
Programmer’s
Reference Manual

Intermec Finger-
print® v7.61

Information in this manual is subject to change without prior notice and does not represent a
commitment on the part of Intermec Printer AB.

© Copyright Intermec Printer AB, December 2001. All rights reserved. Published in Sweden.

EasyCoder, EasyLAN, Fingerprint, and LabelShop are registered trademarks of Intermec
Technologies Corp. The word Intermec, the Intermec logo, InterDriver, and PrintSet are
trademarks of Intermec Technologies Corp.
Bitstream is a registered trademark of Bitstream, Inc.
Centronics is a registered trademark of Genicom Corp.
IBM is a registered trademark of International Business Machines Corporation.
Intel is a registered trademark of Intel Corporation.
Macintosh and TrueType are registered trademarks of Apple Computer, Inc.
Microsoft, MS, and MS-DOS are registered trademarks of Microsoft Corporation.
TrueDoc is a trademark of Bitstream, Inc.
Unicode is a trademark of Unicode Inc.
Windows is a trademark of Microsoft Corporation.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 1

Chapter 1

1. Introduction
Contents
1. Introduction Contents...1
 Preface...7
 News in Intermec Fingerprint v7.61..8
 Auxiliary Files in Intermec Fingerprint v7.61................................9

2. Program Instructions Syntax..11
 ABS .. 12
 ACTLEN.. 13
 ALIGN (AN) ... 14
 ASC .. 17
 BARADJUST.. 18
 BARCODENAME$.. 19
 BARFONT (BF).. 20
 BARFONT ON/OFF (BF ON/OFF) ... 22
 BARHEIGHT (BH) .. 23
 BARMAG (BM).. 24
 BARRATIO (BR).. 25
 BARSET .. 26
 BARTYPE (BT) .. 28
 BEEP.. 29
 BREAK.. 30
 BREAK ON/OFF.. 33
 BUSY... 34
 CHDIR ... 35
 CHECKSUM... 36
 CHR$.. 37
 CLEANFEED.. 38
 CLEAR .. 39
 CLIP ... 40
 CLL .. 41
 CLOSE... 43
 COM ERROR ON/OFF ... 44
 COMBUF$.. 45
 COMSET... 46
 COMSET OFF .. 48
 COMSET ON.. 49
 COMSTAT... 50
 CONT... 51
 COPY... 52
 COUNT& .. 53
 CSUM .. 55
 CUT.. 56
 CUT ON/OFF.. 57
 DATE$.. 58
 DATEADD$.. 59
 DATEDIFF... 60

Intermec Fingerprint v7.61
Programmer's Reference
Manual
Edition 7, December 2001
Part No. 1-960434-06

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 72

Chapter 1 Introduction

 DBBREAK.. 61
 DBBREAK OFF ... 62
 DBEND.. 63
 DBSTDIO.. 64
 DBSTEP... 65
 DELETE .. 66
 DELETEPFSVAR... 67
 DEVICES... 68
 DIM .. 71
 DIR ... 72
 END.. 75
 ENDIF (see IF...THEN...ELSE)... 117
 EOF .. 76
 ERL .. 77
 ERR .. 78
 ERROR .. 79
 EXECUTE... 81
 FIELD .. 82
 FIELDNO .. 83
 FILE& LOAD ... 84
 FILENAME$... 85
 FILES ... 86
 FLOATCALC$.. 87
 FONT (FT)... 88
 FONTD .. 90
 FONTNAME$... 91
 FONTS... 92
 FOR...TO...NEXT... 92
 FORMAT... 94
 FORMAT DATE$... 96
 FORMAT INPUT.. 97
 FORMAT TIME$.. 98
 FORMAT$... 99
 FORMFEED.. 102
 FRE... 103
 FUNCTEST... 104
 FUNCTEST$... 106
 GET .. 108
 GETASSOC$... 109
 GETASSOCNAME$.. 110
 GETPFSVAR... 111
 GOSUB.. 112
 GOTO... 114
 HEAD... 115
 IF..THEN...(ELSE).. 117
 IMAGE BUFFER SAVE.. 119
 IMAGE LOAD.. 120
 IMAGENAME$.. 121
 IMAGES .. 122
 IMMEDIATE... 123
 INKEY$... 125
 INPUT (IP)... 126

2. Program Instructions, cont.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 3

Chapter 1 Introduction

 INPUT ON/OFF.. 128
 INPUT#.. 129
 INPUT$.. 130
 INSTR .. 131
 INVIMAGE (II)... 132
 KEY BEEP .. 133
 KEY ON/OFF.. 134
 KEYBMAP$... 136
 KILL... 139
 LAYOUT ... 140
 LAYOUT END.. 143
 LAYOUT INPUT.. 144
 LAYOUT RUN.. 145
 LBLCOND .. 146
 LED ON/OFF.. 148
 LEFT$.. 149
 LEN .. 150
 LET... 151
 LINE INPUT ... 152
 LINE INPUT# ... 153
 LIST.. 154
 LISTPFSVAR.. 155
 LOAD... 156
 LOC.. 157
 LOF .. 158
 LSET .. 159
 LTS& ON/OFF.. 160
 MAG... 161
 MAKEASSOC.. 162
 MAP ... 163
 MERGE.. 165
 MID$.. 166
 NAME DATE$.. 167
 NAME WEEKDAY$.. 168
 NASC ... 169
 NASCD.. 171
 NEW... 172
 NEXT (see FOR TO NEXT).. 93
 NORIMAGE (NI) ... 173
 ON BREAK GOSUB ... 174
 ON COMSET GOSUB .. 175
 ON ERROR GOTO... 177
 ON GOSUB... 178
 ON GOTO.. 179
 ON HTTP GOTO.. 180
 ON KEY GOSUB... 181
 ON/OFF LINE... 184
 OPEN ... 185
 OPTIMIZE ON/OFF... 187
 PORTIN ... 188
 PORTOUT ON/OFF... 189
 PRBAR (PB).. 190

2. Program Instructions, cont.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 74

Chapter 1 Introduction

 PRBOX (PX) ... 191
 PRBUF... 197
 PRIMAGE (PM).. 198
 PRINT (?)... 199
 PRINT KEY ON/OFF .. 200
 PRINT#.. 201
 PRINTFEED (PF) ... 202
 PRINTONE ... 204
 PRINTONE# ... 205
 PRLINE (PL)... 206
 PRPOS (PP)... 207
 PRSTAT.. 209
 PRTXT (PT)... 211
 PUT .. 213
 RANDOM ... 214
 RANDOMIZE... 215
 READY.. 216
 REBOOT.. 217
 REDIRECT OUT.. 218
 REM (')... 219
 REMOVE IMAGE.. 220
 RENDER ON/OFF ... 221
 RENUM... 222
 RESUME... 223
 RETURN ... 224
 RIGHT$... 225
 RSET.. 226
 RUN.. 227
 SAVE.. 228
 SET FAULTY DOT .. 230
 SETASSOC.. 231
 SETPFSVAR ... 232
 SETSTDIO .. 233
 SETUP ... 235
 SETUP GET.. 238
 SETUP WRITE... 239
 SGN.. 241
 SORT.. 242
 SOUND.. 243
 SPACE$.. 244
 SPLIT ... 245
 STOP.. 246
 STORE IMAGE .. 247
 STORE INPUT.. 248
 STORE OFF .. 249
 STR$... 250
 STRING$... 251
 SYSVAR .. 252
 TESTFEED.. 259
 TICKS .. 260
 TIME$.. 261
 TIMEADD$... 262

2. Program Instructions, cont.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 5

Chapter 1 Introduction

 TIMEDIFF... 263
 TRANSFER KERMIT ... 264
 TRANSFER STATUS .. 265
 TRANSFER ZMODEM... 266
 TRANSFER$... 267
 TRANSFERSET... 268
 TRON/TROFF... 269
 VAL .. 270
 VERBON/VERBOFF... 271
 VERSION$.. 272
 WEEKDAY ... 273
 WEEKDAY$... 274
 WEEKNUMBER.. 275
 WHILE...WEND... 276
 XORMODE ON/OFF... 277
 External Commands; ZMODEM... 278
 External Commands; Dynamic Modules................................... 279

3. Image Transfer Intelhex... 280
 UBI00... 280
 UBI01... 280
 UBI02... 280
 UBI03... 280
 Image Format... 281
 UBI10... 284
 PRBUF-Protocol ... 286

4. Character Sets Introduction.. 288
 Roman 8 Character Set ... 289
 French Character Set ... 290
 Spanish Character Set.. 291
 Italian Character Set .. 292
 English (UK) Character Set .. 293
 Swedish Character Set... 294
 Norwegian Character Set .. 295
 German Character Set ... 296
 Japanese Latin Character Set .. 297
 Portuguese Character Set .. 298
 PCMAP Character Set .. 299
 ANSI Character Set... 300
 MS-DOS Latin 1 Character Set.. 301
 MS-DOS Greek 1 Character Set .. 302
 MS-DOS Latin 2 Character Set.. 303
 MS-DOS Cyrillic Character Set ... 304
 MS-DOS Turkish Character Set... 305
 Windows Latin 2 Character Set.. 306
 Windows Cyrillic Character Set ... 307
 Windows Latin 1 Character Set.. 308
 Windows Greek Character Set.. 309
 Windows Latin 5 Character Set.. 310
 Windows Baltic Rim Character Set.. 311

2. Program Instructions, cont.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 76

Chapter 1 Introduction

5. Bar Codes Introduction.. 312
 Standard Bar Codes... 313
 EAN 8... 314
 EAN 13 .. 314
 UPC-E .. 315
 UPC-A.. 315
 Interleaved 2 of 5 ... 316
 Code 39 .. 316
 Code 128 .. 317
 EAN 128 .. 317
 Setup Bar Codes .. 318

6. Fonts Introduction.. 319
 Bitmap Fonts.. 320
 Font Aliases.. 320
 Printout Samples.. 321
 OCR-A BT Character Set ... 322
 OCR-B 10 Pitch BT Character Set... 323
 Zapf Dingbats BT Character Set .. 324

7. Error Messages Interpretation Table.. 325

8. EasyLAN 100i Setup Sections, Objects, and Values ... 327

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 7

Chapter 1 Introduction

Intermec Fingerprint is a BASIC-inspired, printer-resident programming
language that has been developed for use with the Intermec EasyCoder XP-
and EasyCoder F-series of direct thermal and thermal transfer printers.

The Intermec Fingerprint fi rmware is an easy-to-use intelligent programming
tool for label formatting and printer customizing, which allows you to
design your own label formats and write your own printer application
software.

You may easily create a printer program by yourself that exactly fulfi ls your
own unique requirements. Improvements or changes due to new demands
can be implemented quickly and without vast expenses.

Intermec Fingerprint also contains an easy-to-use slave protocol, called
Intermec Direct Protocol. It allows layouts and variable data to be downloaded
from the host and combined into labels, tickets and tags with a minimum
of programming. Intermec Direct Protocol also includes a versatile error
handler and a fl exible counter function.

This Reference Manual contains detailed information on all programming
instructions in the Intermec Fingerprint programming language in alphabetical
order. It also contains other program-related information that is common for all
Intermec Fingerprint-compatible printer models from Intermec.

All information needed by the operator, like how to run the printer, how
to load the media or ribbon supply and how to maintain the printer, can
be found in the User’s Guide and the Installation & Operation manual
for the printer model in question.

In the Installation & Operation manual for each type of printer, you will
fi nd information on installation, setup, print resolution, media specifi cations,
relations between printhead and media, and other technical information,
which is specifi c for each printer model.

The Intermec Fingerprint v7.xx Programmer’s Guide supplements the
Reference Manual and gives a comprehensive introduction to Fingerprint
programming, even if some new features introduced with Fingerprint
v7.61 are not included.

IMPORTANT!
Note that version 7.0 and later versions of Intermec Fingerprint only apply
to the EasyCoder XP- and EasyCoder F-series printers. Current and
phased-out printer models not supporting Intermec Fingerprint 7.xx, but
restricted to Intermec Fingerprint 6.xx, are:

EasyCoder 101 EasyCoder 101 E EasyCoder 101 SA
EasyCoder 201 IIS EasyCoder 201 II E EasyCoder 201 II SA
EasyCoder 401
EasyCoder 401 LinerLess
EasyCoder 501 S EasyCoder 501 E EasyCoder 501 SA
EasyCoder 501 Ticketing EasyCoder 501 LinerLess
EasyCoder 601 S EasyCoder 601 E

There are also a number of non Fingerprint-compatible printers in the
Intermec EasyCoder product range.

Preface

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 78

Chapter 1 Introduction

News in Intermec Fingerprint v7.61

Intermec Fingerprint v7.61 is an enhanced and bug-corrected version of Intermec Fingerprint v7.60.

General Improvements
• New version of Intermec Shell (v4.8). Autohunting bug corrected.
• Bug corrections.

Modifi ed Instructions
• PRSTAT New detection of out-of-ribbon/ribbon-installed.
• SYSVAR SYSVAR (41) and SYSVAR (42) added.

Corrections
• FORMAT$ Examples corrected.
• SETSTDIO 100 = Autohunting enabled (not -1). Example corrected.
• SETUP GET Error in example corrected.
• STORE INPUT Error in example corrected.
• SYSVAR SYSVAR (28) new default value (1).
 SYSVAR(29), SYSVAR(30), and SYSVAR(33) read DSR (not DTR).

Other Modifi cations
• Setup using an EasySet Bar Code Wand and the creation of setup bar codes has been (or will be)

moved from the Intermec Fingerprint v7.61, Programmer’s Reference Manual and the Installation
& Operation manuals of EasyCoder 501 XP/601 XP and EasyCoder F2/F4 to a dedicated manual
(EasySet Bar Code Wand Setup, P/N 1-960560-00).

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 9

Chapter 1 Introduction

The Intermec Fingerprint v7.61 fi rmware contains the following
auxiliary fi les in addition to the system fi les (“kernel”):

In device "rom:"
.FONTALIAS Creates reference fonts
.fl k System fi le
.profi le System fi le
.setup.saved Default setup values
.ubipfr1.bin Standard fonts
CHESS2X2.1 Standard image for test labels
CHESS4X4.1 Standard image for test labels
DIAMONDS.1 Standard image for test labels
ERRHAND.PRG Error Handler
FILELIST.PRG List the lines of a fi le
GLOBE.1 Standard image for test labels
LBLSHTXT.PRG Intermec Shell auxiliary fi le
LINE_AXP.PRG Intermec Shell Line Analyzer
LSHOPXP1.SUB Intermec Shell auxiliary fi le
MKAUTO.PRG Create a startup (autoexec) fi le
PUP.BAT Intermec Shell Startup fi le
SHELLXP.PRG Intermec Shell startup program
WINXP.PRG Intermec Shell auxiliary fi le
copyright.htmf EasyLAN 100i home page
default.html EasyLAN 100i home page
diagnostics.htmf EasyLAN 100i home page
dochead.htmf EasyLAN 100i home page
footer.htmf EasyLAN 100i home page
framelay.cgi EasyLAN 100i home page
home.htmf EasyLAN 100i home page
htmlhead.htmf EasyLAN 100i home page
images/blackbal.gif EasyLAN 100i home page
images/itclogo1.gif EasyLAN 100i home page
images/pixel.gif EasyLAN 100i home page
images/redbar.gif EasyLAN 100i home page
images/sm_bg1.gif EasyLAN 100i home page
monitor EasyLAN 100i home page
nav.html EasyLAN 100i home page
secure/confi g.html EasyLAN 100i home page
secure/confi gbase.html EasyLAN 100i home page
secure/confi gj.js EasyLAN 100i home page
secure/confi gtitle.html EasyLAN 100i home page
secure/confi gtree.html EasyLAN 100i home page
secure/empty.htm EasyLAN 100i home page
secure/ftie4style.css EasyLAN 100i home page
secure/ftiens4.js EasyLAN 100i home page
secure/ftv2blank.gif EasyLAN 100i home page
secure/ftv2doc.gif EasyLAN 100i home page
secure/ftv2folderclosed.gif EasyLAN 100i home page
secure/ftv2folderopen.gif EasyLAN 100i home page
secure/ftv2lastnode.gif EasyLAN 100i home page

Auxiliary Files in
Intermec Fingerprint
v7.61

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 710

Chapter 1 Introduction

In device "rom:", cont.
secure/ftv2link.gif EasyLAN 100i home page
secure/ftv2mlastnode.gif EasyLAN 100i home page
secure/ftv2mnode.gif EasyLAN 100i home page
secure/ftv2node.gif EasyLAN 100i home page
secure/ftv2plastnode.gif EasyLAN 100i home page
secure/ftv2pnode.gif EasyLAN 100i home page
secure/ftv2vertline.gif EasyLAN 100i home page
secure/main.html EasyLAN 100i home page
secure/view.html EasyLAN 100i home page
support.htmf EasyLAN 100i home page
tof.html EasyLAN 100i home page

In device "c:"
.setup.saved Current setup values
APPLICATION Intermec Shell auxiliary fi le
STDIO Intermec Shell auxiliary fi le

To read the contents of these fi les, run the FILELIST.PRG program
or COPY the fi le in question to the serial port "uart1:".

Auxiliary Files in
Intermec Fingerprint
v7.61, cont.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 11

Chapter 2

2. Program Instructions
Syntax In the syntax descriptions which follow, certain punctuation

marks are used to indicate various types of data. They must not
be included in the program.

[] indicate that the enclosed entry is optional.
| indicates alternatives on either side of the bar.
< > indicate grouping.
..... indicate repetition of the same type of data.
↔ indicates a compulsory space character between

two keywords.
" is a quotation mark (ASCII 34 dec).
↵ indicates a carriage return or linefeed on the host

Uppercase letters indicate keywords, which must be entered
exactly as listed, with the exception that lowercase letters also are
allowed unless otherwise stated.

The following abbreviations are used:
<scon> string constant
<ncon> numeric constant
<sexp> string expression
<nexp> numeric expression
<svar> string variable
<nvar> numeric variable
<stmt> statement
<line label> line label

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 712

Chapter 2 Program Instructions

ABS
Field of Application Function returning the absolute value of a numeric expression.

Syntax ABS(<nexp>)
<nexp> is a numeric expression, from which the absolute value

will be returned.

Remarks The absolute value of a number is always positive or zero. Note that the
expression must be enclosed within parentheses.

Examples PRINT ABS(20-25)
 5

 PRINT ABS(25-20)
 5

 PRINT ABS(5-5)
 0

 PRINT ABS(20*-5)
 100

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 13

Chapter 2 Program Instructions

ACTLEN
Field of Application Function returning the length of the most recently executed PRINTFEED,

FORMFEED, or TESTFEED statement.

Syntax ACTLEN

Remarks The length of the most recently executed paper feed operation, resulting
from a PRINTFEED, FORMFEED, or TESTFEED statement, will be
returned as a number of dots. Due to technical reasons concerning the
stepper motor control and label gap detection, a small deviation from
the expected result may occur.

Example In this example, a 12 dots/mm printer is loaded with 90 mm (1080 dots)
long labels separated by a 3 mm (36 dots) gap. Start- and stopadjust
setup values are both set to 0:

 10 FORMFEED
 20 PRINT ACTLEN
 RUN
 yields:
 1121

 The deviation from the expected result (1116) is normal and should have no

practical consequences (less than 1 mm).

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 714

Chapter 2 Program Instructions

ALIGN (AN)
Field Application Statement specifying which part (anchor point) of a text field,

bar code fi eld, image fi eld, line, or box will be positioned at the
insertion point.

Syntax ALIGN|AN<nexp>
<nexp> is the anchor point of the object (1–9).
Default value: 1
Reset to default by: PRINTFEED execution

Remarks Each text, bar code, or image fi eld has nine possible anchor points, whereas
lines and boxes have three. One of these points must be selected, or the
default value (1) will be used. The selected anchor point decides the position
of the object in relation to the insertion point, which is decided by the nearest
preceding PRPOS statement. Furthermore, the fi eld will be rotated around the
anchor point according to the nearest preceding DIR statement.

 The nine anchor points of a text, bar code, or image fi eld are located
in the same manner as, for example, the numeric keys on a computer
keyboard:

 Lines and boxes have three anchor points only: left, center, and right.

 The anchor points for the various types of fi eld are illustrated below.

 Text fi eld:

 A text fi eld makes up an imaginary box limited in regard of width by the
length of the text, and in regard of height by the matrix size of the selected
font. In text fi elds, the anchor points 4, 5, and 6 are situated on the baseline,
as opposed to bar code fi elds and image fi elds.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 15

Chapter 2 Program Instructions

ALIGN (AN), cont.
Remarks, cont. Bar Code Field:

 A bar code field makes up an imaginary box sufficiently large to

accommodate the bar code interpretation, regardless if it will be printed
or not (provided that the selected type of bar code may include an
interpretation at all).

 However, for EAN and UPC codes, the box is restricted in regard of
width by the size of the bar pattern, not by the interpretation. This
implies that the fi rst digit of the bar code interpretation will be outside
the imaginary box:

 Image fi eld:

 The size of an image fi eld is decided when the fi eld is created. Note that an
image fi eld consists of the entire area of the original image, even possible
white or transparent background.

 Line:

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 716

Chapter 2 Program Instructions

ALIGN (AN), cont.
Remarks, cont. Box:

 The anchor points are situated at the lower side of the line or box in
relation to how text is printed in the selected direction. Lines and boxes
have only three anchor points, each of which can be specifi ed by means
of three different numbers.

 A special case is multi-line text fi elds in a box. The fi elds can be aligned in
nine positions in relation to the box, whereas the box itself only has three
anchor points, as described above. Refer to the PRBOX statement for more
information on alignment of multi-line text fi elds.

Example Printing of a label with a single line of text being aligned left on
the baseline:

 10 PRPOS 30,250
 20 DIR 1
 30 ALIGN 4
 40 FONT "Swiss 721 BT"
 50 PRTXT "Hello!"
 60 PRINTFEED
 RUN

 The text “Hello!” will be positioned with the baseline aligned left to the
insertion point specifi ed by the coordinates X=30; Y=250 in line 10.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 17

Chapter 2 Program Instructions

ASC
Field of Application Function returning the decimal ASCII value of the fi rst character

in a string expression.

Syntax ASC(<sexp>)
<sexp> is a string expression, from which the ASCII decimal value of

the fi rst character will be returned.

Remarks ASC is the inverse function of CHR$. The decimal ASCII value will be given
according to the selected character set (see NASC statement).

Examples 10 A$="GOOD MORNING"
 20 PRINT ASC(A$)
 RUN
 yields:
 71

 10 B$="123456"
 20 C% = ASC(B$)
 30 PRINT C%
 RUN
 yields:
 49

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 718

Chapter 2 Program Instructions

BARADJUST
Field of Application Statement for enabling/disabling automatic adjustment of bar code

position in order to avoid faulty printhead dots.

Syntax BARADJUST<nexp1>,<nexp2>
<nexp1> is the maximum left offset in dots.
<nexp2> is the maximum right offset in dots.
Default: 0,0 (BARADJUST disabled)

Remarks Under unfortunate circumstances, a printer may have to be run for some
time with a faulty printhead, before a replacement printhead can be installed.
Single faulty dots will produce very thin ”white” lines along the media.
This may be tolerable for text, graphics, and vertical (ladder) bar codes,
but for horizontal bar codes (picket fence), this condition is likely to
render the bar code unreadable.

 If the bar code is moved slightly to the left or right, the trace of a faulty
dot may come between the bars of the bar code and the symptom is
remedied for the time being.

 The BARADJUST statement allows the Intermec Fingerprint fi rmware to
automatically readjust the bar code position within certain limits, when
a faulty dot is detected (see HEAD function) and marked as faulty (see
SET FAULTY DOT statement). The maximum deviation from the original
position, as specifi ed by the PRPOS statement, can be set up separately
for the directions left and right. Setting both parameters to 0 (zero) will
disable BARADJUST.

 The BARADJUST statement does not work with:
 • Vertically printed bar codes (ladder style)
 • Stacked bar codes (for example Code 16K)
 • Bar codes with horizontal lines (for example DUN-14/16)
 • EAN/UPC-codes (interpretation not repositioned)

Examples Enabling BARADJUST within 10 dots to the left and 5 dots to the right of the

original position for a specifi c bar code, then disabling it:

 10 BARADJUST 10,5
 20 PRPOS 30,100
 30 BARSET "CODE39",2,1,3,120
 40 BARFONT ON
 50 PRBAR "ABC"
 60 BARADJUST 0,0
 70 PRINTFEED

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 19

Chapter 2 Program Instructions

BARCODENAME$
Field of Application Function returning the names of the bar code generators stored in the

printer’s temporary memory ("tmp:").

Syntax BARCODENAME$(<nexp>)
<nexp> the result of the expression should be either false or

true, where...
 False (0) indicates fi rst font.
 True (≠0) indicates next font.

Remarks BARCODENAME$(0) produces the fi rst bar code name in alphabetical
order. BARCODENAME$(≠0) produces next name. Can be repeated as
long as there are any bar code names left.

Example Use a program like this to list the names of all bar codes in "tmp:". Note that bar
codes with dynamic downloading (like DATAMATRIX) will not appear before
they have been called by a BARSET or BARTYPE statement.

 10 A$ = BARCODENAME$ (0)
 20 IF A$ = "" THEN END
 30 PRINT A$
 40 A$ = BARCODENAME$ (-1)
 50 GOTO 20
 RUN
 yields for example:
 CODABAR
 CODE11
 CODE16K
 CODE39
 CODE39A
 CODE39C
 CODE49
 CODE93
 CODE128
 DUN
 EAN8
 EAN13
 EAN128
 ADDON5
 C2OF5IND
 C2OF5INDC
 INT2OF5
 INT2OF5C
 etc, etc.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 720

Chapter 2 Program Instructions

BARFONT (BF)
Field of Application Statement specifying fonts for the printing of bar code interpretation.

Syntax BARFONT|BF[#<ncon>,]<sexp1>[,<nexp1>[,<nexp2>[,<nexp3>[,<nexp4>

 [,<nexp5>[,<nexp6>]]]]][ON]
#<ncon> is, optionally, the start parameter in the syntax above.
<sexp1> is the name of the font selected for bar code interpretations.
<nexp1> is the height in points of the font.
<nexp2> is the clockwise slant in degrees (0-90°).
<nexp3> is the distance in dots between bar code and bar font.
<nexp4> is the magnifi cation in regard of height (1-4).
<nexp5> is the magnifi cation in regard of width (1-4).
<nexp6> is the width enlargement in percent relative the height (1-1000).

Default: 100. Does not work with bitmap fonts.
ON optionally enables the printing of bar code interpretation.
Reset to default by: PRINTFEED execution.

Remarks Start Parameter:
 The start parameter specifi es which parameter in the syntax above should

be the fi rst parameter in the statement. Thereby you may bypass some
of the initial parameters.

 Default value: #1

 Font Name:
 This parameter corresponds to the FONT statement, but will only affect bar

code interpretation. Double-byte fonts cannot be used.
 Default : Swiss 721 BT

 Font Size:
 This parameter corresponds to the FONT statement, but will only affect

bar code interpretation. The size is specifi ed in points. (1 point = 1/72
inch ≈ 0.352 mm.)

 Default : 12

 Font Slant:
 This parameter corresponds to the FONT statement, but will only affect

bar code interpretation. Slanting increases clockwise. Values greater that
65-70° will be unreadable.

 Default : 0

 Vertical Offset:
 The distance between the bottom of the bar code pattern and the top of the

character cell is given as a number of dots.
 Default value: 6

 Magnifi cation:
 Two parameters allows you to specify the magnifi cation separately in regard

of height and width (corresponding to MAG statement). Note that if a MAG
statement is executed after a BARFONT statement, the size of the barfont
will be affected by the MAG statement.

 Default value for both parameters: 1

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 21

Chapter 2 Program Instructions

BARFONT (BF), cont.
Remarks, cont. Width:
 A scaleable font can enlarged in regard of width relative height. The value

is given as percent (1-1000). This means that if the value is 100, there is no
change in the appearance of the characters, whereas if the value is given as
for example 50 or 200, the width will be half the height or double the height
respectively. When using this parameter, all parameters in the syntax must be
included in the statement, (name, height, slant, and width).

 Enabling Interpretation Printing:
 The printing of bar code interpretation can enabled by a trailing ON, which

corresponds to a BARFONT ON statement.

 Exceptions:
 Note that in all EAN and UPC bar codes, the interpretation is an integrated part

of the code. Such an interpretation is not affected by a BARFONT statement,
but will be printed in according to specifi cation, provided that interpretation
printing has been enabled by a BARFONT ON statement.

 Certain bar codes, like Code 16K, cannot contain any interpretation at all.
In such a case, the selected barfont will be ignored.

Example Programming a Code 39 bar code, selecting the same barfont for all
directions, and enabling the printing of the bar code interpretation
can be done this way:

 10 PRPOS 30,400
 20 DIR 1
 30 ALIGN 7
 40 BARSET "CODE39",2,1,3,120
 50 BARFONT "Swiss 721 BT",10,8,5,1,1,100 ON
 60 PRBAR "ABC"
 70 PRINTFEED
 80 END

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 722

Chapter 2 Program Instructions

BARFONT ON/OFF (BF ON/OFF)
Field of Application Statement enabling or disabling the printing of bar code interpreta-

tion.

Syntax BARFONT|BF↔ON|OFF
Default: BARFONT OFF
Reset to default by: PRINTFEED execution

Remarks Usually, you start your program by selecting a suitable bar code interpretation
font, see BARFONT. Then use BARFONT ON and BARFONT OFF
statements to control whether to print the interpretation or not, depending
on application.

 BARFONT ON can be replaced by a BARFONT statement appended by a
trailing ON, see BARFONT statement.

Example Programming a Code 39 bar code, selecting a barfont for each direction
and enabling the printing of the bar code interpretation. Compare with the
example for BARFONT statement:

 10 PRPOS 30,400
 20 DIR 1
 30 ALIGN 7
 40 BARSET "CODE39",2,1,3,120
 50 BARFONT "Swiss 721 BT",10,8,5,1,1
 60 BARFONT ON
 70 PRBAR "ABC"
 80 PRINTFEED
 90 END

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 23

Chapter 2 Program Instructions

BARHEIGHT (BH)
Field of Application Statement specifying the height of a bar code.

Syntax BARHEIGHT|BH<nexp>
<nexp> is the height of the bars in the bar code expressed in

number of dots.
Default value: 100 dots.
Reset to default by: PRINTFEED execution.

Remarks The barheight specifi es the height of the bars, that make up the code. In bar
codes consisting of several elements on top of each other, for example Code
16K, the barheight specifi es the height of one element. The height is not
affected by BARMAG statements.

 BARHEIGHT can be replaced by a parameter in the BARSET statement.

Example Programming a Code 39 bar code, selecting a barfont for all directions and
enabling the printing of the bar code interpretation:

 10 PRPOS 30,400
 20 DIR 1
 30 ALIGN 7
 40 BARTYPE "CODE39"
 50 BARRATIO 2,1
 60 BARHEIGHT 120
 70 BARMAG 3
 80 BARFONT "Swiss 721 BT"ON
 90 PRBAR "ABC"
 100 PRINTFEED

 A more compact method is illustrated by the example for BARSET
statement.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 724

Chapter 2 Program Instructions

BARMAG (BM)
Field of Application Statement specifying the magnifi cation in regard of width of the

bars in a bar code.

Syntax BARMAG|BM<nexp>
<nexp> is the magnifi cation in regard of width of the bars, which

make up the bar code.
Allowed input: Depends on type of bar code.
Default value: 2
Reset to default by: PRINTFEED execution.

Remarks The magnifi cation only affects the bar code ratio (see BARRATIO),
not the height of the bars (see BARHEIGHT). For example, by default
the BARRATIO is 3:1 and the BARMAG is 2, which means that the
wide bars will be 6 dots wide and the narrow bars will be 2 dots wide
(2 × 3:1 = 6:2).

 The magnifi cation also affects the interpretation in EAN and UPC bar codes,
since the interpretation is an integrated part of the EAN/UPC code.

 BARMAG can be replaced by a parameter in the BARSET statement.

Example Programming a Code 39 bar code, selecting a barfont for all directions and
enabling the printing of the bar code interpretation:

 10 PRPOS 30,400
 20 DIR 1
 30 ALIGN 7
 40 BARTYPE "CODE39"
 50 BARRATIO 2,1
 60 BARHEIGHT 120
 70 BARMAG 3
 80 BARFONT "Swiss 721 BT" ON
 90 PRBAR "ABC"
 100 PRINTFEED

 A more compact method is illustrated by the example for BARSET
statement.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 25

Chapter 2 Program Instructions

BARRATIO (BR)
Field of Application Statement specifying the ratio between the wide and the narrow

bars in a bar code.

Syntax BARRATIO|BR<nexp1>,<nexp2>
<nexp1> is the thickness of the wide bars relative to the narrow bars.
<nexp2> is the thickness of the narrow bars relative to the wide bars.
Default value: 3:1
Reset to default by: PRINTFEED execution.

Remarks This statement specifi es the ratio between the wide and the narrow bars in a
bar code in relative terms. To decide the width of the bars in number of dots,
the ratio must be multiplied by the BARMAG value.

 Example:
 The default BARRATIO is 3:1 and the default BARMAG is 2.
 (3:1) × 2 = 6:2
 that is, the wide bars are 6 dots wide and the narrow bars are 2 dots wide.

 Note that certain bar codes have a fi xed ratio, for example EAN and UPC
codes. In those cases, any BARRATIO statement will be ignored. Refer to
Chapter 5, “Bar Codes” later in this manual.

 BARRATIO can be replaced by two parameters in the BARSET statement.

Example Programming a Code 39 bar code, selecting a barfont for all directions and
enabling the printing of the bar code interpretation:

 10 PRPOS 30,400
 20 DIR 1
 30 ALIGN 7
 40 BARTYPE "CODE39"
 50 BARRATIO 2,1
 60 BARHEIGHT 120
 70 BARMAG 3
 80 BARFONT "Swiss 721 BT"ON
 90 PRBAR "ABC"
 100 PRINTFEED

 A more compact method is illustrated by the example for BARSET
statement.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 726

Chapter 2 Program Instructions

BARSET
Field of Application Statement specifying a bar code and setting additional parameters

to complex bar codes.

Syntax BARSET[#<ncon>,][<sexp>[,<nexp1>[,<nexp2>[,<nexp3>[,<nexp4>[,<nexp5>

 [,<nexp6>[,<nexp7>[,<nexp8>[,<nexp9>[,<nexp10>]]]]]]]]]]]
#<ncon> is the the start parameter in the syntax above.
<sexp> is the barcode type.
<nexp1> is the ratio of the large bars.
<nexp2> is the ratio of the small bars.
<nexp3> is the enlargement.
<nexp4> is the height of the code in dots.
<nexp5> is the security level according to bar code specifi cation.
<nexp6> is the aspect height ratio.
<nexp7> is the aspect width ratio.
<nexp8> is the number of rows in the bar code.
<nexp9> is the number of columns in the bar code.
<nexp10> is a truncate fl ag according to bar code specifi cations
Reset to default by: PRINTFEED execution.

Remarks This statement can replace the statements BARHEIGHT, BARRATIO,
BARTYPE, and BARMAG. Although being primarily intended for some
complex bar codes such as PDF417, it can be used for any type of
bar code if non-relevant parameters are left out (for example <nexp

5
>

to <nexp
10

>).

 Start Parameter:
 Start parameter specifi es which parameter in the syntax above should be

the fi rst parameter (#1-11). Thereby you may bypass some of the initial
parameters, for example barcode type, ratio, and enlargement.

 Default value: #1

 Bar Code Type:
 The bar code type parameter corresponds to the BARTYPE statement.
 Default bar code: "INT2OF5"

 Bar Code Ratio:
 The two ratio parameters correspond to the BARRATIO statement.
 Default value: 3:1

 Enlargement:
 The enlargement parameter corresponds to the BARMAG statement.
 Default value: 2

 Bar Code Height:
 The height parameter corresponds to the BARHEIGHT statement.
 Default value: 100 dots

 Security Level:
 The security level is only used in some complex bar codes and should be used

according to the specifi cations of the bar code in question.
 Default value: 2

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 27

Chapter 2 Program Instructions

BARSET, cont.
Remarks, cont. Aspect Ratios:
 The aspect height ratio and aspect width ratio is used for complex bar codes

to defi ne the relation between height and width of the pattern. This method of
defi ning the bar code size has lower priority than rows and colomns, see below.
Refer to the specifi cations of the bar code for allowed input.

 Default values:
 1 for aspect ratio height
 2 for aspect ratio width.

 Rows and Columns:
 The rows in bar code and columns in bar code parameters have priority over

the aspect height ratio and aspect width ratio, but have the same purpose.
Refer to the specifi cations of the bar code for allowed input.

 Default value: 0

 Truncate Flag:
 The truncate fl ag is used in some complex bar codes to omit parts of the code

pattern. Refer to the specifi cations of the bar code for allowed input.
 Default value: 0

Examples This example shows how a BARSET statement is used to specify a Code 39 bar
code (compare for example with the example for BARTYPE stmt):

 10 PRPOS 30,400
 20 DIR 1
 30 ALIGN 7
 40 BARSET "CODE39",2,1,3,120
 50 BARFONT "Swiss 721 BT",10,8,5,1,1 ON
 60 PRBAR "ABC"
 70 PRINTFEED

 This example shows how BARSET is used to print a two-dimensional

PDF 417 bar code:

 10 PRPOS 30,400
 20 DIR 1
 30 ALIGN 7
 40 BARSET "PDF417",1,1,3,15,0,1,4,0,14,0
 50 A$="123456789012345678901234567890
 123456789012345678901234567890123456789012"
 60 B$="123456789012345678901234567890
 123456789012345678901234567890123456789012"
 70 C$="123456789012345678901234567890
 123456789012345678901234567890123456789012"
 80 PRBAR A$; B$; C$
 90 PRINTFEED

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 728

Chapter 2 Program Instructions

BARTYPE (BT)
Field of Application Statement specifying the type of bar code.

Syntax BARTYPE|BT<sexp>
<sexp> specifi es the type of bar code.
Allowed input: Valid bar type name.
Default value: "INT2OF5"
Reset to default by: PRINTFEED execution.

Remarks The selected bar code type must exist in the printer’s memory and be entered
in the form of a string expression. If a bar code require dynamic downloading,
the downloading will be initiated when a BARTYPE or BARSET statement
is executed. Please refer to Chapter 5, “Bar Codes” later in this manual for
a list of the bar codes that are included in the Intermec Fingerprint fi rmware
and their respective designations.

 BARTYPE can be replaced by a parameter in the BARSET statement.

Example Programming a Code 39 bar code, selecting a barfont for all directions, and
enabling the printing of the bar code interpretation:

 10 PRPOS 30,400
 20 DIR 1
 30 ALIGN 7
 40 BARTYPE "CODE39"
 50 BARRATIO 2,1
 60 BARHEIGHT 120
 70 BARMAG 3
 80 BARFONT "Swiss 721 BT" ON
 90 PRBAR "ABC"
 100 PRINTFEED

 A more compact method is illustrated by the example for BARSET
statement.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 29

Chapter 2 Program Instructions

BEEP
Field of Application Statement ordering the printer to emit a beep.

Syntax BEEP

Remarks This statement makes the printer’s built-in buzzer sound at ≈800 Hz for
1/4 of a second. If a different frequency and/or duration is desired, use
a SOUND statement instead.

Example In this example, a beep is emitted when an error occurs:

 10 ON ERROR GOTO 1000

 1000 BEEP
 1010 RESUME NEXT

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 730

Chapter 2 Program Instructions

BREAK
Field of Application Statement specifying a break interrupt character separately for the

keyboard and each serial communication channel.

Syntax BREAK<nexp1>,<nexp2>
<nexp1> is one of the following devices:
 0 = "console:"
 1 = "uart1:"
 2 = "uart2:"
 3 = "uart3:"
<nexp2> is the decimal ASCII value for the break interrupt character.
Default: Comm. channels: ASCII 03 decimal
 Console: ASCII 158 decimal (<Shift> + <Pause>)

Remarks The execution of a program can be interrupted using a method specifi ed
by the BREAK statement. In addition, the printing of a batch of labels can
also be interrupted and resumed by pressing the <Pause> or the <Print>
key on the printer’s front panel.

 To issue a break interrupt, by default, hold down the <Shift> key and press
the <Pause> key. Together these keys will produce the ASCII character
158 decimal (128 + 30).

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 31

Chapter 2 Program Instructions

BREAK, cont.
Remarks, cont.

 It is possible to remap the keyboard, which may affect the keys used for break
interrupt. Please refer to the variable KEYBMAP$.

 Another method is to transmit the character ASCII 03 decimal (default)
to the printer on one of the serial communication channels. The execution
will be interrupted regardless of any INPUT waiting (that is, INPUT [#],
LINE INPUT [#], and INPUT$).

 The BREAK statement allows you to specify other ways of interrupting
the execution, for example by pressing another combination of keys
on the printer’s keyboard or transmitting another ASCII character
from the host.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 732

Chapter 2 Program Instructions

BREAK, cont.
Remarks, cont. A specifi ed break interrupt character is saved in the temporary memory until

the printer is restarted or REBOOTed, which may be confusing for example
when switching between programs. To change a break interrupt character,
specify a new one for the same device using a BREAK statement and to
remove it from memory, use a BREAK OFF statement.

 The use of break interrupt is enabled or disabled separately for each
device by BREAK ON or BREAK OFF statements. By default, break
interrupt on the "console:" is enabled, while break interrupt on any of the
communication channels is disabled.

 It is strongly recommended to include some facility for issuing a break
interrupt from the host computer in startup (autoexec) fi les. If not, you
may fi nd yourself with an erroneous program running in a loop without
being able to break it!

Examples In this example, the ASCII character 127 decimal is selected and enabled as
BREAK character on the communication channel "uart1:":

 10 BREAK 1,127
 20 BREAK 1 ON

 In next example, BREAK characters are specifi ed for both the keyboard

("console:") and the serial communication channel "uart1:". The loop can be
interrupted either by pressing the key usually marked “ F1” on the printer’s
keyboard, or by typing an uppercase X on the keyboard of the host:

 10 BREAK 0,1:BREAK 1,88
 20 BREAK 0 ON:BREAK 1 ON
 30 GOTO 30
 RUN

 Reset BREAK to default by turning the printer off and on.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 33

Chapter 2 Program Instructions

BREAK ON/OFF
Field of Application Statement enabling or disabling break interrupt separately for the

keyboard and each serial communication channel.

Syntax BREAK<nexp>ON|OFF
<nexp> is one of the following devices:
 0 = "console:"
 1 = "uart1:"
 2 = "uart2:"
 3 = "uart3:"
Default: Comm. ports: Disabled
 Console: Enabled

Remarks The use of the break interrupt specifi ed by a BREAK statement can be
enabled or disabled separately for each serial communication channel or for
the printer’s built-in keyboard by BREAK ON or BREAK OFF statements.
By default, break interrupt is enabled from the printer’s keyboard, and
disabled from all communication channels.

 BREAK OFF deletes any existing break interrupt character stored in the
printer’s temporary memory for the specifi ed device.

Example In this example, the ASCII character 127 decimal is selected and enabled as
BREAK character on the communication channel "uart1:". At the same time,
BREAK from the printer’s keyboard is disabled.

 10 BREAK 1,127
 20 BREAK 1 ON:BREAK 0 OFF

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 734

Chapter 2 Program Instructions

BUSY
Field of Application Statement ordering a busy signal, for example XOFF, CTS/RTS, or

PE, to be transmitted from the printer on the specifi ed communication
channel.

Syntax BUSY[<nexp>]
<nexp> optionally specifi es the channel as:
 1 = "uart1:"
 2 = "uart2:"
 3 = "uart3:"
 4 = "centronics:"

Remarks Communication protocol usually contain some “busy” signal, which
tells the host computer that the printer, for some reason, is unable to
receive data.

 The BUSY statement allows you to order a busy signal to be transmitted
on the specifi ed communication channel. If no channel is specifi ed, the
signal will be transmitted on the standard OUT communication channel,
see SETSTDIO statement.

 To allow the printer to receive more data, use a READY statement.

 For the optional "centronics:" communication channel, BUSY/READY
control the PE (paper end) signal on pin 12 according to an error-trapping
routine (BUSY = PE high).

Example You may, for example, want to prevent the printer from receiving more data
on "uart2:" during the process of printing a label (running this example
requires an optional interface board to be fi tted):

 10 FONT "Swiss 721 BT"
 20 PRTXT "HELLO!"
 30 BUSY2
 40 PRINTFEED
 50 READY2
 RUN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 35

Chapter 2 Program Instructions

CHDIR
Field of Application Statement specifying the current directory.

Syntax CHDIR<scon>
<scon> specifi es the current directory (see DEVICES)
Default: "c:"

Remarks By default, the printer’s permanent memory ("c:") is the current directory,
which means the directory that is used if the Intermec Fingerprint instruction
does not contain any reference to a directory, for example FILES. This
implies that to access the temporary memory ("tmp:"), the storage part
of the RTC/Dallas key circuit ("storage:"), or an optional memory card
("rom:" or "card1:"), you must include such a reference in your instructions,
for example FILES "rom:".

 The CHDIR statement allows you to appoint another directory than "c:"
as the current directory. Obviously, this implies that you must specify the
permanent memory ("c:") whenever you want to access it.

Example In this example, the current directory is changed to "lock:", all fi les
in "lock:" are listed, and fi nally the current directory is changed back
to "c:". (This example is only included to illustrate the principles of
changing the current directory. It is more effi cient to use FILES "lock:"
to read its contents.)

 10 CHDIR"lock:"
 20 FILES
 30 CHDIR"c:"
 RUN
 yields for example:
 Files on lock:

 SYS1 11

 238 bytes free 11 bytes used

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 736

Chapter 2 Program Instructions

CHECKSUM
Field of Application Statement calculating the checksum of a range of program lines in

connection with the transfer of programs.

Syntax CHECKSUM(<nexp1>,<nexp2)
<nexp1> is the number of the fi rst line in a range of program lines.
<nexp2> is the number of the last line in a range of program lines.

Remarks The checksum is calculated from parts of the internal code using an
advanced algorithm. Therefore, it is recommended to let the printer
calculate the checksum before the transfer of a program. After the
transfer is completed, let the receiving printer do the same calculation
and compare the checksums.

Example In this example, the checksum is calculated of all program lines between line
10 and line 2000 in the program "DEMO.PRG".

 NEW
 LOAD "DEMO.PRG"
 PRINT CHECKSUM(10,2000)
 yields:
 60095

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 37

Chapter 2 Program Instructions

CHR$
Field of Application Function returning the readable character from a decimal ASCII

code.

Syntax CHR$(<nexp>)
<nexp> is the decimal ASCII code to be converted to a readable

character.

Remarks This function is useful for entering characters that cannot be produced
from the keyboard of the host, for example non-printable characters
ASCII 0-31 dec. Only integers between 0 and 255 are allowed. Input
less than 0 or larger than 255 will result in an error condition (Error 41,
“Parameter out of range)."

Example The decimal ASCII code for “ A" is 65 and for “ B" is 66.

 10 A$ = CHR$(65)
 20 B$ = CHR$(40+26)
 30 PRINT A$
 40 PRINT B$
 RUN
 yields:
 A
 B

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 738

Chapter 2 Program Instructions

CLEANFEED
Field of Application Statement running the printer’s feed mechanism.

Syntax CLEANFEED<nexp>
<nexp> is the feed length expressed as a positive or negative

number of dots.

Remarks The CLEANFEED statement activates the stepper motor that drives the
printer’s platen roller (the rubber roller beneath the printhead). In case of
thermal transfer printers, it also often drives the ribbon mechanism. The motor
will run regardless of possible error conditions, for example if the printhead is
lifted or not, or if there is no ribbon or media supply left.

 Thus, the CLEANFEED statement is suitable for cleaning and for the
loading of transfer ribbon.

 A positive CLEANFEED value makes the stepper motor rotate the rollers
forward, that is as when feeding out a label.

 A negative CLEANFEED value makes the stepper motor rotate the rollers
backwards, that is as when pulling back a label.

 The execution of a CLEANFEED statement, as opposed to TESTFEED,
does not affect the adjustment of the label stop sensor or black mark sensor,
regardless what type of media or other objects that passes the sensor.

 Note that the CLEANFEED statement, as opposed to FORMFEED, always
must be specifi ed in regard of feed length.

Example In order to pull a cleaning card back and forth under the printhead three
times, three 1200 dots long positive CLEANFEEDs and then the same
amount of negative CLEANFEEDs are performed:

 10 FOR A%=1 TO 3
 20 CLEANFEED 1200
 30 CLEANFEED -1200
 40 NEXT
 RUN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 39

Chapter 2 Program Instructions

CLEAR
Field of Application Statement clearing strings, variables, and arrays in order to free

memory space.

Syntax CLEAR

Remarks The CLEAR statement empties all strings, sets all variables to zero, and
resets all arrays to their default values. As a result, more free memory
space becomes available.

Example In this example, more free memory space is obtained after the strings have
been emptied by means of a CLEAR statement:

 10 A$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 20 B$ = "abcdefghijklmnopqrstuvwxyz"
 30 FOR I%=0 TO 3:FOR J%=0 TO 3:FOR K%=0 TO 20
 40 C$(I%,J%)=C$(I%,J%)+A$
 50 NEXT K%:NEXT J%:NEXT I%
 60 PRINT "String A before: ";A$
 70 PRINT "String B before: ";B$
 80 PRINT "Free memory before: ";FRE(1)
 90 CLEAR
 100 PRINT "String A after: ";A$
 110 PRINT "String B after: ";B$
 120 PRINT "Free memory after: ";FRE(1)
 RUN
 yields:
 String A before: ABCDEFGHIJKLMNOPQRSTUVWXYZ
 String B before: abcdefghijklmnopqrstuvwxyz
 Free memory before: 1867368
 String A after:
 String B after:
 Free memory after: 1876200

 Ok

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 740

Chapter 2 Program Instructions

CLIP
Field of Application Statement for enabling/disabling the printing of partial fi elds.

Syntax CLIP [BARCODE [HEIGHT|INFORMATION|X|Y]][ON|OFF]
BARCODE toggles between partial bar code fi elds enable/disable.
BARCODE HEIGHT clips the height of the bar so the bar code will fi t

inside the print window. A one-dimensional bar code
may still be readable.

BARCODE INFORMATION clips the bar code lengthwise, so some bars will be
missing, making the bar code unreadable.

BARCODE X clips the part of the bar code that is outside the
X-dimension of the print window.

BARCODE Y clips the part of the bar code that is outside the
Y-dimension of the print window.

ON enables use of partial text, image, line, and box fi elds.
OFF disables use of partial text, image, line, and box fi elds.

Remarks Partial fi elds means that the fi rmware will accept and print text, bar code,
image, lines, and box fi elds even if they extend outside the print window
as specifi ed by the printer’s setup in regard of X-Start, Width, and Length.
Even negative PRPOS values are allowed. However, all parts the fi elds
outside the print window will be excluded from the printout, that is they will
be clipped at the borders of the print window.

 There are two main cases:
 CLIP BARCODE [HEIGHT|INFORMATION|X|Y] is used for bar code

fi elds only. (Note that some bar codes, like Maxicode, consist of images and
should in this context be regarded as image fi elds.)

 CLIP ON|OFF is only used for text, image, line, and box fi elds.

 When the use of partial fi elds is disabled, the Error 1003, “Field out of label”
will result if any fi eld extends outside the print window.

 Note the difference between the physical size of the label and the size of
the print window specifi ed by the printer’s setup. It is the latter that decides
were the fi elds will be clipped.

Example In this example, only the last part of the text will be printed:

 10 CLIP ON
 20 PRPOS -100,30
 30 PRTXT "INTERMEC PRINTER"
 40 PRINTFEED
 RUN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 41

Chapter 2 Program Instructions

CLL
Field of Application Statement for partial or complete clearing of the print image buffer.

Syntax CLL [<nexp>]
<nexp> optionally specifi es the fi eld from which the print image

buffer should be cleared.

Remarks The print image buffer is used to store the printable image after processing
awaiting the printing to be executed. The buffer can be cleared, partially or
completely, by the use of a CLL statement:

 - CLL<nexp> partially clears the buffer from a specifi ed fi eld to the end of
the program. The fi eld is specifi ed by a FIELDNO function.

 Partial clearing is useful in connection with print repetition. To avoid
superfl uous reprocessing, one or several fi elds can be erased from the
buffer and be replaced by other information, while the remaining parts
of the label are retained in the buffer.

 Note that there must be no changes in the layout between the PRINTFEED
and the CLL statements, or else the layout will be lost. Also note that
partial clearing always starts from the end, which means that the fi elds
which are executed last are cleared fi rst.

 - CLL (without any fi eld number) clears the buffer completely.

 When certain error conditions have occurred, it is useful to be able to
clear the print image buffer without having to print a faulty label. Should
the error be attended to, without the image buffer being cleared, there is
a risk that the correct image will be printed on top of the erroneous
one on the same label. It is therefore advisable to include a CLL
statement in your error-handling subroutines, when you are working
with more complicated programs, in which all implications may be
diffi cult to grasp.

Examples Partial clearing:
 Two labels are printed, each with two lines of text. After the fi rst label is

printed, the last line is cleared from the print image buffer and a new line is
added in its place on the second label:

 10 PRPOS 100,300
 20 FONT "Swiss 721 BT"
 30 PRTXT "HAPPY"
 40 A%=FIELDNO
 50 PRPOS 100,250
 60 PRTXT "NEW YEAR!"
 70 PRINTFEED
 80 CLL A%
 90 PRPOS 100,250
 100 PRTXT "BIRTHDAY!"
 110 PRINTFEED
 RUN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 742

Chapter 2 Program Instructions

CLL, cont.
Examples, cont. Complete clearing:
 In this example, the print image buffer will be cleared completely if Error

1030, “ Character missing in chosen font” occurs.

 10 ON ERROR GOTO 1000

 1000 IF ERR=1030 GOSUB 1100
 1010 RESUME NEXT

 1100 CLL
 1110 PRINT "CHARACTER MISSING"
 1120 RETURN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 43

Chapter 2 Program Instructions

CLOSE
Field of Application Statement closing one or several fi les and/or devices for input/output.

Syntax CLOSE[[#] <nexp> [, [#] <nexp>...]]
optionally indicates that whatever follows is a number.
<nexp> is the number assigned to a fi le or device when it was

OPENed.

Remarks This statement revokes OPEN. Only fi les or devices, which already have
been OPENed, can be CLOSEd.

 A CLOSE statement for a fi le or device OPENed for sequential output
entails that the data in the buffer will be written to the fi le/device in question
automatically before the channel is closed.

 When a fi le OPENed for random access is CLOSEd, all its FIELD
defi nitions will be lost.

 END, NEW, and RUN will also close all open fi les and devices.

Examples This statement closes all open fi les and devices:

 200 CLOSE

 A number of fi les or devices (No. 1-4) can be closed simultaneously using
any of the following types of statement:

 200 CLOSE 1,2,3,4
 or
 200 CLOSE #1,#2,#3,#4
 or
 200 CLOSE 1,2,#3,4

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 744

Chapter 2 Program Instructions

COM ERROR ON/OFF
Field of Application Statement enabling/disabling error handling on the specified

communication channel.

Syntax COM↔ERROR<nexp>ON|OFF
<nexp> is one of the following communication channels:
 1 = "uart1:"
 2 = "uart2:"
 3 = "uart3:"
 4 = "centronics:"
Default: COM ERROR OFF on all channels.

Remarks This function is closely related to COMSET, ON COMSET GOSUB,
COMSET ON, COMSET OFF, COMSTAT, and COMBUF$.

 Each character received is checked for the following errors:
 • Received break
 • Framing error
 • Parity Error
 • Overrun error

 If any such communication error occurs and COM ERROR is ON for the
channel in question, the reception will be interrupted. This condition can
be read by means of a COMSTAT function, but you cannot read exactly
what type of error has occurred. COM ERROR OFF disables this type of
error-handling for the specifi ed channel.

 COM ERROR ON cannot be used with USB (communication channel #6).

Example In this example, a message will appear on the screen when the reception is
interrupted by any of four COMSET conditions being fulfi lled:

 10 COM ERROR 1 ON
 20 A$="Max. number of char. received"
 30 B$="End char. received"
 40 C$="Attn. string received"
 50 D$="Communication error"
 60 COMSET 1, "A",CHR$(90),"#","BREAK",20
 70 ON COMSET 1 GOSUB 1000
 80 COMSET 1 ON
 90 IF QDATA$="" THEN GOTO 90
 100 END
 1000 QDATA$=COMBUF$(1)
 1010 IF COMSTAT(1) AND 2 THEN PRINT A$
 1020 IF COMSTAT(1) AND 4 THEN PRINT B$
 1030 IF COMSTAT(1) AND 8 THEN PRINT C$
 1040 IF COMSTAT(1) AND 32 THEN PRINT D$
 1050 PRINT QDATA$:RETURN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 45

Chapter 2 Program Instructions

COMBUF$
Field of Application Function reading the data in the buffer of the communication channel

specifi ed by a COMSET statement.

Syntax COMBUF$(<nexp>)
<nexp> is one of the following communication channels:
 1 = "uart1:"
 2 = "uart2:"
 3 = "uart3:"
 4 = "centronics:"
 5 = "net1:"
 6 = "usb1:"

Remarks This function is closely related to COMSET, ON COMSET GOSUB,
COMSET ON, COMSET OFF, COM ERROR ON/OFF, and COMSTAT.
Using COMBUF$, the buffer can be read and the content be used in
your program.

 When the communication has been interrupted by any of the three conditions
"end character", "attention string", or "max. no. of char." (see COMSET), you
may use an ON COMSET GOSUB subroutine and assign the data from the
buffer to a variable as illustrated in the example below.

 Note that COMBUF$ fi lters out any incoming ASCII 00 dec. characters
(NUL).

Example In this example, the data from the buffer is assigned to the string variable
A$ and printed on the screen:

 1 REM Exit program with #STOP&
 10 COMSET1,"#","&","ZYX","=",50
 20 ON COMSET 1 GOSUB 2000
 30 COMSET 1 ON
 40 IF A$ <> "STOP" THEN GOTO 40
 50 COMSET 1 OFF

 1000 END
 2000 A$= COMBUF$(1)
 2010 PRINT A$
 2020 COMSET 1 ON
 2030 RETURN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 746

Chapter 2 Program Instructions

COMSET
Field of Application Statement setting the parameters for background reception of data to the

buffer of a specifi ed communication channel (see COMBUF$).

Syntax COMSET<nexp1>,<sexp1>,<sexp2>,<sexp3>,<sexp4>,<nexp2>
<nexp1> is one of the following communication channels:
 1 = "uart1:"
 2 = "uart2:"
 3 = "uart3:"
 4 = "centronics:"
 5 = "net1:"
 6 = "usb1:"
<sexp1> specifi es the start of the message string (max. 12 char).
<sexp2> specifi es the end of the message string (max. 12 char).
<sexp3> specifi es characters to be ignored (max. 42 char).
<sexp4> specifi es the attention string (max. 12 char).
<nexp2> specifi es the max. number of characters to be received.

Enter a value ≥1. (If <nexp2> = 0, the fi rst character
will be lost.)

Remarks Data can be received by a buffer on each of the communication channels

without interfering with the running of the current program. At an appropriate
moment, the program can fetch the data in the buffer and use them according
to your instructions. Such background reception has priority over any
ON KEY GOSUB statement.

 Related instructions are COMSTAT, ON COMSET GOSUB, COMSET ON,
COMSET OFF, COM ERROR ON/OFF, and COMBUF$.

 The communication channels are explained in connection with the
DEVICES statement.

 The start and end strings are character sequences which tells the printer when
to start or stop receiving data. Max. 12 characters, may be "".

 It is possible to make the printer ignore certain characters. Such characters
are specifi ed in a string, where the order of the individual characters does
not matter. Max. 42 characters, may be "".

 The attention string interrupts the reception. Max. 12 characters, may be "".

 The length of the afore-mentioned COMSET strings are checked before
they are copied into the internal structure. If any of these strings are too long,
Error 26, “Parameter too large” will occur.

 When the printer has received the specifi ed maximum number of characters,
without previously having encountered any end string or attention string, the
transmission will be interrupted. The maximum number of characters also
decides how much of the memory will be allocated to the buffer.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 47

Chapter 2 Program Instructions

COMSET, cont.
Remarks, cont. The reception of data to the buffer can be interrupted by four conditions:

 • An end string being encountered.
 • An attention string being encountered.
 • The maximum number of characters being received.
 • If error-handling is enabled for the communication channel in question

(see COM ERROR ON/OFF) and an communication error occurs. This
condition can be checked by a COMSTAT function.

 Any interruption will have a similar effect as a COMSET OFF statement,
that is close the reception, but the buffer will not be emptied and can
still be read by a COMBUF$ function. After the reception has been
interrupted, an ON COMSET GOSUB statement can be issued to control
what will happen next.

 COMSET does not support auto-hunting (see SETSTDIO).

Example This example shows how "uart1:" is opened for background communication.
Any record starting with the character # and ending with the character & will
be received. The characters Z, Y and X will be ignored. The character = will
stop the reception. Max. 50 characters are allowed.

 1 REM Exit program with #STOP&
 10 COMSET1,"#","&","ZYX","=",50
 20 ON COMSET 1 GOSUB 2000
 30 COMSET 1 ON
 40 IF A$ <> "STOP" THEN GOTO 40
 50 COMSET 1 OFF

 1000 END
 2000 A$= COMBUF$(1)
 2010 PRINT A$
 2020 COMSET 1 ON
 2030 RETURN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 748

Chapter 2 Program Instructions

COMSET OFF
Field of Application Statement turning off background data reception and emptying the

buffer of the specifi ed communication channel.

Syntax COMSET<nexp>OFF
<nexp> is one of the following communication channels:
 1 = "uart1:"
 2 = "uart2:"
 3 = "uart3:"
 4 = "centronics:"
 5 = "net1:"
 6 = "usb1:"

Remarks This statement is closely related to COMSET, ON COMSET GOSUB,
COMSTAT, COMSET ON, COM ERROR ON/OFF, and COMBUF$.

 The COMSET OFF statement closes the reception and empties the buffer
of the specifi ed communication channel.

Example In this example, the COMSET OFF statement is used to close "uart1:" for
background reception and empty the buffer:

 1 REM Exit program with #STOP&
 10 COMSET1,"#","&","ZYX","=",50
 20 ON COMSET 1 GOSUB 2000
 30 COMSET 1 ON
 40 IF A$ <> "STOP" THEN GOTO 40
 50 COMSET 1 OFF

 1000 END
 2000 A$= COMBUF$(1)
 2010 PRINT A$
 2020 COMSET 1 ON
 2030 RETURN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 49

Chapter 2 Program Instructions

COMSET ON
Field of Application Statement emptying the buffer and turning on background data

reception on the specifi ed communication channel.

Syntax COMSET<nexp>ON
<nexp> is one of the following communication channels:
 1 = "uart1:"
 2 = "uart2:"
 3 = "uart3:"
 4 = "centronics:"
 5 = "net1:"
 6 = "usb1:"

Remarks This statement is closely related to COMSET, ON COMSET GOSUB,
COMSTAT, COMSET OFF, COM ERROR ON/OFF, and COMBUF$. It
allows you to open any of the communication channels for background data
reception with an empty buffer, provided the communication parameter for
the channel has already been set up by a COMSET statement.

 When the reception has been interrupted by the reception of an end
character, an attention string or the max. number of characters, the
buffer can be emptied and the reception reopened by issuing a new
COMSET ON statement.

Example In this example, the COMSET ON statement on line 30 is used to open
"uart1:" for background reception. After the buffer has been read, it is
emptied and the reception is reopened by a new COMSET ON statement
in the subroutine on line 2020:

 1 REM Exit program with #STOP&
 10 COMSET1,"#","&","ZYX","=",50
 20 ON COMSET 1 GOSUB 2000
 30 COMSET 1 ON
 40 IF A$ <> "STOP" THEN GOTO 40
 50 COMSET 1 OFF

 1000 END
 2000 A$= COMBUF$(1)
 2010 PRINT A$
 2020 COMSET 1 ON
 2030 RETURN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 750

Chapter 2 Program Instructions

COMSTAT
Field of Application Function reading the status of the buffer of a communication channel.

Syntax COMSTAT(<nexp>)
<nexp> is one of the following communication channels:
 1 = "uart1:"
 2 = "uart2:"
 3 = "uart3:"
 4 = "centronics:"
 5 = "net1:"
 6 = "usb1:"

Remarks This function is closely related to COMSET, ON COMSET GOSUB,
COMSET ON, COMSET OFF, COM ERROR ON/OFF, and COMBUF$.
It allows you to fi nd out if the buffer is able to receive background data, or-
if not-what condition has caused the interruption.

 The buffer’s status is indicated by a numeric expression, which is the sum
of the values given by the following conditions:

 • Copy of hardware handshake bit (not on "net1:" or "usb1:")0 or 1
 • Interruption: Max. number of characters received...................................2
 • Interruption: End character received...4
 • Interruption: Attention string received..8
 • Interruption: Communication error (not on "net1:" or "usb1:")........... 32

Example A message will appear on the screen when the reception is interrupted by
any of four COMSET conditions being fulfi lled:

 10 COM ERROR 1 ON
 20 A$="Max. number of char. received"
 30 B$="End char. received"
 40 C$="Attn. string received"
 50 D$="Communication error"
 60 COMSET 1, "A",CHR$(90),"#","BREAK",20
 70 ON COMSET 1 GOSUB 1000
 80 COMSET 1 ON
 90 IF QDATA$="" THEN GOTO 90
 100 END
 1000 QDATA$=COMBUF$(1)
 1010 IF COMSTAT(1) AND 2 THEN PRINT A$
 1020 IF COMSTAT(1) AND 4 THEN PRINT B$
 1030 IF COMSTAT(1) AND 8 THEN PRINT C$
 1040 IF COMSTAT(1) AND 32 THEN PRINT D$
 1050 PRINT QDATA$
 1060 RETURN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 51

Chapter 2 Program Instructions

CONT
Field of Application Statement for resuming execution of a program that has been interrupted

by means of a STOP, BREAK, or DBBREAK statement.

Syntax CONT

Remarks The CONT statement may be used to resume program execution after a
STOP, BREAK, or DBBREAK statement has been executed. Execution
continues at the point where the break happened with the STDIO
settings restored.

 CONT is usually used in conjunction with DBBREAK or STOP for
debugging. When execution is stopped, you can examine or change the
values of variables using direct mode statements. You may then use
CONT to resume execution. CONT is invalid if the program has been
editied during the break.

 It is also possible to resume execution at a specifi ed program line using a
GOTO statement in the immediate mode.

Example 10 A%=100
 20 B%=50
 30 IF A%=B% THE GOTO QQQ ELSE STOP
 40 GOTO 30
 50 QQQ:PRINT "Equal"

 Ok
 RUN
 Break in line 30

 Ok
 PRINT A%
 100

 Ok
 PRINT B%
 50

 Ok
 B%=100

 OK
 CONT
 Equal

 Ok

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 752

Chapter 2 Program Instructions

COPY
Field of Application Statement for copying fi les.

Syntax COPY<sexp1>[,<sexp2>]
<sexp1> is the name and optionally directory of the original fi le.
<sexp2> is, optionally, a new name and/or directory for the copy.

Remarks This statement allows you to copy a fi le to another name and/or directory as an
alternative to LOADing the fi le in question and then SAVEing it.

 If no directory is specifi ed for the original and/or copy, the current directory
will be used by default (see CHDIR statement). By default, the current
directory is "c:", which is the printer’s permanent memory. If the fi le is to
be be copied from or to another directory than the current one, the fi le name
must contain a directory reference.

 A fi le cannot be copied to the same name in the same directory.

 In addition to copying fi les to the printer’s permanent or temporary memory
or a DOS-formatted memory card, a fi le can also be copied to an output
device such as the printer’s display or a serial communication channel.
Copying a program to the standard OUT channel has the same effect as
LOADing and LISTing it.

 Note that bitmap fonts and images are not fi les and therefore cannot
be copied.

Examples In the following examples, "c:" is the current directory.

 Copying a fi le from "card1:" to the current directory without changing
the fi le name:

 COPY "card1:LABEL1.PRG"

 Copying a fi le from "card1:" to the current directory and changing
the fi le name:

 COPY "card1:FILELIST.PRG","COPYTEST.PRG"

 Copying a fi le from "c:" to a directory other than the current one without
changing the fi le name:

 COPY "c:FILELIST.PRG","card1:FILELIST.PRG"

 Copying a fi le in the current directory to a new name within the same
directory:

 COPY "LABEL1.PRG","LABEL2.PRG"

 Copying a fi le in the current directory to serial channel "uart1:":

 COPY "LABEL1.PRG","uart1:"

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 53

Chapter 2 Program Instructions

COUNT&
Field of Application Statement for creating a counter (Intermec Direct Protocol only).

Syntax COUNT& <sexp1>,<nexp1>,<sexp2>
<sexp1> is the type of counter parameter to be set:
 START (start value)
 WIDTH (minimum number of digits)
 COPY (number of copies before update)
 INC (increment/decrement at update)
 STOP (stop value)
 RESTART (restart counting at this value)
<nexp1> is the counter reference number (integers only)
<sexp2> is the parameter value

Remarks This instruction can only be used in the Intermec Direct Protocol.

 The counters can be used in text and bar code fi elds and are global, which
means that they are not connected to any special label or layout, but
will be updated at every execution of PRINTFEED statements where
the counter in question is used.

 Counters are designated using positive integers, for example 1, 2, or 3. When
used for printing, they are referred to by “CNT<ncon>$” variables, where
<ncon> is the number of the counter as specifi ed by COUNT&, for example
CNT5$. A counter variable without a matching counter will be regarded
as a common string variable.

 The value of the start, stop, and restart parameters decide the type of
counter (alpha or numeric). If different types of counter are specifi ed
in these parameters, the last entered parameter decides the type. Alpha
counters count A-Z whereas numeric counters use numbers without
any practical limit.

 Counters are not saved in the printer’s memory, but will have to be recreated
after each power up. Therefore, it may be wise to save the COUNT&
statements as a fi le in the host.

 START:
 Decides the fi rst value to be printed. If a single letter is entered (A-Z), the

counter will become an alpha counter, and if one or several digits are entered
the counter will be numeric. Numeric values can be positive or negative.
Negative values are indicated by a leading minus sign.

 Default: 1 (numeric) or A (alpha)

 WIDTH:
 This parameter can only be used in numeric counters and decides the

minimum number of digits to be printed. If the counter value contains a
lesser number of digits, leading zero (0) characters will be added until
the specifi ed number of digits is obtained. If the number of digits in the
counter value is equal to or larger than specifi ed in the width parameter, the
value will be printed in its entity.

 Default: 1 (no leading zeros)

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 754

Chapter 2 Program Instructions

COUNT&, cont.
Remarks, cont. COPY:
 Decides how many copies (labels etc.) will be printed before the counter is

updated according to the INC parameter.
 Default: 1

 INC:
 Decides by which value the counter should be incremented or decremented

when it is updated. In case of decrementation, the value should contain
a leading minus sign.

 Default: 1

 STOP:
 Decides the value after which the counter should start all over again at the

value specifi ed by the RESTART parameter. If a single letter is entered
(A-Z), the counter will become an alpha counter, and if one or several digits
are entered the counter will be numeric. When a counter is decremented,
a stop value less than the start value must be given, since the default stop
value will never be reached.

 Default: 2,147,483,647 (numeric) or Z (alpha)

 RESTART:
 Decides at which value the counter should start all over again after having

exceeded the STOP parameter value. If a single letter is entered (A-Z),
the counter will become an alpha counter, and if one or several digits are
entered the counter will be numeric.

 Default: 1 (numeric) or A (alpha)

Examples In this example, a counter is created. It will start at number 100 and be

updated by a value of 50 after every second label until the value 1000 is
reached. Then the counter will start again at the value 200. All values will
be expressed as 4-digit numbers with leading zeros.

 COUNT& "START",1,"100" ↵
 COUNT& "WIDTH",1,"4" ↵
 COUNT& "COPY",1,"2" ↵
 COUNT& "INC",1,"50" ↵
 COUNT& "STOP",1,"1000" ↵
 COUNT& "RESTART",1,"200" ↵

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 55

Chapter 2 Program Instructions

CSUM
Field of Application Statement calculating the checksum of an array of strings.

Syntax CSUM<ncon>,<svar>,<nvar>
<ncon> is the type of checksum calculation:
 1: Longitudinal Redundancy Check (LRC)
 XOR in each character in each string
 array[0][0] xor array[0][1] ... array[n][n]
 2: Diagonal Redundancy Check (DRC)
 right rotation, then XOR on each character in each

 string
 rot(array[0][0] xor array[0][1]
 3: Longitudinal Redundancy Check (LRC)
 Strip string of DLE (0x10) before doing the LRC
<svar> if <ncon> =1 or 2: The array of strings of which the checksum

is to be calculated.
 if <ncon> = 3: Checksum string.
<nvar> is the variable in which the result will be presented.

Remarks These types of checksum calculation can only be used for string arrays,
not for numeric arrays. In case of CSUM 3,<svar>,<nvar>, the resulting
variable will be the indata for next CSUM calculation, unless the
variable is reset.

Example In this example, the DRC checksum of an array of strings is calculated:

 10 ARRAY$(0)="ALPHA"
 20 ARRAY$(1)="BETA"
 30 ARRAY$(2)="GAMMA"
 40 ARRAY$(3)="DELTA"
 50 CSUM 2,ARRAY$,B%
 60 PRINT B% :REM DRC CHECKSUM
 RUN
 yields:
 252

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 756

Chapter 2 Program Instructions

CUT
Field of Application Statement activating an optional cutter.

Syntax CUT

Remarks Obviously, this statement only works with printers fi tted with a cutter. A

cutter is normally used to cut non-adhesive paper strip or to cut through the
liner between self-adhesive labels.

 When a PRINTFEED statement is executed, the printer feeds out a certain
amount of the media according to the printer’s setup in regard of startadjust
and stopadjust, as explained in its Installation & Operation manual. Then
the cutter can be activated by a CUT statement.

Example This program orders the printer to print a text and then cut off the media:

 10 PRPOS 250,250
 20 DIR 1
 30 ALIGN 4
 40 FONT "Swiss 721 BT"
 50 PRTXT "Hello everybody!"
 60 PRINTFEED
 70 CUT
 RUN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 57

Chapter 2 Program Instructions

CUT ON/OFF
Field of Application Statement enabling or disabling automatic cutting after PRINTFEED

execution and optionally adjusting the media feed before and after
the cutting.

Syntax CUT [<nexp>] ON|OFF
<nexp> is optionally the length of media to be fed out before cutting

and pulled back after cutting.
Default: CUT OFF

Remarks This statement makes it possible to enable or disable automatic execution of
a CUT operation directly after the execution of each PRINTFEED statement.
If any extra media feed in connection with the cutting operation is required,
use startadjust and stopadjust setup or specify the desired length of media
to be be fed out before the cutting is performed and pulled back afterwards
in the CUT ON statement.

Example This program enables automatic cutting and orders the printer to print a text
and feed out an extra amount of strip before cutting the media. The media is
then pulled back the same distance:

 10 CUT 280 ON
 20 PRPOS 250,250
 30 DIR 1
 40 ALIGN 4
 50 FONT "Swiss 721 BT"
 60 PRTXT "Hello everybody!"
 70 PRINTFEED
 RUN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 758

Chapter 2 Program Instructions

DATE$
Field of Application Variable for setting or returning the current date.

Syntax Setting the date: DATE$=<sexp>
<sexp> sets the current date by a 6-digit number specifying Year,

Month and Day (YYMMDD).

 Returning the date: <svar>=DATE$[(<sexp>)]
<svar> returns the current date according to the printer’s calendar.
<sexp> is an optional fl ag "F", indicating that the date will be returned

according to the format specifi ed by FORMAT DATE$.

Remarks This variable works best if a real-time clock circuit (RTC) is fi tted on the
printer’s CPU board. The RTC is battery backed-up and will keep record of
the time even if the power is turned off or lost.

 If no RTC is installed, the internal clock will be used. After startup, an error
will occur when trying to read the date or time before the internal clock has
been manually set by means of either a DATE$ or a TIME$ variable. If only
the date is set, the internal clock starts at 00:00:00 and if only the time
is set, the internal clock starts at Jan 01, 1980. After setting the internal
clock, you can use the DATE$ and TIME$ variables the same way as
when an RTC is fi tted, until a power off or REBOOT causes the date
and time values to be lost.

 Date is always entered and, by default, returned in the order YYMMDD,
where:

 YY = Year Last two digits (for example 2000 = 00)
 MM = Month Two digits (01-12)
 DD = Day Two digits (01-28|29|30|31)
 Example: December 1, 2000 is entered as "001201".

 The built-in calendar corrects illegal values for the years 1980-2048, for
example the illegal date 001232 will be corrected to 010101.

 The format for how the printer will return dates can be changed by means of a
FORMAT DATE$ statement and returned by DATE$("F").

Example Setting the date and then returning the date in two different formats:

 10 DATE$ = "001201" (sets date)
 20 FORMAT DATE$ "DD/MM/YY" (sets date format)
 30 PRINT DATE$ (returns unformatted date)
 40 PRINT DATE$("F") (returns formatted date)
 RUN
 yields:
 001201
 01/12/00

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 59

Chapter 2 Program Instructions

DATEADD$
Field of Application Function returning a new date after a number of days have been

added to, or subtracted from, the current date or optionally a
specifi ed date.

Syntax DATEADD$([<sexp1>,]<nexp>[,<sexp2>])
<sexp1> is any date given according to the DATE$ format, which a

certain number of days should be added to or subtracted
from.

<nexp> is the number of days to be added to (or subtracted
from) the current date or optionally the date specifi ed
by <sexp1>.

<sexp2> is an optional fl ag "F", indicating that the date will be returned
according to the format specifi ed by FORMAT DATE$.

Remarks The original date (<sexp
1
>) should be entered according to the syntax for the

DATE$ variable, that is in the order YYMMDD, where:
 YY = Year Last two digits (for example 2000 = 00)
 MM = Month Two digits (01-12)
 DD = Day Two digits (01-28|29|30|31)
 Example: December 1, 2000 is entered as "001201".

 The built-in calendar corrects illegal values for the years 1980-2048, for
example the illegal date 001232 will be corrected to 010101.

 The number of days to be added or subtracted should be specifi ed as a
positive or negative numeric expression respectively.

 If no "F" fl ag is included in the DATEADD$ function, the result will be
returned according to the DATE$ format, see above.

 If the DATEADD$ function includes an "F" fl ag, the result will be returned
in the format specifi ed by FORMAT DATE$.

Example 10 DATE$ = "001201"
 20 A%=15
 30 B%=-10
 40 FORMAT DATE$ "DD/MM/YY"
 50 PRINT DATEADD$("001201",A%)
 60 PRINT DATEADD$("001201",A%,"F")
 70 PRINT DATEADD$(B%,"F")
 RUN
 yields:
 001216
 16/12/00
 21/11/00

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 760

Chapter 2 Program Instructions

DATEDIFF
Field of Application Function returning the difference between two dates as a number

of days.

Syntax DATEDIFF(<sexp1>,<sexp2>)
<sexp1> is one of two dates (date 1).
<sexp2> is the other of two dates (date 2).

Remarks To get the result as a positive numeric value, the two dates, for which
the difference is to be calculated, should be entered with the earlier of
the dates (date 1) fi rst and the later of the dates (date 2) last, see the
fi rst example below.

 If the later date (date 2) is entered fi rst, the resulting value will be negative,
see the second example below.

 Both dates should be entered according to the syntax for the DATE$ variable,
that is in the order YYMMDD, where:

 YY = Year Last two digits (for example 2000 = 00)
 MM = Month Two digits (01-12)
 DD = Day Two digits (01-28|29|30|31)
 Example: December 1, 2000 is entered as "001201".

 The built-in calendar corrects illegal values for the years 1980-2048, for
example the illegal date 001232 will be corrected to 010101.

Examples Calculation of the difference in days between the dates October 1, 2000
and November 30, 2000:

 10 A%=DATEDIFF("001001","001130")
 20 PRINT A%
 RUN
 yields:
 60

 If the later date is entered fi rst, the result will be negative:

 10 A%=DATEDIFF("001130","001001")
 20 PRINT A%
 RUN
 yields:
 -60

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 61

Chapter 2 Program Instructions

DBBREAK
Field of Application Statement for adding or deleting a breakpoint for the Fingerprint

Debugger.

Syntax DBBREAK<nexp>|<sexp>[ON|OFF]
<nexp> is the line number where the debugger will break and also

the name of the breakpoint.
<sexp> is the line label where the debugger will break and also the

name of the breakpoint.
ON adds the specifi ed breakpoint (default).
OFF deletes the specifi ed breakpoint.

Remarks The execution of a program will break at each program line, that has been
specifi ed as a breakpoint, and the message “ break in line nnn” will be
transmitted on the Debug STDOUT port. If a CONT statement is issued, the
execution will continue at next line, whereas if RUN is issued, the execution
will start again from the fi rst program line.

 The line number or line label does not to have to exist when a breakpoint
is added, but if a non-existing breakpoint is deleted an error will occur
(Error 39 or 70).

 There is no error given if a breakpoint is added more than once. When a
breakpoint is deleted, all breakpoints with the same name are deleted at the
same time. There will only be one break for each line even if there are more
than one breakpoint on that line.

 When a NEW statement is issued, all breakpoints will be deleted.

 If a breakpoint is set on a line with a call to a FOR or WHILE loop, there will
only be one break on that line (the fi rst time it is executed).

 Related instructions are DBBREAK OFF, DBEND, DBSTDIO, and
DBSTEP.

Example 10 PRINT "A"
 20 PRINT "B"
 30 PRINT "C"
 DBBREAK 20 ON
 RUN
 yields:
 A
 Break in line 20

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 762

Chapter 2 Program Instructions

DBBREAK OFF
Field of Application Statement for deleting all breakpoints for the Fingerprint Debugger.

Syntax DBBREAK OFF

Remarks This statement is similar to DBBREAK<nexp>|<sexp>OFF but deletes all
breakpoints instead of just one breakpoint at the time.

 Related instructions are DBBREAK, DBEND, DBSTDIO, and DBSTEP.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 63

Chapter 2 Program Instructions

DBEND
Field of Application Statement for terminating the Fingerprint Debugger.

Syntax DBEND

Remarks This statement is used for termianting the Fingerprint Debugger prematurely
and restore the STDIO settings as they were before the Debugger
was started.

 Related instructions are DBBREAK, DBBREAK OFF, DBSTDIO,
and DBSTEP.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 764

Chapter 2 Program Instructions

DBSTDIO
Field of Application Statement for selecting the standard IN/OUT channel for the Fingerprint

Debugger.

Syntax DBSTDIO <nexp1>,<nexp2>[,<sexp1>,<sexp2>]

 DBSTDIO [<nexp1>,<nexp2>,]<sexp1>,<sexp2>
<nexp1> is the desired Debug STDIN channel:
 0 = "console:"
 1 = "uart1:" (default)
 2 = "uart2:"
 3 = "uart3:"
 4 = "centronics:"
 5 = "net1:"
 6 = "usb1:"
<nexp2> is the desired Debug STDOUT channel:
 0 = "console:"
 1 = "uart1:" (default)
 2 = "uart2:"
 3 = "uart3:"
 5 = "net1:"
 6 = "usb1:"
<sexp1> Preamble (default: empty string)
<sexp2> Postamble (default: empty string)

Remarks The maximum size of the preamble and postamble strings is 12 characters.
 Related instructions are DBBREAK, DBBREAK OFF, DBEND, and

DBSTEP.

Example This statement selects "uart2:" as Debug STDIO channel. Preamble is
specifi ed as “ in" and postamble as “ out":

 DBSTDIO 2,2,"in","out"

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 65

Chapter 2 Program Instructions

DBSTEP
Field of Application Statement for specifying the interval between breaks for the the

Fingerprint Debugger and execute the program accordingly.

Syntax DBSTEP<ncon>
<ncon> is the number of lines that will be executed before break.

Default: 1 line.

Remarks If <ncon> is omitted, one line will be executed, but if <ncon> is specifi ed
as 0, nothing at all will happen.

 DBSTEP cannot be used in execution mode (yields Error 78).

 When DBSTEP is used on the last line in a program, the line will be
executed but there will be no break.

 If DBSTEP is used in a program with a FOR or WHILE loop, there will
only be one break on the line which is calling for the FOR or WHILE
loop (the fi rst time it is executed).

 Related instructions are DBBREAK, DBBREAK OFF, DBEND, and
DBSTDIO.

Example 10 PRINT "11"
 20 PRINT "22"
 30 PRINT "33"
 40 PRINT "44"
 50 PRINT "55"
 60 PRINT "66"
 70 PRINT "77"
 80 PRINT "88"
 90 PRINT "99"
 DBSTEP 4
 11
 22
 33
 44
 Break in line 50
 Ok
 DBSTEP
 55
 Break in line 60
 Ok
 DBSTEP 2
 66
 77
 Break in line 80
 CONT
 88
 99
 Ok

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 766

Chapter 2 Program Instructions

DELETE
Field of Application Statement deleting one or several consecutive program lines from the

printer’s working memory.

Syntax DELETE<ncon1>[-<ncon2>]
<ncon1> is the line, or the fi rst line in a range of lines, to be deleted.
<ncon2> is (optionally) the last line in a range of program lines to be

deleted.

Remarks This statement can only be used for editing the current program in
the Immediate Mode and cannot be included as a part of the program
execution.

Examples DELETE 50 deletes line 50 from the program.

 DELETE 50–100 deletes line 50 thru 100 from the program.

 DELETE 50– deletes all lines from line 50 to the end of the program.

 DELETE –50 deletes all lines from the start of the program to line 50.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 67

Chapter 2 Program Instructions

DELETEPFSVAR
Field of Application Statement for deleting variables saved at power failure.

Syntax DELETEPFSVAR<sexp>
<sexp> is the name of the variable to be deleted.

Remarks Related instructions are SETPFSVAR, GETPFSVAR, and LISTPFSVAR.

Examples DELETEPFSVAR "QCPS%"
 DELETEPFSVAR "QS$"

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 768

Chapter 2 Program Instructions

DEVICES
Field of Application Statement returning the names of all devices to the standard OUT

channel.

Syntax DEVICES

Remarks All devices available to the user in the Intermec Fingerprint fi rmware will
be listed, regardless if they are installed or not. There are also a number of
devices for internal use only. The list below indicates if and how the device
can be OPENed (see OPEN statement). If you try to OPEN a device, which
is not fi tted or is disconnected, the message "Error in fi le name" will be
printed to the standard OUT channel (see SETSTDIO). Note that all names
of devices are lowercase and appended by a colon (:).

 Device Explanation Can be OPENed for...
 c: Printer’s permanent memory Input/Output/Random
 card1: SRAM memory card Input/Output/Random
 cardx: Special applications only Output
 centronics: Parallel communication port Input
 console: Printer’s display and/or keyboard Input/Output
 dll: Special applications only –
 lock: Electronic keys Input
 net1: EasyLAN 100i Input/Output
 par: Special applications only –
 rom: Kernel and Read-only memory card Input
 rs485: RS 485 communication Input/Output
 status: EasyLAN100i Input/Output
 storage: Electronic keys Input/Output/Random
 tmp: Printer’s temporary memory Input/Output/Random
 uart1: Serial communication port Input/Output
 uart2: Serial communication port Input/Output
 uart3: Serial communication port Input/Output
 usb1: Serial communication port Input/Output
 wand: Data from Code 128 bar code Input

 c: is the printer’s permanent read/write memory (Flash SIMMs). It will retain
its content when the power is turned off. For compatibility with programs
created in previous versions of Intermec Fingerprint, the designation
"ram:" will also be accepted.

 card1: is a read/write DOS-formatted SRAM-type memory card inserted in
the printer’s memory card adapter.

 cardx: is used for special applications only.

 centronics: is the Centronics parallel port. Three different types can be
selected by means of SYSVAR(25).

 console: is the printer’s display and keyboard. The keyboard can be used
for input only and the display for output only.

 dll: is used for special applications only.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 69

Chapter 2 Program Instructions

DEVICES, cont.
Remarks, cont. lock: is all electronic key items that has been specifi ed as locks by means

of special software. Each electronic key may contain several key items with
different properties (counter, lock, or storage). The device name calls all
key items with the corresponding properties, regardless if they are stored
in the key circuit on the CPU board or in an inserted external key. Each
key item has a 4-character name, usually appended by a delimiter (?) and a
4-character password. Also see OPEN statement.

 net1: is the communication channel for the EasyLAN 100i interface board
(Ethernet communication).

 par: is used for special applications only.

 rom: is both the read-only kernel sectors in the Boot-Bank fl ash SIMM,
and any read-only memory card inserted in the printer’s memory card
adapter, for example an OTPROM card, a Flash card, or a read-only
formatted SRAM card.

 rs485: is used in connection with RS 485 point-to-point or multidrop
communication to specify that the RS 485 protocol is used and to specify the
protocol address of the unit, for example "rs485:23".

 status: is used in connection with sending error messages from the printer to
the home page of an EasyLAN 100i interface board.

 storage: is all electronic key items (see below) in the printer that has
been specifi ed as storages by means of special software. Note that this
memory is comparatively slow.

 tmp: is the printer’s temporary read/write memory (DRAM SIMMs). It will
lose its content when the power is turned off or at a power failure. Thus, do
not use DRAM for valuable data that cannot be recreated, but copy it to "c:".
One advantage of using "tmp:" instead of "c:" is that data can be written to
DRAM faster than to the fl ash memory. To speed up operation, the Intermec
Fingerprint fi rmware (except program modules with dynamic downloading)
is copied from "rom:" to "tmp:" at startup and used from "tmp:".

 uart1: is the standard RS 232C port.

 uart2: is an additional serial port on an optional interface board.

 uart3: is an additional serial port on an optional interface board.

 usb1: is the standard USB (Universal Serial Bus) port on EasyCoder
F-series printers.

 wand: is any input from an Code 128 bar code not containing any
FNC3 character via a bar code wand or reader connected to the wand
interface.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 770

Chapter 2 Program Instructions

DEVICES, cont.
Example DEVICES

yields for example:
 c:
 card1:
 cardx:
 centronics: (optional interface board in EasyCoder F-series)
 console:
 dll:
 lock:
 net1: (only if an optional interface board is fi tted)
 par:
 rom:
 rs485: (only if an optional interface board is fi tted)
 status:
 storage:
 tmp:
 uart1:
 uart2: (only if an optional interface board is fi tted)
 uart3: (only if an optional interface board is fi tted)
 usb1: (EasyCoder F-series only)
 wand:

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 71

Chapter 2 Program Instructions

DIM
Field of Application Statement specifying the dimensions of an array.

Syntax DIM<<nvar>|<svar>>(<nexp1>[,<nexp2>...])...

 ...[,<<nvar>|<svar>>(<nexp1>[,<nexp2>...])]
<nvar>|<svar> is the name of the array.
<nexp1> is the max. subscript value for the fi rst dimension.
<nexp2-10> are, optionally, the max. subscript value for the following

dimensions (No. 2-10).

Remarks An array is created by entering a variable followed by a number of
subscripts (max 10) separated by commas. All the subscripts are enclosed
by parentheses. Each subscript represents a dimension. The number of
subscripts in an array variable, the fi rst time (regardless of line number) it
is referred to, decides its number of dimensions. The number of elements in
each dimension is by default restricted to four (No. 0-3).

 If more than 4 elements in any dimension is desired, a DIM statement must be
issued. Note that 0 = 1:st element, 1 = 2:nd element, etc.

 For example ARRAY$(1,2,3) creates a three-dimensional array, where the
dimensions each contain 4 elements (0-3) respectively. This corresponds to
the statement DIM ARRAY$(3,3,3).

 It is not possible to change the number of dimensions of an array that
already has been created during runtime. (Error 57, “Subscript out of
range” will occur.)

 Considering the printer’s limited memory and other practical reasons, be
careful not to make the arrays larger than necessary. A DIM statement can be
used to limit the amount of memory set aside for the array.

Examples This example creates an array containing three dimensions with 13
elements each:

 100 DIM NAME$(12,12,12)

 Here, two one-dimensional arrays are created on the same program line:

 10 DIM PRODUCT$(15), PRICE%(12)
 20 PRODUCT$(2)="PRINTER"
 30 PRICE%(2)=1995
 40 PRINT PRODUCT$(2);" $";PRICE%(2)
 RUN
 yields:
 PRINTER $1995

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 772

Chapter 2 Program Instructions

DIR
Field of Application Statement specifying the print direction.

Syntax DIR<nexp>
<nexp> is the print direction (1, 2, 3, or 4).
Default value: 1
Reset to default by: PRINTFEED execution

Remarks A change of print direction affects all printing statements, that is PRTXT,
PRBAR, PRIMAGE, PRBOX, and PRLINE statements that are executed
later in the program until a new DIR statement or a PRINTFEED
statement is executed.

 The print direction is specifi ed in relation to the media feed direction
as illustrated below. The print direction affects the various types of
objects as follows:

 Text:

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 73

Chapter 2 Program Instructions

DIR, cont.
Remarks, cont. Bar Codes:

 Horizontal “ picket fence" printing. Vertical “ ladder" printing.

 Images:

 The relation of the image and the print direction depends how the image
was drawn. An image can only be “rotated" 180˚. Thus, it may be useful
to have two copies of the image available with different extensions for
either horizontal or vertical printing:

 DIR 1 & 3, use extension .1
 DIR 2 & 4, use extension .2

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 774

Chapter 2 Program Instructions

DIR, cont.
Remarks, cont. Lines: Boxes:

Examples Printing a label with one line of text and drawing a line beneath the text:

 10 PRPOS 30,300
 20 DIR 1
 30 ALIGN 4
 40 FONT "Swiss 721 BT",18
 50 PRTXT "TEXT PRINTING"
 60 PRPOS 30,280
 70 PRLINE 555,10
 80 PRINTFEED
 RUN

 Printing the same information vertically necessitates new positioning to
avoid Error 1003, “ Field out of label."

 10 PRPOS 300,30 (new position)
 20 DIR 4 (new direction)
 30 ALIGN 4
 40 FONT "Swiss 721 BT",18
 50 PRTXT "TEXT PRINTING"
 60 PRPOS 320,30 (new position)
 70 PRLINE 555,10
 80 PRINTFEED
 RUN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 75

Chapter 2 Program Instructions

END
Field of Application Statement ending the execution of the current program or subroutine

and closing all OPENed fi les and devices.

Syntax END

Remarks END can be placed anywhere in a program, but is usually placed at the
end. It is also useful for separating the “main” program from possible
subroutines with higher line numbers. It is possible to issue several END
statements in the same program.

Example A part of a program, which produces fi xed line-spacing, may look this way:

 10 FONT"Swiss 721 BT"
 20 X%=300:Y%=350
 30 INPUT A$
 40 PRPOS X%,Y%
 50 PRTXT A$
 60 Y%=Y%-50
 70 IF Y%>=50 GOTO 30
 80 PRINTFEED
 90 END

 The Y-coordinate will be decremented by 50 dots for each new line until it
reaches the value 50. The END statement terminates the program.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 776

Chapter 2 Program Instructions

EOF
Field of Application Function for checking for an end-of-fi le condition.

Syntax EOF(<nexp>)
<nexp> is the number assigned to the fi le when it was OPENed.

Remarks The EOF function can be used with fi les OPENed for sequential input in
connection with the statements INPUT#, LINE INPUT#, and INPUT$ to
avoid the error condition “Input past end” which has no error message.
When the EOF function encounters the end of a fi le, it returns the value -1
(true). If not, it returns the value 0 (false).

Example 10 DIM A%(10)
 20 OPEN "DATA" FOR OUTPUT AS #1
 30 FOR I%=1 TO 10
 40 PRINT #1, I%*1123
 50 NEXT I%
 60 CLOSE #1
 70 OPEN "DATA" FOR INPUT AS #2
 80 I%=0
 90 WHILE NOT EOF(2)
 100 INPUT #2, A%(I%):PRINT A%(I%)
 110 I%=I%+1:WEND
 120 IF EOF(2) THEN PRINT "End of File"
 RUN
 yields:
 1123
 2246
 3369
 4492
 5615
 6738
 7861
 8984
 10107
 11230
 End of File

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 77

Chapter 2 Program Instructions

ERL
Field of Application Function returning the number of the line on which an error condition

has occurred.

Syntax ERL

Remarks Also useful in connection with an ON ERROR GOTO statement.

Examples You can check at which line the last error since power up occurred
like this:

 PRINT ERL
 yields for example
 40

 In this example, the line number of the line, where an error has occurred,

decides the action to be taken (in this case the font size is too large
for the label width):

 10 ON ERROR GOTO 1000
 20 FONT "Swiss 721 BT",100
 30 PRTXT "HELLO EVERYBODY"
 40 PRINTFEED
 50 END
 1000 IF ERL=40 THEN PRINT "PRINT ERROR"
 1010 RESUME NEXT
 RUN

yields:
 PRINT ERROR

 You can use the ERL function in programs without line numbers too,
because such programs have automatically generated hidden line numbers
that are revealed when the program is LISTed (see Intermec Fingerprint
7.50, Programmer’s Guide). This is the same program as above but
without line numbers:

 NEW
 IMMEDIATE OFF
 ON ERROR GOTO QAAA
 FONT "Swiss 721 BT",100
 PRTXT "HELLO EVERYBODY"
 PRINTFEED
 END
 QAAA: IF ERL=40 THEN PRINT "PRINT ERROR"
 RESUME NEXT
 IMMEDIATE ON
 RUN

yields:
 PRINT ERROR

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 778

Chapter 2 Program Instructions

ERR
Field of Application Function returning the code number of an error that has occurred.

Syntax ERR

Remarks The fi rmware is able to detect a number of error conditions. The errors are
represented by code numbers according to Chapter 7, “Error Messages.”
The ERR function enables the program to read the coded error number.
Thereby you may design your program to take proper action depending on
which type of error that may have occurred.

Example In this example, the code number of the error decides the action to
be taken:

 10 ON ERROR GOTO 1000

 100 PRTXT "HELLO"
 110 PRINTFEED
 120 END

 1000 IF ERR=1005 THEN PRINT "OUT OF PAPER"
 1010 RESUME NEXT

 You can also check the number of the last error since power up:

 PRINT ERR
 yields for example:
 1022

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 79

Chapter 2 Program Instructions

ERROR
Field of Application Statement for defi ning error messages and enabling error handling for

specifi ed error conditions (Intermec Direct Protocol only).

Syntax ERROR <nexp>[,<sexp>]
<nexp> is the number of the error condition.
<sexp> is the desired error message.

Remarks The ERROR statement can only be used in the Intermec Direct Protocol
for the purpose of enabling error-handling and creating customized error
messages, as described below.

 The built-in error-handler of the Intermec Direct Protocol will always
handle the following error conditions (also see the Intermec Direct Protocol
v7.50, Programmer’s Guide):

 • Out of paper
 • No fi eld to print
 • Head lifted
 • Out of transfer ribbon
 • Next label not found

 Other errors will not be handled unless they have been specifi ed by an
ERROR statement. The number of the error should be entered according to
the list of error messages at the end of this manual.

 The ERROR statement also allows you to edit a suitable message in any
language. This message will appear in the printer’s display window if the
error occurs. The error message will be truncated to 33 characters. Character
No. 1-16 will appear on the upper line and character 18-33 will appear on the
lower line, whereas character No. 17 always is ignored.

 ANSI control characters can be used in the error message string, see chapter
“Printer Function Control; Display” in the Intermec Fingerprint v7.50,
Programmer’s Guide. An empty string removes any previously entered error
message for the error in question. Likewise, a previously entered messages
string can be replaced by a new one.

 When an error defi ned by an ERROR statement is detected, the printer
sets its standard IN port BUSY and displays the error messages. The error
message will be cleared and the standard IN port will be set READY when
the printer’s <Print> key is pressed. However, in case of the standard errors,
the error condition must also be physically dealt with, for example by loading
a fresh stock of labels or lowering the printhead.

 Error messages are not saved in the printer’s memory, but new ERROR
statements will have to be downloaded after each power up. Therefore,
it is recommended to save a set of ERROR statements as a fi le in the
host computer.

 Note that the ERROR statements affects both the error messages in the
printer’s display window and the error messages returned to the host via the
standard OUT channel (see SETSTDIO statement).

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 780

Chapter 2 Program Instructions

ERROR, cont.
Remarks, cont. By default, no error messages are returned to the host in the Intermec

Direct Protocol, since the statement INPUT ON sets the verbosity level
to off, that is SYSVAR (18)= 0. However, the verbosity level can be
changed by means of VERBON/VERBOFF statements or the SYSVAR
(18) system variable.

 Different types of error messages to be returned on the standard OUT
channel can be selected by means of the SYSVAR (19) system variable.
If SYSVAR (19) is set to 2 or 3, the error message specifi ed by ERROR
is transmitted. If no such error message is available, a standard error
message in English will be transmitted (see list of Error Messages
in Chapter 7).

Examples In these examples, a few errors are specifi ed. Note the blank spaces for
character position 17 in each message (space characters are indicated
by doubleheaded arrows):

 ERROR 43,"MEMORY↔↔↔↔↔↔↔↔↔↔↔ OVERFLOW" ↵
 ERROR 1003,"FIELD↔OUT↔OF↔↔↔↔↔LABEL" ↵
 ERROR 1010,"HARDWARE↔↔↔↔↔↔↔↔↔ ERROR" ↵
 ERROR 1029,"PRINTHEAD↔VOLT-↔↔AGE↔TOO↔HIGH" ↵

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 81

Chapter 2 Program Instructions

EXECUTE
Field of Application Statement for executing a Fingerprint program line or a fi le with

Fingerprint program lines from within another Fingerprint program.

Syntax EXECUTE<sexp>
<sexp> is one line of Fingerprint instructions or the name of a fi le

containing at least one line of a Fingerprint program.

Remarks This statement allows you to create a library of layouts, subroutines,
texts, etc, which can be executed as a part of a program without having
to merge the programs.

 The program called by EXECUTE must not contain any line numbers
or line labels.

 If the EXECUTE statement is followed by a string of Fingerprint instructions,
they should be separated by colons.

 When an error occurs in an EXECUTE fi le, the line number in the error
message is that of the EXECUTE fi le, not of the program where the
EXECUTE statement is issued.

 EXECUTE is only allowed in the execute mode, not in the immediate
mode (yields Error 69).

 Recursive call of EXECUTE is not allowed (yields Error 78).

Example This example shows how a preprogrammed fi le containing a bar code
is executed as a part of a Fingerprint program, where the input data
and printfeed are added:

 IMMEDIATE OFF
 DIR 1
 ALIGN 7
 BARSET "CODE39",2,1,3,120
 BARFONT "Swiss 721 BT",10,8,5,1,1
 BARFONT ON
 IMMEDIATE ON
 SAVE "BARCODE.PRG",L

 NEW
 10 PRPOS 30,400
 20 EXECUTE "BARCODE.PRG"
 30 PRBAR "ABC"
 40 PRINTFEED
 RUN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 782

Chapter 2 Program Instructions

FIELD
Field of Application Statement for creating a single-record buffer for a random file

and dividing the buffer into fi elds to which string variables are
assigned.

Syntax FIELD[#]<nexp1>,<nexp2>AS<svar1>[,<nexp3>AS<svar2>...]
indicates that whatever follows is a number. Optional.
<nexp1> is the number assigned to the fi le when it was OPENed.
<nexp2-n> is the number of bytes to be reserved for the string variable

that follows. (Null not allowed.)
<svar1-n> is the designation of the string variable, for which space

has been reserved.

Remarks The buffer is divided into fi elds, each of which is given an individual length
in bytes. A string variable is assigned to each fi eld. This statement does not
put any data in the buffer, it only creates and formats the buffer, allowing you
to place the data using LSET and RSET statements.

 Before using this statement, consider the maximum number of characters
(incl. space characters) needed for each variable and check that the
total does not exceed the record size given when the fi le was OPENed
(by default 128 bytes).

 When a fi le is CLOSEd, all its FIELD defi nitions will be lost.

Example This example opens and formats a fi le buffer for a single record. The
buffer is divided into three fi elds, with the size of 25, 30, and 20 bytes
respectively.

 10 OPEN "ADDRESSES" AS #8 LEN=75
 20 FIELD#8,25 AS F1$, 30 AS F2$, 20 AS F3$

 (Imagine a spreadsheet matrix where the fi le is the complete spreadsheet,
the records are the lines and the fi elds are the columns. The buffer can only
contain one such line at the time.)

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 83

Chapter 2 Program Instructions

FIELDNO
Field of Application Function getting the current fi eld number for partial clearing of the

print buffer by a CLL statement.

Syntax FIELDNO

Remarks By assigning the FIELDNO function to one or several numeric variables,
you can divide the print buffer into portions, which can be cleared
using a CLL statement.

Example 10 PRPOS 100,300
 20 FONT "Swiss 721 BT"
 30 PRTXT "HAPPY"
 40 A%=FIELDNO
 50 PRPOS 100,250
 60 PRTXT "NEW YEAR"
 70 B%=FIELDNO
 80 PRPOS 100, 200
 90 PRTXT "EVERYBODY!"
 100 PRINTFEED
 110 CLL B%
 120 PRPOS 100,200
 130 PRTXT "TO YOU!"
 140 PRINTFEED
 150 CLL A%
 160 PRPOS 100,250
 170 PRTXT "BIRTHDAY"
 180 PRPOS 100,200
 190 PRTXT "DEAR TOM!"
 200 PRINTFEED
 RUN
 yields three labels:

 #1 #2 #3

 HAPPY HAPPY HAPPY
 NEW YEAR NEW YEAR BIRTHDAY
 EVERYBODY! TO YOU! DEAR TOM!

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 784

Chapter 2 Program Instructions

FILE& LOAD
Field of Application Statement for receiving and storing binary fi les in the printer’s

memory.

Syntax FILE& LOAD[<nexp>1,]<sexp>,<nexp2>[,<nexp3>]
<nexp1> is optionally the number of bytes to skip before starting

to read the fi le data.
<sexp> is the desired name of the fi le when stored in the printer’s

memory.
<nexp2> is the size of the fi le in number of bytes.
<nexp3> optionally specifi es a communication channel OPENed for

INPUT by the number assigned to the device.
 (Default: Std IN channel.)

Remarks This statement prepares the printer to receive a binary fi le on the standard
IN channel (see SETSTDIO statement) or on another communication
channel OPENed for INPUT.

 Another, but more cumbersome, way of obtaining the same result is to use
the TRANSFER KERMIT statement.

 Image fi les and font fi les can also be downloaded using the IMAGE
LOAD statement.

 As opposed to IMAGE LOAD and TRANSFER KERMIT statements,
FILE& LOAD will not immediately install the fonts, but the font fi les will
remain as fi les in the printer’s memory until next power-up.

 The optional fi rst parameter makes it possible to use this statement in
MS-DOS (CR/LF problem).

 The name of the fi le, when stored in the printer’s memory, may consist of
max. 30 characters including possible extension.

 The size of the original fi le should be given in bytes according to its
size in the host.

 Before the FILE& LOAD statement can be used on a serial channel, the
setup must be changed to 8 characters, RTS/CTS handshake. When a FILE&
LOAD statement is executed, the execution stops and waits for the number
of bytes specifi ed in the statement to be received. During the transfer of fi le
data to the printer, there is a 25 sec. timeout between characters. If a new
character has not been received within the timeout limit, an error occurs
(Error 80, “Download timeout”). When the specifi ed number of characters
have been received, the execution is resumed.

Example 10 OPEN "uart2:" FOR INPUT AS 5
 20 FILE& LOAD "FILE1.PRG",65692,5
 30 CLOSE 5

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 85

Chapter 2 Program Instructions

FILENAME$
Field of Application Function returning the names of the fi les stored in the specifi ed part

of the printer’s memory.

Syntax FILENAME$[(<sexp>)]
<sexp> is the name of the memory device from which the fi rst

fi le name (in alphabetical order) will be listed. Parts of
fi le names and wildcards (*) are allowed. Maximum size
is 30 characters.

 If <sexp> is omitted, the next fi le name in the same memory
device is listed. Can be repeated. When there are no fi les left
to list, the output string will be empty.

Remarks The specifi ed memory device must be mounted. The fi le name must
correspond to the name of the fi le stored in the memory device in regard of
upper- and lowercase characters. Wildcards (* = ASCII 42 dec.) can be used.
The list may include all type of fi les. Even system fi les, that are preceded by
a period character (for example .FONTALIAS), may be listed. No device
names are included in the listed fi le names.

Example This example shows how all fi les in "rom:" with the extension .PRG

are listed:

 10 FNAME$ = FILENAME$("rom:*.PRG")
 20 WHILE FNAME$<> ""
 30 PRINT FNAME$
 40 FNAME$ = FILENAME$
 50 WEND
 RUN
 yields for example:
 ERRHAND.PRG
 FILELIST.PRG
 LBLSHTXT.PRG
 LINE_AXP.PRG
 LSS-SENSOR.PRG
 MKAUTO.PRG
 SHELLXP.PRG
 WINXP.PRG

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 786

Chapter 2 Program Instructions

FILES
Field of Application Statement for listing the fi les stored in one of the printer’s directories

to the standard OUT channel.

Syntax FILES[<sexp>][,A]
<sexp> optionally specifi es the directory (see DEVICES).

Remarks If no directory is specifi ed, the fi les in the printer’s current directory will be
listed. As default, the current directory is the printer’s permanent memory
("c:"), see CHDIR statement.

 By including a reference to a memory device ("c:", "tmp:", "rom:",
"card1:", "lock:", or "storage:", see DEVICES statement), the fi les of
the specifi es directory will be returned without having to change the
current directory.

 System fi les are indicated by a leading period character (.) in their
names. If an “A" fl ag is included in the statement, all fi les including
system fi les will be listed. If the “A" fl ag is omitted, all fi les, except
system fi les, will be listed.

 The number of bytes for each fi le and the total number of free and used bytes
in the specifi ed directory will also be included in the list.

Example The presentation may look like this on the host screen:

 FILES "c:",A

 Files on c:

 APPLICATION 1 STDIO
 2
 DIRECT 0 .setup.saved
 157

 496653 bytes free 160 bytes used

 Ok

 Note that all programs you create yourself automatically get the extension

.PRG, unless you manually give a program another extension, see SAVE.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 87

Chapter 2 Program Instructions

FLOATCALC$
Field of Application Function for calculation with fl oat numbers.

Syntax FLOATCALC$(<sexp1>,<sexp2>,<sexp3>[,<nexp1>])
<sexp1> is the fi rst operand.
<sexp2> is the operator (+, -, *, or /).
<sexp3> is the second operand.
<nexp1> is, optionally, the precision in decimals (default 10).

Remarks Operands are fl oat numbers, that is, a string of digits with a decimal point to
separate decimals from integers. Operands can also contain leading plus
(+), minus (-), and space characters. Space characters are ignored, whereas
the usual mathematical rules apply to plus and minus signs. All other
characters (or plus, minus, and space characters in other positions than
leading) generate errors.

 Note the mathematical rules:
 - - yields +
 - + yields -
 + - yields -
 + + yields +

 The following arithmetic operators are allowed:
 + addition ASCII 043 dec
 - subtraction ASCII 045 dec
 * multiplication ASCII 042 dec
 / division ASCII 047 dec
 Any other type of operators or other characters will generate an error.

 The precision parameter optionally specifi es the number of decimals in
the result of the calculation. The result will be truncated accordingly. For
example, if the number of decimals is specifi ed as 5, the result 5.76123999
will be presented as 5.76123.

 The result of a FLOATCALC$ function can be formatted using a
FORMAT$ function.

Examples Addition:

 A$ = "234.9"
 B$ = "1001"
 PRINT FLOATCALC$ (A$,"+",B$,5)
 yields:
 1235.90000

 Subtraction:

 A$ = "234.9"
 C% = 2
 PRINT FLOATCALC$ (A$,"-",100.013,C%)
 yields:
 134.88

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 788

Chapter 2 Program Instructions

FONT (FT)
Field of Application Statement for selecting a scaleable TrueType or TrueDoc single-byte

font or a single-byte bitmap font for the printing of the subsequent
PRTXT statements.

Syntax FONT|FT<sexp1>[,<nexp1>[,<nexp2>[,<nexp3>]]]
<sexp1> is the name of the font. Default: "Swiss 721 BT".
<nexp1> is optionally the height in points of the font. Default: 12 points.

Use MAG to enlarge with bitmap fonts.
<nexp2> is the clockwise slant in degrees (0–90°). Default: 0.
 Does not work with bitmap fonts.
<nexp3> is the width enlargement in percent relative the height

(1-1000). Default: 100.
 Does not work with bitmap fonts.
Reset to default by: PRINTFEED execution.

Remarks Intermec Fingerprint v7.60 supports scaleable fonts in TrueType and
TrueDoc format that comply with the Unicode standard. A large number
of scaleable fonts are available on special request, so it is quite possible
that your printer is fi tted with a unique selection of fonts. Use a FONTS
statement to list the names of all fonts installed in your own printer to
the standard OUT channel.

 To maintain compatibility with programs created in earlier versions of
Intermec Fingerprint, you can also specify bitmap font names, for example
"SW030RSN" or "MS060BMN.2". In case of standard bitmap font name,
the fi rmware will select the corresponding scaleable font in the printer’s
memory and set its parameters so its direction, appearance, and size come
as close to the specifi ed bitmap font as possible. A prerequisite is that
the printer’s memory contains the standard complement of outline fonts.
Non-standard bitmap fonts can also be used. They will not produce
any outline fonts, but will retain their bitmap format. Any extension
to the bitmap font name is of no consequence. See Chapter 6, “Fonts”
in this manual.

 The height of the font is given in points (same as in your PC), which means
that a text will be printed in the same size regardless of the printhead density
of the printer. The unit of measure is points (1 point = 1/72 inch ≈ 0.352
mm) and specifi es the height of the font including ascenders and descenders.
Sizes less than 4 points will be unreadable. In case of bitmap fonts, it is
recommended to use MAG to enlarge the font instead of specifying a font
height (works only in multiples of 12 points).

 Any font may be magnifi ed up to 4 times separately in regard of height and
width using a MAG statement. Bitmap fonts will get somewhat jagged edges
when magnifi ed, whereas outline fonts will remain smooth.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 89

Chapter 2 Program Instructions

FONT (FT), cont.
Remarks, cont. Slanting means that you can create the same effect as in ITALIC characters.The

higher value, the more askew the upright parts of the characters will come.
Slanting increases clockwise. Values greater than 65-70° will be unreadable.
Slanting cannot be used with bitmap fonts.

 Slanting value: 10

 Slanting value: 20

 A scaleable font can enlarged in regard of width relative the height. The
value is given as percent (1-1000). This means that if the value is 100, there
is no change in the appearance of the characters, whereas if the value is
given as, for example, 50 or 200, the width will the half the height or
double the height respectively. When using this parameter, all parameters
in the syntax must be included in the statement, that is, name, height,
slant, and width.

 The standard complement of fonts listed in Chapter 6 can be supplemented
with more fonts using three methods:

 • Downloading fonts from a Font Install Card.
 The card must be inserted before the printer is started. At startup

the fonts are automatically downloaded, installed, and permanently
stored in the printer’s memory. The fonts can be used without the
card being present.

 • Using fonts from a Font Card.
 The card must be inserted before the printer is started. At startup the fonts

are automatically installed, but not copied to the printer’s memory. Thus,
the card must always be present before such a font can be used.

 • Downloading font fi les.
 Font fi les can be downloaded and installed by means of either of the two

statements IMAGE LOAD and TRANSFER KERMIT. There is no need
to restart the printer before using the font in question.

 It is possible to create aliases for one or several font to get shorter or more
adequate names. Refer to Chapter 6 for further explanation.

Examples Printing a label with one line of 12p text with default direction and

alignment:

 10 FONT "Swiss 721 BT"
 20 PRTXT "HELLO"
 30 PRINTFEED
 RUN

 Printing the same text but with 24p size, 20° slant, and 75% width:

 10 FONT "Swiss 721 BT",24,20,75
 20 PRTXT "HELLO"
 30 PRINTFEED
 RUN

ABCDEFGH
ABCDEFGH

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 790

Chapter 2 Program Instructions

FONTD
Field of Application Statement for selecting a scaleable TrueType or TrueDoc double-byte

font for the printing of the subsequent PRTXT statements.

Syntax FONTD<sexp1>[,<nexp1>[,<nexp2>[,<nexp3>]]]
<sexp1> is the name of the font.
 Default: none.
<nexp1> is optionally the height in points of the font.
 Default: 12 points.
<nexp2> is the clockwise slant in degrees (0-90°).
 Default: 0.
<nexp3> is the width enlargement in percent relative the height

(1-1000). Default: 100.
Reset to default by: PRINTFEED execution or CLL.

Remarks This statement is identical to the FONT statement, but is used for fonts
specifi ed by a double byte (16 bits) instead of a single byte (7 or 8 bits). To
use a double-byte font, a double-byte character set must be selected using
a NASCD statement. Usually, if the fi rst byte has an ASCII value between
161 dec. (A1 hex) and 254 dec (FE hex), the character will be treated
as a double-byte character and the fi rmware waits for next byte to make
the 16 bit address complete. The character will be printed using the font
specifi ed by FONTD and according to the character set specifi ed by NASCD
and the Unicode standard.

 On the other hand, if the fi rst byte has an ASCII value below 161 dec.
(A1 hex), the character is treated as a single byte character and next byte
received will be regarded as the start of a new character. This implies
that the character set specifi ed by NASC and the font specifi ed by FONT
will be used. However, the selected Unicode double-byte character set
may specify some other ASCII value as the breaking point between single
and double byte character sets.

 Note that 8 bit communication must be selected.

 Only writing from left to right in the selected print direction is supported.

Example The following text contains both single- and double-byte fonts. The double-byte

font and its character set are stored in a Font Install Card:

 10 NASC 46
 20 FONT "Swiss 721 BT", 24, 10
 30 NASCD "rom:BIG5.NCD"
 40 FONTD "Chinese"
 50 PRTXT CHR$(65);CHR$(161);CHR$(162)
 60 PRINTFEED
 RUN

 This program yields a printed text line that starts with the Latin character A
(ASCII 65 dec.) followed by the Chinese font that corresponds to the address
161+162 dec. in the character set “ BIG5.NCD".

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 91

Chapter 2 Program Instructions

FONTNAME$
Field of Application Function returning the names of the fonts stored in the printer’s

memory.

Syntax FONTNAME$(<nexp>)
<nexp> the result of the expression should be either false or

true, where...
 False (0) indicates fi rst font.
 True (≠0) indicates next font.

Remarks FONTNAME$(0) produces the fi rst name in the memory.

 FONTNAME$(≠0) produces next name. Can be repeated as long as
there are any fontnames left.

Example Use a program like this to list all fontnames:

 10 A$ = FONTNAME$ (0)
 20 IF A$ = "" THEN END
 30 PRINT A$
 40 A$ = FONTNAME$ (-1)
 50 GOTO 20
 RUN
 yields for example:
 -UPC11.1
 -UPC11.2
 -UPC21.1
 -UPC21.2
 -UPC31.1
 -UPC31.2
 -UPC51.1
 -UPC51.2
 Century Schoolbook BT
 Dutch 801 Bold BT
 Dutch 801 Roman BT
 Futura Light BT
 Letter Gothic 12 Pitch BT
 MS030RMN
 MS030RMN.1
 MS030RMN.2
 MS050RMN
 MS050RMN.1
 MS050RMN.2
 MS060BMN
 MS060BMN.1
 MS060BMN.2
 Monospace 821 BT
 Monospace 821 Bold BT
 OB035RM1
 etc, etc.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 792

Chapter 2 Program Instructions

FONTS
Field of Application Statement returning the names of all fonts stored in the printer’s

memory to the standard OUT channel.

Syntax FONTS

Example A list of the fonts stored in the printer may look like this:

 FONTS
 yields for example:
 Century Schoolbook BT Dutch 801 Bold BT
 Dutch 801 Roman BT Futura Light BT
 Letter Gothic 12 Pitch BT MS030RMN
 MS030RMN.1 MS030RMN.2
 MS050RMN MS050RMN.1
 MS050RMN.2 MS060BMN
 MS060BMN.1 MS060BMN.2
 Monospace 821 BT Monospace 821 Bold BT
 OB035RM1 OB035RM1.1
 OB035RM1.2 OCR-A BT
 OCR-B 10 Pitch BT Prestige 12 Pitch Bold BT
 SW020BSN SW020BSN.1
 SW020BSN.2 SW030RSN
 SW030RSN.1 SW030RSN.2
 SW050RSN SW050RSN.1
 SW050RSN.2 SW060BSN
 SW060BSN.1 SW060BSN.2
 SW080BSN SW080BSN.1
 SW080BSN.2 SW120BSN
 SW120BSN.1 SW120BSN.2
 Swiss 721 BT Swiss 721 Bold BT
 Swiss 721 Bold Condensed BT Zapf Dingbats BT
 Zurich Extra Condensed BT

 1548380 bytes free 307200 bytes used
 Ok

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 93

Chapter 2 Program Instructions

FOR...TO...NEXT
Field of Application Statement for creating a loop in the program execution, where a counter

is incremented or decremented until a specifi ed value is reached.

Syntax FOR<nvar>=<nexp1>TO<nexp2>[STEP<nexp3>]NEXT[<nvar>]
<nvar> is the variable to be used as a counter.
<nexp1> is the initial value of the counter.
<nexp2> is the fi nal value of the counter.
<nexp3> is the value of the increment (decrement).

Remarks This statement is always used in connection with a NEXT statement.

 The counter (<nvar>) is given an initial value by the numeric expression
(<nexp

1
>). If no increment value is given (STEP <nexp

3
>), the value 1 is

assumed. A negative increment value will produce a decremental loop. Each
time the statement NEXT is encountered, the loop will be executed again until
the fi nal value, specifi ed by (<nexp

2
>), is reached. Then the execution will

proceed from the fi rst line after the NEXT statement.

 If the optional variable is omitted in the NEXT statement, the program
execution will loop back to the most recently encountered FOR statement.
If the NEXT statement does include a variable, the execution will loop back
to the FOR statement specifi ed by the same variable.

 FOR...NEXT loops can be nested, which means that a loop can contain
another loop, etc. However, each loop must have a unique counter designation
and the inside loop must be concluded by a NEXT statement before the
outside loop can be executed.

Example The counter A% is incremented from 20 to 100 in steps of 20 by means
of a FOR...NEXT loop:

 10 FOR A%=20 TO 100 STEP 20
 20 PRINT A%
 30 NEXT
 RUN
 yields:
 20
 40
 60
 80
 100

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 794

Chapter 2 Program Instructions

FORMAT
Field of Application Statement for formatting the printer’s permanent memory, or formatting

a SRAM-type memory card to MS-DOS format.

Syntax FORMAT<sexp>[,<nexp1>[,<nexp2>]][,A]
<sexp> specifi es the device to be formatted either as "c:" or "card1:"
<nexp1> Specifi es the number of entries in the root directory (only

applicable when <sexp> = "card1:"). Default: 208 entries.
<nexp2> Specifi es the number of bytes per sector (only applicable

when <sexp> = "card1:" and “A” fl ag is set).
 Default: 512 bps.

Remarks FORMAT "c:"
 Formats the printers permanent memory partially or completely. System fi les

are distinguished by a leading period character, for example .setup.saved.
This makes it possible to format the permanent memory without removing
the system fi les.

 If no “A” fl ag is included in the statement, all fi les excluding those starting
with a period character (.) will be removed (“soft” formatting).

 If an “A” fl ag is included in the statement, all fi les including those starting with
a period character (.) will be removed (“hard” formatting).

 Be careful. There is no way to undo a FORMAT operation.

 FORMAT "card1:"
 Formats a JEIDA-4 memory card of SRAM-type, which is inserted in the

printer’s optional memory card adapter, to MS-DOS format. Optionally, the
number of entries in the root directory (that is number of fi les on the card)
and the number of bytes per sector can be specifi ed, provided an “A” fl ag is
included in the statement (“hard” formatting).

 When a FORMAT statement is executed, any existing data or previous
formatting in the card will be erased. After formatting, such a memory card
can be OPENed for INPUT/OUTPUT/APPEND or RANDOM access and
can also be used in a PC for storing MS-DOS fi les. The DOS-formatted
memory card is referred to as device "card1:".

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 95

Chapter 2 Program Instructions

FORMAT, cont.
Examples Issuing the statement FILES before and after a FORMAT "c:" statement

shows how the memory is affected. Note that system fi les starting with
a period character are not removed, since the FORMAT statement does
not contain any “ A” fl ag:

 FILES "c:",A
yields for example:

 Files on c:

 .theDefaultSetup 157 DIRECT 0
 STDIO 2 APPLICATION 1
 FILELIST.DAT 0

 505856 bytes free 160 bytes used

 Ok
 FORMAT "c:"

 Ok

 FILES "c:",A
 yields for example:
 Files on c:

 .theDefaultSetup 157
 514048 bytes free 157 bytes used

 Ok

 In the following statement, a RAM-type memory card is formatted to
MS-DOS format in the immediate mode. The number of entries is increased
from 208 (default) to 500 and the size of the sectors in decreased from 512
bps (default) to 256 in order to make the card better suited for more but
smaller fi les. The “ A” fl ag specifi es “ hard" formatting.

 FORMAT "card1:",500,256,A

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 796

Chapter 2 Program Instructions

FORMAT DATE$
Field of Application Statement for specifying the format of the string returned by

DATE$("F") and DATEADD$(..... ,"F") instructions.

Syntax FORMAT DATE$<sexp>
<sexp> is a string representing the order between year, month and

date plus possible separating characters.
 “Y” represents Year (one digit per Y).
 “M” represents Month (one digit per M).
 “D” represents Day (one digit per D).
Default: YYMMDD
Reset to default by: Empty string ("")

Remarks DATE$ and DATEADD$ will only return formatted dates if these functionss
include the fl ag "F".

 In the FORMAT DATE$ statement, each Y, M or D character generates one
digit from the number of the year, month or day respectively, starting from the
end. If the number of Y's exceeds 4, or the number of M's or D's exceeds 2, the
exceeding characters generate leading space characters.

 Examples (the year is 2001):
 Y generates 1
 YY generates 01
 YYY generates 001
 YYYY generates 2001
 YYYYY generates ↔2001 (↔ represents a space)

 Separating characters are returned as entered in the string. Any character
except Y, M, or D are regarded as separators.

 The date format is saved in the temporary memory and has to be transmitted
to the printer after each power-up.

Examples Changing the date format according to British standard:

 FORMAT DATE$ "DD/MM/YY"

 Changing date format back to default (YYMMDD):

 FORMAT DATE$ ""

 Changing the date format to Swedish standard:

 FORMAT DATE$ "YY-MM-DD"

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 97

Chapter 2 Program Instructions

FORMAT INPUT
Field of Application Statement for specifying separators for the LAYOUT RUN statement

used in the Intermec Direct Protocol.

Syntax FORMAT INPUT<sexp1>[,<sexp2>[,<sexp3>[,<sexp4>]]]
<sexp1> is the start -of-text separator, default STX (ASCII 02 dec.).
<sexp2> is the end-of-text separator, default EOT (ASCII 04 dec.).
<sexp3> is the fi eld separator, default CR (ASCII 13 dec.).
<sexp4> is a string of characters to be fi ltered out.

Remarks The LAYOUT RUN statement is used in the Intermec Direct Protocol
to transmit variable data to a predefi ned layout. By default, the string
of input data to the various layout fi elds starts with a STX character
and ends with a EOT character. The various fi elds are separated by CR
(carriage return) characters.

 To provide full compatibility with various protocols and computer systems,
these separators can be changed at will by means of the FORMAT
INPUT statement. Each separator can have a maximum length of 10
characters.

 As an option, it is possible to specify a string of max. 10 characters to be
fi ltered out. By default, the string is empty and will be reset to default if a new
FORMAT INPUT with less than four arguments is issued.

 There is a timeout if ETX is not found within 60 seconds after STX
has been received.

 Always execute the FORMAT INPUT statement in the Immediate Mode. If
you are using the Intermec Direct Protocol, exit it by means of an INPUT
OFF statement before changing the separators using a FORMAT INPUT
statement. Then you can enter the Intermec Direct Protocol again by means
of an INPUT ON statement.

 An error will occur if you, for some reason, issue a FORMAT INPUT
statement where one, two or three separators are identical to those already in
effect without leaving the Intermec Direct Protocol.

 If a certain separating character cannot be produced by the keyboard of the host,
use a CHR$ function to specify the character by its ASCII value.

 The separators are stored in the temporary memory and must to be transmitted
to the printer after each power-up.

Example Changing the start-of-text separator to #, the end-of-text separator to LF
(linefeed), and the fi eld separator to @ after having temporarily switched
to the Immediate Mode.

 INPUT OFF ↵
 FORMAT INPUT "#",CHR(10),"@" ↵
 INPUT ON ↵

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 798

Chapter 2 Program Instructions

FORMAT TIME$
Field of Application Statement for specifying the format of the string returned by

TIME$("F") and TIMEADD$("F") instructions.

Syntax FORMAT TIME$<sexp>
<sexp> is a string representing the order between hours, minutes and

seconds plus possible separating characters.
 “H” represents hours in a 24 hour cycle (one digit per H).
 “h” represents hours in a 12 hour cycle (one digit per h).
 “M” represents minutes (one digit per M).
 “S” represents seconds (one digit per S).
 “P” represents AM/PM in connection with a 12 hour cycle.
 “p” represents am/pm in connection with a 12 hour cycle.
 All other character produce separator characters.
Default: HHMMSS
Reset to default by: Empty string

Remarks Each H, h, M, and S character generates one digit. If the number of each
character exceeds 2, leading space characters are inserted. Each uppercase
or lowercase P character generates one character of AM/PM or am/pm
respectively, when a 12-hour cycle is selected.

 Hour, minute and second fi elds are right-justifi ed, whereas am/pm and
AM/PM fi elds are left-justifi ed.

 Example (the hour is 8 o’clock in the morning):
 h generates 8 P generates A
 hh generates 08 PP generates AM
 hhh generates ↔08 p generates a
 pp generates am

 To get 12-hour cycle, all hour format characters must be lowercase “h”.

 Separating characters are returned as entered in the string. Any character but
H, h, M, S, P, or p are regarded as separators.

 The time format is saved in the temporary memory and has to be transmitted
to the printer after each power-up.

Examples Changing the time format according to Swedish standard:

 FORMAT TIME$ "HH.MM.SS"

 Changing the date format to British standard:

 FORMAT TIME$ "hh:MM pp"

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 99

Chapter 2 Program Instructions

FORMAT$
Field of Application Function for formatting a number represented by a string.

Syntax FORMAT$(<sexp1>,<sexp2>)
<sexp1> is the string of numerals, optionally with decimals, which

is to be formatted.
<sexp2> specifi es the format of the string.

Remarks The original string (<sexp
1
>) is a string of digits, optionally with a decimal

point to separate decimals from integers. It can also contain leading
plus (+), minus (-), and space characters. Space characters are ignored,
whereas the usual mathematical rules apply to plus and minus signs. All
other characters (or plus, minus, and space characters in other positions
than leading) generate errors.

 Note the mathematical rules:
 - - yields +
 - + yields -
 + - yields -
 + + yields +

 The format is specifi ed by a string (<sexp
2
>). Different format will give

different result. The string can contain any characters, but some have special
meanings. Note the explanation of the following characters.

 0 = Digit place holder, display a digit or zero.
 If the input number has fewer digits than there are zeros (on either side

of the decimal separator) in the format string, leading or trailing zeros are
displayed. If the number has more digits to the left side of the decimal
separator than there are zeros to the left side of the separator in the format
string the digits will be displayed. If the number has more digits to the
right of the separator than there are zeros to the right of the decimal
separator in the format string, the decimal will be truncated to as many
decimal places as there are zeros.

 # = Digit placeholder, display a digit or nothing.
 If there is a digit in the expression being formatted in the position where

the # appears in the format string, display the digit or otherwise display
nothing in that position. If the number has more digits to the left side of
the decimal separator than there are # to the left side of the separator in the
format string the digits will be displayed.

 . = Decimal separator, to separate the integer and the decimal digits.

 , = Decimal separator, to separate the integer and the decimal digits.

 \ = Display the next character in the format string.
 The backslash itself is not displayed. To display a \ use two backslashes.

The only character, which will be displayed in the formatted string without
a backslash is space.

 space = Space
 A space will be displayed as literal character wherever it is in the

expression format.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7100

Chapter 2 Program Instructions

FORMAT$, cont.
Remarks, cont. • An empty format string is equivalent to "0.##########".

 • 0 and # cannot be mixed in every way. Before the decimal separator,
use # fi rst and then 0. After the decimal separator, use 0 fi rst and then
#. For example: ####00.000### is OK and #00##0.##0#00
is not OK.

 • A point or a comma separates integers and decimals. The decimal
separator used in the format is the one that will be the returned separator
type. Independent of the separator type in the number the format type
will control the return type. Default type is a point.

 • A format can consist of separators as space between thousands either a
unit as $. For example: "$ ### ### 000.00".

 • The attached number string will be truncated to the quantity of
decimal in the format.

 • Characters will not be displayed on the left side of the decimal separator if
there is a # on the left side of the characters and the string to be formatted
do not have a digit in the same position as the #. On the right side of the
decimal separator, characters will not be displayed if there is a # on the
right side of the characters and the string to be formatted do not have a
digit in the same position as the #. For example:

Format string: "\$#\t\e\x\t0.0\t\e\x\t#\$"
String to be formatted: 1.1 55 0.33 55.33
Returned strings: 1.1 $5text5.0$ $0.3text3$ $5text5.3text3$

Input number: "5" "-5" "0.5" "55555" "0.666666666666"
Input format: Returned number:
"" => 5 -5 0.5 55555 0.6666666666
"0" => 5 -5 0 55555 0
"0.00" => 5.00 -5.00 0.50 55555.00 0.66
"\$0,0" => $5,0 $-5,0 $0.5 $55555,0 $0,6
"0.0##" => 5.0 -5.0 0.5 55555.0 0.666
"###\,000.0" => 005.0 -005.0 000.5 55,555.0 000.6

"# 0 0.0" => 0 5.0 -0 5.0 0 0.5 555 5 5.0 0 0.6

Examples The following examples show how FLOATCALC$ and FORMAT$ functions
can be combined.

 Addition.

 B$="234.9"
 C$="1001"
 D$="# ##0.##"
 A$=FLOATCALC$(B$,"+",C$,15)
 PRINT A$
 yields:
 "1235.900000000000000"

 PRINT FORMAT$(A$,D$)
 yields:
 "1 235.9"

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 101

Chapter 2 Program Instructions

FORMAT$, cont.
Examples, cont. Subtraction. The third parameter will be subtracted from the fi rst.

 A$=FLOATCALC$("234.90","-","100.013",2)
 PRINT A$
 yields:
 "134.88"

 PRINT FORMAT$(A$,"\$ 0,000#")
 yields:
 "$ 134,880"

 Note: If a higher precision is used in FLOATCALC$, A$ will yield
"$134,887".

 Multiplication

 B$="3"
 A$=FLOATCALC$("100", "*", B$, 1)
 PRINT A$
 yields:
 "300.0"

 C$="0 0 0,00###"
 PRINT FORMAT$(A$,C$)
 yields:
 "3 0 0,00"

 Division. The fi rst parameter will be divided by the third.

 B$="1.0"
 A$=FLOATCALC$(B$,"/","3.0")
 PRINT A$
 yields:
 "0.3333333333"

 PRINT FORMAT$(A$,"\$ 000.00###")
 yields:
 "$ 000.33333"

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7102

Chapter 2 Program Instructions

FORMFEED (FF)
Field of Application Statement for activating the media feed mechanism in order to feed out

or pull back a certain length of media.

Syntax FORMFEED|FF[<nexp>]
<nexp> is, optionally, the feed length expressed as a positive or

negative number of dots.

Remarks If no value is entered after the FORMFEED statement, the printer will feed
out one single label, ticket, tag, or a portion of continuous stock according
to the printer’s setup. See start- and stopadjustments and media type in the
Installation & Operation manual for the printer model in question.

 If a value is entered after the FORMFEED statement, the media will be fed
out or pulled back the corresponding number of dots:

 - A positive number of dots makes the printer feed out the specifi ed
length of media.

 - A negative number of dots makes the printer pull back the specifi ed length
of media. In this case, be careful not to enter a value larger than the length
of the label to avoid the risk of causing a media jam.

 It is important whether a FORMFEED statement is issued before or after
a PRINTFEED statement:

 - FORMFEED statement issued before PRINTFEED affects the position
of the origin on the fi rst copy to be printed.

 - FORMFEED statement issued after PRINTFEED does not affect
the position of the origin on the fi rst copy, but next copy will be
affected.

 Do not use FORMEED as a replacement for start and stop adjustments in the
Setup Mode or in connection with batch printing.

.
Examples Printing a line of text and feeding out an extra length (60 dots) of

media after printing:

 10 FONT "Swiss 721 BT"
 20 PRPOS 30,200
 30 PRTXT "HELLO"
 40 PRINTFEED
 50 FORMFEED 60
 RUN

 Pulling back the media 20 dots before printing:

 10 FORMFEED -20
 20 FONT "Swiss 721 BT"
 30 PRPOS 30,200
 40 PRTXT "HELLO"
 50 PRINTFEED
 RUN

 Note that in this case, the positioning of the text line will be performed after
the media has been pulled back.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 103

Chapter 2 Program Instructions

FRE
Field of Application Function returning the number of free bytes in spcifi ed part of the

printer’s memory.

Syntax FRE(<<sexp>|<nexp>>)
<sexp> is the designation of the part of the printer’s memory from

which the number of free bytes should be returned, for
example "c:", "tmp:", "card1:".

<nexp> is a dummy argument. Returns the number of free bytes in
the printer’s temporary memory ("tmp:").

Remarks The fi rmware looks for a colon (:) sign in the argument for the FRE function.
If the argument is valid name of a memory device, the number of free
bytes in that device is returned.

 If the argument specifi es device "card1:", but no card is inserted, Error
1039, “Not mounted" will occur.

 If the name of a device, that is not a part of the printer’s memory (for
example "uart1:" or "console:"), is entered as an argument, the FRE
function will return 0.

 Refer to DEVICES for more information on memory and non-memory
devices.

 If the argument contains a colon, but is not a valid name of any device (for
example "QWERTY:"), Error 1013, “Device not found” will occur.

 Any argument, that does not include a colon sign (for example “7”
or "QWERTY”), will return the amount of free bytes in the printer’s
temporary memory ("tmp:").

Example PRINT FRE("tmp:")
 yields for example:
 2382384

 PRINT FRE("uart1:")
 yields:
 0

 PRINT FRE(1)
 yields for example:
 2382384

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7104

Chapter 2 Program Instructions

FUNCTEST
Field of Application Statement for performing various hardware tests.

Syntax FUNCTEST<sexp>,<svar>
<sexp> is the type of test to be performed:
"CARD" Test of memory card.
"HEAD" Test of the thermal printhead.
"KERNEL" Test of the live kernel in RAM.
ROMn Test of ROM where n is a digit denoting the number of

the SIMM socket.
<svar> is the variable in which the result will be placed.

Remarks Each of the FUNCTEST hardware tests has a number of possible
responses:

 <sexp> = "CARD"
 If RAM-type memory card:
 RAM OK Test was successful
 FAIL,x An error was detected.
 (x is the hexadecimal address of the fi rst

faulty memory byte).
 If ROM-type memory card:
 "NO CARD" Card is not recognized.

 <sexp> = "HEAD"
 HEAD OK, SIZE:n DOTS The test was successful.
 n is the number of dots on the printhead.
 HEAD LIFTED Printhead is lifted and must be lowered

before test can be performed.
 FAULTY PRINTHEAD One or more dots on the printhead are

not working.
 Note that the 24V voltage for the printhead

is not checked. Use the HEAD function
for additional printhead tests.

 <sexp> = "KERNEL"
 xxxxxxxx xxxxxxxx is an 8-digit hex checksum.
 ERROR IN KERNEL CRC The kernel checksum differs from the

on in the header.
 KERNEL BADLY CORRUPTEDThe kernel is corrupted.
 CANNOT FIND KERNEL The kernel header cannot be found.
 ERROR <nexp> IN KERNELThe error number (<nexp>) is returned.

 <sexp> = "ROMn"
 xxxx xxxx is a 4-digit hexadecimal checksum.
 NO ROM An illegal SIMM socket was specifi ed or

no ROM is found in the socket.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 105

Chapter 2 Program Instructions

FUNCTEST, cont.
Example This example shows how a test program using the FUNCTEST statement

may be composed:

 10 FUNCTEST "CARD", A$
 20 FUNCTEST "HEAD", B$
 30 FUNCTEST "KERNEL", C$
 40 FUNCTEST "ROM1", D$
 50 PRINT "CARDTEST:", A$
 60 PRINT "HEADTEST:", B$
 70 PRINT "KERNELTEST:", C$
 80 PRINT "ROM1-TEST:", D$
 RUN
 yields for example:
 CARDTEST: NO CARD
 HEADTEST: HEAD OK,SIZE:1280 DOTS
 KERNELTEST: 8E4791DC
 ROM1-TEST: NO ROM

 Ok

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7106

Chapter 2 Program Instructions

FUNCTEST$
Field of Application Function returning the result of various hardware tests.

Syntax FUNCTEST$(<sexp>)
<sexp> is the type of test to be performed:
"CARD" Test of memory card.
"HEAD" Test of the thermal printhead.
"KERNEL" Test of the live kernel in RAM.
ROMn Test of ROM where n is a digit denoting the number of

the SIMM socket.

Remarks Each of the FUNCTEST$ hardware tests has a number of possible
responses:

 <sexp> = "CARD"
 If RAM-type memory card:
 RAM OK Test was successful
 FAIL,x An error was detected.
 (x is the hexadecimal address of the fi rst

faulty memory byte.)
 If ROM-type memory card:
 "NO CARD" Card is not recognized.

 <sexp> = "HEAD"
 HEAD OK, SIZE:n DOTS The test was successful.
 n is the number of dots on the printhead.
 HEAD LIFTED Printhead is lifted and must be lowered

before test can be performed.
 FAULTY PRINTHEAD One or more dots on the printhead are

not working.
 Note that the 24V voltage for the printhead

is not checked. Use the HEAD function
for additional printhead tests.

 <sexp> = "KERNEL"
 xxxxxxxx xxxxxxxx is an 8-digit hex checksum.
 ERROR IN KERNEL CRC The kernel checksum differs from the

on in the header.
 KERNEL BADLY CORRUPTED The kernel is corrupted.
 CANNOT FIND KERNEL The kernel header cannot be found.
 ERROR <nexp> IN KERNEL The error number (<nexp>) is returned.

 <sexp> = "ROMn"
 xxxx xxxx is a 4-digit hexadecimal checksum.
 NO ROM An illegal SIMM socket was specifi ed or

no ROM is found in the socket.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 107

Chapter 2 Program Instructions

FUNCTEST$, cont.
Example This example shows how a test program using the FUNCTEST$ function may

be composed (compare with the example for FUNCTEST statement):

 10 PRINT "CARDTEST:", FUNCTEST$ ("CARD")
 20 PRINT "HEADTEST:", FUNCTEST$ ("HEAD")
 30 PRINT "KERNELTEST:", FUNCTEST$ ("KERNEL")
 40 PRINT "ROM1-TEST:", FUNCTEST$ ("ROM1")

RUN
 yields for example:
 CARDTEST: NO CARD
 HEADTEST: HEAD OK,SIZE:1280 DOTS
 KERNELTEST: 8E4791DC
 ROM1-TEST: NO ROM

 Ok

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7108

Chapter 2 Program Instructions

GET
Field of Application Statement for reading a record from a random fi le to a random buffer.

Syntax GET[#]<nexp1>,<nexp2>
indicates that whatever follows is a number. Optional.
<nexp1> is the number assigned to the fi le when it was OPENed.
<nexp2> is the number of the record. Must be ≠ 0.

Remarks The GET statement is used to read a certain record in a certain random fi le
to a buffer, where the record will be assigned to variables according to the
FIELD statement given for the buffer. After the GET statement has been
executed, you can use references to the variables defi ned by the FIELD
statement to read the characters in the random buffer.

 Numeric expressions, which have been converted to string expressions by
STR$ functions before being put into the buffer, can be converted back to
numeric expressions using VAL functions.

Example 10 OPEN "PHONELIST" AS #8 LEN=26
 20 FIELD#8,8 AS F1$, 8 AS F2$, 10 AS F3$
 30 SNAME$="SMITH"
 40 CNAME$="JOHN"
 50 PHONE$="12345630"
 60 LSET F1$=SNAME$
 70 LSET F2$=CNAME$
 80 RSET F3$=PHONE$
 90 PUT #8,1
 100 CLOSE#8
 RUN

 SAVE "PROGRAM 1.PRG "

 NEW
 10 OPEN "PHONELIST" AS #8 LEN=26
 20 FIELD#8,8 AS F1$, 8 AS F2$, 10 AS F3$
 30 GET #8,1
 40 PRINT F1$,F2$,F3$
 RUN
 yields:
 SMITH — — — JOHN — — — — — — 12345630

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 109

Chapter 2 Program Instructions

GETASSOC$
Field of Application Function for getting a value from a string association.

Syntax GETASSOC$ (<sexp1>, <sexp2>)
<sexp1> is the name of the association (case-sensitive).
<sexp2> is the name of a tuple in the association.

Remarks An association is an array of tuples, where each tuple consists of a
name and a value.

Example This example shows how a string, including three stringnames associated
with three start values, will be defi ned and one of them (time) will
be changed:

 10 QUERYSTRING$=
 "time=UNKNOWN&label=321&desc=DEF"
 20 MAKEASSOC"QARRAY",QUERYSTRING$,"HTTP"
 30 QTIME$=GETASSOC$("QARRAY","time")
 40 QLABELS%=VAL(GETASSOC$("QARRAY","label"))
 50 QDESC$=GETASSOC$("QARRAY","desc")
 60 PRINT"time=";QTIME$,"LABEL=";QLABELS%,

 "DESCRIPTION=";QDESC$
 70 SETASSOC"QARRAY","time",time$
 80 PRINT"time=";GETASSOC$("QARRAY","time")
 RUN

yields:

 time=UNKNOWN LABEL=321 DESCRIP TION=DEF
 time=153355

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7110

Chapter 2 Program Instructions

GETASSOCNAME$
Field of Application Function for traversing the tuples of a string association.

Syntax GETASSOCNAME$(<sexp>,<nexp>)
<sexp> is the association to be traversed (case-sensitive).
<nexp> specifi es the tuple in the association.
 <nvar> = 0 specifi es fi rst tuple.
 <nvar> ≠ 0 specifi es next tuple.

Remarks An association is an array of tuples, where each tuple consists of a name
and a value. To get the fi rst position in the string association, <nvar> should
be zero. Consecutive calls to GETASSOCNAME$ witn <nvar> non zero
will traverse all variables in an undefi ned order. When a blank string ("") is
returned, the last variable has been traversed.

Example This example shows how “ QARRAY" is travered (run example from
GETASSOC fi rst):

 10 LVAL$=GETASSOCNAME$("QARRAY",0)
 20 WHILE LVAL$<>""
 30 RVAL$=GETASSOC$("QARRAY",LVAL$)
 40 PRINT LVAL$;"=";RVAL$
 50 LVAL$=GETASSOCNAME$("QARRAY",1)
 60 WEND
 RUN
 yields:
 label=321
 desc=DEF
 time=153355

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 111

Chapter 2 Program Instructions

GETPFSVAR
Field of Application Function for recovering saved variables.

Syntax GETPFSVAR(<sexp>[,D])
<sexp> is the name of the variable (uppercase characters only).
D optionally specifies that the variable is to be deleted

after recovery.

Remarks This function is used to recover variables registered to be saved at power
failure by means of a SETPFSVAR statement and returns either -1 on
success or 0 at failure.

 If a D fl ag is included, the variable is deleted after it has been recovered.
This can be used to make sure that the variable is up to date and that no
old obsolete value is recovered.

 Related instructions are SETPFSVAR, DELETEPFSVAR, and LIST-
PFSVAR.

Example 10 IF NOT GETPFSVAR("QS$") THEN QS$ ="<this is
 the default vaule, set a new one>"

 20 IF NOT GETPFSVAR("QCPS%") THEN PRINT "No
 copies available":END

 30 QSTATUS%=GETPFSVAR("AWE$",D):IF QSTATUS%
 THEN PRINT "Recovered successfully!"

 40 SETPFSVAR "QCPS%"
 50 ’Build label
 60
 99 PRINTFEED; QCPS%=QCPS%
 100

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7112

Chapter 2 Program Instructions

GOSUB
Field of Application Statement for branching to a subroutine.

Syntax GOSUB<ncon>|<line label>
<ncon>|<line label> is the number or label of the first line in the desired

subroutine.

Remarks After branching, the subroutine will be executed line by line until a RETURN
statement is encountered.

 The same subroutine can be branched to many times from different lines
in the main program. GOSUB always remembers where the branching
took place, which makes it possible to return to the correct line in the main
program after the subroutine has been executed.

 Subroutines may be nested, which means that a subroutine may contain a
GOSUB statement for branching to a secondary subroutine and so on until
the printer runs out of memory.

 Subroutines are normally placed on program lines with higher numbers
than the main program. The main program should be appended by an END
statement to avoid unintentional execution of subroutines.

Example This example makes use of line numbers:

 10 PRINT "This is the main program"
 20 GOSUB 1000
 30 PRINT "You’re back in the main program"
 40 END
 1000 PRINT "This is subroutine 1"
 1010 GOSUB 2000
 1020 PRINT "You’re back from subroutine 2 to 1"
 1030 RETURN
 2000 PRINT "This is subroutine 2"
 2010 GOSUB 3000
 2020 PRINT "You’re back from subroutine 3 to 2"
 2030 RETURN
 3000 PRINT "This is subroutine 3"
 3010 PRINT "You’re leaving subroutine 3"
 3020 RETURN
 RUN
 yields:
 This is the main program
 This is subroutine 1
 This is subroutine 2
 This is subroutine 3
 You’re leaving subroutine 3
 You’re back from subroutine 3 to 2
 You’re back from subroutine 2 to 1
 You’re back in the main program

 Ok

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 113

Chapter 2 Program Instructions

GOSUB, cont.
Examples, cont. In this examples, line numbers have been omitted and line labels are used

to make the program branch to subroutines:

 IMMEDIATE OFF
 PRINT "This is the main program"
 GOSUB SUB1
 PRINT "You’re back in the main program"
 END
 SUB1: PRINT "This is subroutine 1"
 GOSUB SUB2
 PRINT "You’re back from subroutine 2 to 1"
 RETURN
 SUB2: PRINT "This is subroutine 2"
 GOSUB SUB3
 PRINT "You’re back from subroutine 3 to 2"
 RETURN
 SUB3: PRINT "This is subroutine 3"
 PRINT "You’re leaving subroutine 3"
 RETURN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7114

Chapter 2 Program Instructions

GOTO
Field of Application Statement for branching unconditionally to a specifi ed line.

Syntax GOTO<ncon>|<line label>
<ncon>/<line label> is the number or label of the line to be branched to.

Remarks If the specifi ed line contains an executable statement, both that statement
and all that follows will be executed. If the specifi ed line does not exist,
an error condition will occur.

 The GOTO statement can also be used in the immediate mode to resume
execution of a program, which has been terminated using a STOP statement,
at a specifi ed program line.

Example In this example the fi rst bar of the tune "Colonel Boogie" will be played only
if the title is entered correctly. Otherwise the message "Try again" will be
displayed until you manage to type the right name.

 10 A$="COLONEL BOOGIE"
 20 B$="TRY AGAIN"
 30 INPUT "TITLE"; C$
 40 IF C$=A$ GOTO 100 ELSE PRINT B$
 50 GOTO 30
 60 END
 100 SOUND 392,15
 110 SOUND 330,20
 120 SOUND 330,15
 130 SOUND 349,15
 140 SOUND 392,15
 150 SOUND 659,25
 160 SOUND 659,20
 170 SOUND 523,25
 180 GOTO 60
 RUN
 yields:
 TITLE?

 Note the way GOTO is used in line 50 to create a loop, which makes the
printer await the condition specifi ed in line 40 before the execution is resumed.
Instead of line numbers, line labels can be used following the same principles
as illustrated in the second example for GOSUB statement.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 115

Chapter 2 Program Instructions

HEAD
Field of Application Function returning the result of a thermal printhead check.

Syntax HEAD(<nexp1>)
<nexp1> ≥ 0 specifi es the number of a dot for which the resistance in

ohms will be returned.
<nexp1> = -1 printhead check: Returns -1 (true) if OK
 Returns 0 (false) if error
<nexp1> = -7 returns mean printhead resistance in ohms.

 <nexp2> = HEAD(<sexp>)
<nexp2> returns the number (quantity) of faulty dots.
<sexp> returns the dot number and resistance for each faulty dot.

Remarks This function allows you to examine the printhead in regard of dot resistance.

There is no guarantee that all defect “dots" will detected by the HEAD
function, since only the resistance is checked. For example, dirty or cracked
dots can only be detected visually.

 The detection of a possibly faulty dot or printhead by means of the dot
sensing facility does not automatically imply that the printhead is defect
and that replacement will be covered by the warranty. Intermec reserves
the right of physical examination of the printhead before any replacement
free of charge can be discussed.

 <nexp1> ≥ 0
 A positive value specifi es a single dot on the printhead and returns its

resistance value as a number of ohms. A dot resistance value that deviates
considerably from the mean resistance value of the printhead (see below)
indicates that the dot may be faulty. The dot numbering starts at 0
(zero). This implies that in, for example, a 640 dots printhead, the dots
are numbered 0-639.

 <nexp1> = -1
 A check of the complete printhead is performed.
 HEAD(-1)=-1 The printhead is within the allowed limits (no dot is

more than ±15% from the mean resistance value). This
does not guarantee the printout quality.

 HEAD(-1)=0 A possible error has been detected.

 <nexp1> = -7
 The mean resistance value in ohms of all dots of the printhead is returned.

 The second version of the HEAD function measures the dot resistance
for every dot in the printhead and faulty dots are reported to the system,
so you do not need to use a SET FAULTY DOT statement to report
bad dots one at the time.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7116

Chapter 2 Program Instructions

HEAD, cont.
Examples Read the resistance value of dot No. 5:

 PRINT HEAD(5)

 Perform a printhead check:

 PRINT HEAD(-1)

 Read the printhead’s mean resistance value:

 PRINT HEAD(-7)

 Check printhead for faulty dots and their respective resistance values:

 A%=HEAD(B$)
 yields for example:
 Ok
 PRINT A%
 5

 Ok
 PRINT B$
 25, 2944
 42, 2944
 106, 2944
 107, 2944
 140, 2944

 Ok

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 117

Chapter 2 Program Instructions

IF...THEN...(ELSE)
Field of Application Statement for conditional execution controlled by the result of a

numeric expression.

Syntax IF<nexp>[,]THEN<stmt1>[ELSE<stmt2>]

 IF<nexp>[,]THEN ↵
 <stmt1> ↵
 [...<stmt1+n>] ↵
 [ELSE ↵

 <stmt2> ↵
 [...<stmt2+n>]] ↵
 ENDIF ↵

<nexp> is a numeric expression, which is either true or false.
<stmt1> is the statement or list of statements telling the program what

to do, should the IF-condition be true.
<stmt2> is an optional statement or list of statements specifying what

will happen, should the IF-condition be false.

Remarks THEN and ELSE statements may be nested.

 Multiple THEN and ELSE statements can alternatively be entered on
separate lines. If so, the instruction should be appended by ENDIF. See
second example below.

Examples These two examples illustrates the different syntaxes:

 10 A%=100:B%=20
 20 C$="A LARGER THAN B"
 30 D$="A NOT LARGER THAN B"
 40 IF A%>B% THEN PRINT C$ ELSE PRINT D$
 RUN
 yields:
 A LARGER THAN B

 10 A%=VAL(TIME$)
 20 IF A%>120000 THEN
 30 PRINT "TIME IS ";TIME$; ". ";
 40 PRINT "GO TO LUNCH!"
 50 ELSE
 60 PRINT "CARRY ON - ";
 70 PRINT "THERE’S MORE WORK TO DO!"
 80 ENDIF
 RUN
 yields for example:
 TIME IS 121500. GO TO LUNCH!

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7118

Chapter 2 Program Instructions

IF...THEN...(ELSE), cont.
Examples, cont. IF ... THEN are often used in connection with GOTO. In this example, line

numbering is used. Also see the example for the GOTO statement.

 10 A%=100
 20 B%=50
 30 IF A%=B% THEN GOTO 50 ELSE PRINT "NOT EQUAL"
 40 END
 50 PRINT "EQUAL":END
 RUN
 yields:
 NOT EQUAL

 This example correspond to the preceding example, but line labels are
used instead of line numbers.

 IMMEDIATE OFF
 A%=100
 B%=50
 IF A%=B% THEN GOTO QQQ ELSE PRINT "NOT EQUAL"
 END
 QQQ: PRINT "EQUAL":END
 IMMEDIATE ON
 RUN
 yields:
 NOT EQUAL

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 119

Chapter 2 Program Instructions

IMAGE BUFFER SAVE
Field of Application Statement for saving the content of the image buffer as a fi le.

Syntax IMAGE BUFFER SAVE<sexp>
<sexp> is the desired name of the fi le, optionally with a reference to

the device where the fi le should be saved.

Remarks This statement saves the current content of the print buffer as an image
fi le in RLL format. After saving, the fi le is automatically installed as an
image, that can be printed using a PRIMAGE statement in DIR 1 and
DIR 3. Thereby, you can create label templates, to which variable data
easily can be added at will.

 The size of the print buffer image depends on the size of the print image
at the moment the buffer is saved. The width is decided by the Media,
Media Size, Width setup value with the fi rst pixel according to the Media,
Media Size, Xstart setup value. The height is decided by the actual height
in y-dimension of the print image. Note that space characters or invisible
"white" parts of an image are included in the height of the print image, even
if they are not visible on the printed label.

Example IMAGE BUFFER SAVE "TEMPLATE7"

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7120

Chapter 2 Program Instructions

IMAGE LOAD
Field of Application Statement for receiving, converting and installing image and font fi les.

Syntax IMAGE LOAD[<nexp1>,]<sexp1>,<nexp2>[,<sexp2>[,<nexp3>]]
<nexp1> is optionally the number of bytes to skip before starting

to read the data.
<sexp1> is the desired name of the image or font to be created.
<nexp2> is the size of the original fi le in number of bytes.
<sexp2> is an optional fl ag:
 “S” specifi es that the image or font will be saved in the printer’s

permanent memory ("c:"). Avoid this option (slow).
 An empty string ("") specifi es that the image or font will be

stored in the printer’s temporary memory ("tmp:").
<nexp3> optionally specifi es a communication channel OPENed for

INPUT by the number assigned to the device.
 (Default: Std IN channel.)

Remarks This statement prepares the printer to receive a .PCX image fi le, an image
fi le in the internal Intermec Fingerprint bitmap format, or a font fi le
on the standard IN channel (see SETSTDIO statement) or on another
communication channel OPEN for INPUT. When the fi le is received, it will
automatically be converted to an image in the internal bitmap format of
Intermec Fingerprint or to a scaleable font respectively.

 The optional fi rst parameter makes it possible to use this statement in
MS-DOS (CR/LF problem).

 The name of an image may consist of max. 30 characters including possible
extension. The image will have the same direction as the original image
fi le and can only be rotated 180° by means of a DIR statement. We
therefore recommend that you include the extension .1 or .2 to indicate
for which print directions the image is intended, according to the Intermec
Fingerprint conventions.

 The name of font fi les is only restricted to 30 characters.

 The size of the original fi le should be given in bytes according to its
size in the host.

 Before IMAGE LOAD can be used on a serial channel, the setup must be
changed to 8 characters, CTS/RTS handshake. When an IMAGE LOAD
statement is executed, the execution stops and waits for the number of bytes
specifi ed in the statement to be received. During the transfer of image fi le
data to the printer, there is a 25 seconds timeout between characters. If
a new character has not been received within the timeout limit, Error 80
“Download timeout” occurs. When the specifi ed number of characters have
been received, the execution is resumed.

 If the downloading was successful, the downloaded image or font will be
installed automatically and can be used without any rebooting.

Example IMAGE LOAD "Logotype.1",400,""

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 121

Chapter 2 Program Instructions

IMAGENAME$
Field of Application Function returning the names of the images stored in the printer’s

memory.

Syntax IMAGENAME$(<nexp>)
<nexp> is the result of the expression which is either false or true:
 False (0) indicates fi rst image.
 True (≠0) indicates next image.

Remarks This function can be used to produce a list of all images (another method is
to use the IMAGES statement).

 Image fi les downloaded by means of a TRANSFER KERMIT statement
will not be returned, since the software will regard them as fi les rather
than images.

 IMAGENAME$(0) produces the fi rst name in the memory.
 IMAGENAME$(≠0) produces next name. Can be repeated as long there

are any image names left.

Example Use a program like this to list all image names:

 10 A$=IMAGENAME$(0)
 20 IF A$=""THEN END
 30 PRINT A$
 40 A$=IMAGENAME$(-1)
 50 GOTO 20
 RUN
 yields for example:
 CHESS2X2.1
 CHESS4X4.1
 DIAMONDS.1
 GLOBE.1

 Ok

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7122

Chapter 2 Program Instructions

IMAGES
Field of Application Statement for returning the names of all images stored in the printer’s

memory to the standard OUT channel.

Syntax IMAGES

Remarks This statement can be used to list all image names (another method is to use
an IMAGENAME$ function).

 Image fi les downloaded by means of a TRANSFER KERMIT statement
will not be printed, since the fi rmware will regard them as fi les rather
than images.

Example A list of images stored in the printer’s memory may look like this:

 IMAGES
 yields for example:
 CHESS2X2.1

CHESS4X4.1
 DIAMONDS.1

GLOBE.1

 1695316 bytes free 307200 bytes used
 Ok

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 123

Chapter 2 Program Instructions

IMMEDIATE
Field of Application Statement for enabling or disabling the immediate mode of Intermec

Fingerprint in connection with program editing without line numbers,
for reading the current mode, or for reading the current standard
IN and OUT channels.

Syntax IMMEDIATE ON|OFF|MODE|STDIO
ON Enables the Immediate Mode
OFF Disables the Immediate Mode
MODE Prints a line to the STDOUT port with information on the

current status of the following modes (ON or OFF):
 - Execution
 - Immediate
 - Input
 - Layout Input
 - Debug STDIO (dbstdio)
STDIO Prints two lines to the STDOUT port with information on current

settings for the STDIN and STDOUT channels.

Remarks IMMEDIATE ON|OFF
 Before starting to write a program without line numbers, the immediate

mode must be disabled by means of an IMMEDIATE OFF statement. If
not, each line will be executed immediately.

 After an IMMEDIATE OFF statement, program lines can be entered without
any leading line numbers. References to lines are done using “line labels”,
which are called in GOTO or GOSUB and related statements.

 A line label is a name followed by a colon (:). The label must not interfere
with any keywords or start with a digit and the line must start with the line
label. When a line label is used as a reference to another line, for example
within a GOTO statement, the colon should be omitted.

 The program should be appended by a IMMEDIATE ON statement. At the
execution of this statement, the program lines will be numbered automatically
in ten-step incremental order, starting with the fi rst line (10-20-30-40-50...).
These line numbers will not appear on the screen until the program
is LISTed, LOADed, or MERGEd. Line labels will not be converted
to line numbers.

 Do not issue a RUN statement before the IMMEDIATE ON statement,
or an error will occur.

 IMMEDIATE MODE
 Execution On/Off indicates if a Fingerprint program is running or not.

 Immediate On/Off indicates whether the Immediate Mode is enabled or
disabled as specifi ed by IMMEDIATE ON/OFF.

 Input On/Off indicates whether the Direct Protocol is enabled or disabled as
specifi ed by INPUT ON/OFF.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7124

Chapter 2 Program Instructions

IMMEDIATE, cont.
Remarks, cont. IMMEDIATE MODE
 Layout Input On/Off indicates whether or not a layout is being recorded in the

Direct Protocol as specifi ed by LAYOUT INPUT and LAYOUT END.

 Dbstdio On/Off indicates whether the debug standard I/O is active or not.

 The following conditions are not reported:
 - Running a Fingerprint application.
 - Execution of a TRANSFER KERMIT, FILE& LOAD, IMAGE LOAD,

LOAD, RZ, and STORE INPUT instruction.
 - Running external commands (ush).
 - Running the Setup Mode or execution of a SETUP statement.

 IMMEDIATE STDIO
 Two lines will be transmitted on the STDOUT port with information on the

current STDIN and STDOUT channels regarding port, baud rate, character
length, parity, and stop bits.

Examples A program can be written without using any line numbers, as illustrated by

this short example. QQQ is used as a line label:

 IMMEDIATE OFF
yields:

 Ok
 PRINT "LINE 1"
 GOSUB QQQ
 END
 QQQ: PRINT "LINE 2"
 RETURN
 IMMEDIATE ON
 Ok
 RUN
 yields:
 LINE 1
 LINE 2
 Ok

 This example shows how the status of the various modes are checked:

 IMMEDIATE MODE
 yields for example:
 execution=OFF, immediate=ON, input=OFF, layout input = Off

 This example shows how the status of the STDIN and STDOUT channels
are checked:

 IMMEDIATE STDIO
 yields for example:
 stdin=uart1:, 9600, 8, NONE, 1
 stdout=uart1:, 9600, 8, NONE, 1

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 125

Chapter 2 Program Instructions

INKEY$
Field of Application Function reading the fi rst character in the receive buffer of the

standard IN channel.

Syntax INKEY$

Remarks For information on standard I/O channels, see SETSTDIO statement. By
default, "uart1:" is the standard I/O channel.

 As opposed to the INPUT statement, INKEY$ does not interrupt the program
fl ow to wait for input data, unless a loop is created by means of a GOTO
statement, see line 20 in the example below.

 INKEY$ is useful when the host computer is unable to end the input
data with a “Carriage Return” (CR; ASCII 13 dec.), but must use some
other character, for example “End of Text" (ETX; ASCII 3 dec.). Then
a routine, which interprets the substitute character as a carriage return,
can be created.

Example In this example, none of the characters received on the standard IN
channel will be printed on the host screen until a # character (ASCII
35 decimal) is encountered.

 10 A$ = INKEY$
 20 IF A$ = "" GOTO 10
 30 IF A$ = CHR$(35) THEN PRINT B$
 40 IF A$ = CHR$(35) THEN END
 50 B$ = B$ + A$
 60 GOTO 10
 RUN

 Type a number of characters on the keyboard of the host. They will not be
printed on the host screen until you type a # character. Then all the characters
will appear simultaneously, except for the #-sign.

 Note the loop between line 10 and 20, which makes the program wait
for you to activate a key.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7126

Chapter 2 Program Instructions

INPUT (IP)
Field of Application Statement for receiving input data via the standard IN channel during

the execution of a program.

Syntax INPUT|IP[<scon><;|,>]<<nvar>|<svar>>[,<<nvar>|<svar>>...]
<scon><;|,> is an optional prompt string, followed by a semicolon

or comma.
<<nvar>|<svar>> are variables to which the input data will be assigned.

Remarks For information on standard I/O channel, see SETSTDIO statement. By
default, "uart1:" is the standard I/O channel.

 During the execution of a program, an INPUT statement will interrupt
the execution. A question mark and/or a prompt will be displayed on the
screen of the host to indicate that the program is expecting additional data
to be entered. The prompt can be used to tell the operator what type of
data he or she is expected to enter.

 The prompt will be appended by a question mark if a semicolon (;) is entered
after the prompt string. If a comma (,) is used in that position, the printing
of the question mark will be suppressed.

 If a prompt is not used, the question mark will always be displayed.

 Do not enter any comma or semicolon directly after the keyword, only after
the prompt, or in order to separate variables.

 The input data should be assigned to one or several variables. Each item
of data should be separated from next item by a comma. The number of
data items entered must correspond to the number of variables in the list, or
else an error condition will occur. The variables may be any mix of string
variables and numeric variables, but the type of input data must agree with
the type of the variable, to which the data is assigned.

 Input can also be done directly to the system variables TIME$, DATE$,
and SYSVAR.

 The maximum number of characters that can be read using an INPUT
statement is 32,767 characters.

 Note that INPUT fi lters out any incoming ASCII 00 dec. characters (NUL).

 INPUT does not support auto-hunting (see SETSTDIO).

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 127

Chapter 2 Program Instructions

INPUT (IP), cont.
Examples This example shows input to one numeric variable and one string variable:

 10 INPUT "ADDRESS";A%,B$
 20 PRINT A%;" ";B$
 30 IF A% > 0 THEN GOTO 50
 40 GOTO 10
 50 END
 RUN
 yields:
 ADDRESS?

 When the prompt “ ADDRESS?” appears on the screen, you can type the

input data on the terminal’s keyboard, for example:

 999, HILL STREET
 Note the separating comma.

 If the input text data contains a comma, which shall be printed, you must
enclose the input data with quotation marks ("...."), for example:

 999, "HILL STREET, HILLSBOROUGH"
 Numeric input data must not include any decimal points.

 This example shows how the date can be set directly from the keyboard
of the host:

 INPUT "Enter date: ",DATE$
 yields:
 Enter date:

 When the prompt “ Enter date:" appears on the screen of the host, you can
type the date as a six-digit combination of year, month and day (see DATE$
variable). Time can also be set using the same method.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7128

Chapter 2 Program Instructions

INPUT ON/OFF
Field of Application Statement enabling or disabling the Intermec Direct Protocol.

Syntax INPUT ON|OFF
Default: INPUT OFF

Remarks These statements are used to enter or leave the Intermec Direct Protocol. Also
refer to Intermec Direct Protocol v7.50, Programmer’s Guide.

 INPUT ON Enables the Intermec Direct Protocol:
 - Enables reception of input data to a stored layout
 - Starts the error handler
 - Sets the verbosity to off (SYSVAR (18) = 0)
 - Shows “Direct Protocol 7.50” in the display

 INPUT OFF Disables the Intermec Direct Protocol:
 - Disables reception of input data to a stored layout
 - Stops the error handler
 - Resets the verbosity to the level selected before last

INPUT ON was executed
 - Shows “Fingerprint 7.50” in the display

 The following instructions will only work with the Intermec Direct Protocol,
that is after a INPUT ON statement has been executed:

 COUNT& ERROR FORMAT INPUT
 INPUT OFF LAYOUT END LAYOUT INPUT
 LAYOUT RUN PRINT KEY ON|OFF

Example This example illustrates how the Intermec Direct Protocol is enabled, how

new separators are specifi ed, how a layout is stored in the printer’s memory,
how variable data are combined with the layout, and how a label is printed.
Finally, the Intermec Direct Protocol is disabled:

 INPUT ON ↵
 FORMAT INPUT "#","@","&" ↵
 LAYOUT INPUT "tmp:LABEL1" ↵
 FT "Swiss 721 BT" ↵
 PP 100,250 ↵
 PT VAR1$ ↵
 PP 100,200 ↵
 PT VAR2$ ↵
 LAYOUT END ↵
 LAYOUT RUN "tmp:LABEL1" ↵
 #Line number 1&Line number 2&@ ↵
 PF ↵
 INPUT OFF ↵

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 129

Chapter 2 Program Instructions

INPUT#
Field of Application Statement for reading a string of data from an OPEN device or

sequential fi le.

Syntax INPUT#<nexp>,<<nvar>|<svar>>[,<<nvar>|<svar>>...]
<nexp> is the number assigned to the fi le or device when it was

OPENed.
<<nvar>|<svar>> is the variable to which the input data will be assigned.

Remarks This statement resembles the INPUT statement, but allows the input to
come from other devices than the standard IN channel or from various
fi les. Like the INPUT statement, commas can be used to assign different
portions of the input to different variables. INPUT# does not allow
prompts to be used.

 When reading from a sequential fi le, the records can be read one after
the other by the repeated issuing of INPUT# statements with the same
fi le reference.

 Once a fi le record has been read, it cannot be read again until the fi le is
CLOSEd and then OPENed again.

 The maximum number of characters that can be read using an INPUT#
statement is 32,767 characters.

 Note that INPUT# fi lters out any incoming ASCII 00 dec. characters
(NUL).

Example This example assigns data from the fi rst record in the sequential fi le
"Addresses" to the three string variables A$, B$, and C$ and from the second
record in the same fi le to the string variables D$ and E$:

 100 OPEN "ADDRESSES" FOR INPUT AS #5
 110 INPUT#5, A$, B$, C$
 120 INPUT#5, D$, E$

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7130

Chapter 2 Program Instructions

INPUT$
Field of Application Function returning a string of data, limited in regard of number

of characters, from the standard IN channel, or optionally from an
OPENed fi le or device.

Syntax INPUT$(<nexp1>[,<nexp2>])
<nexp1> is the number of characters to be read.
<nexp2> optionally specifi es a fi le or device using the number assigned

to it when it was OPENed.

Remarks If no fi le or device is specifi ed, the input will come from the standard I/O
channel (default "uart1:", see SETSTDIO statement). Otherwise, it will
come from the specifi ed fi le or device. The execution will be held until the
specifi ed number of characters has been received from the keyboard console,
fi le, or communication channel. If a fi le does not contain the specifi ed
number of characters, the execution will be resumed as soon as all available
characters in the fi le have been received.

 The maximum number of characters that can be returned using an INPUT$
statement is 65,536 characters.

Examples This example reads a sequence of 25 characters from the printer’s built-in

keyboard and assigns them to a string variable named Z$:

 1000 OPEN "CONSOLE:" FOR INPUT AS #1
 1010 Z$=INPUT$(25,1)

 In this example, 10 characters are read from the standard IN channel
and assigned to a variable.

 10 A$=INPUT$(10)

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 131

Chapter 2 Program Instructions

INSTR
Field of Application Function searching a specifi ed string for a certain character, or

sequence of characters, and returning its position in relation to the
start of the string.

Syntax INSTR([<nexp>,]<sexp1>,<sexp2>)
<nexp> is , optionally, the position where the search will start.
<sexp1> is the string to be searched.
<sexp2> is the character(s) for which the string will be searched.

Remarks INSTR allows you to search a string for some particular character(s) and return
the position of the character, or the fi rst character in the sequence, as a number
of characters positions measured from the start of the string.

 As an option, it is possible to specify a certain position in the string from
which the search will start. If no start position is specifi ed, the search will
start at the beginning of the string.

 The result will be zero if
 - the start position value exceeds the length of the string.
 - the string is empty.
 - the searched combination of characters cannot be found.

Examples In this example, the string "INTERMEC_PRINTER_AB" is searched for the
character combination "AB". No start position is specifi ed.

 10 A$="INTERMEC PRINTER AB"
 20 B$="AB"
 30 PRINT INSTR(A$,B$)
 RUN
 yields:
 18

 In next example, the string "INTERMEC_PRINTER_AB" is searched for the
character "I" and the start position is specifi ed as 4.

 10 A$="INTERMEC PRINTER AB"
 20 B$="I"
 30 PRINT INSTR(4,A$,B$)
 RUN
 yields:
 12

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7132

Chapter 2 Program Instructions

INVIMAGE (II)
Field of Application Statement for inversing the printing of text and images from

“black-on-white" to “white-on-black."

Syntax INVIMAGE | II
Default: NORIMAGE
Reset to default by: PRINTFEED execution

Remarks This statement can only be used in connection with the printing of text and
images (PRTXT and PRIMAGE). In the matrix of the font or image, all
“white” dots will be black and all black dots will be “white.” (Obviously,
“white” means that the dots will not be subjected to heat and the media
therefore will retain its original color, whereas “black” means the color
of the printing.)

 This implies that most fonts will be printed on a black background which
ascends and descends slightly more than most of the characters. Not all
fonts are suited for inverse printing. Thin lines, serifs, and ornaments may
be diffi cult to distinguish. There may also be an imbalance between the
ascending and descending black background.

 The same principles apply to images. The normally invisible background
may be larger than expected or be less favourably balanced. Small “white”
details tend to be blurred out by the black background. Therefore, before
using an inverse image, make a printout sample.

 INVIMAGE will be revoked by a NORIMAGE statement.

Example 10 PRPOS 30,300
 20 DIR 1
 30 ALIGN 4
 40 INVIMAGE
 50 FONT "Swiss 721 BT"
 60 PRTXT "Inverse printing"
 70 PRINTFEED
 RUN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 133

Chapter 2 Program Instructions

KEY BEEP
Field of Application Statement for resetting the frequency and duration of the sound

produced by the beeper, when any of the keys on the printer’s
keyboard is pressed down.

Syntax KEY↔BEEP<nexp1>,<nexp2>
<nexp1> is the frequency of the sound in Hz.
<nexp2> is the duration of the sound in periods of 0.020 seconds each

(max. 15,0000 = 5 minutes).
Default: Frequency: 1200 Hz
 Duration: 0.030 sec.

Remarks This statement sets the response for all keys of the printer. To turn off the
audible key response, set the frequency to a value higher than 9999.

 Note that the beeper is disabled during printing.

 The table below illustrates the relation between frequencies and the musical
scale (same as in the SOUND statement).

 Note Hz Note Hz Note Hz Note Hz
 C 131 C 262 C 523 C 1047
 C# 138 C# 277 C# 554 C# 1109
 D 147 D 294 D 587 D 1175
 D# 155 D# 311 D# 622 D# 1245
 E 165 E 330 E 659 E 1319
 F 175 F 349 F 699 F 1397
 F# 185 F# 370 F# 740 F# 1480
 G 196 G 392 G 784 G 1568
 G# 208 G# 415 G# 831 G# 1662
 A 220 A 440 A 880 A 1760
 A# 233 A# 466 A# 933 A# 1865
 B 247 B 494 B 988 B 1976
 (small octave) (one-line octave) (two-line octave) (three-line octave)

Example In this example, the beeper will produce an A in the one-line octave for 1
second each time a key is pressed down.

 10 KEY BEEP 440,50

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7134

Chapter 2 Program Instructions

KEY ON/OFF
Field of Application Statement enabling or disabling a specifi ed key on the printer’s

front panel to be used in connection with an ON KEY...GOSUB
statement.

Syntax KEY(<nexp>)OFF|ON
<nexp> is the id. number of one of the keys on the printer’s front

panel (see illustration below).
OFF|ON disables|enables the specifi ed key.

Remarks Using an ON KEY... GOSUB statement, any key (except the <Shift> key)
can be assigned to make the program branch to a subroutine. The keys are
enabled/disabled individually and are specifi ed by means of their respective
id. numbers in unshifted and/or shifted position. To specify a shifted key, add
100 to the unshifted id. number the key, as illustrated below.

 Please note the difference between the id. numbers of the keys and the ASCII
values they are able to produce (see KEYBMAP$).

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 135

Chapter 2 Program Instructions

KEY ON/OFF, cont.
Remarks, cont.

Example In this example, the F1 key (id. No. 10) is fi rst enabled, then used for
branching to a subroutine and fi nally disabled.

 10 KEY (10) ON
 20 ON KEY (10) GOSUB 1000
 30 KEY (10) OFF

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7136

Chapter 2 Program Instructions

KEYBMAP$
Field of Application Variable returning or setting the keyboard map table.

Syntax Read the map table: <svar> = KEYBMAP$(<nexp>)
<svar> returns the keyboard mapping
<nexp> is the type of string to be returned:
 0 = Unshifted 64 characters
 1 = Shifted 64 characters

 Set the map table: KEYBMAP$(<nexp>) = <sexp>
<nexp> is the type of string to be remapped:
 0 = Unshifted 64 characters
 1 = Shifted 64 characters
<sexp> is the string specifying the ASCII value for each key position

in the selected type of string.

Remarks In the KEYBMAP$ statement, each key on the printer’s front panel
has two characteristics:

 • The physical location of the key (position number).
 (This is not the same thing as the key’s Id No, see KEE ON/OFF

or ON KEY GOSUB.)
 • The ASCII decimal value that will be produced when the key is pressed.

(Compare with BREAK.)

 In principle, each physical key can produce two different ASCII values, one
in unshifted position and another in shifted position. One key is appointed
<Shift> key. When the <Shift> key is pressed at the same time as another key,
the unshifted ASCII value of the latter will be increased by 128.

 You can use the KEYBMAP$ instruction in two ways:

 Reading the keyboard mapping
 You can read how the keyboard is mapped in regard of either unshifted

or shifted characters. The printer will return a string of ASCII values in
ascending key position number. Because many keys return non-printable
ASCII values (ASCII 00-31 dec.), all will not be returned to the screen
of the host or printed on a label.

 Changing the keyboard mapping
 You can change the mapping of the keyboard, so a key will produce

another ASCII value than before. To do that, you must create a string which
specifi es the ASCII value for each of all unshifted or shifted key positions
in ascending order. Regardless of what the keyboard looks like, there are
always 64 theoretical key positions.

 Characters, that cannot be produced by the keyboard of the host, can be
substituted by CHR$ functions, where the character is specifi ed by its ASCII
decimal value according to the selected character set (see NASC statement.)
The same applies to special characters. Key positions which should be
disabled or are not included in the physical keyboard can be mapped as
NUL, using the function CHR$(0). Note that the position of the <Shift> key
cannot be remapped.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 137

Chapter 2 Program Instructions

KEYBMAP$, cont.
Remarks, cont. The keyboards return the following ASCII values:

 Note!
 In the Setup Mode, the keys have fi xed positions and are not affected by any

KEYBMAP$ statement. KEYBMAP$ only affects the keys when used outside
the Setup Mode.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7138

Chapter 2 Program Instructions

KEYBMAP$, cont.
Remarks, cont.

 Position numbers of the EasyCoder 501/601 XP keyboard . The keys printed
on the keyboard overlay are marked with a shade of gray. Key position
number 1 (Shift) cannot be remapped.

 Position numbers of the EasyCoder F-series keyboard. The key marked
“ Shift" cannot be remapped.

Examples The following example illustrates the mapping of the keyboard for EasyCoder

501 XP (unshifted keys only).

 10 B$=CHR$128+CHR$1+STRING$(4,0)+CHR$(2)+
 STRING$(4,0)+CHR$(3)
 20 B$=B$+STRING$(4,0)+CHR$(4)+STRING$(4,0)+
 CHR$(5)+STRING$(18,0)
 30 B$=B$+".147"+CHR$(0)+"0258"+CHR$(0)+
 CHR$(8)+"369"+CHR$(0)+CHR$(31)
 40 B$=CHR$(0)+CHR$(28)+CHR$(30)+STRING$(2,0)+
 CHR$(13)+CHR$(29)+CHR$(0)
 50 KEYBMAP$(0)=B$
 RUN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 139

Chapter 2 Program Instructions

KILL
Field of Application Statement for deleting a fi le from the printer’s memory or from a

DOS-fomatted SRAM memory card inserted in the memory card
adapter.

Syntax KILL<sexp>
<sexp> is the name, including extension, of the fi le which is to

be deleted.

Remarks The name of the fi le to be deleted must match the name given when the fi le
was saved, see SAVE statement. The name must include the extension. If no
extension was entered manually by the operator when the fi le was SAVEd,
the extension “.PRG” was added automatically.

 To KILL a fi le residing in another directory than the current one (see CHDIR
statement), you must include a reference to the directory in question when you
specify the fi le, for example "card1:<fi lename>.XYZ".

 KILL cannot be used for fi les residing in "rom:", "storage:", or "lock:".

Examples KILL "LABEL14.PRG"

 KILL "c:LABEL14.PRG

 KILL "card1:LABEL7.PRG"

 Startup fi les and outline font fi les have other extensions than .PRG:

 KILL "AUTOEXEC.BAT" (startup fi le)
 KILL "NNNNNNNN.TTF" (TrueType font fi le)

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7140

Chapter 2 Program Instructions

LAYOUT
Field of Application Statement for handling of layout fi les.

Syntax LAYOUT[F,] <sexp1>,<sexp2>,<svar>|<sexp3>,<nvar>|<sexp4>
F, optionally allows use of data and error fi les instead of arrays
<sexp1> is the layout fi le.
<sexp2> is the logotype name fi le.
<svar>|<sexp3> is the data array (<svar>) or data fi le (<sexp3).
<nvar>/<sexp4> is the error array (<nvar>) or error fi le (<sexp4).

Remarks <sexp1>: Layout fi le format sorted in ascending order (Records 1-n, 52 bytes each)
 Input: H = hex digit, D = Numeric digit, C = Alpha character
 Byte # Parameter Layout Type Input Notes
 0-1 Element number HH
 2 Layout type C
 A = Logotype by name
 B = Bar code
 C = Text
 E = Bar code extended fi eld Note 1
 H = Barfont on/off
 J = Baradjust (corresponds to BARADJUST stmt)
 L = Logotype by number
 S = Line
 X = Box
 3 Direction A,B,C,L,S,or X D
 Barfont on/off (0=off; 1=on) H D
 Security E D
 4 Alignment A,B,C,L,S,X D
 Aspect height ratio E D
 5-8 X-position A,B,C,L,S,or X DDDD
 Aspect width ratio E D
 Baradjust left J DDDD
 9-12 Y-position A,B,C,L,S,or X DDDD
 Rows in bar code E DD
 Baradjust right J DDDD
 13-22 Font name C C1-C10 Note 2
 Logotype name A C1-C10
 Bar code name B C1-C10
 Barfont name H C1-C10
 Line length S DDDD
 Box width X DDDD
 Columns in bar code E DD Byte 13-14
 Truncate according to code spec's E D Byte 15
 23-42 Fixed text or alphanumeric data B or C C1-C20
 Fixed numeric data B D1-D20
 Logotype number L DD
 Box height X DDDD
 Line thickness S DDDD
 43-44 No of char. to print (of byte 23-42) B or C DD
 45-46 Image type (I = inverse image) A,C, or L C
 Bar code ratio (wide/narrow bars) B DD
 47 Vertical magnifi cation A,C, or L D
 Bar code magnifi cation B D
 48 Horizontal magnifi cation A,C, or L D
 49-51 Bar code height B DDD
 Line thickness X DDD

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 141

Chapter 2 Program Instructions

LAYOUT, cont.
Remarks, cont. Note 1:
 The bar code extended field record (E) corresponds to the six last

parameters in the BARSET statement. Must have a lower element number
than the corresponding bar code record (B), which specifi es the other
bar code parameters.

 Note 2:
 The maximum font name length in the LAYOUT statement is 10 characters.

Most font names in Intermec Fingerprint are longer. A workaround method
is to use font name aliases with a maximum length of 10 characters,
See Chapter 6, “ Fonts” .

 Logotype name fi le format #1:
 (no embedded spaces in name)
 Record 1–n, 10 bytes each.
 C1...C10 Name for logotype No. 1
 . . .
 . . .
 C1...C10 Name for logotype No. n

 Logotype name fi le format #2:
 (Records sorted in ascending logotype number order)
 Record 1-n, 13 bytes each.
 DD Logotype number (2 digits)
 C always ":" (colon). Separator. Distinguishes format 2.
 C1...C10 Name of logotype (10 characters)

 Note: Logotype name fi le formats #1 and #2 are alternative.

 Data array/fi le format:
 (sorted in ascending order)
 One array position/One fi le line.
 HH Element number
 C1...Cn Data

 If a data element cannot be used in the layout, an error will occur and the index of the unused
element and error code -1 is placed in the error array/fi le.

 Error array/fi le format:
 (sorted in ascending order)
 Array position/File line No. 0: Record number for error 1
 Array position/File line No.1: Error number for error 1
 . . .
 . . .
 Array position/File line No. 2n-2: Record number for error n
 Array position/File line No. 2n-1: Error number for error n

 Also refer to the chapter “Label Design; Layout Files" in the Intermec
Fingerprint v7.50, Programmer’s Guide.

 To improve the performance, it is strongly recommended to create the layout
and logotype name fi les in the printer’s temporary memory ("tmp:"). Once
they have been created in "tmp:", they could be copied to the printer’s
permanent memory to avoid losing them at power off.

 Do not confuse this statement with the statements LAYOUT INPUT,
LAYOUT END, and LAYOUT RUN.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7142

Chapter 2 Program Instructions

LAYOUT, cont.
Example
Note that the 10 characters available to defi ne a font in the LAYOUT statement in most cases cannot
accommodate modern outline font names. Instead, use font aliases as described in Chapter 6. In the
example below, the font aliases are indicated by lowercase italic typing (lines 90–120, 150).

10 DIM QERR%(10)
20 LAYDATA$(0)="01DAY"
30 LAYDATA$(1)="04123456789012"
40 QERR%(0)=0
50 OPEN "tmp:LOGNAME.DAT" FOR OUTPUT AS 19
60 PRINT# 19,"DIAMONDS.1";
70 CLOSE 19
80 OPEN "tmp:LAYOUT.DAT" FOR OUTPUT AS 6
90 PRINT# 6,"01C11100 10 font alias 00I 11 ";
100 PRINT# 6,"01C11100 40 font alias 00 22 ";
110 PRINT# 6,"01C11100 100 font aliasWEDNES 06I 11 ";
120 PRINT# 6,"01C11100 130 font aliasSATURNUS 05I 11 ";
130 PRINT# 6,"02L11300 70 1 33 ";
140 PRINT# 6,"03S11100 210 300 3 ";
150 PRINT# 6,"04H1 font alias ";
160 PRINT# 6,"04B14100 300 EAN13 0 312 100";
170 CLOSE 6
180 LAYOUT "tmp:LAYOUT.DAT","tmp:LOGNAME.DAT",LAYDATA$,QERR%
190 IF QERR% (1) = 0 THEN GOTO 260
200 PRINT "-ERROR- LAYOUT 1"
210 I%=0
220 IF QERR%(I%)=0 THEN GOTO 260
230 PRINT " ERROR ";QERR%(I%+1);" in record ";QERR%(I%)
240 I%=I%+2
250 GOTO 220
260 PRINTFEED

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 143

Chapter 2 Program Instructions

LAYOUT END
Field of Application Statement for stopping the recording of a layout description and saving

the layout (Intermec Direct Protocol only).

Syntax LAYOUT END

Remarks This statement can only be used in the Intermec Direct Protocol after
a layout has been recorded by means of a LAYOUT INPUT statement.
After a LAYOUT END statement has been executed, no more data will
be added to the layout.

 By default, the layout will be saved in the printer’s permanent memory
("c:"). To speed up the execution it can, as an alternative, be saved in the
temporary memory (see LAYOUT INPUT statement). The layout can be
copied and killed as any other program fi le.

Example This example illustrates how the Intermec Direct Protocol is enabled, how

new separators are specifi ed, how a layout is stored in the printer’s temporary
memory, how variable data are combined with the layout, and how a label is
printed. Finally, the Intermec Direct Protocol is disabled:

 INPUT ON ↵
 FORMAT INPUT "#","@","&" ↵
 LAYOUT INPUT "tmp:LABEL1" ↵
 FT "Swiss 721 BT"↵
 PP 100,250 ↵
 PT VAR1$ ↵
 PP 100,200 ↵
 PT VAR2$ ↵
 LAYOUT END ↵
 LAYOUT RUN "tmp:LABEL1" ↵
 #Line number 1&Line number 2&@ ↵
 PF ↵
 INPUT OFF ↵

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7144

Chapter 2 Program Instructions

LAYOUT INPUT
Field of Application Statement for starting the recording of a layout description (Intermec

Direct Protocol only).

Syntax LAYOUT INPUT <sexp>
<sexp> is the desired name of the layout (max. 30 characters) including

name of the device where the layout is to be stored.

Remarks This statement can only be used in the Intermec Direct Protocol and starts
the recording of a layout. All formatting instructions, such as PRPOS, MAG,
FONT, BARFONT, BARSET, PRTXT, PRBAR, PRIMAGE, PRBOX,
PRLINE, etc., which are transmitted to the printer on the standard IN
channel after a LAYOUT INPUT statement and before a LAYOUT END
statement, will be included in the layout.

 Due to inherent restrictions in Flash memories, layouts cannot be created
in "c:" (which by default is the current directory), but must be created
in the printer’s temporary memory ("tmp:"), or possibly in an SRAM
card ("card1:"). Once a layout has been created in the temporary memory
("tmp:"), it can be copied to either "c:" or "card1:" so it will not be
lost at power-off or reboot.

 Variable input data to text, bar code, and image fi elds can be provided
separately by means of a LAYOUT RUN statement. Such variable data are
indicated in the layout by string variables VARn$ where “n" is the number
of the fi eld in the LAYOUT RUN string of data. For example, the statement
PRTXT "Hello" in the layout results in a fi xed text, whereas the statement
PRTXT VAR1$ results in a variable text, which is provided by the fi rst
fi eld in a LAYOUT RUN string.

 The layout must not contain any PRINTFEED statements.

 The layout will not be saved until a LAYOUT END statement is executed.

Example This example illustrates how the Intermec Direct Protocol is enabled, how

new separators are specifi ed, how a layout is stored in the printer’s temporary
memory, how variable data are combined with the layout, and how a label is
printed. Finally, the Intermec Direct Protocol is disabled:

 INPUT ON ↵
 FORMAT INPUT "#","@","&" ↵
 LAYOUT INPUT "tmp:LABEL1" ↵
 FT "Swiss 721 BT" ↵
 PP 100,250 ↵
 PT VAR1$ ↵
 PP 100,200 ↵
 PT VAR2$ ↵
 LAYOUT END ↵
 LAYOUT RUN "tmp:LABEL1" ↵
 #Line number 1&Line number 2&@ ↵
 PF ↵
 INPUT OFF ↵

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 145

Chapter 2 Program Instructions

LAYOUT RUN
Field of Application Statement for providing variable input data to a predefi ned layout

(Intermec Fingerprint Direct Protocol only).

Syntax LAYOUT RUN <sexp>
<sexp> is the name of the layout as specifi ed in the LAYOUT

INPUT statement.

Remarks This instruction can only be used in the Intermec Direct Protocol and is
used to select a predefi ned layout in a specifi ed part of the printer’s memory
(default is "c:", see LAYOUT INPUT statement) and provide input to
string variables in the layout. Such variables are indicated by VARn$,
where “n” indicates a fi eld in the string of data that should follow the
LAYOUT RUN statement.

 The string of input data should be composed according to the following
syntax, where <STX> is the start-of-text separator, <CR> is the fi eld
separator and <EOT> is the end-of-text separator (see FORMAT INPUT
statement):

 <STX><input to VAR1$><CR><input to VAR2$><CR>. <input to VARn$><CR><EOT>

Example This example illustrates how the Intermec Direct Protocol is enabled, how

new separators are specifi ed, how a layout is stored in the printer’s temporary
memory, how variable data are combined with the layout, and how a label is
printed. Finally, the Intermec Direct Protocol is disabled:

 INPUT ON ↵
 FORMAT INPUT "#","@","&" ↵
 LAYOUT INPUT "tmp:LABEL1" ↵
 FT "Swiss 721 BT" ↵
 PP 100,250 ↵
 PT VAR1$ ↵
 PP 100,200 ↵
 PT VAR2$ ↵
 LAYOUT END ↵
 LAYOUT RUN "tmp:LABEL1" ↵
 #Line number 1&Line number 2&@ ↵
 PF ↵
 INPUT OFF ↵

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7146

Chapter 2 Program Instructions

LBLCOND
Field of Application Statement for overriding the media feed setup.

Syntax LBLCOND<nexp1>,<nexp2>|<nexp3>
<nexp1> specifi es the type of action:
 0 = Overriding the stop adjust.
 1 = Overriding the start adjust.
 2 =Turning off the Label Stop Sensor/Black Mark Sensor.
 3 = Selecting the mode specifi ed by <nexp3>
<nexp2> specifi es <nexp1> = 0, 1, or 2 as a number of dots.
<nexp3> Specifi es one of the following modes:
 0 = Default Mode
 1 = IPL Mode
 2 = Gap Truncate Mode

Remarks This instruction allows you to override the printer’s feed-adjust setup or to
temporarily disable the label stop sensor or black mark sensor:

 <nexp
1
> = 0 temporarily sets the stop adjust to the value specifi ed

by <nexp
2
>.

 <nexp
1
> = 1 temporarily sets the start adjust to the value specifi ed

by <nexp
2
>.

 <nexp
1
> = 2 makes the label stop sensor (LSS) or black mark

sensor temporarily ignore any gaps or marks detected
within the length of media feed specifi ed by <nexp

2
>.

However, the label length must be greater than than the
distance between the LSS and the tear bar (if not, use
LBLCOND 3,xx). This allows the use of labels of such
shapes that would make the LSS react prematurely, or
tickets with preprint at the back of the media that would
interfere with the detection of the black mark.

 <nexp
1
> = 3 is useful as an alternative to LBLCOND 2,xx when the

length of the label or ticket is shorter than the distance
between the LSS and the tear bar. It makes it possible to
select one of the modes specifi ed by <nexp

3
>.

 Default Mode (<nexp3> = 0):
 If the print image is longer than the physical length of

the label or ticket, the print image will extend into the
next label until the media feed stops according to the
stop adjust setup (for example when the gap becomes
aligned with the tear bar). This means that the print
image may be truncated, the next label may have
to be discarded, and some of the print image may
coincide with a gap or slot.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 147

Chapter 2 Program Instructions

LBLCOND, cont.
Remarks, cont. IPL Mode (<nexp3> = 1):
 If the print image is longer than the physical length of

the label or ticket, the print image will extend into the
following label(s) until the entire print image has been
printed. Then the media is fed out to the next gap or
mark according to the stop adjust setup. This means that
the print image will not be truncated but may extend
into one or more consecutive labels, and some of the
print image may coincide with gaps or slots.

 Gap Truncate Mode (<nexp3> = 2):
 If the print image is longer than the physical length

of the label or ticket, only the part of the print image
that fi ts on the label or ticket will be printed and the
remainder will be ignored. This means that some of the
print image may not be printed at all, but the following
labels will not be affected.

 Verifying a start adjust or stop adjust value in the Setup Mode by pressing
key No. 16 (normally labeled “Enter”), or setting the value by means
of a setup fi le or setup string, will revoke any LBLCOND statement for
the parameter in question.

 The label stop sensor will be returned to normal operation by the statement:
LBLCOND 2,0

 All current LBLCOND statements will be revoked at startup or the execution
of a REBOOT statement. This means that the start and stop adjust will be
decided by the setup and the label stop sensor will work normally.

Example In this example, the start adjust value in the setup mode is overridden and

the label stop sensor is set to ignore any gaps in the web within 20 mm (240
dots at 12 dots/mm) of media feed:

 10 LBLCOND 1,5: LBLCOND 2,240
 20 FONT "Swiss 721 BT"
 30 PRTXT "Hello"
 40 PRINTFEED
 RUN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7148

Chapter 2 Program Instructions

LED ON/OFF
Field of Application Statement for turning a specifi ed LED control lamp on or off.

Syntax LED<nexp>ON | OFF
<nexp> is the LED which is to be turned on or off.
 0 is the “Ready” LED.
 1 is the “Error” LED.

Remarks All present Intermec Fingerprint printers are equipped with three LED (Light
Emitting Diode) control lamps on the front panel. Two of the LEDs can be
used to indicate for example when an error occurs or when the printer is ready.
It is up to the programmer to decide how they will be used, but since the LEDs
are marked with text, some restriction is recommended.

 The “Power” LED is connected to the On/Off switch and cannot be
controlled by the program.

Example In this example, the “ error” LED will be lighted if you, for example,
attempt to run the program with a raised printhead. Lower the printhead
and a label will be fed out. The “ error” LED goes out and the “ ready”
LED comes on.

 10 LED 0 ON
 20 LED 1 OFF
 30 ON ERROR GOTO 1000
 40 PRPOS 30,300
 50 FONT "Swiss 721 BT"
 60 PRTXT "OK!"
 70 PRINTFEED
 80 LED 0 ON
 90 LED 1 OFF
 100 END

 1000 LED 0 OFF
 1010 LED 1 ON
 1020 RESUME

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 149

Chapter 2 Program Instructions

LEFT$
Field of Application Function returning a specifi ed number of characters from a given

string starting from the extreme left side of the string, that is
from the start.

Syntax LEFT$(<sexp>,<nexp>)
<sexp> is the string from which the characters will be returned.
<nexp> is the number of characters to be returned.

Remarks This function is the complementary function for RIGHT$, which returns the
characters starting from the extreme right side, that is from the end.

 If the number of characters to be returned is greater than the number of
characters in the string, then the entire string will be returned. If the number of
characters is set to zero, a null string will be returned.

Examples 10 PRINT LEFT$("THERMAL PRINTER",7)
 RUN
 yields:
 THERMAL

 10 A$="THERMAL PRINTER":B$="LABEL"
 20 PRINT LEFT$(A$,8);LEFT$(B$,10);"S"
 RUN
 yields:
 THERMAL LABELS

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7150

Chapter 2 Program Instructions

LEN
Field of Application Function returning the number of character positions in a string.

Syntax LEN(<sexp>)
<sexp> is the string from which the number of characters will

be returned.

Remarks The number of characters to be returned includes unprintable characters, but
the quotation marks enclosing the string expression are not included.

Examples In this example, lines 40 and 50 illustrate two ways of using the LEN
function, when the number of characters from several string expressions
are to be added up.

 10 A$="INTERMEC" (8 char.)
 20 B$="THERMAL" (7 char.)
 30 C$="PRINTERS" (8 char.)
 40 PRINT LEN(A$+B$+C$)
 50 PRINT LEN(A$)+LEN(B$)+LEN(C$)
 RUN
 yields:
 23
 23

 This example illustrates that unprintable characters, for example space
characters, are included in the value returned by the LEN function:

 PRINT LEN("INTERMEC THERMAL PRINTERS")
 yields:
 25

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 151

Chapter 2 Program Instructions

LET
Field of Application Statement for assigning the value of an expression to a variable.

Syntax [LET]<<nvar>=<nexp>>|<<svar>=<sexp>>
<nvar> is the numeric variable to which a value will be assigned.
<nexp> is the numeric expression from which the value will be

assigned to the numeric variable.
or...
<svar> is the string variable to which the content of the string

expression will be assigned.
<sexp> is the string expression from which the content will be

assigned to the string variable.

Remarks The keyword LET is not necessary, but retained for compatibility with
old versions of Intermec Fingerprint. The equal sign (=) is suffi cient
to make the assignment. Both the expression and the variable most be
either string or numeric.

Example 10 LET A%=100 (numeric variable)
 20 B%=150 (numeric variable)
 30 LET C$="INTERMEC" (string variable)
 40 D$="THERMAL PRINTERS" (string variable)
 50 PRINT A%+B%,C$+" "+D$
 RUN
 yields:
 250 INTERMEC THERMAL PRINTERS

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7152

Chapter 2 Program Instructions

LINE INPUT
Field of Application Statement for assigning an entire line, including punctuation marks,

from the standard IN channel to a single string variable.

Syntax LINE↔INPUT[<scon>;]<svar>
<scon>; is an optional prompt plus a semicolon
<svar> is the string variable to which the input line is assigned.

Remarks For information on standard I/O channel, see SETSTDIO statement. By
default, "uart1:" is the standard I/O channel.

 LINE INPUT differs from INPUT in that an entire line of max. 32,767
characters will be read. Possible commas will appear as punctuation marks
in the string instead of dividing the line into portions.

 During the execution of a program, a LINE INPUT statement will interrupt
the execution. You can make a prompt being displayed on the host screen
to notify the operator that the program is expecting additional data to be
entered. The input is terminated and the program execution is resumed when
a carriage return character (ASCII 13 decimal) is encountered. The carriage
return character will not be included in the input line.

 Note that LINE INPUT fi lters out any incoming ASCII 00 dec. characters
(NUL).

Example Print your own visiting card like this:

 10 LINE INPUT "ENTER NAME: ";A$
 20 LINE INPUT "ENTER STREET: ";B$
 30 LINE INPUT "ENTER CITY: ";C$
 40 LINE INPUT "ENTER STATE + ZIPCODE: ";D$
 50 LINE INPUT "ENTER PHONE NO: ";E$
 60 FONT "Swiss 721 BT", 8
 70 ALIGN 5
 80 PRPOS 160,300:PRTXT A$
 90 PRPOS 160,250:PRTXT B$
 100 PRPOS 160,200:PRTXT C$
 110 PRPOS 160,150:PRTXT D$
 120 PRPOS 160,100:PRTXT "Phone: "+E$
 130 PRINTFEED
 RUN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 153

Chapter 2 Program Instructions

LINE INPUT#
Field of Application Statement for assigning an entire line, including punctuation marks,

from a sequential fi le or a device to a single string variable.

Syntax LINE´INPUT#<nexp>,<svar>
<nexp> is the number assigned to the fi le when it was OPENed.
<svar> is the string variable to which the input line is assigned.

Remarks This statement differs from the INPUT# statement in that an entire
line of max. 32,767 characters will be read, and possible commas in
the line will be included in the string as punctuation marks instead of
dividing it into portions.

 When reading from a sequential fi le, the lines can be read one after
the other by the repeated issuing of LINE INPUT# statements, using
the same fi le reference.

 Once a line has been read, it cannot be read again until the fi le is CLOSEd
and then OPENed again.

 The LINE INPUT# statement is useful when the lines in a fi le has
been broken into fi elds.

 Note that LINE INPUT# filters out any incoming ASCII 00 dec.
characters (NUL).

Example This example assigns data from the three fi rst lines of the fi le "Addresses" to
the string variables A$, B$, and C$ respectively:

 100 OPEN "ADDRESSES" FOR INPUT AS #5
 110 LINE INPUT# 5, A$
 120 LINE INPUT# 5, B$
 130 LINE INPUT# 5, C$

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7154

Chapter 2 Program Instructions

LIST
Field of Application Statement for listing the current program completely or partially, or

listing all variables, to the standard OUT channel.

Syntax LIST[[<ncon1>[–<ncont2>]] | ,V | ,B]
<ncon1> is a single line, or the fi rst line number in a range of lines.
<ncon2> is optionally the last line number in a range of lines.
,V lists all variables.
,B lists all breakpoints.

Remarks This instruction is useful after LOADing a program, or if you during
programming have changed any program lines, renumbered the lines, or
added new lines and want to bring some order in the presentation on the
screen of the host. LIST also removes unnecessary characters and adds
assumed keywords. The instruction is usually given in the immediate mode,
that is on a line without any preceding line number.

 The LIST statement can be used in seven different ways:
 • If no line number is entered after LIST, the entire current program will

be listed. In case the program has been written without line numbers
(see IMMEDIATE ON/OFF statements), the lines will be automatically
numbered with 10-step incrementation starting with line number 10
(10-20-30-40-50....).

 • If a single line number is entered after LIST, only the specifi ed
line will be listed.

 • If a line number followed by a hyphen (-) is entered after LIST, all lines
from the specifi ed line to the end of the program will be listed.

 • If a hyphen (-) followed by line number is entered after LIST, all lines from
the start of the program through the specifi ed line will be listed.

 • If two line numbers are entered after LIST, they will specify the fi rst and
last line in a range of lines to be listed.

 • If LIST,V is entered, all integer variables, integer array variables,
string variables, and string array variables in the printer’s memory
will be listed.

 • If LIST,B is entered, all breakpoints of the Fingerprint Debugger
(see DBBREAK) will be printed in line number order. Line labels
that have not been updated, which occurs at program execution,
may be misplaced.

Examples LIST Lists all lines in the program.
 LIST 100 Lists line No. 100 only.
 LIST 100– Lists all lines from line No 100

to the end of the program.
 LIST –500 Lists all lines from the start of

the program through line No. 500.
 LIST 100–500 Lists all lines from line 100

through line 500.
 LIST,V Lists all variables.
 LIST,B Lists all breakpoints.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 155

Chapter 2 Program Instructions

LISTPFSVAR
Field of Application Statement for listing variables saved at power failure.

Syntax LISTPFSVAR

Remarks Related instructions are SETPFSVAR, GETPFSVAR, and DELETE-
PFSVAR.

Example LISTPFSVAR
 yields for example:
 QS$
 QCPS%
 A%

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7156

Chapter 2 Program Instructions

LOAD
Field of Application Statement for loading a copy of a program, residing in the current

directory or in another specifi ed directory, into the printer’s working
memory.

Syntax LOAD<scon>
<scon> is the program to be loaded into the working memory.

Remarks If the program has the extension .PRG, the name of the program can be
given with or without any extension. Otherwise, the extension must be
included in the name. If the program resides in another directory than the
current one (see CHDIR statement), the name must also contain a reference
to the directory in question.

 LOAD closes any open fi les and deletes all program lines and variables
residing in the working memory before loading the specifi ed program. If the
previous program in the working memory has not been saved, see SAVE
statement, it will be lost and cannot be retrieved.

 While the program is loaded, a syntax check is performed. If a syntax error
is detected, the loading will be interupted and an error message will be
transmitted on the standard OUT channel.

Examples Load the program "LABEL127.PRG" from the current directory:

 LOAD "LABEL127"
 or
 LOAD "LABEL127.PRG"

 When “ Ok” appears on the screen, the loading is completed. Use a LIST
statement to display the program on the screen of your terminal.

 You may also load a program stored in another directory than the current
one, for example a read-only memory card ("rom:") or an optional
DOS-formatted SRAM memory card ("card1:"). Start the fi le name by
specifying the directory, for example:

 LOAD "rom:MKAUTO"
 or
 LOAD "card1:PROGRAM1.PRG"

 This will create a copy, which you can list or change and then save
under a new name.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 157

Chapter 2 Program Instructions

LOC
Field of Application Function returning the current position in an OPEN fi le or the status of

the buffers in an OPEN communication channel.

Syntax LOC(<nexp>)
<nexp> is the number assigned to the fi le or communication channel

when it was OPENed.

Remarks In a random fi le, LOC will return the number of the last record read or written
by the use of GET or PUT statements respectively.

 In a sequential fi le, the number of 128-byte blocks, that have been read or
written since the fi le was OPENed, will be returned.

 LOC can also be used to check the receive or transmit buffer of the specifi ed
communication channel:

 • If the channel is OPENed for INPUT, the remaining number of characters
(bytes) to be read from the receive buffer is returned.

 • If the channel is OPENed for OUTPUT, the remaining free space (bytes)
in the transmit buffer is returned.

 The number of bytes includes characters that will be MAPped as NUL.

Examples This example closes the fi le "addresses" when record No. 100 has been
read from the fi le:

 10 OPEN "ADDRESSES" FOR INPUT AS #1

 200 IF LOC(1)=100 THEN CLOSE #1

 This example reads the number of bytes which remains to be received from
the receive buffer of "uart2:":

 100 OPEN "uart2:" FOR INPUT AS #2
 110 A%=LOC(2)
 120 PRINT A%

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7158

Chapter 2 Program Instructions

LOF
Field of Application Function returning the length in bytes of an OPEN sequential or

random fi le, or returning the status of the buffers in an OPEN
communication channel.

Syntax LOF(<nexp>)
(<nexp>) is the number assigned to the fi le or communication channel

when it was OPENed.

Remarks LOF can also be used to check the receive or transmit buffer of the specifi ed
communication channel:

 • If a channel is OPENed for INPUT, the remaining free space (bytes) in
the receive buffer is returned.

 • If a channel is OPENed for OUTPUT, the remaining number of characters
to be transmitted from the transmit buffer is returned.

Examples The fi rst example illustrates how the length of the fi le "Pricelist" is
returned:

 10 OPEN "PRICELIST" AS #5
 20 A%=LOF(5)
 30 PRINT A%

 The second example shows how the number of free bytes in the receive buffer
of communication channel "uart2:" is calculated:

 100 OPEN "uart2:" FOR INPUT AS #2
 110 A%=LOF(2)
 120 PRINT A%

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 159

Chapter 2 Program Instructions

LSET
Field of Application Statement for placing data left-justifi ed into a fi eld in a random

fi le buffer.

Syntax LSET<svar>=<sexp>
<svar> is the string variable assigned to the fi eld by a FIELD

statement.
<sexp> holds the input data.

Remarks After having OPENed a fi le and formatted it using a FIELD statement,
you can enter data into the random fi le buffer using the LSET and RSET
statements (RSET right-justifi es the data).

 The input data can only be stored in the buffer as string expressions. Therefore,
a numeric expression must be converted to string format by the use of an STR$
function before an LSET or RSET statement is executed.

 If the length of the input data is less than the length of the fi eld, the
data will be left justifi ed and the remaining number of bytes will be
printed as space characters.

 If the length of the input data exceeds the length of the fi eld, the input data
will be truncated on the right side.

Example 10 OPEN "PHONELIST" AS #8 LEN=26
 20 FIELD#8,8 AS F1$, 8 AS F2$, 10 AS F3$
 30 SNAME$="SMITH"
 40 CNAME$="JOHN"
 50 PHONE$="12345630"
 60 LSET F1$=SNAME$
 70 LSET F2$=CNAME$
 80 RSET F3$=PHONE$
 90 PUT #8,1
 100 CLOSE#8
 RUN
 SAVE "PROGRAM 1.PRG "
 NEW
 10 OPEN "PHONELIST" AS #8 LEN=26
 20 FIELD#8,8 AS F1$, 8 AS F2$, 10 AS F3$
 30 GET #8,1
 40 PRINT F1$,F2$,F3$
 RUN
 yields:
 SMITH — — — JOHN — — — — — — 12345630

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7160

Chapter 2 Program Instructions

LTS& ON/OFF
Field of Application Statement for enabling or disabling the label taken sensor.

Syntax LTS& ON|OFF
Default: LTS& OFF

Remarks The label taken sensor (LTS) is a photoelectric device that can be fi tted
in the vicinity of the printer’s label outfeed slot and detects if a printed
label or ticket has been removed or not. (Usually, a self-adhesive label
is not fed out completely, but will remain partly stuck to the liner so
it will not fall off.)

 Using the LTS ON statement, you can order the printer to stop the execution
at next PRINTFEED statement until the LTS no longer detects any label.
Then the PRINTFEED is executed. This is most useful when printing
batches of labels or tickets. As soon as a label is taken, the next one is printed
and awaits being taken care of.

 The same result can also be obtained in a more cumbersome way by a
program based on the PRSTAT(2) function.

 LTS& OFF revokes LTS& ON.

Example 10 LTS& ON
 20 FOR A%=1 TO 5
 30 B$=STR$(A%)
 40 FONT "Swiss 721 BT"
 50 PRPOS 200,200
 60 PRTXT B$
 70 PRINTFEED
 80 NEXT
 RUN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 161

Chapter 2 Program Instructions

MAG
Field of Application Statement for magnifying a font, barfont, or image up to four times

separately in regard of height and width.

Syntax MAG<nexp1>,<nexp2>
<nexp1> is the magnifi cation in regard of height (1, 2, 3, or 4).
<nexp2> is the magnifi cation in regard of width (1, 2, 3, or 4).
Default value: 1,1
Reset to default by: PRINTFEED execution

Remarks Magnifi cation makes the object grow in directions away from the selected
anchor point, see ALIGN statement.

 The MAG statement has become more or less obsolete for fonts and bar
fonts with the implementation of scaleable fonts. Even if MAG works for
such fonts, the printout quality will be much better by using a larger font
size rather than magnifying a smaller one. However, the MAG statement is
retained to allow compatibility with programs originally written for older
Intermec Fingerprint versions.

 The MAG statement also works with images. However, since the MAG
statement simply enlarges the bitmap pattern of an image, it gives a better
printout quality to download and use a larger version of an image rather
than magnifying a smaller one.

 Note that the MAG statement cannot be used for bar code patterns (use
BARHEIGHT and BARMAG statement for that purpose).

Example This example illustrates how the image "GLOBE.1" is printed both with
its original size and magnifi ed 4 times. Note the jagged edges of the
curves in the enlarged image.

 10 ALIGN 2
 20 PRPOS 300,50
 30 FONT "Swiss 721 BT"
 40 PRTXT "Normal Size"
 50 PRPOS 300,125
 60 PRIMAGE "GLOBE.1"
 70 PRPOS 300,300
 80 PRTXT "Enlarged 4X"
 90 PRPOS 300,375
 100 MAG 4,4
 110 PRIMAGE "GLOBE.1"
 120 PRINTFEED
 RUN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7162

Chapter 2 Program Instructions

MAKEASSOC
Field of Application Statement for creating an association.

Syntax MAKEASSOC <sexp1>, <sexp2>, <sexp3>
<sexp1> specifies the name of the association to be created

(case-sensitive).
<sexp2> contains an argument list of parameter tuples according to

the convention in <sexp3>.
<sexp 3> should always be "HTTP" (case sensitive).

Remarks HTTP implies that the argument list in <sexp
2
> is encoded in “x-www-

url-encoding.”

Example This example shows how a string, including three stringnames associated
with three start values, will be defi ned and one of them (time) will
be changed:

 10 QUERYSTRING$ =
 "time=UNKNOWN&label=321&desc=DEF"

 20 MAKEASSOC "QARRAY", QUERYSTRING$, "HTTP"
 30 QTIME$ = GETASSOC$("QARRAY", "time")
 40 QLABELS% = VAL(GETASSOC$("QARRAY", "label"))
 50 QDESC$ = GETASSOC$("QARRAY", "desc")
 60 PRINT "time=";QTIME$, "LABEL=";QLABELS%,

 "DESCRIPTION=";QDESC$
 70 SETASSOC "QARRAY", "time", time$
 80 PRINT "time="; GETASSOC$("QARRAY", "time")
 RUN

yields:

 time=UNKNOWN LABEL=321 DESCRIP TION=DEF
 time=153355

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 163

Chapter 2 Program Instructions

MAP
Field of Application Statement for changing the ASCII value of a character when received

on the standard IN channel, or optionally on another specified
communication channel.

Syntax MAP[<nexp1>,]<nexp2>,<nexp3>
<nexp1> optionally specifi es a communication channel:
 0 = "console:"
 1 = "uart1:"
 2 = "uart2:"
 3 = "uart3:"
 4 = "centronics:"
 5 = "net1:"
 6 = "usb1:"
 Default: Standard I/O channel.
<nexp2> is the original ASCII decimal value.
<nexp3> is the new ASCII decimal value after mapping.

Remarks This statement is used to modify a character set (see NASC and NASCD
statements) or to fi lter out undesired character. If you for example want a
“Q” (ASCII 81 dec.) to be printed as the letter “Z” (ASCII 90 dec.), the
MAP statement should be entered as:

 MAP 81,90

 The mapping interprets any ASCII 81 dec. value received on the standard IN
channel as ASCII 90 dec., that is when you press “Q” on the keyboard of the
host, the character “Z” will be printed (see note). However, pressing “Z” will
still produce a “Z”, because that character has not been remapped.

 To reset the mapping performed above, map the character back to its
original ASCII value like this:

 MAP 81,81

 When a character is received by the printer, it is processed in regard
of possible MAP statements before it “enters” the Intermec Fingerprint
fi rmware. That allows you to fi lter out undesired control characters, which
may confuse the Intermec Fingerprint fi rmware, for example by mapping
them as NUL (ASCII 0 decimal).

 After processing, the selected character set (see NASC and NASCD
statements) controls how characters will be printed or displayed. If none
of the character sets meets your demands completely, use MAP statements
to modify the set that comes closest. Note that MAP statements will be
processed before any COMSET or ON KEY..GOSUB strings are checked.
NASC and NASCD statements will be processed last.

 Do not map any characters to ASCII values occupied by characters used
in Intermec Fingerprint instructions, for example keywords, operators,
%, $, #, and certain punctuation marks. Mapping will be reset to normal
at power-up or reboot.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7164

Chapter 2 Program Instructions

MAP, cont.
Examples You can check what characters the host produces using a simple program.

Pressing different keys on the host should produce the corresponding
characters both on the label and on the screen of the host. If not, try another
character set (see NASC). In this example we presume that the keyboard
produces ASCII 81 dec. and ASCII 90 dec. when you press the Q and Z keys
respectively. Should any unexpected characters be printed on the labels or
the screen, check the manuals of the host for information on what ASCII
values will be produced by the various keys and how the screen will present
various ASCII values received from the printer.

 10 FONT "Swiss 721 BT"
 20 PRPOS 30,100
 30 INPUT "Enter character";A$
 40 PRTXT A$
 50 PRINTFEED

 By adding a MAP statement in line 5, you can test what happens. In this
case we remap the character Q to be printed as Z, as in the explanation
on the previous page. After printing, we map the character Q back to
its original position.

 5 MAP 81,90
 10 FONT "Swiss 721 BT"
 20 PRPOS 30,100
 30 INPUT "Enter character";A$
 40 PRTXT A$
 50 PRINTFEED
 60 MAP 81,81

 Assume that a device connected to "uart2:" produces strings always starting
with the control character STX (ASCII 2 decimal). STX can be fi ltered out
by mapping it as NUL (ASCII 0 decimal):

 10 MAP 2,2,0

 Should "uart2:" be appointed standard IN channel (see SETSTDIO), the fi rst
parameter can be omitted from the example above:

 10 MAP 2,0

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 165

Chapter 2 Program Instructions

MERGE
Field of Application Statement for merging a program in the printer’s current directory, or

optionally in another specifi ed directory, with the program currently
residing in the printer’s working memory.

Syntax MERGE<scon>
<scon> is the name (optionally including a reference to another

directory than the current one) of the program, which is
to be merged with the program currently residing in the
printer’s working memory.

Remarks MERGE creates a copy of a program stored in the current directory
(see CHDIR statement), or optionally in a specifi ed other directory,
and blends its lines into the program currently residing in the printer’s
working memory.

 Important:
 If there are lines with the same numbers in both programs, the lines in the

program currently residing in the working memory will be replaced by the
corresponding lines in the MERGEd program. This also applies to programs
written without line numbers, since they will automatically be assigned
hidden line numbers (10-20-30... etc.) at the execution of the IMMEDIATE
ON statement. In order to avoid overwriting any lines, you may SAVE a
program without line numbers using a SAVE <scon>, L statement. When
MERGEd, it will be appended to the current program and assigned line
numbers that start with the number of the last line of the current program plus
10. For safety reasons, a backup copy of the current program is recommended
before issuing a MERGE statement.

 MERGE makes it possible to store blocks of program instructions, which
are frequently used, and include them into new programs. The printer’s
ROM memory contains a number of useful programs, which also can be
MERGEd into programs of your own creation.

 Be careful not to include any MERGE statement as a part of a program,
or else the execution will stop after the MERGE statement has been
executed.

 The EXECUTE statement offers an alternative method for combining
Fingerprint programs.

Examples The program “ XYZ.PRG" will be merged with the current program. If there
are identical line numbers in both programs, the lines from “ XYZ.PRG"will
replace those in the current program.

 MERGE "XYZ.PRG" (from current directory)
 MERGE "c:XYZ.PRG" (from permanent memory)
 MERGE "tmp:XYZ.PRG" (from temporary memory)
 MERGE "rom:XYZ.PRG" (from read-only memory card)
 MERGE "card1:XYZ.PRG" (from DOS-formatted memory card)

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7166

Chapter 2 Program Instructions

MID$
Field of Application Function returning a specifi ed part of a string.

Syntax MID$(<sexp>,<nexp1>[,<nexp2>])
<sexp> is the original string.
<nexp1> is the start position in the original string.
[,<nexp2>] is the number of characters to be returned (optional).

Remarks <sexp> is the original string from which a specifi ed part is to be returned.

 <nexp
1
> specifi es which character position in the original string is to be the

fi rst character in the part to be returned.

 <nexp
2
> restricts the number of characters to be returned. This information

is optional. If omitted, all characters from the start position specifi ed by
<nexp

1
> to the end of the string will be returned.

 If the value of <nexp
1
> is less than or equal to zero, then Error 44, “Parameter

out of range” will occur.

 If the value of <nexp
2
> is less than zero, then Error 44, “Parameter

out of range” will occur.

 If the value of <nexp
1
> exceeds the length of the original string, an empty

string will be returned, but no error condition will occur.

 If the value of <nexp
1
> does not exceed the length of the original string, but

the sum of <nexp
1
> and <nexp

2
> exceeds the length of the original string,

the remainder of the original string will be returned.

Examples 10 A$=MID$("INTERMEC PRINTERS",6,3)
 20 PRINT A$
 RUN
 yields:
 MEC

 10 A$="INTERMEC PRINTERS"
 20 B%=10
 30 C%=7
 40 D$=MID$(A$,B%,C%)
 50 PRINT D$
 RUN
 yields:
 PRINTER

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 167

Chapter 2 Program Instructions

NAME DATE$
Field of Application Statement for formatting the month parameter in return strings of

DATE$("F") and DATEADD$(...,"F").

Syntax NAME DATE$ <nexp>, <sexp>
<nexp> is the month number (1-12).
<sexp> is the desired name of the month.

Remarks This statement allows you to assign names to the different months in
any form and language you like. The names will be returned instead
of the corresponding numbers in connection with DATE$("F") and
DATEADD$("F") instructions, provided that a FORMAT DATE$ statement
has been executed.

 The number of characters assigned to represent months in the FORMAT
DATE$ statement decides how much of the names, as specifi ed in the
NAME DATE$ statement, will be returned. The names will be truncated
at the left side. For example:

 FORMAT DATE$ "YY.MMM:DD"
 NAME DATE$ 1,"JANUARY"
 PRINT DATE$("F")

yields for example:
 01.ARY.06

 Usually, it is best to restrict the month parameter in the FORMAT DATE$
statement to 2 or 3 characters (MM or MMM) and enter the names of the
months in the NAME DATE$ statement accordingly.

Example This example shows how to make the printer return dates in accordance

with British standard:

 10 DATE$="010115"
 20 NAME DATE$ 1, "JAN"
 30 NAME DATE$ 2, "FEB"
 40 NAME DATE$ 3, "MAR"
 50 NAME DATE$ 4, "APR"
 60 NAME DATE$ 5, "MAY"
 70 NAME DATE$ 6, "JUN"
 80 NAME DATE$ 7, "JUL"

 140 FORMAT DATE$ "MMM DD, YYYY"
 150 PRINT DATE$("F")
 RUN
 yields:
 JAN 15, 2001

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7168

Chapter 2 Program Instructions

NAME WEEKDAY$
Field of Application Statement for formatting the day parameter in return strings of

WEEKDAY$.

Syntax NAME WEEKDAY$ <nexp>, <sexp>
<nexp> is the number of the weekday according to the WEEKDAY$

function syntax (Monday = 1... Sunday = 7).
<sexp> is the desired name of the weekday.
 Default: Full English name in lowercase characters, that

is Monday, Tuesday, etc.

Remarks This statement allows you to assign names to the different weekdays in
any form and language you like. The names will be returned instead of the
corresponding numbers in connection with WEEKDAY$ function.

Example This example shows how to make the printer return the name of the weekday

as an English 3-letter abbreviation:

 10 FORMAT DATE$ ", MM/DD/YY"
 20 DATE$="001201"
 30 NAME WEEKDAY$ 1, "Mon"
 40 NAME WEEKDAY$ 2, "Tue"
 50 NAME WEEKDAY$ 3, "Wed"
 60 NAME WEEKDAY$ 4, "Thu"
 70 NAME WEEKDAY$ 5, "Fri"
 80 NAME WEEKDAY$ 6, "Sat"
 90 NAME WEEKDAY$ 7, "Sun"
 100 PRINT WEEKDAY$ (DATE$) + DATE$("F")
 RUN
 yields:
 Fri, 12/01/00

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 169

Chapter 2 Program Instructions

NASC
Field of Application Statement for selecting a single-byte character set.

Syntax NASC<nexp>
<nexp> is the reference number of a character set:
 1 = Roman 8 (default)
 33 = French
 34 = Spanish
 39 = Italian
 44 = English (UK)
 46 = Swedish
 47 = Norwegian
 49 = German
 81 = Japanese Latin (romají)
 351 = Portuguese
 -1 = PCMAP
 - 2 = ANSI (same as 1252)
 850 = MS-DOS Latin 1
 851 = MS-DOS Greek 1
 852 = MS-DOS Latin 2
 855 = MS-DOS Cyrillic
 857 = MS-DOS Turkish
 1250 = Windows Latin 2 (Central Europe)
 1251 = Windows Cyrillic (Slavic)
 1252 = Windows Latin 1 (ANSI, same as -2)
 1253 = Windows Greek
 1254 = Windows Latin 5 (Turkish)
 1257 = Windows Baltic Rim

Remarks Please refer to Chapter 4 for complete character set tables.

 By default, after processing of possible MAP statements, the Intermec
Fingerprint fi rmware will print and, when applicable, display all characters
according to the Roman 8 character set. However, the Intermec Fingerprint
fi rmware contains a number of other character sets, which allows you
to print and display such characters that are characteristic for a number
of countries or language areas, or to adapt the printer for the operating
system of the host.

 That implies that a certain ASCII code received by the printer may
result in a different character is printed or displayed depending on which
character set has been selected.

 If none of the character sets available contains the desired character(s), use a
MAP statement to reMAP the character set that comes closest to your needs.
Note that MAP statements are processed before NASC statements.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7170

Chapter 2 Program Instructions

NASC, cont.
Remarks, cont. A NASC statement will have the following consequences:

 Text printing:
 Text on labels etc. will be printed according to the selected character set.

However, parts of the label, that already has been processed and stored in
the print buffer before the NASC statement is executed, will not be affected.
This implies that labels may be multi-lingual.

 LCD Display:
 New messages in the display will be affected by a NASC statement.

However, a message that is already displayed will not be updated
automatically. The display is, for all practical reasons, able to show
all printable characters. In the Setup Mode, all characters are mapped
according to US-ASCII standard.

 Communication:
 Data transmitted via any of the communication channels will not be affected

as the data is defi ned as ASCII values, not as alphanumeric characters. The
active character set of the receiving unit will decide the graphic presentation
of the input data, for example the screen of the host.

 Bar Code Printing:
 The pattern of the bars refl ects the ASCII values of the input data and is

not affected by a NASC statement. The bar code interpretation (the human
readable characters below the bar pattern) is affected by a NASC statement.
However, the interpretation of bar codes, that have been processed and are
stored in the print buffer, will not be affected.

Example This example selects the Italian character set:

 10 NASC 39

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 171

Chapter 2 Program Instructions

NASCD
Field of Application Statement for selecting a double-byte character set according to

the Unicode standard.

Syntax NASCD <sexp>
<sexp> is the name of the character set.
Default: "" (disables double-byte interpretation).

Remarks When a double-byte character set has been selected, the fi rmware will usually
treat all characters from ASCII 161 dec. to ASCII 254 dec (ASCII A1-FE
hex) as the fi rst part of a two-byte character. Next character byte received
will specify the second part. However, the selected Unicode double-byte
character set may specify some other ASCII value as the breaking point
between single and double byte character sets.

 There are various ways to produce double-byte characters from the keyboard
of the computer. By selecting the proper character set using a NASCD
statement, the typed-in ASCII values will be translated to the corresponding
Unicode values, so the desired glyph will be printed.

 Double-byte fonts and character set tables are available from Intermec
on special request.

Example The following text contains both single- and double-byte fonts. The double-byte
font and its character set are stored in a Font Install Card:

 10 NASC 46
 20 FONT "Swiss 721 BT", 24, 10
 30 NASCD "rom:BIG5.NCD"
 40 FONTD "Chinese"
 50 PRTXT CHR$(65);CHR$(161);CHR$(162)
 60 PRINTFEED
 RUN

 This program yields a printed text line that starts with the Latin character A
(ASCII 65 dec.) followed by the Chinese font that corresponds to the address
161+162 dec. in the character set “ BIG5.NCD.”

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7172

Chapter 2 Program Instructions

NEW
Field of Application Statement for clearing the printer’s working memory in order to allow

a new program to be created.

Syntax NEW

Remarks The NEW statement will delete the program currently residing in the printer’s
working memory, close all fi les, and clear all variables and breakpoints.
If the current program has not been saved (see SAVE statement), it will
be lost and cannot be restored.

 In the Intermec Direct Protocol, all counters will be removed when a
NEW statement is executed.

 Note that clearing the printer’s working memory does not imply that the host
screen will be cleared too. The lines of the previous program will remain on
the screen until gradually being replaced by new lines.

Example NEW

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 173

Chapter 2 Program Instructions

NORIMAGE (NI)
Field of Application Statement for returning to normal printing after an INVIMAGE

statement has been issued.

Syntax NORIMAGE | NI

Remarks Normal image is the default type of printing and means that text and images
will be printed in black-on-white.

 Using an INVIMAGE statement, the printing of text and images can
be inversed. Such inverse printing will be discontinued for all PRTXT
and PRIMAGE statements that follows the encounter of a NORIMAGE
statement.

Example In this example, the fi rst line is printed in inversed fashion and the second
line in the normal fashion:

 10 PRPOS 30,300
 20 ALIGN 4
 30 INVIMAGE
 40 FONT "Swiss 721 BT"
 50 PRTXT "INVERSE PRINTING"
 60 PRPOS 30, 200
 70 NORIMAGE
 80 PRTXT "NORMAL PRINTING"
 90 PRINTFEED
 RUN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7174

Chapter 2 Program Instructions

ON BREAK GOSUB
Field of Application Statement for branching to a subroutine, when break interrupt

instruction is received.

Syntax ON↔BREAK<nexp>GOSUB<ncon>|<line label>
<nexp> is one of the following communication channels:
 0 = "console:"
 1 = "uart1:"
 2 = "uart2:"
 3 = "uart3:"
 4 = "centronics:"
<ncon>|<line label> is the number or label of the program line to be branched to.

Remarks This statement is closely related BREAK and BREAK ON/OFF. When break
interrupt is enabled (see BREAK ON) and the operator issues a break interrupt
instruction (see BREAK), the execution of the currently running program will
be interrupted and branched to a specifi ed line in a subroutine.

Examples In this example, the printer emits a special signal when a break interrupt is
issued from the printer’s keyboard:

 10 ON BREAK 0 GOSUB 1000
 20 GOTO 20

 1000 FOR A%=1 TO 3
 1010 SOUND 440,50
 1020 SOUND 349,50
 1030 NEXT A%
 1040 END

 The same example without line numbers will look like this:

 IMMEDIATE OFF
 ON BREAK 0 GOSUB QQQ
 WWW: GOTO WWW

 QQQ: FOR A%=1 TO 3
 SOUND 440,50
 SOUND 349,50
 NEXT A%
 END
 IMMEDIATE ON

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 175

Chapter 2 Program Instructions

ON COMSET GOSUB
Field of Application Statement for branching to a subroutine, when the background reception

of data on the specifi ed communication channel is interrupted.

Syntax ON↔COMSET<nexp1>GOSUB<nexp2>|<line label>
<nexp1> is one of the following communication channels:
 0 = "console:"
 1 = "uart1:"
 2 = "uart2:"
 3 = "uart3:"
 4 = "centronics:"
 6 = "usb1:"
<nexp2>/<line label> is number or label of the program line to be branched to.

Remarks This statement is closely related to COMSET, COMSTAT, COMSET ON,
COMSET OFF, COM ERROR ON/OFF, and COMBUF$. It is used to branch
to a subroutine when one of the following conditions occur:

 - End character is received.
 - Attention string received.
 - Max. number of characters received.

 These three parameters are set for the specifi ed communication channel
by a COMSET statement.

Examples In this example, the program branches to a subroutine for reading the buffer
of the communication channel:

 1 REM Exit program with #STOP&
 10 COMSET1,"#","&","ZYX","=",50
 20 ON COMSET 1 GOSUB 2000
 30 COMSET 1 ON
 40 IF A$ <> "STOP" THEN GOTO 40
 50 COMSET 1 OFF

 1000 END
 2000 A$= COMBUF$(1)
 2010 PRINT A$
 2020 COMSET 1 ON
 2030 RETURN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7176

Chapter 2 Program Instructions

ON COMSET GOSUB, cont.
Examples, cont. The same example written without line numbers would look like this:

 IMMEDIATE OFF
 REM Exit program with #STOP&
 COMSET1,"#","&","ZYX","=",50
 ON COMSET 1 GOSUB QQQ
 COMSET 1 ON
 WWW: IF A$ <> "STOP" THEN GOTO WWW
 COMSET 1 OFF

 END
 QQQ: A$=COMBUF$(1)
 PRINT A$
 COMSET 1 ON
 RETURN
 IMMEDIATE ON

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 177

Chapter 2 Program Instructions

ON ERROR GOTO
Field of Application Statement for branching to an error-handling subroutine when

an error occurs.

Syntax ON↔ERROR↔GOTO<ncon>|<line label>
<ncon> is the number or label of the line to which the program should

branch when an error condition occurs.

Remarks If any kind of error condition occurs after this statement has been
encountered, the standard error-trapping routine will be ignored and the
program will branch to the specifi ed line, which should be the fi rst line
in an error-handling subroutine.

 If the line number is 0, the standard error-trapping routine will be enabled and
no error-branching within the current program will be executed.

Examples If you try to run this example with the printhead raised (or if any
other error occurs), a warning signal will sound and the error LED
will be lighted.

 10 LED 0 ON:LED 1 OFF
 20 ON ERROR GOTO 1000
 30 FONT "Swiss 721 BT"
 40 PRTXT "HELLO"
 50 PRINTFEED
 60 END

 1000 LED 0 OFF:LED 1 ON
 1010 FOR A%=1 TO 3
 1020 SOUND 440,50
 1030 SOUND 359,50
 1040 NEXT A%
 1050 RESUME NEXT

 The same example written without line numbers would look like this:

 IMMEDIATE OFF
 LED 0 ON:LED 1 OFF
 ON ERROR GOTO QQQ
 FONT "Swiss 721 BT"
 PRTXT "HELLO"
 PRINTFEED
 END

 QQQ: LED 0 OFF:LED 1 ON
 FOR A%=1 TO 3
 SOUND 440,50
 SOUND 359,50
 NEXT A%
 RESUME NEXT
 IMMEDIATE ON

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7178

Chapter 2 Program Instructions

ON GOSUB
Field of Application Statement for conditional branching to one of several subroutines.

Syntax ON<nexp>GOSUB<ncon>|<line label>[,<ncon>|<line label>...]
<nexp> is a numeric expression that determines which line the

program should branch to.
<ncon>/<line label> is the number or label of the line, or list of lines, to which

the program should branch.

Remarks This statement is closely related to the ON GOTO statement. The
numeric expression may result in any positive value. The expression
is truncated to an integer value before the statement is executed. If the
resulting value is negative, 0, or larger than the number of subroutines,
the statement will be ignored.

 The value of the numeric expression determines which of the subroutines
the program should branch to. For example, if the the value of the
numeric expression is 2, the program will branch to the second subroutine
in the list.

Examples In this example, different texts will be printed on the screen depending on
which of the keys 1-3 you press on the keyboard of the host.

 10 INPUT "PRESS KEY 1-3 ", A%
 20 ON A% GOSUB 1000,2000,3000
 30 END
 1000 PRINT "You have pressed key 1"
 1010 RETURN
 2000 PRINT "You have pressed key 2"
 2010 RETURN
 3000 PRINT "You have pressed key 3"
 3010 RETURN

 The same example written without line numbers would look like this:

 IMMEDIATE OFF
 INPUT "PRESS KEY 1-3 ", A%
 ON A% GOSUB QQQ,WWW,ZZZ
 END
 QQQ: PRINT "You have pressed key 1"
 RETURN
 WWW: PRINT "You have pressed key 2"
 RETURN
 ZZZ: PRINT "You have pressed key 3"
 RETURN
 IMMEDIATE ON

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 179

Chapter 2 Program Instructions

ON GOTO
Field of Application Statement for conditional branching to one of several lines.

Syntax ON<nexp>GOTO<ncon>|<line label>[,<ncon>|<line label>...]
<nexp> is a numeric expression that determines which line the

program should branch to.
<ncon>/<line label> is the number or label of the line, or list of lines, to which

the program should branch.

Remarks This statement is closely related to the ON GOSUB statement. The
nu1meric expression may result in any positive value. The expression
is truncated to an integer value before the statement is executed. If the
resulting value is negative, 0, or larger than the number of lines, the
statement will be ignored.

 The value of the numeric expression determines which of the lines the program
should branch to. For example, if the the value of the numeric expression is 2,
the program will branch to the second line in the list.

Examples In this example, different texts will be printed on the screen depending on
which of the keys 1-3 you press on the keyboard of the host.

 10 INPUT "PRESS KEY 1-3 ", A%
 20 ON A% GOTO 1000,2000,3000
 30 END
 1000 PRINT "You have pressed key 1"
 1010 GOTO 30
 2000 PRINT "You have pressed key 2"
 2010 GOTO 30
 3000 PRINT "You have pressed key 3"
 3010 GOTO 30

 The same example written without line numbers would look like this:

 IMMEDIATE OFF
 INPUT "PRESS KEY 1-3 ", A%
 ON A% GOSUB QQQ,WWW,ZZZ
 YYY: END
 QQQ: PRINT "You have pressed key 1"
 GOTO YYY
 WWW: PRINT "You have pressed key 2"
 GOTO YYY
 ZZZ: PRINT "You have pressed key 3"
 GOTO YYY
 IMMEDIATE ON

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7180

Chapter 2 Program Instructions

ON HTTP GOTO
Field of Application Statement for branching to a subroutine when a request for an

application CGI is received.

Syntax ON↔HTTP↔GOTO<ncon>|<line label>
<ncon>/<line label> is the number or label of the line to which the program will

branch when the CGI request is received.

Remarks This statement is used in connection with EasyLAN 100i and defi nes a
Fingerprint subroutine that handles the CGI-request. Setting the handler’s
line number or line label to 0 disables the handler.

 When a request for an application CGI is received, the current execution point
will be pushed on to the stack and then the execution will commence in the
handler with stdin and stdout redirected from/to the Web browser.

 Related instruction: RESUME HTTP.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 181

Chapter 2 Program Instructions

ON KEY GOSUB
Field of Application Statement for branching to a subroutine when a specifi ed key on the

printer’s front panel is activated.

Syntax ON↔KEY(<nexp>)GOSUB<ncon>|<line label>
<nexp> is the id. number of one of the keys on the printer’s front

panel (see illustration below).
<ncon>/<line label> is the number or label of the line to which the program will

branch when the specifi ed key is pressed down.

Remarks All Intermec Fingerprint v7.xx-compatible printer models are fi tted with a
membrane-switch keyboard. Each key can be enabled individually using its
id. number in a KEY ON statement. Then the key can be assigned, alone or in
combination with the <Shift> key, to make the program branch to a subroutine
using an ON KEY... GOSUB statement. The <Shift> key adds 100 to the
unshifted id. number of each key, as illustrated below.

 Note the difference between the id. numbers of the keys and the ASCII values
they are able to produce (see for example BREAK).

 Note that BREAK takes precedence over any ON KEY statement,
provided that break interrupt is not disabled for the "console:" by a
BREAK 0 OFF statement.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7182

Chapter 2 Program Instructions

ON KEY GOSUB, cont.
Remarks, cont.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 183

Chapter 2 Program Instructions

ON KEY GOSUB, cont.
Examples This example illustrates how activating the F1 key (id. No. 10) will make the

program branch to a subroutine, which contains the PRINTFEED statement.
Note line 30 where the execution will wait for the key to be pressed.

 10 ON KEY (10) GOSUB 1000
 20 KEY (10) ON
 30 GOTO 30

 1000 FONT "Swiss 721 BT"
 1010 PRPOS 30,100
 1020 PRTXT "HELLO"
 1030 PRINTFEED
 1040 END
 RUN

 The same example can be written without line numbers this way:

 IMMEDIATE OFF
 ON KEY (10) GOSUB QQQ
 KEY (10) ON
 WWW: GOTO WWW

 QQQ: FONT "Swiss 721 BT"
 PRPOS 30,100
 PRTXT "HELLO"
 PRINTFEED
 END
 IMMEDIATE ON
 RUN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7184

Chapter 2 Program Instructions

ON/OFF LINE
Field of Application Statement controlling the SELECT signal on the "centronics:"

communication channel.

Syntax ON | OFF↔LINE<nexp>
<nexp> specifi es the communication channel:
 4 = "centronics:"
 6 = "usb1:"

Remarks Pin 13 in the Centronics/IEEE 1284 interface connector contains the
SELECT signal:

 • ON LINE 4 sets the SELECT signal high.
 • OFF LINE 4 sets the SELECT signal low.

 If no ON/OFF LINE statement is issued, the SELECT signal will be high,
that is the Centronics channel will be ON LINE.

 ON LINE/OFF LINE for the serial channel "usb1:" is implemented according
to USB Device Class for Printing Devices v1.09, January 2000.

Example In this example, the "centronics:" communication channel is disabled,
while a new setup is performed on the printer by means of a setup
fi le, and then enabled:

 10 OFF LINE 4
 20 SETUP "New Setup.SYS"
 30 ON LINE 4

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 185

Chapter 2 Program Instructions

OPEN
Field of Application Statement for opening a fi le or device–or creating a new fi le–for

input, output, or append, allocating a buffer, and specifying the
mode of access.

Syntax OPEN<sexp>[FOR↔<INPUT|OUTPUT|APPEND>↔]AS [#]<nexp1>[LEN=<nexp2>]
<sexp> is the fi le or device to be opened, of the fi le to becreated. File

names must not contain any colon character (:).
indicates that whatever follows is a number. Optional.
<nexp1> is a designation number for the OPENed fi le or device.
<nexp2> is, optionally, the length of the record in bytes (default

128 bytes).

Remarks An OPEN statement must be executed before a fi le or device can be used
for input, output, and/or append. A maximum of 25 fi les and/or devices
can be open at the same time.

 Sequential Access Mode:
 The access mode can optionally be specified as sequential INPUT,

OUTPUT, or APPEND:
 INPUT Sequential input from the fi le/device, replacing existing

data. Existing fi les/devices only.
 OUTPUT Sequential output to the fi le/device, replacing existing

data.
 APPEND Sequential output to the fi le/device, where new data will

be appended without replacing existing data.

 Random Access Mode:
 If no access mode is specifi ed in the statement, the fi le/device is opened

for both input and output (RANDOM access mode). FIELD, LSET,
RSET, PUT, and GET can only be used on records in fi les OPENed in
the RANDOM access mode.

 Please refer to the DEVICES statement for information on which devices
can be opened for the different modes of access.

 Lists of the fi les stored in the various parts of your printer’s memory can be
obtained by the use of the FILES statements.

 Electronic Keys:
 Each key circuit may contain a number of “key items.” There are two

types of key items:
 • Lock (device "lock:")
 • Storage (device "storage:")

 Each key item has a fi le name consisting of max. 4 characters, usually
appended by a password. The password consists of a delimiter character
(?) indicating the password followed by the actual password (max. 4
characters). Failure to include the correct password (if such is required) in
the fi le name will result in an error.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7186

Chapter 2 Program Instructions

OPEN, cont.
Examples Allow sequential output to the printer’s display using the OPEN statement

this way:

 10 OPEN "console:" FOR OUTPUT AS #1
 20 PRINT#1:PRINT#1
 30 PRINT#1, "GONE TO LUNCH"
 40 PRINT#1, "BACK SOON";
 RUN

 The text will appear on the printer’s display as:

 GONE TO LUNCH
 BACK SOON

 Open the fi le "PRICELIST" for random access with the reference number
#8 and a record length of 254 bytes:

 10 OPEN "PRICELIST" AS #8 LEN=254

 Open the fi le "ADDRESSES" for sequential input with the reference number
#4 and a record length of 128 bytes.

 10 OPEN "ADDRESSES" FOR INPUT AS #4

 This example shows how a few lines can be added to a program to make it
possible to unlock it using an electronic key:

 10 OPEN "lock:LCK1?PAS1" FOR INPUT AS #1
 20 INPUT#1, A$
 30 IF A$ AND 1 <>1 THEN GOTO 90000

 80000 CLOSE #1
 90000 PRINT "Access to program denied!"
 90010 END

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 187

Chapter 2 Program Instructions

OPTIMIZE BATCH ON/OFF
Field of Application Statement for enabling/disabling optimizing for batch printing.

Syntax OPTIMIZE "BATCH"↔ON | OFF
ON|OFF enables/disables optimizing respectively.
Default: Disabled (OFF)

Remarks This facility is intended to speed up batch printing, which means the
uninterrupted printing of large numbers of identical or very similar labels.
OPTIMIZE BATCH is not recommended for the printing of labels with
frequently varying content.

 The program execution will not wait for the printing of the label to be
completed, but proceeds executing next label image into the other of the two
image buffers as soon as possible.

 By default, OPTIMIZE BATCH is disabled (OFF). However, if the following
conditions are all fulfi lled, the OPTIMIZE BATCH is automatically
enabled (ON):

 - A value larger than 1 has been entered for the PRINTFEED statement.
 - LTS& OFF (default)
 - CUT OFF (default)

Examples Run these two examples and watch the differences in the printer’s
performance:

 10 OPTIMIZE "BATCH" ON
 20 FOR I%=1 TO 10
 30 PRTXT I%
 40 PRINT "Before printfeed"
 50 PRINTFEED
 60 PRINT "After printfeed"
 70 NEXT
 RUN

 10 OPTIMIZE "BATCH" OFF
 20 FOR I%=1 TO 10
 30 PRTXT I%
 40 PRINT "Before printfeed"
 50 PRINTFEED
 60 PRINT "After printfeed"
 70 NEXT
 RUN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7188

Chapter 2 Program Instructions

PORTIN
Field of Application Function reading the status of a port on an Industrial Interface Board.

Syntax PORTIN(<nexp>)
<nexp> is the number of the port to be read:
 IN ports (optical): 101-108
 OUT ports (relay): 201-204
 OUT ports (optical): 221-228

Remarks This function works with the Industrial Interface Board and is able to read
the status of 8 IN ports with optocouplers, 8 OUT ports with optocouplers,
and 4 OUT ports with relays. For information on how to set the OUT ports,
please refer to the PORTOUT statement.

 A current can be lead through an optocoupler in each IN port:
 • If the current is on, the PORTIN function returns the value -1 (true).
 • If the current is off, the PORTIN function returns the value 0 (false).

 This feature is intended to allow the execution of the Intermec Fingerprint
to be controlled by various types of external sensors or non-digital
switches.

 The status of the OUT ports, as set by PORTOUT statements, can also
be read by PORTIN functions.

 Please refer to the documentation of the Industrial Interface Board for
more information.

Example The status of IN port 101 on an Industrial Interface Board decides
when a label is to be printed. The printing will be held until the current
is switched off:

 10 FONT "Swiss 721 BT"
 20 PRTXT "POWER IS OFF"
 30 IF PORTIN (101) THEN GOTO 30
 40 PRINTFEED
 50 END

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 189

Chapter 2 Program Instructions

PORTOUT ON/OFF
Field of Application Statement for setting one of four relay port or one of eight optical ports

on an Industrial Interface Board to either on or off.

Syntax PORTOUT (<nexp>) ON|OFF
<nexp> is the number of the port to be set:
 OUT ports (relay): 201-204
 OUT ports (optical): 221-228

Remarks This statement works with the Industrial Interface Board and is able to
control 8 IN ports with optocouplers, 8 OUT ports with optocouplers, and
4 OUT ports with relays. For information on how to read the status of the
various ports, please refer to the PORTIN function.

 This feature is intended to allow the execution of the Intermec Fingerprint
program to control various external units like gates, lamps, or conveyor
belts.

 Please refer to the documentation of the Industrial Interface Board for
more information.

Example The relay of OUT port 201 on an Industrial Interface Board is Opened
and then Closed like this:

 1000 PORTOUT (201) ON

 2000 PORTOUT (201) OFF

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7190

Chapter 2 Program Instructions

PRBAR (PB)
Field of Application Statement for providing input data to a bar code.

Syntax PRBAR|PB<<sexp>|<nexp>>
<<sexp>|<nexp>> is the input data to the bar code generator.

Remarks The bar code must be defi ned by BARSET, BARTYPE, BARRATIO,
BARHEIGHT, BARMAG, BARFONT, and/or BARFONT ON/OFF
statements, or by the corresponding default values.

 Make sure that the type of input data (numeric or string) and the number
of characters agree with the specifi cation for the selected bar code type.
Information on some of the most commonly used bar codes are provided
at the end of this manual.

Example Two different bar codes, one with numeric input data and one with string
input data, can be generated this way. The input data could also have been
entered in the form of variables:

 10 BARFONT "Swiss 721 BT", 8 ON
 20 PRPOS 50,400
 30 ALIGN 7
 40 BARSET "INT2OF5",2,1,3,120
 50 PRBAR 45673
 60 PRPOS 50,200
 70 BARSET "CODE39",3,1,2,100
 80 PRBAR "ABC"
 90 PRINTFEED
 RUN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 191

Chapter 2 Program Instructions

PRBOX (PX)
Field of Application Statement for creating a box, optionally containing a single text line or

a frame of mulitiple hyphenated text lines.

Syntax PRBOX|PX<nexp1>,<nexp2>,<nexp3>

 [,<sexp1>[,<nexp4>[,<nexp5>[,<sexp2>[,<sexp3>]]]]]
<nexp1> is the height of the box in dots (1-6000).
<nexp2> is the width of the box in dots (1-6000).
<nexp3> is the line weight in dots (0/1-6000).
<sexp1> is the framed text to be written inside the box (max. 300

char./line, max. 20 lines). Single-byte fonts only.
<nexp4> is the horizontal distance between inner edge of the box line

and the text frame (-100 to 100 dots). Default: 0.
<nexp5> is the vertical distance between the inner edge of the box line

and text frame and also between each line of text in the frame
(-100 to 100 dots). Default: Same value as <nexp4>.

<sexp2> is a line delimiter (max. 9 characters), which replaces the
default delimiter string CHR$(10) or CHR$(13). Each time
this delimiter is encountered in the text string (<sexp1>, the
rest of the text is wrapped to the next line.

<sexp3> is a control string for hyphen delimiter and replacement,
see Remarks.

Remarks This statement has two purposes: to create a rectangular white box surrounded
by a line with a certain thickness, or to specify a text frame that can contain
up to 20 lines of hyphenated text. These two purposes can be combined so
a text frame is surrounded by a black box.

 Creating a simple box:
 In this case you only need to specify the fi rst three parameters, that is

height, width, and line weight (thickness). The box will be drawn with
its anchor point (see ALIGN) at the insertion point, as specifi ed by the
nearest preceding PRPOS statement. A box can be aligned left, right,
or center along its baseline.

 The print direction specifi es how the box is rotated in relation to its
anchor point.

 The line weight (thickness) grows inward from the anchor point. The heavier
the line, the less white area inside the box. Thus, it is possible to create
a black area using a box with very heavy lines. For a simple box without
any text fi eld, the line weight must be >0. The white area inside a box
can be used for printing. Boxes, lines, and text may cross (also see
XORMODE ON/OFF).

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7192

Chapter 2 Program Instructions

PRBOX, cont.
Remarks, cont. Creating a simple box, cont.
 The illustration below shows how the height and width of the box are

defi ned for different print directions.

 Creating a multiline text fi eld
 The PRBOX statement can also be used to create an area in which a fi eld

of wrapped and hyphenated text can be printed. As opposed to the PRTXT
statement, there is no need to specify each line of text separately. The text
fi eld can be framed by the box (line weight > 0), or the box can be invisible
(line weight = 0). The maximum number of characters on each line is 300
and the maximum number of lines is 20.

 The position of the text frame inside the box is affected by the direction (see
DIR statement), the alignment (see ALIGN statement), and by two parameters
in the PRBOX statement (<nexp

4
> and <nexp

5
>.

 The direction rotates the box with its text fi eld around the anchor point as
specifi ed by the alignment. The alignment specifi es the anchor point of the box
itself as left-, right-, or center-aligned (see ALIGN), and at the the same time
also decides how the fi eld will be aligned inside the box (9 possible positions)
and if the text lines will be left, right, or center justifi ed.

 In the following description, horizontal and vertical should be understood
in relation to how the text is printed. (That means that in directions 2
and 4, horizontal and vertical have opposite meanings than in directions
1 and 3).

 The horizontal distance between the inner edge of the box line and the
borders of the text fi eld is specifi ed by <nexp

4
>:

 - In case of ALIGN 1, 4, or 7, it decides the distance between the inner edge
of the left side box line and the left-hand edge of the text fi eld.

 - In case of ALIGN 3, 6, or 9, it decides the distance between the inner edge
of the right side box line and the right-hand edge of the text fi eld.

 - In case of ALIGN 2, 5, or 8, this parameter has no consequence.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 193

Chapter 2 Program Instructions

PRBOX, cont.
Remarks, cont. Creating a multiline text fi eld, cont.
 The vertical distance between the inner edge of the box line and the borders of

the text fi eld as well as the empty vertical space between the character cells of
two adjacent lines (line spacing) is specifi ed by <nexp

5
>:

 - In case of ALIGN 1, 2, or 3, it decides the distance between the inner
edge of the bottom box line and the bottom edge of the text fi eld
as well as line spacing.

 - In case of ALIGN 7, 8, or 9, it decides the distance between the inner
edge of the right side box line and the right-hand edge of the text
fi eld as well as line spacing.

 - In case of ALIGN 4, 5, or 6, this parameter only decides the line
spacing.

 See the illustration on next page for examples of how the alignment affects
the location of multi-line text.

 If the text in <sexp
1
> is entered as a continuous string of characters without any

spaces, linefeeds, or carriage returns, the text will wrap to the next line when
there is no room left for any more characters on a line.

 If any combination of a carriage return (CR = ASCII 13 dec,) and a
linefeed (LF = ASCII 10 dec.) is encountered, the remaining text will be
wrapped once to the next line.

 Space characters (ASCII 32 dec.) will also initiate a line wrap. If there
are more than one space character, the wrapping will be at the last one
that fi ts into the line in question.

 It is possible to replace the default line delimiters (CR, LF, and CR/LF) with
some other line delimiter specifi ed in a string of max. 9 characters (<sexp

2
>).

This delimiter will not be printed, even if it is a printable character. Each time
the delimiter is encountered, the text will wrap to a new line.

 Hyphenation Support
 In <sexp

3
> you can modify the way hyphenation will be performed using a

special syntax described later on.

 You can put “invisible” hyphen delimiters in the text string at suitable
wrap-around positions. The delimiter is by default a hyphen sign (ASCII 45
dec.). However, you can use a string of any characters up to nine characters
long instead, but be careful so it will not be confused with the text. If a
wrap-around is performed, the corresponding hyphen delimiter will by
default be printed as a hyphen sign (ASCII 45 dec.), whereas hyphen
delimiters not used for wrap-around will not be printed.

 If you for some reason would like to print some other character(s) than
hyphens, you can specify a string of hyphen replacement characters. It is
possible to use a string up to nine characters long, but the shorter the string
the lesser risk that a line will wrap outside the box.

 If you have a text string with long words and for some reason have not
inserted all necessary line delimiters, a line-wrap may occur unexpectedly
in a word. You can specify a hyphen delimeters for this case as well. By
default, there is no such delimeter.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7194

Chapter 2 Program Instructions

PRBOX, cont.
Remarks, cont.

This is line number 1

and this is line 2

and now comes line 3

followed by No. 4.

This is line number 1

and this is line 2

and now comes line 3

followed by No. 4.

This is line number 1

and this is line 2

and now comes line 3

followed by No. 4.

ALIGN 7

<nexp 5> <nexp 5> <nexp 5>

<nexp 5>

<n
ex

p
4>

<n
ex

p
4><nexp 5> <nexp 5>

<nexp 5> <nexp 5> <nexp 5>

<nexp 5> <nexp 5> <nexp 5>

ALIGN 8 ALIGN 9

This is line number 1

and this is line 2

and now comes line 3

followed by No. 4.

ALIGN 4

<n
ex

p
4>

<n
ex

p
4>

This is line number 1

and this is line 2

and now comes line 3

followed by No. 4.

This is line number 1

and this is line 2

and now comes line 3

followed by No. 4.

This is line number 1

and this is line 2

and now comes line 3

followed by No. 4.

ALIGN 5 ALIGN 6

This is line number 1

and this is line 2

and now comes line 3

followed by No. 4.

ALIGN 1

<nexp 5>

<n
ex

p
4>

ALIGN 2 ALIGN 3

<n
ex

p
4>

This is line number 1

and this is line 2

and now comes line 3

followed by No. 4.
<nexp 5><nexp 5>

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 195

Chapter 2 Program Instructions

PRBOX, cont.
Remarks, cont. Hyphenation Support, cont.
 Specify the parameter <sexp

3
> in PRBOX using the following syntax:

 <sexp3>=<sexp3a>[space<sexp3b>[space<sexp3c>]]
<sexp3a> is a soft hyphen delimiter. If the text does not have enough

room on one line, the rest of the text will be wrapped
from the last space or from the position marked by the
soft hyphen delimiter.

 Exception: Two adjacent soft hyphen delimiters revoke
each other.

 Default: Normal hyphen (-).
 Max length: 9 characters.
space is a string delimiter with the value CHR$(32).
<sexp3b> is one or more characters, that will be printed at the end of

a line which has been hyphenated according to a hyphen
delimiter (see <sexp3a>).

 Default: Normal hyphen (-).
 Max length: 9 characters (less is preferred).
<sexp3c> is a string of hyphen extension characters, used on single

words which are too long to be printed on one line and have no
hyphen delimiter specifi ed. The hyphen extension character(s)
will be printed at the right end of line and the remainder of
the word will be printed on the next line.

 Default: No character.
 Max length: 9 characters.

 If no <sexp
3
> is specifi ed, the rule for hyphen delimiter and replacement

will be the same as for printing hyphens in text. Two adjacent hyphens
will be printed as one.

Examples This examples draws a rectangle without any text:

 10 PRPOS 50,50
 20 PRBOX 200,400,5
 30 PRINTFEED
 RUN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7196

Chapter 2 Program Instructions

PRBOX, cont.
Examples, cont. This program illustrates a multi-line text fi eld with line wrap, where “ &S”

is the soft hyphen delimiter:

 10 DIR 1
 20 ALIGN 8
 30 R$="Hyphen&Sated words will be divid&Sed

 into sylla&Sbles."
 40 NL$="NEWLINE"
 50 S$="&S&Special Cases and EXTRAORDINARY long

 words."
 60 T$=R$+NL$+S$
 70 PRPOS 300,300
 80 PRBOX 700,500,20,T$,25,1,NL$,"&S - +"
 90 PRINTFEED
 RUN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 197

Chapter 2 Program Instructions

PRBUF
Field of Application Statement for receiving and printing bitmap image data using the

PRBUF protocol.

Syntax PRBUF<nexp1>[,<nexp2]<new line><image data>
<nexp1> is the number of bytes of the image in PRBUF protocol.
<nexp2> is, optionally, a timeout between characters in TICKS (0.01

sec). Default ≈ 12.7 sec./character.
<new line> is any combination of CR, CR/LF, or LF.
<image data> is the image according to the PRBUF protocol.

Remarks This statement is useful for receiving and printing bitmap images from, for
example, a Windows printer driver. It is more effective and requires less
memory than using a STORE IMAGE...PRIMAGE sequence. The bitmap
image is printed directly and is not saved anywhere in the printer’s memory
after the image buffer has been cleared.

 At the PRBUF statement, the printer waits for image data to be received on
the standard IN channel. PRBUF only works with binary transfers, that is
XON/XOFF must be disabled. You can optionally set a timeout between
characters (default 12.7 sec.) When the specifi ed number of bytes according
to the PRBUF protocol have been received, the image data are processed
directly into the printer’s image buffer and printed without requiring any
more Fingerprint instructions.

 PRBUF does not work if <nexp
1
> bytes cannot be allocated. If memory is low,

it is possible to download the bitmap image in two or more blocks.

 The fi eld settings (alignment, clipping, direction, xor mode, inverse image,
magnifi cation, x-position, and y-position) are handled by the current protocol,
but the basic rule is that x- and y-positions, fi eld clipping, and xor mode are
handled and the other attributes are ignored.

 If PRPOS x,y, then the real print position will be PRPOS x,y+1.

 The PRBUF protocol is decribed in Chapter 3, “Image Transfer.”

 The <newline> is not part of the statement, but any combination of carriage
return (ASCII 13 dec,) and/or linefeed (ASCII 10 dec.) is allowed without
interfering with the PRBUF protocol.

Example This example shows how the printer is instructed to receive and print 1,424
bytes of image data according to the PRBUF protocol:

 PRBUF 1424 ↵
 <binary image data>

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7198

Chapter 2 Program Instructions

PRIMAGE (PM)
Field of Application Statement for selecting an image stored in the printer’s memory.

Syntax PRIMAGE|PM<sexp>
<sexp> is the full name of the desired image including extension.

Remarks An image is positioned according to the preceding PRPOS, DIR, and ALIGN
statements. It can be magnifi ed by means of a MAG statement.

 For the best printout quality, create and download a larger version of the
image rather than magnifying a smaller one.

 All images provided by Intermec have an extension which indicates for
which directions the image is intended:

 • Extension .1 indicates print directions 1 & 3.
 • Extension .2 indicates print directions 2 & 4.

 Even if the Intermec Fingerprint fi rmware does not require such an extension,
we strongly recommend you to follow the same convention when creating
your own images as to make it easier to select the correct image.

Example This example illustrates the printing of a label containing an image
printed “ upside down” :

 10 PRPOS 200,200
 20 DIR 3
 30 ALIGN 5
 40 PRIMAGE "GLOBE.1"
 50 PRINTFEED
 RUN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 199

Chapter 2 Program Instructions

PRINT (?)
Field of Application Statement for printing data to the standard OUT channel.

Syntax PRINT|?[<<nexp>|<sexp>>[<,|;><<nexp>|<sexp>>...][;]]
<<nexp>|<sexp>> are string or numeric expressions, which will be printed to

the standard OUT channel.

Remarks If no expressions are specifi ed after the PRINT statement, it will yield a
blank line. If one or more expressions are listed, the expression(s) will
be processed and the resulting values will be presented on standard OUT
channel (see SETSTDIO statement), for example usually on the screen of the
host. The shorthand form of PRINT is a question mark.

 Do not confuse the PRINT statement with the PRINTFEED statement.

 Each line is divided into zones of 10 character positions each. These zones
can be used for positioning the values:

 • A comma sign (,) between the expressions causes next value to be printed
at the beginning of next zone.

 • A semicolon sign (;) between the expressions causes next value to be
printed immediately after the last value.

 • A plus sign (+) between two string expressions also causes next value to
be printed immediately after the last value. (Plus signs cannot be used
between numeric expressions.)

 • If the list of expressions is terminated by a semicolon, the next PRINT
statement will be added on the same line. Otherwise, a carriage
return is performed at the end of the line. If the printed line is wider
than the screen, the software will automatically wrap to a new line
and go on printing.

 Printed numbers are always followed by a space character.

 Printed negative numbers are preceded by a minus sign.

Example 10 LET X%=10
 20 LET A$="A"
 30 PRINT X%;X%+1,X%+5;X%-25
 40 PRINT A$+A$;A$,A$
 50 PRINT X%;
 60 ? "PIECES"
 RUN
 yields:
 10 11 15 -15
 AAA A
 10 PIECES

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7200

Chapter 2 Program Instructions

PRINT KEY ON/OFF
Field of Application Statement for enabling or disabling printing of a label by pressing

the Print key.

Syntax PRINT KEY ON|OFF
Default: PRINT KEY OFF

Remarks In the Immediate Mode and in the Intermec Direct Protocol, the <Print>
key can be enabled to issue printing commands, corresponding to
PRINTFEED statements. This implies that each time the <Print> key
is pressed, one single label, ticket, tag, or portion of continuous stock
will be printed and fed out.

 Note that this statement cannot be entered in the Programming Mode (use
KEY ON and ON KEY GOSUB statements instead).

Example This example shows how the Print key is enabled in the Intermec Direct
Protocol and a label is printed (abbreviated instructions are used
whenever available):

 INPUT ON ↵
 PRINT KEY ON ↵
 PP 100,100 ↵
 FT "Swiss 721 BT" ↵
 PT "TEST LABEL" ↵

 <Press Print Key>

 INPUT OFF ↵

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 201

Chapter 2 Program Instructions

PRINT#
Field of Application Statement for printing data to a specified OPENed device or

sequential fi le.

Syntax PRINT#<nexp1>[,<<nexp2>|<sexp1>>[<,|;><<nexp3>|<sexp2>>...][;]]
<nexp1> is the number assigned to the fi le or device when it was

OPENed.
<<nexp2-n>|<sexp1-n>> are the string or numeric expressions, which will be printed

to the specifi ed fi le or device.

Remarks Expressions can be separated by commas or semicolons according to the
same rules as for the PRINT statement. It is important that the expressions are
separated properly, so they can be read back when needed, or be presented
correctly on the printer’s LCD display.

 PRINT# can only be used to print to sequential fi les, not to random fi les.

 When sending data to the printer’s display ("console:"), PRINT# will
work same way as PRINT does on the standard OUT channel. The display
can for example be cleared by sending PRINT#<nexp> twice (see line
20 in the example below).

Example The display on the printer’s keyboard console is able to show two lines with
16 characters each. Before sending any text, the device must be OPENed
(line 10) and both lines on the display must be cleared (line 20). Note the
trailing semicolon on line 40!

 10 OPEN "console:" FOR OUTPUT AS #1
 20 PRINT# 1:PRINT# 1
 30 PRINT# 1,"OUT OF LABELS"
 40 PRINT# 1,"PLEASE RELOAD!";
 50 CLOSE# 1
 RUN

 Since the last line was appended by a semicolon, there will be no carriage
return and the text will appear on both line on the printer’s display as:

 OUT OF LABELS
 PLEASE RELOAD!

 An alternative method is to send all the data to the display in a single
PRINT# statement. Character No. 1-16 will be displayed on the upper
line and character No. 17-33 will be displayed on the lower line, whereas
character No. 17 will be ignored. Note the trailing semicolon on line 30! (The
double-headed arrows in line 30 represent space characters.)

 10 OPEN "console:" FOR OUTPUT AS #1
 20 PRINT# 1: PRINT# 1
 30 PRINT# 1,"OUT↔OF↔LABELS↔↔↔↔PLEASE↔RELOAD!";
 40 CLOSE# 1
 RUN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7202

Chapter 2 Program Instructions

PRINTFEED (PF)
Field of Application Statement for printing and feeding out one or a specifi ed number of labels,

tickets, tags, or portions of strip, according to the printer’s setup.

Syntax PRINTFEED|PF [<nexp1>] | [-1,<nexp2>]
<nexp1> specifi es number of copies to be printed.
-1,<nexp2> specifi es that <nexp2> number of identical copies of the

last printed label should be reprinted (cannot be used with
Intermec Direct Protocol).

Remarks Each time a PRINTFEED statement without any appending value is
executed, one new label, ticket, tag, or portion of continuous stock
will be printed.

 The PRINTFEED statement can optionally be appended by a numeric
expression, which specifi es the number of copies to be printed. In the
Intermec Direct Protocol, possible counter, time, and date values will
be updated between copies printed using a predefi ned layout. Note that
you must never include any PRINTFEED statements in layouts in the
Intermec Direct Protocol.

 If the number of copies is >1 and LTS& and CUT are disabled (= LTS&
OFF and CUT OFF), the BATCH optimizing strategy is automatically
enabled, which corresponds to an OPTIMIZE BATCH ON statement.
When theses conditions are no longer fulfilled, BATCH optimizing
strategy is automatically disabled, which corresponds to an OPTIMIZE
BATCH OFF statement.

 It is also possible to reprint a specifi ed number of copies of the last printed label,
for example after an out-of-media condition (also see PRSTAT).

 The execution of a PRINTFEED statement clears the following statements
to their default values:

 ALIGN BARRATIO INVIMAGE
 BARFONT BARTYPE MAG
 BARFONT ON/OFF BARSET PRPOS
 BARHEIGHT DIR XORMODE ON
 BARMAG FONT

 Fields defi ned by statements, that have been executed before the PRINTFEED
statement, are not affected. Note that, when using a PRINTFEED in
a loop, all formatting parameters are reset to default each time the
PRINTFEED statement is executed and must therefore be included
inside the loop.

 The length of media to be fed out at execution of a PRINTFEED statement
is decided by the choice of media type in the printer’s setup (label w gaps,
ticket w gaps, fi x length strip, or var length strip) and globally by the start and
stop adjustment setup (positive or negative). Please refer to the Installation
& Operation manual for more information. The length of media to be
fed out after a PRINTFEED can be further modifi ed by an additional
positive or negative FORMFEED statement, either before or after the
PRINTFEED statement.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 203

Chapter 2 Program Instructions

PRINTFEED (PF), cont.
Examples Printing a single label with one line of text:

 10 FONT "Swiss 721 BT"
 20 PRTXT "Hello!"
 30 PRINTFEED
 RUN

 Printing fi ve identical labels with one line of text:

 10 FONT "Swiss 721 BT"
 20 PRTXT "Hello!"
 30 PRINTFEED 5
 RUN

 Printing fi ve labels using a FOR...NEXT loop. Note that formatting
parameters are placed inside the loop:

 10 FOR A%=1 TO 5
 20 FONT "Swiss 721 BT"
 30 PRPOS 200, 100
 40 DIR 3
 50 ALIGN 5
 60 PRTXT "Hello!"
 70 PRINTFEED
 80 NEXT A%
 RUN

 Printing of fi ve labels in the Intermec Direct Protocol, illustrating how

the TICKS value is updated between labels, provided a predefi ned layout
is used (1 TICK = 0.01 sec):

 INPUT ON ↵
 FORMAT INPUT "#","@","&" ↵
 LAYOUT INPUT "tmp:LABEL1" ↵
 FT "Swiss 721 BT" ↵
 PP 100,100 ↵
 PT TICKS ↵
 PP 100,200 ↵
 PT VAR1$ ↵
 LAYOUT END ↵
 LAYOUT RUN "tmp:LABEL1" ↵
 #See how time fl ies&@ ↵
 PF 5 ↵
 INPUT OFF ↵

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7204

Chapter 2 Program Instructions

PRINTONE
Field of Application Statement for printing characters, specifi ed by their ASCII values,

to the standard OUT channel.

Syntax PRINTONE<nexp>[<,|;><nexp>...][;]
<nexp> is the ASCII decimal value of a character, which will be printed

to the standard OUT channel.

Remarks When, for some reason, certain characters cannot be produced by the host
computer, they can be substituted by the corresponding ASCII decimal values
using the PRINTONE statement. The characters will be printed, according
to the currently selected character set (see NASC statement), to the standard
OUT channel, that is usually to the screen of the host.

 PRINTONE is very similar to the PRINT statement and the use of commas
and semicolons follows the same rules.

Example PRINTONE 80;82;73;67;69;58,36;52;57;46;57;53
 yields:
 PRICE: $49.95

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 205

Chapter 2 Program Instructions

PRINTONE#
Field of Application Statement for printing characters specifi ed by their ASCII values to

a device or sequential fi le.

Syntax PRINTONE#<nexp1>[,<nexp2>[<,|;><nexp3>...][;]]
<nexp1> is the number assigned to the fi le or device when it was

OPENed.
<nexp2-n> is the ASCII decimal value of the character, which is to be

printed to the specifi ed fi le or device.

Remarks This statement is useful, when the host for some reason cannot produce
certain characters. The ASCII values entered will produce characters
according to the currently selected character set, see NASC. The ASCII
values can be separated by commas or semicolons according to the same
rules as for the PRINT# statement.

 PRINTONE# can only be used to print to sequential files, not to
random fi les.

 When sending data to the printer’s display, PRINTONE# will work in a way
similar to PRINT#. The display can be cleared by sending PRINT#<nexp>
twice (see line 20 in the example below).

Example The display on the printer’s keyboard console is able to show two lines with 16
characters each. Before sending any text, the device must be OPENed and the
display be cleared. Note the trailing semicolon sign on line 40.

 10 OPEN "console:" FOR OUTPUT AS #1
 20 PRINT# 1:PRINT# 1
 30 PRINTONE# 1,80;82;69;83;83
 40 PRINTONE# 1,69;78;84;69;82;
 50 CLOSE #1
 RUN

 Since the last line was appended by a semicolon, there will be no carriage
return and the text will appear on both line on the printer’s display as:

 PRESS
 ENTER

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7206

Chapter 2 Program Instructions

PRLINE (PL)
Field of Application Statement for creating a line.

Syntax PRLINE|PL<nexp1>,<nexp2>
<nexp1> is the length of the line in dots (max. 6000).
<nexp2> is the line weight in dots (max. 6000).

Remarks The line will be drawn from the insertion point and away according to the
nearest preceding DIR and ALIGN statements (that is the line runs in parallel
with any text printed in the selected direction).

 A line can be ALIGNed left, right or center. The anchor points are situated
at the bottom of the line, which means that with an increasing line weight
(thickness), the line will the grow upward in relation to the selected direction.
In the illustration below, all lines are aligned left. Lines may cross (see
XORMODE ON/OFF statement).

Example This example draws a 2.5 cm (1 inch) long and 10 dots thick line across the
media in a 12 dots/mm printer:

 10 PRPOS 50,100
 20 PRLINE 300,10
 30 PRINTFEED
 RUN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 207

Chapter 2 Program Instructions

PRPOS (PP)
Field of Application Statement for specifying the insertion point for a line of text, a bar

code, an image, a box, or a line.

Syntax PRPOS|PP<nexp1>,<nexp2>
<nexp1> is the X-coordinate (number of dots from the origin).
<nexp2> is the Y-coordinate (number of dots from the origin).
Default value: 0,0
Reset to default by: PRINTFEED execution.

Remarks When the printer is set up, a “print window” is created. This involves
specifying the location of the origin along the X-axis, setting the max.
print width along the X-axis from origin, and setting the max. print length
along the Y-axis from origin.

 The X-coordinate goes across the media path and the Y-coordinate along
the media feed direction, as illustrated below. They are set in relation to the
origin on the printhead, not in relation to the media. Thus, the position where
an object actually will be printed depends on the relation between printhead
and media at the moment when the printing starts.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7208

Chapter 2 Program Instructions

PRPOS (PP), cont.
Remarks, cont. The insertion point must be selected so the fi eld in question will fi t inside

the print window. This implies that the print direction, the size of the fi eld
including “invisible” parts of for example an image, the alignment, and other
formatting instructions must be considered. A fi eld that does not fi t entirely
inside the print window will cause Error 1003, “Field out of label”, except
when a CLIP ON statement is issued.

 To fi nd out the present insertion point, use the PRSTAT function.

Examples Programming and printing a line of text:

 10 FONT "Swiss 721 BT"
 20 PRPOS 30,200
 30 PRTXT "HELLO"
 40 PRINTFEED
 RUN

 Each text line is normally positioned separately by is own PRPOS statement.
If no position is given for a printable statement, it will be printed immediately
after the preceding printable statement.

 10 FONT "Swiss 721 BT"
 20 PRPOS 30,200
 30 PRTXT "SUMMER"
 40 PRTXT "TIME"
 50 PRINTFEED
 RUN

yields a label with the text:
 SUMMERTIME

 A program for fi xed line-spacing of text may be composed this way (another
way is to use the extended PRBOX statement):

 10 FONT"Swiss 721 BT"
 20 X%=30:Y%=500
 30 INPUT A$
 40 PRPOS X%,Y%
 50 PRTXT A$
 60 Y%=Y%-50
 70 IF Y%>=50 GOTO 30
 80 PRINTFEED
 90 END
 RUN

 Enter the text for each line after the question mark shown on the screen of the
host. The Y-coordinate will be decremented by 50 dots for each new line until it
reaches the value 50, which means that ten lines will be printed.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 209

Chapter 2 Program Instructions

PRSTAT
Field of Application Function returning the printer’s current status or, optionally, the

current position of the insertion point.

Syntax PRSTAT[(<nexp>)]
<nexp> = 1 returns the X-position for the insertion point at DIR 1&3.
<nexp> = 2 returns the Y-position for the insertion point at DIR 2&4.
<nexp> = 3 returns the X-position of the corner with the lowest coordinates

of the last object.
<nexp> = 4 returns the Y-position of the corner with the lowest coordinates

of the last object.
<nexp> = 5 returns the width along the X-axis of the last object.
<nexp> = 6 returns the height along the Y-axis of the last object.
<nexp> = 7 returns the print job identifi er
<nexp> = 8 returns the print job state (see table below).
<nexp> = 9 returns the print job error.
<nexp> = 10 returns the remaining number of copies to be printed in

a batch print job.

Remarks PRSTAT
 Returns a numeric expression, which is the sum of the values given by

the following conditions, at the moment when the PRSTAT function
is executed:

 - OK... 0
 - Printhead lifted ..1
 - Label not removed (see note) ..2
 - Printer out of media ..4
 - Printer out of transfer ribbon (TTR) or ribbon installed (DT)8
 - Printhead voltage too high..16
 - Printer is feeding ...32

 Note: Always returns 0 in printers not fi tted with a label taken sensor.

 If two error conditions occur at the same time, for example the printhead
is lifted and the printer is out of media, the sum will be (1+4) = 5. Every
combination of errors will result in a unique sum. You can use it to branch to
a subroutine which notifi es the operator, interrupts the program or whatever
you like. When checking for out-of-media conditions, the use of error
codes 1031 “ Next label not found” and 1005 “ Out of paper” gives more
reliable result (multiple checks).

 PRSTAT(1) & PRSTAT(2)
 The current position of the insertion point in regard of either the X or the Y

position can be returned, depending on the selected print direction. This is
useful for for example measuring the length of a text or a bar code.

 PRSTAT(3)-PRSTAT(6)
 These functions are used to return the position and size of the last object

regardless of RENDER ON/OFF. Their values are not updated by the
execution of a PRBUF statement.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7210

Chapter 2 Program Instructions

PRSTAT, cont.
Remarks, cont. PRSTAT(7)-PRSTAT(10)
 These functions are used to detect if a print job has been interrupted, so steps

can be taken to reprint missing copies (see PRINTFEED).

 PRSTAT (7) returns a print job identifi er that is automatically assigned
to the print job by the fi rmware.

 PRSTAT (8) returns the state of the print job as a numeric expression, which is
the sum of the values given by the following conditions:

 - Print cycle not set up for printing, perhaps due to out-of-ribbon............... 0
 - The previous print cycle never ended (timeout).. 1
 - Print cycle has started ... 2
 - All lines successfully printed.. 4
 - Printing truncated (media shorter than print image)................................... 8
 - Printhead strobing error or label length exceeded..................................... 16
 - Ribbon low .. 32

 PRSTAT (8) = 6 or 22 indicates a sucessfully printed label (in the latter case
error “next label not found” may have been detected).

 PRSTAT (9) returns the number of any print error that may have occurred
(see Chapter 7, “Error Messages).”

 PRSTAT (10) returns the number of copies that remains to be printed in
an interrupted batch print job.

Examples This examples shows how two error conditions are checked:

 10 A% = PRSTAT
 20 IF A% AND 1 THEN GOSUB 1000
 30 IF A% AND 4 THEN GOSUB 1010
 40 END

 1000 PRINT "Printhead is lifted":RETURN
 1010 PRINT "Printer out of media":RETURN
 RUN

 This example illustrates how you can check the length of a text:

 10 PRPOS 100,100: FONT "Swiss 721 BT"
 20 PRTXT "ABCDEFGHIJKLM"
 30 PRINT PRSTAT(1)
 RUN
 yields:
 519

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 211

Chapter 2 Program Instructions

PRTXT (PT)
Field of Application Statement for providing the input data for a text fi eld.

Syntax PRTXT|PT<<nexp>|<sexp>>[;<<nexp>|<sexp>>...][;]
<<nexp>|<sexp>> specifi es one line of text (max. 300 characters)

Remarks A text fi eld consists of one line of text. The text fi eld must be defi ned in
regard of FONT or FONTD and may be further defi ned and positioned by
DIR, ALIGN, MAG, PRPOS, INVIMAGE, or NORIMAGE statements or
their respective default values.

 Two or more expressions can be combined to form a text line. They
must be separated by semicolons (;) and will be printed adjacently.
Plus signs can also be used for the same purpose, but only between
string expressions.

 String constants must be enclosed by quotation marks, whereas numeric
constants or any kind of variables must not.

Examples Programming and printing a line of text:

 10 FONT "Swiss 721 BT"
 20 PRPOS 30,300
 30 PRTXT "How do you do?"
 40 PRINTFEED
 RUN

 Several string constants and string variables can be combined into one line
of text by the use of plus signs or semicolons:

 10 FONT "Swiss 721 BT"
 20 PRPOS 30,300
 30 PRTXT "SUN";"SHINE"
 40 A$="MOON"
 50 B$="LIGHT"
 60 PRPOS 30,200
 70 PRTXT A$+B$
 80 PRINTFEED
 RUN
 yields a label with the text:
 SUNSHINE
 MOONLIGHT

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7212

Chapter 2 Program Instructions

PRTXT (PT), cont.
Examples, cont. Numeric constants and numeric variables can be combined by the

use of semicolons, but plus signs cannot be used in connection with
numeric expressions:

 10 FONT "Swiss 721 BT"
 20 PRPOS 30,300
 30 PRTXT 123;456
 40 A%=222
 50 B%=555
 60 PRPOS 30,200
 70 PRTXT A%;B%
 80 PRINTFEED
 RUN

yields a label with the text:
 123456
 222555

 Numeric and string expressions can be mixed on the same line, for
example:

 10 FONT "Swiss 721 BT"
 20 PRPOS 30,300
 30 A$="December"
 40 B%=27
 50 PRTXT A$;" ";B%;" ";"2000"
 80 PRINTFEED
 RUN

yields a label with the text:
 December 27 2000

 Two program lines of text will be printed on the same line if the fi rst program
line is appended by a semicolon:

 10 FONT "Swiss 721 BT"
 20 PRPOS 30,300
 30 PRTXT "HAPPY"+" ";
 40 PRTXT "BIRTHDAY"
 50 PRINTFEED
 RUN
 yields a label with the text:
 HAPPY BIRTHDAY

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 213

Chapter 2 Program Instructions

PUT
Field of Application Statement for writing a given record from the random buffer to

a given random fi le.

Syntax PUT[#]<nexp1>,<nexp2>
indicates that whatever follows is a number. Optional.
<nexp1> is the number assigned to the fi le when it was OPENed.
<nexp2> is the number of the record. Must be ≥1.

Remarks Use LSET or RSET statements to place data in the random buffer before
issuing the PUT statement.

Example 10 OPEN "PHONELIST" AS #8 LEN=26
 20 FIELD#8,8 AS F1$, 8 AS F2$, 10 AS F3$
 30 SNAME$="SMITH"
 40 CNAME$="JOHN"
 50 PHONE$="12345630"
 60 LSET F1$=SNAME$
 70 LSET F2$=CNAME$
 80 RSET F3$=PHONE$
 90 PUT #8,1
 100 CLOSE#8
 RUN

 SAVE "PROGRAM 1.PRG "

 NEW
 10 OPEN "PHONELIST" AS #8 LEN=26
 20 FIELD#8,8 AS F1$, 8 AS F2$, 10 AS F3$
 30 GET #8,1
 40 PRINT F1$,F2$,F3$
 RUN
 yields:
 SMITH↔↔↔JOHN↔↔↔↔↔↔12345630

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7214

Chapter 2 Program Instructions

RANDOM
Field of Application Function generating a random integer within a specifi ed interval.

Syntax RANDOM(<nexp1>,<nexp2>)
<nexp1> is the fi rst integer in the interval.
<nexp2> is the last integer in the interval.

Remarks <nexp
1
> ≤ <random integer> ≤ <nexp

2
>, that is the random integer will be:

 Equal to or greater than <nexp
1
>

 Equal to or less than <nexp
2
>

Example The following example will produce ten random integers between 1

and 100:

 10 FOR I%=1 TO 10
 20 A% = RANDOM (1,100)
 30 PRINT A%
 40 NEXT I%
 RUN
 yields for example:
 31
 45
 82
 1
 13
 16
 41
 77
 20
 70

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 215

Chapter 2 Program Instructions

RANDOMIZE
Field of Application Statement for reseeding the random number generator, optionally

with a specifi ed value.

Syntax RANDOMIZE[<nexp>]
<nexp> is the integer (0 -99999999) with which the random number

generator will be reseeded

Remarks If no value is specifi ed, a message will appear asking you to enter a value
between 0 and 99,999,999.

Examples In the following example, no reseeding integer is specifi ed in the program.

Thus a prompt will appear, asking you to do so:

 10 RANDOMIZE
 20 A%=RANDOM1,100)
 30 PRINT A%
 RUN
 Random Number Seed (0 to 99999999) ?
 Enter 555

yields for example:
 36

 When the reseeding integer is specifi ed, no prompt will appear:

 10 RANDOMIZE 556
 20 A%=RANDOM(1,100)
 30 PRINT A%
 RUN
 yields for example:
 68

 A higher degree of randomization will be obtained in the random integer
generator is reseeded with a more or less random integer, for example
provided by a TICKS function:

 10 A%=TICKS
 20 RANDOMIZE A%
 30 B%=RANDOM(1,100)
 40 PRINT B%
 RUN
 yields for example:
 42

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7216

Chapter 2 Program Instructions

READY
Field of Application Statement for ordering a ready signal, for example XON, CTS/RTS or

PE, to be transmitted from the printer on the specifi ed communication
channel.

Syntax READY[<nexp>]
<nexp> optionally specifi es a communication channel:
 1 = "uart1:"
 2 = "uart2:"
 3 = "uart3:"
 4 = "centronics:"
 6 = "usb1:"

Remarks The selected communication protocol usually contains some “ready” signal,
which tells the host computer that the printer is ready to receive more
data. The READY statement allows you to order a ready signal to be
transmitted on the specifi ed communication channel. If no channel is
specifi ed, the signal will be transmitted on the standard OUT channel
(see SETSTDIO statement).

 The READY signal is used to revoke a previously transmitted BUSYsignal.
However, the printer may still be unable to receive more data, for example
because of a full receive buffer.

 For the "centronics:" communication channel, BUSY/READY controls
the PE (paper end) signal on pin 12 according to an error-trapping routine
(READY = PE low).

Example You may, for example, want to allow the printer to receive more data on

"uart2:" after the process of printing a label is completed. (Running this
example may require an optional interface board to be fi tted):

 10 FONT "Swiss 721 BT"
 20 PRTEXT "HELLO!"
 30 BUSY2
 40 PRINTFEED
 50 READY2
 RUN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 217

Chapter 2 Program Instructions

REBOOT
Field of Application Statement for restarting the printer.

Syntax REBOOT

Remarks This statement has exactly the same effect as switching off and on the power
to the printer.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7218

Chapter 2 Program Instructions

REDIRECT OUT
Field of Application Statement fo redirecting the output data to a created fi le.

Syntax REDIRECT↔OUT[<sexp>]
<sexp> is, optionally, the name of the fi le to be created and where

the output will be stored.

Remarks Normally the output data will be transmitted on the standard output channel
(see SETSTDIO statement). In most cases, this means the screen of the host.
However, by means of a REDIRECT OUT <sexp> statement, a fi le can be
created to which the output will be redirected. That implies that no data will be
echoed back to the host. Normal operation, with the output being transmitted
on the standard output channel again, will be resumed when a REDIRECT
OUT statement without any appending fi le name is executed.

Example In this example, a fi le ("LIST.DAT") is created to which the names of the
fi les in the printer’s permanent memory is redirected. The redirection is then
terminated (line No. 30) and the fi le is OPENed for input.

 10 REDIRECT OUT "LIST.DAT"
 20 FILES "c:"
 30 REDIRECT OUT
 40 OPEN "LIST.DAT" FOR INPUT AS #1

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 219

Chapter 2 Program Instructions

REM (')
Field of Application Statement for adding headlines and explanations to the program

without including them in the execution.

Syntax REM|'<remark>
<remark> is a text inserted in the program for explanatory purpose.

Max. 32,767 characters per line.

Remarks A REM statement may either be entered on a program line of its own or be
inserted at the end of a line containing another instruction. In the latter case,
REM must be preceded by a colon (“:REM”).

 A shorthand form for REM is an apostrophe (ASCII 39 dec.).

 It is possible to branch to a line of REM statement. Execution will then
continue at the fi rst executable line after the REM line.

 REM statements slow down execution and transfer of data and also
take up valuable memory space. Therefore, use REM statements with
judgement.

Example A program containing REM statements:

 10 'Label format No. 1
 20 FONT "Swiss 721 BT"
 30 PRPOS 30,100
 40 DIR 1 :REM Print across web
 50 ALIGN 4 :REM Aligned left/baseline
 60 MAG 2,2 :'Double height and width
 70 PRTXT "HELLO"
 80 PRINTFEED
 RUN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7220

Chapter 2 Program Instructions

REMOVE IMAGE
Field of Application Statement for removing a specifi ed image from the printer’s memory.

Syntax REMOVE↔IMAGE <sexp>
<sexp> is the full name including extension of the image to be

removed.

Remarks Useful for removing obsolete or faulty images from the printer’s memory in
order to save valuable memory space.

 Note that there is a distinction between on one hand images and on the other
hand image fi les (compare with IMAGES and FILES statements). This
implies that REMOVE IMAGE statements can only be used for images
downloaded by means of a STORE statement (see STORE and STORE
IMAGE). Image fi les downloaded using for example a TRANSFER
KERMIT statement should be removed the same way as other fi les
using a KILL statement.

 Be careful, REMOVE IMAGE is irreversible!

Example 10 REMOVE IMAGE "LOGOTYPE.1"
 RUN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 221

Chapter 2 Program Instructions

RENDER ON/OFF
Field of Application Statement for enabling/disabling rendering of text, bar code, image,

box, and line fi elds.

Syntax RENDER ON|OFF
ON enables rendering (default).
OFF disables rendering.

Remarks These statements are intended to get information regarding size and position
of a fi eld without actually rendering it, that is the fi eld will not be printed
when the program is executed. The information on the fi eld is retrieved
using PRSTAT functions.

 RENDER OFF disables the rendering, which means that PRTXT, PRBAR,
PRIMAGE, PRLINE, and PRBOX statements will not give any result when
a PRINTFEED statement is executed. Any other statements than PRPOS
will not update the insertion point. Field numbers (see FIELDNO) will
not be updated. Statement such as CLIP ON/OFF, XORMODE ON/OFF,
or BARSET will retain their usual meanings. PRBUF will render a fi eld
regardless of RENDER ON/OFF.

 RENDER ON enables fi eld rendering after a RENDER OFF statement.

 Duplicate statement have no effect, that is if a RENDER OFF statement
has been executed, another RENDER OFF statement will be ignored. The
same applies to RENDER ON.

Example This examples retrieves information on the size of a text fi eld which
was not rendered. (The actual result may vary depending on font, font
size, and printer type.)

 10 RENDER OFF
 20 PRTXT "Render off"
 30 PRINT "Width:",PRSTAT(5),"Height:",PRSTAT(6)
 40 RENDER ON
 50 PRINTFEED
 RUN
 yields for example:
 Width: 153 Height: 46

 No fi eld to print in line 50

 Ok

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7222

Chapter 2 Program Instructions

RENUM
Field of Application Statement for renumbering the lines of the program currently residing

in the printer’s working memory.

Syntax RENUM[<ncon1>][,[<ncon2>][,<ncon3>]]
<ncon1> is the fi rst line number of the new sequence.
<ncon2> is the line in the current program at which renumbering

is to start.
<ncon3> is the desired increment between line numbers in the

new sequence.
Default values: 10, 1, 10

Remarks This statement is useful for providing space for more program lines when
expanding an existing program, and for renumbering programs written without
line numbers, for example after being LISTed, LOADed, or MERGEd. Line
references following GOTO statements will be renumbered accordingly. Use
a LIST statement to print the new numbers on the screen.

Example A program may be renumbered like this:

 10 FONT "Swiss 721 BT"
 20 PRPOS 30,100
 30 PRTXT "HELLO"
 40 A%=A%+1
 50 PRINTFEED
 60 IF A%<3 GOTO 40
 70 END
 RENUM 100,20,50
 LIST

yields:
 10 FONT "Swiss 721 BT"
 100 PRPOS 30,100
 150 PRTXT "HELLO"
 200 A%=A%+1
 250 PRINTFEED
 300 IF A%<3 GOTO 200
 350 END

 Note that the line number in the GOTO statement on line 300 has changed.
Line 10 is not renumbered, since line 20 was specifi ed as starting point.
The new increment is 50.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 223

Chapter 2 Program Instructions

RESUME
Field of Application Statement for resuming program execution after an error-handling

subroutine has been executed.

Syntax RESUME[<<ncon>|<line label>|<NEXT>|<0>>|<HTTP>]
<ncon> is the number or label of the line to which the program

should return.

Remarks RESUME must only be used in connection with error-handling subroutines
(see ON ERROR GOTO).

 There are fi ve ways of using RESUME:
 RESUME Execution is resumed at the statement where

the error occurred.
 RESUME 0 Same as RESUME.
 RESUME NEXT Execution is resumed at the statement

immediately following the one that caused
the error.

 RESUME <ncon> Execution is resumed at the specifi ed line.
 RESUME <line label> Execution is resumed at the specifi ed line

label.
 RESUME <HTTP> Execution is resumed at the point where

it was branched by an ON HTTP GOTO
statement. Stdin and stdout are restored to
their original values.

Examples This short program is the basis for two examples of alternative subroutines:

 10 ON ERROR GOTO 1000
 20 FONT "Swiss 721 BT"
 30 PRPOS 100,100
 40 PRTXT "HELLO"
 50 PRPOS 100, 300
 60 PRIMAGE "GLOBE.1"
 70 PRINTFEED
 80 END

 1. A font is selected automatically and execution is resumed from the line
after where the error occurred. If another error than the specifi ed error
condition occurs, the execution is terminated.

 1000 IF ERR=15 THEN FONT "Swiss 721 BT":RESUME NEXT
 1010 RESUME 80

 2. An error message is displayed and the execution goes on from the line
following the one where the error occurred.

 1000 IF ERR=15 THEN PRINT "Font not found"
 1010 RESUME NEXT

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7224

Chapter 2 Program Instructions

RETURN
Field of Application Statement for returning to the main program after having branched to

a subroutine because of a GOSUB statement.

Syntax RETURN[<ncon>|<line label>]
<ncon> is optionally the number or label of a line in the main

program to return to.

Remarks When the statement RETURN is encountered during the execution of
a subroutine, the execution will return to the main program. Execution
will continue from the statement immediately following the most recently
executed GOSUB or from an optionally specifi ed line.

 If a RETURN statement is encountered without a GOSUB statement
having been previously executed, Error 28, “Return without Gosub”
will occur.

Example 10 PRINT "This is the main program"
 20 GOSUB 1000
 30 PRINT "You’re back in the main program"
 40 END
 1000 PRINT "This is subroutine 1"
 1010 GOSUB 2000
 1020 PRINT "You’re back in subroutine 1"
 1030 RETURN
 2000 PRINT "This is subroutine 2"
 2010 GOSUB 3000
 2020 PRINT "You’re back in subroutine 2"
 2030 RETURN
 3000 PRINT "This is subroutine 3"
 3010 PRINT "You’re leaving subroutine 3"
 3020 RETURN
 RUN
 yields:
 This is the main program
 This is subroutine 1
 This is subroutine 2
 This is subroutine 3
 You’re leaving subroutine 3
 You’re back in subroutine 2
 You’re back in subroutine 1
 You’re back in the main program

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 225

Chapter 2 Program Instructions

RIGHT$
Field of Application Function returning a specifi ed number of characters from a given string

starting from the extreme right side (end) of the string.

Syntax RIGHT$(<sexp>,<nexp>)
<sexp> is the string from which the characters will be returned.
<nexp> specifi es the number of characters to be returned.

Remarks This function is the complementary function for LEFT$, which returns the
characters starting from the extreme left side, that is from the start.

 If the number of characters to be returned is greater than the number of
characters in the string, then the entire string will be returned. If the number of
characters is set to zero, a null string will be returned.

Examples PRINT RIGHT$("THERMAL_PRINTER",7)
 yields:
 PRINTER

 10 A$="THERMAL_PRINTER":B$ = "LABEL"
 20 PRINT RIGHT$(B$,5);RIGHT$(A$,8);"S"
 RUN
 yields:
 LABEL_PRINTERS

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7226

Chapter 2 Program Instructions

RSET
Field of Application Statement for placing data right-justifi ed into a fi eld in a random

fi le buffer.

Syntax RSET<svar>=<sexp>
<svar> is the string variable assigned to the fi eld by a FIELD

statement.
<sexp> holds the input data.

Remarks After having OPENed a fi le and formatted it using a FIELD statement,
you can enter data into the random fi le buffer using the RSET and LSET
statements (LSET left-justifi es the data).

 The input data can only be stored in the buffer as string expressions. Therefore,
a numeric expression must be converted to string by the use of a STR$
function before an LSET or RSET statement is executed.

 If the length of the input data is less than the fi eld, the data will be
right justifi ed and the remaining number of bytes will be printed as
space characters.

 If the length of the input data exceeds the length of the fi eld, the input data
will be truncated on the left side.

Example 10 OPEN "PHONELIST" AS #8 LEN=26
 20 FIELD#8,8 AS F1$, 8 AS F2$, 10 AS F3$
 30 SNAME$="SMITH"
 40 CNAME$="JOHN"
 50 PHONE$="12345630"
 60 LSET F1$=SNAME$
 70 LSET F2$=CNAME$
 80 RSET F3$=PHONE$
 90 PUT #8,1
 100 CLOSE#8
 RUN

 SAVE "PROGRAM 1.PRG "

 NEW
 10 OPEN "PHONELIST" AS #8 LEN=26
 20 FIELD#8,8 AS F1$, 8 AS F2$, 10 AS F3$
 30 GET #8,1
 40 PRINT F1$,F2$,F3$
 RUN
 yields:
 SMITH↔↔↔JOHN↔↔↔↔↔↔12345630

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 227

Chapter 2 Program Instructions

RUN
Field of Application Statement for starting the execution of a program.

Syntax RUN[<<scon>|<ncon>>]
<scon> optionally specifi es an existing program to be run.
<ncon> optionally specifi es the number of a line in the current program

where the execution will start.

Remarks The RUN statement starts the execution of the program currently residing in
the printer’s working memory, or optionally of a specifi ed program residing
elsewhere. The execution will begin at the line with the lowest number, or
optionally from a specifi ed line in the current program.

 If a program stored in another directory than the current one (see CHDIR
statement), and has not been LOADed, its designation must be preceded
by a reference to that device ("c:", "tmp:", "rom:", or "card1:", see
the last example).

 Never use RUN on a numbered line or in a line without number in
the Programming Mode, or Error 40, “Run statement in program”
will occur.

 A RUN statement executed in the Intermec Direct Protocol will make
the printer switch to the Immediate Mode, that is it has the same effect
as an INPUT OFF statement.

Examples Order the execution of a program this way:

 RUN

 Executes the current program from its fi rst line.

 RUN 40

 Executes the current program, starting from line 40.

 RUN "TEST"

 Executes the program “ TEST.PRG" from its fi rst line.

 RUN "TEST.PRG"

 Executes the program “ FILELIST.PRG", which is stored in a read-only

memory card, from its fi rst line.

 RUN "rom:FILELIST.PRG"

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7228

Chapter 2 Program Instructions

SAVE
Field of Application Statement for saving a fi le in the printer’s memory or optionally in a

DOS-formatted memory card.

Syntax SAVE<scon>[,P|L]
<scon> is the name of the fi le, optionally starting with a reference to

a directory (see DEVICES).
 Allowed input: Max. 30 characters incl. extension.
 Max. 26 characters excl. extension
P optionally protects the fi le.
L optionally saves the fi le without line numbers.

Remarks When a fi le is SAVEd, it must be given a designation consisting of max. 30
characters including extension. By default, the program will automatically
append the name with the extension .PRG and convert all lowercase characters
to uppercase. The name must not contain any quotation marks (") and the
extension must always start with a period (.) character.

 By starting the fi le name with a period character (.), you can avoid having it
removed at a soft formatting operation, see FORMAT statement. Such a fi le
will also be listed differently, see FILES statement.

 When saving a fi le in a directory other than the current one (see CHDIR
statement), a reference to that directory must be included in the fi le name.
Files can only be SAVEd in the printer’s permanent memory ("c:"), the
printer’s temporary memory ("tmp:"), or in an optional DOS-formatted
JEIDA-4 SRAM-type memory card ("card1:"). If a fi le with the selected
name already exists in the selected directory, that fi le will be deleted and
replaced by the new fi le without any warning.

 Files cannot be SAVEd in a fl ash memory card, or in a non DOS-formatted
RAM-type memory card.

 You can continue to work with a fi le after saving it, until a NEW, LOAD,
KILL, or REBOOT instruction is issued.

 A protected fi le (SAVE <fi lename>,P) is encrypted at saving and cannot be
LISTed after being LOADed. Program lines cannot be removed, changed,
or added. Once a fi le has been protected, it cannot be deprotected again.
Therefore, it is advisable to save an unprotected copy, should a programming
error be detected later on. If you are going to use an electronic key to prevent
unautorized access to a fi le, you should protect it.

 A SAVEd program can be MERGEd with the program currently residing
in the printer’s working memory. If the program is SAVEd normally, there
is a risk that the line numbers automatically assigned to the program may
interfere with the line numbers in the current program. Therefore, you can
choose to SAVE the program without line numbers (SAVE <fi lename>,L).
That entails that the MERGEd program will be appended to the current
program and its lines will be assigned line numbers in ten-step incremental
order, starting with the number of the last line in the current program plus 10.
In this case, the MERGEd program should either make use of line labels for
referring to other lines, or not contain any such instructions at all.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 229

Chapter 2 Program Instructions

SAVE, cont.
Examples SAVE "LABEL14"
 saves the fi le as “ Label 14.PRG" in current directory.

 SAVE "LABEL14",P
 saves and protects the fi le "Label14.PRG".

 SAVE "LABEL14",L
 saves the fi le "Label14.PRG" without line numbers.

 SAVE "card1:LABEL14.PRG"
 saves the fi le in an optional DOS-formatted SRAM memory card.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7230

Chapter 2 Program Instructions

SET FAULTY DOT
Field of Application Statement for marking one or several dots on the printhead as faulty,

or marking all faulty dots as correct.

Syntax SET↔FAULTY↔DOT<nexp1>[,<nexpn>...]
<nexp1> is the number of the dot to be marked as faulty. Successive

executions add more faulty dots.
<nexp1> = -1 marks all dots as correct (default).

Remarks This statement is closely related to the HEAD function and the BARADJUST
statement. You can check the printhead for possible faulty dots by means of
the HEAD function and mark them as faulty, using the SET FAULTY
DOT statement. Using the BARADJUST statement, you can allow the
fi rmware to automatically reposition horizontal bar codes sideways so
as to place the faulty dots between the bars, where no harm to the
readability will be done.

 Once a number a dot has been marked faulty by a SET FAULTY DOT
statement, it will remain so until all dots are marked as correct by a SET
FAULTY DOT -1 statement.

 Note that an enhancement of the HEAD function (introduced with
Intermec Fingerprint 7.3) makes it possible to mark all faulty dots
using a single instruction instead of specifying each faulty dot in a
SET FAULTY DOT.

Example This example illustrates how a bar code is repositioned by means of
BARADJUST when a number of dots are marked as faulty by a SET
FAULTY DOTS statement. Type RUN and send various numbers of
faulty dots from the host a few times and see how the bar code moves
sideways across the label.

 10 INPUT "No. of faulty dots"; A%
 20 FOR B% = 1 TO A%
 30 C% = C% + 1
 40 SET FAULTY DOT C%
 50 NEXT
 60 D% = A%+2
 70 BARADJUST D%, D%
 80 PRPOS 0, 30
 90 BARTYPE "CODE39"
 100 PRBAR "ABC"
 110 SET FAULTY DOT -1
 120 PRINTFEED
 RUN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 231

Chapter 2 Program Instructions

SETASSOC
Field of Application Statement for setting a value for a tuple in a string association.

Syntax SETASSOC <sexp1>, <sexp2>, <sexp3>
<sexp1> is the name of the association (case-sensitive).
<sexp2> is the name of the tuple
<sexp3> is the value of the tuple.

Remarks An association is an array of tuples, where each tuple consists of a
name and a value.

Example This example shows how a string, including three string names associated
with three start values, will be defi ned and one of them (time) will
be changed:

 10 QUERYSTRING$=
 "time=UNKNOWN&label=321&desc=DEF"

 20 MAKEASSOC "QARRAY",QUERYSTRING$,"HTTP"
 30 QTIME$=GETASSOC$("QARRAY","time")
 40 QLABELS%=VAL(GETASSOC$("QARRAY","label"))
 50 QDESC$=GETASSOC$("QARRAY","desc")
 60 PRINT"time=";QTIME$,"LABEL=";QLABELS%,

 "DESCRIPTION=";QDESC$
 70 SETASSOC "QARRAY","time",time$
 80 PRINT "time=";GETASSOC$("QARRAY","time")
 RUN

yields:

 time=UNKNOWN LABEL=321 DESCRIP TION=DEF
 time=153355

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7232

Chapter 2 Program Instructions

SETPFSVAR
Field of Application Statement for registering variable to be saved at power failure.

Syntax SETPFSVAR<sexp>[,<nexp>]
<sexp> is the name of a numeric or string variable (uppercase

characters only).
<nexp> is the size in bytes of a string variable (compulsory).

Remarks When a program is loaded, it is copied to and executed in the printer’s
temporary memory ("tmp:"). Should an unexpected power failure occur,
the printer tries to save as much data as possible in the short time available
before all power is lost. To minimize the risk of lose important variable values
at a power failure, you can register numeric and string variables to be saved.
There is 2176 bytes (incl. overhead) available for this purpose.

 However, should the power failure occur while the printer is printing, there
will not be any power left to save the current variables.

 When you register a string variable, you must also specify its size in bytes.

 Related instructions are GETPFSVAR, DELETEPFSVAR, and LIST-
PFSVAR.

Examples Example with string variable:

 100 IF QA$="" THEN QA$="Hello":QA%=LEN(QA$)
 110 SETPFSVAR "QA$",QA%

 Example with numeric variable:

 200 SETPFSVAR"QCPS%"

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 233

Chapter 2 Program Instructions

SETSTDIO
Field of Application Statement for selecting standard IN and OUT communication

channel.

Syntax SETSTDIO<nexp1>[,<nexp2>]
<nexp1> is the desired input/output channel:
 0 = "console:"
 1 = "uart1:"
 2 = "uart2:"
 3 = "uart3:"
 4 = "centronics:"
 5 = "net1:"
 6 = "usb1:"
 100 = autohunting enabled
<nexp2> optionally specifies an output channel other than the

input channel:
 0 = "console:"
 1 = "uart1:"
 2 = "uart2:"
 3 = "uart3:"
 5 = "net1:"
 6 = "usb1:"
 100 = autohunting enabled

Remarks The printer is usually controlled from its host computer or terminal via the
standard communication channel. By default, the serial communication
channel "uart1:" is used for both input and output. If only one channel
is specifi ed, it will serve as both standard input (stdin) and standard
output (stdout) channel. Alternatively, different channels can be selected
for stdin and stdout.

 For programming, it is recommended to use "uart1:" as standard input and
output channel. If another channel is selected, use the same serial channel for
both input and output. The "centronics:" channel can only be used for input
to the printer and is thus not suited for programming.

 Autohunting means that all available channels are continuously scanned for
input. At startup, "uart1:" is selected as stdout. If data is received on the stdin
channel, the same channel is used as stdout channel. If no data is received
on the present stdin channel within a 2 second timeout period, the fi rmware
scans the other existing channels (except "console:) looking for input
data. The channel where input data is fi rst found will now be appointed
stdin/stdout channel. The same procedure is repeated infi nitely as long
as autohunting is enabled.

 There are some restrictions that apply to autohunting:
 - If "centronics:" is used as input channel and autohunting is enabled for both

input and output, "uart1:" is selected stdout channel.
 - Autohunting does not work with "console:".
 - Autohunting does not work with COMSET or INPUT.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7234

Chapter 2 Program Instructions

SETSTDIO, cont.
Example This example selects the "uart2:" communication channel as the standard

input and output channel:

 10 SETSTDIO 2

 This example enables autohunting for input and "uart1:" for output:

 10 SETSTDIO 100,1

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 235

Chapter 2 Program Instructions

SETUP
Field of Application Statement for entering the printer’s Setup Mode or changing the

setup.

Syntax SETUP
 If no parameter is specifi ed, the printer enters the Setup

Mode.

 SETUP <sexp>
<sexp> is the name of an existing setup fi le that will be used to change

the printer’s entire current setup, or
 a string used to change a single parameter in the printer’s

current setup.

 SETUP <sexp1>,<sexp2>
<sexp1> is the name of a setup section (see Chapter 8).
<sexp2> is the name of a fi le that will be used to change the specifi ed

setup section.

 SETUP <sexp1>,<sexp2>,<sexp3>
<sexp1> is the name of a setup section (see Chapter 8). Not

implemented for "prt".
<sexp2 > is the name of the setup object (see Chapter 8).
<sexp3> specifi es the new value (see Chapter 8).

Remarks The SETUP statement can be used for several purposes as illustrated above.
Related instructions are SETUP GET and SETUP WRITE.

 By default, the setup parameters are saved as a fi le in the printer’s permanent
memory. However, using SYSVAR (35) it is possible to decide that any new
change will not be saved (volatile). See SYSVAR.

 The methods of manual setup via the printer’s built-in keyboard are
described in the Installation & Operation manuals for the various printer
models. You can also use setup fi les and setup strings to change the setup
as a part of the program execution, or to change the setup by remote
control from the host.

 A setup fi le may contain new values for one or several setup parameters,
whereas a setup string only can change a single parameter. Another difference
is that, while the creation of setup fi les requires several operations, setup
strings can be created in a single operation which makes them suitable for
use with the Intermec Direct protocol.

 When a SETUP<sexp> statement is encountered, the setup will be changed
accordingly, then the program execution will be resumed. Note that some
printing instructions (ALIGN, DIR, FONT, and PRPOS) may be changed
when test labels are printed.

 The content of setup fi les can be listed using the program FILELIST.PRG
stored in the printer’s permanent memory ("rom:"), or by COPYing the fi le to
the communication channel of the host, usually "uart1:".

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7236

Chapter 2 Program Instructions

SETUP, cont.
Remarks, cont. When creating setup fi les or setup strings, there is a special syntax for each

parameter that must be followed exactly. Variable numeric input data are
indicated by “n” – “nnnnn”, alternative data are indicated by bold characters
separated by vertical bars (|). Compulsory space characters are indicated by
double-headed arrows (↔). Note that some parameters listed below may only
apply to a certain printer model or an optional device.

 Important!
 Do not include any double-headed arrows (↔) or vertical bars (|) when

typing a setup string or fi le!

"SER-COM,UART1|UART2|UART3,BAUDRATE,300|600|1200|2400|4800|9600|19200|38400|57600|115200"
"SER-COM,UART1|UART2|UART3,CHAR↔LENGTH,7|8"
"SER-COM,UART1|UART2|UART3,PARITY,NONE|EVEN|ODD|MARK|SPACE"
"SER-COM,UART1|UART2|UART3,STOPBITS,1|2"
"SER-COM,UART1|UART2|UART3,FLOWCONTROL,RTS/CTS,ENABLE|DISABLE"
"SER-COM,UART1|UART2|UART3,FLOWCONTROL,ENQ/ACK,ENABLE|DISABLE"
"SER-COM,UART1|UART2|UART3,FLOWCONTROL,XON/XOFF,DATA↔FROM↔HOST,ENABLE|DISABLE"
"SER-COM,UART1|UART2|UART3,FLOWCONTROL,XON/XOFF,DATA↔TO↔HOST,ENABLE|DISABLE"
"SER-COM,UART2,PROT↔ADDR,ENABLE|DISABLE"
"SER-COM,UART1|UART2|UART3,NEW↔LINE,CR/LF|LF|CR"
"SER-COM,UART1|UART2|UART3,REC↔BUF,nnnnn"
"SER-COM,UART1|UART2|UART3,TRANS↔BUF,nnnnn"
"SER-COM,UART2,PROTOCOL↔ADDR.,nn"
"NET-COM,NET1,NEW↔LINE,CR/LF|LF|CR"
"FEEDADJ,STARTADJ,nnnn" (negative value allowed)
"FEEDADJ,STOPADJ,nnnn" (negative value allowed)
"MEDIA,MEDIA↔SIZE,XSTART,nnnn"
"MEDIA,MEDIA↔SIZE,WIDTH,nnnn"
"MEDIA,MEDIA↔SIZE,LENGTH,nnnnn"
"MEDIA,MEDIA↔TYPE,LABEL↔(w↔GAPS)|TICKET↔(w↔MARK)|TICKET↔(w↔GAPS)|FIX↔LENGTH↔STRIP|VAR↔LENGTH↔STRIP"
"MEDIA,PAPER↔TYPE,TRANSFER|DIRECT↔THERMAL"
"MEDIA,PAPER↔TYPE,DIRECT↔THERMAL,LABEL↔CONSTANT,nnn"
"MEDIA,PAPER↔TYPE,DIRECT↔THERMAL,LABEL↔FACTOR,nnn"
"MEDIA,PAPER↔TYPE,TRANSFER,RIBBON↔CONSTANT,nnn"
"MEDIA,PAPER↔TYPE,TRANSFER,RIBBON↔FACTOR,nnn"
"MEDIA,PAPER↔TYPE,TRANSFER,LABEL↔OFFSET,nnn"
"MEDIA,PAPER↔TYPE,TRANSFER,LOW↔DIAMETER,nnn"
"MEDIA,CONTRAST,-10%|-8%|-6%|-4%|-2%|0%|2%|4%|6%|8%|10%"
"PRINT↔DEFS,PRINT↔SPEED,nnn"
"PRINT↔DEFS,LTS↔VALUE,nn"
"NETWORK,IP↔SELECTION,MANUAL|DHCP|BOOTP|RARP"
"NETWORK,IP↔ADDRESS,nnn.nnn.nnn.nnn"
"NETWORK,NETMASK,nnn.nnn.n.n"
"NETWORK,DEFAULT↔ROUTER,nnn.nnn.nnn.nnn"

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 237

Chapter 2 Program Instructions

SETUP, cont.
Examples This example enables a key for branching to the Setup Mode:

 10 ON KEY(18) GOSUB 1000
 20 KEY(18)ON

 1000 SETUP
 1010 RETURN

 This example shows how a new fi le is OPENed for output and each parameter

in the setup is changed by means of PRINT# statements. Then the fi le is
CLOSEd. Any lines, except the fi rst and the last line in the example, may be
omitted. Finally, the printer’s setup is changed using this fi le.

10 OPEN "tmp:SETUP.SYS" FOR OUTPUT AS #1
20 PRINT#1,"SER-COM,UART1,BAUDRATE,19200"
30 PRINT#1,"SER-COM,UART1,CHAR LENGTH,7"
40 PRINT#1,"SER-COM,UART1,PARITY,EVEN"
50 PRINT#1,"SER-COM,UART1,STOPBITS,2"
60 PRINT#1,"SER-COM,UART1,FLOWCONTROL,RTS/CTS,ENABLE"
70 PRINT#1,"SER-COM,UART1,FLOWCONTROL,ENQ/ACK,ENABLE"
80 PRINT#1,"SER-COM,UART1,FLOWCONTROL,XON/XOFF,DATA FROM HOST,ENABLE"
90 PRINT#1,"SER-COM,UART1,FLOWCONTROL,XON/XOFF,DATA TO HOST,ENABLE"
100 PRINT#1,"SER-COM,UART1,NEW LINE,CR"
110 PRINT#1,"SER-COM,UART1,REC BUF,800"
120 PRINT#1,"SER-COM,UART1,TRANS BUF,800"
130 PRINT#1,"FEEDADJ,STARTADJ,-135"
140 PRINT#1,"FEEDADJ,STOPADJ,-36"
150 PRINT#1,"MEDIA,MEDIA SIZE,XSTART,50"
160 PRINT#1,"MEDIA,MEDIA SIZE,WIDTH,1000"
170 PRINT#1,"MEDIA,MEDIA SIZE,LENGTH,2000"
180 PRINT#1,"MEDIA,MEDIA TYPE,LABEL (w GAPS)"
190 PRINT#1,"MEDIA,PAPER TYPE,TRANSFER"
200 PRINT#1,"MEDIA,PAPER TYPE,TRANSFER,RIBBON CONSTANT,110"
210 PRINT#1,"MEDIA,PAPER TYPE,TRANSFER,RIBBON FACTOR,25"
220 PRINT#1,"MEDIA,PAPER TYPE,TRANSFER,LABEL OFFSET,00"
230 PRINT#1,"MEDIA,CONTRAST,-4%"
240 PRINT#1,"PRINT DEFS,PRINT SPEED,300"
250 CLOSE
260 SETUP "tmp:SETUP.SYS"

 This example shows how a setup parameter is changed in the Immediate
Mode or the Intermec Direct Protocol, using a setup string.

 SETUP"MEDIA,MEDIA TYPE,VAR LENGTH STRIP" ↵

 This method can also be used in the Programming Mode, for example:

 10 SETUP"MEDIA,MEDIA TYPE,VAR LENGTH STRIP"

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7238

Chapter 2 Program Instructions

SETUP GET
Field of Application Statement for getting the current setting for a single setup object.

Syntax SETUP GET<sexp1>,<sexp2>,<sexp3>
<sexp1> specifi es the setup section.
<sexp2> specifi es the setup object.
<sexp3> stores the result.

Remarks Refer to Chapter 8, EasyLAN 100i Setup for a list of setup sections
and objects.

Examples SETUP GET "lan1","RTEL_PR1",A$
 SETUP GET "prt","MEDIA,MEDIA TYPE", B$
 SETUP GET "alerts","lts",C$

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 239

Chapter 2 Program Instructions

SETUP WRITE
Field of Application Statement for creating a fi le containing the printer’s current setup or for

returning it on a specifi ed communication channel.

Syntax SETUP WRITE[<sexp1>] ,<sexp2>
<sexp1> is an optional parameter specifying the setup section.
<sexp2> is the name of a fi le or device to which the printer's current

setup is to be written.

Remarks The SETUP WRITE statement is useful when you want to return to the
printer’s current setup at a later moment. You can make a copy of the current
setup using SETUP WRITE<fi lename>, change the setup using a SETUP
<fi lename> statement, and, when so is required, return to the original setup by
issuing a new SETUP<fi lename> statement containing the name of the fi le
created by the SETUP WRITE<fi lename> statement.

 It is strongly recommended to create the fi le in the printer’s temporary
memory ("tmp:"), for example SETUP WRITE "tmp:OLDSETUP". Once
it has been created in "tmp:", it can be copied to the printer’s permanent
memory "c:" so it will not be lost at power off.

 Another application of SETUP WRITE is transmitting the printer’s
current setup on a serial communication channel, for example SETUP
WRITE "uart1:".

 Setup sections are used in connection with EasyLAN 100i. Refer to Chapter
8, EasyLAN 100i Setup for a list of setup sections.

 SETUP WRITE returns the printer’s setup in the following order (the example
shows default values for a standard EasyCoder 501 XP printer):

 SETUP WRITE "uart1:"
 yields:
 SER-COM,UART1,BAUDRATE,9600
 SER-COM,UART1,CHAR LENGTH,8
 SER-COM,UART1,PARITY,NONE
 SER-COM,UART1,STOPBITS,1
 SER-COM,UART1,FLOWCONTROL,RTS/CTS,DISABLE
 SER-COM,UART1,FLOWCONTROL,ENQ/ACK,DISABLE
 SER-COM,UART1,FLOWCONTROL,XON/XOFF,DATA FROM HOST,DISABLE
 SER-COM,UART1,FLOWCONTROL,XON/XOFF,DATA TO HOST,DISABLE

SER-COM,UART1,NEW LINE,CR/LF
 SER-COM,UART1,REC BUF,300
 SER-COM,UART1,TRANS BUF,300
 FEEDADJ,STARTADJ,0
 FEEDADJ,STOPADJ,0
 MEDIA,MEDIA SIZE,XSTART,36
 MEDIA,MEDIA SIZE,WIDTH,1244
 MEDIA,MEDIA SIZE,LENGTH,1800
 MEDIA,MEDIA TYPE,LABEL (w GAPS)
 MEDIA,PAPER TYPE,TRANSFER
 MEDIA,PAPER TYPE,DIRECT THERMAL,LABEL CONSTANT,70
 MEDIA,PAPER TYPE,DIRECT THERMAL,LABEL FACTOR,30

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7240

Chapter 2 Program Instructions

SETUP WRITE, cont.
Remarks, cont. MEDIA,PAPER TYPE,TRANSFER,RIBBON CONSTANT,100
 MEDIA,PAPER TYPE,TRANSFER,RIBBON FACTOR,25
 MEDIA,PAPER TYPE,TRANSFER,LABEL OFFSET,0
 MEDIA,CONTRAST,0%
 #MEDIA,TESTFEED,10 3 (Info only. Comparator 0–15; amplifi er 0–7)
 PRINT DEFS,HEAD RESIST, 1166 (Info only)
 PRINT DEFS,PRINT SPEED,150

 Note that when a SETUP WRITE fi le is used to change the setup, the printer’s
present TESTFEED adjustment is not affected.

Examples In this example, the current setup is saved in the printer’s temporary memory
under the name "SETUP1.SYS". Then the start adjustment is changed to
“ 200” by the creation of a new setup fi le named "SETUP2.SYS.” The setup
fi le is fi nally used to change the printer’s setup.

 10 SETUP WRITE "tmp:SETUP1.SYS"
 20 OPEN "tmp:SETUP2.SYS" FOR OUTPUT AS #1
 30 PRINT#1,"FEEDADJ,STARTADJ,200"
 40 CLOSE
 50 SETUP "tmp:SETUP2.SYS"

 In this example, the setup section "prt" is returned on the serial channel
"uart1:":

 SETUP WRITE "prt","uart1:"

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 241

Chapter 2 Program Instructions

SGN
Field of Application Function returning the sign (positive, zero, or negative) of a specifi ed

numeric expression.

Syntax SGN(<nexp>)
<nexp> is the numeric expression from which the sign will be

returned.

Remarks The sign will be returned in this form:
 SGN(<nexp>) = -1 (negative)
 SGN(<nexp>) = 0 (zero)
 SGN(<nexp>) = 1 (positive)

Examples Positive numeric expression:

 10 A%=(5+5)
 20 PRINT SGN(A%)
 RUN
 yields:
 1

 Negative numeric expression:

 10 A%=(5-10)
 20 PRINT SGN(A%)
 RUN
 yields:
 -1

 Zero numeric expression:

 10 A%=(5-5)
 20 PRINT SGN(A%)
 RUN
 yields:
 0

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7242

Chapter 2 Program Instructions

SORT
Field of Application Statement for sorting a one-dimensional array.

Syntax SORT<<nvar>|<svar>>,<nexp1>,<nexp2>,<nexp3>
<<nvar>|<svar>> is the array to be sorted.
<nexp1> is the number of the fi rst element.
<nexp2> is the number of the last element.
<nexp3> > 0: Ascending sorting
 < 0: Descending sorting
 = 0: Illegal value
 In a string array, the value specifi es the position according to

which the array will be sorted.

Remarks A numeric or string array can be sorted, in its entity or within a specifi ed
range of elements in ASCII value order.

 The 4:th parameter (<nexp
3
>) is used differently for numeric and string

arrays. The sign always specifi es ascending or descending order. For numeric
arrays, the value is of no consequence, but for string arrays, the value
specifi es for which character position the elements will be sorted. <nexp

3
>

= 0 results in Error 41, “Parameter out of range.”

Example One numeric and one string array are sorted in descending order. The
string array is sorted in ascending according to the third character
position in each string:

 10 ARRAY% (0) = 1001
 20 ARRAY% (1) = 1002
 30 ARRAY% (2) = 1003
 40 ARRAY% (3) = 1004
 50 ARRAY$ (0) = "ALPHA"
 60 ARRAY$ (1) = "BETA"
 70 ARRAY$ (2) = "GAMMA"
 80 ARRAY$ (3) = "DELTA"
 90 SORT ARRAY%,0,3,-1
 100 SORT ARRAY$,0,3,3
 110 FOR I% = 0 TO 3
 120 PRINT ARRAY% (I%), ARRAY$ (I%)
 130 NEXT
 RUN
 yields:
 1004 DELTA
 1003 GAMMA
 1002 ALPHA
 1001 BETA

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 243

Chapter 2 Program Instructions

SOUND
Field of Application Statement for making the printer’s beeper produce a sound specifi ed

in regard of frequency and duration.

Syntax SOUND<nexp1>,<nexp2>
<nexp1> is the frequency of the sound in Hz.
<nexp2> is the duration of the sound in periods of 0.020 sec. each

(max. 15,0000 = 5 minutes).
Default: Frequency: 1200 Hz.
 Duration: 0.030 sec.

Remarks This statement allows you include signifi cant sound signals in your programs,
for example to notify the operator that various errors have occurred.
A sound with approximately the specifi ed frequency will be produced
for the specifi ed duration. If the program encounters a new SOUND
statement, it will not be executed until the previous sound has been on
for the specifi ed duration.

 The SOUND statement even allows you to make melodies, although the
musical quality may be somewhat limited. The following table illustrates the
frequencies corresponding to the notes in the musical scale. To create a period
of silence, set the frequency to value higher than 9,999 Hz.

 Note Hz Note Hz Note Hz Note Hz
 C 131 C 262 C 523 C 1047
 C# 138 C# 277 C# 554 C# 1109
 D 147 D 294 D 587 D 1175
 D# 155 D# 311 D# 622 D# 1245
 E 165 E 330 E 659 E 1319
 F 175 F 349 F 699 F 1397
 F# 185 F# 370 F# 740 F# 1480
 G 196 G 392 G 784 G 1568
 G# 208 G# 415 G# 831 G# 1662
 A 220 A 440 A 880 A 1760
 A# 233 A# 466 A# 933 A# 1865
 B 247 B 494 B 988 B 1976
 (small octave) (one-line octave) (two-line octave) (three-line octave)

Example The tune “ Colonel Boogie" starts like this:

 10 SOUND 392,15
 20 SOUND 330,20
 30 SOUND 330,15
 40 SOUND 349,15
 50 SOUND 392,15
 60 SOUND 659,25
 70 SOUND 659,25
 80 SOUND 523,25

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7244

Chapter 2 Program Instructions

SPACE$
Field of Application Function returning a specifi ed number of space characters.

Syntax SPACE$(<nexp>)
<nexp> is the number of space characters to be returned.

Remarks This function is useful for more complicated spacing, for example in tables.

Examples Printing of two left-justifi ed columns on the screen:

 10 FOR Q%=1 TO 6
 20 VERBOFF:INPUT "",A$
 30 VERBON:PRINT A$;
 40 VERBOFF:INPUT "",B$
 50 VERBON
 60 C$=SPACE$(25-LEN(A$))
 70 PRINT C$+B$
 80 NEXT Q%
 90 END
 RUN

 Enter:
 January ↵
 February ↵
 March ↵
 April ↵
 May ↵
 June ↵
 July ↵
 August ↵
 September ↵
 October ↵
 November ↵
 December ↵
 yields:
 January February
 March April
 May June
 July August
 September October
 November December

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 245

Chapter 2 Program Instructions

SPLIT
Field of Application Function splitting a string into an array according to the position

of a specifi ed separator character and returning the number of
elements in the array.

Syntax SPLIT(<sexp1>,<sexp2>,<nexp>)
<sexp1> is the string to be split.
<sexp2> is the string array in which the parts of the split string

should be put.
<nexp> specifi es the ASCII value for the separator.

Remarks The string is divided by a specifi ed separating character which may found
an infi nite number of times in the string. Each part of the string will
become an element in the string array, but the separator character itself
will not be included in the array.

 Should the string be split into more than four elements, Error 57, “Subscript
out of range” will occur. To avoid this error, issue a DIM statement to create
a larger array before the string is split.

Example In this example a string is divided into fi ve parts by the separator character
(ASCII 35 decimal). The result will be an array of fi ve elements numbered
0-4 as specifi ed by a DIM statement. Finally, the number of elements is
also printed on the screen.

 10 A$="ONE#TWO#THREE#FOUR#FIVE"
 20 B$="ARRAY$"
 30 DIM ARRAY$(5)
 40 C%=SPLIT(A$,B$,35)
 50 PRINT ARRAY$(0)
 60 PRINT ARRAY$(1)
 70 PRINT ARRAY$(2)
 80 PRINT ARRAY$(3)
 90 PRINT ARRAY$(4)
 100 PRINT C%
 RUN
 yields:
 ONE
 TWO
 THREE
 FOUR
 FIVE
 5

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7246

Chapter 2 Program Instructions

STOP
Field of Application Statement for terminating execution of a program and to return

to immediate mode.

Syntax STOP

Remarks When a STOP statement is encountered, the following message is
returned to the host:

 Break in line <line number>

 You can resume execution where it was stopped by means of a CONT
statement or at a specifi ed program line using a GOTO statement in
the immediate mode.

 STOP is usually used in conjunction with CONT for debugging. When
execution is stopped, you can examine or change the values of variables using
direct mode statements. You may then use CONT to resume execution. CONT
is invalid if the program has been editied during the break.

Example 10 A%=100
 20 B%=50
 30 IF A%=B% THEN GOTO QQQ ELSE STOP
 40 GOTO 30
 50 QQQ:PRINT "Equal"

 Ok
 RUN
 Break in line 30

 Ok
 PRINT A%
 100

 Ok
 PRINT B%
 50

 Ok
 B%=100

 OK
 CONT
 Equal

 Ok

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 247

Chapter 2 Program Instructions

STORE IMAGE
Field of Application Statement for setting up parameters for storing an image in the

printer’s memory.

Syntax STORE↔IMAGE [RLL] [KILL]<sexp1>,<nexp1>,<nexp2>,[<nexp3>],<sexp2>
[RLL] optionally indicates RLL compression.
[KILL] optionally specifi es that the image will be erased from the

temporary memory at startup (recommended).
<sexp1> is the name of the image (max 30 char. incl. extension).
<nexp1> is the width of the image in bits (=dots).
<nexp2> is the height of the image in bits (=dots).
[<nexp3>] is the size of the images in bytes (RLL only).
<sexp2> is the name of the protocol: "INTELHEX"
 "UBI00"
 "UBI01"
 "UBI02"
 "UBI03"
 "UBI10"

Remarks The name of the protocol must be entered in one sequence (for example
"INTELHEX"). Upper- or lowercase letter can be used at will. Refer
to the Chapter 3, “Image Transfer” for more information on the syntax
of the protocols.

 STORE IMAGE RLL is used when the image to be received is compressed
into RLL format. In this case the size of the image must be included in
the list of parameters (<nexp

3
>).

 STORE IMAGE KILL implies that the image will be stored in the printer’s
temporary memory, which is erased at power off or REBOOT. It is strongly
recommended to use this option to improve the performance. If you need to
store the image permanently, copy it from the temporary memory ("tmp:") to
the permanent memory ("c:") after the download is completed.

 A STORE IMAGE statement must precede any STORE INPUT statement.

Example This example shows how an Intelhex fi le is received via the standard input
channel and stored in the printer’s temporary memory:

 10 STORE OFF
 20 INPUT "Name:", N$
 30 INPUT "Width:", W%
 40 INPUT "Height:", H%
 50 INPUT "Protocol:", P$
 60 STORE IMAGE N$, W%, H%, P$
 70 INPUT "", F$
 80 STORE F$
 90 IF MID$(F$,8,2,)<>"01" THEN GOTO 70
 100 STORE OFF

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7248

Chapter 2 Program Instructions

STORE INPUT
Field of Application Statement for receiving and storing protocol frames of image data

in the printer’s memory.

Syntax STORE↔INPUT<nexp1>[,<nexp2>]
<nexp1> is the timeout in ticks (0.01 sec.) before next character

is received.
<nexp2> is, optionally, the number assigned to a device when it was

OPENed for INPUT. Default: Standard IN channel.

Remarks The STORE INPUT statement receives and stores a protocol frame of image
data as specifi ed by preceding INPUT and STORE IMAGE statements. It also
performs an end frame check. (STORE INPUT is usually more convenient
than the old STORE statement, which still works even if it has been omitted in
this manual, refer to the Intermec Fingerprint v6.xx manuals.)

 STORE INPUT works differently for various types of protocol:
 INTELHEX Receives and stores frames until timeout or end

frame is received.
 UBI00-03 Receives and stores frames until timeout or required

number of bytes are received.
 UBI10 Receives and stores frames until timeout or end

frame is received.

Examples This example shows how an Intelhex fi le is stored using the STORE IMAGE
statement. The number of input parameters may vary depending on type of
protocol, see STORE INPUT statement.

 10 STORE OFF
 20 INPUT "Name:", N$
 30 INPUT "Width:", W%
 40 INPUT "Height:", H%
 50 INPUT "Protocol:", P$
 60 STORE IMAGE N$, W%, H%, P$
 70 STORE INPUT 100
 80 STORE OFF

 To receive the input from another channel than std IN channel, the
device must be OPENed for INPUT and a reference be included in the
STORE INPUT statement.

 10 STORE OFF
 20 OPEN "uart2:" FOR INPUT AS #9
 30 INPUT "Name:", N$
 40 INPUT "Width:", W%
 50 INPUT "Height:", H%
 60 INPUT "Protocol:", P$
 70 STORE IMAGE N$, W%, H%, P$
 80 STORE INPUT 100,9
 90 CLOSE #9
 100 STORE OFF

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 249

Chapter 2 Program Instructions

STORE OFF
Field of Application Statement for terminating the storing of an image and resetting

the storing parameters.

Syntax STORE↔OFF

Remarks After having stored all protocol frames of an image, the storing must
be terminated by a STORE OFF statement. Even if you want to store
another image, you must still issue a STORE OFF statement before
the parameters for the new image can be set up using a new STORE
IMAGE statement.

 It is recommended always to start an image storing procedure by issuing
a STORE OFF statement to clear the parameters of any existing STORE
IMAGE statement.

Example This example shows how an Intelhex fi le is received via the standard IN
channel and stored in the printer’s memory:

 10 STORE OFF
 20 INPUT "Name:", N$
 30 INPUT "Width:", W%
 40 INPUT "Height:", H%
 50 INPUT "Protocol:", P$
 60 STORE IMAGE N$, W%, H%, P$
 70 STORE INPUT 100
 80 STORE OFF

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7250

Chapter 2 Program Instructions

STR$
Field of Application Function returning the string representation of a numeric expression.

Syntax STR$(<nexp>)
<nexp> is the numeric expression from which the string representation

will be returned.

Remarks This is the complementary function for the VAL function.

Example In this example, the value of the numeric variable A% is converted to string
representation and assigned to the string variable A$:

 10 A%=123
 20 A$=STR$(A%)
 30 PRINT A%+A%
 40 PRINT A$+A$
 RUN
 yields:
 246
 123123

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 251

Chapter 2 Program Instructions

STRING$
Field of Application Function repeatedly returning the character of a specifi ed ASCII value,

or the fi rst character in a specifi ed string.

Syntax STRING$(<nexp1>,<<nexp2>|<sexp>>)
<nexp1> is the number of times the specifi ed character should

be repeated.
<nexp2> is the ASCII decimal code of the character to be repeated.
<sexp> is a string expression, from which the fi rst character will

be repeated.

Remarks The character to be repeated is specifi ed either by its ASCII decimal code
according to the selected character set (see NASC), or as the fi rst character
in a specifi ed string expression.

Example In this example, both ways of using STRING$ are illustrated. The character
“ *” is ASCII 42 decimal:

 10 A$="*INTERMEC*"
 20 LEADING$ = STRING$(10,42)
 30 TRAILING$ = STRING$(10,A$)
 40 PRINT LEADING$; A$; TRAILING$
 RUN
 yields:
 ***********INTERMEC***********

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7252

Chapter 2 Program Instructions

SYSVAR
Field of Application System array for reading or setting various system variables.

Syntax SYSVAR(<nexp>)
<nexp> is the reference number of the system variable:
 0 Not intended for public use
 1 Not intended for public use
 2 Not implemented
 3 Not intended for public use
 4 Not implemented
 5 Not implemented
 6 Not implemented
 7 Not implemented
 8 Not implemented
 9 Reserved special applications
 10 Reserved special applications
 11 Reserved special applications
 12 Not implemented
 13 Read ribbon counter (XP-series)
 14 Read errors since power on
 15 Read errors since last SYSVAR(15)
 16 Read number of bytes received at execution of STORE INPUT
 17 Read number of frames received at execution of STORE INPUT
 18 Read or Set verbosity level
 19 Read or Set type of error message
 20 Read direct or transfer mode
 21 Read printhead density (dots/mm)
 22 Read number of printhead dots
 23 Read status of transfer ribbon sensor
 24 Read if startup has occurred since last SYSVAR(24)
 25 Read or Set type of Centronics communication
 26 Read ribbon low condition (F-series)
 27 Not implemented
 28 Set paper feed data erase at headlift
 29 Read DSR condition on "uart2:"
 30 Read DSR condition on "uart3:"
 31 Read last sent ACK, NAK, or CAN character in the MUSE protocol.
 32 Read odometer value
 33 Read DSR condition on "uart1:"
 34 Read or Set positioning mode for TrueType characters
 35 Setup saving (non-volatile/volatile)
 36 Print changes of program modes
 37 Set minimum gap length
 38 Set equal safe (for TESTFEED)
 39 Enable/disable slack compensation
 40 Not implemented
 41 “Next label not found” at predefi ned feed length
 42 Stop media feed in the middle of label gaps

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 253

Chapter 2 Program Instructions

SYSVAR, cont.
Remarks 1-12.
 Not for public use or not implemented.

 13. Ribbon counter (Read only)
 Reads the value of the optional ribbon counter in EasyCoder 501 XP/601

XP. At startup, the counter is set to a value of approximately 65,000 and
is decremented by 1 for each pulse. There are 40 pulses for each turn
of the ribbon unwind unit.

 14. Errors since power up (Read only)
 Reads number of errors detected since last power up.

 15. Errors since last SYSVAR(15) (Read only)
 Reads number of errors detected since last executed SYSVAR(15).

 16. Number of bytes received (Read only)
 Reads the number of bytes received after the execution of a STORE INPUT

statement. Reset by the execution of a STORE IMAGE statement.

 17. Number of frames received (Read only)
 Reads the number of frames received after the execution of a STORE INPUT

statement. Reset by the execution of a STORE IMAGE statement.

 18. Verbosity level (Set or Read)
 The verbosity level can be set or read.

 In the Immediate and Programming Modes, all levels are enabled by
default.

 In the Intermec Direct Protocol, all levels are disabled by default.

 Different verbosity levels can be selected:
 SYSVAR (18) = -1 All levels enabled (= VERBON)
 SYSVAR (18) = 0 No verbosity (= VERBOFF)
 SYSVAR (18) = 1 Echo received characters
 SYSVAR (18) = 2 “Ok” after correct command lines
 SYSVAR (18) = 4 Echo input characters from comm. port
 SYSVAR (18) = 8 Error after failed lines

 The levels can be combined, so for example SYSVAR(18)=3 means both
“Echo received characters” and “Ok after correct command line.”

 The presently selected verbosity level can also be read and is returned as a
numeric value, for example by PRINT SYSVAR(18).

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7254

Chapter 2 Program Instructions

SYSVAR, cont.
Remarks, cont. 19. Type of error message (Set or Read)
 Four types of error messages can be selected:
 SYSVAR(19) = 1 <string> in line <line> (default)
 for example “ Invalid font in line 10”
 SYSVAR(19) = 2 Error <number> in line <line>: <string>
 for example “ Error 19 in line 10: Invalid font”
 SYSVAR(19) = 3 E<number>
 for example “ E19”
 SYSVAR(19) = 4 Error <number> in line <line>
 for example “ Error 19 in line 10”

 The presently selected type of error message can also be read and is returned as
a numeric value (1-4), for example by PRINT SYSVAR(19).

 20. Direct or transfer mode (Read only)
 SYSVAR(20) allows you to read if the printer is set up for direct thermal

printing or thermal transfer printing, which is decided by your choice of
paper type in the printer’s setup.

 The printer returns:
 0 = Direct thermal printing
 1 = Thermal transfer printing

 21. Printhead density (Read only)
 SYSVAR(21) allows you to read the density of the printer’s printhead,

expressed as number of dots per millimeter.

 22. Number of dots (Read only)
 SYSVAR(22) allows you to read the number of dots in the printer’s

printhead.

 23. Transfer ribbon sensor (Read only)
 SYSVAR(23) allows you to read the status of the transfer ribbon sensor

in thermal transfer printers.

 The printer returns:
 0 = No ribbon detected
 1 = Ribbon detected

 24. Power up since last SYSVAR(24) (Read only)
 This system variable is important when using the Intermec Direct Protocol.

At power up, all data not saved as programs, fi les, fonts or images will
be deleted, and most instructions will be reset to their respective default
values. SYSVAR(24) allows the host to poll the printer to see if a power up
has occurred, for example because of a power failure and, if so, download
new data and new instructions.

 The printer returns:
 0 = No power up since last SYSVAR(24)
 1 = Power up has occurred since last SYSVAR(24)

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 255

Chapter 2 Program Instructions

SYSVAR, cont.
Remarks, cont. 25. Type of Centronics communication (Set or Read)
 Three types of Centronics communication in the compatible mode

can be selected or read. (Nibble, byte, ECP and EPP are presently
not supported.)

 SYSVAR(25) = 0 Standard type
 Predefi ned timing for the ACK and BUSY signals

when responding to host data is:
 500 ns ACK, BUSY inactivated after ACK

fi nishes.
 SYSVAR(25) = 1 IBM/Epson type
 Predefi ned timing for the ACK and BUSY signals

when responding to host data is:
 2500 ns ACK, BUSY inactivated as soon as ACK

pulse starts.
 SYSVAR(25) = 2 Classic type
 Predefi ned timing for the ACK and BUSY signals

when responding to host data is:
 BUSY deactivated, wait 2500 ns, then give 2500

ns pulse on ACK.

 Default: 0 = Standard type

 26: Ribbon low condition (Read only)
 This parameter allows you to read the status of the ribbon low sensor in

EasyCoder F-series thermal transfer printers. In the Setup Mode, you can
specify a diameter in mm of the ribbon supply roll, when the SYSVAR(26)
will switch from 0 to 1.

 The printer returns:
 0 = Ribbon not low
 1 = Ribbon low

 28. Erase paper feed data at headlift (Set only)
 The fi rmware keeps track of all labels (or similar) between the label stop

sensor and the dot line of the printhead. If the printhead is lifted, there is a large
risk that the paper is moved, so the paper feed will not work correctly before
those labels have been fed out. This parameter allows you to decide whether
these data should be cleared when the printhead is lifted or not.

 SYSVAR(28) = 0 Media feed data are not cleared at headlift
 SYSVAR(28) = 1 Media feed data are cleared at headlift (default)

 29: DSR condition on "uart2:" (Read only)
 This parameter allows you to read the DSR (Data Send Ready) condition

on the serial channel "uart2:"

 The printer returns:
 0 = No
 1 = Yes

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7256

Chapter 2 Program Instructions

SYSVAR, cont.
Remarks, cont. 30: DSR condition on "uart3:" (Read only)
 This parameter allows you to read the DSR (Data Send Ready) condition

on the serial channel "uart3:"

 The printer returns:
 0 = No
 1 = Yes

 31: Last control character sent (Read only)
 This parameter allows you to read the last control character sent from the

MUSE protocol (special applications).

 The printer returns one of the following alternatives:
 NUL
 ACK
 NAK
 CAN

 32: Odometer value (Read only)
 Returns the length of media feed past the printhead. Resolution: 10 meters.

 33: DSR condition on "uart1:" (Read only)
 This parameter allows you to read the DSR (Data Send Ready) condition

on the serial channel "uart1:".

 The printer returns:
 0 = No
 1 = Yes

 34: TrueType character positioning mode (Set or Read)
 This parameter allows you to select one of three modes for the positioning of

TrueType characters and also to read for which mode the printer is set.

 The modes are:
 0 = Standard mode (default)
 This mode was introduced with Intermec Fingerprint 7.2.
 1 = Compatible mode
 This mode is compatible with Intermec Fingerprint 7.xx earlier
 than version 7.2.
 2 = Adjusted mode
 This mode was introduced with Intermec Fingerprint 7.2.

 35: Setup Saving (Set or Read)
 This parameter allows you to decide whether a change in the printer’s setup

is to be saved as a fi le (that is be effective after a reboot or power down) or
not be saved (volatile). You can also read for which alternative the printer is
set. Note that the SYSVAR (35) setting at the moment when the new setup
is entered decides whether it will be saved or not.

 The alternatives are:
 0 = Setup saved to fi le (non-volatile) Default
 1 = Setup not saved to fi le (volatile)

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 257

Chapter 2 Program Instructions

SYSVAR, cont.
Remarks, cont. 36: Print changes of program modes (Set or Read)
 This parameter is used with the Fingerprint debugger and controls whether

changes of program modes should be printed to the Debug Standard
Out port (see DBSTDIO).

 The options are:
 0 = Disable printout (default)
 1 = Enable printout

 37: Set Minimum Gap Length (Set or Read)
 The media may have perforations or marks that not are intended to be

interpreted as gaps or black marks by the LSS. Using this SYSVAR
parameters, it is possible to make the LSS ignore gaps or marks that are
shorter that a specifi ed value. (In this context, long and short are related
to the media feed direction.) The minimum gap length is specifi ed in dots
within a range of 1-32. Default value is 1 mm (0.039 inches). Note that
SYSVAR(37) affects PRINTFEED and FORMFEED. For TESTFEED,
see SYSVAR(38).

 38: Set Equal Safe for TESTFEED (Set or Read)
 This parameter is similar to SYSVAR(37), but it only affects how TESTFEED

will detect gaps and black marks. SYSVAR(38) specifi es how many
consecutive detections of a gap or mark the LSS will have to make before
the fi rmware registers it as a gap or mark. The allowed range is 0-255
and the default value is 6.

 39: Enable/Disable Slack Compensation (Set or Read)
 Label slack compensation is a method of eliminating slack in the belts

after having fed the media back. At a negative FORMFEED, the printer
will pullback the media slightly more than specifi ed by the FORMFEED
statement and the feed the media forward the same distance. For example, if
FORMFEED -100 is specifi ed, the printer will pull back the media -112 dots
and then feed the media forward +12 dots to take out the slack.

 In some applications, this method could be inconvenient, so it is possible
to enable/disable it.

 The options are:
 0 = Disable slack compensation
 1 = Enable slack compensation (default)

 40: Not Implemented

 41: “Next label not found” at Predefi ned Feed Length (Set or Read)
 The automatic detection of the error condition “Next label not found” (error

1031) by the label stop sensor can be overridden by specifying a fi xed length
in dots. The length should preferably correspond to at least the distance
between the tops of two consecutive labels. During printing, error 1031
occurs if the media does not come loose from the core (media glued to core)
or if a label is missing on the liner. Especially useful for short labels (10–40
mm/0.4–1.5 inches long). Default value is 0.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7258

Chapter 2 Program Instructions

SYSVAR, cont.
Remarks, cont. 42: Stop Media Feed in the Middle of Label Gaps (Set or Read)
 If SYSVAR(42) = 0, the media feed stops so the middle of a 3 mm (0.12

in) gap becomes aligned with the tear bar when using labels (w gaps).
This is the default setting.

 If SYSVAR(42) = 1, the media feed stops so the middle of the gap becomes
aligned with the tear bar, regardless of gap size

Examples Reading the value of a system variable, in this case the transfer ribbon

sensor:

 PRINT SYSVAR(23)

 Setting the value of a system variable. In this case the standard type

of Centronics is selected:

 SYSVAR(25)= 0

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 259

Chapter 2 Program Instructions

TESTFEED
Field of Application Statement for adjusting the label stop sensor while performing a

number of formfeeds.

Syntax TESTFEED[<nexp>]
<nexp> is an optional feed length in dots.

Remarks The TESTFEED statement feeds <nexp> dots while adjusting the label
stop/black mark sensor (LSS) for the characteristics of the media presently
loaded in the printer. The adjustment is needed to detect media, gaps,
black marks, and out-of-paper conditions, therefore is must be done
for all media types.

 If <nexp> is omitted, <nexp> is automatically set to 1.5 times the
media length specifi ed in the setup. For the TESTFEED operation to
be successful, at least one gap or black mark must pass the LSS. Also
see SYSVAR(38).

 In the Immediate Mode, a TESTFEED is performed when the <Shift> and
<Feed> keys are pressed simultaneously.

 Since the TESTFEED is essential for a proper media load, some facility
for issuing a TESTFEED statement should be included in all custom-made
label-printing programs (see the example below).

Example This program performs a TESTFEED statement when the <Shift>
and <Feed> key are pressed simultaneously on the printer’s built-in
keyboard:

 10 ON KEY (119) GOSUB QTESTFEED
 20 KEY (119) ON
 30 QLOOP:
 40 GOTO QLOOP

 1000 QTESTFEED:
 1010 TESTFEED
 1020 RETURN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7260

Chapter 2 Program Instructions

TICKS
Field of Application Function returning the time, that has passed since the last power

up in the printer, expressed in number of “TICKS" (1 TICK =
0.01 seconds.)

Syntax TICKS

Remarks TICKS allows you to measure time more exactly than the TIME$ variable,
which cannot handle time units smaller than 1 second.

 The TICKS counter is reset to zero at power up.

Example 10 A%=TICKS
 20 PRINT A%
 RUN
 yields for example:
 1081287

 The time which has passed since the printer was started is 10812.87 seconds,
that is 3 hours 12.87 seconds.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 261

Chapter 2 Program Instructions

TIME$
Field of Application Variable for setting or returning the current time.

Syntax Setting the time: TIME$=<sexp>
<sexp> sets the current time by a 6-digit number specifying Hour,

Minute and Second.

 Reading the time: <svar>=TIME$[(<sexp>)]
<svar> returns the current time according to the printer’s clock.
<sexp> is an optional fl ag "F", indicating that the time will be returned

according to the format specifi ed by FORMAT TIME$.

Remarks This variable works best if a real-time clock circuit (RTC) is fi tted on the
printer’s CPU board. The RTC is battery backed-up and will keep record of
the time even if the power is turned off or lost.

 If no RTC is installed, the internal clock will be used. After startup, an error
will occur when trying to read the date or time before the internal clock has
been manually set by means of either a DATE$ or a TIME$ variable. If only
the date is set, the internal clock starts at 00:00:00 and if only the time
is set, the internal clock starts at Jan 01 1980. After setting the internal
clock, you can use the DATE$ and TIME$ variables the same way as
when an RTC is fi tted, until a power off or REBOOT causes the date
and time values to be lost.

 The time is always entered and, by default, returned in the following
order HHMMSS, where:

 HH = Hour Two digits (00-23)
 MM = Minute Two digits (00-59)
 SS = Second Two digits (00-59)

 Time is entered as a 24-hour cycle, for example 8 o’clock pm is entered
as "200000".

 The clock will be reset at the exact moment, when the appending carriage
return character is received, for example when you press the Return key
(Immediate Mode and Intermec Direct Protocol), or when the instruction is
executed (Programming Mode).

 The format for how the printer will return time from a TIME$("F") variable
can be changed by means of a FORMAT TIME$ statement.

Example Setting and reading the time, then printing it on the screen of the host:

 10 TIME$ = "154300"
 20 FORMAT TIME$ "HH.MM"
 30 PRINT "Time is "+TIME$("F")
 RUN
 yields:
 Time is 15.43

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7262

Chapter 2 Program Instructions

TIMEADD$
Field of Application Function returning a new time after a number of seconds have

been added to, or subtracted from, the current time or optionally
a specifi ed time.

Syntax TIMEADD$([<sexp1>,]<nexp>[,<sexp2>])
<sexp1> is any time given according to the TIME$ format, which a

certain number of seconds should be added to or subtracted
from.

<nexp> is the number of seconds to be added to (or subtracted
from) the current time, or optionally the time specifi ed
by <sexp1>.

<sexp2> is an optional fl ag "F", indicating that the time will be returned
according to the format specifi ed by FORMAT TIME$.

Remarks The original time (<sexp
1
>) should always be entered according to the

TIME$ format (HHMMSS), where:
 HH = Hour Two digits (00-23)
 MM = Minute Two digits (00-59)
 SS = Second Two digits (00-59)

 Time is entered as a 24-hour cycle, for example 8 o’clock pm is entered
as "200000".

 The number of seconds to be added or subtracted from the original
time should be specifi ed as a positive or negative numeric expression
respectively.

 If no "F" fl ag is included in the TIMEADD$ function, the result will be
returned according to the TIME$ format, see above.

 If the TIMEADD$ function includes an "F" fl ag, the result will be returned
in the format specifi ed by FORMAT TIME$.

Examples 10 A%=30
 20 B$=TIMEADD$ ("133050",A%)
 30 PRINT B$
 RUN
 yields:
 133120

 10 TIME$="133050"
 20 FORMAT TIME$ "hh.mm.ss pp"
 30 A% = -40
 40 PRINT TIMEADD$(A%,"F")
 RUN
 yields:
 01.30.10 pm

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 263

Chapter 2 Program Instructions

TIMEDIFF
Field of Application Function returning the difference between two specifi ed moments of

time in number of seconds.

Syntax TIMEDIFF(<sexp1>,<sexp2>)
<sexp1> is one of two moments of time (time 1).
<sexp2> is the other of the two moments (time 2).

Remarks To get the result as a positive value, the two moments of time, for
which the difference is to be calculated, should be entered with the
earlier moment (time 1) fi rst and the later moment (time 2) last, see
the fi rst example below.

 If the later moment (time 2) is entered fi rst, the resulting value will be
negative, see the second example below.

 The time should be entered according to the format for the TIME$ variable,
that is in the order HHMMSS, where:

 HH = Hour Two digits (00-23)
 MM = Minute Two digits (00-59)
 SS = Second Two digits (00-59)

 Time is entered as a 24-hour cycle, for example 8 o’clock pm is entered
as "200000".

 The resulting difference in seconds will be returned.

Examples PRINT TIMEDIFF ("133050","133120")
 yields:
 30

 PRINT TIMEDIFF ("133120","133050")
 yields:
 -30

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7264

Chapter 2 Program Instructions

TRANSFER KERMIT
Field of Application Statement for transferring data fi les using KERMIT communication

protocol.

Syntax TRANSFER↔K[ERMIT]<sexp1>[,<sexp2>[,<sexp3>[,sexp4>]]]
<sexp1> specifi es the direction of the transmission by the expression

"S " (= send) or "R" (= receive).
<sexp2> is, optionally, the name of the fi le transmitted from the printer

(default "KERMIT.FILE").
<sexp3> specifi es, optionally, the input device as "uart1:", "uart2:", or

"uart3:" (default: std IN channel).
<sexp4> specifi es, optionally, the output device as "uart1:", "uart2:", or

"uart3:" (default: std OUT channel).

Remarks Kermit is a protocol for serial binary transfer of a complete fi le between for
example a PC and a printer. Kermit is included in Windows HyperTerminal
and in many other communication programs.

 Warning, tests have shown that Microsoft Windows Terminal, versions
3.0 and 3.1, is unable to receive a fi le from the printer, even if capable
of sending a fi le to the printer.

 Consult the application program manual or the reference volume “Kermit
-A File Transfer Protocol" by Frank da Cruz (Digital Press 1987, ISBN
0-932376-88-6).

 TRANSFER KERMIT can only handle one single fi le at a time.

 When transmitting fi les from the printer to the host, carefully observe possible
restrictions concerning the number of characters, etc. in the fi le name, that
is imposed by the operating system of the host.

 When receiving a fi le, you must start the transmission within 30 seconds
from completing the TRANSFER KERMIT "R" statement. The printer will
store the fi le in the current directory "c:", "tmp:", or "card1:", see CHDIR
statement. (Obviously, fi les cannot be received into "rom:".) If there already
exists a fi le in the current directory with the same name as the one to be
transferred, the existing fi le will be replaced by the new fi le. Thus, it is up
to you to keep record of the fi les already stored in the current directory
(see FILES statement). Before transfer, give the new fi le a name that is not
already occupied by an existing fi le, unless you want to replace the existing
fi le. If you use TRANSFER KERMIT to download a font or image fi le,
the font or image will automatically be installed after the downloading is
completed without any need for a reboot.

Examples Setting up the printer for fi le reception on the standard IN channel:

 TRANSFER KERMIT "R"

 Transmission from printer to host of the fi le "FILE1.TXT" on a channel
other than the standard OUT channel:

 TRANSFER K "S","FILE1.TXT","uart2:","uart2:"

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 265

Chapter 2 Program Instructions

TRANSFER STATUS
Field of Application Statement for checking last TRANSFER KERMIT or TRANSFER

ZMODEM operation.

Syntax TRANSFER↔S[TATUS]<nvar>,<svar>
<nvar> is a fi ve-element one-dimensional numeric array where

the elements will return:
 0: Number of packets. (Kermit only)
 1: Number of NAK’s. (Kermit only)
 2: ASCII value of last status character. (Kermit only)
 3: Last error. (Kermit and ZMODEM)
 4: Block check type used. (Kermit only)
<svar> is a two-element one-dimensional string array where the

elements will return:
 0: Type of protocol. ("KERMIT" or “ZMODEM")
 1: Last fi le name received.

Remarks After a fi le transfer using the Kermit or ZMODEM protocol has been
performed (see TRANSFER KERMIT and TRANSFER ZMODEM
statements), you can check how the transfer was performed. Note that the
numeric array requires the use of a DIM statement, since the array will
contain more than four elements.

Example 10 TRANSFER KERMIT "R"
 20 DIM A%(4)
 30 TRANSFER STATUS A%, B$
 40 PRINT A%(0), A%(1), A%(2), A%(3), A%(4)
 50 PRINT B$(0), B$(1)

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7266

Chapter 2 Program Instructions

TRANSFER ZMODEM
Field of Application Statement for transferring data fi les using ZMODEM communication

protocol.

Syntax TRANSFER↔Z[MODEM]<sexp1>[,<sexp2>[,<sexp3>[,sexp4>]]]
<sexp1> specifi es the direction of the transmission by the expression

"S " (= send) or "R" (= receive).
<sexp2> is, optionally, the name of the fi le transmitted from the printer

(default "ZMODEM.FILE").
<sexp3> specifi es, optionally, the input device as "uart1:", "uart2:", or

"uart3:" (default: std IN channel).
<sexp4> specifi es, optionally, the output device as "uart1:", "uart2:", or

"uart3:" (default: std OUT channel).

Remarks ZMODEM is a protocol for serial transfer of a complete fi le between
for example a PC and a printer. For more information on the ZMODEM
protocol, please refer to http://www.omen.com. Related instructions are
RZ (receive data using the ZMODEM protocol) and SZ (send data using
the ZMODEM protocol).

 TRANSFER ZMODEM can only handle one single fi le at a time.

 When transmitting fi les from the printer to the host, carefully observe
possible restrictions concerning the number of characters etc. in the fi le name,
that is imposed by the operating system of the host.

 When receiving a fi le, you must start the transmission within 30 seconds
from completing the TRANSFER ZMODEM "R" statement. The printer
will store the fi le in the current directory "c:", "tmp:", or "card1:", see
CHDIR statement. (Obviously, fi les cannot be received into "rom:".) If there
already exists a fi le in the current directory with the same name as the one
to be transferred, the existing fi le will be replaced by the new fi le. Thus, it is
up to you to keep record of the fi les already stored in the current directory
(see FILES statement). Before transfer, give the new fi le a name that is not
already occupied by an existing fi le, unless you want to replace the existing
fi le. If you use TRANSFER ZMODEM to download a font or image fi le,
the font or image will automatically be installed after the downloading is
completed without any need for a reboot.

Examples Setting up the printer for fi le reception on the standard IN channel:

 TRANSFER ZMODEM "R"

 Transmission from printer to host of the fi le "FILE1.TXT" on a channel
other than the standard OUT channel:

 TRANSFER Z "S","FILE1.TXT","uart2:","uart2:"

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 267

Chapter 2 Program Instructions

TRANSFER$
Field of Application Function executing a transfer from source to destination as specifi ed by

a TRANSFERSET statement.

Syntax TRANSFER$(<nexp>)
<nexp> is the character time-out in ticks (10 milliseconds).

Remarks The TRANSFER$ function executes the transfer from source to destination
as specifi ed by the TRANSFERSET statement. It also checks the transfer and
breaks it if no character has been transmitted before the specifi ed time-out has
expired or if any break character, as specifi ed by the break character string
in the TRANSFERSET statement, is encountered.

 If the transmission was interrupted because a character in the break set was
encountered, that character will be returned.

 If the transmission was interrupted because of a time-out error, an empty
string will be returned.

 If the transmission was interrupted because of the reception of a character
on any other communication channel than the source (as specifi ed by
TRANSFERSET statement), an empty string will be returned.

Example The transfer will be executed by the TRANSFER$ function in line 60 and
possible interruptions will be indicated by a break character or empty
string ("") in the string variable C$.

 10 OPEN "LABEL1.PRG" FOR INPUT AS #1
 20 OPEN "UART1:" FOR OUTPUT AS #2
 30 A$=CHR$(13)
 40 B$=CHR$(10)
 50 TRANSFERSET #1, #2, A$+B$
 60 C$=TRANSFER$(100)

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7268

Chapter 2 Program Instructions

TRANSFERSET
Field of Application Statement for entering setup for the TRANSFER$ function.

Syntax TRANSFERSET[#]<nexp1>,[#]<nexp2>,<sexp>[,<nexp3>]
optional number sign.
<nexp1> is the number of the source (the fi le or device OPENed

for input).
<nexp2> is the number of the destination fi le (the fi le or device OPENed

for output or append).
<sexp> is a set of break characters.
<nexp3> optionally enables or disables break on any other channel

than the source:
 <nexp> = 0 Break disabled
 <nexp> ≠ 0 Break enabled
Default: Standard I/O with no break characters.
 Break on any other channel enabled.

Remarks This statement sets up the transfer of data from a fi le or device OPENed for
input to another fi le or device OPENed for output or append. The transfer
will be interrupted if any character in a string of break characters,
specifi ed in this statement, is encountered (optionally on another specifi ed
channel). The actual transfer is executed by means of a TRANSFER$
function, that also returns the break character that has caused any
possible interruption.

Example In this example, the data transfer from a fi le in the current directory to
an external device connected to the communication port "uart1:" will
be interrupted as soon as a carriage return or a line feed character is
encountered in the fi le.

 10 OPEN "LABEL1.PRG" FOR INPUT AS #1
 20 OPEN "UART1:" FOR OUTPUT AS #2
 30 A$=CHR$(13)
 40 B$=CHR$(10)
 50 TRANSFERSET #1, #2, A$+B$
 60 C$=TRANSFER$(100)

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 269

Chapter 2 Program Instructions

TRON/TROFF
Field of Application Statements enabling/disabling tracing of the program execution.

Syntax TRON|TROFF
TRON enables tracing.
TROFF disables tracing (default)

Remarks Useful for debugging purposes. When tracing is enabled, each line
number of the program is displayed on the screen within parentheses
as the execution goes on.

 Tracing will be disabled when a TROFF statement is executed.

Example 10 PRINT "HELLO"
 20 INPUT"Enter Text"; A$
 30 PRINT A$
 TRON
 RUN
 yields:
 (10) HELLO
 (20) Enter text? (Operator enters "WORLD")
 (30) WORLD

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7270

Chapter 2 Program Instructions

VAL
Field of Application Function returning the numeric representation of a string expression.

Syntax VAL(<sexp>)
<sexp> is the string expression from which the numeric representation

will be returned.

Remarks VAL is the complementary function for STR$.

 VAL ignores space characters from the argument string to determine
the result.

 If the fi rst character in the string expression is anything else but a digit, a plus
sign, or a minus sign, the VAL function returns the value 0.

Example In this example, the values of the string variables A$ and B$ are read and
assigned to the numeric variables A% and B%:

 10 A$="123, MAIN STREET"
 20 A%=VAL(A$)
 30 B$="PHONE 123456"
 40 B%=VAL(B$)
 50 PRINT A$
 60 PRINT A%
 70 PRINT B$
 80 PRINT B%
 RUN
 yields:
 123, MAIN STREET
 123
 PHONE 123456
 0

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 271

Chapter 2 Program Instructions

VERBON/VERBOFF
Field of Application Statements for specifying the verbosity level of the communication

from the printer on the standard OUT channel (serial communication
only).

Syntax VERBON|VERBOFF
VERBON enables all verbosity levels (default).
VERBOFF disables all verbosity levels.

Remarks VERBON:
 By default, when a character is received on the standard IN channel (see

SETSTDIO statement), the corresponding character will be echoed back
on the standard OUT channel. As the serial channel "uart1:" is by default
selected both standard IN and OUT channel, this implies that when you enter
a character on the keyboard of the host, the same character will appear on the
screen after having been transmitted to the printer and back.

 When an instruction has been successfully executed, “Ok” will be displayed
on the screen, else an error message will be returned. Obviously, this requires
two-way communication, so verbosity has no meaning in case of the parallel
"centronics:" communication protocol.

 VERBON corresponds to SYSVAR(18)=-1.
 VERBOFF corresponds to SYSVAR(18)=0.

 Other verbosity levels can be selected using SYSVAR(18), and the type of
error message can be selected using SYSVAR (19).

 VERBOFF:
 All responses will be suppressed, which means that no characters or

error messages will be echoed back. VERBOFF statements do not affect
question marks and prompts displayed as a result of an INPUT statement.
Instructions like DEVICES, FILES, FONTS, IMAGES, LIST, and PRINT
will also work normally.

Example This example shows how VERBOFF is used to suppress the printing of INPUT
data in lines 20 and 40 during the actual typing on the host, and VERBON to
allow the printing of the resulting string variables on the screen:

 10 FOR Q%=1 TO 6
 20 VERBOFF:INPUT "", A$
 30 VERBON:PRINT A$;
 40 VERBOFF:INPUT "", B$
 50 VERBON
 60 C$=SPACE$(25-LEN(A$))
 70 PRINT C$+B$
 80 NEXT Q%
 90 END

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7272

Chapter 2 Program Instructions

VERSION$
Field of Application Function returning the version of the fi rmware, printer family, or

type of CPU board.

Syntax VERSION$[(<nexp>)]
<nexp> is, optionally, the type of information to be returned:
 0 = Version of fi rmware (default)
 1 = Printer family
 2 = Type of CPU board

Remarks The name of the fi rmware depends on if the printer is running in the Immediate
or Programming Modes, or in the Intermec Direct Protocol.

 The printer family is returned as one of the following alternatives:
 501XP
 601XP
 F2
 F4

 The type of CPU-board is returned as a string of text, for example:
 hardware version 2.1 (EasyCoder 501/601 XP)
 hardware version 3.0 (EasyCoder F-series)

Examples PRINT VERSION$(0)
 yields for example:
 Fingerprint 7.60

 PRINT VERSION$(1)
yields for example:

 501XP

 PRINT VERSION$(2)
yields for example:

 hardware version 2.1

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 273

Chapter 2 Program Instructions

WEEKDAY
Field of Application Function returning the weekday of a specifi ed date.

Syntax WEEKDAY(<sexp>)
<sexp> is the date in DATE$ format from which the weekday

will be returned.

Remarks This function returns the weekday as a numeric constant:
 1 = Monday
 2 = Tuesday
 3 = Wednesday
 4 = Thursday
 5 = Friday
 6 = Saturday
 7 = Sunday

 The date should be entered according to the syntax for the DATE$ variable,
that is in the following order:

 YY = Year Last two digits (for example 2000 = 00)
 MM = Month Two digits (01-12)
 DD = Day Two digits (01-28|29|30|31)
 Example: December 1, 2000 is entered as "001201".

 The built-in calendar corrects illegal values for the years 1980-2048, for
example the illegal date 001232 will be corrected to 010101.

Example In this example the weekday for the current date is printed on the screen
of the host (another way is to use NAME WEEKDAY$ statement and
WEEKDAY$ function):

 10 B$=DATE$
 20 A% = WEEKDAY (B$)
 30 IF A% = 1 THEN PRINT "MONDAY"
 40 IF A% = 2 THEN PRINT "TUESDAY"
 50 IF A% = 3 THEN PRINT "WEDNESDAY"
 60 IF A% = 4 THEN PRINT "THURSDAY"
 70 IF A% = 5 THEN PRINT "FRIDAY"
 80 IF A% = 6 THEN PRINT "SATURDAY"
 90 IF A% = 7 THEN PRINT "SUNDAY"
 RUN
 yields for example:
 THURSDAY

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7274

Chapter 2 Program Instructions

WEEKDAY$
Field of Application Returning the name of the weekday from a specifi ed date.

Syntax WEEKDAY$(<sexp>)
<sexp> is the date for which the name of the weekday, according

to a list of weekday names created by means of NAME
WEEKDAY$ statement , will be returned.

Remarks This function returns the name of the weekday according to a list of
weekday names specifi ed by means of NAME WEEKDAY$ statement
or–if the name is missing–the full English name in lowercase characters,
for example “friday".

 YY = Year Last two digits (for example 2000 = 00)
 MM = Month Two digits (01-12)
 DD = Day Two digits (01-28|29|30|31)
 Example: December 1, 2000 is entered as "001201".

 The built-in calendar corrects illegal values for the years 1980-2048, for
example the illegal date 001232 will be corrected to 010101.

Example This example shows how to make the printer return the name of the
weekday as a three-letter English abbreviation in connection with a
formatted date:

 10 FORMAT DATE$ ", MM/DD/YY"
 20 DATE$="001201"
 30 NAME WEEKDAY$ 1, "Mon"
 40 NAME WEEKDAY$ 2, "Tue"
 50 NAME WEEKDAY$ 3, "Wed"
 60 NAME WEEKDAY$ 4, "Thu"
 70 NAME WEEKDAY$ 5, "Fri"
 80 NAME WEEKDAY$ 6, "Sat"
 90 NAME WEEKDAY$ 7, "Sun"
 100 PRINT WEEKDAY$ (DATE$) + DATE$("F")
 RUN
 yields:
 Fri, 12/01/00

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 275

Chapter 2 Program Instructions

WEEKNUMBER
Field of Application Function returning the number of the week for a specifi ed date.

Syntax WEEKNUMBER(<sexp>[,<nexp])
<sexp> is the date for which the week number will be returned

(1-53).
<nexp> specifi es the calculating function (0-14) as listed below.

Default is 0.

Remarks WEEKNUMBER calculating function:

 <nexp> Week #1 starts...
 0 according to ISO 8601 (European standard):
 • week #1 will start on the last Monday at or before the New Year, if January 1 occurs

 on a Monday, Tuesday, Wednesday, or Thursday.
 • week #1 will start on the fi rst Monday after the New Year, if January 1 occurs on

 a Friday, Saturday, or Sunday.
 1 at Sunday in the fi rst week with 7 days in the actual year
 2 at January 1:st, with each following week starting on a Sunday
 3 at Monday in the fi rst week with 7 days in the actual year
 4 at January 1:st, with each following week starting on a Monday
 5 at Tuesday in the fi rst week with 7 days in the actual year
 6 at January 1:st, with each following week starting on a Tuesday
 7 at Wednesday in the fi rst week with 7 days in the actual year
 8 at January 1:st, with each following week starting on a Wednesday
 9 at Thurday in the fi rst week with 7 days in the actual year
 10 at January 1:st, with each following week starting on a Thursday
 11 at Friday in the fi rst week with 7 days in the actual year
 12 at January 1:st, with each following week starting on a Friday
 13 at Saturday in the fi rst week with 7 days in the actual year
 14 at January 1:st, with each following week starting on a Saturday

 The date should be entered according to the syntax for the DATE$ variable,
that is in the following order:

 YY = Year Last two digits (for example 2000 = 00)
 MM = Month Two digits (01-12)
 DD = Day Two digits (01-28|29|30|31)
 Example: December 1, 2000 is entered as "001201".

 The built-in calendar corrects illegal values for the years 1980-2048, for
example the illegal date 001232 will be corrected to 010101.

Examples This example returns the week number of December 29, 2000 using

calculating function 2:

 PRINT WEEKNUMBER ("001229",2)
 yields for example:
 53

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7276

Chapter 2 Program Instructions

WHILE...WEND
Field of Application Statement for executing a series of statements in a loop providing

a given condition is true.

Syntax WHILE <nexp>

 <stmt>

 [...<stmt>]

 WEND
<nexp> is a numeric expression that is either TRUE (-1) of FALSE

(0).
<stmt> is a statement, or a list of statements on separate lines, that

will be executed provided <nexp> is TRUE.

Remarks If <nexp> is TRUE, all following statements will be executed successively
until a WEND statement is encountered. The program execution then
goes back to the WHILE statement and repeats the process, provided
<nexp> still is TRUE.

 If <nexp> is FALSE, the execution resumes at the statement following
the WEND statement.

 WHILE...WEND statements can be nested. Each WEND matches the
most recent WHILE statement.

Example In this example, the WHILE...WEND loop will only be executed if the character
“ Y” (ASCII 89 dec.) is entered on the keyboard of the host.

 10 B%=0
 20 WHILE B%<>89
 30 INPUT "Want to exit? Press Y=Yes or N=No ",A$
 40 B%=ASC(A$)
 50 WEND
 60 PRINT "The answer is Yes"
 70 PRINT "You will exit the program"
 80 END
 RUN
 yields:
 Want to exit? Press Y=Yes or N=No N
 Want to exit? Press Y=Yes or N=No Y
 The answer is Yes
 You will exit the program

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 277

Chapter 2 Program Instructions

XORMODE ON/OFF
Field of Application Statement for enabling or disabling the xor/fl ip mode of Intermec

Fingerprint in connection with graphical operations.

Syntax XORMODE ON|OFF

Remarks When XORMODE is set ON, dots are reversed, as opposed to set, by all
graphical operations except bar codes. This means that if, for example two
black lines cross, the intersection will be white. If XORMODE is set to
OFF, the intersection will be black.

 The XORMODE statement will only have effect if issued on a program
line with a line number.

 Default is XORMODE OFF. XORMODE is automatically set to default
when a PRINTFEED statement is executed.

Example The following program illustrates the difference between XORMODE ON
and XORMODE OFF. The two lines to the left are drawn with XORMODE
disabled and the lines to the right with XORMODE enabled.

 10 XORMODE OFF
 20 PRPOS 0,50
 30 PRLINE 300,30
 40 DIR 4
 50 PRPOS 100,0
 60 PRLINE 200,30
 70 XORMODE ON
 80 DIR 1
 90 PRPOS 400,50
 100 PRLINE 300,30
 110 DIR 4
 120 PRPOS 500,0
 130 PRLINE 200,30
 140 PRINTFEED
 RUN

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7278

Chapter 2 Program Instructions

External Commands; ZMODEM
Field of Application External commands for receiving and sending data using the ZMODEM

protocol.

Syntax RUN "rz [<switches>] [<fi lename>]" (receive data)
<switches>:
-c Forces no crash recovery, even if sender requests ZCRESUM

(resume interrupted fi le transfer).
-e Print last error to std OUT channel.
-l[<logfi le>] Send verbose output to logfi le. Default logfi le name is

"tmp:.zmodemlog".
-r If ZMCLOB is not set and the fi le already exists, replace fi le

if the transfer is successful.
-v[<level>] Set verbosity level. Level is a decimal number. Default

level is 1.
-u Translate fi le name to uppercase. If a fi lename is given as

parameter, no translation is done.
<fi lename> is optionally the name under which the fi le will be saved.

 RUN "sz [<switches>] [<fi lename>]" (send data)
<switches>:
-l[<logfi le>] Send verbose output to logfi le. Default logfi le name is

"tmp:.zmodemlog".
-v[<level>] Set verbosity level. Level is a decimal number. Default

level is 1.
<fi lename> is the name of the fi le.

Remarks Note that rz and sz must be entered in lowercase characters.

 If a fi le name is given in the rz statement, this name overrides the name
given by the transmitting unit.

 For more information on the ZMODEM protocol, please refer to
http://www.omen.com. Related instruction is TRANSFER ZMODEM.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 279

Chapter 2 Program Instructions

External Commands; Dynamic Modules
Field of Application External commands for inserting, listing, and removing dynamic

modules in the running kernel.

Syntax RUN "insmod <device><fi le>" (insert module)
<device> is the device where the dynamic module is stored.
<fi le> is the name of the dynamic module.

 RUN "rl m" (list modules)
<device> is the device where the dynamic module is stored.
<name> is the name of the dynamic module.

 RUN "rmmod<name>" (remove module)
<name> is the name of the dynamic module.

Remarks At startup, the kernel is copied from the printer’s fl ash memory ("rom:")
to the printer’s temporary DRAM memory ("tmp:"), where it is executed. In
order to save space in the DRAM memory, dynamic program modules could
be downloaded and linked to the running kernel when they are needed and
be removed when they are not needed any longer.

 Dynamic modules also allow new or custom-made program modules to
be added to an existing version of Intermec Fingerprint. Previously, it
was necessary to create a new Fingerprint version for each new module
or combination of modules.

 In case of bar codes, the run "insmod" command is executed automatically
if a bar code referred to in a BARSET or BARTYPE statement is not found
in the running kernel. If the bar code still is not found, an error occurs. For
all other types of dynamic modules, the run "insmod" command must be
perfomed manually. The downloading is made “on-the-fl y”, so there is no
need to reboot the printer or even to stop program execution.

 The method of creating dynamic modules is outside the scope of this manual
and is not publically released.

 Note that insmod, rl m, and rmmod must be entered as lowercase
characters.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7280

Chapter 3

3. Image Transfer
 The following fi ve image transfer fi le protocols are used in connection with

the STORE IMAGE statement and use a common format for the image
data, as descibed on next page.

Intelhex Intel hex [Intel Hexadecimal Intellec 8/MDS (I_hex) fi le format] is a
well-known standard format for transfer of bitmap images. Please refer to
the standard literature on the subject.

 Note that:
 • Hex digits in Intelhex frames must be uppercase.
 • Null frames may be omitted.
 • Frames can be received in any order.
 • Maximum fi le size is 64 kbytes.

UBI00 Each frame contains:

 <data bytes>
<data bytes> Binary images. Modulo 2 bytes.

UBI01 Each frame of data contains:

 <data bytes> <checksum>
<data bytes> Binary images. Modulo 2 bytes.
<checksum> Modulo 65536 byte-wise sum of what is defi ned in protocol

of “data bytes.”
 2 byte binary. MSB, LSB.

UBI02 Each frame of data contains:

 <number of data bytes> <data bytes> <checksum>
<number of data bytes> 2 bytes binary. MSB, LSB.
<data bytes> Binary images. Modulo 2 bytes.
<checksum> Modulo 65536 byte-wise sum of what is defi ned in protocol of

“number of data bytes” and “data bytes.”
 2 byte binary. MSB, LSB.

UBI03 Each frame of data contains:

 <start of frame id.> <number of data bytes> <data bytes> <checksum>
<start of frame id.> 1 byte (ASCII 42 dec = "*").
<number of data bytes> 2 bytes binary. MSB, LSB.
<data bytes> Binary images. Modulo 2 bytes.
<checksum> Modulo 65536 byte-wise sum of what is defi ned in protocol

of “start of frame id” and “number of data bytes” and
”data bytes.”

 2 byte binary. MSB, LSB.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 281

Chapter 3 Image Transfer

 The following image format is valid for Intelhex, UBI00, UBI01, UBI02,
and UBI03 image transfer protocols, but not for the UBI10 protocol, which
is a combined image transfer protocol and format.

 A bitmap picture can be encoded in one of two ways, as a plain bit representation
or encoded with a Run Lenght Limited (RLL) algoritm.

 Pictures can be magnifi ed, by the printer, up to four times independently
in both x and y directions.

 The pictures can be rotated 180 degres by the printer (that is printed
upside-down.) To print a bitmap in all four directions you have to defi ne
two bitmaps, one straight and one rotated 90 degrees. To comply with the
Intermec Fingerprint convention, use the extension .1 for the straight bitmap
and extension .2 for the rotated one.

 Bitmap pictures, in both encoding schemes, are printed with the lowest
address fi rst, that is the fi rst row of defi ned data is the fi rst thing out. (This
may be somewhat confusing. The only result, if you misinterpret this, is that
your picture will come out upside-down.)

 Bitmap pattern, bit representation
 The bitmap picture is encoded word oriented (16 bits), low byte fi rst. The

bits in each byte is read from lsb fi rst (bit 0.)

 Bitmap pattern, Run Lenght Limited (RLL)
 RLL encoding is a very effi cient way of compressing big bitmaps with

relatively big black and/or white areas.

 The RLL encoded picture is encoded byte oriented (8 bits.) Each byte
represents the number of consecutive black or white dots. The sum of bytes
for each row must equal the width of the pattern. The fi rst byte represent
white dots, the second black and so on. The last byte must alter the
color back to white. If the fi rst dot is black just enter a zero fi rst. Valid
values for dot fi elds is 0 to 127 (0 to 7f hex.) To get a row longer then
127, concatenate two rows with zero, for example to get a row of 240
dots, enter 128,0,112.

 The next step in our RLL encoding algoritm is to compress identicals rows,
two identical rows are compressed by adding a byte in both ends of the dot row,
the valid range for these bytes are -1 to -128 (ff to 80 hex.)

Image Format

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7282

Chapter 3 Image Transfer

 Example 1: Bitmap encoding
 To clarify this, lets try a simple example. X’s represent black dots in the fi nal

printout. The pattern shown is 22 bits wide and 28 rows high.

 NOTE!
 • The bit order in each byte. Note also word fi ll to nearest word (16 bit).

 • To the right is a hex representation of the pattern, as it would appear
in a memory dump.

 • To get the pattern to appear as printed on this page with direction one, the
last row (row 27) should have the lowest address.

 |byte 3 |byte 2 |byte 1 |byte 0 |
 76543210765432107654321076543210

row 0XXXXXXXXXXXXXXXXXXXXXX ff,ff,3f,00
 1X....................X 01,00,20,00
 2X..............XX....X 61,00,20,00
 3X.............X.X....X a1,00,20,00
 4X............X..X....X 21,01,20,00
 5X...........X...X....X 21,02,20,00
 6X..........X....X....X 21,04,20,00
 7X.........X.....X....X 21,08,20,00
 8X........X......X....X 21,10,20,00
 9X...... X.......X....X 21,20,20,00
 10X......X........X....X 21,40,20,00
 11X.....X.........X....X 21,80,20,00
 12X....X..........X....X 21,00,21,00
 13X...X...........X....X 21,00,22,00
 14X..X............X....X 21,00,24,00
 15X.X.............X....X 21,00,28,00
 16X.XXXXXXXXXXXXXXXXXX.X fd,ff,2f,00
 17X...............X....X 21,00,20,00
 18X...............X....X 21,00,20,00
 19X...............X....X 21,00,20,00
 20X...............X....X 21,00,20,00
 21X...............X....X 21,00,20,00
 22X...............X....X 21,00,20,00
 23X...............X....X 21,00,20,00
 24X...............X....X 21,00,20,00
 25X.............XXXXX..X f9,03,20,00
 26X....................X 01,00,20,00
 27...........XXXXXXXXXXXXXXXXXXXXXX ff,ff,3f,00

Image Format,
cont.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 283

Chapter 3 Image Transfer

 Example 2: RLL Encoding
 To clarify this, lets try a simple example. X’s represent black dots in the fi nal

print out. The pattern shown is 22 bits wide and 32 rows high.

 NOTE!
 • Notice the reverse byte order. Count dots from right.
 • To the right is a decimal representation of the pattern.
 • To get the pattern to appear as printed on this page with direction one,

the last row (row 27) should have the lowest address. Row 18 until 24 is
repeted by the data in row 17.

row 0 XXXXXXXXXXXXXXXXXXXXXX 0,22,0
 1 X....................X 0,1,20,1,0
 2 X..............XX....X 0,1,4,2,14,1,0
 3 X.............X.X....X 0,1,4,1,1,1,13,1,0
 4 X............X..X....X 0,1,4,1,2,1,12,1,0
 5 X...........X...X....X 0,1,4,1,3,1,11,1,0
 6 X..........X....X....X 0,1,4,1,4,1,10,1,0
 7 X.........X.....X....X 0,1,4,1,5,1,9,1,0
 8 X........X......X....X 0,1,4,1,6,1,8,1,0
 9 X...... X.......X....X 0,1,4,1,7,1,7,1,0
 10 X......X........X....X 0,1,4,1,8,1,6,1,0
 11 X.....X.........X....X 0,1,4,1,9,1,5,1,0
 12 X....X..........X....X 0,1,4,1,10,1,4,1,0
 13 X...X...........X....X 0,1,4,1,11,1,3,1,0
 14 X..X............X....X 0,1,4,1,12,1,2,1,0
 15 X.X.............X....X 0,1,4,1,13,1,1,1,0
 16 X.XXXXXXXXXXXXXXXXXX.X 0,1,1,18,1,1,0
 17 X...............X....X -8,0,1,4,1,15,1,0,-8
 18 X...............X....X
 19 X...............X....X
 20 X...............X....X
 21 X...............X....X
 22 X...............X....X
 23 X...............X....X
 24 X...............X....X
 25 X.............XXXXX..X 0,1,2,5,13,1,0
 26 X....................X 0,1,20,1,0
 27 XXXXXXXXXXXXXXXXXXXXXX 0,22,0
 28X........... -4,11,1,10,-4
 29X...........
 30X...........
 31X...........
 32XXXXXXXXX....... 7,9,6

Image Format,
cont.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7284

Chapter 3 Image Transfer

 UBI10 is a combined protocol/fi le format for image transfer, as opposed
to Intelhex and UBI00-UBI03 protocols described earlier in this chapter.
UBI10 is used in various Intermec Windows Drivers.

 Protocol Description
 !BG ↵
 !X<pos>A ↵
 !Y<pos>A ↵
 !X<pos>A | !Y<pos>A !SB<bytes>W<data>
 !X<pos>A | !Y<pos>A !SB<bytes>W<data>
 !X<pos>A | !Y<pos>A !SB<bytes>W<data>

 !X<pos>A | !Y<pos>A !SB<bytes>W<data>!EG ↵
 !PRINT ↵

 Frame Defi nitions
 The width of the image in the STORE IMAGE statement should be

given as a multiple of 16 bits.

 !BG Begin graphics.
 Always appended by a carriage return character.

 !X<pos>A Set absolute x position <pos>.
 The value must be divisible by 8.
 Default value is 0.
 Once set, it will affect all consecutive y-positions in

the image, until a new x-position is set.
 Appended by a carriage return character, unless

followed by a !SB<bytes>W<data> string on the
same line.

 !Y<pos>A Set absolute y position <pos>.
 Default value is 0.
 Appended by a carriage return character, unless

followed by a !SB<bytes>W<data> string on the
same line.

 !SB<bytes>W<data> Send one line of bitmap with <bytes> number of
bytes. <data> is bitmap bytes.

 Can be preceded by a new x- and/or y-position.
 If appended by a carriage return character, next !SB

set of data will be positioned at the current y-position
incremented by 1.

 If no appending carriage return character is used,
a new y-position must be specifi ed for next !SB
set of data.

 !EG End graphics.
 Always appended by a carriage return character.

 !PRINT End page (end frame).
 Always appended by a carriage return character.

UBI10

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 285

Chapter 3 Image Transfer

 The image illustrated above contains 2 bytes (= 16 bits) in each horizontal
line. By setting the absolute start position to x = 8, you can start counting
from the start of the second byte, that is x = 8 in the matrix above. The
fi rst 3 bits (x-positions) are white, then comes one black bit followed by
three white bits, and fi nally one black bit. Expressed in 0:s and 1:s, where 0
represents a white bit and 1 a black bit, the pattern will be 00010001. This
binary number can be expressed as 11 hex. The same pattern is repeated
for each y-position from y = 1 thru y = 7 with the exception of position y
= 4, where all bits are black except for the leading three, i.e. the pattern is
00011111, which can be expressed as 1F hex. Use this hexadecimal values
as input data as shown in the example below.

 Example:
 The simplifi ed image above is transmitted to the printer. Do not use

XON/XOFF (11 hex/13 hex) protocol, since these characters may coincide
with input data. Use RTS/CTS instead. Do not strip LF.

 10 STORE OFF
 20 OPEN ”uart1:” FOR INPUT AS #1
 30 QNAME$=”H.1”
 40 QWIDTH%=16
 50 QHEIGHT%=10
 60 QPRO$=”UBI10”
 70 STORE IMAGE QNAME$,QWIDTH%,QHEIGHT%,QPROT$
 80 STORE INPUT 900,4: ’Timeout 9 sec.
 90 CLOSE#1
 100 STORE OFF
 RUN

 The input string in line 80 should contain the following data. Carriage returns
(↵) after each !SB set of data increments the y-position by 1 in consecutive
order. It may also be sent as a continuous string.

 !BG ↵ (Begin graphic)
 !X8A ↵ (Set x-position)
 !Y1A!SB1W<11 hex> ↵ (Set y-position + data for y = 1)
 !SB1W<11 hex> ↵ (Data for y = 2)
 !SB1W<11 hex> ↵ (Data for y = 3)
 !SB1W<1F hex> ↵ (Data for y = 4)
 !SB1W<11 hex> ↵ (Data for y = 5)
 !SB1W<11 hex> ↵ (Data for y = 6)
 !SB1W<11 hex>!EG ↵ (Data for y = 7 + end graphics)
 !PRINT ↵ (End frame)

UBI10, cont.

 The PRBUF Protocol is designed for downloading bitmap print image
data directly from an application program, such as a Windows printer
driver, directly to the printer’s image buffer in connection with the
PRBUF statement.

 The protocol consist of a two-byte header and a number of data bytes:

 Header
 Byte No 1. is always the @-sign (Commercial at; Unicode 0x0040) and

indicates start of the protocol header.

 Byte No 2 is:
 0 Reserved (bitmap format)
 1 Reserved (RLL image format)
 2 RLL buffer format
 3-255 Reserved

 RLL Buffer format
 The RLL buffer format is optimized for use by Windows drivers. In most

cases the performance of the host outruns the performance of the printer,
so it is preferred to to do most of the processing in the host before sending
the job down to the printer.

 - Data byte 1 & 2 specifi es the pixelwidth (unsigned) of data in BIG
Endian format for one line.

 - Data byte 3 & 4 specifi es the pixelheight (unsigned) of the buffer when
it is expanded BIG Endian.

 - Data byte 5-nn specifi es the bitmap in RLL format.

 Example of RLL buffer protocol header, 515x212 pixels hexdump:

 40 02 02 03 00 d4

 RLL format
 The RLL format is good for black and white pixel runs. It compresses data

in both dimensions. It works well with one-dimensional bar codes, but
grayscales grow in size instead of shrinking. The format is symmetric
so that all pixel runs start and end with a white pixel and with line
repetitions whenever applicable. This makes the format possible to
turn upside down.

 The RLL format is specifi ed on the next page.

PRBUF-Protocol

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7286

Chapter 3 Image Transfer

PRBUF-Protocol,
cont.
 Specifi cation of the RLL format
 <begin><toggling pixelruns><end>
 <- total width of RLL pattern ->

 <begin> := <linereps>|<small white pixelrun>
 <end> := <begin>|<empty>
 <toggling pixelruns> := <whiteAndBlack pixelruns>|
 <blackAndWhite pixelruns>|
 <white pixelrun>|<empty>
 <whiteAndBlack pixelruns> := <white pixelrun><black pixelrun>|
 <small white pixelrun><black pixelrun>
 <blackAndWhite pixelruns> := <black pixelrun><white pixelrun>
 <linereps> := ((-1)-(-128))*-1 number of equal lines
 <small white pixelrun> := 0-127, number of white pixels
 <black pixelrun> := 0-255, number of black pixels
 <white pixelrun> := 0-255, number of white pixels
 <empty> := empty, extreme if the entire line fi ts in
 one pixelrun.

 If there is no line repetion, there does not have to be any line repeat. If the
pixelrun is out of range, it must be split into several runs.

 Example of RLL format for an eight bit pattern:

 -*-*-*-* 1,1,1,1,1,1,1,1,0 Note the last 0 to end with a white pixelrun
 --*-*- 0,1,1,1,1,1,1,1,1 begins with a white pixelrun of 0 pixels
 --**--** 2,2,2,2,0 repetion, stopped with a white pixelrun of 0
 pixels
 ---- -2,0,2,2,2,2,-2 line and pixel repetions

 Example of coding a black square of 800 dots to valid RLL format:

 -128,0,255,0,255,0,255,0,35,0,-128
 -128,0,255,0,255,0,255,0,35,0,-128
 -128,0,255,0,255,0,255,0,35,0,-128
 -128,0,255,0,255,0,255,0,35,0,-128
 -128,0,255,0,255,0,255,0,35,0,-128
 -128,0,255,0,255,0,255,0,35,0,-128
 -32,0,255,0,255,0,255,0,35,0,-32

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 287

Chapter 3 Image Transfer

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7288

Chapter 4

4. Character Sets
This chapter contains the various single-byte character sets, that can be
selected using the NASC statement. Printouts are made using the font “Swiss
721 BT”. Other fonts may not include all characters listed in the character
sets. Double-byte character sets are not included, but are available separately
on special request. For more information on character sets and fonts, refer to
the Intermec Fingerprint, Font Reference Manual.

The following information applies to all single-byte character sets:
• Characters between ASCII 0 decimal and ASCII 31 decimal are

unprintable control characters as listed below.
• Characters between ASCII 32 decimal and ASCII 127 decimal can always

be printed, regardless of 7-bit or 8-bit communication protocol, provided
that the selected font contains the characters in question.

• Characters between ASCII 125 decimal and ASCII 255 decimal can only
be printed if the selected font contains the characters in question and an
8-bit communication protocol is used. If you use 7-bit communication,
select another national character set (see NASC statement) or use a MAP
statement to remap a character set.

• If a character, which does not exist in the selected font, is used, an
error condition will occur.

Non-printable control characters (ASCII 00-31 dec)

00 NUL Null 16 DLE Data link escape
01 SOH Start of heading 17 DC1 Device control one
02 STX Start of text 18 DC2 Device control two
03 ETX End of text 19 DC3 Device control three
04 EOT End of transmission 20 DC4 Device control four
05 ENQ Enquiry 21 NAK Negative acknowledge
06 ACK Acknowledge 22 SYN Syncronous idle
07 BEL Bell 23 ETB End of transmission block
08 BS Backspace 24 CAN Cancel
09 HT Horizontal tabulation 25 EM End of medium
10 LF Line feed 26 SUB Substitute
11 VT Vertical tabulation 27 ESC Escape
12 FF Form feed 28 FS File separator
13 CR Carriage Return 29 GS Group separator
14 SO Shift out 30 RS Record separator
15 SI Shift in 31 US Unit separator

Introduction

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 289

Chapter 4 Character Sets

Roman 8 Character Set NASC 1
0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7290

Chapter 4 Character Sets

French Character Set NASC 33
0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 291

Chapter 4 Character Sets

Spanish Character Set NASC 34
0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7292

Chapter 4 Character Sets

Italian Character Set NASC 39
0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 293

Chapter 4 Character Sets

English (UK) Character Set NASC 44
0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7294

Chapter 4 Character Sets

Swedish Character Set NASC 46

0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 295

Chapter 4 Character Sets

Norwegian Character Set NASC 47
0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7296

Chapter 4 Character Sets

German Character Set NASC 49

0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 297

Chapter 4 Character Sets

Japanese Latin Character Set NASC 81
0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7298

Chapter 4 Character Sets

Portuguese Character Set NASC 351
0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 299

Chapter 4 Character Sets

PCMAP Character Set NASC -1
0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7300

Chapter 4 Character Sets

ANSI Character Set NASC -2
0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 301

Chapter 4 Character Sets

MS-DOS Latin 1 NASC 850
0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7302

Chapter 4 Character Sets

MS-DOS Greek 1 NASC 851
0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 303

Chapter 4 Character Sets

MS-DOS Latin 2 NASC 852
0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7304

Chapter 4 Character Sets

MS-DOS Cyrillic NASC 855

0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 305

Chapter 4 Character Sets

MS-DOS Turkish NASC 857
0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7306

Chapter 4 Character Sets

Windows Latin 2 NASC 1250
0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 307

Chapter 4 Character Sets

Windows Cyrillic NASC 1251
0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7308

Chapter 4 Character Sets

Windows Latin 1 NASC 1252
0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 309

Chapter 4 Character Sets

Windows Greek NASC 1253
0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7310

Chapter 4 Character Sets

Windows Latin 5 NASC 1254
0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 311

Chapter 4 Character Sets

Windows Baltic Rim NASC 1257

0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7312

Chapter 5

5. Bar Codes
The printer contains a number of bar code generators, which can
produce highly readable bar codes in four different directions.

However, a general rule which applies to all thermal printers is that
it is more diffi cult to print a bar code with the bars across the media
path (ladder style) than along the media path (picket fence style.)
Therefore, to ensure a highly readable printout, we recommend that
you do not use narrow bars less than 3 dots, when printing bar codes
with the bars across the media path (ladder style).

No such restrictions apply for bar codes with the bars along the
media path (picket fence style).

Another factor, that affects the printout quality of the bar codes,
is the print speed. Generally, a lower print speed gives a better
quality, especially for ladder style bar codes and at low ambient
temperatures. Do not use a higher print speed than necessary and
consider the overall print cycle time. In some instances, a lower
print speed may actually give better overall performance. We
recommend you do your own tests with your unique applications
to fi nd the best compromise between printout quality, performance,
and media.

Introduction

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 313

Chapter 5 Bar Codes

Bar Codes Designation
Codabar "CODABAR"
Code 11 "CODE11"
Code 16K "CODE16K"
Code 39 "CODE39"
Code 39 full ASCII "CODE39A"
Code 39 w. checksum "CODE39C"
Code 49 "CODE49"
Code 93 "CODE93"
Code 128 "CODE128"
Datamatrix (dynamic module only) "DATAMATRIX"
DUN-14/16 "DUN"
EAN-8 "EAN8"
EAN-13 "EAN13"
EAN-128 "EAN128"
Five-Character Supplemental Code "ADDON5"
Industrial 2 of 5 "C2OF5IND"
Industrial 2 of 5 w. checksum "C2OF5INDC"
Interleaved 2 of 5 "INT2OF5"
Interleaved 2 of 5 w. checksum "INT2OF5C"
Interleaved 2 of 5 A "I2OF5A"
Matrix 2 of 5 "C2OF5MAT"
MaxiCode "MAXICODE"
MSI (modified Plessey) "MSI"
PDF 417 "PDF417"
Plessey "PLESSEY"
Postnet "POSTNET"
QR (dynamic module only) "QRCODE"
Straight 2 of 5 "C2OF5"
Two-Character Supplemental Code "ADDON2"
UCC-128 Serial Shipping Container Code "UCC128"
UPC-5 digits Add-On Code "SCCADDON"
UPC-A "UPCA"
UPC-D1 "UPCD1"
UPC-D2 "UPCD2"
UPC-D3 "UPCD3"
UPC-D4 "UPCD4"
UPC-D5 "UPCD5"
UPC-E "UPCE"
UPC Shipping Container Code "UPCSCC"

On the following pages, a quick survey of the characteristics of some
of the most common bar codes will be given. This information is only
intended to help you avoid entering unacceptable parameters or input
data. For further information, please refer to the standard literature on
the subject of bar codes.

Standard Bar
Codes

EAN-13

EAN-8 BARTYPE: "EAN8"
BARRATIO: Fixed ratio.
 BARRATIO statement ignored.
BARMAG: Max. 8
BARHEIGHT: No restriction.
BARFONT: Barfont generated automatically.
 BARFONT statement ignored.
 BARFONT ON/OFF statements work.
INPUT DATA:
No. of characters: 7
Check digit: 1 added automatically.
Digits: 0-9
Uppercase letters: No
Lowercase letters: No
Punctuation marks: No
Start characters: No
Stop characters: No

BARTYPE: "EAN13"
BARRATIO: Fixed ratio.
 BARRATIO statement ignored.
BARMAG: Max. 8
BARHEIGHT: No restriction.
BARFONT: Barfont generated automatically.
 BARFONT statement ignored.
 BARFONT ON/OFF statements work.
INPUT DATA:
No. of characters: 12
Check digit: 1 added automatically.
Digits: 0-9
Uppercase letters: No
Lowercase letters: No
Punctuation marks: No
Start characters: No
Stop characters: No

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7314

Chapter 5 Bar Codes

UPC-A

UPC-E BARTYPE: "UPCE"
BARRATIO: Fixed ratio.
 BARRATIO statement ignored.
BARMAG: Max. 8
BARHEIGHT: No restriction.
BARFONT: Barfont generated automatically.
 BARFONT statement ignored.
 BARFONT ON/OFF statements work.
INPUT DATA:
No. of characters: 6
Check digit: 1 added automatically.
Digits: 0-9
Uppercase letters: No
Lowercase letters: No
Punctuation marks: No
Start characters: No
Stop characters: No

BARTYPE: "UPCA"
BARRATIO: Fixed ratio.
 BARRATIO statement ignored.
BARMAG: Max. 8
BARHEIGHT: No restriction.
BARFONT: Barfont generated automatically.
 BARFONT statement ignored.
 BARFONT ON/OFF statements work.
INPUT DATA:
No. of characters: 11
Check digit: 1 added automatically.
Digits: 0-9
Uppercase letters: No
Lowercase letters: No
Punctuation marks: No
Start characters: No
Stop characters: No

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 315

Chapter 5 Bar Codes

Code 39

Interleaved 2 of 5 BARTYPE: "INT2OF5"
BARRATIO: 2:1-3:1
BARMAG: No restriction.
BARHEIGHT: No restriction.
BARFONT: No restriction.

INPUT DATA:
No. of characters: Unlimited
Check digit: No
Digits: 0-9
Uppercase letters: No
Lowercase letters: No
Punctuation marks: No
Start characters: Added automatically.
Stop characters: Added automatically.

Note:
A numeric code where input digits are encoded in pairs. If an odd number of
digits is entered, a leading zero will be added automatically.

BARTYPE: "CODE39"
BARRATIO: 2:1-3:1
BARMAG: No restriction, but if the narrow element is less

than 4 dots wide, then the ratio must be larger
than 2.25:1 (9:4).

BARHEIGHT: No restriction.
BARFONT: No restriction.

INPUT DATA:
No. of characters: Unlimited.
Check digit: No
Digits: 0-9
Uppercase letters: A-Z (no national characters).
Lowercase letters: No
Punctuation marks: - . space $ / + %
Start characters: * (is added automatically).
Stop characters: * (is added automatically).

Note:
An alphanumeric self-checking discrete code.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7316

Chapter 5 Bar Codes

EAN-128

Code 128 BARTYPE: "CODE128"
BARRATIO: Fixed. BARRATIO statement ignored.
BARMAG: ≥ 2.
BARHEIGHT: No restriction.
BARFONT: No restriction.

INPUT DATA:
No. of characters: Unlimited
Check digit: 1 check digit added automatically.
Input characters: ASCII 0-127 decimal according to Roman 8

character set.
Function characters: FNC1: ASCII 128 decimal1

 FNC2: ASCII 129 decimal1

 FNC3: ASCII 130 decimal1

 FNC4: ASCII 131 decimal1

Start characters: Added automatically2.
Stop character: Added automatically2.

1/. Function characters FNC1-4 require either an 8-bit communication
protocol, remapping to an ASCII value between 0-127 dec., or the use
of an CHR$ function.
2/. The Intermec Fingerprint fi rmware automatically calculates and inserts
the start, code and shift characters that are required to optimize the code
according to the Code 128 specifi cations.

BARTYPE: "EAN128"
BARRATIO: Fixed. BARRATIO statement ignored.
BARMAG: ≥ 2.
BARHEIGHT: No restriction.
BARFONT: No restriction.

INPUT DATA:
No. of characters: Unlimited.
Check digit: Trailing symbol check character added automati-

cally.
Input characters: ASCII 0-127 decimal according to Roman 8

character set.
Start characters: Added automatically1.
Stop character: Added automatically1.

1/. The Intermec Fingerprint fi rmware automatically calculates and inserts
the start, code, and shift characters that are required to optimize the code
according to the EAN 128 specifi cations.

This bar code is identical to Code 128 with the exception that the initial
FNC1 function character is generated automatically.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 317

Chapter 5 Bar Codes

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7318

Chapter 5 Bar Codes

The EasyCoder XP- and F-series printers can optionally be fi tted with an
EasySet bar code wand. By reading a special bar code containing encoded
data for one or several setup parameters, the printer’s setup can easily be
changed, even by a person without any knowledge of Intermec Fingerprint,
the Direct Protocol, or their supporting software.

This chapter explains how to create such setup bar codes. You could
print them in your printer and paste them on a board in the vicintity of
the printer. When, for example, the operator needs to switch to another
type of media, he or she will only have to pick up the EasySet wand and
read the appropriate bar code.

The only bar code that can be used is a Code 128 containing the function
character FNC3 (ASCII 130 dec). If the FNC character is missing, the
printer will regard the bar code as containing ordinary ASCII input to
the "wand:" device.

Please refer to the EasySet Bar Code Wand Setup manual for syntax
and parameter descriptions

Setup Bar Codes

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 319

Chapter 6

6. Fonts
As standard, the printer’s permanent memory is loaded with 15 scaleable
single-byte TrueDoc fonts at delivery:
• Century Schoolbook BT (Includes the € currency sign)
• Dutch 801 Roman BT (Includes the € currency sign)
• Dutch 801 Bold BT (Includes the € currency sign)
• Futura Light BT (Includes the € currency sign)
• Letter Gothic 12 Pitch BT (Includes the € currency sign)
• Monospace 821 BT (Includes the € currency sign)
• Monospace 821 Bold BT (Includes the € currency sign)
• OCR-A BT (see “Important Information” below)
• OCR-B 10 Pitch BT (see “Important Information” below)
• Prestige 12 Pitch Bold BT (Includes the € currency sign)
• Swiss 721 BT (Includes the € currency sign)
• Swiss 721 Bold BT (Includes the € currency sign)
• Swiss 721 Bold Condensed BT (Includes the € currency sign)
• Zapf Dingbats BT (see “Important Information” below)
• Zurich Extra Condensed BT (Includes the € currency sign)

Note: In the FONT statement, the full names according to the list above must be used (case
sensitive). Also see Font Aliases later in this chapter.

TrueDoc fonts come as PFR (Portable Font Resources) fi les and are organized
according to the UNICODE standard. A PFR consists of one or several fonts in a
single fi le and can only be obtained from Intermec.

Intermec Fingerprint can also use TrueType fonts, provided they comply with the
Unicode standard. (This is usually the case with TrueType fonts for Windows 95/98
and Windows NT.) The benefi ts of using TrueDoc fonts are that they work faster
in Intermec Fingerprint and require less memory space.

To improve compatibility with Intermec Fingerprint 6.xx, bitmap fonts in .ATF
format are also supported, see below.

Some of the character sets listed in Chapter 4, for example Greek and Cyrillic,
are only available as standard in the font Swiss 721 BT.

When using IMAGELOAD or TRANSFER KERMIT to download a PFR or a
TrueType font fi le, it will be installed automatically. Any other method requires the
printer to be restarted before the font can be used, either by turning off and on the
power to the printer, or by executing a REBOOT statement.

Single- and double-byte fonts can be obtained from Intermec together with a suitable
mapping tables in the form of Font Cards or Font Install Cards.

Important Information!
When you select certain fonts, the printer will automatically switch
from the presently selected character set to a special one for the font in
question (see later in this chapter). As soon as any other font is selected
again, the printer will automatically return to the previously selected
character set. This applies to:
• OCR-A BT
• OCR-B 10 Pitch BT
• Zapf Dingbats BT

Introduction

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7320

Chapter 6 Fonts

Starting with Intermec Fingerprint v7.3, it is possible to use fonts in
the “old” Intermec .ATF bitmap font format. This feature improves
compatibility with custom-made programs originally created in Fingerprint
v6.xx or earlier versions.

Downloading an .ATF font (for example XX030RSN.ATF) to the printer
produces three fonts in the memory; one without any extension (for example
XX030RSN), one with the extension .1 (for example XX030RSN.1), and
one with the extension .2 (for example XX030RSN.2). When using bitmap
fonts in Fingerprint v7.3 or later, the relation between print direction and
extension is of no consequence.

It is recommended to exclude the font height parameter in the FONT and
BARFONT statements and use MAG to enlarge the font. Slant does not
work at all with bitmap fonts.

The standard font names in Intermec Fingerprint are much longer than
in earlier versions of Fingerprint and may be cumbersome to use. They
are also incompatible with the LAYOUT statement, which restricts the
font name to 10 characters.

However, it is possible to create a fi le containing a list of font aliases. The fi le
should be named exactly as shown here (note the leading period character
that specifi es it as a system fi le):

"c:.FONTALIAS"

The format of the fi le should be:

"<Alias name #1>","<Name of font>"[,size[,<slant>[,<width>]]]
"<Alias name #2>","<Name of font>"[,size[,<slant>[,<width>]]]
"<Alias name #3>","<Name of font>"[,size[,<slant>[,<width>]]]
etc., etc.

The fi le can contain as many fontname aliases as required. The default size is
12 points, the default slant is 0°, and the default width is 100 (%).

A font alias can be used as any other font, but its size, slant, and width
cannot be changed.

Examples:
"BODYTEXT","Century Schoolbook BT",10,0,80
"HEADLINE","Swiss 721 Bold BT",18,0,110
"WARNING","Swiss 721 BT",12

For more information on fonts and character sets, refer to the Intermec
Fingerprint, Font Reference Manual.

Bitmap Fonts

Font Aliases

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 321

Chapter 6 Fonts

The printout samples below are in 10 point size, no slant, and 100% width. The
quality of these samples does not exactly correspond to the printout quality
from your printer, which is affected by printhead density, printing method,
type of media and ribbon, and a number of other factors.

Printout Samples

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7322

Chapter 6 Fonts

OCR-A BT Character Set

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 323

Chapter 6 Fonts

OCR-B 10 Pitch BT Character Set

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7324

Chapter 6 Fonts

Zapf Dingbats BT Character Set

Intermec Fingerprint v7.61 – Programmer's Reference Manual Ed. 7 325

Chapter 7

7. Error Messages

 0 No error
 1 Syntax error.
 2 Unbalanced parenthesis.
 3 Feature not implemented.
 4 Evaluation syntax error.
 5 Unrecognized token.
 6 Tokenized line too long.
 7 Evaluation stack overfl ow.
 8 Error in exectab.
 9 Undefi ned token.
 10 Non-executing token.
 11 Evaluation stack underfl ow.
 12 Type mismatch.
 13 Line not found.
 14 Division with zero.
 15 Font not found.
 16 Bar code device not found.
 17 Bar code type not implemented.
 18 Disk full.
 19 Error in fi le name.
 20 Input line too long.
 21 Error stack overfl ow.
 22 RESUME without error.
 23 Image not found.
 24 Overfl ow in temporary string buffer.
 25 Wrong number of parameters.
 26 Parameter too large.
 27 Parameter too small.
 28 RETURN without GOSUB
 29 Error in startup fi le.
 30 Assign to a read-only variable.
 31 Illegal fi le number.
 32 File is already open.
 33 Too many fi les open.
 34 File is not open.
 37 Cutter device not found.
 38 User break.
 39 Illegal line number.
 40 Run statement in program.
 41 Parameter out of range.
 42 Illegal bar code ratio.
 43 Memory overfl ow.
 44 File is write protected.
 45 Unknown store option.
 46 Store already in progress.
 47 Unknown store protocol.
 48 No store defi ned.
 49 NEXT without FOR
 50 Bad store record header.
 51 Bad store address.
 52 Bad store record.
 53 Bad store checksum.
 54 Bad store record end.

Interpretation Table

Code Message/Explanation Code Message/Explanation
 55 Remove in ROM.
 56 Illegal communication channel.
 57 Subscript out of range.
 58 Field overfl ow.
 59 Bad record number.
 60 Too many strings.
 61 Error in setup fi le.
 62 File is list protected.
 63 ENTER function.
 64 FOR without NEXT
 65 Evaluation overfl ow.
 66 Bad optimizing type.
 67 Error from communication channel.
 68 Unknown execution entity.
 69 Not allowed in immediate mode.
 70 Line label not found.
 71 Line label already defi ned.
 72 IF without ENDIF.
 73 ENDIF without IF.
 74 ELSE without ENDIF.
 75 ELSE without IF.
 76 WHILE without WEND.
 77 WEND without WHILE
 78 Not allowed in execution mode.
 79 Not allowed in a layout.
 80 Download timeout
 81 Exit to system
 82 Invalid cont environment
 83 ETX Timeout
 1001 Not implemented.
 1002 Memory too small.
 1003 Field out of label.
 1004 Wrong font to chosen direction.
 1005 Out of paper.
 1006 No fi eld to print.
 1007 Lss too high.
 1008 Lss too low.
 1009 Invalid parameter.
 1010 Hardware error.
 1011 I/O error.
 1012 Too many fi les opened.
 1013 Device not found.
 1014 File not found.
 1015 File is read-only.
 1016 Illegal argument.
 1017 Result too large.
 1018 Bad fi le descriptor.
 1019 Invalid font.
 1020 Invalid image.
 1021 Too large argument for MAG.
 1022 Head lifted.
 1023 Incomplete label.
 1024 File too large.

Intermec Fingerprint v7.61 – Programmer's Reference Manual Ed. 7326

Chapter 7 Error Messages

 1025 File does not exist.
 1026 Label pending.
 1027 Out of transfer ribbon.
 1028 Paper type is not selected.
 1029 Printhead voltage too high.
 1030 Character is missing in chosen font.
 1031 Next label not found.
 1032 File name too long.
 1033 Too many fi les are open.
 1034 Not a directory.
 1035 File pointer is not inside the fi le.
 1036 Subscript out of range.
 1037 No acknowledge received within specifi ed timeout.
 1038 Communication checksum error.
 1039 Not mounted.
 1040 Unknown fi le operating system.
 1041 Error in fos structure.
 1042 Internal error in mcs.
 1043 Timer table full.
 1044 Low battery in memory card.
 1045 Media was removed.
 1046 Memory checksum error.
 1047 Interrupted system call.
 1051 Dot resistance measure out of limits.
 1052 Error in printhead.
 1053 Unable to complete a dot measurement.
 1054 Error when trying to write to device.
 1055 Error when trying to read from device.
 1056 O_BIT open error.
 1057 File exists.
 1058 Transfer ribbon fi tted.
 1059 Cutter does not respond.
 1060 DC motor to ribbon save did not start/stop.
 1061 Wrong type of media.
 1062 Not Allowed.
 1081 Timer expired
 1082 Unsupported protocol
 1083 Ribbon Low
 1101 Illegal character in bar code.
 1102 Illegal bar code font.
 1103 Too many characters in bar code.
 1104 Bar code too large.
 1105 Bar code parameter error.
 1106 Wrong number of characters.
 1107 Illegal bar code size.
 1108 Number or rows out of range.

 1109 Number of columns out of range.
 1201 Insuffi cient font data loaded.
 1202 Transformation matrix out of range.
 1203 Font format error.
 1204 Specifi cations not compatible with output module.
 1205 Intelligent transform not supported.
 1206 Unsupported output mode requested.
 1207 Extended font not supported.
 1208 Font specifi cations not set.
 1209 Track kerning data not available.
 1210 Pair kerning data not available.
 1211 Other Speedo error.
 1212 No bitmap or outline device.
 1213 Speedo error six.
 1214 Squeeze or clip not supported.
 1215 Character data not available.
 1216 Unknown font.
 1217 Font format is not supported.
 1218 Correct mapping table is not found.
 1219 Font is in the wrong direction.
 1220 Error in external map table.
 1221 Map table was not found.
 1222 Double byte map table is missing.
 1223 Single byte map table is missing.
 1224 Character map function is missing.
 1225 Double byte font is not selected.
 1301 Index outside collection bounds.
 1302 Collection could not be expanded.
 1303 Parameter is not a collection.
 1304 Item not a member of the collection.
 1305 No compare function, or compare returns faulty value.
 1306 Tried to insert a duplicate item.
 1601 Reference Font Not Found.
 1602 Error in Wand-Device.
 1603 Error in Slave Processor.
 1604 Print Shift Error.
 1605 No Hardware Lock.
 1606 Testfeed not done.
 1607 General Print Error.
 1608 Access Denied.
 1609 Specifi ed Feed Length Exceeded.
 1610 Illegal Character Map File.
 1701 Cutter Error1 (EasyCoder F-series only1)
 1702 Cutter Error2 (EasyCoder F-series only1)
 1703 Cutter Error3 (EasyCoder F-series only1)
 1704 Cutter open (EasyCoder F-series only1)

Code Message/Explanation Code Message/Explanation

1/. See EasyCoder F2 & F4 Service Manual.

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7 327

Chapter 8

8. EasyLAN 100i Setup
 Setup sections are used in connection with EasyLAN 100i. There are

three setup sections:
 "prt" is the legacy section as it was before the introduction of sections.

It is the default section.
 "alerts" controls printer alerts in regard of individual enable/disable and

delay conditions for repeated traps.
 "lan1" contains all the variables available in the print server.

 Setup objects are used in connection with EasyLAN 100i. There are different
objects for each setup section:

 prt section

 This is the default section. The syntax corresponds to the syntax of the
SETUP statement, see Chapter 2.

 alerts section

 Object Enabled by default
 cutter Trap if cutter error
 headlifted Trap if head lifted and printfeed
 ribbonend Trap if ribbon end and printfeed
 paperend Trap if paper end and printfeed
 ribbonlow Trap if ribbon low and printfeed

 Object Disabled by default
 lts Send trap when the printer is waiting for a label to be taken.
 pause Send trap if a batch printing is paused.
 setup Send trap if Setup Mode is entered via "console:".
 error Send trap when a Fingerprint/Direct Protocol error occurs

(before giving control to the error-handler).
 break Send trap if the user breaks the program or if an error

breaks the running program, that is, it is not sent after
stop or breakpoint.

 jobcomplete Send trap when all labels in a printfeed batch are started.

 Value Syntax
 (enabled|disabled,<integer>,seconds|occurrences)

 Example
 SETUP "alerts","cutter","enabled,10,seconds)"

Sections, Objects,
and Values

Intermec Fingerprint v7.61 – Programmer’s Reference Manual Ed. 7328

Chapter 8 EasyLAN 100i Setup

 lan1 section

 Objects
NODE_ADDR, HP_JETADMIN, DEF_OUT, SYS_LOC, SYS_CONT, NETW_ENB,
PS_NAME, JOB_CHECK_DELAY, CONF_CHECK_DELAY, FR_802_3,
FR_ETH_2, FR_802_2, FR_SNAP, NCP_BURST_MODE, PSERVER_NDS,
PSERVER_BINDERY1, PSERVER_BINDERY2, PSERVER_BINDERY3,
PSERVER_BINDERY4, PSERVER_BINDERY5, PSERVER_BINDERY5,
PSERVER_BINDERY7, PSERVER_BINDERY8, PSERVER_BINDERY9,
PSERVER_BINDERY10, PSERVER_BINDERY11, PSERVER_BINDERY12,
PSERVER_BINDERY13, PSERVER_BINDERY14, PSERVER_BINDERY15,
PSERVER_BINDERY16, NPRINTER1, NPRINTER2, NPRINTER3,
NPRINTER4, NPRINTER5, NPRINTER6, NPRINTER7, NPRINTER8,
LSLM_ENB, NB_FR_TYPE, LPRINT_1, LLOGIC_1, LPRINT_2, LLOGIC_2,
LPRINT_3, LLOGIC_3, LPRINT_4, LLOGIC_4, LPRINT_5, LLOGIC_5,
LPRINT_6, LLOGIC_6, LPRINT_7, LLOGIC_7, LPRINT_8, LLOGIC_8,
PR1_IN, PR1_BEF, PR1STR, PR1_AFT, PR1_IN, PR1_BEF, PR1STR,
PR1_AFT, PR1_IN, PR1_BEF, PR1STR, PR1_AFT, PR2_IN, PR2_BEF,
PR2STR, PR2_AFT, PR3_IN, PR3_BEF, PR3STR, PR3_AFT, PR4_IN,
PR4_BEF, PR4STR, PR4_AFT, PR5_IN, PR5_BEF, PR5STR, PR5_AFT,
PR6_IN, PR6_BEF, PR6STR, PR6_AFT, PR7_IN, PR7_BEF, PR7STR,
PR7_AFT, PR8_IN, PR8_BEF, PR8STR, PR8_AFT, TCP_ENB, INT_ADDR,
DEF_ROUT, NET_MASK, PROSPRT, LPD_BANN, DHCP_ENB, BOOTP_ENB,
RARP_ENB, WINS_ENB, WINS_ADDR1, WINS_ADDR2, NBT_SCOPE_ID,
RTN_OPT, RTEL_PR1, RTEL_PR2, RTEL_PR3, RTEL_PR4, RTEL_PR5,
RTEL_PR6, RTEL_PR7, RTEL_PR8, READ_COM, WRT_COM, TRAPADDR,
TRAP_COM, SYS_NAME, SNMP_AUT,TRAP_PRT

 Value Syntax
 As defi ned by Axis.

 Example
SETUP "lan1","RTEL_PR1","9090"

 Limitations
 NODE_ADDR is read-only.
 Section "lan1" is impervious to volatile setup mode, that is, the setting

will be stored non-volatile.
 If the ip-settings are changed, the printer must be rebooted to update

to the new settings.

Sections, Objects,
and Values, cont.

Intermec Printer AB
Idrottsvägen 10, P.O. Box 123
S-431 22 Mölndal, Sweden

tel +46 31 869500

fax +46 31 869595

www.intermec.com

1-960434-06

Intermec Fingerprint v7.61 Programmer’s Reference Manual

1-960434-06

	Disclaimer
	Copyright Information
	Trademarks
	1. Introduction
	Contents
	Preface
	News in Intermec Fingerprint v7.61
	Auxiliary Files in Intermec Fingerprint v7.61

	2. Program Instructions
	Syntax
	A–C
	ABS
	ACTLEN
	ALIGN (AN)
	ASC
	BARADJUST
	BARCODENAME$
	BARFONT (BF)
	BARFONT ON/OFF (BF ON/OFF)
	BARHEIGHT (BH)
	BARMAG (BM)
	BARRATIO (BR)
	BARSET
	BARTYPE (BT)
	BEEP
	BREAK
	BREAK ON/OFF
	BUSY
	CHDIR
	CHECKSUM
	CHR$
	CLEANFEED
	CLEAR
	CLIP
	CLL
	CLOSE
	COM ERROR ON/OFF
	COMBUF$
	COMSET
	COMSET OFF
	COMSET ON
	COMSTAT
	CONT
	COPY
	COUNT&
	CSUM
	CUT
	CUT ON/OFF

	D–F
	DATE$
	DATEADD$
	DATEDIFF
	DBBREAK
	DBBREAK OFF
	DBEND
	DBSTDIO
	DBSTEP
	DELETE
	DELETEPFSVAR
	DEVICES
	DIM
	DIR
	END
	EOF
	ERL
	ERR
	ERROR
	EXECUTE
	FIELD
	FIELDNO
	FILE& LOAD
	FILENAME$
	FILES
	FLOATCALC$
	FONT (FT)
	FONTD
	FONTNAME$
	FONTS
	FOR...TO...NEXT
	FORMAT
	FORMAT DATE$
	FORMAT INPUT
	FORMAT TIME$
	FORMAT$
	FORMFEED (FF)
	FRE
	FUNCTEST
	FUNCTEST$

	G–J
	GET
	GETASSOC$
	GETASSOCNAME$
	GETPFSVAR
	GOSUB
	GOTO
	HEAD
	IF...THEN...(ELSE)
	IMAGE BUFFER SAVE
	IMAGE LOAD
	IMAGENAME$
	IMAGES
	IMMEDIATE
	INKEY$
	INPUT (IP)
	INPUT ON/OFF
	INPUT#
	INPUT$
	INSTR
	INVIMAGE (II)

	K–M
	KEY BEEP
	KEY ON/OFF
	KEYBMAP$
	KILL
	LAYOUT
	LAYOUT END
	LAYOUT INPUT
	LAYOUT RUN
	LBLCOND
	LED ON/OFF
	LEFT$
	LEN
	LET
	LINE INPUT
	LINE INPUT#
	LIST
	LISTPFSVAR
	LOAD
	LOC
	LOF
	LSET
	LTS& ON/OFF
	MAG
	MAKEASSOC
	MAP
	MERGE
	MID$

	N–P
	NAME DATE$
	NAME WEEKDAY$
	NASC
	NASCD
	NEW
	NORIMAGE (NI)
	ON BREAK GOSUB
	ON COMSET GOSUB
	ON ERROR GOTO
	ON GOSUB
	ON GOTO
	ON HTTP GOTO
	ON KEY GOSUB
	ON/OFF LINE
	OPEN
	OPTIMIZE BATCH ON/OFF
	PORTIN
	PORTOUT ON/OFF
	PRBAR (PB)
	PRBOX (PX)
	PRBUF
	PRIMAGE (PM)
	PRINT (?)
	PRINT KEY ON/OFF
	PRINT#
	PRINTFEED (PF)
	PRINTONE
	PRINTONE#
	PRLINE (PL)
	PRPOS (PP)
	PRSTAT
	PRTXT (PT)
	PUT

	R–T
	RANDOM
	RANDOMIZE
	READY
	REBOOT
	REDIRECT OUT
	REM (')
	REMOVE IMAGE
	RENDER ON/OFF
	RENUM
	RESUME
	RETURN
	RIGHT$
	RSET
	RUN
	SAVE
	SET FAULTY DOT
	SETASSOC
	SETPFSVAR
	SETSTDIO
	SETUP
	SETUP GET
	SETUP WRITE
	SGN
	SORT
	SOUND
	SPACE$
	SPLIT
	STOP
	STORE IMAGE
	STORE INPUT
	STORE OFF
	STR$
	STRING$
	SYSVAR
	TESTFEED
	TICKS
	TIME$
	TIMEADD$
	TIMEDIFF
	TRANSFER KERMIT
	TRANSFER STATUS
	TRANSFER ZMODEM
	TRANSFER$
	TRANSFERSET
	TRON/TROFF

	U–W
	VAL
	VERBON/VERBOFF
	VERSION$
	WEEKDAY
	WEEKDAY$
	WEEKNUMBER
	WHILE...WEND

	X–Z
	XORMODE ON/OFF

	External Commands
	ZMODEM
	Dynamic Modules

	3. Image Transfer
	Intelhex
	UBI00
	UBI01
	UBI02
	UBI03
	Image Format
	UBI10
	PRBUF-Protocol

	4. Character Sets
	Introduction
	Roman 8 Character Set
	French Character Set
	Spanish Character Set
	Italian Character Set
	English (UK) Character Set
	Swedish Character Set
	Norwegian Character Set
	German Character Set
	Japanese Latin Character Set
	Portuguese Character Set
	PCMAP Character Set
	ANSI Character Set
	MS-DOS Latin 1
	MS-DOS Greek 1
	MS-DOS Latin 2
	MS-DOS Cyrillic
	MS-DOS Turkish
	Windows Latin 2
	Windows Cyrillic
	Windows Latin 1
	Windows Greek
	Windows Latin 5
	Windows Baltic Rim

	5. Bar Codes
	Introduction
	Standard Bar Codes
	EAN-8
	EAN-13
	UPC-E
	UPC-A
	Interleaved 2 of 5
	Code 39
	Code 128
	EAN-128
	Setup Bar Codes

	6. Fonts
	Introduction
	Bitmap Fonts
	Font Aliases
	Printout Samples
	OCR-A BT Character Set
	OCR-B 10 Pitch BT Character Set
	Zapf Dingbats BT Character Set

	7. Error Messages
	Interpretation Table

	8. EasyLAN 100i Setup
	Sections, Objects, and Values

