed range. The UID is not
changed.
SysOK The function completed successfully.

STick
Returns the number of system ticks, in 1/1200th of a second intervals, since the indicator was powered on (1200 = 1 second).

Syntax:
function STick;

SuspendDisplay
Suspends the display.

Syntax:
procedure SuspendDisplay

SystemTime
Returns the current system date and time.

Syntax:
function SystemTime : DateTime;

Time$
Returns a string representing the system time contained in DT'.

Syntax:
function Time$ (DT : DateTime) : String;

UnlockKey

Enables the specified front panel key. Possible values are: ZeroKey, GrossNetKey, TareKey, UnitsKey, PrintKey, Soft1Key,
Soft2Key, Soft3Key, Soft4Key, Soft5Key, NavUpKey, NavRightKey, NavDownKey, NavLeftKey, EnterKey, N1Key,
N2Key, N3Key, N4Key, N5Key, N6Key, N7Key, N8Key, N9Key, NOKey, DecpntKey, ClearKey.

Syntax:
function UnlockKey (K : Keys) : SysCode;

SysCode values returned:
SysInvalidKey The key specified is not valid.
SysOK The function completed successfully.

UnlockKeypad
Enables operation of the entire front panel keypad.

Syntax:
function UnlockKeypad : SysCode;

SysCode values returned:
SysPermissionDenied
SysOK The function completed successfully.

38 920i Programming Reference

4.4 Setpoints and Batching

NOTE: Unless otherwise stated, when an API with a VAR parameter returns a SysCode value other than SysOK, the VAR

parameter is not changed.

DisableSP
Disables operation of setpoint SP.

Syntax:
function DisableSP (SP : Integer) : SysCode;

SysCode values returned:

SysInvalidSetpoint The setpoint specified by SP does not exist.
SysBatchRunning Setpoint SP cannot be disabled while a batch is running.
SysInvalidRequest The setpoint specified by SP cannot be enabled or disabled.
SysOK The function completed successfully.
Example:
DisableSP (4);
EnableSP

Enables operation of setpoint SP.

Syntax:
function EnableSP (SP : Integer) : SysCode;

SysCode values returned:

SysInvalidSetpoint The setpoint specified by SP does not exist.
SysBatchRunning Setpoint SP cannot be enabled while a batch is running.
SysInvalidRequest The setpoint specified by SP cannot be enabled or disabled.
SysOK The function completed successfully.

Example:

EnableSP (4);

GetBatchingMode
Returns the current batching mode (BATCHNG parameter).

Syntax:
function GetBatchingMode : BatchingMode;

BatchingMode values returned:

off Batching mode is off.

Auto Batching mode is set to automatic.

Manual Batching mode is set to manual.
GetBatchStatus

Sets S to the current batch status.

Syntax:
function GetBatchStatus (VAR S : BatchStatus) : SysCode;

BatchStatus values returned:

BatchComplete The batch is complete.
BatchStopped The batch is stopped.
BatchRunning A batch routine is in progress.
BatchPaused The batch is paused.
SysCode values returned:
SysInvalidRequest The BATCHNG configuration parameter is set to OFF.
SysOK The function completed successfully.
GetCurrentSP

Sets SP to the number of the current setpoint.

Syntax:
function GetCurrentSP (VAR SP : Integer) : Syscode;

SysCode values returned:

SysInvalidRequest The BATCHNG configuration parameter is set to OFF.
SysBatchNotRunning No batch routine is running.
SysOK The function completed successfully.

Built-in Types and Functions

39

Example:
CurrentSP : Integer;

GetCurrentSP (CurrentSP);
WriteLn (Portl, "Current setpoint is", CurrentSP);

GetSPBand
Sets V to the current band value (BANDVAL parameter) of the setpoint SP.

Syntax:
function GetSPBand (SP : Integer; V : Real) : SysCode;

SysCode values returned:

SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no hysteresis (BANDVAL) parameter.
SysOK The function completed successfully.

Example:

SP7Bandval : Real;

GetSPBand (7, SP7BAndval);
WriteLn (Portl, "Current Band Value of SP7 is", SP7Bandval);

GetSPCaptured
Sets V to the weight value that satisfied the setpoint SP.

Syntax:
function GetSPCaptured (SP : Integer; V : Real) : SysCode;

SysCode values returned:

SysInvalidSetpoint The setpoint number specified by SP is less than 1 or greater than 100.
SysInvalidRequest The setpoint has no captured value.
SysOK The function completed successfully.

GetSPHyster

Sets V to the current hysteresis value (HYSTER parameter) of the setpoint SP.

Syntax:
function GetSPHyster (SP : Integer; V : Real) : SysCode;

SysCode values returned:

SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no hysteresis HYSTER) parameter.
SysOK The function completed successfully.

Example:

SP5Hyster : Real;

GetSPHyster (5, SPS5SHyster);
WriteLn (Portl, "Current Hysteresis Value of SP5 is", SP5Hyster);

GetSPPreact
Sets V to the current preact value (PREACT parameter) of the setpoint SP.

Syntax:
function GetSPPreact (SP : Integer; V : Real) : SysCode;

SysCode values returned:

SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no preact (PREACT) parameter.
SysOK The function completed successfully.

Example:

SP2Preval : Real;

GetSPPreact (2, SP2Preval);
WriteLn (Portl, "Current Preact Value of SP2 is", SP2Preval);

40 920i Programming Reference

GetSPValue
Sets V to the current value (VALUE parameter) of the setpoint SP.

Syntax:
function GetSPValue (SP : Integer; VAR V : Real) : SysCode;

SysCode values returned:

SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no VALUE parameter.
SysOK The function completed successfully.

Example:

SP4Val : Real;

GetSPvValue (4, SP4val);
WriteLn (Portl, "Current Value of SP4 is", SP4Val);

GetSPNSample

For averaging (AVG) setpoints, sets IV to the current number of samples (NSAMPLE parameter) of the setpoint SP.

Syntax:
function GetSPNSample (SP : Integer; VAR N : Integer) : SysCode;

SysCode values returned:

SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no NSAMPLE parameter.
SysOK The function completed successfully.

Example:

SP5NS : Integer;

GetSPNSample (5, SP5NS);
WriteLn (Portl, "Current NSample Value of SP5 is", SP5NS);

GetSPTime
For time of day (TOD) setpoints, sets DT to the current trip time (TIME parameter) of the setpoint SP.

Syntax:
function GetSPTime (SP : Integer; VAR DT : DateTime) : SysCode;

SysCode values returned:

SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no TIME parameter.
SysOK The function completed successfully.

Example:

SP2TIME : DateTime;

GetSPTime (2, SP2TIME);
WriteLn (Portl, "Current Trip Time of SP2 is", SP2TIME);

GetSPDuration
For time of day (TOD) setpoints, sets DT to the current trip duration (DURATION parameter) of the setpoint SP.

Syntax:
function GetSPDuration (SP : Integer; VAR DT : DateTime) : SysCode;

SysCode values returned:

SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no DURATION parameter.
SysOK The function completed successfully.

Example:

SP3DUR : DateTime;

GetSPTime (3, SP3DUR);
WriteLn (Portl, "Current Trip Duration of SP3 is", SP3DUR);

Built-in Types and Functions

41

GetSPVover
For checkweigh (CHKWEI) setpoints, sets V to the current overrange value (VOVER parameter) of the setpoint SP.

Syntax:
function GetSPVover (SP : Integer; VAR V : Real) : SysCode;

SysCode values returned:

SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no VOVER parameter.
SysOK The function completed successfully.

Example:

SP3VOR : Real;

GetSPVover (3, SP3VOR);
WriteLn (Portl, "Current Overrange Value of SP3 is", SP3VOR);

GetSPVunder
For checkweigh (CHKWEI) setpoints, sets V to the current overrange value (VUNDER parameter) of the setpoint SP.

Syntax:
function GetSPVunder (SP : Integer; VAR V : Real) : SysCode;

SysCode values returned:

SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no VUNDER parameter.
SysOK The function completed successfully.

Example:

SP4VUR : Real;

GetSPVunder (4, SP4VUR);
WriteLn (Portl, "Current Underrange Value of SP4 is", SP4VUR);

PauseBatch
Pauses a currently running batch.

Syntax:
function PauseBatch : SysCode;

SysCode values returned:

SysBatchRunning No batch routine is running.
SysOK The function completed successfully.
ResetBatch

Resets a currently running batch.

Syntax:
function ResetBatch : SysCode;

SysCode values returned:
SysBatchRunning No batch routine is running.
SysOK The function completed successfully.

SetBatchingMode
Sets the batching mode (BATCHNG parameter) to the value specified by M.

BatchingMode values sent:

off Batching mode is off.

Auto Batching mode is set to automatic.

Manual Batching mode is set to manual.
Syntax:

function SetBatchingMode (M : BatchingMode) : SysCode;

SysCode values returned:
SysInvalidMode The batching mode specified by M is not valid.
SysOK The function completed successfully.

42 920i Programming Reference

SetSPBand
Sets the band value (BANDVAL parameter) of setpoint SP to the value specified by V.

Syntax:
function SetSPBand (SP : Integer; V : Real) : SysCode;

SysCode values returned:

SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no band value (BANDVAL) parameter.
SysBatchRunning The value cannot be changed because a batch process is currently running.
SysOK The function completed successfully.

Example:

SP7Bandval : Real;

Sp7Bandval := 10.0
SetSPBand (7, SP7Bandval);

SetSPHyster
Sets the hysteresis value (HYSTER parameter) of setpoint SP to the value specified by V.

Syntax:
function SetSPHyster (SP : Integer; V : Real) : SysCode;

SysCode values returned:

SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no hysteresis (HYSTER) parameter.
SysBatchRunning The value cannot be changed because a batch process is currently running.
SysOK The function completed successfully.

Example:

SP5Hyster : Real;

SP5Hyster := 15.0;
SetSPHyster (5, SP5Hyster);

SetSPPreact
Sets the preact value (PREACT parameter) of setpoint SP to the value specified by V.

Syntax:
function SetSPPreact (SP : Integer; V : Real) : SysCode;

SysCode values returned:

SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no preact (PREACT) parameter.
SysBatchRunning The value cannot be changed because a batch process is currently running.
SysOK The function completed successfully.

Example:

SP2PrevVal : Real;

SP2Preval := 30.0;
SetSPPreact (2, SP2PreVal);

SetSPValue
Sets the value (VALUE parameter) of setpoint SP to the value specified by V.

Syntax:
function SetSPValue (SP : Integer; V : Real) : SysCode;

SysCode values returned:

SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no VALUE parameter.
SysBatchRunning The value cannot be changed because a batch process is currently running.
SysOutOfRange The value specified for V is not in the allowed range for setpoint SP.
SysOK The function completed successfully.

Example:

SP4vVal : Real;

SP4val := 350.0;
SetSPvValue (4, SP4val);

Built-in Types and Functions

43

SetSPNSample
For averaging (AVG) setpoints, sets the number of samples (NSAMPLE parameter) of setpoint SP to the value specified by
N.

Syntax:
function SetSPNSample (SP : Integer; N : Integer) : SysCode;

SysCode values returned:

SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no NSAMPLE parameter.
SysBatchRunning The value cannot be changed because a batch process is currently running.
SysOutOfRange The value specified for V is not in the allowed range for setpoint SP.
SysOK The function completed successfully.

Example:

SP5NS : Integer;

SP5NS := 10
SetSPNSample (5, SP5NS);

SetSPVover
For checkweigh (CHKWEI) setpoints, sets the overrange value (VOVER parameter) of setpoint SP to the value specified by
V.

Syntax:
function SetSPVover (SP : Integer; V : Real) : SysCode;

SysCode values returned:

SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no VOVER parameter.
SysOK The function completed successfully.

Example:

SP3VOR : Real;

SP3VOR := 35.5
SetSPVover (3, SP3VOR);

SetSPVunder
For checkweigh (CHKWEI) setpoints, sets the underrange value (VUNDER parameter) of setpoint SP to the value specified
by V.

Syntax:
function SetSPvVunder (SP : Integer; V : Real) : SysCode;

SysCode values returned:

SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no VUNDER parameter.
SysOK The function completed successfully.

Example:

SP4VUR : Real;

SPAVUR := 26.4
SetSPvVunder (4, SP4VUR);

SetSPTime
For time of day (TOD) setpoints, sets the trip time (TIME parameter) of setpoint SP to the value specified by DT'.

Syntax:
function SetSPTime (SP : Integer; DT : DateTime) : SysCode;

SysCode values returned:

SysInvalidSetpoint The setpoint specified by SP does not exist.

SysInvalidRequest The setpoint specified by SP has no TIME parameter.

SysBatchRunning The value cannot be changed because a batch process is currently running.
SysOutOfRange The value specified for DT is not in the allowed range for setpoint SP.
SysOK The function completed successfully.

44 920i Programming Reference

Example:
SP2TIME : DateTime;

SP2TIME := 08:15:00
SetSPTime (2, SP2TIME);

SetSPDuration

For time of day (TOD) setpoints, sets the trip duration (DURATION parameter) of setpoint SP to the value specified by DT .

Syntax:
function SetSPDuration (SP : Integer; DT : DateTime) : SysCode;

SysCode values returned:

SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no DURATION parameter.
SysBatchRunning The value cannot be changed because a batch process is currently running.
SysOutOfRange The value specified for DT is not in the allowed range for setpoint SP.
SysOK The function completed successfully.

Example:

SP3DUR : DateTime;

SP3DUR := 00:3:15
SetSPDuration (3, SP3DUR);

StartBatch
Starts or resumes a batch run.

Syntax:
function StartBatch : SysCode;

SysCode values returned:
SysPermissionDenied The BATCHNG configuration parameter is set to OFF.

SysBatchRunning A batch process is already in progress.
SysOK The function completed successfully.
StopBatch

Stops a currently running batch.

Syntax:
function StopBatch : SysCode;

SysCode values returned:
SysPermissionDenied The BATCHNG configuration parameter is set to OFF.
SysBatchNotRunning No batch process is running.
SysOK The function completed successfully.

PauseBatch
Initiates a latched pause of a running batch process.

Syntax:
function PauseBatch : SysCode;

SysCode values returned:
SysPermissionDenied The BATCHNG configuration parameter is set to OFF.

SysBatchRunning A batch process is already in progress.
SysOK The function completed successfully.
ResetBatch

Terminates a running, stopped, or paused batch process and resets the batch system.

Syntax:
function ResetBatch : SysCode;

SysCode values returned:
SysPermissionDenied The BATCHNG configuration parameter is set to OFF.
SysOK The function completed successfully.

Built-in Types and Functions

45

45 Serial 1/0

Print
Requests a print operation using the print format specified by F. Output is sent to the port specified in the print format

configuration.

Syntax:

function Print (F : PrintFormat) : SysCode;

PrintFormat values sent:

GrossFmt Gross format
NetFmt Net format
TrWinFmt Truck weigh-in format
TrRegFmt Truck register format (truck IDs and tare weights)
TrWOutFmt Truck weigh-out format
SPFmt Setpoint format
AccumFmt Accumulator format
AuxFmt Auxiliary format
SysCode values returned:
SysInvalidRequest The print format specified by F does not exist.
SysQF ull The request could not be processed because the print queue is full.
SysOK The function completed successfully.
Example:
Fmtout : PrintFormat;
Fmtout := NetFmt

Print (Fmtout);

StartStreaming
Starts data streaming for the port number specified by P.

Syntax:

function StartStreaming (P : Integer) : SysCode;

SysCode values returned:

SysInvalidPort The port number specified for P is not valid.
SysInvalidRequest The port specified for P is not configured for streaming.
SysOK The function completed successfully.

Example:

StartStreaming (1);

StopStreaming

Stops data streaming for the port number specified by P.

Syntax:

function StopStreaming (P :

SysCode values returned:

Integer) : SysCode;

SysInvalidPort The port number specified for P is not valid.
SysInvalidRequest The port specified for P is not configured for streaming.
SysOK The function completed successfully.

Example:

StopStreaming (1);

Write
Writes the text specified in the <arg-list> to the port specified by P. A subsequent Write or WriteLn operation will begin

where this Write operation ends; a carriage return is not included at the end of the data sent to the port.

Syntax:
procedure Write (P Integer; <arg-list>);
Example:

Write (Portl, "This is a test.");

46 920i Programming Reference

WriteLn

Writes the text specified in the <arg-list> to the port specified by P, followed by a carriage return and a line feed (CR/LF).
The line feed (LF) can be suppressed by setting the indicator TERMIN parameter for the specified port to CR in the SERTAL
menu configuration. A subsequent Write or WriteLn operation begins on the next line. See Section 5.8 on page 78 for a
programming example that uses the WriteLn function.

Syntax:
procedure Write (P : Integer; <arg-list>);

Example:
WriteLn (Portl, "This is another test.");

4.6 Digital 1/0 Control

In the following digital I/O control functions, slot O represents the J2 connector on the indicator CPU board and supports
four digital I/O bits (1-4). Digital I/O on expansion boards (slots 1-14) each support 24 bits of I/O (bits 1-24).

See the CheckWeigher program in Section 5.7 on page 67 for examples of using digital I/O control in a program.

GetDigin
Sets V to the value of the digital input assigned to slot S, bit D. GetDigin sets the value of V to 0 if the input is on, to 1 if the
input is off. Note that the values returned are the reverse of those used when setting an output with the SetDigout function.
Syntax:
function GetDigin (S : Integer; D : Integer; VAR V : Integer) : SysCode;

SysCode values returned:

SysInvalidRequest The slot and bit assignment specified is not a valid digital input.
SysOK The function completed successfully.
Example:

DIGINSOB3 : Integer;

GetDigin (0, 3, DIGINSOB3);
WriteLn (Portl, "Digin SOB3 status is", DIGINSOB3);

GetDigout

Sets V to the value of the digital output assigned to slot S, bit D. GetDigout sets the value of V to O if the output is on, to 1 if
the output is off. Note that the values returned are the reverse of those used when setting an output with the SetDigout
function.

Syntax:
function GetDigout (S : Integer; D : Integer; VAR V : Integer) : SysCode;

SysCode values returned:

SysInvalidRequest The slot and bit assignment specified is not a valid digital output.
SysOK The function completed successfully.
Example:

DIGOUTS0B2 : Integer;

GetDigout (0, 2, DIGOUTSO0B2);
WriteLn (Portl, "Digout SO0B2 status is", DIGOUTSO0B2);

SetDigout
Sets value of the digital output assigned to slot S, bit D, to the value specified by V. Set V to 1 to turn the specified output
on; set V to O to turn the output off.

Syntax:
function SetDigout (S : Integer; D : Integer; V : Integer) : SysCode;

SysCode values returned:

SysInvalidRequest The slot and bit assignment specified is not a valid digital output.
SysOutOfRange The value V must be 0 (inactive) or 1 (active).
SysOK The function completed successfully.

Example:

DIGOUTSO0B2 : Integer;

DIGOUTS0B2 := 0;
SetDigout (0, 2, DIGOUTS0B2);

Built-in Types and Functions 47

4.7 Analog Output Operations

SetAlgout
Sets the analog output card in slot S to the percentage P. Negative P values are set to zero; values greater than 100.0 are set
to 100.0.

Syntax:
function SetAlgout (S : Integer; P : Real) : SysCode;

SysCode values returned:

SysInvalidPort The specified slot () is not a valid analog output.
SysInvalidRequest The analog output is not configured from program control.
SysOK The function completed successfully.

4.8 Pulse Input Operations

PulseRate
Sets R to the current pulse rate (in pulses per second) of the pulse input card in slot S..

Syntax:
function PulseRate (S : Integer; VAR R : Integer) : SysCode;

SysCode values returned:

SysInvalidCounter The specified counter (§) is not a valid pulse input.
SysOK The function completed successfully.
PulseCount

Sets C to the current pulse count of the pulse input card in slot S.

Syntax:
function PulseCount (S : Integer; VAR C : Integer) : SysCode;

SysCode values returned:
SysInvalidCounter The specified counter (§) is not a valid pulse input.
SysOK The function completed successfully.

ClearPulseCount
Sets the pulse count of the pulse input card in slot S to zero.

Syntax:
function ClearPulseCount (S : Integer) : SysCode;

SysCode values returned:
SysInvalidCounter The specified counter (§) is not a valid pulse input.
SysOK The function completed successfully.

4.9 Display Operations

DisplayStatus
Displays the string msg in the front panel status message area. The length of string msg should not exceed 32 characters.

Syntax:
procedure DisplayStatus (msg : String);

PromptUser
Opens the alpha entry box and places the string msg in the user prompt area.

Syntax:
function PromptUser (msg : String) : SysCode;

SysCode values returned:
SysRequestFailed The prompt could not be opened.
SysOK The function completed successfully.

ClosePrompt
Closes a prompt opened by the PromptUser function.

Syntax:
procedure ClosePrompt;

48 920i Programming Reference

GetEntry
Retrieves the user entry from a programmed prompt.

Syntax:
procedure GetEntry : String;

SelectScreen
Selects the configured screen, N, to show on the indicator display.

Syntax:
function SelectScreen (N : Integer) : SysCode;

SysCode values returned:
SysInvalidRequest The value specified for N is less than 1 or greater than 10.
SysOK The function completed successfully.

SetEntry
Sets the user entry for a programmed prompt. This procedure can be used to provide a default value for entry box text when
prompting the operator for input. Up to 1000 characters can be specified.

Syntax:
procedure SetEntry : String;

4.10 Display Programming

SetBargraphLevel
Sets the displayed level of bargraph widget W to the percentage (0-100%) specified by Level .

Syntax:
function SetBargraphLevel (W : Integer; Level : Integer) : SysCode;

SysCode values returned:
SysInvalidWidget The bargraph widget specified by W does not exist.
SysOK The function completed successfully.

SetLabelText
Sets the text of label widget W to S.

Syntax:
function SetLabelText (W : Integer; S : String) : SysCode;

SysCode values returned:
SysInvalidWidget The label widget specified by W does not exist.
SysOK The function completed successfully.

SetNumericValue
Sets the value of numeric widget W to V.

Syntax:
function SetNumericValue (W : Integer; V : Real) : SysCode;

SysCode values returned:
SysInvalidWidget The numeric widget specified by W does not exist.
SysOK The function completed successfully.

SetSymbolState

Sets the state of symbol widget W to S. The widget state determines the variant of the widget symbol displayed. All widgets
have at least two states (values 1 and 2); some have three (3). See Section 9.0 of the 920i Installation Manual for
descriptions of the symbol widget states.

Syntax:
function SetSymbolState (W : Integer; S : Integer) : SysCode;

SysCode values returned:
SysInvalidWidget The symbol widget specified by W does not exist.
SysOK The function completed successfully.

SetWidgetVisibility
Sets the visibility state of widget W to V.

Syntax:
function SetWidgetVisibility (W : Integer; V : OnOffType) : SysCode;

Built-in Types and Functions 49

SysCode values returned:
SysInvalidWidget The widget specified by W does not exist.
SysOK The function completed successfully.

4.11 Database Operations

For examples of the following database functions, see the example program in Section 5.9 on page 80.

<DB>.Add
Adds a record to the referenced database. Using this function invalidates any previous sort operation.

Syntax:
function <DB>.Add : SysCode;

SysCode values returned:

SysNoSuchDatabase The referenced database cannot be found.
SysDatabaseF ull There is no space in the specified database for this record.
SysOK The function completed successfully.

<DB>.Clear

Clears all records from the referenced database.

Syntax:
function <DB>.Clear : SysCode;

SysCode values returned:

SysNoSuchDatabase The referenced database cannot be found.
SysOK The function completed successfully.
<DB>.Delete

Deletes the current record from the referenced database. Using this function invalidates any previous sort operation.

Syntax:
function <DB>.Delete : SysCode;

SysCode values returned:

SysNoSuchDatabase The referenced database cannot be found.
SysNoSuchRecord The requested record is not contained in the database.
SysOK The function completed successfully.

The following <DB.Find> functions allow a database to be searched. Column I is an alias for the field name, generated by
the "Generate iRev import file" operation. The value to be matched is set in the working database record, in the field
corresponding to column I, before a call to <DB>.FindFirst or <DB>.FindLast

<DB>.FindFirst
Finds the first record in the referenced database that matches the contents of <DB> column 1.

Syntax:
function <DB>.FindFirst (I : Integer) : SysCode;

SysCode values returned:

SysNoSuchDatabase The referenced database cannot be found.
SysNoSuchRecord The requested record is not contained in the database.
SysNoSuchColumn The column specified by I does not exist.

SysOK The function completed successfully.

<DB>.FindLast
Finds the last record in the referenced database that matches the contents of <DB> column I.

Syntax:
function <DB>.FindlLast (I : Integer) : SysCode;

SysCode values returned:

SysNoSuchDatabase The referenced database cannot be found.
SysNoSuchRecord The requested record is not contained in the database.
SysNoSuchColumn The column specified by I does not exist.

SysOK The function completed successfully.

<DB>.FindNext
Finds the next record in the referenced database that matches the criteria of a previous FindFirst or FindLast operation.

Syntax:

50 920i Programming Reference

function <DB>.FindNext : SysCode;

SysCode values returned:

SysNoSuchDatabase The referenced database cannot be found.
SysNoSuchRecord The requested record is not contained in the database.
SysOK The function completed successfully.

<DB>.FindPrev

Finds the previous record in the referenced database that matches the criteria of a previous FindFirst or FindLast operation.

Syntax:
function <DB>.FindLast : SysCode;

SysCode values returned:
SysNoSuchDatabase The referenced database cannot be found.
SysNoSuchRecord The requested record is not contained in the database.
SysOK The function completed successfully.

<DB>.GetFirst
Retrieves the first logical record from the referenced database.

Syntax:
function <DB>.GetFirst : SysCode;

SysCode values returned:

SysNoSuchDatabase The referenced database cannot be found.
SysNoSuchRecord The requested record is not contained in the database.
SysOK The function completed successfully.

<DB>.GetLast
Retrieves the last logical record from the referenced database.

Syntax:
function <DB>.GetLast : SysCode;

SysCode values returned:

SysNoSuchDatabase The referenced database cannot be found.
SysNoSuchRecord The requested record is not contained in the database.
SysOK The function completed successfully.

<DB>.GetNext

Retrieves the next logical record from the referenced database.

Syntax:
function <DB>.GetNext : SysCode;

SysCode values returned:
SysNoSuchDatabase The referenced database cannot be found.
SysNoSuchRecord The requested record is not contained in the database.
SysOK The function completed successfully.

<DB>.GetPrev
Retrieves the previous logical record from the referenced database.

Syntax:
function <DB>.GetPrev : SysCode;

SysCode values returned:

SysNoSuchDatabase The referenced database cannot be found.
SysNoSuchRecord The requested record is not contained in the database.
SysOK The function completed successfully.

<DB>.Sort

Sorts database <DB> into ascending order based on the contents of column . The sort table supports a maximum of 30 000

elements. Databases with more than 30 000 records cannot be sorted.

Syntax:
function <DB>.Sort (I : Integer) : SysCode;

SysCode values returned:
SysNoSuchDatabase The referenced database cannot be found.
SysNoSuchRecord The requested record is not contained in the database.
SysOK The function completed successfully.

Built-in Types and Functions

51

<DB>.Update
Updates the current record in the referenced database with the contents of <DB> . Using this function invalidates any
previous sort operation.

Syntax:
function <DB>.Update : SysCode;

SysCode values returned:

SysNoSuchDatabase The referenced database cannot be found.
SysNoSuchRecord The requested record is not contained in the database.
SysOK The function completed successfully.

4.12 Timer Controls

Thirty-two timers, configurable as either continuous and one-shot timers, can be used to generate events at some time in the
future. The shortest interval for which a timer can be set is 10 ms. See the system startup event handler for the
CheckWeigher program on page 77 for an example of how to set up timers.

ResetTimer
Resets the value of timer T (1-32) by stopping the timer, setting the timer mode to TimerOneShot, and setting the timer
time-out to 1.

Syntax:
function ResetTimer (T : Integer) : Syscode;

SysCode values returned:

SysInvalidTimer The timer specified by T a not valid timer.
SysOK The function completed successfully.
SetTimer

Sets the time-out value of timer T' (1-32). Timer values are specified in 0.01-second intervals (1= 10 ms, 100 = 1 second).
For one-shot timers, the SetTimer function must be called again to restart the timer once it has expired.

Syntax:
function SetTimer (T : Integer ; V : Integer) : Syscode;

SysCode values returned:
SysInvalidTimer The timer specified by T a not valid timer.
SysOK The function completed successfully.

SetTimerMode
Sets the mode value, M, of timer 7' (1-32). This function, normally included in a program startup handler, only needs to be
called once for each timer unless the timer mode is changed.

Syntax:
function SetTimer (T : Integer ; M : TimerMode) : Syscode;

TimerMode values sent:

TimerOneShot Timer mode is set to one-shot.
TimerContinuous Timer mode is set to continuous.
SysCode values returned:
SysInvalidTimer The timer specified by T a not valid timer.
SysInvalidState The timer mode specified by M a not valid timer mode.
SysOK The function completed successfully.
StartTimer

Starts timer T (1-32). For one-shot timers, this function must be called each time the timer is used. Continuous timers are
started only once; they do not require another call to StartTimer unless stopped by a call to the StopTimer function.

Syntax:
function StartTimer (T : Integer) : Syscode;

SysCode values returned:

SysInvalidTimer The timer specified by T a not valid timer.
SysOK The function completed successfully.
StopTimer
Stops timer T' (1-32).
Syntax:

function StopTimer (T : Integer) : Syscode;

52 920i Programming Reference

SysCode values returned:
SysInvalidTimer
SysOK

4.13 Mathematical Operations

Abs
Returns the absolute value of x.

Syntax:
function Abs (x

ATan

Returns a value between —nt/2 and /2, representing the arctangent of x in radians.

Syntax:
function Atan (x

Ceil

The timer specified by T a not valid timer.
The function completed successfully.

Real)

Real)

Real;

Real;

Returns the smallest integer greater than or equal to x.

Syntax:
function Ceil (x

Cos

Real)

Integer;

Returns the cosine of x. x must be specified in radians.

Syntax:
function Cos (x

Exp
Returns the value of e*.

Syntax:
function Exp (x

Log
Returns the value of logg (x) .

Syntax:
function Log (x

Log10
Returns the value of log; o(x).

Syntax:

function Logl0 (x

Sign

Returns the sign of the numeric operand. If x < 0, the function returns a value of —1; otherwise, the value returned is 1.

Syntax:
function Sign (x

Sin

Real)

Real)

Real)

Real)

Real)

Real;

Real;

Real;

Real;

Integer;

Returns the sine of x. x must be specified in radians.

Syntax:
function Sin (x

Sgrt
Returns the square root of x.

Syntax:

function Sgrt (x : Real)

Tan

Returns the tangent of x. x must be specified in radians.

Syntax:
function Tan (x

Real)

Real;

Real)

Real;

Real;

Built-in Types and Functions

53

4.14 Bit-wise Operations

BitAnd
Returns the bit-wise AND result of X and Y.
Syntax:
function BitAnd (X : Integer; Y : Integer) : Integer;
BitOr
Returns the bit-wise OR result of X and Y.
Syntax:
function BitOr (X : Integer; Y : Integer) : Integer;
BitNot
Returns the bit-wise NOT result of X.
Syntax:
function BitNOT (X : Integer) : Integer;
BitXor
Returns the bit-wise exclusive OR (XOR) result of X and Y.
Syntax:

function BitXor (X : Integer; Y : Integer) : Integer;

4.15 String Operations

Asc
Returns the ASCII value of the first character of string S. If § is an empty string, the value returned is 0.

Syntax:
function Asc (S : String) : Integer;

Chr$
Returns a one-character string containing the ASCII character represented by 1.

Syntax:
function Chr$ (I : Integer) : String;

Hex$
Returns an eight-character hexadecimal string equivalent to I.

Syntax:
function Hex$ (I : Integer) : String;

LCase$
Returns the string S with all upper-case letters converted to lower case.

Syntax:
function LCase$ (S : String) : String;

Left$
Returns a string containing the leftmost I characters of string S. If I is greater than the length of S, the function returns a
copy of S.

Syntax:
function Left$ (S : String; I : Integer) : String;

Len
Returns the length (number of characters) of string S.

Syntax:
function Len (S : String) : Integer;

54 920i Programming Reference

Mid$

Returns a number of characters (specified by length) from string s, beginning with the character specified by start . If
start is greater than the string length, the result is an empty string. If start + length is greater than the length of S, the
returned value contains the characters from start through the end of S.

Syntax:
function Mid$ (S : String; start : Integer; length : Integer) : String;

Oct$
Returns an 11-character octal string equivalent to 1.

Syntax:
function Oct$ (I : Integer) : String;

Right$
Returns a string containing the rightmost I characters of string S. If I is greater than the length of S, the function returns a
copy of S.

Syntax:
function Right$ (S : String; I : Integer) : String;

Space$
Returns a string containing NV spaces.

Syntax:
function Space$ (N : Integer) : String;

UCase$
Returns the string § with all lower-case letters converted to upper case.

Syntax:
function UCase$ (S : String) : String;

4.16 Data Conversion

IntegerToString
Returns a string representation of the integer I with a minimum length of W. If W is less than zero, zero is used as the
minimum length. If W is greater than 100, 100 is used as the minimum length.

Syntax:
function IntegerToString (I : Integer; W : Integer) : String;

RealToString

Returns a string representation of the real number R with a minimum length of W, with P digits to the right of the decimal
point. If W is less than zero, zero is used as the minimum length; if W is greater than 100, 100 is used as the minimum
length. If P is less than zero, zero is used as the precision; if P is greater than 20, 20 is used.

Syntax:
function RealToString (R : Real; W : Integer; P: Integer) : String;

StringTolnteger
Returns the integer equivalent of the numeric string S. If S is not a valid string, the function returns the value 0.

Syntax:
function StringToInteger (S : String) : Integer;

StringToReal
Returns the real number equivalent of the numeric string S. If S is not a valid string, the function returns the value 0.0.

Syntax:
function StringToReal (S : String) : Real;

Built-in Types and Functions 55

5.0 Programming Examples

5.1 Handler Examples

The following simple programs show examples of event handlers used to initiate other indicator functions. See

the list of event handlers in Section 6.1 on page 90.

Example 1: Batch Paused by Digital Input
In the following program, the event handler,
DiginSO0B3Activate is used to pause a running
batch whenever the digital input assigned to slot 0, bit
3, goes low. The StartBatch function or other
input would be required to restart the batch.

program DigPause
handler DiginSO0B3Activate;

begin
PauseBatch;
end;
end DigPause;

Example 2: Batching Mode Set by Digital Input

In the following program, the event handler
DiginSO0B3Activate is used to set the batching
mode to AUTO whenever the digital input assigned to
slot 0, bit 3, goes low (active).

The DiginS0B3Deactivate handler is used to
set the batching state to MANUAL whenever the
digital input goes high (inactive). The batching mode
change takes place immediately, even if a batch
sequence is in progress.

program AutoMan

handler DiginSOB3Activate;
begin

SetBatchingMode (AUTO) ;
end;
handler DiginSOB3Deactivate;
begin

SetBatchingMode (MANUAL) ;

end;

end AutoMan;

end SPTURN;

Example 3: Serial Notification of Setpoint Trip

The following program uses the event handler
SP1Trip to send a notification to Port 1 that the
setpoint has tripped.

program SPDebug
handler SP1Trip;

begin
Writeln (1,
end;
end SPDebug;

"SP 1 TRIPPED");

Example 4: Setpoints Toggled by Softkeys

In the following program, the event handlers
User2KeyPressed and User4KeyPressed are
used to turn groups of setpoints on and off. When the
second softkey is pressed, setpoints 1 and 3 are turned
off, setpoints 2 and 4 are turned on. When the fourth
softkey is pressed, setpoints 1 and 3 are turned on, 2
and 4 are turned off.

program SPTURN
handler User2KeyPressed;

begin
DisableSP(1l);
DisableSP(3);
EnableSP(2);
EnableSP(4);

end;
handler User4KeyPressed;

begin
DisableSP(2);
DisableSP(4);
EnableSP(1);
EnableSP(3);
end;

56 920i Programming Reference

5.2 "Hello": A Simple Handler Program

program Hello;

-- Define constants for use in the program

Portl : constant integer := 1;
Greeting : constant string :=

-- UserlKeyPressed handler to display message on

"HELLO 920i USER!!!";

-- 920i Status line and write the message out RS232

-- Port 1.

handler UserlKeyPressed;

begin
DisplayStatus(Greeting);
WriteLn(Portl, Greeting);
end;

-- Clear the status line with the User2KeyPressed handler

handler User2KeyPressed;
begin
DisplayStatus("");
end;

end Hello;

5.3 "Looptest" Program

Program LoopTest

Portl : contant integer := 1;

handler UserlKeyPressed;
LoopCounter : integer;
begin

for LoopCounter := 1 to 10
loop

WriteLn(Portl, IntegerToString(LoopCounter,

end loop;
end;

0));

—-- Second loop test counts from 10 to 1 with a 'while'

-- and writes the values out a RS232 port.

handler User2KeyPressed;

LoopCounter : integer;

begin
LoopCounter := 10;
while LoopCounter > 1
loop

Programming Examples

57

WriteLn(Portl, LoopCounter);
LoopCounter := LoopCounter - 1;
end loop;
end;

Third loop test counts from 10 to 1 with no 'for' or 'while'
condition. Notice the 'exit' statement is required to stop
the loop. Otherwise the system will stay in the loop: NOT GOOD!

handler User3KeyPressed;

LoopCounter : integer;

begin
LoopCounter := 10;
loop
WriteLn(Portl, LoopCounter);
LoopCounter := LoopCounter - 1;
if LoopCounter < 1 then
exit;
end if;
end loop;
end;

end LoopTest;

54 "HelloWorld" Program

Program Name: HelloWorld

Copyright 2002 RLWS as an unpublished work.
All Rights Reserved.

First written on January 16, 2002 by RLWS.

Module Description:
This file is the iRite source code for a 920i program.

This program will display the message "Hello, world!" on the 920i display
in the status message area when ever any one of the possible event types
occur. This program will demonstrate the 8 different types of events and
what it takes for the event to be actually be fired.

program HelloWorld;

—-- Soft key 1 (the first one on the left of the indicator) was pressed. The
-- location of this softkey is always the first softkey on the left. No
—- additional configuration or programming is necessary for this event to
-- be "active".
handler SoftlKeyPressed;

begin

DisplayStatus("Hello, world! [Soft key]");
end;

-- User key 1 will be defined in the softkeys menu under "Features" in

-- configuration mode. This key's actual physical location can change since
-- the user can put it anywhere in the list of softkeys. 1In this program

-- example it is required that we don't put it at the same physical location
-- as softkey 1, because the SoftlKeyPressed handler would have visiblity

-- over this (UserlKeyPressed) handler, then this handler would never get

-- to execute.

handler UserlKeyPressed;

58

920i Programming Reference

begin
DisplayStatus("Hello, world! [User keyl");
end;

-- Setpoint 1 was tripped. To get it Setpoint 1 to trip, it will require
—-- some configuration to set it up. This event makes no assumptions about
-- what kind sepoint 1 is, or how it is tripped: just that it WAS tripped.
handler SP1Trip;
begin
DisplayStatus("Hello, world! [Setpoint]");
end;

-- DiginSOBl is the digital input 1 on slot 0. Slot zero is the onboard
-- relays and bit 1 is the first relay. We need to configure this I/O point
-- as type "Programmability" thru setup mode or in iRev. To actually cause
-— the event to fire this I/O point needs to be pulled to low (jump pin 2
-- and pin 3 together on connector J2)
handler DiginSOBlActivate;

begin

DisplayStatus("Hello, world! [Digital I/0]");
end;

—- The PortlCharReceived event will happen when ever a character is received
-- on Portl. Port one is the RS232 port access through connector Jl1. This
—- ports "INPUT" type must be configured for "PROGIN" under the Serial menu
-- for this to work. Once the port has been configured as input type
-- "PROGIN" all functionality for that port has been lost, except for the
—- functionality the programmer adds to handler PortlCharReceived below.
handler PortlCharReceived;

begin

DisplayStatus("Hello, world! [Port character]");
end;

-- The CmdlHandler event will happen when ever the command F#l is received
—-- on any communication port. The command can be sent with an optional

-- value like F#l=Hello<CR>. We will only display "Hello, world!" if the

-- command comes from port 2 and has a value of "Hello". (In this program

-- we have written an event handler for character received on portl. This
-- will prevent the default char input handler from processing a "F#1"

-- command [or any other command] on port 1. So this event will not fire if
-- the command is sent to port 1). Also it is important to note that there
-- will not be any "OK" or any other response sent from the indicator when
—-- a valid F#1 thru F#32 command is received regardless of whether a handler
-- like this one was used or not. If a response is required, then it is the
-- programmer’s responsibility to send a response from within the handler.
handler CmdlHandler;

begin
if (EventPort = 2) and (EventString = "Hello") then
DisplayStatus("Hello, world! [Command]");
end if;
end;

-- The TimerlTrip event will happen every time timer 1 expires. This event
—-- will require some additional programming to setup and start the timer. It
-- can be programmed to trip only once or trip every x0 miliseconds or y.z
-- seconds.
handler TimerlTrip;

begin

DisplayStatus("Hello, world! [Timer]");
end;

Programming Examples

59

-- This is the ProgramStartup event even though it isn't explicitly called

—-- that by name. It fires every time the 920i is powered-up, or the indicator
-- is taken out of setup (configuration) mode, or is sent the "RS" serial cmd.
begin

DisplayStatus("Hello, world! [Startup]l");

-- We need to setup Timer 1 so it will fire 5.0 seconds after the startup
—- handler runs to display the "Hello, world!" message.

SetTimerMode(1l, TimerOneShot);

SetTimer(1l, 500);

StartTimer(1l);

end HelloWorld;

5.5 "CircAreaVol": Computation Program

The following program uses some of iRite’s mathematical functions to calculate the circumference, area, and
volume of a circle, based on prompted user input for the circle’ s radius. This program uses functions defined in
"NumTools" (see Section 5.6 on page 63).

-- Program Name: CircAreaVol

-- Copyright 2002 RLWS as an unpublished work.
-- All Rights Reserved.

—- The information contained herein is confidential property of RLWS.
-- The use, copying, transfer or disclosure of such information is prohibited
-- except by express written agreement with RLWS.

-- First written on January 17, 2002 by RLWS.

—-- Module Description:
-- This file is the iRite source code for a 920i program.

—-- This program will prompt the user for the radius of a circle then
—- calculate and display the circumferance, area and volume. A user defined
-- softkey must be setup to initiate the prompting sequence.

program CircAreaVol;
#include numtools.iri
strProgName : constant string := "CircAreavol";
rVersion : constant real := 0.01;
7

iBuild : constant integer := 7 —- Inc. by 1 after each compile.

-- Function Name : MakeVersionString
-- Created by : Company Name or Programmer Name
-- Last modified on : Jan 10, 2002

-- Purpose : This function will format the version and build into
-— a string and return the string.

-- Value Parameters : none

-- Variable Params : none
-- Return Parameter : a string representation of the version and build in
- the format xx.xx.xx

-- Side Effects : none

function MakeVersionString : string;
begin
return (RealToString(rVersion, 4, 2) + "." + IntegerToString(iBuild, 2));
end;

60 920i Programming Reference

-- Procedure Name : ShowVersion
-- Created by : Company Name or Programmer Name
-- Last modified on : Jan 10, 2002

-- Purpose : This procedure will show the program name and
- version number in the display Status window.
-- Value Parameters : none

-- Variable Params : none
-- Side Effects : none

procedure ShowVersion;

begin
DisplayStatus(strProgName + " Version: " + MakeVersionString);
end;
-- Function Name : Circum
-- Created By : RLWS
-- Last Modified on : 1/17/2002
-- Purpose : This function will calculate the circumference of a

- circle with radius iRadius and return the result.
—- Value Parameters iRadius is the radius of a circle (1/2 the diameter).
-- Return Parameter : Returns the circumerence.
—-- Side Effects : none
function Circum(rRadius : real) : real;
const_rPie : constant real := 3.141592654;

begin
-- The circumferance of a circle is defined by: circum. = 2*pie*r.
return (2 * const _rPie * rRadius);
end;
-- Function Name : CircleArea
-- Created By : RLWS
-- Last Modified on : 1/17/2002
—-- Purpose : This function will calculate the area of a
-- circle with radius iRadius and return the result.
-- Value Parameters : iRadius is the radius of a circle (1/2 the diameter).
-- Return Parameter : Returns the area.
-- Side Effects : none
function CircleArea(rRadius : real) : real;
const rPie : constant real := 3.141592654;

begin
-— The area of a circle is defined by: area = pie*(r"2).
return (const_rPie * Power(rRadius, 2));

end;
-- Function Name : CirclevVolume
-- Created By : RLWS
-- Last Modified on : 1/17/2002
-- Purpose : This function will calculate the volume of a

- circle with radius iRadius and return the result.

—- Value Parameters iRadius is the radius of a circle (1/2 the diameter).
-- Return Parameter : Returns the volume.

-- Side Effects : none

Programming Examples

61

function CircleVolume (rRadius : real) : real;
const_rPie : constant real := 3.141592654;
begin
—- The volume of a circle is defined by: volume = (
return ((4.0/3.0) * const rPie * Power(rRadius, 3))
end;

4/3)*pie*(r"3).

-- Handler Name : UserlKeyPressed

-- Created By : RLWS

-- Last Modified on : 1/17/2002

—- Purpose : User key 1 will be defined in the softkeys menu under
- "Features" in configuration mode. This key's actual
- physical location can change since the user can put
- it anywhere in the list of softkeys.

- We will ask the user for the radius of a circle and
- then calculate the circ., area, and volume.

-- Side Effects : none permanent

handler UserlKeyPressed;

strEntry : string := ;

begin
if PromptUser("circle: ") = SysOK then
DisplayStatus("Please enter the radius of any");
end if;
end;

-- Handler Name : UserEntry

-- Created By : RLWS

-- Last Modified on : 1/21/2002

—-- Purpose : This event will fire when ever the 920 is in entry
- mode and the user presses one of the event keys. So
-— far, the only event keys defined are EnterKey and
- CancelKey. Do determine which key generated the

- event, we call EventKey.

-- Side Effects ¢ none permanent

handler UserEntry;

strEntry : string :
rRadius : real;

begin

-- We need to find out which key caused the this event.
if EventKey = EnterKey then

—-- Call GetEntry to get the string entered by the user before the
-- "ENTER" key was pressed.
strEntry := GetEntry;

-- This will remove the numeric entry info and the entry prompt from
-- the display.
ClosePrompt;

-— We need to make sure that they entered something, and that the
-- something they entered is a numeric value (may contain a decimal).
if (len(strEntry) > 0) and IsNumeric(strEntry, TRUE) then

62

920i Programming Reference

-- Convert the user entry into a real value representing the radius.
rRadius := StringToReal(strEntry);

—-- Calculate the circumference, area and volume and show it on the
-- display.
DisplayStatus("C:'

+ RealToString(Circum(rRadius),7,2) +
A:" + RealToString(CircleArea(rRadius),7,2) +
" V:" + RealToString(CircleVolume(rRadius),7,2));
else
DisplayStatus("Invalid Entry!");
end if;

else
—-- With all other keys that generate this event, we should just close
-- the prompt.
ClosePrompt;
DisplayStatus("Entry Cancelled!");

end if;

end;
begin

—- Initialize all global variables here.

ShowVersion;

end CircAreavol;

5.6 "NumTools": iRev Import File

"NumTools" is an iRev import file. It contains several mathematical functions used by program "CircAreaVol"

(see Section 5.5 on page 60).

—-- File Name: numtools.iri

—- Copyright 2002 Company Name as an unpublished work.
-- All Rights Reserved.

—-- The information contained herein is confidential property of Company Name.
-- The use, copying, transfer or disclosure of such information is prohibited
-- except by express written agreement with Company Name.

—- First written on Month Day, Year by FirstName LastName.

—- Module Description:
—- This file is the iRev import file for a 920i program.

—- This module is (fill in detailed description of what functions and defines
—-- are contained in this module).

—-- START: Constants and aliases here.

-- END: Constants and aliases.

——- START: defining all user created types (enumerations, records, arrays).

Programming Examples

63

type boolean is (FALSE, TRUE); -- false/true enumeration

—- END: defining all user created types (enumerations, records, arrays).

——- START: Defining all global variables here.

—-- END: Defining all global variables.

—- Function Name : Inc

-- Created By : RLWS

-- Last Modified on : 01/121/02

-- Purpose : This function will add 1 to the value of the number

- passed in iNumber. The new incremented value is also
- returned so the number can be used and incremented

- in the same line of code.

-- Value Parameters none

-- Variable Params iNumber, a number that will get incremented by 1.

-- Return Parameter The new (incremented) value of iNumber is returned.
-- Side Effects None

function Inc(var iNumber : integer) : integer;

begin
iNumber := iNumber + 1;
return iNumber;

end;

—- Function Name : Dec

-- Created By : RLWS

-- Last Modified on : 01/121/02

-- Purpose : This function will subtract 1 from the value of the

-— number passed in iNumber. The new decremented value
- is also returned so the number can be used and

- decremented in the same line of code.

-- Value Parameters none

-- Variable Params iNumber, a number that will get decremented by 1.

-- Return Parameter The new (decremented) value of iNumber is returned.
-- Side Effects None

function Dec(var iNumber : integer) : integer;

begin
iNumber := iNumber - 1;
return iNumber;

end;

64

920i Programming Reference

—— Function Name : IsNumeric

-- Created By : RLWS
-- Last Modified on : 01/15/02
—-- Purpose : This function will determine if the string passed in

-- is composed of only numeric characters with the
- option to allow one decimal point.

-- Value Parameters : strEntry : string - a string (probably from user

- keyboard input) that we are looking into.

- boDecimalAllowed : boolean - if TRUE then one of the
- characters in strEntry may be a decimal place.

-- Variable Params ¢ none
-— Return Parameter : TRUE if strEntry is numeric.
-- Side Effects : None
function IsNumeric(strEntry : string;
boDecimalAllowed : boolean) : boolean;
boDone : boolean := FALSE;
boDecFound : boolean := FALSE;
strOneChar : string;
iIndex : integer := 1;
boReturn : boolean := TRUE;
begin

-—- We want to step through the string strEntry and look at each
-- character to determine if it is a number. If boDecimalAllowed is
—-- TRUE then the character can also be a decimal point once.

while (boDone <> TRUE) and (iIndex <= len(strEntry))
loop
-- We need to grab only one character of the string.
strOneChar := Mid$(strEntry, iIndex, 1);
if (strOneChar < "0") or (strOneChar > "9") then
—-- The character is not a number, but we need to check if it is a
-- ".' decimal point if decimal points are allowed and there hasn't
-- been a decimal point found yet.
if boDecimalAllowed and (strOneChar = ".") and (boDecFound = FALSE) then
—-- This means that decimal are allowed, the character IS a
—- decimal point, and we waven't found one yet.

-- Now we have found one so set the flag to TRUE.
boDecFound := TRUE;
else
-- If we get here then that means we have found a non numeric
-- character, or a decimal place when decimals aren't allowed or
-- a second decimal place. We want to stop and return FALSE.

boReturn := FALSE;
boDone := TRUE;
end if;
end if;

—-- Increment the character index into the string
Inc(iIndex);

end loop;
-- This loop will execute until boDone = TRUE or until iIndex is greater
-— then the lenth of the string strEntry.

return boReturn;
end;

Programming Examples 65

—- Function Name : Power

-- Created By : RLWS

-- Last Modified on : 1/17/2002

—-- Purpose : This function raises the value of rNumber to the power

- of iPower and returns the result.

—- Value Parameters : rNumber is any real number.

- iPower is any integer.

-—- Return Parameter Returns the calculated value as a real number.
-- Side Effects none

function Power (rNumber : real; iPower : integer) : real;
rResult : real := 1;
iCounter : integer;

begin
—- The number raised to a power is calculated by rNumber”iPower
-- There are some special cases that we need to trap or the results will
-- be undefined.
if (rNumber >= -0.000000001) and (rNumber <= 0.000000001) then
—— If rNumber is zero then the results could get ugly if iPower is
-- less then or equal to zero.
rResult := 0;
elsif iPower = 0 then
-- Any number raised to a power of zero is 1, except 0.
rResult := 1;
elsif iPower < 0 then
-- iPower is negative. This means that we will have to take the
-- inverse of the result.

-— Use the absolute value of iPower to eliminate the negative sign.
iPower := abs(iPower);

—— Multiply rNumber by 1 the first iteration and then multiply it by
-- itself for each time after that up to iPower.

for iCounter := 1 to iPower
loop

rResult := rResult * rNumber;
end loop;

-- We will have to take the inverse of the result to make the (-)
—-- in the exponent meaningful.
rResult := 1/rResult;
else
-— Multiply rNumber by 1 the first iteration and then multiply it by
-- itself for each time after that up to iPower.

for iCounter := 1 to iPower
loop
rResult := rResult * rNumber;
end loop;
end if;

return rResult;
end;

-- END: Defining all functions and procedures.

66 920i Programming Reference

5.7 Simple Checkweigher Program

-- Program Name: CheckWeigher

-- Copyright 2002 RLWS as an unpublished work.
-- All Rights Reserved.

—- The information contained herein is confidential property of

-- RLWS. The use, copying, transfer or disclosure of such

-- information is prohibited except by express written agreement with
-- RLWS.

—-- First written on February 04, 2002 by EPD.

-- Module Description:
—- This file is the iRite source code for a 920i program.

-- This program will prompt the user for a min, max, and thresh weight for a
-- particular part. When the user starts the check weighing a converyor will
-- start and move a piece onto the scale (with the help of a photoeye). When
-- the piece is in position, the conveyor is stopped. The weight of the piece
-- is captured (at standstill). If the piece is over the theshold but also

-- over/under the tolerance values then an output is

-- turned on to move a ram to push the piece into an "reject" bin. The

—- converyor will restart and move the next piece onto the scale. The user

-- can move a switch to select "Run" or "Pause".

-- Please keep all lines 79 characters or less.
-- This line is exactly 79 characters long. ————————

—-- The name of the program is always the first line of code.
program CheckWeigher;

—-- Put Include (.iri) file here.
#include common.iri
#include numtools.iri

-- Begin constants and aliases definitions here.

g_csProgName : constant string := "EZ Check Weigher";
g _csVersion : constant string := "0.01";

g _ciDebugOn : constant integer := 1;

g _ciScale : constant integer := 1;

-- Digital I/O Aliases

g_ciOnBoardIO : constant integer := 0;

g ciPhotoEye : constant integer := 1; -- input
g_ciRunPause : constant integer := 2; -- input
g _ciConveyor : constant integer := 3; -- output
g ciRejectRam : constant integer := 4; -- output

—- This is the timer for holding on the reject ram.
g _ciRejectRamOnTimer : constant integer := 1;
g_ciRamTime : constant integer := 100; -- 1 second

-— This is the timer for checking the state of the process very often.
g _ciProcessTimer : constant integer := 2;
g _ciCheckProcTime : constant integer := 1; -- 10 milliseconds

-- End of constants and aliases.

Programming Examples

67

-- Begin user created types (enumerations, records, arrays) definitions.

type EntryMode is (NONE, MINVAL, MAXVAL, THRESHOLD);

—-- End of user created types (enumerations, records, arrays).

-- Start global variables definitions here. Don't forget to initialize
—- them in the system startup event handler.

g_iBuild : integer;
g _flgFatalError : boolean;

g_flgStart : boolean;

g_flgRunning : boolean;
g_flgConveyorOn : boolean;
g_flgPhotoEyeMade : boolean;

g_flgWaitingForClear :

boolean;

g_rLowTolerance : stored real;
g_rHighTolerance : stored real;
g_rThreshold : stored real;

g_eEntryMode : EntryMode;

—-- End of global variables.

-- Function Name
-- Created by
-- Last modified on

-—- Purpose
-- Value Parameters
-- Variable Params

-- Return Parameter

-- Side Effects

MakeVersionString
Company Name or Programmer Name
Jan 10, 2002

This function will format the version and build into
a string and return the string.

none

none

a string representation of the version and build in
the format xx.xx.xx

none

function MakeVersionString : string;

sTemp : string;

begin
if g iBuild > 9 then
sTemp := ("Ver " + g csVersion + "." + IntegerToString(g iBuild, 2));
else
sTemp := ("Ver " + g csVersion + ".0" + IntegerToString(g_iBuild, 1));
end if;

return sTemp;
end;

68 920i Programming Reference

Procedure Name
Created by
Last modified on

Purpose
Value Parameters

Variable Params
Side Effects

DisplayVersion
Company Name or Programmer Name
Jan 15, 2002

This procedure will diplay the program name and
version number to the diplay.

none

none

The program name and version is put on the display.

procedure DisplayVersion;
begin

DisplayStatus(g_csProgName +
end;

+ MakeVersionString);

-- Procedure Name StartConveyor

-- Created By : RLWS

-- Last Modified on : 2/4/2002

-- Purpose : The digital output defined by Conveyor will be turned
- on. The global flag g flgConveyorOn will be set to
- TRUE. The conveyor must run for a short while to

- clear any item that is breaking the photoeye when
- the conveyor is started. To accomplish this the
- global flag g flgWaitingForClear must be set to TRUE.
-- Value Parameters : none
-— Variable Params none
-- Side Effects Global variables g_flgConveyorOn and
- g_flgWaitingForClear are changed.
procedure StartConveyor;
begin
g_flgConveyorOn := TRUE;

-- This flag gets set in the Digin active/deactive handlers.

if g_flgPhotoEyeMade then
-- Something is blocking the photoeye. We need to start the conveyor and
—- let it run until the piece blocking the photoeye is cleared and then
-- the next piece breaks the photoeye again.

g_flgWaitingForClear := TRUE;
else

g_flgWaitingForClear := FALSE;
end if;

if g_ciDebugOn = 1 then
DisplayStatus("Starting Conveyor");

end if;

-- Start the conveyor.

if SetDigout(g_ciOnBoardIO, g _ciConveyor, DIO _ON) <> SysOK then
g _flgFatalError := TRUE;

end if;

end;

—-- Procedure Name StopConveyor
-- Created By RLWS
Last Modified on 2/4/2002

Purpose

Value Parameters

The digital output defined by Conveyor will be turned
off. The global flag g flgConveyorOn will be set to
FALSE.

none

Programming Examples

69

-- Variable Params none
—-- Side Effects Global variable g flgConveyorOn is set to TRUE

procedure StopConveyor;
begin
if g ciDebugOn = 1 then
DisplayStatus("Stopping Conveyor");

end if;

if SetDigout(g ciOnBoardIO, g ciConveyor, DIO OFF) <> SysOK then
g_flgFatalError := TRUE;

end if;

g_flgConveyorOn := FALSE;

g_flgWaitingForClear := FALSE;
end;

-- Function Name CheckConveyorRunning

-- Created By : RLWS
-- Last Modified on : 2/4/2002
—- Purpose : This function will get called by the process timer

- are fairly rapid intervals (every 10 ms or so). We
- need to see if it is time to turn off the conveyor.
- The global flags are the only thing we need to look
-— at to determine if the conveyor needs to be shut off.
-- Value Parameters none

-- Variable Params none

—-- Return Parameter Returns True if the conveyor is running.

-- Side Effects The conveyor I/0 may get shut off.

function CheckConveyorRunning : boolean;

boConveyorRunning : boolean := FALSE;
rWeight : real;

begin
if g_flgConveyorOn then

-- We need to check to see if we are waiting for the last piece to clear
-- the photoeye or for a new piece to break the photoeye.

if g _flgWaitingForClear then

if g _flgPhotoEyeMade = FALSE then
if g _ciDebugOn = 1 then
DisplayStatus("Photoeye Clear");

end if;

-- We were waiting for the photoeye to clear and now it is clear. We
-- need to reset the flag.

g_flgWaitingForClear := FALSE;
end if;
boConveyorRunning := TRUE;
else

-- We are waiting for the photoeye to be made, indicating the next
-- piece may have broken the beam.
if g_flgPhotoEyeMade then

-- The photoeye is made, but we have to check the weight before it

70

920i Programming Reference

-- is safe to shut off the conveyor.
GetGross(g_ciScale, Primary, rWeight);
-— if the weight isn't over the threshold weigh then we don't
-- really have a piece on the scale.
if rWeight > g rThreshold then
StopConveyor;

end if;

else
boConveyorRunning := TRUE;

end if;

end if;
end if;

return boConveyorRunning;

end;

—- Procedure Name : RejectPiece

-- Created By : RLWS

-- Last Modified on : 2/4/2002

—-- Purpose : The digital output defined by RejectRam will be turned
- on for a short period of time to push the out-of-tol
- piece into the reject bin. A timer is used to turn
- the RejectRam off so we don't wait in this procedure.
-- Value Parameters : none

-- Variable Params : none

-- Side Effects : The Reject ram is energized momentarily.

procedure RejectPiece;
begin

if g ciDebugOn = 1 then
DisplayStatus("Rejecting Piece");
end if;

-- Energize the reject ram.

if SetDigout(g ciOnBoardIO, g ciRejectRam, DIO ON) <> SysOK then
g_flgFatalError := TRUE;

end if;

-- Set and start a timer that will deactivate the reject ram when the
—-- timer expires.
if SetTimer(g_ciRejectRamOnTimer, g _ciRamTime) = SysOK then

if StartTimer(g_ciRejectRamOnTimer) <> SysOK then
g _flgFatalError := TRUE;

end if;
else
g_flgFatalError := TRUE;
end if;
end;
—-- Procedure Name : GetStableWeight
-- Created By ¢ RLWS
-- Last Modified on : 2/6/2002
—-- Purpose : The motion of a scale is checked until it is out of

- motion, then the weight is captured.

Programming Examples

71

-- Value Parameters : iScale is the scale we want to get the weight from.
- eUnits is a enumerated type for the type of units.
- eMode is an enumerated type for the kind of weight
- we want to get, either GROSS, NET, or TARE.
-- Variable Params vrWeight, the actual weight is returned in this var.
-- Return Parameter The SysCode returned from any calls that don't
- return a SysOK. If everything goes well, a SysOK
- is returned.
-- Side Effects : none
function GetStableWeight(iScale : integer; eMode : WeightMode;
eUnits : Units; var vrWeight : real) : SysCode;
iInMotion : integer;
sysReturnValue : SysCode;

begin
iInMotion := 1;
sysReturnValue := SysOK;
while (iInMotion = 1) and (sysReturnValue = SysOK)
loop
sysReturnvValue := InMotion(iScale, iInMotion);
end loop;

if iInMotion = 0 then

if g_ciDebugOn = 1 then
DisplayStatus("Getting Stable Weight");
end if;

-- Yes, the scale is out of motion. Now get the weight. The type of
-- weight we want is stored in eMode.
if eMode = GROSS then

sysReturnvValue := GetGross(iScale, eUnits, vrWeight);
elsif eMode = TARE then
sysReturnValue := GetTare(iScale, eUnits, vrWeight);
elsif eMode = NET then
sysReturnValue := GetNet(iScale, eUnits, vrWeight);
end if;
end if;

return(sysReturnvValue);

end;

—-- End of functions and procedures.

-- Handler Name : UserlKeyPressed

-- Created By : RLWS

-— Last Modified on : 2/6/2002

—-- Purpose : Will prompt the user for the minimum acceptable low

- weight for a piece being check-weighed.

- User key 1 will be defined in the softkeys menu under
- "Features" in configuration mode. This key's actual
- physical location can change since the user can put
- it anywhere in the list of softkeys.

-- Side Effects : The indicator is put into entry mode and the prompt
- defined below is displayed.

72

920i Programming Reference

handler UserlKeyPressed;
begin
if PromptUser("weight: ") = SysOK then
DisplayStatus("Please enter the minimum piece");

end if;
g_eEntryMode := MINVAL;
end;
—-- Handler Name : User2KeyPressed
-- Created By ¢ RLWS
-— Last Modified on : 2/6/2002
-— Purpose : Will prompt the user for the maximum acceptable high

-- weight for a piece being check-weighed.

- User key 2 will be defined in the softkeys menu under
- "Features" in configuration mode. This key's actual
- physical location can change since the user can put
- it anywhere in the list of softkeys.

-- Side Effects : The indicator is put into entry mode and the prompt
- defined below is displayed.

handler User2KeyPressed;

begin

if PromptUser("weight: ") = SysOK then

DisplayStatus("Please enter the maximum piece");

end if;

g_eEntryMode := MAXVAL;
end;
-- Handler Name : User3KeyPressed
-- Created By : RLWS
-- Last Modified on : 2/6/2002
—-- Purpose : Will prompt the user for the minimum weight to detect

- that a piece is actually on the scale.

- User key 3 will be defined in the softkeys menu under
-- "Features" in configuration mode. This key's actual
- physical location can change since the user can put
- it anywhere in the list of softkeys.

-- Side Effects : The indicator is put into entry mode and the prompt
- defined below is displayed.

handler User3KeyPressed;

begin

if PromptUser("threshold weight: ") = SysOK then

DisplayStatus("Please enter the minimum");

end if;

g_eEntryMode := THRESHOLD;
end;
-- Handler Name : UserEntry
-- Created By : RLWS
-— Last Modified on : 1/21/2002
—-- Purpose : This event will fire when ever the 920 is in entry

- mode and the user presses one of the event keys. So

Programming Examples

73

- far, the only event keys defined are EnterKey and

- CancelKey. Do determine which key generated the

-— event, we call EventKey. Depending on the mode, we
- will do certain integrity checks on the entry string
-— before saving the entered data.

-- Side Effects : none permanent

handler UserEntry;
strEntry : string := "";
rValue : real;

begin

-- We need to find out which key caused the this event.
if EventKey = EnterKey then

-- Call GetEntry to get the string entered by the user before the
-- "ENTER" key was pressed.
strEntry := GetEntry;

-- This will remove the numeric entry info and the entry prompt from
-- the display.
ClosePrompt;

-- We need to make sure that they entered something, and that the
-- something they entered is a numeric value (may contain a decimal).
if (len(strEntry) > 0) and IsNumeric(strEntry, TRUE) then

-- Convert the user entry into a real value.
rValue := StringToReal(strEntry);

-- Depending what the programmer defined entry mode is, we will save
-- the value in different globals.
if g_eEntryMode = MINVAL then
g_rLowTolerance := rValue;
elsif g _eEntryMode MAXVAL then
g rHighTolerance := rValue;
elsif g eEntryMode THRESHOLD then

g_rThreshold := rValue;
else
DisplayStatus("Invalid Entry Mode!");
end if;
else
DisplayStatus("Invalid Entry!");
end if;
else
—-- With all other keys that generate this event, we should just close
-- the prompt.
ClosePrompt;
DisplayStatus("Entry Cancelled!");
end if;
g _eEntryMode := NONE;
end;

—-- Handler Name : DiginSOBlActivate

-- Created By : RLWS

-- Last Modified on : 2/4/2002

—- Purpose : This digital input is tied to a photoeye that is
- activated whenever a piece is blocking its lazer.
- The global g_flgPhotoEyeMade is set to TRUE.

—-- Side Effects : The global g flgPhotoEyeMade is set to TRUE.

74 920i Programming Reference

handler DiginSOBlActivate;
begin

if g_ciDebugOn = 1 then
DisplayStatus("DigI/O 1 Activate");
end if;

g_flgPhotoEyeMade := TRUE;

end;

-- Handler Name : DiginSOBlDeactivate

-- Created By ¢ RLWS

-- Last Modified on : 2/4/2002

-- Purpose : This digital input is tied to a photoeye that is

- deactivated when ever its light is reflected back to
- it. i.e. nothing is blocking it.

- The global g_flgPhotoEyeMade is set to FALSE.

-- Side Effects : The global g flgPhotoEyeMade is set to FALSE.

handler DiginSOBlDeactivate;
begin
if g _ciDebugOn = 1 then
DisplayStatus("DigI/O 1 Deactivate");
end if;

g_flgPhotoEyeMade := FALSE;

end;

-- Handler Name : DiginSOB2Activate

-- Created By ¢ RLWS

-— Last Modified on : 2/4/2002

—-- Purpose : This digital input is tied to a "Run" switch that is
- maintained on either "Run" or "Pause". When in the

- run position, the input is activated.

- The global g flgStart is set to TRUE. This will allow
- the process to start and proceed until g_flgRunning is
- no longer true.

-- Side Effects : The global g _flgStart is set to TRUE.

handler DiginSO0B2Activate;
begin

if g_ciDebugOn = 1 then
DisplayStatus("DigI/O 2 Activate");
end if;

g _flgStart := TRUE;

end;

-- Handler Name : DiginSOB2Deactivate

-- Created By : RLWS

-- Last Modified on : 2/4/2002

-- Purpose : This digital input is tied to a "Run" switch that is
- maintained on either "Run" or "Pause". When in the

- pause position, the input is deactivated.

- The global g _flgRun is set to FALSE. This will stop
- the process.

-- Side Effects : The global g flgRun is set to FALSE.

handler DiginS0B2Deactivate;
begin

Programming Examples

75

if g_ciDebugOn = 1 then
DisplayStatus("DigI/O 2 Deactivate");
end if;

StopConveyor;
SetDigout(g_ciOnBoardIO, g_ciRejectRam, DIO_OFF);

g_flgRunning := FALSE;
end;

-- Handler Name : TimerlTrip
-- Created By : RLWS

-- Last Modified on : 2/4/2002

—-- Purpose : Deactivate the Digitial I/0 named RejectRam.

-- Side Effects : The Digitial I/O named RejectRam is deactivated.
handler TimerlTrip;

begin

if g ciDebugOn = 1 then
DisplayStatus("Timer 1 Trip");
end if;

—-- De-energize the reject ram.
if SetDigout(g ciOnBoardIO, g ciRejectRam, DIO OFF) <> SysOK then
g_flgFatalError := TRUE;
end if;
end;

—-- Handler Name : Timer2Trip
-- Created By : RLWS
-- Last Modified on : 2/5/2002
—-- Purpose : Check the status of the process each time.
-- Side Effects :
handler Timer2Trip;

rStableWeight : real;
begin

—-- If the fatal error flag has been set, then we want to put up a message
-- and loop forever. The program will hang and the operator will have to
-- restart the indicator.
while g flgFatalError
loop

DisplayStatus("Fatal System Error!");
end loop;

-- We always need to check if we are running. If we are then we need to
—- check the state of the conveyor and then get the weight if the piece
-— is in position, and do other stuff.

if g_flgRunning then

-- We need to check to see if the conveyor is not running. If it is
—- still running then we don't have to do anything until it stops.
if CheckConveyorRunning = FALSE then

-—- The conveyor is not running. We need to get the weight and decide
-- to accept or reject the piece.
GetStableWeight(g ciScale, GROSS, Primary, rStableWeight);

76

920i Programming Reference

if (rStableWeight >= g rThreshold) then

if (rStableWeight < g rLowTolerance)
or (rStableWeight > g rHighTolerance) then

-- This means that the stable weight captured is out of tolerance.
-- We must reject the part by energizing the reject ram.
RejectPiece;

end if;
end if;

-- Now we can restart the conveyor and index to the next piece.
StartConveyor;

end if;
else

-- If we are NOT running then we need to check to see if we should
-- start because the start flag was set to true when the run switch
-- was first turned to "RUN".
if g flgStart then

g_flgRunning := TRUE;

g_flgStart := FALSE;

StartConveyor;
end if;

end if;

end;

-- End of event handlers.

—- This chunk of code is the system startup event handler.
begin

-— Initialize all global variables here.
g_flgFatalError := FALSE;

g_flgstart := FALSE;
g_flgConveyorOn := FALSE;
g_flgPhotoEyeMade := FALSE;

g _flgWaitingForClear := FALSE;

g_eEntryMode := NONE;

—- Increment the build number every time you make a change to a new version.
g iBuild := 10;

-- Set up a timer to use for energizing and de-energizing the reject ram.

if SetTimerMode(g_ciRejectRamOnTimer, TimerOneShot) <> SysOK then
g_flgFatalError := TRUE;

end if;

-- Setup a timer to use for checking the status of the process
if SetTimerMode(g_ciProcessTimer, TimerContinuous) = SysOK then
if SetTimer(g_ciProcessTimer, g ciCheckProcTime) <> SysOK then

Programming Examples

77

g_flgFatalError := TRUE;
end if;
else
g_flgFatalError := TRUE;
end if;

-- Start the process timer.

if StartTimer(g_ciProcessTimer) <> SysOK then
g_flgFatalError := TRUE;

end if;

-- Set the text for the softkeys.
SetSoftKeyText(1l, "Minval");
SetSoftKeyText (2, "MaxVal");
SetSoftKeyText (3, "Threshold");

-- Display the version number to the display.
DisplayVersion;

end CheckWeigher;
—- This name must match the name following "program" keyword at
-- the beginning of the program.

5.8 WriteLn Example

—- Module Description:
-- This file is the iRite source code for a 920i program.

—-- This program will send some string data out a port using the Write and

-- WritelLn commands to give examples of the different ways to use formatting
—- in these procedures. Everything is done in the impicitly named

-- ProgramStartup event handler, so the output will be sent out port 4 only
—-- when the program is reset, or taken out of the configuration mode.

program WriteLnExample;

g _ciPort : integer := 4;
g _crVersion : real := 0.
g_csProgramName : string "WriteLn Example";
begin

-- This is one way to print out the program name and version. All the

-- following data will appear on the same line.

Write(g _ciPort, "Program ");

Write(g_ciPort, g csProgramName);

Write(g _ciPort, " Version ");

Write(g ciPort, RealToString(g crVersion, 4, 2));

Write(g _ciPort, Chr$(13)); -- 13 is the ASCII value for a Carriage Return.
Write(g ciPort, Chr$(10)); -- 10 is the ASCII value for a Line Feed.

-- Here is a more concise way to get the exact same output.
WriteLn(g_ciPort, "Program ", g csProgramName, "
g _crVersion:4:2);

Version ",

—-- Output some blank lines:
WriteLn(g_ciPort, ""

)i
WriteLn(g ciPort, "");

78 920i Programming Reference

-- If we want to output data and format it in columns, then we could do

-—- it like this.

Writeln(g ciPort, "Part Number Description In Stock Price");
WriteLn(g_ciPort, "--————-—-—- = e e ")
WriteLn(g ciPort, 12345:11, "Head Gasket":19, "Yes":14, 23.79:9:2);
WriteLn(g_ciPort, 21135:11, "Lug Nuts":19, "Yes":14, 5.49:9:2);
WriteLn(g_ciPort, 67855:11, "Air Filter":19, "Yes":14, 4.99:9:2);

—-- The blanks after the commas in the next two lines are for program

-- readablility and don't effect the output.

WriteLn(g_ciPort, 44512:11, "PCV Valve":19, "No" :14, 2.27:9:2);
WriteLn(g ciPort, 23007:11, "Carb. Rebuild Kit":19, "Yes":14, 41.00:9:2);

end WriteLnExample;

Program printed output:

Program WriteLn Example Version 0.03
Program WriteLn Example Version 0.03

Part Number Description In Stock Price
12345 Head Gasket Yes 23.79
21135 Lug Nuts Yes 5.49
67855 Air Filter Yes 4.99
44512 PCV Valve No 2.27
23007 Carb. Rebuild Kit Yes 41.00

Programming Examples 79

5.9 Database Example

Program Name: DatabaseExample

Copyright 2002 RLWS as an unpublished work.
All Rights Reserved.

The information contained herein is confidential property of RLWS.
The use, copying, transfer or disclosure of such information is prohibited
except by express written agreement with RLWS.

First written on March 12, 2002 by RLWS.

Module Description:
This file is the iRite source code for a 920i program.

This program will stuff some made up data into a database when the "Default
DB" user key is pressed. The "Delete" user key is used to delete the
selected record. "ID Sort" will sort all the records by ID (this is the
default). The "Name Sort" key will sort the data by the db.Last field. And
finally the "Age Sort" will sort the data by the db.Age field. The ability
to change the age and department of an employee is also available through
the "Change Age" and "Change Dept" keys.

program DatabaseExample;

#include common.iri
#include numtools.iri

—-- Create an enumeration to keep track of how the records are sorted.
type SortType is (SortID, SortNAME, SortAGE);
enumSort : SortType := SortID;

—-- Create an enumeration to keep track of what type of data entry we have.

type EntryType is (NoEntry, AgeEntry, DeptEntry);
enumEntry : EntryType := NoEntry;

—-- Widget Aliases

1blFirst : constant integer := 2;
lblLast : constant integer := 3;
1blInit : constant integer := 4;
1blID : constant integer := 5;
lblDept : constant integer := 6;
1blAge : constant integer := 7;
1blTitle : constant integer := 8;
lblNames : constant integer := 9;
11bIDDpt : constant integer := 10;

-- Database created in iRev Database Table Editor.
type EmployeeDatabase is database ("Employee")

Last : string;
First : string;
Initial : string;
D : integer;
Age : integer;
Dept : string;

end database;

--Database Field Aliases.

Employee Last constant integer
Employee First constant integer
Employee Initial constant integer
Employee ID constant integer
Employee Age constant integer
Employee_Dept constant integer

oo s s e oo e
oo e s e oo e
11 | | R | N A
oAUl WN
e Ne Ne e ~e ~e

80

920i Programming Reference

g crVersion : real := 1.21;

g_csProgramName : string "Database Example";

g_DBWork : EmployeeDatabase;
procedure CreateSampleData;
begin

-- This procedure will add some sample data to the database.

g _DBWork.First := "Samual";
g _DBWork.Initial := "J";
g_DBWork.Last := "Johnson";
g_DBWork.ID := 1;
g_DBWork.Age := 61;

g_DBWork.Dept := "Sales";
g_DBWork.Add;

g_DBWork.First := "Peter";

g DBWork.Initial := "P";
g_DBWork.Last := "Parker";
g_DBWork.ID := 2;
g_DBWork.Age := 30;
g_DBWork.Dept := "Security";
g_DBWork.Add;

g DBWork.First := "James";

g_DBWork.Initial ;

g _DBWork.Last := "Hetfield";
g_DBWork.ID := 3
g_DBWork.Age
g_DBWork.Dept
g_DBWork.Add;

g_DBWork.First := "Jill";

g DBWork.Initial := "K";

g_DBWork.Last := "Bowe";
4

g_DBWork.ID := 4;
g_DBWork.Age := 23;
g_DBWork.Dept := "Engineering";
g_DBWork.Add;

g _DBWork.First := "Chris";

g DBWork.Initial := "M";
g_DBWork.Last := "Anderson";
g_DBWork.ID := 5;
g_DBWork.Age := 19;

g _DBWork.Dept := "Sales";

g_DBWork.Add;

g _DBWork.First :
g_DBWork.Initial

g_DBWork.Last := "Williams";
g_DBWork.ID := 6

g_DBWork.Age
g_DBWork.Dept
g_DBWork.Add;

g_DBWork.First :
g DBWork.Initial := "T";
g _DBWork.Last :=
g_DBWork.ID := 7
g_DBWork.Age : ;
g_DBWork.Dept := "Service";
g_DBWork.Add;

Programming Examples 81

g_DBWork.First := "Tina";

g _DBWork.Initial := "B"

g _DBWork.Last := ki

g_DBWork.ID := 8;
:= 37;

g DBWork.Age :=
g_DBWork.Dept := "Shipping";
g_DBWork.Add;

g DBWork.First := "Susan";

g DBWork.Initial := "H";
9

4
g_DBWork.Last := "Milliford";
g DBWork.ID := 9;
g_DBWork.Age := 41;
g_DBWork.Dept := "Security";
g DBWork.Add;
g_DBWork.First := "John";
g_DBWork.Initial := "A";
g_DBWork.Last := "Krueger";
g_DBWork.ID := 10;
g_DBWork.Age := 59

g _DBWork.Dept
g_DBWork.Add;

end;

procedure DisplayDBRecord(dbRec : EmployeeDatabase);
begin

—-- This procedure will display all the fields of the database record
-- passed in the record dbRec.

SetLabelText (lblFirst, g DBWork.First);
SetLabelText(lblInit, g DBWork.Initial);
SetLabelText(lblLast, g DBWork.Last);

SetLabelText (1lblID, IntegerToString(g_DBWork.ID, 2));
SetLabelText (lblAge, IntegerToString(g DBWork.Age, 2));
SetLabelText (1lblDept, g DBWork.Dept);

end;

procedure RedisplayRecord(iID : integer);
sysReturnvVal : SysCode;

begin
-- Instead of using the FindFirst function, which would require a
—-- another sort afterwords, we will use the GetFirst and GetNext

-- functions to step through all the SORTED records until we find
-- the one we want to display.

sysReturnval := g DBWork.GetFirst;
while (sysReturnvVal = sysOK) and (g _DBWork.ID <> iID)
loop
sysReturnVal := g DBWork.GetNext;
end loop;

if sysReturnval = sysOK then
DisplayDBRecord(g_DBWork) ;
end if;

end;

82 920i Programming Reference

function SortEmployees (enumSortType : SortType; iDisplay : integer) : SysCode;

sysReturnStatus : SysCode;
begin
if enumSortType = SortID then

-- They want to sort the database by the ID field. So we pass the alias
—-- of the field we want to sort by to the Sort function.
sysReturnStatus := g DBWork.Sort(Employee ID);

elsif enumSortType = SortName then

-- They want to sort the database by the Name field. So we pass the
-- alias of the field we want to sort by to the Sort function.
sysReturnStatus := g DBWork.Sort(Employee Last);

elsif enumSortType = SortAge then

-- They want to sort the database by the Age field. So we pass the alias
—-- of the field we want to sort by to the Sort function.
sysReturnStatus := g DBWork.Sort(Employee Age);

end if;

if (sysReturnStatus = SysOK) and iDisplay then

-- The data is resorted so get the first record.
if g DBWork.GetFirst = SysOk then

-- This procedure will display all the fields of the database record passed
-— in the record.

DisplayDBRecord(g DBWork);

end if;
end if;

return sysReturnStatus;

end;

handler NavLeftKeyPressed;
begin
-- The left arrow navigation key will always look for a previous record in
-- the DB.
if g DBWork.GetPrev = SysOK then
DisplayDBRecord(g_DBWork);
else
—-- If we couldn't find the previous, then we should at least display the
-- first record. This could mean we were already at the first.
if g DBWork.GetFirst = SysOK then
DisplayDBRecord (g DBWork) ;
end if;
end if;

end;

Programming Examples 83

handler NavRightKeyPressed;
begin
-- The right arrow navigation key will always look for the next record
-- in the DB.
if g DBWork.GetNext = SysOK then
DisplayDBRecord (g DBWork) ;
else
-- If we couldn't find the next, then we should at least display the
—- last record. This could mean we were already at the last.
if g _DBWork.GetLast = SysOK then
DisplayDBRecord (g DBWork);
end if;
end if;

end;

—-- Default the database.
handler UserlKeyPressed;
begin

-- This next lines clears all records from the database.
g_DBWork.Clear;

-- This procedure will add some sample data to the database.
CreateSampleData;

—- The next line will get the very first record in the database and put the
-- results in g_DBWork.
if g DBWork.GetFirst = SysOk then

-- This procedure will display all the fields of the database record passed
-- in the record.
DisplayDBRecord (g DBWork) ;

end if;

end;

—-— Delete the current record from the database.
handler User2KeyPressed;

iThisEmployeeID : integer;
iNextEmployeeID : integer;
iDeleteOK : integer := 0;
iGetNewLast : integer := 0;
sysReturnval : SysCode;

begin

-- We want to save the employee ID of the record to be deleted incase we
-- move from this record and have to get back to it.
iThisEmployeeID := g DBWork.ID;

—-- After a delete, we will have to resort. After resorting, we will lose
—-- our position. It would be nice if after deleting a record, the "next"
-- record is displayed. This will give the appearance of the data

-- compressing. If we delete the last record, then we should display the
-- new "last" record. If we delete the only record, then we should clear
-- out the label widgets on the screen.

if g DBWork.GetNext = SysOk then
-- We got the next logical record so we need to remember the ID of this

-- record.
iNextEmployeeID := g DBWork.ID;

920i Programming Reference

-—- We should be able to call GetPrev to get us back to the original
-- record and then compare it with the one we started with.
if (g _DBWork.GetPrev = SysOk) and (g DBWork.ID = iThisEmployeeID) then

-- Set DeleteOK flag to true.
iDeleteOK := 1;

else
-- We have major problems. We shouldn't be here. But it we are we

-- can still get the original record by specifically searching for the
-- matching ID.

g _DBWork.ID := iThisEmployeelD;

if g DBWork.FindFirst(Employee ID) = SysOK then
-- We found the original (assume only one with unique ID). So Set
—-- DeleteOK flag to true.
iDeleteOK := 1;

end if;

end if;
else

-- The GetNext call failed. Maybe we were at the last already. We
-- could get the last and make sure it is the record we had
-- originally before deleting it.

—-- We should be able to call GetLast to get us back to the original
-- record and then compare it with the one we started with.
if (g _DBWork.GetLast = SysOk) and (g DBWork.ID = iThisEmployeeID) then

—- Set DeleteOK flag to true.
iDeleteOK := 1;
iGetNewLast := 1;

else

-- We have major problems. We shouldn't be here. But it we are we
-- can still get the original record by specifically searching for the
-- matching ID.

g_DBWork.ID := iThisEmployeelD;

if g DBWork.FindFirst (Employee_ID) = SysOK then
-- We found the original (assume only one with unique ID). So Set
—-- DeleteOK flag to true.
iDeleteOK := 1;

end if;

end if;
end if;

if iDeleteOK = 1 then

-— The next line will try to delete the current record stored in g DBWork.
if g DBWork.Delete = SysOk then

—-- Anytime a delete operation is performed, the database needs to be
—-- resorted. So call the sort function with the appropriate sort mode.
SortEmployees (enumSort, 0);
if iGetNewLast = 1 then
if g DBWork.GetLast = SysOk then
DisplayDBRecord(g_DBWork) ;

else

Programming Examples 85

-- If we get here, then the most likely reason is we deleted the
-- last record in the database. We need to clear out g DBWork and
-- then display it. This will clear out the label widgets on the
-- screen.

g_DBWork.First := "";

g_DBWork.Initial := "";

g_DBWork.Last := "";
g_DBWork.ID := 0
g_DBWork.Age
g_DBWork.Dept := "";

.
.

I
O~
~e

DisplayDBRecord(g DBWork);
end if;
else
-- Instead of using the FindFirst function, which would require a
-- another sort afterwords, we will use the GetFirst and GetNext

-- functions to step through all the SORTED records until we find
-- the one we want to display.

sysReturnval := g DBWork.GetFirst;
while (sysReturnvVal = sysOK) and (g_DBWork.ID <> iNextEmployeelD)
loop
sysReturnval := g DBWork.GetNext;
end loop;

if sysReturnval = sysOK then
DisplayDBRecord(g_DBWork);

end if;
end if;
end if;
end if;

end;

-- Sort all database records by the ID field.
handler User3KeyPressed;
begin

enumSort := SortID;
SortEmployees (enumSort, 1);

end;

—-- Sort all database records by the Last Name field.
handler User4KeyPressed;
begin

enumSort := SortName;
SortEmployees (enumSort, 1);

end;

-- Sort all database records by the Age field.
handler User5KeyPressed;
begin

86 920i Programming Reference

enumSort := SortAge;
SortEmployees (enumSort, 1);

end;

-- Prompt the user to update the db.Age field of the current record.
handler User6KeyPressed;
begin

—-- We have to disable the handlers for the left and right navigation keys
-- since we need to use the default functionality for the entry dialog.
DisableHandler (NavLeftKeyPressed);

DisableHandler (NavRightKeyPressed);

enumEntry := AgeEntry;
PromptUser("Age: ");

end;

—-- Prompt the user to update the db.Dept field of the current record.
handler User7KeyPressed;
begin

—-- We have to disable the handlers for the left and right navigation keys
—-- since we need to use the default functionality for the entry dialog.
DisableHandler (NavLeftKeyPressed);

DisableHandler (NavRightKeyPressed);

enumEntry := DeptEntry;
PromptUser("Dept: ");

end;

-- Get the string that was entered before the ENTER key was pressed
handler UserEntry;

strEntry : string := "";

flgUpdate : boolean := FALSE;

iEmployeeID : integer;

begin

-- We have to enable the handlers for the left and right navigation keys.
EnableHandler (NavLeftKeyPressed) ;
EnableHandler (NavRightKeyPressed) ;

—- The function EventKey will return the key that closed the dialog box.
-- We are only concerned with the case where the EnterKey was pressed.
if EventKey = EnterKey then

—-- We call the function GetEntry to get the string of numeric or alpha
-- characters entered.
strEntry := GetEntry;

-- We can now close the prompt box since we have the user entry. We
-- could validate the input first before deciding to close the dialog
-- box but we will just not update the record if the entry is invalid
-- for simplicities sake in this example.

ClosePrompt;

Programming Examples

87

-- Check to see if any characters were entered.
if len(strEntry) > 0 then

if enumEntry = AgeEntry then

—- Must be numeric with no decimal places.
if IsNumeric(strEntry, FALSE) then

g_DBWork.Age := StringToInteger(strEntry);
flgUpdate := TRUE;
end if;

elsif enumEntry = DeptEntry then

—-— Must be 20 characters or less.
if Len(strEntry) <= 20 then

g DBWork.Dept := strEntry;
flgUpdate := TRUE;
end if;
end if;

if flgUpdate then
iEmployeeID := g DBWork.ID;
g_DBWork.Update;
-- We now need to re-sort the data and re-display the current
-- record to reflect the new data.
SortEmployees (enumSort, 0);
RedisplayRecord(iEmployeeID);
end if;
end if;
else
ClosePrompt;
end if;

end;

begin -- This is the ProgramStartup handler.

-- Display program name and version.
DisplayStatus(g_csProgramName + " Ver

+ RealToString(g_crVersion, 4, 2));

-- The next line will get the very first record in the database and put the
-- results in g_DBWork.
if g _DBWork.GetFirst = SysOk then

-—- This procedure will display all the fields of the database record passed
-- in the record.
DisplayDBRecord(g_DBWork);

end if;

88 920i Programming Reference

-- The next five lines set the text for each of the softkeys.
SetSoftKeyText(1l, "Default DB");

SetSoftKeyText (2, "Delete");

SetSoftKeyText(3, "ID Sort");

SetSoftKeyText (4, "Name Sort");

SetSoftKeyText (5, "Age Sort");

SetSoftKeyText (6, "Change Age");

SetSoftKeyText (7, "Change Dept");

end DatabaseExample;

Programming Examples 89

6.0 Appendix

6.1 Event Handlers
Handler Description

ClearKeyPressed Runs when the CLR key on the numeric keypad is pressed

CmdxHandler Runs when an F#x serial command is received on a serial port, where x is the F# command
number, 1-32. The comunications port number receiving the command and the text
associated with the F#x command can be returned from the CmdxHandler using the
EventPort and EventString functions (see page 36).

DiginSxByActivate Runs when the digital input assigned to slot x, bit y is activated. Valid bit assignments for slot 0
are 1-4; valid bit assignments for slots 1 through 14 are 1-24.

DiginSxByDeactivate Runs when the digital input assigned to slot x, bit y is activated. Valid bit assignments for slot 0
are 1-4; valid bit assignments for slots 1 through 14 are 1-24.

DotKeyPressed Runs when the decimal point key on the numeric keypad is pressed

EnterKeyPressed Runs when the ENTER key on the front panel is pressed

GrossNetKeyPressed Runs when the GROSS/NET key is pressed

KeyPressed Runs when any front panel key is pressed. Use the EventKey function within this handler to
determine which key caused the event.

MajorKeyPressed Runs when any of the five preceding major keys is pressed. Use the EventKey function within
this handler to determine which key caused the event.

NavDownKeyPressed Runs when the DOWN navigation key is pressed

NavKeyPressed Runs when any of the navigation cluster keys (including ENTER) is pressed. Use the EventKey
function within this handler to determine which key caused the event.

NavLeftKeyPressed Runs when the LEFT navigation key is pressed

NavRightKeyPressed Runs when the RIGHT navigation key is pressed

NavUpKeyPressed Runs when the UP navigation key is pressed

NumericKeyPressed Runs when any key on the numeric keypad (including CLR or decimal point) is pressed. Use
the EventKey function within this handler to determine which key caused the event.

NxKeyPressed Runs when a numeric key is pressed, where x=the key number 0-9

PortxCharReceived Runs when a character is received on port x, where x is the port number, 1-32. Use the
EventChar function within these handlers to return a one-character string representing the
character that caused the event.

PrintKeyPressed Runs when the PRINT KEY is pressed

ProgramsStartup Runs when the indicator is powered-up or when exiting setup mode

SoftKeyPressed Runs when any softkey is pressed. Use the EventKey function within this handler to determine
which key caused the event.

SoftxKeyPressed Runs when softkey x is pressed, where x=the softkey number, 1-5, left to right

SPxTrip Runs when setpoint x is tripped, where x is the setpoint number, 1-100)

TareKeyPressed Runs when the TARE key is pressed

TimerxTrip Runs when timer x is tripped, where x is the timer number, 1-32

UnitsKeyPressed Runs when the UNITS key is pressed

UserxKeyPressed Runs when a user-defined softkey is pressed, where x is the user-defined key number, 1-10

UserEntry Runs when the ENTER key or Cancel softkey is pressed in response to a user prompt

ZeroKeyPressed Runs when the ZERO key is pressed

Table 6-1. 920i Event Handlers
90 920i Programming Reference

6.2 Compiler Error Messages

Error Messages

Cause (Statement Type)

Argument is not a handler name

Enable/disable handler

Arguments must have intrinsic type

Write/Writeln

Array bound must be greater than zero

Type declaration

Array bound must be integer constant

Type declaration

Array is too large

Type declaration

Conditional expression must evaluate to a discrete data type

If/while statement

Constant object cannot be stored

Object declaration

Constant object must have initializer

Object declaration

Exit outside all loops

Exit statement

Expected array reference

Subscript reference

Expected object or function reference

Qualifying expression

Expression must be numeric

For statement

Expression type does not match declaration

Initializer

Function name overloads handler name

Function declaration uses name reserved for handler

Handlers may not be called

Procedure/function call

Identifier already declared in this scope

All declarations

lllegal comparison

Boolean expression

Index must be numeric

Subscript reference

Invalid qualifier

Qualifying expression

Loop index must be integer type

For statement

Name is not a subprogram

Procedure/function call

Name is not a valid handler name

Handler declaration

Not a member of qualified type

Qualifying expression

Only a function can return a value

Procedure/handler declaration

Operand must be integer or enumeration type

Function or procedure call

Operand must be integer type

Logical expression

Operand type mismatch

Expression

Parameter is not a valid |-value

Procedure/function call

Parameter type mismatch

Procedure/function call

Parameters cannot be declared constant

Subprogram declaration

Port parameter must be integer type

Write/Writeln

Procedure name overloads handler name

Procedure declaration uses name reserved for handler

Procedure reference expected

Subprogram invocation

Record fields cannot be declared constant

Type declaration

Record fields cannot be declared stored

Type declaration

Reference is not a valid assignment target

Assignment statement

Return is only allowed in a subprogram

Startup body

Return type mismatch

Return statment

Step value must be constant

For statement

Subprogram invocation is missing parameters

Procedure/function call

Table 6-2. iRite Compiler Error Messages

Appendix 91

Error Messages

Cause (Statement Type)

Syntax error

Any statement

Cannot find system files

Internal error

Compiler error — Context stack error

Internal error

Too many names declared in this context

Any declaration

Operand must be numeric

Numeric operators

Subprogram reference expected

Procedure/function call

Type mismatch in assignment

Assignment statement

Type reference expected

User-defined type name

Undefined identifier

Identifier not declared

VAR parameter type must match exactly

Procedure/function call

Wrong number of array subscripts

Subscript reference

Wrong number of parameters

Procedure/function call

Table 6-2. iRite Compiler Error Messages

92 920i Programming Reference

	About This Manual
	1.0 Introduction
	1.1 What is iRite?
	1.2 Why iRite?
	1.3 About iRite Programs
	1.4 Running Your Program
	1.5 Sound Programming Practices

	2.0 Tutorial
	2.1 Getting Started
	2.2 Program Example with Constants and Variables

	3.0 Language Syntax
	3.1 Lexical Elements
	3.1.1 Identifiers
	3.1.2 Keywords
	3.1.3 Constants
	3.1.4 Delimiters

	3.2 Program Structure
	3.3 Declarations
	3.3.1 Type Declarations
	3.3.2 Variable Declarations
	3.3.3 Subprogram Declarations

	3.4 Statements
	3.4.1 Assignment Statement
	3.4.2 Call Statement
	3.4.3 If Statement
	3.4.4 Loop Statement
	3.4.5 Return Statement
	3.4.6 Exit Statement

	4.0 Built-in Types and Functions
	4.1 Built-in Types
	4.1.1 Using SysCode Data

	4.2 Scale Data Acquisition
	4.2.1 Weight Acquisition
	4.2.2 Tare Manipulation
	4.2.3 Rate of Change
	4.2.4 Accumulator Operations
	4.2.5 Scale Operations
	4.2.6 A/D and Calibration Data

	4.3 System Support
	4.4 Setpoints and Batching
	4.5 Serial I/O
	4.6 Digital I/O Control
	4.7 Analog Output Operations
	4.8 Pulse Input Operations
	4.9 Display Operations
	4.10 Display Programming
	4.11 Database Operations
	4.12 Timer Controls
	4.13 Mathematical Operations
	4.14 Bit-wise Operations
	4.15 String Operations
	4.16 Data Conversion

	5.0 Programming Examples
	5.1 Handler Examples
	5.2 "Hello": A Simple Handler Program
	5.3 "Looptest" Program
	5.4 "HelloWorld" Program
	5.5 "CircAreaVol": Computation Program
	5.6 "NumTools": iRev Import File
	5.7 Simple Checkweigher Program
	5.8 WriteLn Example
	5.9 Database Example

	6.0 Appendix
	6.1 Event Handlers
	6.2 Compiler Error Messages

