
Programmer’s
Reference Manual

Intermec
Fingerprint®
v8.70.0 / v10.0.0

Intermec Technologies Corporation

Corporate Headquarters
6001 36th Ave. W.
Everett, WA 98203
U.S.A.
www.intermec.com

The information contained herein is proprietary and is provided solely for the purpose of allowing
customers to operate and service Intermec-manufactured equipment and is not to be released, repro-
duced, or used for any other purpose without written permission of Intermec.

Information and specifications contained in this document are subject to change without prior
notice and do not represent a commitment on the part of Intermec Technologies Corporation.

© 2005 by Intermec Technologies Corporation. All rights reserved.

The word Intermec, the Intermec logo, Norand, ArciTech, CrossBar, Data Collection Browser,
dcBrowser, Duratherm, EasyCoder, EasyLAN, Enterprise Wireless LAN, EZBuilder, Fingerprint,
i-gistics, INCA (under license), InterDriver, Intermec Printer Network Manager, IRL, JANUS,
LabelShop, Mobile Framework, MobileLAN, Nor*Ware, Pen*Key, Precision Print, PrintSet,
Ready‑to‑Work, RoutePower, TE 2000, Trakker Antares, UAP, Universal Access Point, Virtual Wedge
and XMLReady are either trademarks or registered trademarks of Intermec Technologies Corpora-
tion.

Throughout this manual, trademarked names may be used. Rather than put a trademark (™ or ®)
symbol in every occurrence of a trademarked name, we state that we are using the names only in an
editorial fashion, and to the benefit of the trademark owner, with no intention of infringement.

There are U.S. and foreign patents pending.

The name Centronics is wholly owned by GENICOM Corporation.

Microsoft is a registered trademark of Microsoft Corporation.

TrueDoc is a registered trademark of Bitstream, Inc.

TrueType is a trademark of Apple Computer Inc.

Unicode is a trademark of Unicode Inc.

Windows is a trademark of Microsoft Corporation.

http://www.intermec.com

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 iii

Contents

Contents

1 Introduction
Fingerprint Programming Language..2
Fingerprint Documentation..2
Differences between Fingerprint 8.70.0 and 10.0.0...3
News in Intermec Fingerprint v8.70.0..3

General Improvements..3
New Instructions...3
Modified Instructions..3

File System with Directories..4
Files in Intermec Fingerprint v8.70.x and v10.0.X..5

2 Program Instructions
Syntax...8
ABS..9
ACTLEN..10
ALIGN (AN)..11
ASC..14
BARADJUST...15
BARCODENAME$...16
BARFONT (BF)...17
BARFONT ON/OFF (BF ON/OFF)..20
BARHEIGHT (BH)...21
BARMAG (BM)...22
BARRATIO (BR)...23
BARSET...24
BARTYPE (BT)..26
BEEP..27
BREAK...28
BREAK ON/OFF...30
BUSY..31
CHDIR..32
CHECKSUM...33
CHR$...34
CLEANFEED..35
CLEAR...36
CLIP...37
CLL..38
CLOSE...40
COM ERROR ON/OFF...41
COMSET...43
COMSET OFF..45
COMSET ON...46
COMSTAT...47
CONT..48
COPY...49
COUNT&...50
CURDIR$..52
CSUM..53
CUT...54
CUT ON/OFF...55
DATE$...56
DATEADD$..57

iv	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Contents

DATEDIFF..59
DBBREAK...60
DBBREAK OFF...61
DBEND...62
DBSTDIO..63
DBSTEP...64
DELETE..65
DELETEPFSVAR...66
DEVICES...67
DIM...70
DIR..71
DIRNAME$...74
END...75
EOF..76
ERL..77
ERR..78
ERR$..79
ERROR..80
EXECUTE...82
FIELD..83
FIELDNO..84
FILE& LOAD..85
FILENAME$..86
FILES...87
FLOATCALC$...89
FONT (FT)..90
FONTD ..92
FONTNAME$...93
FONTS..94
FOR...TO...NEXT...95
FORMAT...96
FORMAT DATE$..98
FORMAT INPUT..99
FORMAT TIME$..100
FORMAT$...101
FORMFEED (FF)..104
FRE..105
FUNCTEST...106
FUNCTEST$...107
GET...108
GETASSOC$...109
GETASSOCNAME$..110
GETPFSVAR..111
GOSUB..112
GOTO..114
HEAD..115
HEAD, cont...116
IF...THEN...(ELSE)..117
IMAGE BUFFER MIRROR..119
IMAGE BUFFER SAVE...120
IMAGE LOAD...121
IMAGENAME$...122
IMAGES...123
IMMEDIATE...124
INKEY$..127
INPUT (IP)..128
INPUT ON/OFF...130
INPUT#...131

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	�

Contents

INPUT$...132
INSTR..133
INVIMAGE (II)...134
KEY BEEP..135
KEY ON/OFF..136
KEYBMAP$...137
KILL...139
LAYOUT..141
LAYOUT END..144
LAYOUT INPUT..145
LAYOUT RUN..146
LBLCOND..147
LED ON/OFF..149
LEFT$..150
LEN..151
LET..152
LINE INPUT...153
LINE INPUT#...154
LIST...155
LISTPFSVAR...157
LOAD..158
LOC...159
LOF..160
LSET..161
LTS& ON/OFF..162
MAG..163
MAKEASSOC..164
MAP...165
MERGE..167
MIBVAR&...168
MID$...169
MKDIR..170
NAME DATE$..171
NAME WEEKDAY$..172
NASC...173
NASCD..175
NEW..176
NORIMAGE (NI)..177
ON BREAK GOSUB...178
ON COMSET GOSUB...179
ON ERROR GOTO..181
ON GOSUB..182
ON GOTO..183
ON HTTP GOTO...184
ON KEY GOSUB..185
ON/OFF LINE..187
ON MIBVAR& GOSUB...188
OPEN...189
OPTIMIZE BATCH ON/OFF..192
PORTIN..193
PORTOUT ON/OFF..194
PRBAR (PB)...195
PRBOX (PX)..196
PRBUF...201
PRIMAGE (PM)..202
PRINT (?)...203
PRINT KEY ON/OFF...204
PRINT#...205

vi	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Contents

PRINTFEED (PF)..206
PRINTONE...208
PRINTONE#...209
PRLINE (PL)..210
PRPOS (PP)...211
PRSTAT...213
PRTXT (PT)..215
PUT...217
RANDOM...218
RANDOMIZE...219
READY...220
REBOOT...221
REDIRECT OUT..222
REM (')..223
REMOVE IMAGE...224
RENDER ON/OFF...225
RENUM...226
REPRINT ON/OFF..227
RESUME...228
RETURN...229
REWINDCONTROL...230
REWINDVOID...231
RIGHT$...232
RSET..233
RUN...234
SAVE..235
SET FAULTY DOT...236
SETASSOC..237
SETPFSVAR...238
SETSTDIO..239
SETUP...241
SETUP GET..244
SETUP KEY...245
SETUP WRITE..246
SGN...248
SORT...249
SOUND...250
SPACE$..251
SPLIT...252
STOP...253
STORE IMAGE...254
STORE INPUT...255
STORE OFF..256
STR$..257
STRING$...258
SYSHEALTH...259
SYSHEALTH$...261
SYSVAR..262
TAGFIELD..270
TAGFORMAT...272
TAGPROTECT...274
TAGREAD...275
TAGWRITE...276
TESTFEED..277
TICKS..278
TIME$...279
TIMEADD$...280
TIMEDIFF...281

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 vii

Contents

TRANSFER KERMIT...282
TRANSFER NET..283
TRANSFER STATUS..285
TRANSFER ZMODEM..286
TRANSFER$...287
TRANSFERSET...288
TRON/TROFF..289
VAL..290
VERBON/VERBOFF..291
VERSION$..292
WEEKDAY..293
WEEKDAY$..294
WEEKNUMBER...295
WHILE...WEND...296
XORMODE ON/OFF...297
External Command; Account Secret..298
External Command; ZMODEM..300

3 Image Transfer
Protocols...302
Image Format..303
UBI10...306
PRBUF Protocol...308

4 Character Sets and Fonts
Character Sets...312
UTF-8 Character Set..336
Scaleable Fonts..338
Bitmap Fonts..339
Font Aliases...339
OCR-A BT Character Set...340
OCR-B 10 Pitch BT Character Set...341
DingDings SWA Character Set...342

5 Bar Codes
Introduction...344
Supported Bar Codes..345
One-and Two-Dimensional Bar Codes..347

Code 39...348
Code 128...349
Data Matrix...351
EAN-8...352
EAN-13...353
EAN 128...354
Interleaved 2 of 5...356
MaxiCode..357
MicroPDF417...359
PDF417..361
QR Code...363
RSS-14..365
RSS-14 Truncated..366
RSS-14 Stacked...367
RSS-14 Stacked Omnidirectional..369
RSS-14 Limited...370

viii	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Contents

RSS-14 Expanded..371
RSS-14 Expanded Stacked...372
UPC-A..374
UPC-E..375

AddOn Codes...376
Summary...376

Composite Bar Codes...377
Introduction..377
Function..377
Example..381
EAN8 Composite with CC-A or CC-B...382
EAN13 Composite with CC-A or CC-B...383
UPC-E Composite with CC-A or CC-B...384
UPC-A Composite with CC-A or CC-B...385
EAN.UCC 128 Composite with CC-C...386
EAN.UCC 128 Composite with CC-A or CC-B...388
RSS-14 (Composite)..390
RSS-14 Truncated (Composite)...392
RSS-14 Stacked (Composite)...394
RSS-14 Stacked Omnidirectional (Composite)..396
RSS-14 Limited (Composite)..398
RSS-14 Expanded (Composite)...400
RSS-14 Expanded Stacked (Composite)..402

Setup Bar Codes..404

6 RFID Tag Formats
RFID Tags..406

EPCGlobal Tag Format Specifications...406
Uniform Resource Identifier (URI)..410
Other EPC Tag Input Methods...410
EPC Tag Writing Example...410
Tag Memory Allocation...411
Non-standard Tag Formats..416

7 Error Messages
Error table...418

A Keyboards
EasyCoder PF2i/4i/4ci...422

Actual Keyboard Appearance...422
ID Numbers..422
Position Numbers..423
ASCII Values...423

EasyCoder PM4i...424
Actual Keyboard Appearance...424
ID Numbers..424
Position Numbers..425
ASCII Values...425

EasyCoder PX4i/6i..426
Actual Keyboard Appearance...426
ID Numbers..426
Position Numbers..427
ASCII Values...427

EasyCoder PX4i/6i Alphanumeric keyboard...428

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 ix

Contents

Actual Keyboard Appearance...428
Position Numbers..428
ID Numbers and ASCII Values...428

Mapping the Keyboard...429
EasyCoder PD41..430

I Index
Index ..432

�	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Contents

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	�

1 Introduction

This chapter gives a quick introduction to the Intermec Fingerprint
v8.70.0/v10.0.0 programming languages, lists available documentation
regarding Fingerprint, and describes the most important differences
between this version and the previously documented version of Fingerprint
(v8.60).

It also lists the files included in the Fingerprint v8.70.0/v10.0.0 firmware
package.

�	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 1—Introduction

Fingerprint Programming Language
Intermec Fingerprint is a BASIC-inspired, printer-resident programming
language that has been developed for use with the Intermec EasyCoder
bar code label printers. Version 8.70.0 is supported by EasyCoder PF2/4i,
EasyCoder PM4i, and EasyCoder PX4/6i printers. Version 10.0.0 has
been developed for the EasyCoder PD41 (release in January 2006). Other
Intermec printers may require vesion 6.XX ot 7.XX of Fingerprint, or
different firmware altogether. See your printer documentation.

The Intermec Fingerprint firmware is an easy-to-use intelligent
programming tool for label formatting and printer customizing, which
allows you to design your own label formats and write your own printer
application software. You may easily create a printer program by yourself
that exactly fulfils your own unique requirements. Improvements or
changes due to new demands can be implemented quickly and without
vast expenses.

Intermec Fingerprint also contains an easy-to-use slave protocol, called
Intermec Direct Protocol. It allows layouts and variable data to be
downloaded from the host and combined into labels, tickets and tags with
a minimum of programming. Intermec Direct Protocol also includes a
versatile error handler and a flexible counter function.

Fingerprint Documentation
This Programmer's Reference Manual contains detailed information on
all programming instructions in the Intermec Fingerprint programming
language in alphabetical order. It also contains other program-related
information that is common for all Fingerprint-compatible printer models
from Intermec.

Those who wish to get started with Fingerprint programming and printer
control are recommended to, in addition to this manual, refer to the
Fingerprint v8.XX Tutorial.

The Intermec Direct Protocol, while being a subset of Intermec
Fingerprint, is described in more detail in the Intermec Direct Protocol
v8.XX Programmer's Reference Manual.

All information needed by the operator, like how to run the printer, how
to load the media or ribbon supply and how to maintain the printer,
can be found in the User’s Guide for the printer model in question. You
will also find information on installation, setup, print resolution, media
specifications, and other technical information, which is specific for each
printer model.

All these manuals are available for download from the Intermec Global
Sales and Service web site, see www.intermec.com.

http://www.intermec.com

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 �

Chapter 1—Introduction

Differences between Fingerprint 8.70.0 and 10.0.0
Fingerprint 10.0.0 has been designed for use with the EasyCoder PD41.
Although most commands work exactly the same as for Fingerprint 8.XX
series, the differences in the printer platforms cause the firmware to have
some important differences. Some general differences are listed below:

•	 The EasyCoder PD41 has no display. Commands to control the display
can be used and the results be read over the network (SNMP).

•	 The EasyCoder PD41 has no beeper. Commands BEEP anmd SOUND
will be silent, yet create equally long delays.

•	 The EasyCoder PD41 has only a Print button. Applications requiring
user input on the printer keyboard will therefore not work. Changing
SETUP parameters through the console is not possible.

•	 The EasyCoder PD41 does not support as many optional interface
cards. This affects the devices available.

•	 The EasyCoder PD41 does not send a power fail signal. Thus variables
cannot be saved with the SETPFSVAR unless the printer is rebooted
using the REBOOT comand. This naturally affects the functionality of
GETPFSVAR, DELETEPFSVAR and LISTPFSVAR.

News in Intermec Fingerprint v8.70.0
A new naming convention for Fingerprint version numbers is introduced.
Tha last digit is added and is stepped up for new versions containing only
corrections and no new functionality. A new version with only bug fixes
would thus be called 8.70.1. A new Fingerprint version containing new
functionality causes the the middle digits to be stepped up, for example
8.71.0.

General Improvements
•	 EPC Gen 2 RFID support.

•	 Ability to disable Setup access from console

•	 Enhanced input from control panel

New Instructions
SETUP KEY				 Enable/disable setup access
							 via console.

Modified Instructions
TAGFIELD					 New Gen 2 segment names.
TESTFEED					 Identifies RFID media.

�	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 1—Introduction

File System with Directories
Two parts of the printer’s memory support the use of directories, namely
the read-only memory (rom) and the read/write permanent storage
memory (c). Directories cannot be used in any other parts of the memory
or in CompactFlash memory cards (card1).

The slash letter (/) is used as a divisor between directories and files, that
is, the path "/c/DIR1/DIR2/FILE" refers to a file or directory named
FILE in the directory DIR2, which in its turn is located in the directory
DIR1 in the root of the device /c (the printer’s permanent memory). The
maximum length of a path is 255 characters.

The “old” device names (c:, rom:, tmp:, and so on) are now aliases
(“shortcuts”) to the new directories (/c/, /rom/, /tmp/, and so on).
The file STDIO on c: (/c) can thus be accessed using either c:STDIO
or /c/STDIO. Writing c: is equivalent to writing /c/.

The philosophy in the design of the different commands and output
formats is to be as backwards-compatible as possible, whilst giving the user
access to the new features–directories. Examples of this are:

•	 FILES give a size of 0 for directories to minimize impact on applications
that parse the output.

•	 FILENAME$ only report files to minimize impact on applications that
use FILENAME$ to get file listings.

To relieve the user from always having to use the entire path when referring
to a directory above the current one, each directory (including the root
directories) contains a “parent directory”. This parent directory is called
“..”. It refers to the directory’s parent directory. It is listed by FILES,A.

Each directory also has a reference to itself (“.”), that is, "/c/./
DIR1/./../FILE" refers to "/c/FILE" (or, using the legacy format,
to "c:FILE").

Example:

CHDIR "/c/DIR1/DIR2"	 Changes the directory

COPY "../DIR3/FILE", "FILE"	 Copies /c/DIR1/DIR3/FILE 	
						 to /c/DIR1/DIR2/FILE

CHDIR ".." 	 Go up to "/c/DIR1"

CHDIR "../" 	 Go up to /c. Note that a trailing slash (/) may be used.

Note: A file or directory name may contain all printable characters except
“:” (colon) and “/” (slash). Only /c (c:) supports creating and removing
directories.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 �

Chapter 1—Introduction

Files in Intermec Fingerprint v8.70.X and v10.0.X
The Intermec Fingerprint v8.70.X firmware contains the following files.
Files marked with footnote * are not found in Fingerprint 10.0.X. Some
files in "/c/" only appear after default settings have been changed.

In device "/rom/"	
.FONTALIAS	 Creates reference fonts
.coms		 System file
.profile		 System file
.setup.saved	 Default setup values
.uartx		 System file
.ubipfr1.bin	 Standard fonts
.wi_firm		 Firmware for EasyLAN Wireless
CHESS2X2.1	 Standard image for test labels
CHESS4X4.1 	 Standard image for test labels
DIAMONDS.1	 Standard image for test labels
ERRHAND.PRG	 Error Handler
FILELIST.PRG	 List the lines of a file
GLOBE.1		 Standard image for test labels
LBLSHTXT.PRG	 Intermec Shell auxiliary file
LINE_AXP.PRG	 Intermec Shell Line Analyzer 	
LSHOPXP1.SUB	 Intermec Shell auxiliary file
MKAUTO.PRG	 Create a startup (autoexec) file
PUP.BAT		 Intermec Shell Startup file
SHELLXP.PRG*	 Intermec Shell startup program
WINXP.PRG*	 Intermec Shell auxiliary file

default.html 	 EasyLAN home page
home.htmf 	 EasyLAN home page
htmlhead.htmf	 EasyLAN home page
images/		 EasyLAN home page
	 itclogo1.gif	 EasyLAN home page
monitor		 System file
nav.html		 EasyLAN home page
passwd		 Default password file
restrictions		 Default restriction file
secure/		 EasyLAN home page
	 configj.js	 EasyLAN home page
	 configtree.html	 EasyLAN home page
	 ddns.html	 EasyLAN home page
	 empty.htm	 EasyLAN home page
	 ftie4style.css	 EasyLAN home page
	 ftiens4.js	 EasyLAN home page
	 ftv2blank.gif	 EasyLAN home page
	 ftv2doc.gif	 EasyLAN home page
	 ftv2folderclosed.gif	 EasyLAN home page
	 ftv2folderopen.gif	 EasyLAN home page
	 ftv2lastnode.gif	 EasyLAN home page
	 ftv2link.gif	 EasyLAN home page
	 ftv2mlastnode.gif	 EasyLAN home page
	 ftv2mnode.gif	 EasyLAN home page
	 ftv2node.gif	 EasyLAN home page

�	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 1—Introduction

	 ftv2plastnode.gif	 EasyLAN home page
	 ftv2pnode.gif 	 EasyLAN home page
	 ftv2root.gif	 EasyLAN home page
	 ftv2vertline.gif	 EasyLAN home page
	 general.html	 EasyLAN home page
	 mail.html	 EasyLAN home page
	 main.html	 EasyLAN home page
	 snmp.html	 EasyLAN home page
	 tcpip.html	 EasyLAN home page
	 view.html	 EasyLAN home page
	 wlan.html	 EasyLAN home page
support.htmf 	 EasyLAN home page

In device "/c/"
.setup.saved	 Current setup values (prt section)
boot/
	 passwd	 Password storage
	 rmmcz*	 Kernel file
	 resu*	 Kernel file
	 psa*	 Kernel file
STDIO		 Intermec Shell auxiliary file
APPLICATION	 Intermec Shell auxiliary file
ADMIN/
	 restrictions	 Restrictions storage
	
To read the contents of these files, run the FILELIST.PRG program or
COPY the file in question to the serial port "uart1:".
* Not in Fingerprint 10.0.X.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	�

2 Program Instructions

This chapter explains all program instructions in alphabetic order, lists
their syntaxes and input parameters, and gives some examples how to use
the instructions in simple programs.

�	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

Syntax
In the syntax descriptions which follow, certain punctuation marks are
used to indicate various types of data. They must not be included in the
program.

[]	 indicate that the enclosed entry is optional.

|	 indicates alternatives on either side of the bar.

< >	 indicate grouping.

..... 	 indicate repetition of the same type of data.

↔	 indicates a compulsory space character between two keywords.

"	 is a quotation mark (ASCII 34 dec).

↵	 indicates a carriage return or linefeed on the host

			

Uppercase letters indicate keywords, which must be entered exactly as
listed, with the exception that lowercase letters also are allowed unless
otherwise stated.

The following abbreviations are used:

<scon>	 string constant	

<ncon>	 numeric constant

<sexp>	 string expression	

<nexp>	 numeric expression

<svar>	 string variable	

<nvar>	 numeric variable

<stmt>	 statement	

<line label>	 line label

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 �

Chapter 2—Program Instructions

ABS

Purpose	 Function returning the absolute value of a numeric expression.

Syntax	 ABS(<nexp>)

<nexp>	 is a numeric expression, from which the absolute value will be
returned.

Remarks	 The absolute value of a number is always positive or zero. Note that the
expression must be enclosed within parentheses.

Examples	 PRINT ABS(20-25)
	 5

	 PRINT ABS(25-20)
	 5

	 PRINT ABS(5-5)
	 0

	 PRINT ABS(20*-5)
	 100

10	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

ACTLEN

Purpose	 Function returning the length of the most recently executed PRINT-
FEED, FORMFEED, or TESTFEED statement.

Syntax	 ACTLEN

Remarks	 The length of the most recently executed paper feed operation, resulting
from a PRINTFEED, FORMFEED, or TESTFEED statement, will be
returned as a number of dots. Due to technical reasons concerning the
stepper motor control and label gap detection, a small deviation from the
expected result may occur.

Example	 In this example, a 12 dots/mm printer is loaded with 90 mm (1080 dots)
long labels separated by a 3 mm (36 dots) gap. Start- and stopadjust setup
values are both set to 0:

	 10	 FORMFEED
	 20	 PRINT ACTLEN
	 RUN							
		 									

yields:
	 1121
	
	 The deviation from the expected result (1116) is normal and should have

no practical consequences (less than 1 mm).

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 11

Chapter 2—Program Instructions

ALIGN (AN)

Purpose	 Statement specifying which part (anchor point) of a text field, bar code
field, image field, line, or box will be positioned at the insertion point.

Syntax	 ALIGN|AN<nexp>

<nexp>	 is the anchor point of the object (1–9).
Default value:	 1
Reset to default by:	 PRINTFEED execution

Remarks	 Each text, bar code, or image field has nine possible anchor points, whe-
reas lines and boxes have three. One of these points must be selected, or
the default value (1) will be used. The selected anchor point decides the
position of the object in relation to the insertion point, which is decided
by the nearest preceding PRPOS statement. Furthermore, the field will be
rotated around the anchor point according to the nearest preceding DIR
statement.

	 The nine anchor points of a text, bar code, or image field are located in the
same manner as, for example, the numeric keys on a computer keyboard:

	

	 Lines and boxes have three anchor points only: left, center, and right.

	 The anchor points for the various types of field are illustrated below.

	 Text field:

	 A text field makes up an imaginary box limited in regard of width by the
length of the text, and in regard of height by the matrix size of the selected
font. In text fields, the anchor points 4, 5, and 6 are situated on the base-
line, as opposed to bar code fields and image fields.

12	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

ALIGN (AN), cont.
	 Bar Code Field:

		 A bar code field makes up an imaginary box sufficiently large to accom-
modate the bar code interpretation, regardless if it will be printed or not
(provided that the selected type of bar code may include an interpretation
at all).

 	 However, for EAN and UPC codes, the box is restricted in regard of width
by the size of the bar pattern, not by the interpretation. This implies that
the first digit of the bar code interpretation will be outside the imaginary
box:

	 For composite bar codes, the human readable bar code interpretation for
the 2-dimensional element is outside the imaginary box.

	 Image field:

	 The size of an image field is decided when the field is created. Note that an
image field consists of the entire area of the original image, even possible
white or transparent background.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 13

Chapter 2—Program Instructions

ALIGN (AN), cont.
	 Line:

	

	 Box:

	 The anchor points are situated at the lower side of the line or box in rela-
tion to how text is printed in the selected direction. Lines and boxes have
only three anchor points, each of which can be specified by means of three
different numbers.

	 A special case is multi-line text fields in a box. The fields can be aligned in
nine positions in relation to the box, whereas the box itself only has three
anchor points, as described above. Refer to the PRBOX statement for more
information on alignment of multi-line text fields.

Example	 Printing of a label with a single line of text being aligned left on the base-
line:

	 10	 PRPOS 30,250
	 20	 DIR 1
	 30	 ALIGN 4
	 40	 FONT "Swiss 721 BT"
	 50	 PRTXT "Hello!"
	 60	 PRINTFEED
	 RUN

	 The text “Hello!” will be positioned with the baseline aligned left to the
insertion point specified by the coordinates X=30; Y=250 in line 10.

14	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

ASC

Purpose	 Function returning the decimal ASCII value of the first character in a
string expression.

Syntax	 ASC(<sexp>)

<sexp>	 is a string expression, from which the ASCII decimal value of the
first character will be returned.

Remarks	 ASC is the inverse function of CHR$. The decimal ASCII value will be
given according to the selected character set (see NASC statement).

Examples	 10	 A$="GOOD MORNING"
	 20	 PRINT ASC(A$)
	 RUN
									 yields:
	 71	

	 10	 B$="123456"
	 20	 C% = ASC(B$)
	 30	 PRINT C%	
	 RUN
									 yields:
	 49

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 15

Chapter 2—Program Instructions

BARADJUST

Purpose	 Statement for enabling/disabling automatic adjustment of bar code
position in order to avoid faulty printhead dots.

Syntax	 BARADJUST<nexp
1
>,<nexp

2
>

<nexp
1
>	 is the maximum left offset in dots.

<nexp
2
>	 is the maximum right offset in dots.

Default:	 0,0 (BARADJUST disabled)

Remarks	 Under unfortunate circumstances, a printer may have to be run for some
time with a faulty printhead, before a replacement printhead can be instal-
led. Single faulty dots will produce very thin ”white” lines along the media.
This may be tolerable for text, graphics, and vertical (ladder) bar codes, but
for horizontal bar codes (picket fence), this condition is likely to render the
bar code unreadable.

	 If the bar code is moved slightly to the left or right, the trace of a faulty dot
may come between the bars of the bar code and the symptom is remedied
for the time being. The statement will attempt to adjust the bar code even
if several faulty dots have been specified, but will return error 1052 if it
was unable to adjust the bar code succesfully.

	 The BARADJUST statement allows the Intermec Fingerprint firmware to
automatically readjust the bar code position within certain limits, when a
faulty dot is detected (see HEAD function) and marked as faulty (see SET
FAULTY DOT statement). The maximum deviation from the original
position, as specified by the PRPOS statement, can be set up separately
for the directions left and right. Setting both parameters to 0 (zero) will
disable BARADJUST.

	 The BARADJUST statement does not work with:

	 • Vertically printed bar codes (ladder style)

	 • Stacked bar codes (for example Code 16K)

	 • Bar codes with horizontal lines (for example DUN-14/16)

	 • EAN/UPC-codes (interpretation not repositioned)		 	

Examples	 Enabling BARADJUST within 10 dots to the left and 5 dots to the right
of the original position for a specific bar code, then disabling it:

	 10	 BARADJUST 10,5
	 20	 PRPOS 30,100
	 30	 BARSET "CODE39",2,1,3,120
	 40	 BARFONT ON
	 50	 PRBAR "ABC"
	 60	 BARADJUST 0,0
	 70	 PRINTFEED

16	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

BARCODENAME$

Purpose	 Function returning the names of the bar code generators stored in the
printer’s temporary memory ("tmp:").

Syntax	 BARCODENAME$(<nexp>)

<nexp>	 the result of the expression should be either false or true,
where...

	 False (0) indicates first bar code.
	 True (≠0) indicates next bar code.

Remarks	 BARCODENAME$(0) produces the first bar code name in alphabetical
order. BARCODENAME$(≠0) produces next name. Can be repeated as
long as there are any bar code names left.

Example	 Use a program like this to list the names of all bar codes in "tmp:". Note
that bar codes with dynamic downloading will not appear before they have
been called by a BARSET or BARTYPE statement.

	 10	 A$ = BARCODENAME$ (0)
	 20	 IF A$ = "" THEN END
	 30	 PRINT A$
	 40	 A$ = BARCODENAME$ (-1)
	 50	 GOTO 20
	 RUN	 							
								 yields for example:
	 ADDON2
	 ADDON5
	 C2OF5
	 C2OF5IND
	 C2OF5INDC
	 C2OF5MAT
	 CODABAR
	 CODE11
	 CODE128
	 CODE128A
	 CODE128B
	 CODE128C
	 CODE16K
	 CODE39
	 CODE39A
	 CODE39C
	 CODE49
	 CODE93
	 DATAMATRIX
	 DUN
	 EAN128
	 EAN128A
	 EAN128B
	 etc, etc.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 17

Chapter 2—Program Instructions

BARFONT (BF)

Purpose	 Statement specifying fonts for the printing of bar code interpretation.

Syntax	 BARFONT|BF[#<ncon>,]<sexp
1
>[,<nexp

1
>[,<nexp

2
>[,<nexp

3
>

	 [,<nexp
4
> [,<nexp

5
>[,<nexp

6
>[,<nexp

7
>[,<nexp

8
>[,<nexp

9
>	 	

]]]]]]]]][ON]

#<ncon>	 is, optionally, the start parameter in the syntax above.
<sexp

1
> 	 is the name of the font selected for bar code interpretations.

<nexp
1
> 	 is the height in points of the font.

<nexp
2
>	 is the clockwise slant in degrees (0-90°).

<nexp
3
>	 is the distance in dots between bar code and bar font.

<nexp
4
>	 is the magnification in regard of height (1-4).

<nexp
5
>	 is the magnification in regard of width (1-4).

<nexp
6
>	 is the width enlargement in percent relative the height (1-1000).

Default: 100. Does not work with bitmap fonts.
<nexp

7
>	 is the insertion point for the bar code interpretation.

<nexp
8
>	 is the horizontal offset from the insertion point for the bar code

interpretation.
<nexp

9
>	 is the vertical offset from the insertion point for the bar code

interpretation.
ON	 optionally enables the printing of bar code interpretation.
Reset to default by:	 PRINTFEED execution.

Remarks	 Start Parameter:
	 The start parameter specifies which parameter in the syntax above should

be the first parameter in the statement. Thereby you may bypass some of
the initial parameters.

	 Default value: #1

	 Font Name:
	 This parameter corresponds to the FONT statement, but will only affect

bar code interpretation. Double-byte fonts cannot be used.
	 Default : Swiss 721 BT

 	 Font Size:
	 This parameter corresponds to the FONT statement, but will only affect

bar code interpretation. The size is specified in points. (1 point = 1/72 inch
≈ 0.352 mm.)

	 Default : 12

	 Font Slant:
	 This parameter corresponds to the FONT statement, but will only affect

bar code interpretation. Slanting increases clockwise. Values greater that
65-70° will be unreadable.

	 Default : 0

18	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

BARFONT (BF), cont.
	 Vertical Offset:
	 The distance between the bottom of the bar code pattern and the top of

the character cell is given as a number of dots.
	 Default value: 6

	 Magnification:
	 Two parameters allows you to specify the magnification separately in

regard of height and width (corresponding to MAG statement). Note that
if a MAG statement is executed after a BARFONT statement, the size of
the barfont will be affected by the MAG statement.

	 Default value for both parameters: 1

	 Width:
 	 A scaleable font can enlarged in regard of width relative height. The value

is given as percent (1-1000). This means that if the value is 100, there is
no change in the appearance of the characters, whereas if the value is given
as for example 50 or 200, the width will be half the height or double the
height respectively. When using this parameter, all parameters in the syntax
must be included in the statement, (name, height, slant, and width).

	 Insertion Point:
	 The position of the bar code interpretation can be selected by setting this

parameter. A value between 1 and 9 can be set and corresponds to the
positions in the figure. The values 4, 5, and 6 are interpreted as 7, 8, and 9
respectively.

	 This function overrides the ALIGN command.
	 Default: 0 (Not Enabled)

	 Insertion Point Offsets:
	 The parameters represent the offset in dots with regard to the insertion

point. The offsets are set with respect to the bar code direction, not neces-
sarily the paper feed direction. The insertion point must be set for these
parameters to have meaning.

	 Default: 0

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 19

Chapter 2—Program Instructions

BARFONT (BF), cont.
	 Enabling Interpretation Printing:
	 The printing of bar code interpretation can enabled by a trailing ON,

which corresponds to a BARFONT ON statement.

	 Exceptions:
	 Note that in all EAN and UPC bar codes, the interpretation is an inte-

grated part of the code. Such an interpretation is not affected by a BAR-
FONT statement, but will be printed in according to specification,
provided that interpretation printing has been enabled by a BARFONT
ON statement.

	 Certain bar codes, like Code 16K, cannot contain any interpretation at all.
In such a case, the selected barfont will be ignored.

Example	 Programming a Code 39 bar code, selecting the same barfont for all direc-
tions, and enabling the printing of the bar code interpretation, can be done
this way:

	 10	 PRPOS 30,400
	 20	 DIR 1
	 30	 ALIGN 7
	 40	 BARSET "CODE39",2,1,3,120
	 50	 BARFONT "Swiss 721 BT",10,8,5,1,1,100 ON
	 60	 PRBAR "ABC"
	 70	 PRINTFEED
	 80	 END

20	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

BARFONT ON/OFF (BF ON/OFF)

Purpose	 Statement enabling or disabling the printing of bar code interpretation.

Syntax	 BARFONT↔ON|BARFONT↔OFF[,<nexp>]

	 BF↔ON|BF↔OFF[,<nexp>]

<nexp> 	 For EAN/UPC bar codes disables/enables guard bar printing.
Default:	 BARFONT OFF
Reset to default by:	 PRINTFEED execution

Remarks	 Usually, you start your program by selecting a suitable bar code interpre-
tation font, see BARFONT. Then use BARFONT ON and BARFONT
OFF statements to control whether to print the interpretation or not,
depending on application.

	 BARFONT ON can be replaced by a BARFONT statement appended by
a trailing ON, see BARFONT statement.

	 When printing EAN/UPC bar codes, the trailing parameter 0 can be
specified after the BARFONT OFF command to disable the printing of
the guard bars, which are set to print by default. BARFONT OFF, 0 will
disable the printing of the guard bars. BARFONT OFF,1 is the default
(guard bars enabled) and is equivalent to BARFONT OFF.

Examples	 Programming a Code 39 bar code, selecting a barfont for each direction
and enabling the printing of the bar code interpretation. Compare with
the example for BARFONT statement:

	 10	 PRPOS 30,400
	 20	 DIR 1
	 30	 ALIGN 7
	 40	 BARSET "CODE39",2,1,3,120
	 50	 BARFONT "Swiss 721 BT",10,8,5,1,1
	 60	 BARFONT ON
	 70	 PRBAR "ABC"
	 80	 PRINTFEED
	 90	 END
	
	 Programming a EAN8 bar code, and choosing to disable guard bars:
	 10	 BARTYPE "EAN8"
	 20	 BARFONT OFF,0
	 30	 PRBAR "1234567"
	 40	 PRINTFEED

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	2 1

Chapter 2—Program Instructions

BARHEIGHT (BH)

Purpose	 Statement specifying the height of a bar code.

Syntax	 BARHEIGHT|BH<nexp>

<nexp> 	 is the height of the bars in the bar code expressed in number of
dots.

Default value:	 100 dots.
Reset to default by:	 PRINTFEED execution.

Remarks	 The barheight specifies the height of the bars, that make up the code. In
bar codes consisting of several elements on top of each other, for example
Code 16K, the barheight specifies the height of one element. The height is
not affected by BARMAG statements.

	 BARHEIGHT can be replaced by a parameter in the BARSET statement.

Example	 Programming a Code 39 bar code, selecting a barfont for all directions and
enabling the printing of the bar code interpretation:

	 10	 PRPOS 30,400
	 20	 DIR 1
	 30	 ALIGN 7
	 40	 BARTYPE "CODE39"
	 50	 BARRATIO 2,1
	 60	 BARHEIGHT 120
	 70	 BARMAG 3
	 80	 BARFONT "Swiss 721 BT"ON
	 90	 PRBAR "ABC"
	 100	 PRINTFEED

	 A more compact method is illustrated by the example for BARSET state-
ment.

22	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

BARMAG (BM)

Purpose	 Statement specifying the magnification in regard to width of the bars in a
bar code.

Syntax	 BARMAG|BM<nexp>	

<nexp> 	 is the magnification in regard to width of the bars, which make
up the bar code.

Allowed input: 	 Depends on type of bar code.
Default value:	 2
Reset to default by:	 PRINTFEED execution.

Remarks	 The magnification only affects the bar code width, not the height of the
bars (see BARHEIGHT). For example, by default the BARRATIO is 3:1
and the BARMAG is 2, which means that the wide bars will be 6 dots
wide and the narrow bars will be 2 dots wide (2 × 3:1 = 6:2).

	 The magnification also affects the interpretation in EAN and UPC bar
codes, since the interpretation is an integrated part of the EAN/UPC code.

	 BARMAG can be replaced by a parameter in the BARSET statement.

Example	 Programming a Code 39 bar code, selecting a barfont for all directions and
enabling the printing of the bar code interpretation:

	 10	 PRPOS 30,400
	 20	 DIR 1
	 30	 ALIGN 7
	 40	 BARTYPE "CODE39"
	 50	 BARRATIO 2,1
	 60	 BARHEIGHT 120
	 70	 BARMAG 3
	 80	 BARFONT "Swiss 721 BT" ON
	 90	 PRBAR "ABC"
	 100	 PRINTFEED

	 A more compact method is illustrated by the example for BARSET state-
ment.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	23

Chapter 2—Program Instructions

BARRATIO (BR)

Purpose	 Statement specifying the ratio between the wide and the narrow bars in a
bar code.

Syntax	 BARRATIO|BR<nexp
1
>,<nexp

2
>

<nexp
1
> 	 is the thickness of the wide bars relative to the narrow bars.

<nexp
2
>	 is the thickness of the narrow bars relative to the wide bars.

Default value:	 3:1
Reset to default by:	 PRINTFEED execution.

Remarks	 This statement specifies the ratio between the wide and the narrow bars in
a bar code in relative terms. To decide the width of the bars in number of
dots, the ratio must be multiplied by the BARMAG value.

	 Example:
	 The default BARRATIO is 3:1 and the default BARMAG is 2.
	 (3:1) × 2 = 6:2
	 that is, the wide bars are 6 dots wide and the narrow bars are 2 dots wide.

	 Note that certain bar codes have a fixed ratio, for example EAN and UPC
codes. In those cases, any BARRATIO statement will be ignored. Refer to
Chapter 5, “Bar Codes” later in this manual.

	 BARRATIO can be replaced by two parameters in the BARSET statement.

Example	 Programming a Code 39 bar code, selecting a barfont for all directions and
enabling the printing of the bar code interpretation:

	 10	 PRPOS 30,400
	 20	 DIR 1
	 30	 ALIGN 7
	 40	 BARTYPE "CODE39"
	 50	 BARRATIO 2,1
	 60	 BARHEIGHT 120
	 70	 BARMAG 3
	 80	 BARFONT "Swiss 721 BT"ON
	 90	 PRBAR "ABC"
	 100	 PRINTFEED

	 A more compact method is illustrated by the example for BARSET state-
ment.

24	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

BARSET

Purpose	 Statement specifying a bar code and setting additional parameters to com-
plex bar codes.

Syntax	 BARSET[#<ncon>,][<sexp>[,<nexp
1
>[,<nexp

2
>[,<nexp

3
>[,<nexp

4
>

	 [,<nexp
5
>[,<nexp

6
>[,<nexp

7
>[,<nexp

8
>[,<nexp

9
>[,<nexp

10
>]]]]]]]]]]]

#<ncon>	 	 is the the start parameter in the syntax above.
<sexp> 	 (#1)	 is the bar code type. No default.
<nexp

1
> 	 (#2)	 is the ratio of the large bars. Default: 3.

<nexp
2
> 	 (#3)	 is the ratio of the small bars. Default: 1.

<nexp
3
> 	 (#4)	 is the enlargement. Default: 2

<nexp
4
> 	 (#5)	 is the height of the code in dots. Default: 100.

<nexp
5
> 	 (#6)	 bar code specific parameter, see Chapter 5. Default: 2.

<nexp
6
> 	 (#7)	 bar code specific parameter, see Chapter 5. Default: 3.

<nexp
7
> 	 (#8)	 bar code specific parameter, see Chapter 5. Default: 1.

<nexp
8
> 	 (#9)	 bar code specific parameter, see Chapter 5. Default: 0.

<nexp
9
> 	 (#10)	 bar code specific parameter, see Chapter 5. Default: 0.

<nexp
10

>	 (#11)	 bar code specific parameter, see Chapter 5. Default: 0.
Reset to default by:	 PRINTFEED execution.

Remarks	 This statement can replace the statements BARHEIGHT, BARRATIO,
BARTYPE, and BARMAG. Although being primarily intended for 2-
dimensional and composite bar codes, it can be used for any type of
bar code if non-relevant parameters are left out (for example <nexp5> to
<nexp10>).

Note: The parameter descriptions under the syntax do not apply to all bar
codes that can be specified using BARSET. Some bar codes have other
meanings or use certain parameters only as place holders. See Chapter 5
“Bar Codes” for more information.

 	 Start Parameter:
	 Start parameter specifies which parameter in the syntax above should be

the first optional parameter (#1-#11). Thereby you may bypass some of the
initial parameters, for example ratio and enlargement.

	 Default value: #1

	 #1 Bar Code Type:
	 The bar code type parameter corresponds to the BARTYPE statement.

	 #2 and #3 Bar Code Ratio:
	 The two ratio parameters correspond to the BARRATIO statement.
	 Default value: 3:1

	 #4 Enlargement:
	 The enlargement parameter corresponds to the BARMAG statement.
	 Default value: 2

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	25

Chapter 2—Program Instructions

BARSET, cont.
	 #5 Bar Code Height:
	 The height parameter corresponds to the BARHEIGHT statement. In QR

Code, this parameter is used to specify model (1 or 2).
	 Default value: 100 dots

	 #6-#11 Bar code specific parameters:
	 These parameters have different meanings for each bar code or are used

only as placeholders. Refer to the descriptions of the various 2-dimensional
and composite bar codes in Chapter 5 for complete syntax descriptions
and programming examples.

Example	 This example shows how a BARSET statement is used to specify a Code
39 bar code (compare for example with the example for BARTYPE stmt):

	 10	 PRPOS 30,400
	 20	 DIR 1
	 30	 ALIGN 7
	 40	 BARSET "CODE39",2,1,3,120
	 50	 BARFONT "Swiss 721 BT",10,8,5,1,1 ON
	 60	 PRBAR "ABC"
	 70	 PRINTFEED

		

26	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

BARTYPE (BT)

Purpose	 Statement specifying the type of bar code.

Syntax	 BARTYPE|BT<sexp>

<sexp> 	 specifies the type of bar code.
Allowed input: 	 Valid bar type name.
Default value:	 None.

Remarks	 The selected bar code type must exist in the printer’s memory and be
entered in the form of a string expression. Please refer to Chapter 5, “Bar
Codes” later in this manual for a list of the bar codes that are included in
the Intermec Fingerprint firmware and their respective designations.

	 BARTYPE can be replaced by a parameter in the BARSET statement.

Example	 Programming a Code 39 bar code, selecting a barfont for all directions,
and enabling the printing of the bar code interpretation:

	 10	 PRPOS 30,400
	 20	 DIR 1
	 30	 ALIGN 7
	 40	 BARTYPE "CODE39"
	 50	 BARRATIO 2,1
	 60	 BARHEIGHT 120
	 70	 BARMAG 3
	 80	 BARFONT "Swiss 721 BT" ON
	 90	 PRBAR "ABC"
	 100	 PRINTFEED

	 A more compact method is illustrated by the example for BARSET state-
ment.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	2 7

Chapter 2—Program Instructions

BEEP

Purpose	 Statement ordering the printer to emit a beep.

Syntax	 BEEP

Remarks	 This statement makes the printer’s built-in buzzer sound at ≈800 Hz for
1/4 of a second. If a different frequency and/or duration is desired, use a
SOUND statement instead.

	 The EasyCoder PD41 does not have a beeper, and will thus not emit a
sound. The BEEP command will however cause an equally long delay in
the PD41.

Example	 In this example, a beep is emitted when an error occurs:
	 10	 ON ERROR GOTO 1000
	
	
	
	 1000	BEEP
	 1010	RESUME NEXT

28	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

BREAK

Purpose	 Statement specifying a break interrupt character separately for the key-
board and each serial communication channel.

Syntax	 BREAK<nexp
1
>,<nexp

2
>

<nexp
1
>	 is one of the following devices:

	 0 = "console:"
	 1 = "uart1:"
	 2 = "uart2:"
	 3 = "uart3:"
	 7 = "uart4:"
	 8 = "uart5"
<nexp

2
>	 is the decimal ASCII value for the break interrupt character.

Default:	 Comm. channels: ASCII 03 decimal
	 Console: ASCII 158 decimal (<Shift> + <Pause>)

Remarks	 The execution of a program can be interrupted using a method specified
by the BREAK statement. In addition, the printing of a batch of labels can
also be interrupted and resumed by pressing the <Pause> or the <Print>
key on the printer’s front panel.

	 To issue a break interrupt, by default, hold down the <Shift> key and press
the <Pause> key. Together these keys will produce the ASCII character 158
decimal (128 + 30), see Appendix A.

	 It is not possible to perform a break from the console on the PD41 printer.

	 It is possible to remap the keyboard, which may affect the keys used for
break interrupt. Please refer to the variable KEYBMAP$.

	 Another method is to transmit the character ASCII 03 decimal (default)
to the printer on one of the serial communication channels. The execution
will be interrupted regardless of any INPUT waiting (that is, INPUT [#],
LINE INPUT [#], and INPUT$).

	 The BREAK statement allows you to specify other ways of interrupting
the execution, for example by pressing another combination of keys on the
printer’s keyboard or transmitting another ASCII character from the host.

	 A specified break interrupt character is saved in the temporary memory
until the printer is restarted or REBOOTed, which may be confusing for
example when switching between programs. To change a break interrupt
character, specify a new one for the same device using a BREAK statement
and to remove it from memory, use a BREAK OFF statement.

	 The use of break interrupt is enabled or disabled separately for each device
by BREAK ON or BREAK OFF statements. By default, break interrupt
on the "console:" is enabled, while break interrupt on any of the commu-
nication channels is disabled.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	29

Chapter 2—Program Instructions

BREAK, cont.	
	 It is strongly recommended to include some facility for issuing a break

interrupt from the host computer in startup (autoexec) files. If not, you
may find yourself with an erroneous program running in a loop without
being able to break it!

Examples	 In this example, the ASCII character 127 decimal is selected and enabled
as BREAK character on the communication channel "uart1:":

	 10	 BREAK 1,127
	 20	 BREAK 1 ON
	
	
	
	
	 In next example, BREAK characters are specified for both the keyboard

("console:") and the serial communication channel "uart1:". The loop
can be interrupted either by pressing the key usually marked “F1” on the
printer’s keyboard, or by typing an uppercase X on the keyboard of the
host:

	 10	 BREAK 0,1:BREAK 1,88
	 20	 BREAK 0 ON:BREAK 1 ON
	 30	 GOTO 30
	 RUN
	 Reset BREAK to default by turning the printer off and on.

30	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

BREAK ON/OFF

Purpose	 Statement enabling or disabling break interrupt separately for the keyboard
and each serial communication channel.

Syntax	 BREAK<nexp>ON|OFF

<nexp>	 is one of the following devices:
	 0 = "console:"
	 1 = "uart1:"
	 2 = "uart2:"
	 3 = "uart3:"
	 7 = "uart4:"
	 8 = "uart5"
Default:	 Comm. ports: 	 	 Disabled
	 Console:	 	 Enabled

Remarks	 The use of the break interrupt specified by a BREAK statement can be
enabled or disabled separately for each serial communication channel or
for the printer’s built-in keyboard by BREAK ON or BREAK OFF state-
ments. By default, break interrupt is enabled from the printer’s keyboard
and disabled from all communication channels.

	 It is not possible to perform a break from the console on the PD41 printer.

	 BREAK OFF deletes any existing break interrupt character stored in the
printer’s temporary memory for the specified device.

Example	 In this example, the ASCII character 127 decimal is selected and enabled
as BREAK character on the communication channel "uart1:". At the same
time, BREAK from the printer’s keyboard is disabled.

	 10	 BREAK 1,127
	 20	 BREAK 1 ON:BREAK 0 OFF
	
	
	

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	3 1

Chapter 2—Program Instructions

BUSY

Purpose	 Statement ordering a busy signal, for example XOFF, CTS/RTS, or PE, to
be transmitted from the printer on the specified communication channel.

Syntax	 BUSY[<nexp>]

<nexp>	 optionally specifies the channel as:
	 1 = "uart1:"	 	
	 2 = "uart2:"
	 3 = "uart3:"	 	
	 4 = "centronics:"
	 7 = "uart4:"
	 8 = "uart5"

Remarks	 Communication protocol usually contain some “busy” signal, which tells
the host computer that the printer, for some reason, is unable to receive
data.

	 The BUSY statement allows you to order a busy signal to be transmitted
on the specified communication channel. If no channel is specified, the
signal will be transmitted on the standard OUT communication channel,
see SETSTDIO statement.

	 To allow the printer to receive more data, use a READY statement.

	 For the optional "centronics:" communication channel, BUSY/READY
control the PE (paper end) signal on pin 12 according to an error-trapping
routine (BUSY = PE high).

Example	 You may, for example, want to prevent the printer from receiving more
data on "uart2:" during the process of printing a label (running this
example requires an optional interface board to be fitted):

	 10	 FONT "Swiss 721 BT"
	 20	 PRTXT "HELLO!"
	 30	 BUSY2
	 40	 PRINTFEED
	 50	 READY2
	 RUN

32	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

CHDIR

Purpose	 Statement specifying the current directory.

Syntax	 CHDIR<scon>

<scon>	 specifies the current directory (see DEVICES)
Default:	 "/c"

Remarks	 By default, the printer’s permanent memory ("/c") is the current directory,
which means the directory that is used if the Intermec Fingerprint instruc-
tion does not contain any reference to a directory, for example FILES.
This implies that to access the temporary memory ("tmp:"), the storage
part of the RTC/Dallas key circuit ("storage:"), or an optional memory
card ("/rom" or "card1:"), you must include such a reference in your
instructions, for example FILES "/rom".

	 The CHDIR statement allows you to appoint another directory than "/c"
as the current directory. Obviously, this implies that you must specify the
permanent memory ("/c") whenever you want to access it.

Example	 In this example, the current directory is changed to "card1:", all files in
"card1:" are listed, and finally the current directory is changed back to
"/c". (This example is only included to illustrate the principles of changing
the current directory. It is more efficient to use FILES "card1:" to read its
contents.)

	 10	 CHDIR"card1:"
	 20	 FILES
	 30	 CHDIR"/c"
	 RUN
								

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	33

Chapter 2—Program Instructions

CHECKSUM

Purpose	 Statement calculating the checksum of a range of program lines in connec-
tion with the transfer of programs.

Syntax	 CHECKSUM(<nexp
1
>,<nexp

2
)

<nexp
1
>	 is the number of the first line in a range of program lines.

<nexp
2
>	 is the number of the last line in a range of program lines.

	
Remarks	 The checksum is calculated from parts of the internal code using an advan-

ced algorithm. Therefore, it is recommended to let the printer calculate the
checksum before the transfer of a program. After the transfer is completed,
let the receiving printer do the same calculation and compare the check-
sums.

Example	 In this example, the checksum is calculated of all program lines between
line 10 and line 2000 in the program "DEMO.PRG".

	 NEW
	 LOAD "DEMO.PRG"
	 PRINT CHECKSUM(10,2000)					
									 yields:
	 60095

34	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

CHR$

Purpose	 Function returning the readable character from a decimal ASCII code.

Syntax	 CHR$(<nexp>)

<nexp>	 is the decimal ASCII code to be converted to a readable character.

Remarks	 This function is useful for entering characters that cannot be produced
from the keyboard of the host, for example non-printable characters ASCII
0-31 dec. Only integers between 0 and 255 are allowed. Input less than 0
or larger than 255 will result in an error condition (Error 41, “Parameter
out of range)."

Example	 The decimal ASCII code for “A" is 65 and for “B" is 66.
	 10	 A$ = CHR$(65) 					
	 20	 B$ = CHR$(40+26)
	 30	 PRINT A$
	 40	 PRINT B$
	 RUN	 								
									 yields:
	 A
	 B

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	35

Chapter 2—Program Instructions

CLEANFEED

Purpose	 Statement running the printer’s feed mechanism.

Syntax	 CLEANFEED<nexp>

<nexp>	 is the feed length expressed as a positive or negative number of
dots.

Remarks	 The CLEANFEED statement activates the stepper motor that drives the
printer’s platen roller (the rubber roller beneath the printhead). In case of
thermal transfer printers, it also often drives the ribbon mechanism. The
motor will run regardless of possible error conditions, for example if the
printhead is lifted or not, or if there is no ribbon or media supply left.

	 Thus, the CLEANFEED statement is suitable for cleaning and for the
loading of transfer ribbon.

	 A positive CLEANFEED value makes the stepper motor rotate the rollers
forward, that is as when feeding out a label.

	 A negative CLEANFEED value makes the stepper motor rotate the rollers
backwards, that is as when pulling back a label.

	 The execution of a CLEANFEED statement, as opposed to TESTFEED,
does not affect the adjustment of the label stop sensor or black mark
sensor, regardless what type of media or other objects that passes the
sensor.

	 Note that the CLEANFEED statement, as opposed to FORMFEED,
always must be specified in regard of feed length.

Example	 In order to pull a cleaning card back and forth under the printhead three
times, three 1200 dots long positive CLEANFEEDs and then the same
amount of negative CLEANFEEDs are performed:

	 10	 FOR A%=1 TO 3
	 20	 CLEANFEED 1200
	 30	 CLEANFEED -1200
	 40	 NEXT
	 RUN

36	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

CLEAR

Purpose	 Statement clearing strings, variables, and arrays in order to free memory
space.

Syntax	 CLEAR

Remarks	 The CLEAR statement empties all strings, sets all variables to zero, and
resets all arrays to their default values. As a result, more free memory space
becomes available.

Example	 In this example, more free memory space is obtained after the strings have
been emptied by means of a CLEAR statement:

	 10	 A$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
	 20	 B$ = "abcdefghijklmnopqrstuvwxyz"
	 30	 FOR I%=0 TO 3:FOR J%=0 TO 3:FOR K%=0 TO 20
	 40	 C$(I%,J%)=C$(I%,J%)+A$
	 50	 NEXT K%:NEXT J%:NEXT I%
	 60	 PRINT "String A before: ";A$
	 70	 PRINT "String B before: ";B$
	 80	 PRINT "Free memory before: ";FRE(1)
	 90	 CLEAR
	 100	 PRINT "String A after: ";A$
	 110	 PRINT "String B after: ";B$
	 120	 PRINT "Free memory after: ";FRE(1)
	 RUN
	 yields:
	 String A before: ABCDEFGHIJKLMNOPQRSTUVWXYZ
	 String B before: abcdefghijklmnopqrstuvwxyz
	 Free memory before: 1867368
	 String A after:
	 String B after:
	 Free memory after: 1876200

	 Ok

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	3 7

Chapter 2—Program Instructions

CLIP

Purpose	 Statement for enabling/disabling the printing of partial fields.

Syntax	 CLIP [BARCODE [HEIGHT|INFORMATION|X|Y]][ON|OFF]

BARCODE	 toggles between partial bar code fields enable/disable.
BARCODE HEIGHT	 clips the height of the bar so the bar code will fit inside the print

window. A one-dimensional bar code may still be readable.
BARCODE INFORMATION	 clips the bar code lengthwise, so some bars will be missing,

making the bar code unreadable.
BARCODE X	 clips the part of the bar code that is outside the X-dimension of

the print window.
BARCODE Y	 clips the part of the bar code that is outside the Y-dimension of

the print window.
ON	 enables use of partial text, image, line, and box fields.
OFF	 disables use of partial text, image, line, and box fields.

	
Remarks	 Partial fields means that the firmware will accept and print text, bar code,

image, lines, and box fields even if they extend outside the print window
as specified by the printer’s setup in regard of X-Start, Width, and Length.
Even negative PRPOS values are allowed. However, all parts the fields out-
side the print window will be excluded from the printout, that is they will
be clipped at the borders of the print window.

	 There are two main cases:

	 CLIP BARCODE [HEIGHT|INFORMATION|X|Y] is used for bar code
fields only. (Note that some bar codes, like Maxicode, consist of images
and should in this context be regarded as image fields.)

	 CLIP ON|OFF is only used for text, image, line, and box fields.

	 When the use of partial fields is disabled, the Error 1003, “Field out of
label” will result if any field extends outside the print window.

	 Note the difference between the physical size of the label and the size of
the print window specified by the printer’s setup. It is the latter that deci-
des were the fields will be clipped.

Example	 In this example, only the last part of the text will be printed:
	 10	 CLIP ON
	 20	 PRPOS -100,30	
	 30	 PRTXT "INTERMEC PRINTER"
	 40	 PRINTFEED
	 RUN	

38	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

CLL

Purpose	 Statement for partial or complete clearing of the print image buffer.

Syntax	 CLL [<nexp>]

<nexp>	 optionally specifies the field from which the print image buffer
should be cleared.

Remarks	 The print image buffer is used to store the printable image after processing
awaiting the printing to be executed. The buffer can be cleared, partially or
completely, by the use of a CLL statement:

	 -	 CLL<nexp> partially clears the buffer from a specified field to the end
of the program. The field is specified by a FIELDNO function.

		 Partial clearing is useful in connection with print repetition. To avoid
superfluous reprocessing, one or several fields can be erased from the
buffer and be replaced by other information, while the remaining parts
of the label are retained in the buffer.

		 Note that there must be no changes in the layout between the PRINT-
FEED and the CLL statements, or else the layout will be lost. Also
note that partial clearing always starts from the end, which means that
the fields which are executed last are cleared first.

	 - 	 CLL (without any field number) clears the buffer completely.

		 When certain error conditions have occurred, it is useful to be able
to clear the print image buffer without having to print a faulty label.
Should the error be attended to, without the image buffer being clea-
red, there is a risk that the correct image will be printed on top of the
erroneous one on the same label. It is therefore advisable to include a
CLL statement in your error-handling subroutines, when you are wor-
king with more complicated programs, in which all implications may
be difficult to grasp.

		

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	39

Chapter 2—Program Instructions

CLL, cont.

Examples	 Partial clearing:
	 Two labels are printed, each with two lines of text. After the first label is

printed, the last line is cleared from the print image buffer and a new line
is added in its place on the second label:

	 10	 PRPOS 100,300
	 20	 FONT "Swiss 721 BT"
	 30	 PRTXT "HAPPY"
	 40	 A%=FIELDNO
	 50	 PRPOS 100,250
	 60	 PRTXT "NEW YEAR!"
	 70	 PRINTFEED
	 80	 CLL A%
	 90	 PRPOS 100,250
	 100	 PRTXT "BIRTHDAY!"
	 110	 PRINTFEED
	 RUN

	 Complete clearing:
	 In this example, the print image buffer will be cleared completely if Error

1030, “Character missing in chosen font” occurs.
	 10	 ON ERROR GOTO 1000
	
	
	
	 1000	IF ERR=1030 GOSUB 1100
	 1010	RESUME NEXT
	
	
	 1100	CLL
	 1110	PRINT "CHARACTER MISSING"
	 1120	RETURN

40	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

CLOSE

Purpose	 Statement closing one or several files and/or devices for input/output.

Syntax	 CLOSE[[#] <nexp> [, [#] <nexp>...]]

#	 optionally indicates that whatever follows is a number.
<nexp>	 is the number assigned to a file or device when it was OPENed.

Remarks	 This statement revokes OPEN. Only files or devices, which already have
been OPENed, can be CLOSEd.

	 A CLOSE statement for a file or device OPENed for sequential output
entails that the data in the buffer will be written to the file/device in ques-
tion automatically before the channel is closed.

	 When a file OPENed for random access is CLOSEd, all its FIELD defini-
tions will be lost.

	 END, NEW, and RUN will also close all open files and devices.

Examples	 This statement closes all open files and devices:
	 200	 CLOSE

	 A number of files or devices (No. 1-4) can be closed simultaneously using
any of the following types of statement:

	 200	 CLOSE 1,2,3,4
	 or
	 200	 CLOSE #1,#2,#3,#4
	 or
	 200	 CLOSE 1,2,#3,4

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	4 1

Chapter 2—Program Instructions

COM ERROR ON/OFF

Purpose	 Statement enabling/disabling error handling on the specified communica-
tion channel.

Syntax	 COM↔ERROR<nexp>ON|OFF

<nexp>	 is one of the following communication channels:
	 1 = "uart1:"	 	
	 2 = "uart2:"
	 3 = "uart3:"	
	 4 = "centronics:"
	 7 = "uart4:"
	 8 = "uart5"
Default:	 COM ERROR OFF on all channels.

Remarks	 This function is closely related to COMSET, ON COMSET GOSUB,
COMSET ON, COMSET OFF, COMSTAT, and COMBUF$.

	 Each character received is checked for the following errors:
	 • Received break
	 • Framing error
	 • Parity Error
	 • Overrun error

	 If any such communication error occurs and COM ERROR is ON for the
channel in question, the reception will be interrupted. This condition can
be read by means of a COMSTAT function, but you cannot read exactly
what type of error has occurred. COM ERROR OFF disables this type of
error-handling for the specified channel.

	 COM ERROR ON cannot be used with USB (comm. channel #6).

Example	 In this example, a message will appear on the screen when the reception is
interrupted by any of four COMSET conditions being fulfilled:

	 10	 COM ERROR 1 ON
	 20	 A$="Max. number of char. received"
	 30	 B$="End char. received"
	 40	 C$="Attn. string received"
	 50	 D$="Communication error"
	 60	 COMSET 1, "A",CHR$(90),"#","BREAK",20
	 70	 ON COMSET 1 GOSUB 1000
	 80	 COMSET 1 ON
	 90	 IF QDATA$="" THEN GOTO 90
	 100	 END
	 1000	QDATA$=COMBUF$(1)
	 1010	IF COMSTAT(1) AND 2 THEN PRINT A$
	 1020	IF COMSTAT(1) AND 4 THEN PRINT B$
	 1030	IF COMSTAT(1) AND 8 THEN PRINT C$
	 1040	IF COMSTAT(1) AND 32 THEN PRINT D$
	 1050	PRINT QDATA$:RETURN	

42	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

COMBUF$
Purpose	 Function reading the data in the buffer of the communication channel

specified by a COMSET statement.

Syntax	 COMBUF$(<nexp>)

<nexp>	 is one of the following communication channels:
	 1 = "uart1:"	 	
	 2 = "uart2:"
	 3 = "uart3:"	
	 4 = "centronics:"
	 5 = "net1:"
	 6 = "usb1:"
	 7 = "uart4:"
	 8 = "uart5"

Remarks	 This function is closely related to COMSET, ON COMSET GOSUB,
COMSET ON, COMSET OFF, COM ERROR ON/OFF, and COM-
STAT. Using COMBUF$, the buffer can be read and the content be used
in your program.

	 When the communication has been interrupted by any of the three con-
ditions "end character", "attention string", or "max. no. of char." (see
COMSET), you may use an ON COMSET GOSUB subroutine and
assign the data from the buffer to a variable as illustrated in the example
below.

	 Note that COMBUF$ filters out any incoming ASCII 00 dec. characters
(NUL) by default. Filtering can be enabled/disabled using SYSVAR(44).

Example	 In this example, the data from the buffer is assigned to the string variable
A$ and printed on the screen:

	 1	 REM Exit program with #STOP&
	 10	 COMSET1,"#","&","ZYX","=",50
	 20	 ON COMSET 1 GOSUB 2000
	 30	 COMSET 1 ON
	 40	 IF A$ <> "STOP" THEN GOTO 40
	 50	 COMSET 1 OFF
	
	
	 1000	END
	 2000	A$= COMBUF$(1)
	 2010	PRINT A$
	 2020	COMSET 1 ON
	 2030	RETURN

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	43

Chapter 2—Program Instructions

COMSET

Purpose	 Statement setting the parameters for background reception of data to the
buffer of a specified communication channel (see COMBUF$).

Syntax	 COMSET<nexp
1
>,<sexp

1
>,<sexp

2
>,<sexp

3
>,<sexp

4
>,<nexp

2
>

<nexp
1
>	 is one of the following communication channels:

	 1 = "uart1:"	 	
	 2 = "uart2:"
	 3 = "uart3:"	
	 4 = "centronics:"
	 5 = "net1:"
	 6 = "usb1:"
	 7 = "uart4:"
	 8 = "uart5"
<sexp

1
>	 specifies the start of the message string (max. 12 char).

<sexp
2
>	 specifies the end of the message string (max. 12 char).

<sexp
3
>	 specifies characters to be ignored (max. 42 char).

<sexp
4
>	 specifies the attention string (max. 12 char).

<nexp
2
>	 specifies the max. number of characters to be received. Enter a

value ≥1. (If <nexp
2
> = 0, the first character will be lost.)

	
Remarks	 Data can be received by a buffer on each of the communication channels

without interfering with the running of the current program. At an appro-
priate moment, the program can fetch the data in the buffer and use them
according to your instructions. Such background reception has priority
over any ON KEY GOSUB statement.

	 Related instructions are COMSTAT, ON COMSET GOSUB, COMSET
ON, COMSET OFF, COM ERROR ON/OFF, and COMBUF$.

	 The communication channels are explained in connection with the DEVI-
CES statement.

	 The start and end strings are character sequences which tells the printer
when to start or stop receiving data. Max. 12 characters, may be "".

	 It is possible to make the printer ignore certain characters. Such characters
are specified in a string, where the order of the individual characters does
not matter. Max. 42 characters, may be "".

	 The attention string interrupts reception. Max. 12 characters, may be "".

	 The length of the afore-mentioned COMSET strings are checked before
they are copied into the internal structure. If any of these strings are too
long, Error 26, “Parameter too large” will occur.

	 When the printer has received the specified maximum number of charac-
ters, without previously having encountered any end string or attention
string, the transmission will be interrupted. The maximum number of
characters also decides how much of the memory will be allocated to the
buffer.

44	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

COMSET, cont.
	 The reception of data to the buffer can be interrupted by four conditions:

	 •	 If an end string being encountered.

	 •	 If an attention string being encountered.

	 •	 If the maximum number of characters being received.

	 •	 If error-handling is enabled for the communication channel in question
(see COM ERROR ON/OFF) and an communication error occurs.
This condition can be checked by a COMSTAT function.

	 Any interruption will have a similar effect as a COMSET OFF statement,
that is close the reception, but the buffer will not be emptied and can still
be read by a COMBUF$ function. After the reception has been interrup-
ted, an ON COMSET GOSUB statement can be issued to control what
will happen next.

	 COMSET does not support auto-hunting (see SETSTDIO).

Example	 This example shows how "uart1:" is opened for background communica-
tion. Any record starting with the character # and ending with the char-
acter & will be received. The characters Z, Y and X will be ignored. The
character = will stop the reception. Max. 50 characters are allowed.

	 1	 REM Exit program with #STOP&
	 10	 COMSET1,"#","&","ZYX","=",50
	 20	 ON COMSET 1 GOSUB 2000
	 30	 COMSET 1 ON
	 40	 IF A$ <> "STOP" THEN GOTO 40
	 50	 COMSET 1 OFF
	
	
	 1000	END
	 2000	A$= COMBUF$(1)
	 2010	PRINT A$
	 2020	COMSET 1 ON
	 2030	RETURN

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	45

Chapter 2—Program Instructions

COMSET OFF

Purpose	 Statement turning off background data reception and emptying the buffer
of the specified communication channel.

Syntax	 COMSET<nexp>OFF

<nexp>	 is one of the following communication channels:
	 1 = "uart1:"	 	
	 2 = "uart2:"
	 3 = "uart3:"	
	 4 = "centronics:"
	 5 = "net1:"
	 6 = "usb1:"
	 7 = "uart4:"
	 8 = "uart5"
	

Remarks	 This statement is closely related to COMSET, ON COMSET GOSUB,
COMSTAT, COMSET ON, COM ERROR ON/OFF, and COMBUF$.

	 The COMSET OFF statement closes the reception and empties the buffer
of the specified communication channel.

Example	 In this example, the COMSET OFF statement is used to close "uart1:" for
background reception and empty the buffer:

	 1	 REM Exit program with #STOP&
	 10	 COMSET1,"#","&","ZYX","=",50
	 20	 ON COMSET 1 GOSUB 2000
	 30	 COMSET 1 ON
	 40	 IF A$ <> "STOP" THEN GOTO 40
	 50	 COMSET 1 OFF
	
	
	 1000	END
	 2000	A$= COMBUF$(1)
	 2010	PRINT A$
	 2020	COMSET 1 ON
	 2030	RETURN

46	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

COMSET ON

Purpose	 Statement emptying the buffer and turning on background data reception
on the specified communication channel.

Syntax	 COMSET<nexp>ON

<nexp>	 is one of the following communication channels:
	 1 = "uart1:"	 	
	 2 = "uart2:"
	 3 = "uart3:"	
	 4 = "centronics:"
	 5 = "net1:"
	 6 = "usb1:"
	 7 = "uart4:"
	 8 = "uart5"

Remarks	 This statement is closely related to COMSET, ON COMSET GOSUB,
COMSTAT, COMSET OFF, COM ERROR ON/OFF, and COMBUF$.
It allows you to open any of the communication channels for background
data reception with an empty buffer, provided the communication parame-
ter for the channel has already been set up by a COMSET statement.

	 When the reception has been interrupted by the reception of an end cha-
racter, an attention string or the max. number of characters, the buffer can
be emptied and the reception reopened by issuing a new COMSET ON
statement.

Example	 In this example, the COMSET ON statement on line 30 is used to open
"uart1:" for background reception. After the buffer has been read, it is
emptied and the reception is reopened by a new COMSET ON statement
in the subroutine on line 2020:

	 1	 REM Exit program with #STOP&
	 10	 COMSET1,"#","&","ZYX","=",50
	 20	 ON COMSET 1 GOSUB 2000
	 30	 COMSET 1 ON
	 40	 IF A$ <> "STOP" THEN GOTO 40
	 50	 COMSET 1 OFF
	
	
	 1000	END
	 2000	A$= COMBUF$(1)
	 2010	PRINT A$
	 2020	COMSET 1 ON
	 2030	RETURN

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	4 7

Chapter 2—Program Instructions

COMSTAT

Purpose	 Function reading the status of the buffer of a communication channel.

Syntax	 COMSTAT(<nexp>)

<nexp>	 is one of the following communication channels:
	 1 = "uart1:"	 	
	 2 = "uart2:"
	 3 = "uart3:"	
	 4 = "centronics:"
	 5 = "net1:"
	 6 = "usb1:"
	 7 = "uart4:"
	 8 = "uart5"

Remarks	 This function is closely related to COMSET, ON COMSET GOSUB,
COMSET ON, COMSET OFF, COM ERROR ON/OFF, and
COMBUF$. It allows you to find out if the buffer is able to receive back-
ground data, or—if not—what condition has caused the interruption.

	 The buffer’s status is indicated by a numeric expression, which is the sum
of the values given by the following conditions:

	 Copy of hardware handshake bit (not on "net1:" or "usb1:")	 0 or 1

	 Interruption: Max. number of characters received	 2

	 Interruption: End character received	 4

	 Interruption: Attention string received	 8

	 Interruption: Communication error (not on "net1:" or "usb1:")	 32

Example	 A message will appear on the screen when the reception is interrupted by
any of four COMSET conditions being fulfilled:

	 10	 COM ERROR 1 ON
	 20	 A$="Max. number of char. received"
	 30	 B$="End char. received"
	 40	 C$="Attn. string received"
	 50	 D$="Communication error"
	 60	 COMSET 1, "A",CHR$(90),"#","BREAK",20
	 70	 ON COMSET 1 GOSUB 1000
	 80	 COMSET 1 ON
	 90	 IF QDATA$="" THEN GOTO 90
	 100	 END
	 1000	QDATA$=COMBUF$(1)
	 1010	IF COMSTAT(1) AND 2 THEN PRINT A$
	 1020	IF COMSTAT(1) AND 4 THEN PRINT B$
	 1030	IF COMSTAT(1) AND 8 THEN PRINT C$
	 1040	IF COMSTAT(1) AND 32 THEN PRINT D$
	 1050	PRINT QDATA$
	 1060	RETURN

48	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

CONT

Purpose	 Statement for resuming execution of a program that has been interrupted
by means of a STOP, BREAK, or DBBREAK statement.

Syntax	 CONT

Remarks	 The CONT statement may be used to resume program execution after a
STOP, BREAK, or DBBREAK statement has been executed. Execution
continues at the point where the break happened with the STDIO set-
tings restored.

	 CONT is usually used in conjunction with DBBREAK or STOP for
debugging. When execution is stopped, you can examine or change
the values of variables using direct mode statements. You may then use
CONT to resume execution. CONT is invalid if the program has been
editied during the break.

	 It is also possible to resume execution at a specified program line using a
GOTO statement in the immediate mode.

Example	 10	 A%=100
	 20	 B%=50
	 30	 IF A%=B% THEN GOTO QQQ ELSE STOP
	 40	 GOTO 30
	 50	 QQQ:PRINT "Equal"
	
	 Ok
	 RUN
	 Break in line 30

	 Ok	
	 PRINT A%
	 100

	 Ok
	 PRINT B%
	 50

	 Ok
	 B%=100

	 Ok
	 CONT
	 Equal

	 Ok

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	49

Chapter 2—Program Instructions

COPY

Purpose	 Statement for copying files.

Syntax	 COPY<sexp
1
>[,<sexp

2
>]

<sexp
1
>	 is the name and optionally directory of the original file.

<sexp
2
>	 is, optionally, a new name and/or directory for the copy.

Remarks	 This statement allows you to copy a file to another name and/or directory
as an alternative to LOADing the file in question and then SAVEing it.

 	 If no directory is specified for the original and/or copy, the current direc-
tory will be used by default (see CHDIR statement). By default, the cur-
rent directory is "/c", which is the printer’s permanent memory. If the file
is to be copied from or to another directory than the current one, the file
name must contain a directory reference.

	 A file cannot be copied to the same name in the same directory.

	 In addition to copying files to the printer’s permanent or temporary
memory or a DOS-formatted memory card, a file can also be copied to an
output device such as the printer’s display or a serial communication chan-
nel. Copying a program to the standard OUT channel has the same effect
as LOADing and LISTing it.

	 Note that bitmap fonts and images are not files and therefore cannot be
copied.

Examples	 In the following examples, "/c" is the current directory.
	 Copying a file from "card1:" to the current directory without changing the

file name:
	 COPY "card1:LABEL1.PRG"

	 Copying a file from "card1:" to the current directory and changing the file
name:

	 COPY "card1:FILELIST.PRG","COPYTEST.PRG"

	 Copying a file from "/c" to a directory other than the current one without
changing the file name:

	 COPY "/c/FILELIST.PRG","card1:FILELIST.PRG"

	 Copying a file in the current directory to a new name within the same
directory:

	 COPY "LABEL1.PRG","LABEL2.PRG"

	 Copying a file in the current directory to serial channel "uart1:":
	 COPY "LABEL1.PRG","uart1:"

50	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

COUNT&

Purpose	 Statement for creating a counter (Intermec Direct Protocol only).

Syntax	 COUNT& <sexp
1
>,<nexp

1
>,<sexp

2
>

<sexp
1
>	 is the type of counter parameter to be set:

	 START	(start value)
	 WIDTH	 (minimum number of digits)
	 COPY	 	 (number of copies before update)
	 INC	 	 (increment/decrement at update)
	 STOP	 	 (stop value)
	 RESTART	 (restart counting at this value)
<nexp

1
>	 is the counter reference number (integers only)

<sexp
2
>	 is the parameter value

Remarks	 This instruction can only be used in the Intermec Direct Protocol.

	 The counters can be used in text and bar code fields and are global, which
means that they are not connected to any special label or layout, but will
be updated at every execution of PRINTFEED statements where the coun-
ter in question is used.

	 Counters are designated using positive integers, for example 1, 2, or 3.
When used for printing, they are referred to by “CNT<ncon>$” variables,
where <ncon> is the number of the counter as specified by COUNT&, for
example CNT5$. A counter variable without a matching counter will be
regarded as a common string variable.

	 The value of the start, stop, and restart parameters decide the type of coun-
ter (alpha or numeric). If different types of counter are specified in these
parameters, the last entered parameter decides the type. Alpha counters
count A-Z whereas numeric counters use numbers without any practical
limit.

	 Counters are not saved in the printer’s memory, but will have to be recrea-
ted after each power up. Therefore, it may be wise to save the COUNT&
statements as a file in the host.

	 START:
	 Decides the first value to be printed. If a single letter is entered (A-Z),

the counter will become an alpha counter, and if one or several digits are
entered the counter will be numeric. Numeric values can be positive or
negative. Negative values are indicated by a leading minus sign.

	 Default: 1 (numeric) or A (alpha)

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	5 1

Chapter 2—Program Instructions

COUNT&, cont.
	 WIDTH:
	 This parameter can only be used in numeric counters and decides the

minimum number of digits to be printed. If the counter value contains
a lesser number of digits, leading zero (0) characters will be added until
the specified number of digits is obtained. If the number of digits in the
counter value is equal to or larger than specified in the width parameter,
the value will be printed in its entity.

	 Default: 1 (no leading zeros)

	 COPY:
	 Decides how many copies (labels etc.) will be printed before the counter is

updated according to the INC parameter.
	 Default: 1

	 INC:
	 Decides by which value the counter should be incremented or decremen-

ted when it is updated. In case of decrementation, the value should contain
a leading minus sign.

	 Default: 1
	 STOP:
	 Decides the value after which the counter should start all over again at the

value specified by the RESTART parameter. If a single letter is entered (A-
Z), the counter will become an alpha counter, and if one or several digits
are entered the counter will be numeric. When a counter is decremented,
a stop value less than the start value must be given, since the default stop
value will never be reached.

	 Default: 2,147,483,647 (numeric) or Z (alpha)

	 RESTART:
	 Decides at which value the counter should start all over again after having

exceeded the STOP parameter value. If a single letter is entered (A-Z), the
counter will become an alpha counter, and if one or several digits are ente-
red the counter will be numeric.

	 Default: 1 (numeric) or A (alpha)
	
Examples	 In this example, a counter is created. It will start at number 100 and be

updated by a value of 50 after every second label until the value 1000 is
reached. Then the counter will start again at the value 200. All values will
be expressed as 4-digit numbers with leading zeros.

	 COUNT& "START",1,"100" ↵
	 COUNT& "WIDTH",1,"4" ↵
	 COUNT& "COPY",1,"2" ↵
	 COUNT& "INC",1,"50" ↵
	 COUNT& "STOP",1,"1000" ↵
	 COUNT& "RESTART",1,"200" ↵

52	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

CURDIR$

Purpose	 Function returning the current directory as the printer stores it.

Syntax	 CURDIR$

Example	 CHDIR "/c/DIR1/DIR2"
	 PRINT CURDIR$

yields:
	 /c/DIR1/DIR2

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	53

Chapter 2—Program Instructions

CSUM

Purpose	 Statement calculating the checksum of an array of strings.

Syntax	 CSUM<ncon>,<svar>,<nvar>

<ncon>	 is the type of checksum calculation:
	 1: 	 Longitudinal Redundancy Check (LRC)
	 	 XOR in each character in each string
	 	 array[0][0] xor array[0][1] ... array[n][n]
	 2: 	 Diagonal Redundancy Check (DRC)
	 	 right rotation, then XOR on each character in each 	

	 string
	 	 rot(array[0][0] xor array[0][1]
	 3: 	 Longitudinal Redundancy Check (LRC)
	 	 Strip string of DLE (0x10) before doing the LRC
<svar>	 if <ncon> =1 or 2: The array of strings of which the checksum is

to be calculated.
	 if <ncon> = 3: Checksum string.	
<nvar>	 is the variable in which the result will be presented.

Remarks	 These types of checksum calculation can only be used for string arrays,
not for numeric arrays. In case of CSUM 3,<svar>,<nvar>, the resulting
variable will be the indata for next CSUM calculation, unless the variable
is reset.

Example	 In this example, the DRC checksum of an array of strings is calculated:
	 10	 ARRAY$(0)="ALPHA"
	 20	 ARRAY$(1)="BETA"
	 30	 ARRAY$(2)="GAMMA"
	 40	 ARRAY$(3)="DELTA"
	 50	 CSUM 2,ARRAY$,B%
	 60	 PRINT B% :REM DRC CHECKSUM
	 RUN
									 yields:
	 252

54	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

CUT

Purpose	 Statement activating an optional cutter.

Syntax	 CUT
	
Remarks	 Obviously, this statement only works with printers fitted with a cutter. A

cutter is normally used to cut non-adhesive paper strip or to cut through
the liner between self-adhesive labels.

	 When a PRINTFEED statement is executed, the printer feeds out a cer-
tain amount of the media according to the printer’s setup in regard of star-
tadjust and stopadjust, as explained in its User’s Guide . Then the cutter
can be activated by a CUT statement.

Example	 This program orders the printer to print a text and then cut off the media:
	 10	 PRPOS 250,250
	 20	 DIR 1
	 30	 ALIGN 4
	 40	 FONT "Swiss 721 BT"
	 50	 PRTXT "Hello everybody!"
	 60	 PRINTFEED
	 70	 CUT
	 RUN

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	55

Chapter 2—Program Instructions

CUT ON/OFF

Purpose	 Statement enabling or disabling automatic cutting after PRINTFEED
execution and optionally adjusting the media feed before and after the cut-
ting.

Syntax	 CUT [<nexp>] ON|CUT OFF

<nexp>	 is optionally the length of media to be fed out before cutting and
pulled back after cutting.

Default: CUT OFF

Remarks	 This statement makes it possible to enable or disable automatic execution
of a CUT operation directly after the execution of each PRINTFEED sta-
tement. If any extra media feed in connection with the cutting operation is
required, use startadjust and stopadjust setup or specify the desired length
of media to be fed out before the cutting is performed and pulled back
afterwards in the CUT ON statement.

	 The amount of media feed (<nexp>) will not automatically be reset to 0
(zero) by an CUT OFF statement, but must be manually be specified as 0
(CUT 0 ON:CUT OFF). However, a reboot resets it to 0.

Example	 This program enables automatic cutting and orders the printer to print a
text and feed out an extra amount of strip before cutting the media. The
media is then pulled back the same distance:

	 10	 CUT 280 ON
	 20	 PRPOS 250,250
	 30	 DIR 1
	 40	 ALIGN 4
	 50	 FONT "Swiss 721 BT"
	 60	 PRTXT "Hello everybody!"
	 70	 PRINTFEED
	 RUN

56	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

DATE$

Purpose	 Variable for setting or returning the current date.

Syntax	 Setting the date:	 	 DATE$=<sexp> 	

<sexp>	 sets the current date by a 6-digit number specifying Year, Month
and Day (YYMMDD).

	
	 Returning the date:	 <svar>=DATE$[(<sexp>)]

<svar>	 returns the current date according to the printer’s calendar.
<sexp>	 is an optional flag "F", indicating that the date will be returned

according to the format specified by FORMAT DATE$.

Remarks	 This variable works best if a real-time clock circuit (RTC) is fitted on the
printer’s CPU board. The RTC is battery backed-up and will keep record
of the time even if the power is turned off or lost.

	 If no RTC is installed, the internal clock will be used. After startup, an
error will occur when trying to read the date or time before the internal
clock has been manually set by means of either a DATE$ or a TIME$
variable. If only the date is set, the internal clock starts at 00:00:00 and if
only the time is set, the internal clock starts at Jan 01, 1980. After setting
the internal clock, you can use the DATE$ and TIME$ variables the same
way as when an RTC is fitted, until a power off or REBOOT causes the
date and time values to be lost.

	 Date is always entered and, by default, returned in the order YYMMDD,
where:

	 YY	 =	 Year	 Last two digits	 (for example 2003 = 03)
	 MM	 =	 Month	 Two digits	 (01-12)
	 DD	 =	 Day	 Two digits	 (01-28|29|30|31)
	 Example: December 1, 2003 is entered as "031201".

	 The built-in calendar corrects illegal values for the years 1980-2048, for
example the illegal date 031232 will be corrected to 040101.

	 The format for how the printer will return dates can be changed by means
of a FORMAT DATE$ statement and returned by DATE$("F").

Example	 Setting the date and then returning the date in two different formats:
	 10	 DATE$ = "031201"			 (sets date)
	 20	 FORMAT DATE$ "DD/MM/YYYY"	 (sets date format)
	 30	 PRINT DATE$		 (returns unformatted date)
	 40	 PRINT DATE$("F")	 (returns formatted date)
	 RUN
									 yields:
	 031201
	 01/12/2003

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	5 7

Chapter 2—Program Instructions

DATEADD$

Purpose	 Function returning a new date after a number of days have been added to,
or subtracted from, the current date or optionally a specified date.

Syntax	 DATEADD$([<sexp
1
>,]<nexp>[,<sexp

2
>])

<sexp
1
>	 is any date given according to the DATE$ format, which a certain

number of days should be added to or subtracted from.
<nexp>	 is the number of days to be added to (or subtracted from) the

current date or optionally the date specified by <sexp
1
>.

<sexp
2
>	 is one or two optional flags "F" or "M":

	 "F" specifies that the date will be returned according to the
format specified by FORMAT DATE$.

	 "M" specifies the value given in <nexp> will mean months
instead of days.

Remarks	 The original date (<sexp1>) should be entered according to the syntax for
the DATE$ variable, that is in the order YYMMDD, where:

	 YY	 =	 Year	 Last two digits	 (for example 2003 = 03)
	 MM	 =	 Month	 Two digits	 (01-12)
	 DD	 =	 Day	 Two digits	 (01-28|29|30|31)
	 Example: December 1, 2003 is entered as "031201".

	 The built-in calendar corrects illegal values for the years 1980-2048, for
example the illegal date 031232 will be corrected to 040101. When for
example, adding one month to the date 2004-01-31, the result will be
rounded off to 2004-02-29 (2004 is a leap year).

	 The number of days to be added or subtracted should be specified as a
positive or negative numeric expression respectively.

	 If no "F" flag is included in the DATEADD$ function, the result will be
returned according to the DATE$ format, see above.

	 If the DATEADD$ function includes an "F" flag, the result will be retur-
ned in the format specified by FORMAT DATE$.

	 "F" and "M" flags can be combined in the same instruction without any
separating character, that is, "FM" or "MF". No other characters are accep-
ted.

58	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

DATEADD$, cont.

Examples	 10	 DATE$ = "031201"
	 20	 A%=15
	 30	 B%=-10
	 40	 FORMAT DATE$ "DD/MM/YY"
	 50	 PRINT DATEADD$("031201",A%)
	 60	 PRINT DATEADD$("031201",A%,"F")
	 70	 PRINT DATEADD$(B%,"F")
	 RUN
									 yields:
	 031216
	 16/12/03
	 21/11/03

	 DATE$="040131"
	 FORMAT DATE$ "YYYY/MM/DD"
	 ? DATEADD$(1,"F"),DATEADD$(1,"M"),DATEADD$(1,"FM")
	 2004/02/01	 040229	 2004/02/29
	
	 Ok
	 ? DATEADD$("040131",1,"F"),→
	 →DATEADD$("040131",2,"M"),→
	 →DATEADD$(040131",3,"FM")
	 2004/02/01	 040331	 2004/04/30

	 Ok
	

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	59

Chapter 2—Program Instructions

DATEDIFF

Purpose	 Function returning the difference between two dates as a number of days.

Syntax	 DATEDIFF(<sexp
1
>,<sexp

2
>)

<sexp
1
>	 is one of two dates (date 1).

<sexp
2
>	 is the other of two dates (date 2).

Remarks	 To get the result as a positive numeric value, the two dates, for which the
difference is to be calculated, should be entered with the earlier of the dates
(date 1) first and the later of the dates (date 2) last, see the first example
below.

	 If the later date (date 2) is entered first, the resulting value will be negative,
see the second example below.

	 Both dates should be entered according to the syntax for the DATE$ vari-
able, that is in the order YYMMDD, where:

	 YY	 =	 Year	 Last two digits	 (for example 2003 = 03)
	 MM	 =	 Month	 Two digits	 (01-12)
	 DD	 =	 Day	 Two digits	 (01-28|29|30|31)
	 Example: December 1, 2003 is entered as "031201".

	 The built-in calendar corrects illegal values for the years 1980-2048, for
example the illegal date 031232 will be corrected to 040101.

Examples	 Calculation of the difference in days between the dates October 1, 2003
and November 30, 2003:

	 10	 A%=DATEDIFF("031001","031130")
	 20	 PRINT A%		
	 RUN
									 yields:
	 60		

	 If the later date is entered first, the result will be negative:
	 10	 A%=DATEDIFF("031130","031001")
	 20	 PRINT A%		
	 RUN
									 yields:
	 -60

60	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

DBBREAK

Purpose	 Statement for adding or deleting a breakpoint for the Fingerprint Debug-
ger.

Syntax	 DBBREAK<nexp>|<sexp>[ON|OFF]

<nexp>	 is the line number where the debugger will break and also the
name of the breakpoint.

<sexp>	 is the line label where the debugger will break and also the name
of the breakpoint.

ON	 adds the specified breakpoint (default).
OFF	 deletes the specified breakpoint.

Remarks	 The execution of a program will break at each program line, that has been
specified as a breakpoint, and the message “break in line nnn” will be trans-
mitted on the Debug STDOUT port. If a CONT statement is issued, the
execution will continue at next line, whereas if RUN is issued, the execu-
tion will start again from the first program line.

	 The line number or line label does not to have to exist when a breakpoint
is added, but if a non-existing breakpoint is deleted an error will occur
(Error 39 or 70).

	 There is no error given if a breakpoint is added more than once. When a
breakpoint is deleted, all breakpoints with the same name are deleted at the
same time. There will only be one break for each line even if there are more
than one breakpoint on that line.

	 When a NEW statement is issued, all breakpoints will be deleted.

	 If a breakpoint is set on a line with a call to a FOR or WHILE loop, there
will only be one break on that line (the first time it is executed).

	 Related instructions are DBBREAK OFF, DBEND, DBSTDIO,
DBSTEP, and STOP.

Example	 10	 PRINT "A"
	 20	 PRINT "B"
	 30	 PRINT "C"
	 DBBREAK 20 ON
	 RUN
	 yields:
	 A
	 Break in line 20

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	6 1

Chapter 2—Program Instructions

DBBREAK OFF

Purpose	 Statement for deleting all breakpoints for the Fingerprint Debugger.

Syntax	 DBBREAK OFF	

Remarks	 This statement is similar to DBBREAK<nexp>|<sexp>OFF but deletes all
breakpoints instead of just one breakpoint at the time.

	 Related instructions are DBBREAK, DBEND, DBSTDIO, and DBSTEP.

62	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

DBEND

Purpose	 Statement for terminating the Fingerprint Debugger.

Syntax	 DBEND	

Remarks	 This statement is used for terminating the Fingerprint Debugger prematu-
rely and restore the STDIO settings as they were before the Debugger was
started.

	 Related instructions are DBBREAK, DBBREAK OFF, DBSTDIO, and
DBSTEP.

	

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	63

Chapter 2—Program Instructions

DBSTDIO

Purpose	 Statement for selecting the standard IN/OUT channel for the Fingerprint
Debugger.

Syntax	 DBSTDIO <nexp
1
>,<nexp

2
>[,<sexp

1
>,<sexp

2
>]

	 DBSTDIO [<nexp
1
>,<nexp

2
>,]<sexp

1
>,<sexp

2
>

<nexp
1
>	 is the desired Debug STDIN channel:

	 0 = "console:"
	 1 = "uart1:"	 (default)	 	
	 2 = "uart2:"
	 3 = "uart3:"	 	
	 4 = "centronics:"
	 5 = "net1:"
	 6 = "usb1:"
	 7 = "uart4:"
	 8 = "uart5:"
<nexp

2
>	 is the desired Debug STDOUT channel:

	 0 = "console:"
	 1 = "uart1:"	 (default)	 	
	 2 = "uart2:"
	 3 = "uart3:"
	 5 = "net1:"
	 6 = "usb1:"
	 7 = "uart4:"
	 8 = "uart5:"
<sexp

1
>	 Preamble 	 (default: empty string)

<sexp
2
>	 Postamble 	 (default: empty string)

Remarks	 The maximum size of the preamble and postamble strings is 12 characters.

	 Related instructions are CONT, DBBREAK, DBBREAK OFF, DBEND,
DBSTEP, and STOP.

Example	 This statement selects "uart2:" as Debug STDIO channel. Preamble is
specified as “in" and postamble as “out":

	 DBSTDIO 2,2,"in","out"

64	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

DBSTEP

Purpose	 Statement for specifying the interval between breaks for the the Finger-
print Debugger and execute the program accordingly.

Syntax	 DBSTEP<ncon>

<ncon>	 is the number of lines to be executed before break. Default: 1
line.

Remarks	 If <ncon> is omitted, one line will be executed, but if <ncon> is specified
as 0, nothing at all will happen.

	 DBSTEP cannot be used in execution mode (yields Error 78).

	 When DBSTEP is used on the last line in a program, the line will be
executed but there will be no break.

	 If DBSTEP is used in a program with a FOR or WHILE loop, there will
only be one break on the line which is calling for the FOR or WHILE
loop (the first time it is executed).

	 Related instructions are CONT, DBBREAK, DBBREAK OFF, DBEND,
and DBSTDIO.

Example	 10	 PRINT "11"
	 20	 PRINT "22"
	 30	 PRINT "33"
	 40	 PRINT "44"
	 50	 PRINT "55"
	 60	 PRINT "66"
	 70	 PRINT "77"
	 80	 PRINT "88"
	 90	 PRINT "99"
	 DBSTEP 4
	 11
	 22
	 33
	 44
	 Break in line 50
	 Ok
	 DBSTEP
	 55
	 Break in line 60
	 Ok
	 DBSTEP 2
	 66
	 77
	 Break in line 80
	 CONT
	 88
	 99
	 Ok

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	65

Chapter 2—Program Instructions

DELETE

Purpose	 Statement deleting one or several consecutive program lines from the
printer’s working memory.

Syntax	 DELETE<ncon
1
>[-<ncon

2
>]

<ncon
1
>	 is the line, or the first line in a range of lines, to be deleted.

<ncon
2
>	 is (optionally) the last line in a range of program lines to be

deleted.	

Remarks	 This statement can only be used for editing the current program in the
Immediate Mode and cannot be included as a part of the program execu-
tion.

Examples	 DELETE 50		 deletes line 50 from the program.

	 DELETE 50–100	 deletes line 50 thru 100 from the program.

	 DELETE 50–	 deletes all lines from line 50
to the end of the program.

	 DELETE –50	 deletes all lines from the start of the program
 to line 50.

66	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

DELETEPFSVAR

Purpose	 Statement for deleting variables saved at power failure.

Syntax	 DELETEPFSVAR<sexp>

<sexp>	 is the name of the variable to be deleted.

Remarks	 Related instructions are SETPFSVAR, GETPFSVAR, and LISTPFSVAR.

Examples	 DELETEPFSVAR "QCPS%"
	 DELETEPFSVAR "QS$"

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	6 7

Chapter 2—Program Instructions

DEVICES

Purpose	 Statement for returning the names of all devices on the standard OUT
channel.

Syntax	 DEVICES

Remarks	 All devices available to the user in the Intermec Fingerprint firmware will
be listed, regardless if they are installed or not. The only exception is that
centronics: will be listed for the EasyCoder PD41 only if installed. There
are also a number of devices for internal use only. The list below indicates
if and how the device can be OPENed (see OPEN statement). If you try to
OPEN a device, which is not fitted or is disconnected, the message "Error
in file name" will be printed to the standard OUT channel (see SETST-
DIO). Note that all names of devices are lowercase and most are appended
by a colon (:).

Device	 Explanation	 Can be OPENed for...

c: (= "/c/") 	 Printer’s permanent memory	 Input/Output/Random
card1:	 CompactFlash memory card	 Input/Output/Random
centronics:	 Parallel communication port	 Input
console:	 Printer’s display and/or keyboard	 Input/Output
dll:	 Special applications only	 –
finisher:	 The finisher interface	 Input/Output
lock:	 Electronic keys	 Input
net1:	 EasyLAN	 Input/Output
par:	 Special applications only	 –
rom: (= "/rom/")	 Kernel and Read-only memory card 	 Input
rs485:	 RS-485 communication	 Input/Output	
storage:	 Electronic keys	 Input/Output/Random
tmp:	 Printer’s temporary memory	 Input/Output/Random
uart1:	 Serial communication port	 Input/Output
uart2:	 Serial communication port	 Input/Output
uart3:	 Serial communication port	 Input/Output
uart4:	 Serial communication port	 Input/Output
uart5:	 Serial communication port	 Input/Output
usb1:	 Serial communication port	 Input/Output
wand:	 Data from Code 128 bar code	 Input

	 c: or /c/ is the printer’s permanent read/write memory (Flash SIMMs). It
supports file system with directories and will retain its content when the
power is switched off. For compatibility with programs created in previous
versions of Intermec Fingerprint, the designation "ram:" will also be accep-
ted.

	 card1: is a read/write DOS-formatted CompactFlash memory card inser-
ted in the printer’s memory card adapter.

	 centronics: is the Centronics parallel port. Three different types can be
selected by means of SYSVAR(25).

68	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

DEVICES, cont.
	 console: is the printer’s display and keyboard. The keyboard can be used

for input only and the display for output only.

	 dll: is used for special applications only.

	 finisher: is the device controlling the finisher interface, where for instance
a cutter can be connected.

	 lock: is an electronic key items that has been specified as locks by means of
special software. An electronic key may contain several key items with dif-
ferent properties (counter, lock, or storage). The device name calls all key
items with the corresponding properties. Each key item has a 4-character
name, usually appended by a delimiter (?) and a 4-character password. Also
see OPEN statement.

	 net1: is the communication channel for an EasyLAN interface board.

	 par: is used for special applications only.

	 rom: or /rom/ is both the read-only kernel sectors in the Boot-Bank flash
SIMM, and any resource files on a CompactFlash memory card inserted in
the printer’s memory card adapter. It supports file system with directories.

	 rs485: is used in connection with RS-485 point-to-point or multidrop
communication to specify that the RS-485 protocol is used and to specify
the protocol address of the unit, for example "rs485:23".

	 storage: is all electronic key items in the printer that has been specified as
storages by means of special software. Note that this memory is comparati-
vely slow.

	 tmp: is the printer’s temporary read/write memory (SDRAM SIMMs).
It will lose its content when the power is turned off or at a power failure.
Thus, do not use SDRAM for valuable data that cannot be recreated, but
copy it to "/c/". One advantage of using "tmp:" instead of "/c" is that data
can be written to SDRAM faster than to the flash memory. To speed up
operation, the Intermec Fingerprint firmware (except program modules
with dynamic downloading) is copied from "/rom/" to "tmp:" at startup
and used from "tmp:".

	 uart1: is the standard RS-232 port.

	 uart2: is an additional serial port on an optional interface board.

	 uart3: is an additional serial port on an optional interface board.

	 uart4: is an additional serial port on an optional interface board.

	 uart5: is an additional serial port on an optional interface board.

	 usb1: is the standard USB (Universal Serial Bus) port.

	 wand: is any input from an Code 128 bar code not containing any FNC3
character via a bar code wand or reader connected to the wand interface.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	69

Chapter 2—Program Instructions

DEVICES, cont.

Example	 DEVICES	
yields for example:

	 c:
	 card1:	
	 centronics:	 (only if an optional parallel interface board is fitted)
	 console:
	 dll:
	 finisher:
	 lock:
	 net1:		 (only if an EasyLAN interface board is fitted)
	 par:
	 rom:
	 rs485:		 (only if an optional serial interface board is fitted)
	 storage:
	 tmp:
	 uart1:
	 uart2:	 (only if an optional serial interface board is fitted)
	 uart3:	 (only if an optional serial interface board is fitted)
	 uart4:	 (only if two optional serial interface boards are fitted)
	 uart5:	 (only if two optional serial interface boards are fitted)
	 usb1:		
	 wand:

70	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

DIM

Purpose	 Statement specifying the dimensions of an array.

Syntax	 DIM<<nvar>|<svar>>(<nexp
1
>[,<nexp

2
>...])....[,<<nvar>|<svar>>	

	 (<nexp
1
>[,<nexp

2
>...])]

<nvar>|<svar>	 is the name of the array.
<nexp

1
>	 is the max. subscript value for the first dimension.

<nexp
2-10

>	 are, optionally, the max. subscript value for the following dimen-
sions (No. 2-10).

Remarks	 An array is created by entering a variable followed by a number of sub-
scripts (max 10) separated by commas. All the subscripts are enclosed by
parentheses. Each subscript represents a dimension. The number of sub-
scripts in an array variable, the first time (regardless of line number) it is
referred to, decides its number of dimensions. The number of elements in
each dimension is by default restricted to four (No. 0-3).

	 If more than 4 elements in any dimension is desired, a DIM statement
must be issued. Note that 0 = 1:st element, 1 = 2:nd element, etc.

	 For example ARRAY$(1,2,3) creates a three-dimensional array, where the
dimensions each contain 4 elements (0-3) respectively. This corresponds to
the statement DIM ARRAY$(3,3,3).

	 It is not possible to change the number of dimensions of an array that
already has been created during runtime. (Error 57, “Subscript out of
range” will occur.)

	 Considering the printer’s limited memory and other practical reasons, be
careful not to make the arrays larger than necessary. A DIM statement can
be used to limit the amount of memory set aside for the array.

Examples	 This example creates an array containing three dimensions with 13 ele-
ments each:

	 100	 DIM NAME$(12,12,12)

	 Here, two one-dimensional arrays are created on the same program line:
	 10	 DIM PRODUCT$(15), PRICE%(12)
	 20	 PRODUCT$(2)="PRINTER"
	 30	 PRICE%(2)=1995
	 40 	 PRINT PRODUCT$(2);" $";PRICE%(2)
	 RUN
								 yields:
	 PRINTER $1995

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 71

Chapter 2—Program Instructions

DIR

Purpose	 Statement specifying the print direction.

Syntax	 DIR<nexp>

<nexp>	 is the print direction (1, 2, 3, or 4).
Default value:	 1
Reset to default by:	 PRINTFEED execution

Remarks	 A change of print direction affects all printing statements, that is PRTXT,
PRBAR, PRIMAGE, PRBOX, and PRLINE statements that are executed
later in the program until a new DIR statement or a PRINTFEED state-
ment is executed.

	 The print direction is specified in relation to the media feed direction as
illustrated below. The print direction affects the various types of objects as
follows:

	 Text:	

72	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

DIR, cont.
	 Bar Codes: 	

	 Horizontal “picket fence" printing vs. vertical “ladder" printing.

	 Images:

	 The relation of the image and the print direction depends how the image
was drawn. An image can only be “rotated" 180˚. Thus, it may be useful to
have two copies of the image available with different extensions for either
horizontal or vertical printing:

	 DIR 1 & 3, use extension .1

	 DIR 2 & 4, use extension .2

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 73

Chapter 2—Program Instructions

DIR, cont.
	 Lines:	 Boxes:	

Examples	 Printing a label with one line of text and drawing a line beneath the text:
	 10	 PRPOS 30,300
	 20	 DIR 1
	 30	 ALIGN 4
	 40	 FONT "Swiss 721 BT",18
	 50	 PRTXT "TEXT PRINTING"
	 60	 PRPOS 30,280	
	 70	 PRLINE 555,10
	 80	 PRINTFEED	
	 RUN

	 Printing the same information vertically necessitates new positioning to
avoid Error 1003, “Field out of label."

	 10	 PRPOS 300,30	 (new position)
	 20	 DIR 4						 (new direction)
	 30	 ALIGN 4
	 40	 FONT "Swiss 721 BT",18			
	 50	 PRTXT "TEXT PRINTING"
	 60	 PRPOS 320,30	(new position)
	 70	 PRLINE 555,10
	 80	 PRINTFEED	
	 RUN

74	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

DIRNAME$

Purpose	 Function returning the names of the directories stored in the specified part
of the printer’s memory.

Syntax	 DIRNAME$[(<sexp>)]
	

<sexp>	 is the name of the memory device from which the first directory
name will be listed.

Remarks	 In <sexp>, parts of directory names and wildcards (*) are allowed. If <sexp>
is omitted, the next directory name in the same memory device is listed.
Can be repeated. When there are no directories left to list, the output
string will be empty. Also see FILENAME$.

Example	 FILES,A
	 Files on /c
	 ./ 0 ../ 0
	 .setup.saved 239 DIR1/
	 STDIO 3

	 4124672 bytes free 242 bytes used

	 PRINT DIRNAME$("/c/")
	 .
	
	 Ok
	 PRINT DIRNAME$
	 ..
	
	 Ok
	 PRINT DIRNAME$
	 DIR1
	
	 Ok

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 75

Chapter 2—Program Instructions

END

Purpose	 Statement ending the execution of the current program or subroutine and
closing all OPENed files and devices.

Syntax	 END

Remarks	 END can be placed anywhere in a program, but is usually placed at the
end. It is also useful for separating the “main” program from possible
subroutines with higher line numbers. It is possible to issue several END
statements in the same program.

Example	 A part of a program, which produces fixed line-spacing, may look this way:
	 10	 FONT"Swiss 721 BT"
	 20	 X%=300:Y%=350
	 30	 INPUT A$
	 40	 PRPOS X%,Y%
	 50	 PRTXT A$
	 60	 Y%=Y%-50
	 70	 IF Y%>=50 GOTO 30
	 80	 PRINTFEED
	 90	 END

	 The Y-coordinate will be decremented by 50 dots for each new line until it
reaches the value 50. The END statement terminates the program.

76	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

EOF

Purpose	 Function for checking for an end-of-file condition.

Syntax	 EOF(<nexp>)

<nexp>	 is the number assigned to the file when it was OPENed.

Remarks	 The EOF function can be used with files OPENed for sequential input in
connection with the statements INPUT#, LINE INPUT#, and INPUT$
to avoid the error condition “Input past end” which has no error message.
When the EOF function encounters the end of a file, it returns the value
-1 (true). If not, it returns the value 0 (false).

Example	 10	 DIM A%(10)
	 20	 OPEN "DATA" FOR OUTPUT AS #1
	 30	 FOR I%=1 TO 10
	 40	 PRINT #1, I%*1123
	 50	 NEXT I%
	 60	 CLOSE #1
	 70	 OPEN "DATA" FOR INPUT AS #2
	 80	 I%=0
	 90	 WHILE NOT EOF(2)
	 100	 INPUT #2, A%(I%):PRINT A%(I%)
	 110	 I%=I%+1:WEND
	 120	 IF EOF(2) THEN PRINT "End of File"
	 RUN	
		 yields:
	 1123
	 2246
	 3369
	 4492
	 5615
	 6738
	 7861
	 8984
	 10107
	 11230
	 End of File

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 77

Chapter 2—Program Instructions

ERL

Purpose	 Function returning the number of the line on which an error condition has
occurred.

Syntax	 ERL

Remarks	 Also useful in connection with an ON ERROR GOTO statement.

Examples	 You can check at which line the last error since power up occurred like
this:

	 PRINT ERL
	 yields for example
	 40
	
	 In this example, the line number of the line, where an error has occurred,

decides the action to be taken (in this case the font size is too large for the
label width):

	 10 	 ON ERROR GOTO 1000
	 20 	 FONT "Swiss 721 BT",100
	 30 	 PRTXT "HELLO EVERYBODY"
	 40 	 PRINTFEED
	 50 	 END
	 1000	IF ERL=40 THEN PRINT "PRINT ERROR"
	 1010	RESUME NEXT
	 RUN

yields:
	 PRINT ERROR

	 You can use the ERL function in programs without line numbers too,
because such programs have automatically generated hidden line numbers
that are revealed when the program is LISTed. This is the same program as
above but without line numbers:

	 NEW
	 IMMEDIATE OFF
	 ON ERROR GOTO QAAA
	 FONT "Swiss 721 BT",100
	 PRTXT "HELLO EVERYBODY"
	 PRINTFEED
	 END
	 QAAA: IF ERL=40 THEN PRINT "PRINT ERROR"
	 RESUME NEXT
	 IMMEDIATE ON
	 RUN

yields:
	 PRINT ERROR

78	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

ERR

Purpose	 Function returning the code number of an error that has occurred.

Syntax	 ERR

Remarks	 The firmware is able to detect a number of error conditions. The errors are
represented by code numbers according to Chapter 7, “Error Messages.”
The ERR function enables the program to read the coded error number.
Thereby you may design your program to take proper action depending on
which type of error that may have occurred.

Example	 In this example, the code number of the error decides the action to be
taken:

	 10	 ON ERROR GOTO 1000
	
	
	 100	 PRTXT "HELLO"
	 110	 PRINTFEED
	 120	 END
	
	
	
	 1000	IF ERR=1005 THEN PRINT "OUT OF PAPER"
	 1010	RESUME NEXT

	 You can also check the number of the last error since power up:
	 PRINT ERR
	 yields for example:
	 1022

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 79

Chapter 2—Program Instructions

ERR$

Purpose	 Function for returning the explanation of an error code in plain text.

Syntax	 ERR$(<nexp>)

<nexp>	 is the error code number

Remarks	 The explanation of the error is returned in English according to Chapter 7
“Error Messages.”

Example	 PRINT ERR$(1003)	 yields:

	 Field out of label

80	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

ERROR

Purpose	 Statement for defining error messages and enabling error handling for
specified error conditions (Intermec Direct Protocol only).

Syntax	 ERROR <nexp>[,<sexp>]

<nexp>	 is the number of the error condition.
<sexp>	 is the desired error message.

Remarks	 The ERROR statement can only be used in the Intermec Direct Protocol
for the purpose of enabling error-handling and creating customized error
messages, as described below.

	 The built-in error-handler of the Intermec Direct Protocol will always
handle the following standard errors (display message inside brackets):

	 •	 15	 Font not found			 [Font not found]
	 •	 18	 Disk full			 [Disk full]
	 •	 37	 Cutter device not found	 [Cutter device not found]
	 •	 43	 Memory overflow		 [Memory overflow]
	 •	 1003	 Field out of label		 [Field out of label]
	 •	 1005	 Out of paper			 [Out of paper]
	 •	 1006	 No field to print		 [No field(s)]
	 •	 1022	 Head lifted			 [Head lifted]
	 •	 1027	 Out of transfer ribbon		 [Out of ribbon]
	 •	 1031 	 Next label not found		 [Label not found]
	 •	 1058	 Transfer ribbon is installed	 [Ribbon installed]
	 •	 1606	 Testfeed not done		 [Testfeed not done]

	 Other errors will not be handled unless they have been specified by an
ERROR statement. The number of the error should be entered according
to the list of error messages at the end of this manual.

	 The ERROR statement also allows you to edit a suitable message in any
language. This message will appear in the printer’s display window if the
error occurs. The error message will be truncated to 33 characters. Charac-
ter No. 1-16 will appear on the upper line and character 18-33 will appear
on the lower line, whereas character No. 17 always is ignored.

	 ANSI control characters can be used in the error message string, see
“Printer Function Control; Display” in the Intermec Fingerprint, Tutorial.
An empty string removes any previously entered message for the error in
question. Likewise, an existing message can be replaced by a new one.

	 When a standard error or an error defined by an ERROR statement is
detected, the printer sets its standard IN port to BUSY, sets the “Status”
LED to red, and displays the error messages. The error message will be
cleared, the LED is set to green, and the standard IN port will be set to
READY when the printer’s <Print> key is pressed. In some cases, the error
must also be cleared, for example by loading a fresh stock of labels.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 81

Chapter 2—Program Instructions

ERROR, cont.

Note: In printers, that are not fitted with the Intermec Ready-to-Work
Indicator console, the green Ready LED will be switched off and the red
Error LED will be switched on when an error is detected. The opposite will
happen when the error is cleared.

	 Error messages are not saved in the printer’s memory, but new ERROR
statements will have to be downloaded after each power up. Therefore, it
is recommended to save a set of ERROR statements as a file in the host
computer.

	 The ERROR statements affect both the error messages in the printer’s dis-
play window and the error messages returned to the host via the standard
OUT channel (see SETSTDIO statement).

	 By default, no error messages are returned to the host in the Intermec
Direct Protocol, since the statement INPUT ON sets the verbosity level to
off, that is SYSVAR (18)= 0. However, the verbosity level can be changed
by means of VERBON/VERBOFF statements or the SYSVAR (18) system
variable.

 	 Different types of error messages to be returned on the standard OUT
channel can be selected by means of the SYSVAR (19) system variable. If
SYSVAR (19) is set to 2 or 3, the error message specified by ERROR is
transmitted. If no such error message is available, a standard error message
in English will be transmitted (see list of Error Messages in Chapter 7).

Examples	 In these examples, a few errors are specified. Note the blank spaces for
character position 17 in each message (space characters are indicated by
doubleheaded arrows):

	 ERROR 1010,"HARDWARE↔↔↔↔↔↔↔↔↔ERROR" ↵
	 ERROR 1029,"PRINTHEAD↔VOLT-↔↔AGE↔TOO↔HIGH" ↵

82	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

EXECUTE

Purpose	 Statement for executing a Fingerprint program line or a file with Finger-
print program lines from within another Fingerprint program.

Syntax	 EXECUTE<sexp>

<sexp>	 is one line of Fingerprint instructions or the name of a file con-
taining at least one line of a Fingerprint program.

Remarks	 This statement allows you to create a library of layouts, subroutines, texts,
etc, which can be executed as a part of a program without having to merge
the programs.

	 The program called by EXECUTE must not contain any line numbers or
line labels.

	 If the EXECUTE statement is followed by a string of Fingerprint
instructions, they should be separated by colons.

	 When an error occurs in an EXECUTE file, the line number in the error
message is that of the EXECUTE file, not of the program where the
EXECUTE statement is issued.

	 EXECUTE is only allowed in the execute mode, not in the immediate
mode (yields Error 69).

	 Recursive call of EXECUTE is not allowed (yields Error 78).

Example	 This example shows how a preprogrammed file containing a bar code is
executed as a part of a Fingerprint program, where the input data and
printfeed are added:

	 IMMEDIATE OFF
	 DIR 1
	 ALIGN 7
	 BARSET "CODE39",2,1,3,120
	 BARFONT "Swiss 721 BT",10,8,5,1,1
	 BARFONT ON
	 IMMEDIATE ON
	 SAVE "tmp:BARCODE.PRG",L
	
	 NEW
	 10	 PRPOS 30,400
	 20	 EXECUTE "tmp:BARCODE.PRG"
	 30	 PRBAR "ABC"
	 40	 PRINTFEED
	 RUN

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 83

Chapter 2—Program Instructions

FIELD

Purpose	 Statement for creating a single-record buffer for a random file and dividing
the buffer into fields to which string variables are assigned.

Syntax	 FIELD[#]<nexp
1
>,<nexp

2
>AS<svar

1
>[,<nexp

3
>AS<svar

2
>...]

#	 indicates that whatever follows is a number. Optional.
<nexp

1
>	 is the number assigned to the file when it was OPENed.

<nexp
2-n

>	 is the number of bytes to be reserved for the string variable that
follows. (Null not allowed.)

<svar
1-n

>	 is the designation of the string variable, for which space has been
reserved.

Remarks	 The buffer is divided into fields, each of which is given an individual
length in bytes. A string variable is assigned to each field. This statement
does not put any data in the buffer, it only creates and formats the buffer,
allowing you to place the data using LSET and RSET statements.

	 Before using this statement, consider the maximum number of charac-
ters (incl. space characters) needed for each variable and check that the
total does not exceed the record size given when the file was OPENed (by
default 128 bytes).

	 When a file is CLOSEd, all its FIELD definitions will be lost.

Example	 This example opens and formats a file buffer for a single record. The buffer
is divided into three fields, with the size of 25, 30, and 20 bytes respec-
tively.

	 10	 OPEN "ADDRESSES" AS #8 LEN=75
	 20	 FIELD#8,25 AS F1$, 30 AS F2$, 20 AS F3$

	 (Imagine a spreadsheet matrix where the file is the complete spreadsheet,
the records are the lines and the fields are the columns. The buffer can only
contain one such line at the time.)

84	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

FIELDNO

Purpose	 Function getting the current field number for partial clearing of the print
buffer by a CLL statement.

Syntax	 FIELDNO

Remarks	 By assigning the FIELDNO function to one or several numeric variables,
you can divide the print buffer into portions, which can be cleared using a
CLL statement.

Example	 10	 PRPOS 100,300
	 20	 FONT "Swiss 721 BT"
	 30	 PRTXT "HAPPY"
	 40	 A%=FIELDNO
	 50	 PRPOS 100,250
	 60	 PRTXT "NEW YEAR"
	 70	 B%=FIELDNO
	 80	 PRPOS 100, 200
	 90	 PRTXT "EVERYBODY!"
	 100	 PRINTFEED
	 110	 CLL B%
	 120	 PRPOS 100,200
	 130	 PRTXT "TO YOU!"
	 140	 PRINTFEED
	 150	 CLL A%
	 160	 PRPOS 100,250
	 170	 PRTXT "BIRTHDAY"
	 180	 PRPOS 100,200
	 190	 PRTXT "DEAR TOM!"
	 200	 PRINTFEED
	 RUN
							 yields three labels:

	 #1				 #2				 #3
	 HAPPY				 HAPPY			 HAPPY
	 NEW YEAR			 NEW YEAR			 BIRTHDAY
	 EVERYBODY!		 TO YOU!			 DEAR TOM!

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 85

Chapter 2—Program Instructions

FILE& LOAD

Purpose	 Statement for receiving and storing binary files in the printer’s memory.

Syntax	 FILE& LOAD[<nexp
1
>,]<sexp>,<nexp

2
>[,<nexp

3
>]

<nexp
1
>	 is optionally the number of bytes to skip before starting to read

the file data.
<sexp>	 is the desired name of the file when stored in the printer’s

memory.
<nexp

2
>	 is the size of the file in number of bytes.

<nexp
3
>	 optionally specifies a communication channel OPENed for INPUT

by the number assigned to the device.
	 (Default: Std IN channel.)

Remarks	 This statement prepares the printer to receive a binary file on the standard
IN channel (see SETSTDIO statement) or on another communication
channel OPENed for INPUT.

	 Another, but more cumbersome, way of obtaining the same result is to use
the TRANSFER KERMIT statement.

	 Image files and font files can also be downloaded using the IMAGE LOAD
statement.

	 As opposed to IMAGE LOAD and TRANSFER KERMIT statements,
FILE& LOAD will not immediately install the fonts, but the font files will
remain as files in the printer’s memory until next power-up.

	 The optional first parameter makes it possible to use this statement in MS-
DOS (CR/LF problem).

	 The name of the file, when stored in the printer’s memory, may consist of
max. 30 characters including possible extension.

	 The size of the original file should be given in bytes according to its size in
the host.

	 Before the FILE& LOAD statement can be used on a serial channel, the
setup must be changed to 8 characters, RTS/CTS handshake. When a
FILE& LOAD statement is executed, the execution stops and waits for
the number of bytes specified in the statement to be received. During
the transfer of file data to the printer, there is a 25 sec. timeout between
characters. If a new character has not been received within the timeout
limit, an error occurs (Error 80, “Download timeout”). When the specified
number of characters have been received, the execution is resumed.

Example	 10	 OPEN "uart2:" FOR INPUT AS 5
	 20	 FILE& LOAD "FILE1.PRG",65692,5
	 30	 CLOSE 5

86	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

FILENAME$

Purpose	 Function returning the names of the files stored in the specified part of the
printer’s memory.

Syntax	 FILENAME$[(<sexp>)]

<sexp>	 is the name of the memory device from which the first file name
(in alphabetical order) will be listed. Parts of file names and
wildcards (*) are allowed. Maximum size is 30 characters.

	 If <sexp> is omitted, the next file name in the same memory
device is listed. Can be repeated. When there are no files left to
list, the output string will be empty.

Remarks	 The specified memory device must be mounted. The file name must cor-
respond to the name of the file stored in the memory device in regard of
upper- and lowercase characters. Wildcards (* = ASCII 42 dec.) can be
used. The list may include all type of files. Even system files, that are prece-
ded by a period character (for example .FONTALIAS), may be listed. No
directories will be listed and the order of listing is not specified. Also see
DIRNAME$.

	
Example	 This example shows how all files in the printer's permanent memory (/c)

are listed:
	 FILES,A
	 Files on /c

	 ./		 0	 ../	 0
	 .setup.saved	 239	 DIR1/	 0
	 STDIO		 3

	 4124672 bytes free 242 bytes used

	 PRINT FILENAME$("/c/")
	 .setup.saved

	 Ok
	 PRINT FILENAME$
	 STDIO

	 PRINT FILENAME$

	 Ok

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 87

Chapter 2—Program Instructions

FILES

Purpose	 Statement for listing the files stored in one of the printer’s directories to the
standard OUT channel.

Syntax	 FILES[<sexp>][,R][,A]

<sexp>	 optionally specifies the directory (see DEVICES).
R	 lists directories recursively
A	 lists all files including system files (that is, files with a name

starting with a period (.) character.

Remarks	 If no directory is specified, files in the printer’s current directory will be
listed. As default, the current directory is the printer’s permanent memory
("/c"), see CHDIR statement.

	 By including a reference to a memory device ("/c", "tmp:", "/rom",
"card1:", "lock:", or "storage:", see DEVICES statement), the files of the
specifies directory will be returned without having to change the current
directory.

	 If the “A" flag is omitted, all files, except system files, will be listed The
flags A and R can be entered in any order, but R is always processed first.

	 The number of bytes for each file and the total number of free and used
bytes in the specified directory will also be included in the list.

Examples	 The presentation may look like this on the host screen:
	 FILES "/c",R
	 Files on /c

	 STDIO		 2 FILE2 4
	 DIR1/		 0

	 Files on /c/DIR1/
	
	 FILE1		 4 DIR2/ 0
	 STDIO		 2

	 No files on /c/DIR1/DIR2

	 4121600 bytes free 12 bytes used

88	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

FILES, cont.
	 FILES,R,A
	 Files on /c

	 ./	 0 ../ 0
	 DIR1/	 0 FILE2 4
	 STDIO	 2 .setup.saved 239

	 Files on /c/DIR1/
	
	 ./	 0 ../ 0
	 DIR2/	 0 STDIO 2
	 FILE1	 4

	 Files on /c/DIR1/DIR2/
	 ./	 0 ../ 0
	
	 4121600 bytes free 251 bytes used

	 FILES "/c/DIR1"
	 Files on /c/DIR1

	 FILE1	 4 DIR2/ 0
	 STDIO	 2
	
	 4121600 bytes free 6 bytes used

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 89

Chapter 2—Program Instructions

FLOATCALC$

Purpose	 Function for calculation with float numbers.

Syntax	 FLOATCALC$(<sexp
1
>,<sexp

2
>,<sexp

3
>[,<nexp

1
>])

<sexp
1
>	 is the first operand.

<sexp
2
>	 is the operator (+, -, *, or /).

<sexp
3
>	 is the second operand.

<nexp
1
>	 is, optionally, the precision in decimals (default 10).

Remarks	 Operands are float numbers, that is, a string of digits with a decimal point
to separate decimals from integers. Operands can also contain leading plus
(+), minus (-), and space characters. Space characters are ignored, whe-
reas the usual mathematical rules apply to plus and minus signs. All other
characters (or plus, minus, and space characters in other positions than
leading) generate errors.

	 Note the mathematical rules:
	 - - 		 yields 	 +
	 - +		 yields	 -
	 + -		 yields	 -
	 + +		 yields	 +
	 The following arithmetic operators are allowed:
	 +	addition	 ASCII 043 dec
	 -	subtraction	ASCII 045 dec
	 *	multiplication	 ASCII 042 dec
	 /	division	 ASCII 047 dec

	 Any other type of operators or other characters will generate an error.

	 The precision parameter optionally specifies the number of decimals in
the result of the calculation. The result will be truncated accordingly. For
example, if the number of decimals is specified as 5, the result 5.76123999
will be presented as 5.76123. The result of a FLOATCALC$ function can
be formatted using a FORMAT$ function.

Examples	 Addition:
	 A$ = "234.9"
	 B$ = "1001"
	 PRINT FLOATCALC$ (A$,"+",B$,5)
	 yields:
	 1235.90000
	
	 Subtraction:
	 A$ = "234.9"
	 C% = 2
	 PRINT FLOATCALC$ (A$,"-",100.013,C%)
	 yields:
	 134.88

90	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

FONT (FT)

Purpose	 Statement for selecting a scaleable TrueType or TrueDoc single-byte font
or a single-byte bitmap font for the printing of the subsequent PRTXT
statements.

Syntax	 FONT|FT<sexp
1
>[,<nexp

1
>[,<nexp

2
>[,<nexp

3
>]]]	 	

<sexp
1
>	 is the name of the font. Default: "Swiss 721 BT".

<nexp
1
>	 is optionally the height in points of the font. Default: 12 points.

Use MAG to enlarge with bitmap fonts.
<nexp

2
>	 is the clockwise slant in degrees (0–90°). Default: 0.

	 Does not work with bitmap fonts.
<nexp

3
>	 is the width enlargement in percent relative the height (1-1000).

Default: 100.
	 Does not work with bitmap fonts.
Reset to default by:	 PRINTFEED execution.

	
Remarks	 Intermec Fingerprint supports scaleable fonts in TrueType and TrueDoc

format that comply with the Unicode standard. A large number of scalea-
ble fonts are available on special request, so it is quite possible that your
printer is fitted with a unique selection of fonts. Use a FONTS statement
to list the names of all fonts installed in your own printer to the standard
OUT channel.

	 To maintain compatibility with programs created in earlier versions of
Intermec Fingerprint, you can also specify bitmap font names, for example
"SW030RSN" or "MS060BMN.2". In case of standard bitmap font name,
the firmware will select the corresponding scaleable font in the printer’s
memory and set its parameters so its direction, appearance, and size come
as close to the specified bitmap font as possible. A prerequisite is that the
printer’s memory contains the standard complement of outline fonts. Non-
standard bitmap fonts can also be used. They will not produce any outline
fonts, but will retain their bitmap format. Any extension to the bitmap
font name is of no consequence. See Chapter 6, “Fonts” in this manual.

	 The height of the font is given in points (same as in your PC), which
means that a text will be printed in the same size regardless of the print-
head density of the printer. The unit of measure is points (1 point = 1/72
inch ≈ 0.352 mm) and specifies the height of the font including ascen-
ders and descenders. Sizes less than 4 points will be unreadable. In case of
bitmap fonts, it is recommended to use MAG to enlarge the font instead
of specifying a font height (works only in multiples of 12 points).

	 Any font may be magnified up to 4 times separately in regard of height
and width using a MAG statement. Bitmap fonts will get somewhat jagged
edges when magnified, whereas outline fonts will remain smooth.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	9 1

Chapter 2—Program Instructions

FONT (FT), cont.
	 Slanting means that you can create the same effect as in ITALIC charac-

ters.The higher value, the more askew the upright parts of the characters
will come. Slanting increases clockwise. Values greater than 65-70° will be
unreadable. Slanting cannot be used with bitmap fonts.

	 Slanting value: 10

	 Slanting value: 20

	 A scaleable font can enlarged in regard of width relative the height. The
value is given as percent (1-1000). This means that if the value is 100,
there is no change in the appearance of the characters, whereas if the value
is given as, for example, 50 or 200, the width will the half the height or
double the height respectively. When using this parameter, all parameters
in the syntax must be included in the statement, that is, name, height,
slant, and width.

	 The standard complement of fonts listed in Chapter 6 can be supplemen-
ted with more fonts using three methods:

	 Downloading fonts from a Font Install Card
	 The card must be inserted before the printer is started. At startup the fonts

are automatically downloaded, installed, and permanently stored in the
printer’s memory. The fonts can be used without the card being present.

	 Using fonts from a Font Card
	 The card must be inserted before the printer is started. At startup the fonts

are automatically installed, but not copied to the printer’s memory. Thus,
the card must always be present before such a font can be used.

	 Downloading font files
	 Font files can be downloaded and installed by means of either of the two

statements IMAGE LOAD and TRANSFER KERMIT. There is no need
to restart the printer before using the font in question.

	 It is possible to create aliases for one or several font to get shorter or more
adequate names. Refer to Chapter 6 for further explanation.

			
Examples	 Printing one line of 12p text with default direction and alignment:
	 10	 FONT "Swiss 721 BT"
	 20	 PRTXT "HELLO"
	 30	 PRINTFEED
	 RUN

	 Printing the same text but with 24p size, 20° slant, and 75% width:
	 10	 FONT "Swiss 721 BT",24,20,75
	 20	 PRTXT "HELLO"
	 30	 PRINTFEED
	 RUN			

ABCDEFGH
ABCDEFGH

92	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

FONTD

Purpose	 Statement for selecting a scaleable TrueType or TrueDoc double-byte font
for the printing of the subsequent PRTXT statements.

Syntax	 FONTD<sexp
1
>[,<nexp

1
>[,<nexp

2
>[,<nexp

3
>]]]

<sexp
1
>	 is the name of the font. Default: none.

<nexp
1
>	 is optionally the height in points of the font. Default: 12 points.

<nexp
2
>	 is the clockwise slant in degrees (0-90°). Default: 0.

<nexp
3
>	 is the width enlargement in percent relative the height (1-1000).

Default: 100.
Reset to default by:	 PRINTFEED execution or CLL.

Remarks	 This statement is identical to the FONT statement, but is used for fonts
specified by a double byte (16 bits) instead of a single byte (7 or 8 bits). To
use a double-byte font, a double-byte character set must be selected using
a NASCD statement. Usually, if the first byte has an ASCII value between
161 dec. (A1 hex) and 254 dec (FE hex), the character will be treated as a
double-byte character and the firmware waits for next byte to make the 16
bit address complete. The character will be printed using the font specified
by FONTD and according to the character set specified by NASCD and
the Unicode standard.

	 On the other hand, if the first byte has an ASCII value below 161 dec. (A1
hex), the character is treated as a single byte character and next byte recei-
ved will be regarded as the start of a new character. This implies that the
character set specified by NASC and the font specified by FONT will be
used. However, the selected Unicode double-byte character set may specify
some other ASCII value as the breaking point between single and double
byte character sets.

	 Note that 8 bit communication must be selected.

	 Only writing from left to right in the selected print direction is supported.
	
Example	 The following text contains both single- and double-byte fonts. The

double-byte font and its character set are stored in a Font Install Card:
	 10	 NASC 46
	 20	 FONT "Swiss 721 BT", 24, 10
	 30	 FONTD "DLC Ming Medium"
	 40 	 NASCD "rom:BIG5.NCD"
	 50	 PRTXT CHR$(65);CHR$(161);CHR$(162)
	 60	 PRINTFEED
	 RUN

	 This program yields a printed text line that starts with the Latin character
A (ASCII 65 dec.) followed by the character in the DLC Ming Medium
font that corresponds to the address 161+162 dec. in the character set
“BIG5.NCD".

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	93

Chapter 2—Program Instructions

FONTNAME$

Purpose	 Function returning the names of the fonts stored in the printer’s memory.

Syntax	 FONTNAME$(<nexp>)

<nexp>	 the result of the expression should be either false or true,
where...

	 False (0) indicates first font.
	 True (≠0) indicates next font.

Remarks	 FONTNAME$(0) produces the first name in the memory.

	 FONTNAME$(≠0) produces next name. Can be repeated as long as there
are any fontnames left.

Example	 Use a program like this to list all fontnames:
	 10	 A$ = FONTNAME$ (0)
	 20	 IF A$ = "" THEN END
	 30	 PRINT A$
	 40	 A$ = FONTNAME$ (-1)
	 50	 GOTO 20
	 RUN			 					
								 yields for example:
	 -UPC11.1
	 -UPC11.2
	 -UPC21.1
	 -UPC21.2
	 -UPC31.1
	 -UPC31.2
	 -UPC51.1
	 -UPC51.2
	 Century Schoolbook BT
	 DingDings SWA
	 Dutch 801 Bold BT
	 Dutch 801 Roman BT
	 Futura Light BT
	 Letter Gothic 12 Pitch BT
	 MS030RMN
	 MS030RMN.1
	 MS030RMN.2
	 MS050RMN
	 MS050RMN.1
	 MS050RMN.2
	 MS060BMN
	 MS060BMN.1
	 MS060BMN.2
	 Monospace 821 BT
	 Monospace 821 Bold BT
	 OB035RM1
	 etc, etc.

94	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

FONTS

Purpose	 Statement returning the names of all fonts stored in the printer’s memory
to the standard OUT channel.

Syntax	 FONTS

Example	 A list of the fonts stored in the printer may look like this:
	 FONTS							
								 yields for example:
	 Century Schoolbook BT	 DingDings SWA
	 Dutch 801 Bold BT	 Dutch 801 Roman BT	

Futura Light BT	 Letter Gothic 12 Pitch BT	
MS030RMN	 MS030RMN.1	

	 MS030RMN.2	 MS050RMN	
	 MS050RMN.1	 MS050RMN.2	
	 MS060BMN	 MS060BMN.1	
	 MS060BMN.2	 Monospace 821 BT	
	 Monospace 821 Bold BT	 OB035RM1	
	 OB035RM1.1	 OB035RM1.2	
	 OCR-A BT	 OCR-B 10 Pitch BT	
	 Prestige 12 Pitch Bold BT	 SW020BSN 	
	 SW020BSN.1	 SW020BSN.2	
	 SW030RSN	 SW030RSN.1	
	 SW030RSN.2	 SW050RSN 	
	 SW050RSN.1	 SW050RSN.2	
	 SW060BSN	 SW060BSN.1	
	 SW060BSN.2	 SW080BSN	
	 SW080BSN.1	 SW080BSN.2	
	 SW120BSN	 SW120BSN.1	
	 SW120BSN.2	 Swiss 721 BT	
	 Swiss 721 Bold BT	 Swiss 721 Bold Condensed BT	

Zurich Extra Condensed BT

	 3569264 bytes free 1717240 bytes used
	 Ok

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	95

Chapter 2—Program Instructions

FOR...TO...NEXT

Purpose	 Statement for creating a loop in the program execution, where a counter is
incremented or decremented until a specified value is reached.

Syntax	 FOR<nvar>=<nexp
1
>TO<nexp

2
>[STEP<nexp

3
>]NEXT[<nvar>]

<nvar>	 is the variable to be used as a counter.
<nexp

1
>	 is the initial value of the counter.

<nexp
2
>	 is the final value of the counter.

<nexp
3
>	 is the value of the increment (decrement).	

Remarks	 This statement is always used in connection with a NEXT statement.

	 The counter (<nvar>) is given an initial value by the numeric expression
(<nexp1>). If no increment value is given (STEP <nexp3>), the value 1 is
assumed. A negative increment value will produce a decremental loop.
Each time the statement NEXT is encountered, the loop will be executed
again until the final value, specified by (<nexp2>), is reached. Then the
execution will proceed from the first line after the NEXT statement.

	 If the optional variable is omitted in the NEXT statement, the program
execution will loop back to the most recently encountered FOR statement.
If the NEXT statement does include a variable, the execution will loop
back to the FOR statement specified by the same variable.

	 FOR...NEXT loops can be nested, which means that a loop can contain
another loop, etc. However, each loop must have a unique counter desig-
nation and the inside loop must be concluded by a NEXT statement
before the outside loop can be executed.

Examples	 The counter A% is incremented from 10 to 50 in steps of 20:
	 10	 FOR A%=10 TO 50 STEP 20
	 20	 PRINT A%
	 30	 NEXT
	 RUN	 						
									 yields:
	 10
	 30
	 50
	
	 The counter B% is decremented from 50 to 10 in steps of 20:
	 10	 FOR A%=50 TO 10 STEP -20
	 20	 PRINT A%
	 30	 NEXT
	 RUN	 						
									 yields:
	 50
	 30
	 10

96	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

FORMAT

Purpose	 Statement for formatting the printer’s permanent memory, or formatting a
CompactFlash memory card.

Syntax	 FORMAT<sexp>[,<nexp
1
>[,<nexp

2
>]][,A]

<sexp>	 specifies the device to be formatted either as "/c" or "card1:"
<nexp

1
>	 Specifies the number of entries in the root directory (only appli-

cable when <sexp> = "card1:" and “A” flag is set).
	 Default: 208 entries.
<nexp

2
>	 Specifies the number of bytes per sector (only applicable when

<sexp> = "card1:" and “A” flag is set).
	 Default: 512 bytes per sector.

Remarks	 FORMAT "/c"
	 Formats the printers permanent memory partially or completely. System

files are distinguished by a leading period character, for example .setup.
saved. This makes it possible to format the permanent memory without
removing the system files.

	 If no “A” flag is included in the statement, all files excluding those starting
with a period character (.) will be removed (“soft” formatting).

	 If an “A” flag is included in the statement, all files including those starting
with a period character (.) will be removed (“hard” formatting).

	 Be careful. There is no way to undo a FORMAT operation.

	 FORMAT "card1:"
	 Formats a CompactFlash card, which is inserted in the printer’s optional

memory card adapter, to MS-DOS format. Optionally, the number of
entries in the root directory (that is number of files on the card) and the
number of bytes per sector can be specified, provided an “A” flag is inclu-
ded in the statement (“hard” formatting).

	 When a FORMAT statement is executed, any existing data or previous for-
matting in the card will be erased. After formatting, such a memory card
can be OPENed for INPUT/OUTPUT/APPEND or RANDOM access
and can also be used in a PC for storing MS-DOS files. The DOS-format-
ted memory card is referred to as device "card1:".

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	9 7

Chapter 2—Program Instructions

FORMAT, cont.

Examples	 Issuing the statement FILES before and after a FORMAT "/c" statement
shows how the memory is affected. Note that system files starting with a
period character are not removed, since the FORMAT statement does not
contain any “A” flag:

	 FILES "/c",A
yields for example:

	 Files on /c

	 ./	 0	 ../	 0
	 APPLICATION	 1	 boot/	 0
	 ADMIN/	 0	 .setup.saved	 222
	 STDIO	 4
	 2222080 bytes free	 227 bytes used

	 Ok
	 FORMAT "/c"
	
	 Ok

	 FILES "/c",A
	 yields for example:
	 Files on /c

	 ./	 0	 ../	 0
	 boot/	 0	 ADMIN/	 0	

.setup.saved	 222
	 2224128 bytes free		 222 bytes used

	 In the following statement, a CompactFlash memory card is formatted
to MS-DOS format in the immediate mode. The number of entries is
increased from 208 (default) to 500 and the size of the sectors in decreased
from 512 bps (default) to 256 in order to make the card better suited for
more but smaller files. The “A” flag specifies “hard" formatting.

	 FORMAT "card1:",500,256,A

98	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

FORMAT DATE$

Purpose	 Statement for specifying the format of the string returned by DATE$("F")
and DATEADD$(..... ,"F") instructions.

Syntax	 FORMAT DATE$<sexp>

<sexp>	 is a string representing the order between year, month and date
plus possible separating characters.

	 “Y” represents Year (one digit per Y).
	 “M” represents Month (one digit per M).
	 “D” represents Day (one digit per D).
Default:	 YYMMDD
Reset to default by:	 Empty string ("")

Remarks	 DATE$ and DATEADD$ will only return formatted dates if these func-
tionss include the flag "F".

	 In the FORMAT DATE$ statement, each Y, M or D character generates
one digit from the number of the year, month or day respectively, starting
from the end. If the number of Y's exceeds 4, or the number of M's or D's
exceeds 2, the exceeding characters generate leading space characters.

	 Examples (the year is 2003):
	 Y 		 generates	 3
	 YY		 generates	 03
	 YYY	generates	 003
	 YYYY	 generates	 2003
	 YYYYY	 generates	 ↔2003 	 (↔ represents a space)

	 Separating characters are returned as entered in the string. Any character
except Y, M, or D are regarded as separators.

	 The date format is saved in the temporary memory and has to be transmit-
ted to the printer after each power-up.

Examples	 Changing the date format according to British standard:
	 FORMAT DATE$ "DD/MM/YY"

	 Changing date format back to default (YYMMDD):
	 FORMAT DATE$ ""
	
	 Changing the date format to Swedish standard:
	 FORMAT DATE$ "YY-MM-DD"	

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	99

Chapter 2—Program Instructions

FORMAT INPUT

Purpose	 Statement for specifying separators for the LAYOUT RUN statement used
in the Intermec Direct Protocol.

Syntax	 FORMAT INPUT<sexp
1
>[,<sexp

2
>[,<sexp

3
>[,<sexp

4
>]]]

<sexp
1
>	 is the start -of-text separator, default STX (ASCII 02 dec.).

<sexp
2
>	 is the end-of-text separator, default EOT (ASCII 04 dec.).

<sexp
3
>	 is the field separator, default CR (ASCII 13 dec.).

<sexp
4
>	 is a string of characters to be filtered out.	

Remarks	 The LAYOUT RUN statement is used in the Intermec Direct Protocol to
transmit variable data to a predefined layout. By default, the string of input
data to the various layout fields starts with a STX character and ends with
a EOT character. The various fields are separated by CR (carriage return)
characters.

	 To provide full compatibility with various protocols and computer systems,
these separators can be changed at will by means of the FORMAT INPUT
statement. Each separator can have a maximum length of 10 characters.

	 As an option, it is possible to specify a string of max. 10 characters to be
filtered out. By default, the string is empty and will be reset to default if a
new FORMAT INPUT with less than four arguments is issued.

	 There is a timeout if ETX is not found within 60 seconds after STX has
been received.

	 Always execute the FORMAT INPUT statement in the Immediate Mode.
If you are using the Intermec Direct Protocol, exit it using an INPUT
OFF statement before changing the separators using a FORMAT INPUT
statement. Then you can enter the Intermec Direct Protocol again using an
INPUT ON statement.

	 An error will occur if you, for some reason, issue a FORMAT INPUT
statement where one, two or three separators are identical to those already
in effect without leaving the Intermec Direct Protocol.

	 If a certain separating character cannot be produced by the keyboard of the
host, use a CHR$ function to specify the character by its ASCII value.

	 The separators are stored in the temporary memory and must to be trans-
mitted to the printer after each power-up.

Example	 Changing the start-of-text separator to #, the end-of-text separator to LF
(linefeed), and the field separator to @ after having temporarily switched
to the Immediate Mode.

	 INPUT OFF ↵
	 FORMAT INPUT "#",CHR(10),"@" ↵
	 INPUT ON ↵		

100	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

FORMAT TIME$

Purpose	 Statement for specifying the format of the string returned by TIME$("F")
and TIMEADD$("F") instructions.

Syntax	 FORMAT TIME$<sexp>

<sexp>	 is a string representing the order between hours, minutes and
seconds plus possible separating characters.

	 “H” represents hours in a 24 hour cycle (one digit per H).
	 “h” represents hours in a 12 hour cycle (one digit per h).
	 “M” represents minutes (one digit per M).
	 “S” represents seconds (one digit per S).
	 “P” represents AM/PM in connection with a 12 hour cycle.
	 “p” represents am/pm in connection with a 12 hour cycle.
	 All other character produce separator characters.
Default:	 HHMMSS
Reset to default by:	 Empty string

Remarks	 Each H, h, M, and S character generates one digit. If the number of each
character exceeds 2, leading space characters are inserted. Each uppercase
or lowercase P character generates one character of AM/PM or am/pm
respectively, when a 12-hour cycle is selected.

	 Hour, minute and second fields are right-justified, whereas am/pm and
AM/PM fields are left-justified.

	 Example (the hour is 8 o’clock in the morning):
	 h	generates	 8	 P	 generates	 A	
	 hh	generates	 08	 PP	 generates 	 AM
	 hhh	generates	 ↔08	 p	 generates	 a
					 pp	 generates	 am

	 To get 12-hour cycle, all hour format characters must be lowercase “h”.

	 Separating characters are returned as entered in the string. Any character
but H, h, M, S, P, or p are regarded as separators.

	 The time format is saved in the temporary memory and has to be transmit-
ted to the printer after each power-up.

Examples	 Changing the time format according to Swedish standard:
	 FORMAT TIME$ "HH.MM.SS"

	 Changing the date format to British standard:
	 FORMAT TIME$ "hh:MM pp"

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 101

Chapter 2—Program Instructions

FORMAT$

Purpose	 Function for formatting a number represented by a string.

Syntax	 FORMAT$(<sexp
1
>,"<nexp

1
>b"|"d")

<sexp
1
>	 is a string of integers or ASCII characters.

<nexp
1
>	 is the number of bytes to output in integer to ASCII conversion.

	 FORMAT$(<sexp
1
>,<sexp

2
>)

<sexp
1
>	 is the string of numerals, optionally with decimals, which is to be

formatted.
<sexp

2
>	 specifies the format of the string.

Remarks	 FORMAT$ can be used for conversion of strings from ASCII to integer
numbers and vice versa when used as in the first syntax above.

	 <nexp1>b = Specifies conversion from integer to ASCII format.
	 This converts <sexp1> from a number in integer format to the correspon-

ding characters in ASCII format. <nexp1> specifies the number of bytes to
output. For example FORMAT$("1380337988","4b") yields RFID.

	 d = Specifies conversion from ASCII format to integer.
	 The string <sexp1> is translated from an ASCII string to the same number

in integer format. For example, FORMAT$("A","d") yields 65.

	 FORMAT$ is also be used to convert a number to a specific display
format. The original string (<sexp1>) is a string of digits, optionally with
a decimal point to separate decimals from integers. It can also contain
leading plus (+), minus (-), and space characters. Space characters are igno-
red, whereas the usual mathematical rules apply to plus and minus signs.
All other characters (or plus, minus, and space characters in other positions
than leading) generate errors. The format is specified by a string (<sexp2>).
The string can contain any characters, but some have special meanings.
Note the explanation of the following characters.

		 0 = Digit place holder, display a digit or zero.
	 If the input number has fewer digits than there are zeros (on either side of

the decimal separator) in the format string, leading or trailing zeros are dis-
played. If the number has more digits to the left side of the decimal separa-
tor than there are zeros to the left side of the separator in the format string
the digits will be displayed. If the number has more digits to the right of
the separator than there are zeros to the right of the decimal separator in
the format string, the decimal will be truncated to as many decimal places
as there are zeros.

	 # = Digit placeholder, display a digit or nothing.
	 If there is a digit in the expression being formatted in the position where

the # appears in the format string, display the digit or otherwise display
nothing in that position. If the number has more digits to the left side of

102	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

FORMAT$, cont.
	 the decimal separator than there are # to the left side of the separator in the

format string the digits will be displayed.

	 . = Decimal separator, to separate the integer and the decimal digits.
	 , = Decimal separator, to separate the integer and the decimal digits.
	 \ = Display the next character in the format string.

	 The backslash itself is not displayed. To display a \, use two backslashes.
The only character, which will be displayed in the formatted string without
a backslash is space.

	 space = Space
	 A space will be displayed as literal character wherever it is in the expression

format.

	 •	 An empty format string is equivalent to "0.##########".

	 •	 0 and # cannot be mixed in every way. Before the decimal separator, use
first and then 0. After the decimal separator, use 0 first and then #.
For example: ####00.000### is OK and #00##0.##0#00 is not.

	 •	 A point or a comma separates integers and decimals. The decimal sepa-
rator used in the format is the one that will be the returned separator
type. Independent of the separator type in the number the format type
will control the return type. Default type is a point.

	 •	 A format can consist of separators as space between thousands either a
unit as $. For example: "$ ### ### 000.00".

	 •	 The attached number string will be truncated to the quantity of decimal
in the format.

	 •	 Characters will not be displayed on the left side of the decimal separator
if there is a # on the left side of the characters and the string to be for-
matted do not have a digit in the same position as the #. On the right
side of the decimal separator, characters will not be displayed if there is
a # on the right side of the characters and the string to be formatted do
not have a digit in the same position as the #. For example:

Format string:		 "\$#\t\e\x\t0.0\t\e\x\t#\$"
String to be formatted:	 1.1	 55	 0.33	 55.33
Returned strings:		 1.1	 $5text5.0$	 $0.3text3$	 $5text5.3text3$

Input number:		 "5"	 "-5"	 "0.5"	 "55555"	 "0.666666666666"
Input format:		 Returned number:
""	 =>	 5	 -5	 0.5	 55555	 0.6666666666
"0"	 =>	 5	 -5	 0	 55555	 0
"0.00"	 =>	 5.00	 -5.00	 0.50	 55555.00	 0.66
"\$0,0"	 =>	 $5,0	 $-5,0	 $0.5	 $55555,0	 $0,6
"0.0##"	 =>	 5.0	 -5.0	 0.5	 55555.0	 0.666
"###\,000.0"	 =>	 005.0	 -005.0	 000.5	 55,555.0	 000.6
"# 0 0.0"	 =>	 0 5.0	 -0 5.0	 0 0.5	 555 5 5.0	 0 0.6

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 103

Chapter 2—Program Instructions

FORMAT$, cont.

Examples	 Addition
	 B$="234.9"
	 C$="1001"
	 D$="# ##0.##"
	 A$=FLOATCALC$(B$,"+",C$,15)
	 PRINT A$
	 yields:
	 "1235.900000000000000"
	
	 PRINT FORMAT$(A$,D$)
	 yields:
	 "1 235.9"

	 Subtraction
	 A$=FLOATCALC$("234.90","-","100.013",2)
	 PRINT A$
	 yields:
	 "134.88"

	 PRINT FORMAT$(A$,"\$ 0,000#")
	 yields:
	 "$ 134,880"
	 Note: If a higher precision is used in FLOATCALC$, A$ will yield

"$134,887".

	 Multiplication
	 B$="3"
	 A$=FLOATCALC$("100", "*", B$, 1)
	 PRINT A$
	 yields:
	 "300.0"

	 C$="0 0 0,00###"
	 PRINT FORMAT$(A$,C$)
	 yields:
	 "3 0 0,00"

	 Division
	 B$="1.0"
	 A$=FLOATCALC$(B$,"/","3.0")
	 PRINT A$
	 yields:
	 "0.3333333333"

	 PRINT FORMAT$(A$,"\$ 000.00###")
	 yields:
	 "$ 000.33333"

104	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

FORMFEED (FF)

Purpose	 Statement for feeding out or pulling back a certain length of media.

Syntax	 FORMFEED|FF[<nexp>]

<nexp>	 is, optionally, the feed length expressed as a positive or negative
number of dots.

Remarks	 If no value is entered after the FORMFEED statement, the printer will
feed out one single label, ticket, tag, or a portion of continuous stock
according to the printer’s setup. See start- and stopadjustments and media
type in the User’s Guide for the printer model in question.

	 If a value is entered after the FORMFEED statement, the media will be
fed out or pulled back the corresponding number of dots:

	 - 	 A positive number of dots makes the printer feed out the specified
length of media.

	 -	 A negative number of dots makes the printer pull back the specified
length of media. Be careful not to enter a value larger than the length
of the label to avoid causing a media jam.

	 It is important whether a FORMFEED statement is issued before or after
a PRINTFEED statement:

	 -	 FORMFEED statement issued before PRINTFEED affects the posi-
tion of the origin on the first copy to be printed.

	 -	 FORMFEED statement issued after PRINTFEED does not affect the
position of the origin on the first copy, but next copy will be affected.

	 Do not use FORMFEED as a replacement for start- and stopadjustments
in the Setup Mode or in connection with batch printing.

Examples	 Printing a line of text and feeding out an extra 60 dots of media after
printing:

	 10	 FONT "Swiss 721 BT"
	 20	 PRPOS 30,200
	 30	 PRTXT "HELLO"
	 40	 PRINTFEED
	 50	 FORMFEED 60
	 RUN

	 Pulling back the media 20 dots before printing:
	 10	 FORMFEED -20
	 20	 FONT "Swiss 721 BT"
	 30	 PRPOS 30,200
	 40	 PRTXT "HELLO"
	 50	 PRINTFEED
	 RUN
	 In this case, the positioning of the text line will be performed after the

media has been pulled back.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 105

Chapter 2—Program Instructions

FRE

Purpose	 Function returning the number of free bytes in spcified part of the printer’s
memory.

Syntax	 FRE(<<sexp>|<nexp>>)

<sexp>	 is the designation of the part of the printer’s memory from which
the number of free bytes should be returned, for example "/c",
"tmp:", "card1:".

<nexp>	 is a dummy argument. Returns the number of free bytes in the
printer’s temporary memory ("tmp:").

Remarks	 The firmware looks for a colon (:) sign in the argument for the FRE func-
tion. If the argument is valid name of a memory device, the number of free
bytes in that device is returned.

	 If the argument specifies device "card1:", but no card is inserted, Error
1039, “Not mounted" will occur.

	 If the name of a device, that is not a part of the printer’s memory (for
example "uart1:" or "console:"), is entered as an argument, the FRE func-
tion will return 0.

	 Refer to DEVICES for more information on memory and non-memory
devices.

	 If the argument contains a colon, but is not a valid name of any device (for
example "QWERTY:"), Error 1013, “Device not found” will occur.

	 Any argument, that does not include a colon sign (for example “7” or
"QWERTY”), will return the amount of free bytes in the printer’s tempo-
rary memory ("tmp:").

	
Example	 PRINT FRE("tmp:")
								 yields for example:
	 2382384

	 PRINT FRE("uart1:")
										 yields:
	 0

	 PRINT FRE(1)
								 yields for example:
	 2382384

106	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

FUNCTEST

Purpose	 Statement for performing various hardware tests.

Syntax	 FUNCTEST<sexp>,<svar>

<sexp>	 is the type of test to be performed:
	 "CARD"
	 "HEAD"	 (only "HEAD" yields a meaningful response)
	 "KERNEL"
	 "ROMn"
<svar>	 is the variable in which the result will be placed.

Remarks	 The test has a number of possible responses:

	 <sexp> = "CARD"
	 NOT IMPLEMENTED	 Not supported.	
	
	 <sexp> = "HEAD"
	 HEAD OK, SIZE:n DOTS	 The test was successful.
		 n is the number of dots on the print-

head.
	 HEAD LIFTED	 Printhead is lifted and must be lowe-

red before test can be performed.
	 FAULTY PRINTHEAD	 One or more dots on the printhead

are not working.
		 Note that the voltage for the print-

head is not checked. Use the HEAD
function for additional printhead
tests.

	 <sexp> = "KERNEL"
	 NOT IMPLEMENTED	 Not supported.
	
	 <sexp> = "ROMn"
	 NOT APPLICABLE	 Not supported

	 Any other input to <sexp> yields an empty string.

Example	 This example shows how a test program using the FUNCTEST statement
may be composed:

	 10	 FUNCTEST "HEAD", A$
	 20	 PRINT "HEADTEST:", A$	
	 RUN					 			
								 yields for example:
	
	 HEADTEST: HEAD OK,SIZE:832 DOTS

	 Ok

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 107

Chapter 2—Program Instructions

FUNCTEST$

Purpose	 Function returning the result of various hardware tests.

Syntax	 FUNCTEST$(<sexp>)

<sexp>	 is the type of test to be performed:
	 "CARD"
	 "HEAD"	 (only "HEAD" yields a meaningful response)
	 "KERNEL"
	 "ROMn"

Remarks	 The test has a number of possible responses:

	 <sexp> = "CARD"
	 NOT IMPLEMENTED	 Not supported.	
	
	 <sexp> = "HEAD"
	 HEAD OK, SIZE:n DOTS	 The test was successful.
		 n is the number of dots on the print-

head.
	 HEAD LIFTED	 Printhead is lifted and must be lowe-

red before test can be performed.
	 FAULTY PRINTHEAD	 One or more dots on the printhead

are not working.
		 Note that the voltage for the print-

head is not checked. Use the HEAD
function for additional printhead
tests.

	 <sexp> = "KERNEL"
	 NOT IMPLEMENTED	 Not supported.
	
	 <sexp> = "ROMn"
	 NOT APPLICABLE	 Not supported

	 Any other input to <sexp> yields an empty string.

Example	 This example shows how a test program using the FUNCTEST$ function
may be composed (compare with the example for FUNCTEST statement):

	 PRINT "HEADTEST:", FUNCTEST$ ("HEAD")
yields for example:

	 HEADTEST: HEAD OK,SIZE:1280 DOTS

	 Ok

108	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

GET

Purpose	 Statement for reading a record from a random file to a random buffer.

Syntax	 GET[#]<nexp
1
>,<nexp

2
>

#	 indicates that whatever follows is a number. Optional.
<nexp

1
>	 is the number assigned to the file when it was OPENed.

<nexp
2
>	 is the number of the record. Must be ≠ 0.

Remarks	 The GET statement is used to read a certain record in a certain random file
to a buffer, where the record will be assigned to variables according to the
FIELD statement given for the buffer. After the GET statement has been
executed, you can use references to the variables defined by the FIELD
statement to read the characters in the random buffer.

	 Numeric expressions, which have been converted to string expressions by
STR$ functions before being put into the buffer, can be converted back to
numeric expressions using VAL functions.

Example	 10	 OPEN "PHONELIST" AS #8 LEN=26
	 20	 FIELD#8,8 AS F1$, 8 AS F2$, 10 AS F3$
	 30	 SNAME$="SMITH"
	 40	 CNAME$="JOHN"
	 50	 PHONE$="12345630"
	 60	 LSET F1$=SNAME$
	 70	 LSET F2$=CNAME$
	 80	 RSET F3$=PHONE$
	 90	 PUT #8,1
	 100	 CLOSE#8
	 RUN

	 SAVE "PROGRAM 1.PRG "

	 NEW
	 10	 OPEN "PHONELIST" AS #8 LEN=26
	 20	 FIELD#8,8 AS F1$, 8 AS F2$, 10 AS F3$
	 30	 GET #8,1
	 40	 PRINT F1$,F2$,F3$
	 RUN						 			
									 yields:
	 SMITH — — — JOHN — — — — — — 12345630

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 109

Chapter 2—Program Instructions

GETASSOC$

Purpose	 Function for getting a value from a string association.

Syntax	 GETASSOC$ (<sexp
1
>, <sexp

2
>)

<sexp
1
> 	 is the name of the association (case-sensitive).

<sexp
2
> 	 is the name of a tuple in the association.

Remarks	 An association is an array of tuples, where each tuple consists of a name
and a value.

Example	 This example shows how a string, including three stringnames associated
with three start values, will be defined and one of them (time) will be
changed:

	 10	 QUERYSTRING$=
		 "time=UNKNOWN&label=321&desc=DEF"
	 20	 MAKEASSOC"QARRAY",QUERYSTRING$,"HTTP"
	 30	 QTIME$=GETASSOC$("QARRAY","time")
	 40	 QLABELS%=VAL(GETASSOC$("QARRAY","label"))
	 50 	 QDESC$=GETASSOC$("QARRAY","desc")
	 60 	 PRINT"time=";QTIME$,"LABEL=";QLABELS%,		

"DESCRIPTION=";QDESC$
	 70 	 SETASSOC"QARRAY","time",time$
	 80 	 PRINT"time=";GETASSOC$("QARRAY","time")
	 RUN

yields:

	 time=UNKNOWN	 LABEL=321	DESCRIP	 TION=DEF
	 time=153355

110	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

GETASSOCNAME$

Purpose	 Function for traversing the tuples of a string association.

Syntax	 GETASSOCNAME$(<sexp>,<nexp>)

<sexp> 	 is the association to be traversed (case-sensitive).
<nexp> 	 specifies the tuple in the association.
	 <nvar> = 0 specifies first tuple.
	 <nvar> ≠ 0 specifies next tuple.

Remarks	 An association is an array of tuples, where each tuple consists of a name
and a value. To get the first position in the string association, <nvar>
should be zero. Consecutive calls to GETASSOCNAME$ witn <nvar>
non zero will traverse all variables in an undefined order. When a blank
string ("") is returned, the last variable has been traversed.

Example	 This example shows how “QARRAY" is traversed (run example from
GETASSOC first):

	 10 LVAL$=GETASSOCNAME$("QARRAY",0)
	 20 WHILE LVAL$<>""
	 30 RVAL$=GETASSOC$("QARRAY",LVAL$)
	 40 PRINT LVAL$;"=";RVAL$
	 50 LVAL$=GETASSOCNAME$("QARRAY",1)
	 60 WEND
	 RUN
	 yields:
	 label=321
	 desc=DEF
	 time=153355

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 111

Chapter 2—Program Instructions

GETPFSVAR

Purpose	 Function for recovering saved variables.

Syntax	 GETPFSVAR(<sexp>[,D])

<sexp>	 is the name of the variable (uppercase characters only).
D	 optionally specifies that the variable is to be deleted after reco-

very.

Remarks	 This function is used to recover variables registered to be saved at power
failure by means of a SETPFSVAR statement and returns either -1 on suc-
cess or 0 at failure.

	 If a D flag is included, the variable is deleted after it has been recovered.
This can be used to make sure that the variable is up to date and that no
old obsolete value is recovered.

	 The variable name is limited to a length of twenty characters.

	 Related instructions are SETPFSVAR, DELETEPFSVAR, and LIST-
PFSVAR.

Example	 10	 IF NOT GETPFSVAR("QS$") THEN QS$ ="<this is 	
	 the default vaule, set a new one>"

	 20	 IF NOT GETPFSVAR("QCPS%") THEN PRINT "No 	
	 copies available":END

	 30	 QSTATUS%=GETPFSVAR("AWE$",D):IF QSTATUS% 	
	 THEN PRINT "Recovered successfully!"

	 40	 SETPFSVAR "QCPS%"
	 50	 ’Build label
	 60	
	 99	 PRINTFEED; QCPS%=QCPS%
	 100	 	

112	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

GOSUB

Purpose	 Statement for branching to a subroutine.

Syntax	 GOSUB<ncon>|<line label>

<ncon>|<line label>	 is the number or label of the first line in the desired subroutine.

Remarks	 After branching, the subroutine will be executed line by line until a
RETURN statement is encountered.

	 The same subroutine can be branched to many times from different lines
in the main program. GOSUB always remembers where the branching
took place, which makes it possible to return to the correct line in the
main program after the subroutine has been executed.

	 Subroutines may be nested, which means that a subroutine may contain a
GOSUB statement for branching to a secondary subroutine and so on.

	 Subroutines are normally placed on program lines with higher numbers
than the main program. The main program should be appended by an
END statement to avoid unintentional execution of subroutines.

Example	 This example makes use of line numbers:
	 10	 PRINT "This is the main program"
	 20	 GOSUB 1000
	 30	 PRINT "You’re back in the main program"
	 40	 END
	 1000	PRINT "This is subroutine 1"
	 1010	GOSUB 2000
	 1020	PRINT "You’re back from subroutine 2 to 1"
	 1030	RETURN
	 2000	PRINT "This is subroutine 2"
	 2010	GOSUB 3000
	 2020	PRINT "You’re back from subroutine 3 to 2"
	 2030	RETURN
	 3000	PRINT "This is subroutine 3"
	 3010	PRINT "You’re leaving subroutine 3"
	 3020	RETURN
	 RUN
	 yields:
	 This is the main program
	 This is subroutine 1
	 This is subroutine 2
	 This is subroutine 3
	 You’re leaving subroutine 3
	 You’re back from subroutine 3 to 2
	 You’re back from subroutine 2 to 1
	 You’re back in the main program

	 Ok

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 113

Chapter 2—Program Instructions

GOSUB, cont.
	 In this examples, line numbers have been omitted and line labels are used

to make the program branch to subroutines:
	 IMMEDIATE OFF
	 PRINT "This is the main program"
	 GOSUB SUB1
	 PRINT "You’re back in the main program"
	 END
	 SUB1: PRINT "This is subroutine 1"
	 GOSUB SUB2
	 PRINT "You’re back from subroutine 2 to 1"
	 RETURN
	 SUB2: PRINT "This is subroutine 2"
	 GOSUB SUB3
	 PRINT "You’re back from subroutine 3 to 2"
	 RETURN
	 SUB3: PRINT "This is subroutine 3"
	 PRINT "You’re leaving subroutine 3"
	 RETURN

114	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

GOTO

Purpose	 Statement for branching unconditionally to a specified line.

Syntax	 GOTO<ncon>|<line label>

<ncon>/<line label>	 is the number or label of the line to be branched to.

Remarks	 If the specified line contains an executable statement, both that statement
and all that follows will be executed. If the specified line does not exist, an
error condition will occur.

	 The GOTO statement can also be used in the immediate mode to resume
execution of a program, which has been terminated using a STOP state-
ment, at a specified program line.

Example	 In this example the first bar of the tune "Colonel Boogie" will be played
only if the title is entered correctly. Otherwise the message "Try again" will
be displayed until you manage to type the right name.

	 10	 A$="COLONEL BOOGIE"
	 20	 B$="TRY AGAIN"
	 30	 INPUT "TITLE"; C$
	 40	 IF C$=A$ GOTO 100 ELSE PRINT B$
	 50	 GOTO 30
	 60 	 END
	 100	 SOUND 392,15
	 110	 SOUND 330,20
	 120	 SOUND 330,15
	 130	 SOUND 349,15
	 140	 SOUND 392,15
	 150	 SOUND 659,25
	 160	 SOUND 659,20
	 170	 SOUND 523,25
	 180	 GOTO 60
	 RUN
								 yields:
	 TITLE?

	 Note the way GOTO is used in line 50 to create a loop, which makes
the printer await the condition specified in line 40 before the execution
is resumed. Instead of line numbers, line labels can be used following the
same principles as illustrated in the second example for GOSUB state-
ment.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 115

Chapter 2—Program Instructions

HEAD

Purpose	 Function returning the result of a thermal printhead check.

Syntax	 HEAD(<nexp
1
>)

<nexp
1
> ≥ 0 	 specifies the number of a dot for which the resistance in ohms

will be returned.
<nexp

1
> = -1	 printhead check:	 Returns -1 (true) if OK

	 	 	 	 Returns 0 (false) if error
<nexp

1
> = -7	 returns mean printhead resistance in ohms.

	 <nexp
2
> = HEAD(<sexp>)

<nexp
2
>	 returns the number (quantity) of faulty dots.

<sexp>	 returns the dot number and resistance for each faulty dot.	
	 	

Remarks	 This function allows you to examine the printhead in regard of dot resis-
tance. There is no guarantee that all defect “dots" will detected by the
HEAD function, since only the resistance is checked. For example, dirty or
cracked dots can only be detected visually.

Note: The EasyCoder PD41 does not have resistance measuring. Running
the HEAD command on this platform will not return actual values.

	 The detection of a possibly faulty dot or printhead by means of the dot
sensing facility does not automatically imply that the printhead is defect
and that replacement will be covered by the warranty. Intermec reserves the
right of physical examination of the printhead before any replacement free
of charge can be discussed.

	 <nexp1> ≥ 0
	 A positive value specifies a single dot on the printhead and returns its

resistance value as a number of ohms. A dot resistance value that deviates
considerably from the mean resistance value of the printhead (see below)
indicates that the dot may be faulty. The dot numbering starts at 0 (zero),
that is, in a 832 dots printhead, the dots are numbered 0-831. On the
EasyCoder PD41 the nominal resistance of the dot will be returned.

	 <nexp1> = -1
	 A check of the complete printhead is performed. PD41 always returns -1.

	 HEAD(-1)=-1 	 The printhead is within the allowed limits (no
dot is more than ±15% from the mean resistance
value). This does not guarantee the printout quality.

 	 HEAD(-1)=0 	 A possible error has been detected.

	 <nexp1> = -7 	
	 The mean resistance value in ohms of all dots of the printhead is returned.

The PD41 will return the nomninal resistance value of the dots.

116	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

HEAD, cont.
	 The second version of the HEAD function measures the dot resistance for

every dot in the printhead and faulty dots are reported to the system, so
you do not need to use a SET FAULTY DOT statement to report bad dots
one at the time. The PD41 will return 0, and <sexp> will be empty.

Examples	 Read the resistance value of dot No. 5:
	 PRINT HEAD(5)

	 Perform a printhead check:
	 PRINT HEAD(-1)
	
	 Read the printhead’s mean resistance value:
	 PRINT HEAD(-7)

	 Check printhead for faulty dots and their respective resistance values:
	 A%=HEAD(B$)
	 yields for example:
	 Ok
	 PRINT A%
	 5

	 Ok
	 PRINT B$
	 25, 2944
	 42, 2944
	 106, 2944
	 107, 2944
	 140, 2944

	 Ok	

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 117

Chapter 2—Program Instructions

IF...THEN...(ELSE)

Purpose	 Statement for conditional execution controlled by the result of a numeric
expression.

Syntax	 IF<nexp>[,]THEN<stmt
1
>[ELSE<stmt

2
>]

	 IF<nexp>[,]THEN	 ↵
	 <stmt

1
>	 	 ↵

	 [...<stmt
1+n

>]	 ↵
	 [ELSE	 	 ↵	 	
	 <stmt

2
>	 	 ↵

	 [...<stmt
2+n

>]]	 ↵
	 ENDIF	 	 ↵	

<nexp>	 is a numeric expression, which is either true or false.
<stmt

1
>	 is the statement or list of statements telling the program what to

do, should the IF-condition be true.	
<stmt

2
>	 is an optional statement or list of statements specifying what will

happen, should the IF-condition be false.	

Remarks	 THEN and ELSE statements may be nested.

	 Multiple THEN and ELSE statements can alternatively be entered on
separate lines. If so, the instruction should be appended by ENDIF. See
second example below.

Examples	 These two examples illustrates the different syntaxes:
	 10	 A%=100:B%=20
	 20	 C$="A LARGER THAN B"
	 30	 D$="A NOT LARGER THAN B"
	 40	 IF A%>B% THEN PRINT C$ ELSE PRINT D$
	 RUN
									 yields:
	 A LARGER THAN B

	 10 	 A%=VAL(TIME$)
	 20	 IF A%>120000 THEN
	 30	 PRINT "TIME IS ";TIME$; ". ";
	 40	 PRINT "GO TO LUNCH!"
	 50	 ELSE
	 60	 PRINT "CARRY ON - ";
	 70	 PRINT "THERE’S MORE WORK TO DO!"
	 80	 ENDIF
	 RUN
								 yields for example:
	 TIME IS 121500. GO TO LUNCH!

118	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

IF...THEN...(ELSE), cont.
	 IF ... THEN are often used in connection with GOTO. In this example,

line numbering is used. Also see the example for the GOTO statement.
	 10	 A%=100
	 20	 B%=50
	 30	 IF A%=B% THEN GOTO 50 ELSE PRINT "NOT

EQUAL"
	 40	 END
	 50	 PRINT "EQUAL":END
	 RUN
								 	 yields:
	 NOT EQUAL

	 This example correspond to the preceding example, but line labels are used
instead of line numbers.

	 IMMEDIATE OFF
	 A%=100
	 B%=50
	 IF A%=B% THEN GOTO QQQ ELSE PRINT "NOT EQUAL"
	 END
	 QQQ: PRINT "EQUAL":END
	 IMMEDIATE ON
	 RUN
								 	 yields:
	 NOT EQUAL

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 119

Chapter 2—Program Instructions

IMAGE BUFFER MIRROR

Purpose	 Statement for mirror the print image around the Y-axis.

Syntax	 IMAGE BUFFER MIRROR

Remarks	 This statement mirrors the current defined image buffer around the Y-
axis, that is, the feed direction. Fields defined after the IMAGE BUFFER
MIRROR statement is executed are rendered normally. The image buffer
width is always 8-bit aligned, even when the X-start parameter in the setup
is not. Thus, it is recommended to test that the mirrored image is prin-
ted sidewise where intended. In some cases, a small correction using the
PRPOS statement or the X-start parameter could be necessary.

Example	 NEW
	 10 PRPOS 50,300
	 20 FONT "Swiss 721 BT",40
	 30 PRTXT "MIRROR"
	 40 IMAGE BUFFER MIRROR
	 50 PRPOS 50,100
	 60 PRTXT "NORMAL"
	 70 PRINTFEED

MIRROR
NORMAL

Feed
Direction

120	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

IMAGE BUFFER SAVE

Purpose	 Statement for saving the content of the image buffer as a file.

Syntax	 IMAGE BUFFER SAVE<sexp>

<sexp>	 is the desired name of the file, optionally with a reference to the
device where the file should be saved.

Remarks	 This statement saves the current content of the print buffer as an image file
in RLL format. After saving, the file is automatically installed as an image,
that can be printed using a PRIMAGE statement in DIR 1 and DIR 3.
Thereby, you can create label templates, to which variable data easily can
be added at will.

	 The size of the print buffer image depends on the size of the print image
at the moment the buffer is saved. The width is decided by the Media,
Media Size, Width setup value with the first pixel according to the Media,
Media Size, Xstart setup value. The height is decided by the actual height
in y-dimension of the print image. Note that space characters or invisible
"white" parts of an image are included in the height of the print image,
even if they are not visible on the printed label.

Example	 IMAGE BUFFER SAVE "TEMPLATE7"	
	

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 121

Chapter 2—Program Instructions

IMAGE LOAD

Purpose	 Statement for receiving, converting and installing image and font files.

Syntax	 IMAGE LOAD[<nexp
1
>,]<sexp

1
>,<nexp

2
>[,<sexp

2
>[,<nexp

3
>]]

<nexp
1
>	 is optionally the number of bytes to skip before starting to read

the data.
<sexp

1
>	 is the desired name of the image or font to be created.

<nexp
2
>	 is the size of the original file in number of bytes.

<sexp
2
>	 is an optional flag:

	 "S" specifies that the image or font will be saved in the printer’s
permanent memory ("/c"). Avoid this option (slow).

	 An empty string ("") specifies that the image or font will be
stored in the printer’s temporary memory ("tmp:").

<nexp
3
>	 optionally specifies a communication channel OPENed for INPUT

by the number assigned to the device.
	 (Default: Std IN channel.)

Remarks	 This statement prepares the printer to receive a .PCX image file, an image
file in the internal Intermec Fingerprint bitmap format, or a font file on
the standard IN channel (see SETSTDIO statement) or on another com-
munication channel OPEN for INPUT. When the file is received, it will
automatically be converted to an image in the internal bitmap format of
Intermec Fingerprint or to a scaleable font respectively.

	 The optional first parameter makes it possible to use this statement in MS-
DOS (CR/LF problem).

	 The name of an image may consist of max. 30 characters including possible
extension. The image will have the same direction as the original image file
and can only be rotated 180° using a DIR statement. We therefore recom-
mend that you include the extension .1 or .2 to indicate for which print
directions the image is intended. Font file names are only restricted to 30
characters. The size of the original file should be given in bytes according
to its size in the host.

	 Before IMAGE LOAD can be used on a serial channel, the setup must be
changed to 8 characters, CTS/RTS handshake. When an IMAGE LOAD
statement is executed, the execution stops and waits for the number of
bytes specified in the statement to be received. During the transfer of
image file data to the printer, there is a 25 seconds timeout between cha-
racters. If a new character has not been received within the timeout limit,
Error 80 “Download timeout” occurs. When the specified number of
characters have been received, the execution is resumed.

	 If the downloading was successful, the downloaded image or font will be
installed automatically and can be used without any rebooting.

Example	 IMAGE LOAD "Logotype.1",400,"" 	

122	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

IMAGENAME$

Purpose	 Function returning the names of the images stored in the printer’s
memory.

Syntax	 IMAGENAME$(<nexp>)

<nexp>	 is the result of the expression which is either false or true:
	 False (0) indicates first image.
	 True (≠0) indicates next image.

Remarks	 This function can be used to produce a list of all images (another method
is to use the IMAGES statement).

	 Image files downloaded by means of a TRANSFER KERMIT statement
will not be returned, since the software will regard them as files rather than
images.

	 IMAGENAME$(0) produces the first name in the memory.

	 IMAGENAME$(≠0) produces next name. Can be repeated as long there
are any image names left.

Example	 Use a program like this to list all image names:
	 10	 A$=IMAGENAME$(0)
	 20	 IF A$=""THEN END
	 30	 PRINT A$
	 40	 A$=IMAGENAME$(-1)
	 50	 GOTO 20
	 RUN
								 yields for example:
	 CHESS2X2.1
	 CHESS4X4.1
	 DIAMONDS.1
	 GLOBE.1

	 Ok

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 123

Chapter 2—Program Instructions

IMAGES

Purpose	 Statement for returning the names of all images stored in the printer’s
memory to the standard OUT channel.

Syntax	 IMAGES

Remarks	 This statement can be used to list all image names (another method is to
use an IMAGENAME$ function).

	 Image files downloaded by means of a TRANSFER KERMIT statement
will not be printed, since the firmware will regard them as files rather than
images.

Example	 A list of images stored in the printer’s memory may look like this:
	 IMAGES
								 yields for example:
	 CHESS2X2.1 		 CHESS4X4.1
	 DIAMONDS.1 		 GLOBE.1

	 3568692 bytes free 1717812 bytes used
	 Ok

124	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

IMMEDIATE

Purpose	 Statement for enabling or disabling the immediate mode of Intermec
Fingerprint in connection with program editing without line numbers,
for reading the current mode, or for reading the current standard IN and
OUT channels.

Syntax	 IMMEDIATE ON|OFF|MODE|STDIO

ON	 Enables the Immediate Mode
OFF	 Disables the Immediate Mode
MODE	 Prints a line to the STDOUT port with information on the current

status of the following modes (ON or OFF):
	 - Execution
	 - Immediate
	 - Input
	 - Layout Input
	 - Debug STDIO (dbstdio)
STDIO	 Prints two lines to the STDOUT port with information on current

settings for the STDIN and STDOUT channels.

Remarks	 IMMEDIATE ON|OFF
	 Before starting to write a program without line numbers, the immediate

mode must be disabled by means of an IMMEDIATE OFF statement. If
not, each line will be executed immediately.

	 After an IMMEDIATE OFF statement, program lines can be entered
without any leading line numbers. References to lines are done using “line
labels”, which are called in GOTO or GOSUB and related statements.

	 A line label is a name followed by a colon (:). The label must not interfere
with any keywords or start with a digit and the line must start with the line
label. When a line label is used as a reference to another line, for example
within a GOTO statement, the colon should be omitted.

	 The program should be appended by a IMMEDIATE ON statement.
At the execution of this statement, the program lines will be numbered
automatically in ten-step incremental order, starting with the first line (10-
20-30-40-50...). These line numbers will not appear on the screen until the
program is LISTed, LOADed, or MERGEd. Line labels will not be conver-
ted to line numbers.

	 Do not issue a RUN statement before the IMMEDIATE ON statement,
or an error will occur.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 125

Chapter 2—Program Instructions

IMMEDIATE, cont. 	
	 IMMEDIATE MODE
	 Execution On/Off indicates if a Fingerprint program is running or not.

	 Immediate On/Off indicates whether the Immediate Mode is enabled or
disabled as specified by IMMEDIATE ON/OFF.

	 Input On/Off indicates whether the Direct Protocol is enabled or disabled
as specified by INPUT ON/OFF.

	 Layout Input On/Off indicates whether or not a layout is being recorded
in the Direct Protocol as specified by LAYOUT INPUT and LAYOUT
END.

	 Dbstdio On/Off indicates whether the debug standard I/O is active or not.

	 The following conditions are not reported:
	 -	Running a Fingerprint application.
	 -	Execution of a TRANSFER KERMIT, FILE& LOAD, IMAGE 		

LOAD, LOAD, and STORE INPUT instruction.
	 -	Running external commands (ush), for example RUN"rz......"
	 -	Running the Setup Mode or execution of a SETUP statement.

	 IMMEDIATE STDIO
	 Two lines will be transmitted on the STDOUT port with information on

the current STDIN and STDOUT channels regarding port, baud rate,
character length, parity, and stop bits.

	
Examples	 A program can be written without using any line numbers, as illustrated by

this short example. QQQ is used as a line label:
	 IMMEDIATE OFF						

yields:
	 Ok
	 PRINT "LINE 1"
	 GOSUB QQQ
	 END
	 QQQ: PRINT "LINE 2"
	 RETURN
	 IMMEDIATE ON
	 Ok
	 RUN
									 yields:
	 LINE 1
	 LINE 2
	 Ok
	

126	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

IMMEDIATE, cont.	
	 This example shows how the status of the various modes are checked:
	 IMMEDIATE MODE
	 yields for example:
	 execution=OFF, immediate=ON, input=OFF, layout

input = Off

	 This example shows how the status of the STDIN and STDOUT chan-
nels are checked:

	 IMMEDIATE STDIO
	 yields for example:
	 stdin=uart1:, 9600, 8, NONE, 1
	 stdout=uart1:, 9600, 8, NONE, 1

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 127

Chapter 2—Program Instructions

INKEY$

Purpose	 Function reading the first character in the receive buffer of the standard IN
channel.

Syntax	 INKEY$

Remarks	 For information on standard I/O channels, see SETSTDIO statement.

	 As opposed to the INPUT statement, INKEY$ does not interrupt the
program flow to wait for input data, unless a loop is created by means of a
GOTO statement, see line 20 in the example below.

	 INKEY$ is useful when the host computer is unable to end the input data
with a “Carriage Return” (CR; ASCII 13 dec.), but must use some other
character, for example “End of Text" (ETX; ASCII 3 dec.). Then a routine,
which interprets the substitute character as a carriage return, can be crea-
ted.

Example	 In this example, none of the characters received on the standard IN chan-
nel will be printed on the host screen until a # character (ASCII 35 deci-
mal) is encountered.

	 10	 A$ = INKEY$
	 20	 IF A$ = "" GOTO 10
	 30	 IF A$ = CHR$(35) THEN PRINT B$
	 40	 IF A$ = CHR$(35) THEN END
	 50	 B$ = B$ + A$
	 60	 GOTO 10
	 RUN

	 Type a number of characters on the keyboard of the host. They will not be
printed on the host screen until you type a # character. Then all the char-
acters will appear simultaneously, except for the #-sign.

	 Note the loop between line 10 and 20, which makes the program wait for
you to activate a key.

128	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

INPUT (IP)

Purpose	 Statement for receiving input data via the standard IN channel during the
execution of a program.

Syntax	 INPUT|IP[<scon><;|,>]<<nvar>|<svar>>[,<<nvar>|<svar>>...]

<scon><;|,>	 is an optional prompt string, followed by a semicolon or comma.
<<nvar>|<svar>>	 are variables to which the input data will be assigned.

Remarks	 For information on standard I/O channel, see SETSTDIO statement.

	 During the execution of a program, an INPUT statement will interrupt
the execution. A question mark and/or a prompt will be displayed on the
screen of the host to indicate that the program is expecting additional data
to be entered. The prompt can be used to tell the operator what type of
data he or she is expected to enter.

	 The prompt will be appended by a question mark if a semicolon (;) is
entered after the prompt string. If a comma (,) is used in that position, the
printing of the question mark will be suppressed.

	 If a prompt is not used, the question mark will always be displayed.

	 Do not enter any comma or semicolon directly after the keyword, only
after the prompt, or in order to separate variables.

	 The input data should be assigned to one or several variables. Each item of
data should be separated from next item by a comma. The number of data
items entered must correspond to the number of variables in the list, or
else an error condition will occur. The variables may be any mix of string
variables and numeric variables, but the type of input data must agree with
the type of the variable, to which the data is assigned.

	 Input can also be done directly to the system variables TIME$, DATE$,
and SYSVAR.

	 The maximum number of characters that can be read using an INPUT
statement is 32,767 characters.

	 Note that INPUT filters out any incoming ASCII 00 dec. characters
(NUL).

	 INPUT does not support autohunting (see SETSTDIO).

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 129

Chapter 2—Program Instructions

INPUT (IP), cont.

Examples	 This example shows input to one numeric variable and one string variable:
	 10	 INPUT "ADDRESS";A%,B$
	 20	 PRINT A%;" ";B$
	 30	 IF A% > 0 THEN GOTO 50
	 40	 GOTO 10
	 50	 END
	 RUN
									 yields:
	 ADDRESS?

	 When the prompt “ADDRESS?” appears on the screen, you can type the

input data on the terminal’s keyboard, for example:
	 999, HILL STREET
	 Note the separating comma.

	 If the input text data contains a comma, which shall be printed, you must
enclose the input data with quotation marks ("...."), for example:

	 999, "HILL STREET, HILLSBOROUGH"
	 Numeric input data must not include any decimal points.

	 This example shows how the date can be set directly from the keyboard of
the host:

	 INPUT "Enter date: ",DATE$				
									 yields:
	 Enter date:

	 When the prompt “Enter date:" appears on the screen of the host, you
can type the date as a six-digit combination of year, month and day (see
DATE$ variable). Time can also be set using the same method.

130	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

INPUT ON/OFF

Purpose	 Statement enabling or disabling the Intermec Direct Protocol.

Syntax	 INPUT ON|OFF

Default:	 INPUT OFF

Remarks	 These statements are used to enter or leave the Intermec Direct Protocol.

	 INPUT ON	 Enables the Intermec Direct Protocol:
		 -	 Enables reception of input data to a stored layout
		 -	 Starts the error handler
		 -	 Sets the verbosity to off (SYSVAR (18) = 0)
		 -	 Shows “Direct Protocol 8.XX.X” in the display

	 INPUT OFF	 Disables the Intermec Direct Protocol:
		 -	 Disables reception of input data to a stored layout
		 -	 Stops the error handler
		 -	 Resets the verbosity to the level selected before last 	

		 INPUT ON was executed
		 -	 Shows “Fingerprint 8.XX.X” in the display

	 The following instructions will only work with the Intermec Direct Proto-
col, that is after an INPUT ON statement has been executed:

	 COUNT&		 ERROR			 FORMAT INPUT
	 INPUT OFF	 LAYOUT END		 LAYOUT INPUT
	 LAYOUT RUN	

Example	 This example illustrates how the Intermec Direct Protocol is enabled,
how new separators are specified, how a layout is stored in the printer’s
memory, how variable data are combined with the layout, and how a label
is printed. Finally, the Intermec Direct Protocol is disabled:

	 INPUT ON ↵
	 FORMAT INPUT "#","@","&" ↵
	 LAYOUT INPUT "tmp:LABEL1" ↵
	 FT "Swiss 721 BT" ↵
	 PP 100,250 ↵
	 PT VAR1$ ↵
	 PP 100,200 ↵
	 PT VAR2$ ↵
	 LAYOUT END ↵
	 LAYOUT RUN "tmp:LABEL1" ↵
	 #Line number 1&Line number 2&@ ↵
	 PF ↵
	 INPUT OFF ↵

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 131

Chapter 2—Program Instructions

INPUT#

Purpose	 Statement for reading a string of data from an OPEN device or sequential
file.

Syntax	 INPUT#<nexp>,<<nvar>|<svar>>[,<<nvar>|<svar>>...]

<nexp>	 is the number assigned to the file or device when it was OPENed.
<<nvar>|<svar>>	 is the variable to which the input data will be assigned.

Remarks	 This statement resembles the INPUT statement, but allows the input to
come from other devices than the standard IN channel or from various
files. Like the INPUT statement, commas can be used to assign diffe-
rent portions of the input to different variables. INPUT# does not allow
prompts to be used.

	 When reading from a sequential file, the records can be read one after the
other by the repeated issuing of INPUT# statements with the same file
reference.

	 Once a file record has been read, it cannot be read again until the file is
CLOSEd and then OPENed again.

	 The maximum number of characters that can be read using an INPUT#
statement is 32,767 characters.

	 Note that INPUT# filters out any incoming ASCII 00 dec. characters
(NUL).

Example	 This example assigns data from the first record in the sequential file
"Addresses" to the three string variables A$, B$, and C$ and from the
second record in the same file to the string variables D$ and E$:

	
	
	 100	 OPEN "ADDRESSES" FOR INPUT AS #5
	 110	 INPUT#5, A$, B$, C$
	 120	 INPUT#5, D$, E$
	
	

132	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

INPUT$

Purpose	 Function returning a string of data, limited in regard of number of charac-
ters, from the standard IN channel, or optionally from an OPENed file or
device.

Syntax	 INPUT$(<nexp
1
>[,<nexp

2
>])

<nexp
1
>	 is the number of characters to be read.

<nexp
2
>	 optionally specifies a file or device using the number assigned to

it when it was OPENed.

Remarks	 If no file or device is specified, the input will come from the standard I/O
channel, see SETSTDIO statement.

 	 Otherwise, it will come from the specified file or device. The execution will
be held until the specified number of characters has been received from
the keyboard console, file, or communication channel. If a file does not
contain the specified number of characters, the execution will be resumed
as soon as all available characters in the file have been received.

	 The maximum number of characters that can be returned using an
INPUT$ statement is 65,536 characters.

Examples	 This example reads a sequence of 25 characters from the printer’s built-in

keyboard and assigns them to a string variable named Z$:
	
	
	 1000	OPEN "CONSOLE:" FOR INPUT AS #1
	 1010	Z$=INPUT$(25,1)
	
	

	 In this example, 10 characters are read from the standard IN channel and
assigned to a variable.

	 10	 A$=INPUT$(10)

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 133

Chapter 2—Program Instructions

INSTR

Purpose	 Function searching a specified string for a certain character, or sequence of
characters, and returning its position in relation to the start of the string.

Syntax	 INSTR([<nexp>,]<sexp
1
>,<sexp

2
>)

<nexp>	 is , optionally, the position where the search will start.
<sexp

1
>	 is the string to be searched.

<sexp
2
>	 is the character(s) for which the string will be searched.

Remarks	 INSTR allows you to search a string for some particular character(s) and
return the position of the character, or the first character in the sequence,
as a number of characters positions measured from the start of the string.

	 As an option, it is possible to specify a certain position in the string from
which the search will start. If no start position is specified, the search will
start at the beginning of the string.

	 The result will be zero if
	 - the start position value exceeds the length of the string.
	 - the string is empty.
	 - the searched combination of characters cannot be found.

Examples	 In this example, the string "INTERMEC_PRINTER_AB" is searched for
the character combination "AB". No start position is specified.

	 10	 A$="INTERMEC PRINTER AB"
	 20	 B$="AB"
	 30	 PRINT INSTR(A$,B$)
	 RUN	 								
									 yields:
	 18

	 In next example, the string "INTERMEC_PRINTER_AB" is searched for
the character "I" and the start position is specified as 4.

	 10	 A$="INTERMEC PRINTER AB"
	 20	 B$="I"
	 30	 PRINT INSTR(4,A$,B$)
	 RUN									
									 yields:
	 12

134	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

INVIMAGE (II)

Purpose	 Statement for inversing the printing of text and images from “black-on-
white" to “white-on-black."

Syntax	 INVIMAGE | II

Default:	 NORIMAGE
Reset to default by:	 PRINTFEED execution

Remarks	 This statement can only be used in connection with the printing of text
and images (PRTXT and PRIMAGE). In the matrix of the font or image,
all “white” dots will be black and all black dots will be “white.” (Obviously,
“white” means that the dots will not be subjected to heat and the media
therefore will retain its original color, whereas “black” means the color of
the printing.)

	 This implies that most fonts will be printed on a black background which
ascends and descends slightly more than most of the characters. Not all
fonts are suited for inverse printing. Thin lines, serifs, and ornaments may
be difficult to distinguish. There may also be an imbalance between the
ascending and descending black background.

	 The same principles apply to images. The normally invisible background
may be larger than expected or be less favourably balanced. Small “white”
details tend to be blurred out by the black background. Therefore, before
using an inverse image, make a printout sample.

	 INVIMAGE will be revoked by a NORIMAGE statement.

Example	 10	 PRPOS 30,300
	 20	 DIR 1
	 30	 ALIGN 4
	 40	 INVIMAGE
	 50	 FONT "Swiss 721 BT"
	 60	 PRTXT "Inverse printing"
	 70	 PRINTFEED
	 RUN

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 135

Chapter 2—Program Instructions

KEY BEEP

Purpose	 Statement for resetting the frequency and duration of the sound produced
by the beeper, when any of the keys on the printer’s keyboard is pressed
down.

Syntax	 KEY↔BEEP<nexp
1
>,<nexp

2
>

<nexp
1
>	 is the frequency of the sound in Hz.

<nexp
2
>	 is the duration of the sound in periods of 0.020 seconds each

(max. 15,0000 = 5 minutes).
Default:	 Frequency:	 1200 Hz
	 Duration:	 0.030 sec.

Remarks	 This statement sets the response for all keys of the printer. To turn off the
audible key response, set the frequency to a value higher than 9999.

	 Note that the beeper is disabled during printing.

	 The table below illustrates the relation between frequencies and the musical
scale (same as in the SOUND statement).

Key	 Hz	 Key	 Hz	 Key 	 Hz	 Key	 Hz

C	 131	 C	 262	 C	 523	 C	 1047
C#	 138	 C#	 277	 C#	 554	 C#	 1109
D	 147	 D	 294	 D	 587	 D	 1175
D#	 155	 D#	 311	 D#	 622	 D#	 1245
E	 165	 E	 330	 E	 659	 E	 1319
F	 175	 F	 349	 F	 699	 F	 1397
F#	 185	 F#	 370	 F#	 740	 F#	 1480
G	 196	 G	 392	 G	 784	 G	 1568
G#	 208	 G#	 415	 G#	 831	 G#	 1662
A	 220	 A	 440	 A	 880	 A	 1760
A#	 233	 A#	 466	 A#	 933	 A#	 1865
B	 247	 B	 494	 B	 988	 B	 1976

(small octave)	 (one-line octave)	 (two-line octave)	 (three-line octave)

Example	 In this example, the beeper will produce an A in the one-line octave for 1
second each time a key is pressed down.

	 10	 KEY BEEP 440,50
	
	

136	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

KEY ON/OFF

Purpose	 Statement enabling or disabling a specified key on the printer’s front panel
to be used in connection with an ON KEY...GOSUB statement.

Syntax	 KEY(<nexp>)OFF|ON

<nexp>	 is the id. number of one of the keys on the printer’s front panel
OFF|ON	 disables|enables the specified key.

Remarks	 Using an ON KEY... GOSUB statement, any key (except the <Shift> key)
can be assigned to make the program branch to a subroutine. The keys are
enabled/disabled individually and are specified by means of their respec-
tive id. numbers in unshifted and/or shifted position, see Appendix A. To
specify a shifted key, add 100 to the unshifted id. number the key.

	 The EasyCoder PD41 only has one button, with id.number 17. The
button generates event 117 when released.

 	 Please note the difference between the id. numbers of the keys and the
ASCII values they are able to produce (see KEYBMAP$).

Example	 In this example, the /F1 key (id. No. 10) is first enabled, then used for
branching to a subroutine and finally disabled.

	 10	 KEY (10) ON
	 20	 ON KEY (10) GOSUB 1000
	 30	 KEY (10) OFF

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 137

Chapter 2—Program Instructions

KEYBMAP$

Purpose	 Variable returning or setting the keyboard map table.

Syntax	 Read the map table: 	 <svar> = KEYBMAP$(<nexp>)

<svar>	 returns the keyboard mapping
<nexp>	 is the type of string to be returned:
	 0 = Shift or Alt key not activated (64 characters)
	 1 = Shift key activated (64 characters)
	 5 = Alt key activated (64 characters) (Alphanumeric keyboard on

EasyCoder PX4i and PX6i only)

	 Set the map table: 	 	 KEYBMAP$(<nexp>) = <sexp>

<nexp>	 is the type of string to be remapped:
	 0 = Shift or Alt key not activated (64 characters)
	 1 = Shift key activated (64 characters)
	 5 = Alt key activated (64 characters) (Alphanumeric keyboard on

EasyCoder PX4i and PX6i only)
<sexp>	 is the string specifying the ASCII value for each key position in the

selected type of string.

Remarks	 In the KEYBMAP$ statement, each key on the printer’s front panel has
two characteristics:

	 •	 The physical location of the key (position number).
		 (This is not the same thing as the key’s Id. No, see KEY ON/OFF or

ON KEY GOSUB.)
	 •	 The ASCII decimal value that will be produced when the key is pressed.

(Compare with BREAK.)

	 Refer to Appendix A for illustrations of position numbers, id. numbers,
and ASCII values for the various printer models and keyboard types.

	 In principle, each physical key can produce two or three different ASCII
values, one in unshifted position, another in shifted position, and—in case
of an alphanumeric keyboard—a third when the <Alt> key is activated.
One key is appointed <Shift> key. When the <Shift> key is pressed at the
same time as another key, the unshifted ASCII value of the latter will be
increased by 128.

	 You can use the KEYBMAP$ instruction in two ways:

	 Reading the keyboard mapping
	 You can read how the keyboard is mapped depending on if the <Shift> or

<Alt> is activated or not. The printer will return a string of ASCII values in
ascending key position number. Because many keys return non-printable
ASCII values (ASCII 00-31 dec.), all will not be returned to the screen of
the host or printed on a label.

138	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

KEYBMAP$, cont.	
	
	 Changing the keyboard mapping
	 You can change the mapping of the keyboard, so a key will produce

another ASCII value than before. To do that, you must create a string
which specifies the ASCII value for each of all 64 unshifted, shifted, or Alt-
initiated key positions in ascending order. Regardless of what the keyboard
looks like, there are always 64 theoretical key positions.

Note: The exception being the EasyCoder PD41, whose keyboard map
is only 6 bytes long. Index zero indicates the Print button, and 1-5 being
reserved.

	 Characters, that cannot be produced by the keyboard of the host, can be
substituted by CHR$ functions, where the character is specified by its
ASCII decimal value according to the selected character set (see NASC
statement.) The same applies to special characters. Key positions which
should be disabled or are not included in the physical keyboard can be
mapped as NUL, using the function CHR$(0). Note that the position of
the <Shift> key cannot be remapped.

	 When a key is remapped, its id. number will follow the key to its new posi-
tion. Most keys on the alphanumeric keyboard do not have id. numbers.

	 There is no default mapping for the alphanumeric keyboard, so the printer
assumes that a normal keyboard is fitted and reacts accordingly. To make
full use of the alphanumeric keyboard for EasyCoder PX4i and PX6i, all
keys have to be mapped, see Appendix A.	

	 Note: In the Setup Mode, the keys have fixed positions and are not affec-
ted by any KEYBMAP$ statement. KEYBMAP$ only affects the keys
when used outside the Setup Mode. 	

Examples	 The following example illustrates the mapping of the keyboard for Easy-
Coder PF4i (unshifted keys only).

	 10	 B$=CHR$(1)+STRING$(4,0)+CHR$(2)+
		 STRING$(4,0)+CHR$(3)
	 20	 B$=B$+STRING$(4,0)+CHR$(4)+STRING$(4,0)+
 		 CHR$(5)+STRING$(9,0)
	 30	 B$=B$+CHR$(13)+CHR$(28)+CHR$(29)+CHR$(30)+
		 STRING$(6,0)
	 40	 B$=B$+".147"+CHR$(0)+"0258"+CHR$(0)+CHR$(8)	

	 +"369"+CHR$(0)+(CHR$(31)+STRING$(8,0)
	 50	 KEYBMAP$(0)=B$
	 RUN

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 139

Chapter 2—Program Instructions

KILL

Purpose	 Statement for deleting a file, directory, or complete directory sub-trees
from the printer’s memory or from a CompactFlash memory card inserted
in the memory card adapter.

Syntax	 KILL<sexp>[,R[,A]]

<sexp>	 is the file or directory to be deleted.
R	 recursively removes all non-system files in the specified sub-tree

and then removes all empty directories in the same sub-tree.
A	 optionally specifies that system files also should be removed.

Remarks	 The name of the file to be deleted must match the name given when the
file was saved, see SAVE statement. The name must include the extension.
If no extension was entered manually by the operator when the file was
SAVEd, the extension “.PRG” was added automatically.

	 To KILL a file residing in another directory than the current one (see
CHDIR statement), you must include a reference to the directory in ques-
tion when you specify the file, for example "card1:<filename>.XYZ".

	 KILL cannot be used for files residing in "rom:", "storage:", or "lock:".

	 A directory cannot be removed if it contains files or directories unless the
R flag is included in the KILL statement. Otherwise error 1073, “Direc-
tory not empty” will occur.

	 A trailing slash character (/) may be added to directory names, but is not
necessary.

	 The A and R flags are only applicable when removing directories, doing
otherwise will result in error 1034, “Not a directory”.

	 The root directory of any device cannot be removed.

	 Note the symmetry with FILES. FILES<sexp>,R and FILES<sexp>,R,A
list files and directories that will be removed using KILL<sexp>,R and
KILL<sexp>,R,A respectively.

	 The current directory may be removed (for example KILL CURDIR$,R).
The current directory is not changed after such a command, but is inva-
lid and a successful CHDIR statement is necessary to restore the current
directory to one that exists (CHDIR".." may not work).

	 Also see CHDIR, FILES, and MKDIR

140	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

KILL, cont.

Example	 10	 ON ERROR GOTO 1000
	 20	 CHDIR("/c")
	 30 	 MKDIR "DIR1"	 Create the directory DIR1
	 40	 FILES
	 50	 COPY "STDIO", "DIR1"	 Copy STDIO into DIR1
	 60	 FILES "DIR1"	 List files in DIR1
	 70	 KILL "DIR1"	 Try to remove DIR1
	 80	 KILL "DIR1",R	 Remove the directory recursively
	 90	 FILES
	 100	 END
	 1000	PRINT "error number "; ERR;"in line ";ERL
	 1010	RESUME NEXT
	 RUN
	 yields for example:
	 Files on /c

	 DIR1/		 0	 APPLICATION	 0
	 boot/		 0	 ADMIN/	 0
	 STDIO		 4
	
	 22210562 bytes free 4 bytes used

	 STDIO		 4
	
	 2220032 bytes free 4 bytes used
	 Error number 1073 in line 70
	 Files on /c

	 APPLICATION	 0	 boot/	 0
	 ADMIN/	 0	 STDIO	 4	

	 2222080 bytes free 4 bytes used

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 141

Chapter 2—Program Instructions

LAYOUT

Purpose	 Statement for handling of layout files.

Syntax	 LAYOUT[F,] <sexp
1
>,<sexp

2
>,<svar>|<sexp

3
>,<nvar>|<sexp

4
>

F,	 optionally allows use of data and error files instead of arrays
<sexp

1
>	 is the layout file.

<sexp
2
>	 is the logotype name file.

<svar>|<sexp
3
>	 is the data array (<svar>) or data file (<sexp

3
>).

<nvar>|<sexp
4
>	 is the error array (<nvar>) or error file (<sexp

4
>).

Remarks	 <sexp1>: Layout file format sorted in ascending order (Records 1-n, 52 bytes each)
	 Input: H = hex digit, D = Numeric digit, C = Alpha character	 	
	 Byte #	 Parameter	 Layout Type	 Input	 Notes
	 0-1	 Element number		 HH
	 2	 Layout type		 C
		 A = Logotype by name
		 B = Bar code
		 C = Text
		 E = Bar code extended field			 Note 1
		 H = Barfont on/off
		 J = Baradjust (corresponds to BARADJUST stmt)
		 L = Logotype by number
		 S = Line
		 X = Box	
	 3	 Direction	 A,B,C,L,S,or X	 D
		 Barfont on/off (0=off; 1=on)	 H	 D
		 Security	 E	 D
	 4	 Alignment	 A,B,C,L,S,X	 D
		 Aspect height ratio	 E	 D
	 5-8	 X-position	 A,B,C,L,S,or X	 DDDD
		 Aspect width ratio	 E 	 D
		 Baradjust left	 J	 DDDD
	 9-12	 Y-position	 A,B,C,L,S,or X	 DDDD
		 Rows in bar code	 E	 DD
		 Baradjust right	 J	 DDDD
	 13-22	 Font name	 C	 C

1
-C

10
	 Note 2

		 Logotype name	 A	 C
1
-C

10
		 Bar code name	 B	 C

1
-C

10
		 Barfont name	 H	 C

1
-C

10
		 Line length	 S	 DDDD
		 Box width	 X	 DDDD
		 Columns in bar code	 E	 DD	 Byte 13-14
		 Truncate according to code spec's	 E	 D	 Byte 15
	 23-42	 Fixed text or alphanumeric data	 B or C	 C

1
-C

20
		 Fixed numeric data	 B	 D

1
-D

20
		 Logotype number	 L	 DD
		 Box height	 X	 DDDD
		 Line thickness	 S	 DDDD
	 43-44	 No of char. to print (of byte 23-42)	 B or C	 DD
	 45-46	 Image type (I = inverse image)	 A,C, or L	 C
		 Bar code ratio (wide/narrow bars)	 B	 DD
	 47	 Vertical magnification	 A,C, or L	 D or C	 Note 3
		 Bar code magnification 	 B	 D or C	 Note 3
	 48	 Horizontal magnification	 A,C, or L	 D
	 49-51	 Bar code height	 B	 DDD
		 Line thickness	 X	 DDD

142	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

LAYOUT, cont.	
Note 1: The bar code extended field record (E) corresponds to the six last
parameters in the BARSET statement. Must have a lower element number
than the corresponding bar code record (B), which specifies the other bar
code parameters.

Note 2: The maximum font name length in the LAYOUT statement is 10
characters. Most font names in Intermec Fingerprint are longer. A worka-
round method is to use font name aliases with a maximum length of 10
characters, See Chapter 6, “Fonts”.

Note 3: If a magnification of 0-9 is sufficient, enter a numeric digit. If a
higher magnification than 9 is required, enter the character with the ASCII
decimal number minus 48 that corresponds to the desired magnification,
that is, if magnification 10 is desired, enter the character : (colon, ASCII
58 dec).

 	 Logotype name file format #1:
	 (no embedded spaces in name)
	 Record 1–n, 10 bytes each.
	 C

1
...C

10
	 Name for logotype No. 1

	 . . .
	 . . .	
	 C

1
...C

10
	 Name for logotype No. n

	 Logotype name file format #2:
	 (Records sorted in ascending logotype number order)
	 Record 1-n, 13 bytes each.
	 DD	 Logotype number (2 digits)
	 C		 always ":" (colon). Separator. Distinguishes format 2.
	 C

1
...C

10
	 Name of logotype (10 characters)

Note: Logotype name file formats #1 and #2 are alternative.	

	 Data array/file format:
	 (sorted in ascending order)
	 One array position/One file line.
	 HH	 Element number
	 C

1
...C

n
	 Data

	 If a data element cannot be used in the layout, an error will occur and the index of the unused element
and error code -1 is placed in the error array/file.

	 Error array/file format:
	 (sorted in ascending order)
	 Array position/File line No. 0:	 Record number for error 1
	 Array position/File line No.1:	 Error number for error 1
	 . . .
	 . . .
	 Array position/File line No. 2n-2:	 Record number for error n
	 Array position/File line No. 2n-1:	 Error number for error n

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 143

Chapter 2—Program Instructions

LAYOUT, cont.	

	 To improve the performance, it is strongly recommended to create
the layout and logotype name files in the printer’s temporary memory
("tmp:"). Once they have been created in "tmp:", they could be copied to
the printer’s permanent memory to avoid losing them at power off.

	 Do not confuse this statement with the statements LAYOUT INPUT,
LAYOUT END, and LAYOUT RUN.

Example	 Note that the 10 characters available to define a font in the LAYOUT
statement in most cases cannot accommodate modern outline font names.
Instead, use font aliases as described in Chapter 6. In the example below,
the font aliases are indicated by lowercase italic typing (lines 90–120, 150).

10	 DIM QERR%(10)
20	 LAYDATA$(0)="01DAY"
30	 LAYDATA$(1)="04123456789012"
40	 QERR%(0)=0
50	 OPEN "tmp:LOGNAME.DAT" FOR OUTPUT AS 19
60	 PRINT# 19,"DIAMONDS.1";
70	 CLOSE 19
80	 OPEN "tmp:LAYOUT.DAT" FOR OUTPUT AS 6
90	 PRINT# 6,"01C11100 10 font alias 00I 11 ";
100	 PRINT# 6,"01C11100 40 font alias 00 22 ";
110	 PRINT# 6,"01C11100 100 font aliasWEDNES 06I 11 ";
120	 PRINT# 6,"01C11100 130 font aliasSATURNUS 05I 11 ";
130	 PRINT# 6,"02L11300 70 1 33 ";
140	 PRINT# 6,"03S11100 210 300 3 ";
150	 PRINT# 6,"04H1 font alias ";
160	 PRINT# 6,"04B14100 300 EAN13 0 312 100";
170 	 CLOSE 6
180	 LAYOUT "tmp:LAYOUT.DAT","tmp:LOGNAME.DAT",LAYDATA$,QERR%
190	 IF QERR% (1) = 0 THEN GOTO 260
200	 PRINT "-ERROR- LAYOUT 1"
210	 I%=0
220	 IF QERR%(I%)=0 THEN GOTO 260
230	 PRINT " ERROR ";QERR%(I%+1);" in record ";QERR%(I%)
240	 I%=I%+2
250	 GOTO 220
260	 PRINTFEED

144	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

LAYOUT END

Purpose	 Statement for stopping the recording of a layout description and saving the
layout (Intermec Direct Protocol only).

Syntax	 LAYOUT END

Remarks	 This statement can only be used in the Intermec Direct Protocol after a
layout has been recorded by means of a LAYOUT INPUT statement.
After a LAYOUT END statement has been executed, no more data will be
added to the layout.

	 By default, the layout will be saved in the printer’s permanent memory
("/c"). To speed up the execution it can, as an alternative, be saved in the
temporary memory (see LAYOUT INPUT statement). The layout can be
copied and killed as any other program file.

Example	 This example illustrates how the Intermec Direct Protocol is enabled, how

new separators are specified, how a layout is stored in the printer’s tempo-
rary memory, how variable data are combined with the layout, and how a
label is printed. Finally, the Intermec Direct Protocol is disabled:

	 INPUT ON ↵
	 FORMAT INPUT "#","@","&" ↵
	 LAYOUT INPUT "tmp:LABEL1" ↵
	 FT "Swiss 721 BT"↵
	 PP 100,250 ↵
	 PT VAR1$ ↵
	 PP 100,200 ↵
	 PT VAR2$ ↵
	 LAYOUT END ↵
	 LAYOUT RUN "tmp:LABEL1" ↵
	 #Line number 1&Line number 2&@ ↵
	 PF ↵
	 INPUT OFF ↵

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 145

Chapter 2—Program Instructions

LAYOUT INPUT

Purpose	 Statement for starting the recording of a layout description (Intermec
Direct Protocol only).

Syntax	 LAYOUT INPUT <sexp>

<sexp>	 is the desired name of the layout (max. 30 characters) including
name of the device where the layout is to be stored.

Remarks	 This statement can only be used in the Intermec Direct Protocol and starts
the recording of a layout. All formatting instructions, such as PRPOS,
MAG, FONT, BARFONT, BARSET, PRTXT, PRBAR, PRIMAGE,
PRBOX, PRLINE, etc., which are transmitted to the printer on the
standard IN channel after a LAYOUT INPUT statement and before a
LAYOUT END statement, will be included in the layout.

	 Layouts cannot be created in "/c" (which by default is the current direc-
tory), but must be created in the printer’s temporary memory ("tmp:"),
or possibly in a CompactFlash card ("card1:"). Once a layout has been
created in the temporary memory ("tmp:"), it can be copied to either "/c"
or "card1:" so it will not be lost at power-off or reboot.

	 Variable input data to text, bar code, and image fields can be provided
separately using a LAYOUT RUN statement. Such variable data are indi-
cated in the layout by string variables VARn$ where “n” is the number of
the field in the LAYOUT RUN string of data. For example, the statement
PRTXT "Hello" in the layout results in a fixed text, whereas the statement
PRTXT VAR1$ results in a variable text, which is provided by the first
field in a LAYOUT RUN string.

	 The layout must not contain any PRINTFEED statements. The layout will
not be saved until a LAYOUT END statement is executed.

Example	 In this example, the Intermec Direct Protocol is enabled, new separators

are specified, a layout is stored in "tmp:", data are combined with the
layout, and a label is printed. Finally, the Direct Protocol is disabled:

	 INPUT ON ↵
	 FORMAT INPUT "#","@","&" ↵
	 LAYOUT INPUT "tmp:LABEL1" ↵
	 FT "Swiss 721 BT" ↵
	 PP 100,250 ↵
	 PT VAR1$ ↵
	 PP 100,200 ↵
	 PT VAR2$ ↵
	 LAYOUT END ↵
	 LAYOUT RUN "tmp:LABEL1" ↵
	 #Line number 1&Line number 2&@ ↵
	 PF ↵
	 INPUT OFF ↵

146	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

LAYOUT RUN

Purpose	 Statement for providing variable input data to a predefined layout
(Intermec Direct Protocol only).

Syntax	 LAYOUT RUN <sexp>

<sexp>	 is the name of the layout as specified in the LAYOUT INPUT state-
ment.

Remarks	 This instruction can only be used in the Intermec Direct Protocol and
is used to select a predefined layout in a specified part of the printer’s
memory (see LAYOUT INPUT statement) and provide input to string
variables in the layout. Such variables are indicated by VARn$, where “n”
indicates a field in the string of data that should follow the LAYOUT
RUN statement.

	 The string of input data should be composed according to the following
syntax, where <STX> is the start-of-text separator, <CR> is the field
separator and <EOT> is the end-of-text separator (see FORMAT INPUT
statement):

	 <STX><input to VAR1$><CR><input to VAR2$><CR>. . . .<input to VARn$><CR><EOT>

	 Before reverting to “normal” Fingerprint printing after having used vari-
able data (LAYOUT INPUT, LAYOUT END, and LAYOUT RUN), the
data must be cleared using LAYOUT RUN with an empty string (LAYOUT
RUN " ").

Example	 This example illustrates how the Intermec Direct Protocol is enabled, how

new separators are specified, how a layout is stored in the printer’s tempo-
rary memory, how variable data are combined with the layout, and how a
label is printed. Finally, the Intermec Direct Protocol is disabled:

	 INPUT ON ↵
	 FORMAT INPUT "#","@","&" ↵
	 LAYOUT INPUT "tmp:LABEL1" ↵
	 FT "Swiss 721 BT" ↵
	 PP 100,250 ↵
	 PT VAR1$ ↵
	 PP 100,200 ↵
	 PT VAR2$ ↵
	 LAYOUT END ↵
	 LAYOUT RUN "tmp:LABEL1" ↵
	 #Line number 1&Line number 2&@ ↵
	 PF ↵
	 INPUT OFF ↵

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 147

Chapter 2—Program Instructions

LBLCOND

Purpose	 Statement for overriding the media feed setup.

Syntax	 LBLCOND<nexp
1
>,<nexp

2
>|<nexp

3
>

<nexp
1
>	 specifies the type of action:

	 0 = Overriding the stop adjust.
	 1 = Overriding the start adjust.
	 2 =Turning off the Label Stop Sensor/Black Mark Sensor.
	 3 = Selecting the mode specified by <nexp

3
>

<nexp
2
>	 specifies <nexp

1
> = 0, 1, or 2 as a number of dots.

<nexp
3
>	 Specifies one of the following modes:

	 0 = Legacy Mode
	 1 = IPL Mode
	 2 = Gap Truncate Mode
	 Default: LBLCOND 3,2	

Remarks	 This instruction allows you to override the printer’s feed-adjust setup or to
temporarily disable the label stop sensor or black mark sensor:

	 <nexp1> = 0 	 temporarily sets the stop adjust to the value specified by
<nexp2>.

	 <nexp1> = 1 	 temporarily sets the start adjust to the value specified by
<nexp2>.

	 <nexp1> = 2 	 makes the label stop sensor (LSS) or black mark sensor
temporarily ignore any gaps or marks detected within the
length of media feed specified by <nexp2>. However, the
label length must be greater than than the distance between
the LSS and the tear bar (if not, use LBLCOND 3,xx). This
allows the use of labels of such shapes that would make the
LSS react prematurely, or tickets with preprint at the back
of the media that would interfere with the detection of the
black mark.

	 <nexp1> = 3	 is useful as an alternative to LBLCOND 2,xx when the
length of the label or ticket is shorter than the distance bet-
ween the LSS and the tear bar. It makes it possible to select
one of the modes specified by <nexp3>.

	 Legacy Mode (<nexp3> = 0)
	 If the print image is longer than the physical length of the label or ticket,

the print image will extend into the next label until the media feed stops
according to the stop adjust setup (for example when the gap becomes alig-
ned with the tear bar). This means that the print image may be truncated,
the next label may have to be discarded, and some of the print image may
coincide with a gap or slot. This mode was called “Default Mode” in earler
versions of Intermec Fingerprint.

148	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

LBLCOND, cont.
	 IPL Mode (<nexp3> = 1)
	 If the print image is longer than the physical length of the label or ticket,

the print image will extend into the following label(s) until the entire print
image has been printed. Then the media is fed out to the next gap or mark
according to the stop adjust setup. This means that the print image will
not be truncated but may extend into one or more consecutive labels, and
some of the print image may coincide with gaps or slots.

	 Gap Truncate Mode (<nexp3> = 2)
	 If the print image is longer than the physical length of the label or ticket,

only the part of the print image that fits on the label or ticket will be prin-
ted and the remainder will be ignored. This means that some of the print
image may not be printed at all, but the following labels will not be affec-
ted.

	 Verifying a start adjust or stop adjust value in the Setup Mode by pressing
key No. 16 (normally labeled “Enter”), or setting the value using a setup
file or setup string, will revoke any LBLCOND statement for the parame-
ter in question.

	 The label stop sensor will be returned to normal operation by the state-
ment: LBLCOND 2,0

	 All current LBLCOND statements will be revoked at startup or the execu-
tion of a REBOOT statement. This means that the start and stop adjust
will be decided by the setup and the label stop sensor will work normally.

Example	 In this example, the start adjust value in the setup mode is overridden and

the label stop sensor is set to ignore any gaps in the web within 20 mm
(160 dots at 8 dots/mm; 240 dots at 12 dots/mm) of media feed:

	 10	 LBLCOND 1,5: LBLCOND 2,160
	 20	 FONT "Swiss 721 BT"
	 30	 PRTXT "Hello"
	 40	 PRINTFEED
	 RUN

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 149

Chapter 2—Program Instructions

LED ON/OFF

Purpose	 Statement for controlling the dual-color “Status” indicator.

Syntax	 LED<nexp>ON | OFF|BLINK [,DATAIN]

<nexp>	 specifies the color of the Status indicator:
	 0 	 controls the green LED (default ON).
	 1 	 controls the red LED (default OFF)

Remarks	 All present Intermec Fingerprint printers are equipped with three LED
(Light Emitting Diode) control lamps on the front panel. The center one
of the LEDs (normally marked “Status” on the keyboard overlay) can be
used to indicate, for example, when an error occurs, when the printer is
ready, or when data is received.

	 Under the Direct Protocol, the “Status” LED starts blinking green, when
data are received on the standard input channel, and switches to solid
green, when the channel has been silent for 0.8 seconds. Under the Direct
Protocol, the Status LED may also be affected by the error handler, see
ERROR statement.

	 BLINK mode means that the “Status” LED is lit for 0.4 seconds at an
interval of 0.4 seconds.

	 If the DATA IN flag is set with the BLINK mode, reception of data on the
standard input channel controls whether the “Status” LED shall blink or
be switched off, exactly as the behavior under the Direct Protocol.

	 If you set LED 0 ON and LED 1 ON, the “Status” LED will get solid red.

 	 Note: If the printer has a console that does not includes the blue Intermec
Ready-to-Work Indicator, please refer to Intermec Fingerprint v8.10,
Programmer's Reference Manual for a description of the LED ON/OFF
statement.	

Example	 In this example, the “Status” LED will be solid red if you, for example,
attempt to run the program with a raised printhead. Lower the printhead
and a label will be fed out. The “Status” LED switches to solid green.

	 10	 LED 0 ON
	 20	 LED 1 OFF
	 30	 ON ERROR GOTO 1000
	 40	 PRPOS 30,300
	 50	 FONT "Swiss 721 BT"
	 60	 PRTXT "OK!"
	 70	 PRINTFEED
	 80	 LED 0 ON
	 90	 LED 1 OFF
	 100	 END
	
	
	 1000	LED 0 OFF
	 1010	LED 1 ON
	 1020 	RESUME

150	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

LEFT$

Purpose	 Function returning a specified number of characters from a given string
starting from the extreme left side of the string, that is from the start.

Syntax	 LEFT$(<sexp>,<nexp>)

<sexp>	 is the string from which the characters will be returned.
<nexp>	 is the number of characters to be returned.

Remarks	 This function is the complementary function for RIGHT$, which returns
the characters starting from the extreme right side, that is from the end.

	 If the number of characters to be returned is greater than the number
of characters in the string, then the entire string will be returned. If the
number of characters is set to zero, a null string will be returned.

Examples	 10	 PRINT LEFT$("THERMAL PRINTER",7)
	 RUN
								 	 yields:
	 THERMAL

	 10	 A$="THERMAL PRINTER":B$="LABEL"
	 20	 PRINT LEFT$(A$,8);LEFT$(B$,10);"S"
	 RUN
									 yields:
	 THERMAL LABELS

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 151

Chapter 2—Program Instructions

LEN

Purpose	 Function returning the number of character positions in a string.

Syntax	 LEN(<sexp>)

<sexp>	 is the string from which the number of characters will be retur-
ned.

Remarks	 The number of characters to be returned includes unprintable characters,
but the quotation marks enclosing the string expression are not included.

Examples	 In this example, lines 40 and 50 illustrate two ways of using the LEN func-
tion, when the number of characters from several string expressions are to
be added up.

	 10	 A$="INTERMEC"				 (8 char.)
	 20	 B$="THERMAL"				 (7 char.)
	 30	 C$="PRINTERS"				 (8 char.)
	 40	 PRINT LEN(A$+B$+C$)
	 50	 PRINT LEN(A$)+LEN(B$)+LEN(C$)
	 RUN
									 yields:
	 23
	 23

	 This example illustrates that unprintable characters, for example space
characters, are included in the value returned by the LEN function:

	 PRINT LEN("INTERMEC THERMAL PRINTERS")
										 yields:
	 25

152	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

LET

Purpose	 Statement for assigning the value of an expression to a variable.

Syntax	 [LET]<<nvar>=<nexp>>|<<svar>=<sexp>>

<nvar>	 is the numeric variable to which a value will be assigned.
<nexp>	 is the numeric expression from which the value will be assigned

to the numeric variable.
or...	
<svar>	 is the string variable to which the content of the string expression

will be assigned.
<sexp>	 is the string expression from which the content will be assigned

to the string variable.

Remarks	 The keyword LET is not necessary, but retained for compatibility with old
versions of Intermec Fingerprint. The equal sign (=) is sufficient to make
the assignment. Both the expression and the variable most be either string
or numeric.

Example	 10	 LET A%=100				 (numeric variable)
	 20	 B%=150					 (numeric variable)
	 30	 LET C$="INTERMEC"			 (string variable)
	 40	 D$="THERMAL PRINTERS"	 (string variable)
	 50	 PRINT A%+B%,C$+" "+D$
	 RUN
									 yields:
	 250	 INTERMEC THERMAL PRINTERS

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 153

Chapter 2—Program Instructions

LINE INPUT

Purpose	 Statement for assigning an entire line, including punctuation marks, from
the standard IN channel to a single string variable.

Syntax	 LINE↔INPUT[<scon>;]<svar>

<scon>;	 is an optional prompt plus a semicolon
<svar>	 is the string variable to which the input line is assigned.

Remarks	 For information on standard I/O channel, see SETSTDIO statement.

	 LINE INPUT differs from INPUT in that an entire line of max. 32,767
characters will be read. Possible commas will appear as punctuation marks
in the string instead of dividing the line into portions.

	 During the execution of a program, a LINE INPUT statement will inter-
rupt the execution. You can make a prompt being displayed on the host
screen to notify the operator that the program is expecting additional data
to be entered. The input is terminated and the program execution is resu-
med when a carriage return character (ASCII 13 decimal) is encountered.
The carriage return character will not be included in the input line.

	 Note that LINE INPUT filters out any incoming ASCII 00 dec. characters
(NUL).

Example	 Print your own visiting card like this:
	 10	 LINE INPUT "ENTER NAME: ";A$
	 20	 LINE INPUT "ENTER STREET: ";B$
	 30	 LINE INPUT "ENTER CITY: ";C$
	 40	 LINE INPUT "ENTER STATE + ZIPCODE: ";D$
	 50	 LINE INPUT "ENTER PHONE NO: ";E$
	 60	 FONT "Swiss 721 BT", 8
	 70	 ALIGN 5
	 80	 PRPOS 160,300:PRTXT A$
	 90	 PRPOS 160,250:PRTXT B$
	 100	 PRPOS 160,200:PRTXT C$
	 110	 PRPOS 160,150:PRTXT D$
	 120	 PRPOS 160,100:PRTXT "Phone: "+E$
	 130	 PRINTFEED
	 RUN

154	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

LINE INPUT#

Purpose	 Statement for assigning an entire line, including punctuation marks, from
a sequential file or a device to a single string variable.

Syntax	 LINE↔INPUT#<nexp>,<svar>

<nexp>	 is the number assigned to the file when it was OPENed.
<svar>	 is the string variable to which the input line is assigned.

Remarks	 This statement differs from the INPUT# statement in that an entire line of
max. 32,767 characters will be read, and possible commas in the line will
be included in the string as punctuation marks instead of dividing it into
portions.

	 When reading from a sequential file, the lines can be read one after the
other by the repeated issuing of LINE INPUT# statements, using the same
file reference.

	 Once a line has been read, it cannot be read again until the file is CLOSEd
and then OPENed again.

	 The LINE INPUT# statement is useful when the lines in a file has been
broken into fields.

	 Note that LINE INPUT# filters out any incoming ASCII 00 dec. charac-
ters (NUL).

Example	 This example assigns data from the three first lines of the file "Addresses"
to the string variables A$, B$, and C$ respectively:

	
	
	 100	 OPEN "ADDRESSES" FOR INPUT AS #5
	 110	 LINE INPUT# 5, A$
	 120	 LINE INPUT# 5, B$
	 130	 LINE INPUT# 5, C$
	
	

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 155

Chapter 2—Program Instructions

LIST

Purpose	 Statement for listing the current program completely or partially, or listing
all variables, to the standard OUT channel.

Syntax	 LIST[[<ncon
1
>[–<ncont

2
>]] | ,V | ,B]

<ncon
1
>	 is a single line, or the first line number in a range of lines.

<ncon
2
>	 is optionally the last line number in a range of lines.

,V	 lists all variables.
,B	 lists all breakpoints.

Remarks	 This instruction is useful after LOADing a program, or if you during
programming have changed any program lines, renumbered the lines, or
added new lines and want to bring some order in the presentation on the
screen of the host. LIST also removes unnecessary characters and adds
assumed keywords. The instruction is usually given in the immediate
mode, that is on a line without any preceding line number.

	 The LIST statement can be used in seven different ways:

	 •	 If no line number is entered after LIST, the entire current program will
be listed. In case the program has been written without line numbers
(see IMMEDIATE ON/OFF statements), the lines will be automatically
numbered with 10-step incrementation starting with line number 10
(10-20-30-40-50....).

	 •	 If a single line number is entered after LIST, only the specified line will
be listed.

	 •	 If a line number followed by a hyphen (-) is entered after LIST, all lines
from the specified line to the end of the program will be listed.

	 •	 If a hyphen (-) followed by line number is entered after LIST, all lines
from the start of the program through the specified line will be listed.

	 •	 If two line numbers are entered after LIST, they will specify the first and
last line in a range of lines to be listed.

	 •	 If LIST,V is entered, all integer variables, integer array variables, string
variables, and string array variables in the printer’s memory will be
listed.

	 •	 If LIST,B is entered, all breakpoints of the Fingerprint Debugger (see
DBBREAK) will be printed in line number order. Line labels that have
not been updated, which occurs at program execution, may be mispla-
ced.

156	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

LIST, cont.

Examples	 LIST				 Lists all lines in the program.
	 LIST 100		 Lists line No. 100 only.
	 LIST 100–	 Lists all lines from line No 100

to the end of the program.
	 LIST –500	 			 Lists all lines from the start of

the program through line No. 500.
	 LIST 100–500	 Lists all lines from line 100

through line 500.
	 LIST,V	 		 Lists all variables.
	 LIST,B			 Lists all breakpoints.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 157

Chapter 2—Program Instructions

LISTPFSVAR

Purpose	 Statement for listing variables saved at power failure.

Syntax	 LISTPFSVAR

Remarks	 Related instructions are SETPFSVAR, GETPFSVAR, and DELETE-
PFSVAR.

Example	 LISTPFSVAR
	 yields for example:
	 QS$
	 QCPS%
	 A%

158	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

LOAD

Purpose	 Statement for loading a copy of a program, residing in the current direc-
tory or in another specified directory, into the printer’s working memory.

Syntax	 LOAD<scon>

<scon>	 is the program to be loaded into the working memory.

Remarks	 If the program has the extension .PRG, the name of the program can be
given with or without any extension. Otherwise, the extension must be
included in the name. If the program resides in another directory than the
current one (see CHDIR statement), the name must also contain a refe-
rence to the directory in question.

	 LOAD closes any open files and deletes all program lines and variables resi-
ding in the working memory before loading the specified program. If the
previous program in the working memory has not been saved, see SAVE
statement, it will be lost and cannot be retrieved.

	 While the program is loaded, a syntax check is performed. If a syntax error
is detected, the loading will be interupted and an error message will be
transmitted on the standard OUT channel.

Examples	 Load the program "LABEL127.PRG" from the current directory:
	 LOAD "LABEL127"
	 or
	 LOAD "LABEL127.PRG"

	 When “Ok” appears on the screen, the loading is completed. Use a LIST
statement to display the program on the screen of your terminal.

	 You may also load a program stored in another directory than the cur-
rent one, for example the read-only memory ("/rom") or a CompactFlash
memory card ("card1:"). Start the file name by specifying the directory, for
example:

	 LOAD "/rom/MKAUTO.PRG"
	 or
	 LOAD "card1:PROGRAM1.PRG"

	 This will create a copy, which you can list or change and then save under a
new name.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 159

Chapter 2—Program Instructions

LOC

Purpose	 Function returning the current position in an OPEN file or the status of
the buffers in an OPEN communication channel.

Syntax	 LOC(<nexp>)

<nexp>	 is the number assigned to the file or communication channel
when it was OPENed.

Remarks	 In a random file, LOC will return the number of the last record read or
written by the use of GET or PUT statements respectively.

	 In a sequential file, the number of 128-byte blocks, that have been read or
written since the file was OPENed, will be returned.

	 LOC can also be used to check the receive or transmit buffer of the speci-
fied communication channel:

	 • 	 If the channel is OPENed for INPUT, the remaining number of charac-
ters (bytes) to be read from the receive buffer is returned.

	 • 	 If the channel is OPENed for OUTPUT, the remaining free space
(bytes) in the transmit buffer is returned.

	 The number of bytes includes characters that will be MAPped as NUL.

Examples	 This example closes the file "addresses" when record No. 100 has been read
from the file:

	 10	 OPEN "ADDRESSES" FOR INPUT AS #1
	
	
	
	 200	 IF LOC(1)=100 THEN CLOSE #1
	
	

	 This example reads the number of bytes which remains to be received from
the receive buffer of "uart2:":

	 100	 OPEN "uart2:" FOR INPUT AS #2
	 110	 A%=LOC(2)
	 120	 PRINT A%

160	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

LOF

Purpose	 Function returning the length in bytes of an OPEN sequential or random
file, or returning the status of the buffers in an OPEN communication
channel.

Syntax	 LOF(<nexp>)

(<nexp>)	 is the number assigned to the file or communication channel
when it was OPENed.

Remarks	 LOF can also be used to check the receive or transmit buffer of the speci-
fied communication channel:

	 • 	 If a channel is OPENed for INPUT, the remaining free space (bytes) in
the receive buffer is returned.

	 • 	 If a channel is OPENed for OUTPUT, the remaining number of cha-
racters to be transmitted from the transmit buffer is returned.

Examples	 The first example illustrates how the length of the file "Pricelist" is
returned:

	 10	 OPEN "PRICELIST" AS #5
	 20	 A%=LOF(5)
	 30	 PRINT A%
	
	

	 The second example shows how the number of free bytes in the receive
buffer of communication channel "uart2:" is calculated:

	 100	 OPEN "uart2:" FOR INPUT AS #2
	 110	 A%=LOF(2)
	 120	 PRINT A%

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 161

Chapter 2—Program Instructions

LSET

Purpose	 Statement for placing data left-justified into a field in a random file buffer.

Syntax	 LSET<svar>=<sexp>

<svar>	 is the string variable assigned to the field by a FIELD statement.
<sexp>	 holds the input data.

Remarks	 After having OPENed a file and formatted it using a FIELD statement,
you can enter data into the random file buffer using the LSET and RSET
statements (RSET right-justifies the data).

	 The input data can only be stored in the buffer as string expressions. There-
fore, a numeric expression must be converted to string format by the use of
an STR$ function before an LSET or RSET statement is executed.

	 If the length of the input data is less than the length of the field, the data
will be left justified and the remaining number of bytes will be printed as
space characters.

	 If the length of the input data exceeds the length of the field, the input
data will be truncated on the right side.

Example	 10	 OPEN "PHONELIST" AS #8 LEN=26
	 20	 FIELD#8,8 AS F1$, 8 AS F2$, 10 AS F3$
	 30	 SNAME$="SMITH"
	 40	 CNAME$="JOHN"
	 50	 PHONE$="12345630"
	 60	 LSET F1$=SNAME$
	 70	 LSET F2$=CNAME$
	 80	 RSET F3$=PHONE$
	 90	 PUT #8,1
	 100	 CLOSE#8
	 RUN
	 SAVE "PROGRAM 1.PRG "
	 NEW
	 10	 OPEN "PHONELIST" AS #8 LEN=26
	 20	 FIELD#8,8 AS F1$, 8 AS F2$, 10 AS F3$
	 30	 GET #8,1
	 40	 PRINT F1$,F2$,F3$
	 RUN
									 yields:
	 SMITH — — — JOHN — — — — — — 12345630

162	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

LTS& ON/OFF

Purpose	 Statement for enabling or disabling the label taken sensor.

Syntax	 LTS& ON|OFF

Default:	 LTS& OFF

Remarks	 The label taken sensor (LTS) is a photoelectric device that can be fitted in
the vicinity of the printer’s label outfeed slot and detects if a printed label
or ticket has been removed or not. (Usually, a self-adhesive label is not fed
out completely, but will remain partly stuck to the liner so it will not fall
off.)

	 Using the LTS ON statement, you can order the printer to stop the execu-
tion at next PRINTFEED statement until the LTS no longer detects any
label. Then the PRINTFEED is executed. This is most useful when prin-
ting batches of labels or tickets. As soon as a label is taken, the next one is
printed and awaits being taken care of.

	 The same result can also be obtained in a more cumbersome way by a pro-
gram based on the PRSTAT(2) function.

	 LTS& OFF revokes LTS& ON.

Example	 10	 LTS& ON
	 20	 FOR A%=1 TO 5
	 30	 B$=STR$(A%)
	 40	 FONT "Swiss 721 BT"
	 50	 PRPOS 200,200
	 60	 PRTXT B$
	 70	 PRINTFEED
	 80	 NEXT
	 RUN

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 163

Chapter 2—Program Instructions

MAG

Purpose	 Statement for magnifying a font, barfont, or image up to four times sepa-
rately in regard of height and width.

Syntax	 MAG<nexp
1
>,<nexp

2
>

<nexp
1
>	 is the magnification in regard of height (1, 2, 3, or 4).

<nexp
2
>	 is the magnification in regard of width (1, 2, 3, or 4).

Default value:	 1,1
Reset to default by:	 PRINTFEED execution

Remarks	 Magnification makes the object grow in directions away from the selected
anchor point, see ALIGN statement.

	 The MAG statement has become more or less obsolete for fonts and bar
fonts with the implementation of scaleable fonts. Even if MAG works for
such fonts, the printout quality will be much better by using a larger font
size rather than magnifying a smaller one. However, the MAG statement is
retained to allow compatibility with programs originally written for older
Intermec Fingerprint versions.

	 The MAG statement also works with images. However, since the MAG
statement simply enlarges the bitmap pattern of an image, it gives a better
printout quality to download and use a larger version of an image rather
than magnifying a smaller one.

	 Note that the MAG statement cannot be used for bar code patterns (use
BARHEIGHT and BARMAG statement for that purpose).

Example	 This example illustrates how the image "GLOBE.1" is printed both with
its original size and magnified 4 times. Note the jagged edges of the curves
in the enlarged image.

	 10	 ALIGN 2
	 20	 PRPOS 300,50
	 30	 FONT "Swiss 721 BT"
	 40	 PRTXT "Normal Size"
	 50	 PRPOS 300,125
	 60	 PRIMAGE "GLOBE.1"
	 70	 PRPOS 300,300
	 80	 PRTXT "Enlarged 4X"
	 90	 PRPOS 300,375
	 100	 MAG 4,4
	 110	 PRIMAGE "GLOBE.1"
	 120	 PRINTFEED
	 RUN

164	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

MAKEASSOC

Purpose	 Statement for creating an association.

Syntax	 MAKEASSOC <sexp
1
>, <sexp

2
>, <sexp

3
>

<sexp
1
> 	 specifies the name of the association to be created (case-sensi-

tive).
<sexp

2
> 	 contains an argument list of parameter tuples according to the

convention in <sexp
3
>.

<sexp 
3
> 	 should always be "HTTP" (case sensitive).

Remarks	 HTTP implies that the argument list in <sexp2> is encoded in “x-www-url-
encoding.”

Example	 This example shows how a string, including three stringnames associated
with three start values, will be defined and one of them (time) will be
changed:

	 10	 QUERYSTRING$ = 							
	 "time=UNKNOWN&label=321&desc=DEF"

	 20	 MAKEASSOC "QARRAY", QUERYSTRING$, "HTTP"
	 30	 QTIME$ = GETASSOC$("QARRAY", "time")
	 40	 QLABELS% = VAL(GETASSOC$("QARRAY","label"))
	 50 	 QDESC$ = GETASSOC$("QARRAY", "desc")
	 60 	 PRINT "time=";QTIME$, "LABEL=";QLABELS%,		

	 "DESCRIPTION=";QDESC$
	 70 	 SETASSOC "QARRAY", "time", time$
	 80 	 PRINT "time="; GETASSOC$("QARRAY", "time")
	 RUN

yields:

	 time=UNKNOWN	 LABEL=321	DESCRIP	 TION=DEF
	 time=153355

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 165

Chapter 2—Program Instructions

MAP

Purpose	 Statement for changing the ASCII value of a character when received on
the standard IN channel, or optionally on another specified communica-
tion channel.

Syntax	 MAP[<nexp
1
>,]<nexp

2
>,<nexp

3
>

<nexp
1
>	 optionally specifies a communication channel:

	 0 = "console:"
	 1 = "uart1:"	
	 2 = "uart2:"
	 3 = "uart3:"
	 4 = "centronics:"
	 5 = "net1:"
	 6 = "usb1:"
	 7 = "uart4:"
	 8 = "uart5:"
	 Default: Standard IN channel.
<nexp

2
>	 is the original ASCII decimal value.

<nexp
3
>	 is the new ASCII decimal value after mapping.

Remarks	 This statement is used to modify a character set (see NASC and NASCD
statements) or to filter out undesired character. If you for example want a
“Q” (ASCII 81 dec.) to be printed as the letter “Z” (ASCII 90 dec.), the
MAP statement should be entered as: MAP 81,90

	 The mapping interprets any ASCII 81 dec. value received on the standard
IN channel as ASCII 90 dec., that is when you press “Q” on the keyboard
of the host, the character “Z” will be printed (see note). However, pressing
“Z” will still produce a “Z”, because that character has not been remapped.

	 To reset the mapping performed above, map the character back to its origi-
nal ASCII value like this: MAP 81,81

	 When a character is received by the printer, it is processed in regard of pos-
sible MAP statements before it “enters” the Intermec Fingerprint firmware.
That allows you to filter out undesired control characters, which may
confuse the Intermec Fingerprint firmware, for example by mapping them
as NUL (ASCII 0 decimal).

	 After processing, the selected character set (see NASC and NASCD sta-
tements) controls how characters will be printed or displayed. If none of
the character sets meets your demands completely, use MAP statements
to modify the set that comes closest. Note that MAP statements will be
processed before any COMSET or ON KEY..GOSUB strings are checked.
NASC and NASCD statements will be processed last.

166	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

MAP, cont.	
	 Do not map any characters to ASCII values occupied by characters used

in Fingerprint instructions, for example keywords, operators, %, $, #, and
certain punctuation marks. Mapping will be reset to normal at power-up
or reboot.

Examples	 You can check what characters the host produces using a simple program.
Pressing different keys on the host should produce the corresponding char-
acters both on the label and on the screen of the host. If not, try another
character set (see NASC). In this example we presume that the keyboard
produces ASCII 81 dec. and ASCII 90 dec. when you press the Q and
Z keys respectively. Should any unexpected characters be printed on the
labels or the screen, check the manuals of the host for information on what
ASCII values will be produced by the various keys and how the screen will
present various ASCII values received from the printer.

	 10	 FONT "Swiss 721 BT"
	 20	 PRPOS 30,100
	 30	 INPUT "Enter character";A$
	 40	 PRTXT A$
	 50	 PRINTFEED

	 By adding a MAP statement in line 5, you can test what happens. In this
case we remap the character Q to be printed as Z, as in the explanation
on the previous page. After printing, we map the character Q back to its
original position.

	 5	 MAP 81,90
	 10	 FONT "Swiss 721 BT"
	 20	 PRPOS 30,100
	 30	 INPUT "Enter character";A$
	 40	 PRTXT A$
	 50	 PRINTFEED
	 60	 MAP 81,81

	 Assume that a device connected to "uart2:" produces strings always starting
with the control character STX (ASCII 2 decimal). STX can be filtered out
by mapping it as NUL (ASCII 0 decimal):

	 10	 MAP 2,2,0

	 Should "uart2:" be appointed standard IN channel (see SETSTDIO), the
first parameter can be omitted from the example above:

	 10	 MAP 2,0

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 167

Chapter 2—Program Instructions

MERGE

Purpose 	 Statement for merging a program in the printer’s current directory, or
optionally in another specified directory, with the program currently resid-
ing in the printer’s working memory.

Syntax	 MERGE<scon>

<scon>	 is the name (optionally including a reference to another directory
than the current one) of the program, which is to be merged with
the program currently residing in the printer’s working memory.

Remarks	 MERGE creates a copy of a program stored in the current directory (see
CHDIR statement), or optionally in a specified other directory, and
blends its lines into the program currently residing in the printer’s working
memory.

 	 If there are lines with the same numbers in both programs, the lines in
the program currently residing in the working memory will be replaced
by the corresponding lines in the MERGEd program. This also applies
to programs written without line numbers, since they will automati-
cally be assigned hidden line numbers (10-20-30... etc.) at the execu-
tion of the IMMEDIATE ON statement. In order to avoid overwriting
any lines, you may SAVE a program without line numbers using a
SAVE <scon>, L statement. When MERGEd, it will be appended to the
current program and assigned line numbers that start with the number
of the last line of the current program plus 10. For safety reasons, a
backup copy of the current program is recommended before issuing a
MERGE statement.

	 MERGE makes it possible to store blocks of program instructions, which
are frequently used, and include them into new programs. The printer’s
ROM memory contains a number of useful programs, which also can be
MERGEd into programs of your own creation.

	 Be careful not to include any MERGE statement as a part of a pro-
gram, or else the execution will stop after the MERGE statement has
been executed.

	 The EXECUTE statement offers an alternative method for combining
Fingerprint programs.

Examples	 The program “XYZ.PRG" will be merged with the current program. If
there are identical line numbers in both programs, the lines from “XYZ.
PRG"will replace those in the current program.

	 MERGE "XYZ.PRG"		 (from current directory)
	 MERGE "/c/XYZ.PRG"		 (from permanent memory)
	 MERGE "tmp:XYZ.PRG"		 (from temporary memory)
	 MERGE "card1:XYZ.PRG"	 (from memory card)

168	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

MIBVAR&

Purpose	 Statement to read or write SNMP MIB variables.

Syntax	 MIBVAR&(<nexp>)

<nexp>	 is the number of the vairable to access. Allowed values: 0-9.

Remarks	 SNMP (Simple Netowrk Management Protocol) MIB (Management
Information Base) variables are normally used for network management
tasks. These variables can be set from the outside through SNMP, and are
available to Fingerprint programs through the MIBVAR& command. The
SNMP variables must be of string type (maximum 128 characters) and
are placed under the SNMP node: enterprises.1963.20.15.15.21.5.1.1.,
indexes 0-9. The public community is read-only whereas the "pass" com-
munity is read-write. There are no read or write restrictions from Finger-
print.

	 Related instruction is ON MIBVAR& GOSUB.

Example	 MIBVAR&(1) = "ON"
	 A$ = MIBVAR&(1)
	 PRINT A$
	 								 yields:
	 ON

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 169

Chapter 2—Program Instructions

MID$

Purpose	 Function returning a specified part of a string.

Syntax	 MID$(<sexp>,<nexp
1
>[,<nexp

2
>])

<sexp>	 is the original string.
<nexp

1
>	 is the start position in the original string.

[,<nexp
2
>]	 is the number of characters to be returned (optional).

Remarks	 <sexp> is the original string from which a specified part is to be returned.

	 <nexp1> specifies which character position in the original string is to be the
first character in the part to be returned.

	 <nexp2> restricts the number of characters to be returned. This information
is optional. If omitted, all characters from the start position specified by
<nexp1> to the end of the string will be returned.

	 If the value of <nexp1> is less than or equal to zero, then Error 44, “Para-
meter out of range” will occur.

	 If the value of <nexp2> is less than zero, then Error 44, “Parameter out of
range” will occur.

	 If the value of <nexp1> exceeds the length of the original string, an empty
string will be returned, but no error condition will occur.

	 If the value of <nexp1> does not exceed the length of the original string,
but the sum of <nexp1> and <nexp2> exceeds the length of the original
string, the remainder of the original string will be returned.

Examples	 10	 A$=MID$("INTERMEC PRINTERS",6,3)
	 20	 PRINT A$
	 RUN
									 yields:
	 MEC

	 10	 A$="INTERMEC PRINTERS"
	 20	 B%=10
	 30	 C%=7
	 40	 D$=MID$(A$,B%,C%)
	 50	 PRINT D$
	 RUN
									 yields:
	 PRINTER

170	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

MKDIR

Purpose	 Statement for creating a directory.

Syntax	 MKDIR<sexp>

<sexp>	 specifies the directory to be created.

Remarks	 <sexp> can end with a slash (/) character, but it is not necessary. Only the
device /c (or "c:") supports creating directories.

Example	 NEW
	 MKDIR "DIR1"
	 SAVE "DIR1/PROGRAM.PRG
	 FILES "/c/DIR1"
	 yields:
	 FILES on /c/DIR1
	 PROGRAM.PRG 2
	 2220032 bytes free 2 bytes used

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 171

Chapter 2—Program Instructions

NAME DATE$

Purpose	 Statement for formatting the month parameter in return strings of
DATE$("F") and DATEADD$(...,"F").

Syntax	 NAME DATE$ <nexp>, <sexp>

<nexp>	 is the month number (1-12).
<sexp>	 is the desired name of the month.

Remarks	 This statement allows you to assign names to the different months in
any form and language you like. The names will be returned instead
of the corresponding numbers in connection with DATE$("F") and
DATEADD$("F") instructions, provided that a FORMAT DATE$ state-
ment has been executed.

	 The number of characters assigned to represent months in the FORMAT
DATE$ statement decides how much of the names, as specified in the
NAME DATE$ statement, will be returned. The names will be truncated
at the left side. For example:

	 FORMAT DATE$ "YY.MMM:DD"
	 NAME DATE$ 1,"JANUARY"	
	 PRINT DATE$("F")	

yields for example:
	 03.ARY.06

	 Usually, it is best to restrict the month parameter in the FORMAT DATE$
statement to 2 or 3 characters (MM or MMM) and enter the names of the
months in the NAME DATE$ statement accordingly.

	
Example	 This example shows how to make the printer return dates in accordance

with British standard:
	 10	 DATE$="030115"
	 20	 NAME DATE$ 1, "JAN"
	 30	 NAME DATE$ 2, "FEB"
	 40	 NAME DATE$ 3, "MAR"
	 50	 NAME DATE$ 4, "APR"
	 60	 NAME DATE$ 5, "MAY"
	 70	 NAME DATE$ 6, "JUN"
	 80	 NAME DATE$ 7, "JUL"
	
	 140	 FORMAT DATE$ "MMM DD, YYYY"
	 150	 PRINT DATE$("F")
	 RUN
	 yields:
	 JAN 15, 2003

172	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

NAME WEEKDAY$

Purpose	 Statement for formatting the day parameter in return strings of WEEK-
DAY$.

Syntax	 NAME WEEKDAY$ <nexp>, <sexp>

<nexp>	 is the number of the weekday according to the WEEKDAY$ func-
tion syntax (Monday = 1... Sunday = 7).

<sexp>	 is the desired name of the weekday.
	 Default: Full English name in lowercase characters, that is

Monday, Tuesday, etc.

Remarks	 This statement allows you to assign names to the different weekdays in any
form and language you like. The names will be returned instead of the cor-
responding numbers in connection with WEEKDAY$ function.

	
Example	 This example shows how to make the printer return the name of the week-

day as an English 3-letter abbreviation:
	 10	 FORMAT DATE$ ", MM/DD/YY"
	 20	 DATE$="031201"
	 30	 NAME WEEKDAY$ 1, "Mon"
	 40	 NAME WEEKDAY$ 2, "Tue"
	 50	 NAME WEEKDAY$ 3, "Wed"
	 60	 NAME WEEKDAY$ 4, "Thu"
	 70	 NAME WEEKDAY$ 5, "Fri"
	 80	 NAME WEEKDAY$ 6, "Sat"
	 90	 NAME WEEKDAY$ 7, "Sun"
	 100	 PRINT WEEKDAY$ (DATE$) + DATE$("F")
	 RUN
	 yields:
	 Fri, 12/01/03

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 173

Chapter 2—Program Instructions

NASC

Purpose	 Statement for selecting a single-byte character set, alternatively the multi-
byte character set UTF-8.

Syntax	 NASC<nexp>|<sexp>

<nexp>	 is the reference number of a character set:
	 1 	 =	 Roman 8 (default)
	 8	 =	 UTF-8
	 33 	 =	 French
	 34 	 =	 Spanish
	 39 	 =	 Italian
	 44 	 =	 English (UK)
	 46	 =	 Swedish
	 47	 =	 Norwegian
	 49	 = 	 German
	 81	 = 	 Japanese Latin (romají)
	 351 	 =	 Portuguese
	 -1	 =	 PCMAP
	 - 2	 =	 ANSI (same as 1252)
	 850	 =	 MS-DOS Latin 1
	 851	 =	 MS-DOS Greek 1
	 852	 =	 MS-DOS Latin 2
	 855	 =	 MS-DOS Cyrillic
	 857	 =	 MS-DOS Turkish
	 1250	 =	 Windows Latin 2 (Central Europe)
	 1251	 =	 Windows Cyrillic (Slavic)
	 1252	 =	 Windows Latin 1 (ANSI, same as -2)
	 1253	 =	 Windows Greek
	 1254	 =	 Windows Latin 5 (Turkish)
	 1257	 =	 Windows Baltic Rim
<sexp>	 "UTF-8" 	 =	 UTF-8
	 "file name"	 =	 NSC file character set.
	

Remarks	 Please refer to Chapter 4 for complete character set tables.

	 By default, after processing of possible MAP statements, the Intermec
Fingerprint firmware will print and, when applicable, display all characters
according to the Roman 8 character set. However, the Intermec Finger-
print firmware contains a number of other character sets, which allows you
to print and display such characters that are characteristic for a number of
countries or language areas, or to adapt the printer for the operating system
of the host.

	 That implies that a certain ASCII code received by the printer may result
in a different character is printed or displayed depending on which charac-
ter set has been selected.

	 If none of the character sets available contains the desired character(s), use
a MAP statement to reMAP the character set that comes closest to your
needs. Note that MAP statements are processed before NASC statements.

174	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

NASC, cont.
	 You can also specify the multi-byte character set UTF-8. For more infor-

mation on using UTF-8, see Chapter 4.

	 A NASC statement will have the following consequences:

	 Font
	 The font used will be the one last specified by the FONT command. If

none has been specified, the default (Swiss 721 BT) will be used.

	 Text printing	
	 Text on labels etc. will be printed according to the selected character set.

However, parts of the label, that already has been processed and stored in
the print buffer before the NASC statement is executed, will not be affec-
ted. This implies that labels may be multi-lingual.

	 LCD Display	
	 New messages in the display will be affected by a NASC statement. Howe-

ver, a message that is already displayed will not be updated automatically.
The display is, for all practical reasons, able to show all printable charac-
ters. In the Setup Mode, all characters are mapped according to US-ASCII
standard.

	 Communication	
	 Data transmitted via any of the communication channels will not be affec-

ted as the data is defined as ASCII values, not as alphanumeric characters.
The active character set of the receiving unit will decide the graphic presen-
tation of the input data, for example the screen of the host.

	 Bar Code Printing
	 The pattern of the bars reflects the ASCII values of the input data and

is not affected by a NASC statement. The bar code interpretation (the
human readable characters below the bar pattern) is affected by a NASC
statement. However, the interpretation of bar codes, that have been proces-
sed and are stored in the print buffer, will not be affected.

 	
Example	 This example selects the Italian character set, prints the character corre-

sponding to 123 dec. in that set, changes the set to Swedish, and prints the
character corresponding to 123 dec.:

	 10	 NASC 39
	 20	 PRTXT CHR$(123)
	 30	 NASC 46
	 40	 PRTXT CHR$(123)
	 50	 PRINTFEED
	 yields:
	 àä

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 175

Chapter 2—Program Instructions

NASCD

Purpose	 Statement for selecting a double-byte character set, alternatively the multi-
byte character set UTF-8.

Syntax	 NASCD <sexp>

<sexp> 	 is the name of the character set or the file containing the charac-
ter map.

Default: 	 "" (disables double-byte interpretation).

Remarks	 When a double-byte character set has been selected, the firmware will
usually treat all characters from ASCII 161 dec. to ASCII 254 dec (ASCII
A1-FE hex) as the first part of a two-byte character. Next character byte
received will specify the second part. However, the selected double-byte
character set may specify some other ASCII value as the breaking point
between single and double byte character sets.

	 There are various ways to produce double-byte characters from the key-
board of the computer. By selecting the proper character set using a
NASCD statement, the typed-in ASCII values will be translated to the
corresponding Unicode values, so the desired glyph will be printed. A font
must have been selected using the FONTD command in order to print
according to the selected double-byte character set.

	 UTF-8 character mapping is pre-installed in the firmware, and is selected
with the command NASCD "UTF-8" (can also be selected with NASC).
See Chapter 4, UTF-8, for more information. Other double-byte character
set tables and fonts are available from Intermec on special request.

Example	 The following text contains both single- and double-byte fonts. The
double-byte font and its character set are stored in a Font Install Card:

	 10	 NASC 46
	 20	 FONT "Swiss 721 BT", 24, 10
	 30	 FONTD "Song"
	 40	 NASCD "card1:GB2312.NCD"
	 50	 PRTXT CHR$(65);CHR$(164);CHR$(180)
	 60	 PRINTFEED
	 RUN

	 This program yields a printed text line that starts with the Latin character
A (ASCII 65 dec.) followed by the character in the Song font that corre-
sponds to the address 164+180 dec. in the character set “GB2312.NCD.”

176	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

NEW

Purpose	 Statement for clearing the printer’s working memory in order to allow a
new program to be created.

Syntax	 NEW

Remarks	 The NEW statement will delete the program currently residing in the
printer’s working memory, close all files, and clear all variables and break-
points. If the current program has not been saved (see SAVE statement), it
will be lost and cannot be restored.

	 In the Intermec Direct Protocol, all counters will be removed when a
NEW statement is executed.

	 Note that clearing the printer’s working memory does not imply that the
host screen will be cleared too. The lines of the previous program will
remain on the screen until gradually being replaced by new lines.

Example	 NEW

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 177

Chapter 2—Program Instructions

NORIMAGE (NI)

Purpose	 Statement for returning to normal printing after an INVIMAGE statement
has been issued.

Syntax	 NORIMAGE | NI

Remarks	 Normal image is the default type of printing and means that text and
images will be printed in black-on-white.

	 Using an INVIMAGE statement, the printing of text and images can be
inversed. Such inverse printing will be discontinued for all PRTXT and
PRIMAGE statements that follows the encounter of a NORIMAGE state-
ment.

Example	 In this example, the first line is printed in inversed fashion and the second
line in the normal fashion:

	 10	 PRPOS 30,300
	 20	 ALIGN 4
	 30	 INVIMAGE
	 40	 FONT "Swiss 721 BT"
	 50	 PRTXT "INVERSE PRINTING"
	 60	 PRPOS 30, 200
	 70	 NORIMAGE
	 80	 PRTXT "NORMAL PRINTING"
	 90	 PRINTFEED
	 RUN

178	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

ON BREAK GOSUB

Purpose	 Statement for branching to a subroutine, when break interrupt instruction
is received.

Syntax	 ON↔BREAK<nexp>GOSUB<ncon>|<line label>

<nexp>	 is one of the following communication channels:
	 0 = "console:"
	 1 = "uart1:"
	 2 = "uart2:"
	 3 = "uart3:"
	 4 = "centronics:"
	 7 = "uart4:"
	 8 = "uart5:"
<ncon>|<line label>	 is the number or label of the program line to be branched to.
	

Remarks	 This statement is closely related BREAK and BREAK ON/OFF. When
break interrupt is enabled (see BREAK ON) and the operator issues a
break interrupt instruction (see BREAK), the execution of the currently
running program will be interrupted and branched to a specified line in
a subroutine. Break from the console is not supported by the EasyCoder
PD41.

Examples	 In this example, the printer emits a special signal when a break interrupt is
issued from the printer’s keyboard:

	 10	 ON BREAK 0 GOSUB 1000
	 20	 GOTO 20
	
	
	 1000	FOR A%=1 TO 3
	 1010	SOUND 440,50
	 1020	SOUND 349,50
	 1030	NEXT A%
	 1040	END

	 The same example without line numbers will look like this:
	 IMMEDIATE OFF
	 ON BREAK 0 GOSUB QQQ
	 WWW: GOTO WWW
	
	
	 QQQ: FOR A%=1 TO 3
	 SOUND 440,50
	 SOUND 349,50
	 NEXT A%
	 END
	 IMMEDIATE ON

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 179

Chapter 2—Program Instructions

ON COMSET GOSUB

Purpose	 Statement for branching to a subroutine, when the background reception
of data on the specified communication channel is interrupted.

Syntax	 ON↔COMSET<nexp
1
>GOSUB<nexp

2
>|<line label>

<nexp
1
>	 is one of the following communication channels:

	 0 = "console:"
	 1 = "uart1:"
	 2 = "uart2:"
	 3 = "uart3:"	
	 4 = "centronics:"
	 6 = "usb1:"
	 7 = "uart4:"
	 8 = "uart5:"
<nexp

2
>/<line label>	 is number or label of the program line to be branched to.

	
Remarks	 This statement is closely related to COMSET, COMSTAT, COMSET

ON, COMSET OFF, COM ERROR ON/OFF, and COMBUF$. It
is used to branch to a subroutine when one of the following conditions
occur:

	 - End character is received.
	 - Attention string received.
	 - Max. number of characters received.

	 These three parameters are set for the specified communication channel by
a COMSET statement.

Examples	 In this example, the program branches to a subroutine for reading the
buffer of the communication channel:

	 1	 REM Exit program with #STOP&
	 10	 COMSET1,"#","&","ZYX","=",50
	 20	 ON COMSET 1 GOSUB 2000
	 30	 COMSET 1 ON
	 40	 IF A$ <> "STOP" THEN GOTO 40
	 50	 COMSET 1 OFF
	
	
	 1000	END
	 2000	A$= COMBUF$(1)
	 2010	PRINT A$
	 2020	COMSET 1 ON
	 2030	RETURN

180	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

ON COMSET GOSUB, cont.
	 The same example written without line numbers would look like this:
	 IMMEDIATE OFF
	 REM Exit program with #STOP&
	 COMSET1,"#","&","ZYX","=",50
	 ON COMSET 1 GOSUB QQQ
	 COMSET 1 ON
	 WWW: IF A$ <> "STOP" THEN GOTO WWW
	 COMSET 1 OFF
	
	
	 END
	 QQQ: A$=COMBUF$(1)
	 PRINT A$
	 COMSET 1 ON
	 RETURN
	 IMMEDIATE ON

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 181

Chapter 2—Program Instructions

ON ERROR GOTO

Purpose	 Statement for branching to an error-handling subroutine when an error
occurs.

Syntax	 ON↔ERROR↔GOTO<ncon>|<line label>

<ncon>	 is the number or label of the line to which the program should
branch when an error condition occurs.

Remarks	 If any kind of error condition occurs after this statement has been encoun-
tered, the standard error-trapping routine will be ignored and the program
will branch to the specified line, which should be the first line in an error-
handling subroutine.

	 If the line number is 0, the standard error-trapping routine will be enabled
and no error-branching within the current program will be executed.

Examples	 If you try to run this example with the printhead raised (or if any other
error occurs), a warning signal will sound and the error LED will be
lighted.

	 10	 LED 0 ON:LED 1 OFF
	 20	 ON ERROR GOTO 1000
	 30	 FONT "Swiss 721 BT"
	 40	 PRTXT "HELLO"
	 50	 PRINTFEED
	 60	 END
	
	 1000	LED 0 OFF:LED 1 ON
	 1010	FOR A%=1 TO 3
	 1020	SOUND 440,50
	 1030	SOUND 359,50
	 1040	NEXT A%
	 1050	RESUME NEXT

	 The same example written without line numbers would look like this:
	 IMMEDIATE OFF
	 LED 0 ON:LED 1 OFF
	 ON ERROR GOTO QQQ
	 FONT "Swiss 721 BT"
	 PRTXT "HELLO"
	 PRINTFEED
	 END
	
	 QQQ:	LED 0 OFF:LED 1 ON
	 FOR A%=1 TO 3
	 SOUND 440,50
	 SOUND 359,50
	 NEXT A%
	 RESUME NEXT
	 IMMEDIATE ON

182	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

ON GOSUB

Purpose	 Statement for conditional branching to one of several subroutines.

Syntax	 ON<nexp>GOSUB<ncon>|<line label>[,<ncon>|<line label>...]

<nexp>	 is a numeric expression that determines which line the program
should branch to.

<ncon>/<line label>	 is the number or label of the line, or list of lines, to which the
program should branch.

Remarks	 This statement is closely related to the ON GOTO statement. The nume-
ric expression may result in any positive value. The expression is truncated
to an integer value before the statement is executed. If the resulting value is
negative, 0, or larger than the number of subroutines, the statement will be
ignored.

	 The value of the numeric expression determines which of the subroutines
the program should branch to. For example, if the the value of the numeric
expression is 2, the program will branch to the second subroutine in the
list.

Examples	 In this example, different texts will be printed on the screen depending on
which of the keys 1-3 you press on the keyboard of the host.

	 10	 INPUT "PRESS KEY 1-3 ", A%
	 20	 ON A% GOSUB 1000,2000,3000
	 30	 END
	 1000	PRINT "You have pressed key 1"
	 1010	RETURN
	 2000	PRINT "You have pressed key 2"
	 2010	RETURN
	 3000	PRINT "You have pressed key 3"
	 3010	RETURN

	 The same example written without line numbers would look like this:
	 IMMEDIATE OFF
	 INPUT "PRESS KEY 1-3 ", A%
	 ON A% GOSUB QQQ,WWW,ZZZ
	 END
	 QQQ: PRINT "You have pressed key 1"
	 RETURN
	 WWW: PRINT "You have pressed key 2"
	 RETURN
	 ZZZ: PRINT "You have pressed key 3"
	 RETURN
	 IMMEDIATE ON

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 183

Chapter 2—Program Instructions

ON GOTO

Purpose	 Statement for conditional branching to one of several lines.

Syntax	 ON<nexp>GOTO<ncon>|<line label>[,<ncon>|<line label>...]

<nexp>	 is a numeric expression that determines which line the program
should branch to.

<ncon>/<line label>	 is the number or label of the line, or list of lines, to which the
program should branch.

Remarks	 This statement is closely related to the ON GOSUB statement. The nume-
ric expression may result in any positive value. The expression is truncated
to an integer value before the statement is executed. If the resulting value is
negative, 0, or larger than the number of lines, the statement will be igno-
red.

	 The value of the numeric expression determines which of the lines the
program should branch to. For example, if the the value of the numeric
expression is 2, the program will branch to the second line in the list.

Examples	 In this example, different texts will be printed on the screen depending on
which of the keys 1-3 you press on the keyboard of the host.

	 10	 INPUT "PRESS KEY 1-3 ", A%
	 20	 ON A% GOTO 1000,2000,3000
	 30	 END
	 1000	PRINT "You have pressed key 1"
	 1010	GOTO 30
	 2000	PRINT "You have pressed key 2"
	 2010	GOTO 30
	 3000	PRINT "You have pressed key 3"
	 3010	GOTO 30

	 The same example written without line numbers would look like this:
	 IMMEDIATE OFF
	 INPUT "PRESS KEY 1-3 ", A%
	 ON A% GOSUB QQQ,WWW,ZZZ
	 YYY: END
	 QQQ: PRINT "You have pressed key 1"
	 GOTO YYY
	 WWW: PRINT "You have pressed key 2"
	 GOTO YYY
	 ZZZ: PRINT "You have pressed key 3"
	 GOTO YYY
	 IMMEDIATE ON

184	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

ON HTTP GOTO

Purpose	 Statement for branching to a subroutine when a request for an application
CGI is received.

Syntax	 ON↔HTTP↔GOTO<ncon>|<line label>

<ncon>/<line label>	 is the number or label of the line to which the program will
branch when the CGI request is received.

Remarks	 This statement is used in connection with EasyLAN 100i and defines a
Fingerprint subroutine that handles the CGI-request. Setting the handler’s
line number or line label to 0 disables the handler.

	 When a request for an application CGI is received, the current execution
point will be pushed on to the stack and then the execution will commence
in the handler with stdin and stdout redirected from/to the Web browser.

	 Related instruction: RESUME HTTP.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 185

Chapter 2—Program Instructions

ON KEY GOSUB

Purpose	 Statement for branching to a subroutine when a specified key on the
printer’s front panel is activated.

Syntax	 ON↔KEY(<nexp>)GOSUB<ncon>|<line label>

<nexp>	 is the id. number of one of the keys on the printer’s front panel
(see illustration below).

<ncon>/<line label>	 is the number or label of the line to which the program will
branch when the specified key is pressed down.

Remarks	 Intermec Fingerprint-compatible printer models are fitted with a mem-
brane-switch keyboard (not EasyCoder PD4). Each key can be enabled
individually using its id. number in a KEY ON statement. Then the key
can be assigned, alone or in combination with the <Shift> key, to make the
program branch to a subroutine using an ON KEY... GOSUB statement.
The <Shift> key adds 100 to the unshifted id. number of each key. See
Appendix A for illustrations of the id. numbers of the keyboards for the
various printer models.

	 The EasyCoder PD41 works in the same way, but has only one key with
id.number 17 when pressed, and 117 when released.

 	 Note the difference between the id. numbers of the keys and the ASCII
values they are able to produce (see for example BREAK).

	 Note that BREAK takes precedence over any ON KEY statement, provi-
ded that break interrupt is not disabled for the "console:" by a BREAK 0
OFF statement.

Examples	 This example illustrates how activating the /F1 key (id. No. 10) will
make the program branch to a subroutine, which contains the PRINT-
FEED statement. Note line 30 where the execution will wait for the key to
be pressed.

	 10	 ON KEY (10) GOSUB 1000
	 20	 KEY (10) ON	
	 30	 GOTO 30
	
	
	
	 1000	FONT "Swiss 721 BT"
	 1010	PRPOS 30,100
	 1020	PRTXT "HELLO"
	 1030	PRINTFEED
	 1040	END
	 RUN

186	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

ON KEY GOSUB, cont.	
The same example can be written without line numbers this way:
	 IMMEDIATE OFF
	 ON KEY (10) GOSUB QQQ
	 KEY (10) ON	
	 WWW: GOTO WWW
	
	
	
	 QQQ: FONT "Swiss 721 BT"
	 PRPOS 30,100
	 PRTXT "HELLO"
	 PRINTFEED
	 END
	 IMMEDIATE ON
	 RUN

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 187

Chapter 2—Program Instructions

ON/OFF LINE

Purpose	 Statement controlling the SELECT signal on the "centronics:" communi-
cation channel.

Syntax	 ON | OFF↔LINE<nexp>

<nexp>	 specifies the communication channel:
	 4 = "centronics:"
	 6 = "usb1:"

Remarks	 Pin 13 in the Centronics/IEEE 1284 interface connector contains the
SELECT signal:

	 •	 ON LINE 4 sets the SELECT signal high.
	 •	 OFF LINE 4 sets the SELECT signal low.

	 If no ON/OFF LINE statement is issued, the SELECT signal will be high,
that is the Centronics channel will be ON LINE.

	 ON LINE/OFF LINE for the serial channel "usb1:" is implemented accor-
ding to USB Device Class for Printing Devices v1.09, January 2000.

Example	 In this example, the "centronics:" communication channel is disabled,
while a new setup is performed on the printer by means of a setup file, and
then enabled:

	 10	 OFF LINE 4
	 20	 SETUP "New Setup.SYS"
	 30	 ON LINE 4
	
	
	

188	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

ON MIBVAR& GOSUB

Purpose	 Statement for branching to a subroutine when a specified SNMP MIB
variable is changed.

Syntax	 ON↔MIBVAR&(<nexp>)GOSUB<ncon>|<line label>

<nexp>	 is the number of a MIBVAR& variable. Allowed values 0-9.
<ncon>/<line label>	 is the number or label of the line to which the program will

branch when the specified MIB variable is modified.

Remarks	 This statement makes the Fingerprint program branch to a subroutine
whenever the specified MIB variable is modified. This values is then main-
tained during the entire subroutine execution. External changes during the
subroutine execution will cause a new subroutine call at return. Related
instruction is MIBVAR&.

Example	 This example will print the value of MIBVAR&(1) on a label every time its
value is changed. Note that the program is idle (on line 20) as long as the
MIBVAR& variable remains unchanged.

	 10	 ON MIBVAR&(1) GOSUB 1000
	 20	 GOTO 20
	
	
	
	 1000	FONT "Swiss 721 BT"
	 1010	PRPOS 30,100
	 1020	A$ = MIBVAR&(1)
	 1030	PRTXT A$
	 1040	PRINTFEED
	 1050	RETURN
	 RUN

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 189

Chapter 2—Program Instructions

OPEN

Purpose	 Statement for opening a file, device (for example a network connection)—
or creating a new file—for input, output, or append, allocating a buffer,
and specifying the mode of access.

Syntax	 OPEN<sexp>[FOR↔<INPUT|OUTPUT|APPEND>↔]AS [#]<nexp
1
>

[LEN=<nexp
2
>]

<sexp>	 is the file or device to be opened, or the file to be created. File
names must not contain any colon character (:). A network con-
nection can be specified.

#	 indicates that whatever follows is a number. Optional.
<nexp

1
>	 is a designation number for the OPENed file or device.

<nexp
2
>	 is, optionally, the length of the record in bytes (default 128

bytes).

Remarks	 An OPEN statement must be executed before a file or device can be used
for input, output, and/or append. A maximum of 25 files and/or devices
can be open at the same time.

	 Sequential Access Mode
	 The access mode can optionally be specified as sequential INPUT,

OUTPUT, or APPEND:
	 INPUT	 Sequential input from the file/device, replacing existing data.

Existing files/devices only.
	 OUTPUT	 Sequential output to the file/device, replacing existing data.
	 APPEND	 Sequential output to the file/device, where new data will be

appended without replacing existing data.

	 Random Access Mode
	 If no access mode is specified in the statement, the file/device is opened

for both input and output (RANDOM access mode). FIELD, LSET,
RSET, PUT, and GET can only be used on records in files OPENed in the
RANDOM access mode.

	 Please refer to the DEVICES statement for information on which devices
can be opened for the different modes of access.

	 Lists of the files stored in the various parts of your printer’s memory can be
obtained by the use of the FILES statements.

190	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

OPEN, cont.
		 Network connections
	 Special syntax can be used for the <sexp> expression to open the Net1 	

device. The syntax used is:

	 OPEN "net1:<host>[:port][,<timeout>]" AS #<nexp>
	
	 The <host> parameter is an IP adresss, alternatively a DNS name. The

default port number is 9100, allowed values range from 0 to 65535.
The timeout is expressed in ticks, range 10-6000, default about 4500
(45 seconds). Only one Net1 connection can be opened at a time. Once
the device is open, information can be sent or received according to the
corresponding protocol.

Examples	 Open and write to a file:

	 10	 OPEN "TEST.TXT" FOR OUTPUT AS 1
	 20	 PRINT#1:"AAAA"
	 30	 PRINT#1,"1234"
	 40	 CLOSE 1;

	 Open the file and print it line by line:

	 10	 OPEN "TEST.TXT" FOR INPUT AS #2
	 20	 INPUT#2:A$
	 30	 INPUT#2,B$
	 40	 CLOSE#2;
	 50	 PRINT A$
	 60	 PRINT B$
	 RUN
	

	 You can allow sequential output to the printer’s display using the OPEN
statement this way. The method is the same as for files:

	 10	 OPEN "console:" FOR OUTPUT AS #1
	 20	 PRINT#1:PRINT#1
	 30	 PRINT#1, "GONE TO LUNCH"
	 40	 PRINT#1, "BACK SOON";
	 RUN
	 The text will appear on the printer’s display as:

		 GONE TO LUNCH
 		 BACK SOON

	 Open the file "PRICELIST" for random access with the reference number
#8 and a record length of 254 bytes:

	 10	 OPEN "PRICELIST" AS #8 LEN=254

	

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 191

Chapter 2—Program Instructions

OPEN, cont.
	 	
	 The following example opens the Net1 device to connect to the NIST

Internet Time Service (ITS):

	 10	 OPEN "net1:time.nist.gov:13" AS 1
	 20	 PRINT #1, "time?"
	 30	 QTICKS% = TICKS
	 40	 WHILE TICKS-QTICKS% < 100
	 50	 LINE INPUT #1, A$
	 60	 IF A$<>"" THEN PRINT A$
	 70	 WEND
	 80	 CLOSE 1

	 In the example above, socket port 13 is specified in row 10. Rows 30-40
create a delay to allow the result to be received as A$ within the specified
and reasonable amount of time, 100 ticks.

192	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

OPTIMIZE BATCH ON/OFF

Purpose	 Statement for enabling/disabling optimizing for batch printing.

Syntax	 OPTIMIZE "BATCH"↔ON | OFF

ON|OFF	 enables/disables optimizing respectively.
Default:	 Disabled(OFF), Enabled(ON) in Direct Protocol

Remarks	 This facility is intended to speed up batch printing, which means the unin-
terrupted printing of large numbers of identical or very similar labels.

	 The program execution will not wait for the printing of the label to be
completed, but proceeds executing next label image into the other of the
two image buffers as soon as possible.

	 OPTIMIZE BATCH is automatically enabled (ON) during a batch
(PRINTFEED more than one) if the following conditions are fulfilled:

	 1. LTS& OFF 	 (default)
	 2. CUT OFF 	 (default)

	 In Intermec Direct Protocol, the default value is enabled (ON).

Examples	 Run these two examples and watch the differences in the printer’s perfor-
mance:

	 10		 OPTIMIZE "BATCH" ON
	 20		 FOR I%=1 TO 10
	 30		 PRTXT I%
	 40		 PRINT "Before printfeed"
	 50		 PRINTFEED
	 60		 PRINT "After printfeed"
	 70		 NEXT
	 RUN

	 10		 OPTIMIZE "BATCH" OFF
	 20		 FOR I%=1 TO 10
	 30		 PRTXT I%
	 40		 PRINT "Before printfeed"
	 50		 PRINTFEED
	 60		 PRINT "After printfeed"
	 70		 NEXT
	 RUN

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 193

Chapter 2—Program Instructions

PORTIN

Purpose	 Function reading the status of a port on a Serial/Industrial Interface Board.

Syntax	 PORTIN(<nexp>)

<nexp>	 is the number of the port to be read:
	 IN ports (optical):	 	 101-108	 (301-308)
	 OUT ports (relay):	 	 201-204	 (401-404)
	 OUT ports (optical):	 	 221-228	 (421-428)

Remarks	 This function works with the Serial/Industrial Interface Board and is able
to read the status of 8 IN ports with optocouplers, 8 OUT ports with
optocouplers, and 4 OUT ports with relays. For information on how to set
the OUT ports, please refer to the PORTOUT statement.

	 A current can be lead through an optocoupler in each IN port:
	 •	 If the current is on, the PORTIN function returns the value -1 (true).
	 •	 If the current is off, the PORTIN function returns the value 0 (false).

	 This feature is intended to allow the execution of the Intermec Fingerprint
to be controlled by various types of external sensors or non-digital swit-
ches.

	 The status of the OUT ports, as set by PORTOUT statements, can also be
read by PORTIN functions.

	 Some printers, like EasyCoder PM4i can carry two Serial/Industrial Inter-
face boards. In this case, the ports on the inner board (that is, the board
closest to the CPU board) are specified by the low numbers (101-108,
201-204, and 221-228) while the ports on the outer board are specified by
the high numbers (301-308, 401-404, and 421-428).

	 Please refer to the documentation of the Serial/Industrial Interface Board
for more information.

Example	 The status of IN port 101 on a Serial/Industrial Interface Board decides
when a label is to be printed. The printing will be held until the current is
switched off:

	 10	 FONT "Swiss 721 BT"
	 20	 PRTXT "POWER IS OFF"
	 30	 IF PORTIN (101) THEN GOTO 30
	 40	 PRINTFEED
	 50	 END

194	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

PORTOUT ON/OFF

Purpose	 Statement for setting one of four relay port or one of eight optical ports on
a Serial/Industrial Interface Board to either on or off.

Syntax	 PORTOUT (<nexp>) ON|OFF

<nexp>	 is the number of the port to be set:
	 OUT ports (relay):	 	 201-204	 (401-404)
	 OUT ports (optical):	 	 221-228	 (421-428)

Remarks	 This statement works with the Serial/Industrial Interface Board and is able
to control 8 IN ports with optocouplers, 8 OUT ports with optocouplers,
and 4 OUT ports with relays. For information on how to read the status of
the various ports, please refer to the PORTIN function.

	 This feature is intended to allow the execution of the Intermec Fingerprint
program to control various external units like gates, lamps, or conveyor
belts.

	 Some printers, like EasyCoder PM4i can carry two Serial/Industrial Inter-
face boards. In this case, the ports on the inner board (that is, the board
closest to the CPU board) are specified by the low numbers (201-204
and 221-228) while the ports on the outer board are specified by the high
numbers (401-404 and 421-428).

	 Please refer to the documentation of the Serial/Industrial Interface Board
for more information.

Example	 The relay of OUT port 201 on a Serial/Industrial Interface Board is
Opened and then Closed like this:

	
	
	 1000	PORTOUT (201) ON
	
	
	 2000	PORTOUT (201) OFF
	
	

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 195

Chapter 2—Program Instructions

PRBAR (PB)

Purpose	 Statement for providing input data to a bar code.

Syntax	 PRBAR|PB<<sexp>|<nexp>>

<<sexp>|<nexp>>	 is the input data to the bar code generator.

Remarks	 The bar code must be defined by BARSET, BARTYPE, BARRATIO,
BARHEIGHT, BARMAG, BARFONT, and/or BARFONT ON/OFF
statements, or by the corresponding default values.

	 Make sure that the type of input data (numeric or string) and the number
of characters agree with the specification for the selected bar code type.
Information on some of the most commonly used bar codes are provided
at the end of this manual.

Example	 Two different bar codes, one with numeric input data and one with string
input data, can be generated this way. The input data could also have been
entered in the form of variables:

	 10	 BARFONT "Swiss 721 BT", 8 ON
	 20	 PRPOS 50,400
	 30	 ALIGN 7
	 40	 BARSET "INT2OF5",2,1,3,120
	 50	 PRBAR 45673
	 60	 PRPOS 50,200
	 70	 BARSET "CODE39",3,1,2,100
	 80	 PRBAR "ABC"
	 90	 PRINTFEED
	 RUN

	

196	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

PRBOX (PX)

Purpose	 Statement for creating a box, optionally containing a single text line or a
frame of mulitiple hyphenated text lines.

Syntax	 PRBOX|PX<nexp
1
>,<nexp

2
>,<nexp

3
>[,<sexp

1
>[,<nexp

4
>[,<nexp

5
> 	 	

	 [,<sexp
2
>[,<sexp

3
>]]]]]

<nexp
1
>	 is the height of the box in dots (1-6000).

<nexp
2
>	 is the width of the box in dots (1-6000).

<nexp
3
>	 is the line weight in dots (0/1-6000).

<sexp
1
>	 is the framed text to be written inside the box (max. 300 char./

line, max. 20 lines). Single-byte fonts only.
<nexp

4
>	 is the horizontal distance between inner edge of the box line and

the text frame (-100 to 100 dots). Default: 0.
<nexp

5
>	 is the vertical distance between the inner edge of the box line

and text frame and also between each line of text in the frame
(-100 to 100 dots). Default: Same value as <nexp

4
>.

<sexp
2
>	 is a line delimiter (max. 9 characters), which replaces the default

delimiter string CHR$(10) or CHR$(13). Each time this delimiter
is encountered in the text string (<sexp

1
>, the rest of the text is

wrapped to the next line.
<sexp

3
>	 is a control string for hyphen delimiter and replacement, see

Remarks.

Remarks	 This statement has two purposes: to create a rectangular white box sur-
rounded by a line with a certain thickness, or to specify a text frame that
can contain up to 20 lines of hyphenated text. These two purposes can be
combined so a text frame is surrounded by a black box.

	 Creating a simple box:

	 In this case you only need to specify the first three parameters, that is
height, width, and line weight (thickness). The box will be drawn with its
anchor point (see ALIGN) at the insertion point, as specified by the nea-
rest preceding PRPOS statement. A box can be aligned left, right, or center
along its baseline.

	 The print direction specifies how the box is rotated in relation to its anchor
point.

	 The line weight (thickness) grows inward from the anchor point. The hea-
vier the line, the less white area inside the box. Thus, it is possible to create
a black area using a box with very heavy lines. For a simple box without
any text field, the line weight must be >0. The white area inside a box can
be used for printing. Boxes, lines, and text may cross (also see XORMODE
ON/OFF).

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 197

Chapter 2—Program Instructions

PRBOX, cont.
	 The illustration below shows how the height and width of the box are defi-

ned for different print directions.

	

	 Creating a multiline text field
	 The PRBOX statement can also be used to create an area in which a

field of wrapped and hyphenated text can be printed. As opposed to the
PRTXT statement, there is no need to specify each line of text separately.
The text field can be framed by the box (line weight > 0), or the box can
be invisible (line weight = 0). The maximum number of characters on each
line is 300 and the maximum number of lines is 20.

	 The position of the text frame inside the box is affected by the direction
(see DIR statement), the alignment (see ALIGN statement), and by two
parameters in the PRBOX statement (<nexp4> and <nexp5>.

	 The direction rotates the box with its text field around the anchor point
as specified by the alignment. The alignment specifies the anchor point of
the box itself as left-, right-, or center-aligned (see ALIGN), and at the the
same time also decides how the field will be aligned inside the box (9 pos-
sible positions) and if the text lines will be left, right, or center justified.

	 In the following description, horizontal and vertical should be understood
in relation to how the text is printed. (That means that in directions 2&4,
horizontal and vertical have opposite meanings than in directions 1&3).

	 The horizontal distance between the inner edge of the box line and the
borders of the text field is specified by <nexp4>:

	 -	 In case of ALIGN 1, 4, or 7, it decides the distance between the inner
edge of the left side box line and the left-hand edge of the text field.

	 -	 In case of ALIGN 3, 6, or 9, it decides the distance between the inner
edge of the right side box line and the right-hand edge of the text field.

	 -	 In case of ALIGN 2, 5, or 8, this parameter has no consequence.

198	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

PRBOX, cont.
	 The vertical distance between the inner edge of the box line and the bor-

ders of the text field as well as the empty vertical space between the charac-
ter cells of two adjacent lines (line spacing) is specified by <nexp5>:

	 -	 In case of ALIGN 1, 2, or 3, it decides the distance between the inner
edge of the bottom box line and the bottom edge of the text field as well
as line spacing.

	 -	 In case of ALIGN 7, 8, or 9, it decides the distance between the inner
edge of the right side box line and the right-hand edge of the text field
as well as line spacing.

	 -	 In case of ALIGN 4, 5, or 6, this parameter only decides line spacing.

	 See the illustration on next page for examples of how the alignment affects
the location of multi-line text.

	 If the text in <sexp1> is entered as a continuous string of characters without
any spaces, linefeeds, or carriage returns, the text will wrap to the next line
when there is no room left for any more characters on a line.

	 If any combination of a carriage return (CR = ASCII 13 dec,) and a line-
feed (LF = ASCII 10 dec.) is encountered, the remaining text will be wrap-
ped once to the next line.

	 Space characters (ASCII 32 dec.) will also initiate a line wrap. If there are
more than one space character, the wrapping will be at the last one that fits
into the line in question.

	 You can replace the default line delimiters (CR, LF, and CR/LF) with
another line delimiter specified in a string of max. 9 characters (<sexp2>).
This delimiter will not be printed, even if it is a printable character. Each
time the delimiter is encountered, the text will wrap to a new line.

	 Hyphenation Support
	 In <sexp3> you can modify the way hyphenation will be performed using a

special syntax described later on.

	 You can put “invisible” hyphen delimiters in the text string at suitable
wrap-around positions. The delimiter is by default a hyphen sign (ASCII
45 dec.). However, you can use a string of any characters up to nine cha-
racters long instead, but be careful so it will not be confused with the text.
If a wrap-around is performed, the corresponding hyphen delimiter will
by default be printed as a hyphen sign (ASCII 45 dec.), whereas hyphen
delimiters not used for wrap-around will not be printed.

	 If you for some reason would like to print some other character(s) than
hyphens, you can specify a string of hyphen replacement characters. It
is possible to use a string up to nine characters long, but the shorter the
string the lesser risk that a line will wrap outside the box.

	 If you have a text string with long words and have not inserted all neces-
sary line delimiters, a line-wrap may occur unexpectedly. You can optio-
nally specify a hyphen delimeters for this case as well. Default: None.

This is line number 1

and this is line 2

and now comes line 3

followed by No. 4.

This is line number 1

and this is line 2

and now comes line 3

followed by No. 4.

This is line number 1

and this is line 2

and now comes line 3

followed by No. 4.

ALIGN 7

<nexp 5> <nexp 5> <nexp 5>

<nexp 5>

<n
ex

p
4>

<n
ex

p
4><nexp 5> <nexp 5>

<nexp 5> <nexp 5> <nexp 5>

<nexp 5> <nexp 5> <nexp 5>

ALIGN 8 ALIGN 9

This is line number 1

and this is line 2

and now comes line 3

followed by No. 4.

ALIGN 4

<n
ex

p
4>

<n
ex

p
4>

This is line number 1

and this is line 2

and now comes line 3

followed by No. 4.

This is line number 1

and this is line 2

and now comes line 3

followed by No. 4.

This is line number 1

and this is line 2

and now comes line 3

followed by No. 4.

ALIGN 5 ALIGN 6

This is line number 1

and this is line 2

and now comes line 3

followed by No. 4.

ALIGN 1

<nexp 5>

<n
ex

p
4>

ALIGN 2 ALIGN 3

<n
ex

p
4>

This is line number 1

and this is line 2

and now comes line 3

followed by No. 4.
<nexp 5><nexp 5>

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	 199

Chapter 2—Program Instructions

PRBOX, cont.

200	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

PRBOX, cont.
	 Specify the parameter <sexp3> in PRBOX using the following syntax:

	 <sexp
3
>=<sexp

3a
>[space<sexp

3b
>[space<sexp

3c
>]]

<sexp
3a

>	 is a soft hyphen delimiter. If the text does not have enough room
on one line, the rest of the text will be wrapped from the last
space or from the position marked by the soft hyphen delimiter.

	 Exception: Two adjacent soft hyphen delimiters revoke each
other.

	 Default: Normal hyphen (-).
	 Max length: 9 characters.
space	 is a string delimiter with the value CHR$(32).
<sexp

3b
>	 is one or more characters, that will be printed at the end of a line

which has been hyphenated according to a hyphen delimiter (see
<sexp

3a
>).

	 Default: Normal hyphen (-).
	 Max length: 9 characters (less is preferred).
<sexp

3c
>	 is a string of hyphen extension characters, used on single words

which are too long to be printed on one line and have no hyphen
delimiter specified. The hyphen extension character(s) will be
printed at the right end of line and the remainder of the word
will be printed on the next line.

	 Default: No character.
	 Max length: 9 characters.

	 If no <sexp3> is specified, the rule for hyphen delimiter and replacement
will be the same as for printing hyphens in text. Two adjacent hyphens will
be printed as one.

Examples	 This examples draws a rectangle without any text:
	 10	 PRPOS 50,50
	 20	 PRBOX 200,400,5
	 30	 PRINTFEED
	 RUN

	 This program illustrates a multi-line text field with line wrap, where “&S”
is the soft hyphen delimiter:

	 10	 DIR 1
	 20	 ALIGN 8
	 30	 R$="Hyphen&Sated words will be divid&Sed 		

into sylla&Sbles."
	 40	 NL$="NEWLINE"
	 50	 S$="&S&Special Cases and EXTRAORDINARY long 	

	 words."
	 60	 T$=R$+NL$+S$
	 70	 PRPOS 300,300
	 80	 PRBOX 700,500,20,T$,25,1,NL$,"&S - +"
	 90	 PRINTFEED
	 RUN

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	2 01

Chapter 2—Program Instructions

PRBUF

Purpose	 Statement for receiving and printing bitmap image data using the PRBUF
protocol.

Syntax	 PRBUF<nexp
1
>[,<nexp

2
]<new line><image data>

<nexp
1
>	 is the number of bytes of the image in PRBUF protocol.

<nexp
2
>	 is, optionally, a timeout between characters in TICKS (0.01 sec).

Default ≈ 12.7 sec./character.
<new line>	 is any combination of CR, CR/LF, or LF.
<image data>	 is the image according to the PRBUF protocol.

Remarks	 This statement is useful for receiving and printing bitmap images from, for
example, a Windows printer driver. It is more effective and requires less
memory than using a STORE IMAGE...PRIMAGE sequence. The bitmap
image is printed directly and is not saved anywhere in the printer’s memory
after the image buffer has been cleared.

	 At the PRBUF statement, the printer waits for image data to be received
on the standard IN channel. PRBUF only works with binary transfers, that
is XON/XOFF must be disabled. You can optionally set a timeout between
characters (default 12.7 sec.) When the specified number of bytes accor-
ding to the PRBUF protocol have been received, the image data are proces-
sed directly into the printer’s image buffer and printed without requiring
any more Fingerprint instructions.

	 PRBUF does not work if <nexp1> bytes cannot be allocated. If memory is
low, it is possible to download the bitmap image in two or more blocks.

	 The field settings (alignment, clipping, direction, xor mode, inverse image,
magnification, x-position, and y-position) are handled by the current pro-
tocol, but the basic rule is that x- and y-positions, field clipping, and xor
mode are handled and the other attributes are ignored.

	 If PRPOS x,y, then the real print position will be PRPOS x,y+1.

	 The PRBUF protocol is decribed in Chapter 3, “Image Transfer.”

	 The <newline> is not part of the statement, but any combination of car-
riage return (ASCII 13 dec,) and/or linefeed (ASCII 10 dec.) is allowed
without interfering with the PRBUF protocol.

Example	 This example shows how the printer is instructed to receive and print
1,424 bytes of image data according to the PRBUF protocol:

	 PRBUF 1424 ↵
	 <binary image data>

202	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

PRIMAGE (PM)

Purpose	 Statement for selecting an image stored in the printer’s memory.

Syntax	 PRIMAGE|PM<sexp>

<sexp>	 is the full name of the desired image including extension.

Remarks	 An image is positioned according to the preceding PRPOS, DIR, and
ALIGN statements. It can be magnified by means of a MAG statement.

	 For the best printout quality, create and download a larger version of the
image rather than magnifying a smaller one.

	 All images provided by Intermec have an extension which indicates for
which directions the image is intended:

	 •	 Extension .1 indicates print directions 1 & 3.
	 •	 Extension .2 indicates print directions 2 & 4.

	 Even if the Intermec Fingerprint firmware does not require such an exten-
sion, we strongly recommend you to follow the same convention when
creating your own images as to make it easier to select the correct image.

Example	 This example illustrates the printing of a label containing an image printed
“upside down”:

	 10	 PRPOS 200,200
	 20	 DIR 3
	 30	 ALIGN 5
	 40	 PRIMAGE "GLOBE.1"
	 50	 PRINTFEED
	 RUN

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	2 03

Chapter 2—Program Instructions

PRINT (?)

Purpose	 Statement for printing data to the standard OUT channel.

Syntax	 PRINT|?[<<nexp>|<sexp>>[<,|;><<nexp>|<sexp>>...][;]]

<<nexp>|<sexp>>	 are string or numeric expressions, which will be printed to the
standard OUT channel.

Remarks	 If no expressions are specified after the PRINT statement, it will yield a
blank line. If one or more expressions are listed, the expression(s) will be
processed and the resulting values will be presented on standard OUT
channel (see SETSTDIO statement), for example usually on the screen of
the host. The shorthand form of PRINT is a question mark.

	 Do not confuse the PRINT statement with the PRINTFEED statement.

	 Each line is divided into zones of 10 character positions each. These zones
can be used for positioning the values:

	 •	 A comma sign (,) between the expressions causes next value to be prin-
ted at the beginning of next zone.

	 •	 A semicolon sign (;) between the expressions causes next value to be
printed immediately after the last value.

	 •	 A plus sign (+) between two string expressions also causes next value to
be printed immediately after the last value. (Plus signs cannot be used
between numeric expressions.)

	 •	 If the list of expressions is terminated by a semicolon, the next PRINT
statement will be added on the same line. Otherwise, a carriage return
is performed at the end of the line. If the printed line is wider than the
screen, the software will automatically wrap to a new line and go on
printing.

	 Printed numbers are always followed by a space character.

	 Printed negative numbers are preceded by a minus sign.

Example	 10	 LET X%=10
	 20	 LET A$="A"
	 30	 PRINT X%;X%+1,X%+5;X%-25
	 40	 PRINT A$+A$;A$,A$
	 50	 PRINT X%;
	 60	 ? "PIECES"
	 RUN			 				
									 yields:
	 10 11 15 -15
	 AAA A
	 10 PIECES

204	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

PRINT KEY ON/OFF

Purpose	 Statement for enabling or disabling printing of a label by pressing the Print
key.

Syntax	 PRINT KEY ON|OFF

Default:	 PRINT KEY OFF

Remarks	 In the Immediate Mode and in the Intermec Direct Protocol, the <Print>
key can be enabled to issue printing commands, corresponding to PRINT-
FEED statements. This implies that each time the <Print> key is pressed,
one single label, ticket, tag, or portion of continuous stock will be printed
and fed out.

	 Note that this statement cannot be entered in the Programming Mode (use
KEY ON and ON KEY GOSUB statements instead).

Example	 This example shows how the Print key is enabled in the Intermec Direct
Protocol and a label is printed (abbreviated instructions are used whenever
available):

	 INPUT ON ↵
	 PRINT KEY ON ↵
	 PP 100,100 ↵
	 FT "Swiss 721 BT" ↵
	 PT "TEST LABEL" ↵

	 [Press the <Print> key]
	
	 INPUT OFF ↵

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	2 05

Chapter 2—Program Instructions

PRINT#

Purpose	 Statement for printing data to a specified OPENed device or sequential
file.

Syntax	 PRINT#<nexp
1
>[,<<nexp

2
>|<sexp

1
>>[<,|;><<nexp

3
>|<sexp

2
>>...][;]]

<nexp
1
>	 is the number assigned to the file or device when it was OPENed.

<<nexp
2-n

>|<sexp1
-n

>>	 are the string or numeric expressions, which will be printed to the
specified file or device.

Remarks	 Expressions can be separated by commas or semicolons according to the
same rules as for the PRINT statement. It is important that the expressions
are separated properly, so they can be read back when needed, or be pre-
sented correctly on the printer’s LCD display.

	 PRINT# can only be used to print to sequential files, not to random files.

	 When sending data to the printer’s display ("console:"), PRINT# will work
same way as PRINT does on the standard OUT channel. The display can
for example be cleared by sending PRINT#<nexp> twice (see line 20 in the
example below).

Example	 The display on the printer’s keyboard console is able to show two lines
with 16 characters each. Before sending any text, the device must be
OPENed (line 10) and both lines on the display must be cleared (line 20).
Note the trailing semicolon on line 40!

	 10	 OPEN "console:" FOR OUTPUT AS #1
	 20	 PRINT# 1:PRINT# 1
	 30	 PRINT# 1,"OUT OF LABELS"
	 40	 PRINT# 1,"PLEASE RELOAD!";
	 50	 CLOSE# 1
	 RUN
	 Since the last line was appended by a semicolon, there will be no carriage

return and the text will appear on both line on the printer’s display as:

 		 OUT OF LABELS
 		 PLEASE RELOAD!

	 An alternative method is to send all the data to the display in a single
PRINT# statement. Character No. 1-16 will be displayed on the upper
line and character No. 17-33 will be displayed on the lower line, whereas
character No. 17 will be ignored. Note the trailing semicolon on line 30!
(The double-headed arrows in line 30 represent space characters.)

	 10	 OPEN "console:" FOR OUTPUT AS #1
	 20	 PRINT# 1: PRINT# 1
	 30	 PRINT# 1,"OUT↔OF↔LABELS↔↔↔↔PLEASE↔			

RELOAD!";
	 40	 CLOSE# 1
	 RUN

206	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

PRINTFEED (PF)

Purpose	 Statement for printing and feeding out one or a specified number of labels,
tickets, tags, or portions of strip, according to the printer’s setup.

Syntax	 PRINTFEED|PF [<nexp
1
>] | [-1,<nexp

2
>]

<nexp
1
>	 specifies number of copies to be printed.

-1,<nexp
2
>	 specifies that <nexp

2
> number of identical copies of the last

printed label should be reprinted (cannot be used with Intermec
Direct Protocol).

Remarks	 Each time a PRINTFEED statement without any appending value is
executed, one new label, ticket, tag, or portion of continuous stock will be
printed.

	 The PRINTFEED statement can optionally be appended by a numeric
expression, which specifies the number of copies to be printed. In the
Intermec Direct Protocol, possible counter, time, and date values will
be updated between copies printed using a predefined layout. Note that
you must never include any PRINTFEED statements in layouts in the
Intermec Direct Protocol.

	 If the number of copies is >1 and LTS& and CUT are disabled (= LTS&
OFF and CUT OFF), the BATCH optimizing strategy is automatically
enabled, which corresponds to an OPTIMIZE BATCH ON statement.
When theses conditions are no longer fulfilled, BATCH optimizing
strategy is automatically disabled, which corresponds to an OPTIMIZE
BATCH OFF statement.

	 It is also possible to reprint a specified number of copies of the last printed
label, for example after an out-of-media condition (also see PRSTAT).

	 The execution of a PRINTFEED statement clears the following statements
to their default values:

	 ALIGN			 BARRATIO		 INVIMAGE
	 BARFONT			 MAG			 BARFONT ON/OFF	

BARSET			 PRPOS		 BARHEIGHT		
DIR				 XORMODE ON	 BARMAG			
FONT			 FONTD

		
	 Fields defined by statements, that have been executed before the PRINT-

FEED statement, are not affected. Note that, when using a PRINTFEED
in a loop, all formatting parameters are reset to default each time the
PRINTFEED statement is executed and must therefore be included inside
the loop.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	2 07

Chapter 2—Program Instructions

PRINTFEED (PF), cont.
	 The length of media to be fed out at execution of a PRINTFEED state-

ment is decided by the choice of media type in the printer’s setup (label w
gaps, ticket w gaps, fix length strip, or var length strip) and globally by the
start and stop adjustment setup (positive or negative). Refer to the User’s
Guide for more information. The length of media to be fed out can be
further modified by an additional positive or negative FORMFEED state-
ment, either before or after the PRINTFEED statement.

Examples	 Printing a single label with one line of text:
	 10	 FONT "Swiss 721 BT"
	 20	 PRTXT "Hello!"
	 30	 PRINTFEED
	 RUN
	
	 Printing five identical labels with one line of text:
	 10	 FONT "Swiss 721 BT"
	 20	 PRTXT "Hello!"
	 30	 PRINTFEED 5
	 RUN

	 Printing five labels using a FOR...NEXT loop. Note that formatting
parameters are placed inside the loop:

	 10	 FOR A%=1 TO 5	
	 20	 FONT "Swiss 721 BT"
	 30	 PRPOS 200, 100
	 40	 DIR 3
	 50	 ALIGN 5
	 60	 PRTXT "Hello!"
	 70	 PRINTFEED
	 80	 NEXT A%
	 RUN
	
	 Printing of five labels in the Intermec Direct Protocol, illustrating how the

TICKS value is updated between labels, provided a predefined layout is
used (1 TICK = 0.01 sec):

	 INPUT ON ↵
	 FORMAT INPUT "#","@","&" ↵
	 LAYOUT INPUT "tmp:LABEL1" ↵
	 FT "Swiss 721 BT" ↵
	 PP 100,100 ↵
	 PT TICKS ↵
	 PP 100,200 ↵
	 PT VAR1$ ↵
	 LAYOUT END ↵
	 LAYOUT RUN "tmp:LABEL1" ↵
	 #See how time flies&@ ↵
	 PF 5 ↵
	 INPUT OFF ↵

208	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

PRINTONE

Purpose	 Statement for printing characters, specified by their ASCII values, to the
standard OUT channel.

Syntax	 PRINTONE<nexp>[<,|;><nexp>...][;]

<nexp>	 is the ASCII decimal value of a character, which will be printed to
the standard OUT channel.

Remarks	 When, for some reason, certain characters cannot be produced by the host
computer, they can be substituted by the corresponding ASCII decimal
values using the PRINTONE statement. The characters will be printed,
according to the currently selected character set (see NASC statement), to
the standard OUT channel, that is, usually to the screen of the host.

	 PRINTONE is very similar to the PRINT statement and the use of
commas and semicolons follows the same rules.

Example	 PRINTONE 80;82;73;67;69;58,36;52;57;46;57;53
								 yields:
	 PRICE: $49.95

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	2 09

Chapter 2—Program Instructions

PRINTONE#

Purpose	 Statement for printing characters specified by their ASCII values to a
device or sequential file.

Syntax	 PRINTONE#<nexp
1
>[,<nexp

2
>[<,|;><nexp

3
>...][;]]

<nexp
1
>	 is the number assigned to the file or device when it was OPENed.

<nexp
2-n

>	 is the ASCII decimal value of the character, which is to be printed
to the specified file or device.

Remarks	 This statement is useful, when the host for some reason cannot produce
certain characters. The ASCII values entered will produce characters accor-
ding to the currently selected character set, see NASC. The ASCII values
can be separated by commas or semicolons according to the same rules as
for the PRINT# statement.

	 PRINTONE# can only be used to print to sequential files, not to random
files.

	 When sending data to the printer’s display, PRINTONE# will work
in a way similar to PRINT#. The display can be cleared by sending
PRINT#<nexp> twice (see line 20 in the example below).

Example	 The display on the printer’s keyboard console is able to show two lines
with 16 characters each. Before sending any text, the device must be
OPENed and the display be cleared. Note the trailing semicolon sign on
line 40.

	 10	 OPEN "console:" FOR OUTPUT AS #1
	 20	 PRINT# 1:PRINT# 1
	 30	 PRINTONE# 1,80;82;69;83;83
	 40	 PRINTONE# 1,69;78;84;69;82;
	 50	 CLOSE #1
	 RUN
	 Since the last line was appended by a semicolon, there will be no carriage

return and the text will appear on both line on the printer’s display as:

 	 PRESS
 	 ENTER

210	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

PRLINE (PL)

Purpose	 Statement for creating a line.

Syntax	 PRLINE|PL<nexp
1
>,<nexp

2
>

<nexp
1
>	 is the length of the line in dots (max. 6000).

<nexp
2
>	 is the line weight in dots (max. 6000).

	
Remarks	 The line will be drawn from the insertion point and away according to

the nearest preceding DIR and ALIGN statements (that is the line runs in
parallel with any text printed in the selected direction).

	 A line can be ALIGNed left, right or center. The anchor points are situated
at the bottom of the line, which means that with an increasing line weight
(thickness), the line will the grow upward in relation to the selected direc-
tion. In the illustration below, all lines are aligned left. Lines may cross (see
XORMODE ON/OFF statement).

	

Example	 This example draws a 2.5 cm (1 inch) long and 10 dots thick line across
the media in an 8 dots/mm printer:

	 10	 PRPOS 50,100
	 20	 PRLINE 200,10
	 30	 PRINTFEED
	 RUN

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	2 11

Chapter 2—Program Instructions

PRPOS (PP)

Purpose	 Statement for specifying the insertion point for a line of text, a bar code,
an image, a box, or a line.

Syntax	 PRPOS|PP<nexp
1
>,<nexp

2
>

<nexp
1
>	 is the X-coordinate (number of dots from the origin).

<nexp
2
>	 is the Y-coordinate (number of dots from the origin).

Default value:	 0,0
Reset to default by:	 PRINTFEED execution.

Remarks	 When the printer is set up, a “print window” is created. This involves
specifying the location of the origin along the X-axis, setting the max. print
width along the X-axis from origin, and setting the max. print length along
the Y-axis from origin.

	 The X-coordinate goes across the media path and the Y-coordinate along
the media feed direction, as illustrated below. They are set in relation to the
origin on the printhead, not in relation to the media. Thus, the position
where an object actually will be printed depends on the relation between
printhead and media at the moment when the printing starts.

212	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

PRPOS (PP), cont.
	 The insertion point must be selected so the field in question will fit inside

the print window. This implies that the print direction, the size of the field
including “invisible” parts of for example an image, the alignment, and
other formatting instructions must be considered. A field that does not fit
entirely inside the print window will cause Error 1003, “Field out of label”,
except when a CLIP ON statement is issued.

	 To find out the present insertion point, use the PRSTAT function.

Examples	 Programming and printing a line of text:
	 10	 FONT "Swiss 721 BT"
	 20	 PRPOS 30,200
	 30	 PRTXT "HELLO"
	 40	 PRINTFEED
	 RUN

	 Each text line is normally positioned separately by is own PRPOS state-
ment. If no position is given for a printable statement, it will be printed
immediately after the preceding printable statement.

	 10	 FONT "Swiss 721 BT"
	 20	 PRPOS 30,200
	 30	 PRTXT "SUMMER"
	 40	 PRTXT "TIME"
	 50	 PRINTFEED
	 RUN			 				

yields a label with the text:
	 SUMMERTIME 	

	 A program for fixed line-spacing of text may be composed this way
(another way is to use the extended PRBOX statement):

	 10	 FONT"Swiss 721 BT"
	 20	 X%=30:Y%=500
	 30	 INPUT A$
	 40	 PRPOS X%,Y%
	 50	 PRTXT A$
	 60	 Y%=Y%-50
	 70	 IF Y%>=50 GOTO 30
	 80	 PRINTFEED
	 90	 END
	 RUN
	 Enter the text for each line after the question mark shown on the screen

of the host. The Y-coordinate will be decremented by 50 dots for each
new line until it reaches the value 50, which means that ten lines will be
printed.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	2 13

Chapter 2—Program Instructions

PRSTAT

Purpose	 Function returning the printer’s current status or, optionally, the current
position of the insertion point.

Syntax	 PRSTAT[(<nexp>)]

<nexp> = 1	 returns the X-position for the insertion point at DIR 1&3.
<nexp> = 2	 returns the Y-position for the insertion point at DIR 2&4.
<nexp> = 3	 returns the X-position of the corner with the lowest coordinates

of the last object.
<nexp> = 4	 returns the Y-position of the corner with the lowest coordinates

of the last object.
<nexp> = 5	 returns the width along the X-axis of the last object.
<nexp> = 6	 returns the height along the Y-axis of the last object.
<nexp> = 7	 returns the print job identifier
<nexp> = 8	 returns the print job state (see table below).
<nexp> = 9	 returns the print job error code.
<nexp> = 10	 returns the remaining number of copies to be printed in a batch

print job.
	 	 	

Remarks	 PRSTAT
	 Returns a numeric expression, which is the sum of the values given by the

following conditions, at the moment when the PRSTAT function is execu-
ted:

	 - OK.. 0
	 - Printhead lifted... 1
	 - Label not removed (see note)... 2
	 - Label stop sensor (LSS) detects no label.. 4
	 - Printer out of transfer ribbon (TTR) or ribbon installed (DT)................ 8
	 - Printhead voltage too high.. 16
	 - Printer is feeding... 32
	 - RESERVED.. 64
	 - Printer out of media.. 128

	 Note: Always returns 0 in printers not fitted with a label taken sensor.

	 If two error conditions occur at the same time, for example the printhead
is lifted and the printer is out of transfer ribbon, the sum will be (1+8) = 9.
Every combination of errors will result in a unique sum. You can use it to
branch to a subroutine which notifies the operator, interrupts the program
or whatever you like. The Label stop sensor will detect no label if a gap or
black mark is in front of the sensor, as well as when the printer is out of
media.

	
	 PRSTAT(1) & PRSTAT(2)
	 The current position of the insertion point in regard of either the X or the

Y position can be returned, depending on the selected print direction. This
is useful for for example measuring the length of a text or a bar code.

214	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

PRSTAT, cont.	
	 PRSTAT(3)-PRSTAT(6)
	 These functions are used to return the position and size of the last object

regardless of RENDER ON/OFF. Their values are not updated by the
execution of a PRBUF statement.

	 PRSTAT(7)-PRSTAT(10)
	 These functions are used to detect if a print job has been interrupted, so

steps can be taken to reprint missing copies (see PRINTFEED).

	 PRSTAT (7) returns a print job identifier that is automatically assigned to
the print job by the firmware.

	 PRSTAT (8) returns the state of the print job as a numeric expression,
which is the sum of the values given by the following conditions:

	 - Print cycle not set up for printing, perhaps due to out-of-ribbon............0
	 - The previous print cycle never ended (timeout).......................................1
	 - Print cycle has started..2
	 - All lines successfully printed..4
	 - Printing truncated (media shorter than print image)...............................8
	 - Printhead strobing error or label length exceeded..................................16
	 - Ribbon low...32

	 PRSTAT (8) = 6 or 22 indicates a successfully printed label (in the latter
case error “next label not found” may have been detected).

	 PRSTAT (9) returns the error code (see Chapter 7, “Error Messages”)
detected by the print engine during printfeed. It is used together with
PRSTAT(8) to determine the error cause when using OPTIMIZE
"BATCH" ON.

	 PRSTAT (10) returns the number of copies that remains to be printed in
an interrupted batch print job.

Examples	 This examples shows how two error conditions are checked:
	 10	 A% = PRSTAT
	 20	 IF A% AND 1 THEN GOSUB 1000
	 30	 IF A% AND 128 THEN GOSUB 1010
	 40	 END
	
	 1000	PRINT "Printhead is lifted":RETURN
	 1010	PRINT "Printer out of media":RETURN
	 RUN
	
 	 This example illustrates how you can check the length of a text:
	 10	 PRPOS 100,100: FONT "Swiss 721 BT"
	 20	 PRTXT "ABCDEFGHIJKLM"
	 30	 PRINT PRSTAT(1)
	 RUN
								 yields:
	 519

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	2 15

Chapter 2—Program Instructions

PRTXT (PT)

Purpose	 Statement for providing the input data for a text field.

Syntax	 PRTXT|PT<<nexp>|<sexp>>[;<<nexp>|<sexp>>...][;]

<<nexp>|<sexp>>	 specifies one line of text (max. 300 characters)

Remarks	 A text field consists of one line of text. The text field must be defined in
regard of FONT or FONTD and may be further defined and positioned
by DIR, ALIGN, MAG, PRPOS, INVIMAGE, or NORIMAGE state-
ments or their respective default values.

	 Two or more expressions can be combined to form a text line. They must
be separated by semicolons (;) and will be printed adjacently. Plus signs can
also be used for the same purpose, but only between string expressions.

	 String constants must be enclosed by quotation marks, whereas numeric
constants or any kind of variables must not.

Examples	 Programming and printing a line of text:
	 10	 FONT "Swiss 721 BT"
	 20	 PRPOS 30,300
	 30	 PRTXT "How do you do?"
	 40	 PRINTFEED
	 RUN

	 Several string constants and string variables can be combined into one line
of text by the use of plus signs or semicolons:

	 10	 FONT "Swiss 721 BT"
	 20	 PRPOS 30,300
	 30	 PRTXT "SUN";"SHINE"
	 40	 A$="MOON"
	 50	 B$="LIGHT"
	 60	 PRPOS 30,200
	 70	 PRTXT A$+B$
	 80	 PRINTFEED
	 RUN		 				
							 yields a label with the text:
	 SUNSHINE
	 MOONLIGHT

216	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

PRTXT (PT), cont.
	 Numeric constants and numeric variables can be combined by the use of

semicolons, but plus signs cannot be used in connection with numeric
expressions:

	 10	 FONT "Swiss 721 BT"
	 20	 PRPOS 30,300
	 30	 PRTXT 123;456
	 40	 A%=222
	 50	 B%=555
	 60	 PRPOS 30,200
	 70	 PRTXT A%;B%
	 80	 PRINTFEED
	 RUN			 				

yields a label with the text:
	 123456
	 222555

	 Numeric and string expressions can be mixed on the same line, for exam-
ple:

	 10	 FONT "Swiss 721 BT"
	 20	 PRPOS 30,300
	 30	 A$="December"
	 40	 B%=27
	 50	 PRTXT A$;" ";B%;" ";"2003"
	 80	 PRINTFEED
	 RUN				 			

yields a label with the text:
	 December 27 2003

	 Two program lines of text will be printed on the same line if the first pro-
gram line is appended by a semicolon:

	 10	 FONT "Swiss 721 BT"
	 20	 PRPOS 30,300
	 30	 PRTXT "HAPPY"+" ";
	 40	 PRTXT "BIRTHDAY"
	 50	 PRINTFEED
	 RUN
							 yields a label with the text:
	 HAPPY BIRTHDAY

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	2 17

Chapter 2—Program Instructions

PUT

Purpose	 Statement for writing a given record from the random buffer to a given
random file.

Syntax	 PUT[#]<nexp
1
>,<nexp

2
>

#	 indicates that whatever follows is a number. Optional.
<nexp

1
>	 is the number assigned to the file when it was OPENed.

<nexp
2
>	 is the number of the record. Must be ≥1.	

Remarks	 Use LSET or RSET statements to place data in the random buffer before
issuing the PUT statement.

Example	 10	 OPEN "PHONELIST" AS #8 LEN=26
	 20	 FIELD#8,8 AS F1$, 8 AS F2$, 10 AS F3$
	 30	 SNAME$="SMITH"
	 40	 CNAME$="JOHN"
	 50	 PHONE$="12345630"
	 60	 LSET F1$=SNAME$
	 70	 LSET F2$=CNAME$
	 80	 RSET F3$=PHONE$
	 90	 PUT #8,1
	 100	 CLOSE#8
	 RUN

	 SAVE "PROGRAM 1.PRG "

	 NEW
	 10	 OPEN "PHONELIST" AS #8 LEN=26
	 20	 FIELD#8,8 AS F1$, 8 AS F2$, 10 AS F3$
	 30	 GET #8,1
	 40	 PRINT F1$,F2$,F3$
	 RUN
									 yields:
	 SMITH↔↔↔JOHN↔↔↔↔↔↔12345630

218	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

RANDOM

Purpose	 Function generating a random integer within a specified interval.

Syntax	 RANDOM(<nexp
1
>,<nexp

2
>)

<nexp
1
>	 is the first integer in the interval.

<nexp
2
>	 is the last integer in the interval.

Remarks	 <nexp1> ≤ <random integer> ≤ <nexp2>, that is, the random integer will
be:

	 Equal to or greater than <nexp1>

	 Equal to or less than <nexp2>

Example	 The following example will produce ten random integers between 1 and
100:

	 10	 FOR I%=1 TO 10
	 20	 A% = RANDOM (1,100)
	 30	 PRINT A%
	 40	 NEXT I%
	 RUN
								 yields for example:
	 31
	 45
	 82
	 1
	 13
	 16
	 41
	 77
	 20
	 70

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	2 19

Chapter 2—Program Instructions

RANDOMIZE

Purpose	 Statement for reseeding the random number generator, optionally with a
specified value.

Syntax	 RANDOMIZE[<nexp>]

<nexp>	 is the integer (0 -99999999) with which the random number
generator will be reseeded

Remarks	 If no value is specified, a message will appear asking you to enter a value
between 0 and 99,999,999.

Examples	 In the following example, no reseeding integer is specified in the program.

Thus a prompt will appear, asking you to do so:
	 10	 RANDOMIZE
	 20	 A%=RANDOM1,100)
	 30	 PRINT A%
	 RUN
	 Random Number Seed (0 to 99999999) ?
	 Enter 555					 			

yields for example:
	 36

	 When the reseeding integer is specified, no prompt will appear:
	 10	 RANDOMIZE 556
	 20	 A%=RANDOM(1,100)
	 30	 PRINT A%
	 RUN
								 yields for example:
	 68

	 A higher degree of randomization will be obtained in the random integer
generator is reseeded with a more or less random integer, for example pro-
vided by a TICKS function:

	 10	 A%=TICKS
	 20	 RANDOMIZE A%
	 30	 B%=RANDOM(1,100)
	 40	 PRINT B%
	 RUN
								 yields for example:
	 42

220	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

READY

Purpose	 Statement for ordering a ready signal, for example XON, CTS/RTS or PE,
to be transmitted from the printer on the specified communication chan-
nel.

Syntax	 READY[<nexp>]

<nexp>	 optionally specifies a communication channel:
	 1 = "uart1:"
	 2 = "uart2:"
	 3 = "uart3:"	 	
	 4 = "centronics:"
	 6 = "usb1:"
	 8 = "uart4:"
	 9 = "uart5:"

Remarks	 The selected communication protocol usually contains some “ready” signal,
which tells the host computer that the printer is ready to receive more data.
The READY statement allows you to order a ready signal to be transmit-
ted on the specified communication channel. If no channel is specified, the
signal will be transmitted on the standard OUT channel (see SETSTDIO
statement).

	 The READY signal is used to revoke a previously transmitted BUSYsignal.
However, the printer may still be unable to receive more data, for example
because of a full receive buffer.

	 For the "centronics:" communication channel, BUSY/READY controls
the PE (paper end) signal on pin 12 according to an error-trapping routine
(READY = PE low).

Example	 You may, for example, want to allow the printer to receive more data on

"uart2:" after the process of printing a label is completed. (Running this
example may require an optional interface board to be fitted):

	 10	 FONT "Swiss 721 BT"
	 20	 PRTEXT "HELLO!"
	 30	 BUSY2
	 40	 PRINTFEED
	 50	 READY2
	 RUN

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	22 1

Chapter 2—Program Instructions

REBOOT

Purpose	 Statement for restarting the printer.

Syntax	 REBOOT

Remarks	 This statement has exactly the same effect as switching off and on the
power to the printer.				

222	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

REDIRECT OUT

Purpose	 Statement fo redirecting the output data to a created file.

Syntax	 REDIRECT↔OUT[<sexp>]

<sexp>	 is, optionally, the name of the file to be created and where the
output will be stored.

Remarks	 Normally the output data will be transmitted on the standard output chan-
nel (see SETSTDIO statement). In most cases, this means the screen of the
host. However, by means of a REDIRECT OUT <sexp> statement, a file
can be created to which the output will be redirected. That implies that no
data will be echoed back to the host. Normal operation, with the output
being transmitted on the standard output channel again, will be resumed
when a REDIRECT OUT statement without any appending file name is
executed.

Example	 In this example, a file ("LIST.DAT") is created to which the names of the
files in the printer’s permanent memory is redirected. The redirection is
then terminated (line No. 30) and the file is OPENed for input.

	 10	 REDIRECT OUT "LIST.DAT"
	 20	 FILES "/c"
	 30	 REDIRECT OUT
	 40	 OPEN "LIST.DAT" FOR INPUT AS #1
	
	
	

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	223

Chapter 2—Program Instructions

REM (')

Purpose	 Statement for adding headlines and comments to the program without
including them in the execution.

Syntax	 REM|'<remark>

<remark>	 is a text inserted in the program for explanatory purpose. Max.
32,767 characters per line.

Remarks	 A REM statement may either be entered on a program line of its own or
be inserted at the end of a line containing another instruction. In the latter
case, REM must be preceded by a colon (“:REM”).

	 A shorthand form for REM is an apostrophe (ASCII 39 dec.).

	 It is possible to branch to a line of REM statement. Execution will then
continue at the first executable line after the REM line.

	 REM statements slow down execution and transfer of data and also take
up valuable memory space. Therefore, use REM statements with judge-
ment.

Example	 A program containing REM statements:
	 10	 'Label format No. 1
	 20	 FONT "Swiss 721 BT"
	 30	 PRPOS 30,100
	 40	 DIR 1 :REM Print across web
	 50	 ALIGN 4 :REM Aligned left/baseline
	 60	 MAG 2,2 :'Double height and width
	 70	 PRTXT "HELLO"
	 80	 PRINTFEED
	 RUN

224	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

REMOVE IMAGE

Purpose	 Statement for removing a specified image from the printer’s memory.

Syntax	 REMOVE↔IMAGE <sexp>

<sexp>	 is the full name including extension of the image to be removed.

Remarks	 Useful for removing obsolete or faulty images from the printer’s memory in
order to save valuable memory space.

	 Note that there is a distinction between on one hand images and on the
other hand image files (compare with IMAGES and FILES statements).
This implies that REMOVE IMAGE statements can only be used for
images downloaded by means of a STORE statement (see STORE and
STORE IMAGE). Image files downloaded using for example a TRANS-
FER KERMIT statement should be removed the same way as other files
using a KILL statement.

	 Be careful, REMOVE IMAGE is irreversible!

Example	 10	 REMOVE IMAGE "LOGOTYPE.1"
	 RUN

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	225

Chapter 2—Program Instructions

RENDER ON/OFF

Purpose	 Statement for enabling/disabling rendering of text, bar code, image, box,
and line fields.

Syntax	 RENDER ON|OFF

ON	 enables rendering (default).
OFF	 disables rendering.

Remarks	 These statements are intended to get information regarding size and
position of a field without actually rendering it, that is the field will not
be printed when the program is executed. The information on the field is
retrieved using PRSTAT functions.

	 RENDER OFF disables the rendering, which means that PRTXT,
PRBAR, PRIMAGE, PRLINE, and PRBOX statements will not give any
result when a PRINTFEED statement is executed. Any other statements
than PRPOS will not update the insertion point. Field numbers (see
FIELDNO) will not be updated. Statement such as CLIP ON/OFF, XOR-
MODE ON/OFF, or BARSET will retain their usual meanings. PRBUF
will render a field regardless of RENDER ON/OFF.

	 RENDER ON enables field rendering after a RENDER OFF statement.

	 Duplicate statement have no effect, that is if a RENDER OFF statement
has been executed, another RENDER OFF statement will be ignored. The
same applies to RENDER ON.

	
Example	 This examples retrieves information on the size of a text field which was

not rendered. (The actual result may vary depending on font, font size,
and printer type.)

	 10	 RENDER OFF
	 20	 PRTXT "Render off"
	 30	 PRINT "Width:",PRSTAT(5),"Height:",
		 PRSTAT(6)
	 40	 RENDER ON
	 50	 PRINTFEED
	 RUN
	 yields for example:
	 Width: 153 Height: 46
	
	 No field to print in line 50
	
	 Ok	

226	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

RENUM

Purpose	 Statement for renumbering the lines of the program currently residing in
the printer’s working memory.

Syntax	 RENUM[<ncon
1
>][,[<ncon

2
>][,<ncon

3
>]]

<ncon
1
>	 is the first line number of the new sequence.

<ncon
2
>	 is the line in the current program at which renumbering is to

start.
<ncon

3
>	 is the desired increment between line numbers in the new

sequence.
Default values:	 10, 1, 10

Remarks	 This statement is useful for providing space for more program lines when
expanding an existing program, and for renumbering programs writ-
ten without line numbers, for example after being LISTed, LOADed, or
MERGEd. Line references following GOTO statements will be renumbe-
red accordingly. Use a LIST statement to print the new numbers on the
screen.

Example	 A program may be renumbered like this:
	 10	 FONT "Swiss 721 BT"
	 20	 PRPOS 30,100
	 30	 PRTXT "HELLO"
	 40	 A%=A%+1
	 50	 PRINTFEED
	 60	 IF A%<3 GOTO 40
	 70	 END
	 RENUM 100,20,50
	 LIST			 						

yields:
	 10	 FONT "Swiss 721 BT"
	 100	 PRPOS 30,100
	 150	 PRTXT "HELLO"
	 200	 A%=A%+1
	 250	 PRINTFEED
	 300	 IF A%<3 GOTO 200
	 350 	END
	 Note that the line number in the GOTO statement on line 300 has

changed. Line 10 is not renumbered, since line 20 was specified as starting
point. The new increment is 50.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	22 7

Chapter 2—Program Instructions

REPRINT ON/OFF

Purpose	 Statement for enabling/disabling reprinting of a label in the Direct Proto-
col.

Syntax	 REPRINT <ON|OFF>
	
ON	 Enables reprinting (default)
OFF	 Disables reprinting

Remarks	 The REPRINT ON/OFF statement is used to enable or disable reprinting
of a label. REPRINT OFF also affects and overrides the behaviour of the
PRINT KEY ON statement. If REPRINT OFF is entered before PRINT
KEY ON, no error message is shown but PRINT KEY is set to ON and an
empty label is printed when the <Print> key is pressed.

	 If REPRINT is set to OFF, there is no way to reprint an old print job. If
a PRINTFEED statement is sent to the printer after a print job has been
completed, a blank label is fed out and the error 1006 “No field to print”
occurs. However, the REPRINT OFF statement does not clear the print
buffer, which only occurs after a PRINTFEED statement has been execu-
ted (see example 2 below).

	 Leaving and re-entering the Direct Protocol does not reset the REPRINT
status. A reboot resets the REPRINT status to its default value (ON).

	 A REPRINT OFF statement prevents automatic reprinting after the error
has been cleared for the following errors:

	 1005 “Out of paper”
	 1022 “Head lifted”
	 1031 “Next label not found”
	 1058 “Transfer ribbon is installed”

	 Error 1027 “Out of transfer ribbon” does not generate the display prompt
“Continue-Reprint” if REPRINT is set to OFF.

Examples	 This example disables reprinting:
	 INPUT ON	 Enter the Direct Protocol
	 REPRINT OFF	 Disable reprinting

	 This example shows a special case, when the first and second PRINTFEED
statements generates a printed label. After the second PRINTFEED, the
print buffer is cleared and a “No field to print” error occurs.

	 INPUT ON	 Enter the Direct Protocol
	 PRTXT "PRINT1"	 Print the text “Print1”
	 PRINTFEED	 Yields a print label
	 REPRINT OFF	 Disable reprinting
	 PRINTFEED	 Yields a printed label, clears print buffer
	 PRINTFEED	 Yields a blank label, generates an error
	�

228	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

RESUME

Purpose	 Statement for resuming program execution after an error-handling subrou-
tine has been executed.

Syntax	 RESUME[<<ncon>|<line label>|<NEXT>|<0>>|<HTTP>]

<ncon>	 is the number or label of the line to which the program should
return.

Remarks	 RESUME must only be used in connection with error-handling subrouti-
nes (see ON ERROR GOTO).

	 There are five ways of using RESUME:
	 RESUME	 Execution is resumed at the statement where the

error occurred.
	 RESUME 0	 Same as RESUME.
	 RESUME NEXT	 Execution is resumed at the statement immedia-

tely following the one that caused the error.
	 RESUME <ncon>	 Execution is resumed at the specified line.
	 RESUME <line label>	 Execution is resumed at the specified line label.
	 RESUME <HTTP>	 Execution is resumed at the point where	 it was

branched by an ON HTTP GOTO statement.
Stdin and stdout are restored to their original
values.

Examples	 This short program is the basis for two examples of alternative subroutines:
	 10	 ON ERROR GOTO 1000
	 20	 FONT "Swiss 721 BT"
	 30	 PRPOS 100,100
	 40	 PRTXT "HELLO"
	 50	 PRPOS 100, 300
	 60	 PRIMAGE "GLOBE.1"
	 70	 PRINTFEED
	 80	 END

	 1. A font is selected automatically and execution is resumed from the line
after where the error occurred. If another error than the specified error
condition occurs, the execution is terminated.

	 1000	IF ERR=15 THEN FONT "Swiss 721 BT":RESUME 		
NEXT

	 1010	RESUME 80

	 2. An error message is displayed and the execution goes on from the line
following the one where the error occurred.

	 1000	IF ERR=15 THEN PRINT "Font not found"
	 1010	RESUME NEXT

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	229

Chapter 2—Program Instructions

RETURN

Purpose	 Statement for returning to the main program after having branched to a
subroutine because of a GOSUB statement.

Syntax	 RETURN[<ncon>|<line label>]

<ncon>	 is optionally the number or label of a line in the main program to
return to.

Remarks	 When the statement RETURN is encountered during the execution of
a subroutine, the execution will return to the main program. Execution
will continue from the statement immediately following the most recently
executed GOSUB or from an optionally specified line.

	 If a RETURN statement is encountered without a GOSUB statement
having been previously executed, Error 28, “Return without Gosub” will
occur.

Example	 10	 PRINT "This is the main program"
	 20	 GOSUB 1000
	 30	 PRINT "You’re back in the main program"
	 40	 END
	 1000	PRINT "This is subroutine 1"
	 1010	GOSUB 2000
	 1020	PRINT "You’re back in subroutine 1"
	 1030	RETURN
	 2000	PRINT "This is subroutine 2"
	 2010	GOSUB 3000
	 2020	PRINT "You’re back in subroutine 2"
	 2030	RETURN
	 3000	PRINT "This is subroutine 3"
	 3010	PRINT "You’re leaving subroutine 3"
	 3020	RETURN
	 RUN
									 yields:
	 This is the main program
	 This is subroutine 1
	 This is subroutine 2
	 This is subroutine 3
	 You’re leaving subroutine 3
	 You’re back in subroutine 2
	 You’re back in subroutine 1
	 You’re back in the main program

230	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

REWINDCONTROL

Purpose	 Function to control the internal rewind motor in EasyCoder PX-series
printers.

Syntax	 REWINDCONTROL <nexp>

<nexp>	 Positive values: Specifies for how long the internal rewinder will
pull liner before paper feed motor starts. Maximum value is 5000
dots.

	 Negative values: Specifies the number of dots the paper will be
fed before the internal rewind motor starts pulling liner. A value
of -1 turns the rewind motor off. Maximum value is label length.

Remarks	 EasyCoder PX-series printers may have two separate motors, one for fee-
ding paper and one for rewinding liner. REWINDCONTROL allows for
control of the internal rewind motor. A positive value stretches the liner
before printing to ensure a better dispensing of labels. A positive value
might cause stepper motor to stall for certain liner surfaces. In such cases,
contact your local Intermec support organization. A negative value allows
the label to be rewound with the liner using the self-strip mode. A value
of -1 turns the internal rewind motor off, which makes for more silent
operation when the printer runs without self-strip. This command cannot
be used when REWINDVOID ON is enabled.

Examples	 REWINDCONTROL 200

	 REWINDCONTROL -100

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	23 1

Chapter 2—Program Instructions

REWINDVOID

Purpose	 Function to rewind VOID labels with the liner in EasyCoder PX-series
printers with RFID enabled.

Syntax	 REWINDVOID OFF|ON[<nexp>]

<nexp>	 specifies the number of dots the paper will be fed before the
internal rewind motor will start pulling liner. Default:100. Maxi-
mum value is label length.

Remarks	 EasyCoder PX-series printers may have two separate motors, one for
feeding paper and one for rewinding liner. This function causes a VOID
tag/label to be rewound with the liner paper when using the printer in self-
strip mode, avoiding a label being from being dispensed (i.e. to an applica-
tor). The value for <nexp> must be tested for each specific media and label
length.

Example	 REWINDVOID ON 200

232	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

RIGHT$

Purpose	 Function returning a specified number of characters from a given string
starting from the extreme right side (end) of the string.

Syntax	 RIGHT$(<sexp>,<nexp>)

<sexp>	 is the string from which the characters will be returned.
<nexp>	 specifies the number of characters to be returned.

Remarks	 This function is the complementary function for LEFT$, which returns
the characters starting from the extreme left side, that is from the start.

	 If the number of characters to be returned is greater than the number
of characters in the string, then the entire string will be returned. If the
number of characters is set to zero, a null string will be returned.

Examples	 PRINT RIGHT$("THERMAL_PRINTER",7)
									 yields:
	 PRINTER

	 10	 A$="THERMAL_PRINTER":B$ = "LABEL"	
	 20	 PRINT RIGHT$(B$,5);RIGHT$(A$,8);"S"
	 RUN
									 yields:
	 LABEL_PRINTERS

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	233

Chapter 2—Program Instructions

RSET

Purpose	 Statement for placing data right-justified into a field in a random file
buffer.

Syntax	 RSET<svar>=<sexp>

<svar>	 is the string variable assigned to the field by a FIELD statement.
<sexp>	 holds the input data.

Remarks	 After having OPENed a file and formatted it using a FIELD statement,
you can enter data into the random file buffer using the RSET and LSET
statements (LSET left-justifies the data).

	 The input data can only be stored in the buffer as string expressions. The-
refore, a numeric expression must be converted to string by the use of a
STR$ function before an LSET or RSET statement is executed.

	 If the length of the input data is less than the field, the data will be right
justified and the remaining number of bytes will be printed as space cha-
racters.

	 If the length of the input data exceeds the length of the field, the input
data will be truncated on the left side.

Example	 10	 OPEN "PHONELIST" AS #8 LEN=26
	 20	 FIELD#8,8 AS F1$, 8 AS F2$, 10 AS F3$
	 30	 SNAME$="SMITH"
	 40	 CNAME$="JOHN"
	 50	 PHONE$="12345630"
	 60	 LSET F1$=SNAME$
	 70	 LSET F2$=CNAME$
	 80	 RSET F3$=PHONE$
	 90	 PUT #8,1
	 100	 CLOSE#8
	 RUN

	 SAVE "PROGRAM 1.PRG "

	 NEW
	 10	 OPEN "PHONELIST" AS #8 LEN=26
	 20	 FIELD#8,8 AS F1$, 8 AS F2$, 10 AS F3$
	 30	 GET #8,1
	 40	 PRINT F1$,F2$,F3$
	 RUN							 		
									 yields:
	 SMITH↔↔↔JOHN↔↔↔↔↔↔12345630

234	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

RUN

Purpose	 Statement for starting the execution of a program.

Syntax	 RUN[<<scon>|<ncon>>]

<scon>	 optionally specifies an existing program to be run.
<ncon>	 optionally specifies the number of a line in the current program

where the execution will start.

Remarks	 The RUN statement starts the execution of the program currently residing
in the printer’s working memory, or optionally of a specified program
residing elsewhere. The execution will begin at the line with the lowest
number, or optionally from a specified line in the current program.

	 If a program stored in another directory than the current one (see CHDIR
statement), and has not been LOADed, its designation must be preceded
by a reference to that device ("/c", "tmp:", "/rom", or "card1:", see the last
example).

	 Never use RUN on a numbered line or in a line without number in the
Programming Mode, or Error 40, “Run statement in program” will occur.

	 A RUN statement executed in the Intermec Direct Protocol will make the
printer switch to the Immediate Mode, that is it has the same effect as an
INPUT OFF statement.

Examples	 Order the execution of a program this way:

	 RUN
	 Executes the current program from its first line.
	
	 RUN 40
	 Executes the current program, starting from line 40.
	
	 RUN "TEST"
	 Executes the program “TEST.PRG" from its first line.
	
	 RUN "TEST.PRG"
	 Executes the program “TEST.PRG" from its first line.
	 	
	 RUN "/rom/FILELIST.PRG"
	 Executes the program “FILELIST.PRG", which is stored in the read-only

memory, from its first line.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	235

Chapter 2—Program Instructions

SAVE

Purpose	 Statement for saving a file in the printer’s memory or optionally in a
memory card.

Syntax	 SAVE<scon>[,P|L]

<scon>	 is the name of the file, optionally starting with a reference to a
directory (see DEVICES).

	 Allowed input:	 Max. 30 characters incl. extension.
	 	 	 Max. 26 characters excl. extension
P	 optionally protects the file.
L	 optionally saves the file without line numbers.

Remarks	 When a file is SAVEd, it must be given a designation consisting of max. 30
characters including extension. By default, the program will automatically
append the name with the extension .PRG and convert all lowercase cha-
racters to uppercase. The name must not contain any quotation marks (").
By starting the file name with a period character (.), you can avoid having
it removed at a soft formatting operation, see FORMAT statement. Such a
file will also be listed differently, see FILES statement.

	 Files can only be SAVEd in the printer’s permanent memory ("/c"), the
printer’s temporary memory ("tmp:"), or in an optional CompactFlash
memory card ("card1:"). If a file with the selected name already exists in
the selected directory, that file will be deleted and replaced by the new file
without any warning. You can continue to work with a file after saving it,
until a NEW, LOAD, KILL, or REBOOT instruction is issued.

	 A protected file (SAVE <filename>,P) is encrypted at saving and cannot be
LISTed after being LOADed. Program lines cannot be removed, changed,
or added. Once a file has been protected, it cannot be deprotected again.
Therefore, it is advisable to save an unprotected copy, should a program-
ming error be detected later on. If you are going to use an electronic key to
prevent unautorized access to a file, you should protect it.

	 A SAVEd program can be MERGEd with the program currently residing
in the printer’s working memory. To avoid line numbers automatically
assigned to the program from interfering with the line numbers in the cur-
rent program, you can choose to SAVE the program without line numbers
(SAVE <filename>,L). See MERGE instruction.

Examples	 SAVE "Label14"

	 saves the file as “LABEL 14.PRG" in current directory.

	 SAVE "/c/Label14",P
	 saves and protects the file "LABEL14.PRG" in the permanent memory.

	 SAVE "card1:Label14",L
	 saves "LABEL14.PRG" without line numbers on a CompactFlash card.

236	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

SET FAULTY DOT

Purpose	 Statement for marking one or several dots on the printhead as faulty, or
marking all faulty dots as correct.

Syntax	 SET↔FAULTY↔DOT<nexp
1
>[,<nexp

n
>...]

<nexp
1
>	 is the number of the dot to be marked as faulty. Successive execu-

tions add more faulty dots.
<nexp

1
> = -1	 marks all dots as correct (default).

Remarks	 This statement is closely related to the HEAD function and the
BARADJUST statement. You can check the printhead for possible faulty
dots by means of the HEAD function and mark them as faulty, using the
SET FAULTY DOT statement. Using the BARADJUST statement, you
can allow the firmware to automatically reposition horizontal bar codes
sideways so as to place the faulty dots between the bars, where no harm to
the readability will be done.

	 This command will work on the EasyCoder PD41, yet the HEAD
command cannot be used to identify faulty dots.

	 Once a number a dot has been marked faulty by a SET FAULTY DOT
statement, it will remain so until all dots are marked as correct by a SET
FAULTY DOT -1 statement.

	 Note that the HEAD function makes it possible to mark all faulty dots
using a single instruction instead of specifying each faulty dot in a SET
FAULTY DOT.

Example	 This example illustrates how a bar code is repositioned by means of
BARADJUST when a number of dots are marked as faulty by a SET
FAULTY DOTS statement. Type RUN and send various numbers of faulty
dots from the host a few times and see how the bar code moves sideways
across the label.

	 10	 INPUT "No. of faulty dots"; A%
	 20	 FOR B% = 1 TO A%
	 30	 C% = C% + 1
	 40	 SET FAULTY DOT C%
	 50	 NEXT
	 60	 D% = A%+2
	 70	 BARADJUST D%, D%
	 80	 PRPOS 0, 30
	 90	 BARTYPE "CODE39"
	 100	 PRBAR "ABC"
	 110	 SET FAULTY DOT -1
	 120	 PRINTFEED
	 RUN

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	23 7

Chapter 2—Program Instructions

SETASSOC

Purpose	 Statement for setting a value for a tuple in a string association.

Syntax	 SETASSOC <sexp
1
>, <sexp

2
>, <sexp

3
>

<sexp
1
> 	 is the name of the association (case-sensitive).

<sexp
2
> 	 is the name of the tuple

<sexp
3
> 	 is the value of the tuple.

Remarks	 An association is an array of tuples, where each tuple consists of a name
and a value.

Example	 This example shows how a string, including three string names associ-
ated with three start values, will be defined and one of them (time) will be
changed:

	 10	 QUERYSTRING$="time=UNKNOWN&label=321&desc=D
EF"

	 20	 MAKEASSOC "QARRAY",QUERYSTRING$,"HTTP"
	 30	 QTIME$=GETASSOC$("QARRAY","time")
	 40	 QLABELS%=VAL(GETASSOC$("QARRAY","label"))
	 50 	 QDESC$=GETASSOC$("QARRAY","desc")
	 60 	 PRINT"time=";QTIME$,"LABEL=";QLABELS%,

"DESCRIPTION=";QDESC$
	 70 	 SETASSOC "QARRAY","time",time$
	 80 	 PRINT "time=";GETASSOC$("QARRAY","time")
	 RUN

yields:

	 time=UNKNOWN	 LABEL=321	DESCRIPTION=DEF
	 time=153355

238	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

SETPFSVAR

Purpose	 Statement for registering variable to be saved at power failure.

Syntax	 SETPFSVAR<sexp>[,<nexp>]

<sexp>	 is the name of a numeric or string variable (uppercase characters
only).

<nexp>	 is the size in bytes of a string variable (max. 230).

Remarks	 When a program is loaded, it is copied to and executed in the printer’s
temporary memory ("tmp:"). Should an unexpected power failure occur,
the printer tries to save as much data as possible in the short time available
before all power is lost. To minimize the risk of lose important variable
values at a power failure, you can register numeric and string variables to
be saved. There is 2176 bytes (incl. overhead) available for this purpose.

		 However, should the power failure occur while the printer is printing, there
will not be any power left to save the current variables.

	 When you register a string variable, you must also specify its size in bytes.

	 The variable name is limited to a length of twenty characters.

	 Note: The EasyCoder PD41 lacks power-fail signal, and thus it cannot save
variables at unexpected power failures.

	 Related instructions are GETPFSVAR, DELETEPFSVAR, and
LISTPFSVAR.

Examples	 Example with string variable:
	 100	 IF QA$="" THEN QA$="Hello":QA%=LEN(QA$)
	 110	 SETPFSVAR "QA$",QA%
	
	 Example with numeric variable:
	 200	 SETPFSVAR"QCPS%"	

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	239

Chapter 2—Program Instructions

SETSTDIO

Purpose	 Statement for selecting standard IN and OUT communication channel.

Syntax	 SETSTDIO<nexp
1
>[,<nexp

2
>]

<nexp
1
>	 is the desired input/output channel:

	 100 = autohunting enabled (default)
	 0 = "console:"
	 1 = "uart1:"	 	
	 2 = "uart2:"
	 3 = "uart3:"	 	
	 4 = "centronics:"
	 5 = "net1:"
	 6 = "usb1:"
	 7 = "uart4:"
	 8 = "uart5"
<nexp

2
>	 optionally specifies an output channel other than the input chan-

nel:
	 0 = "console:"
	 1 = "uart1:"	 	
	 2 = "uart2:"
	 3 = "uart3:"
	 5 = "net1:"
	 6 = "usb1:"
	 7 = "uart4:"
	 8 = "uart5"	 	
	

Remarks	 The printer is controlled from its host via a communication channel. By
default, autohunting is selected. Autohunting means that all available
channels are continuously scanned for input. When data is received on
a channel, it is regarded as standard input/output channel. If no data is
received on the present standard input channel within a 2 second timeout
period, the firmware scans all other existing channels (except "console:")
looking for input data. The channel where input data is first found will
now be appointed the new stdin/stdout channel. The same procedure is
repeated infinitely as long as autohunting is enabled.

	 There are some restrictions that apply to autohunting:

	 -	 If "centronics:" is used as input channel and autohunting is enabled,
"uart1:" is selected stdout channel.

	 -	 Autohunting does not work with "console:".
	 -	 Autohunting does not work with COMSET, INKEY$, INPUT$, or

LINE INPUT.
	 -	 When using autohunting in the programming mode, the detected port

stays as STDIO until the program breaks.
	 It is also possible to specify a certain channel as permanent stdin and/or

stdout channel. If only one channel is specified, it will serve as both stan-
dard input (stdin) and standard output (stdout) channel. Alternatively,
different channels can be selected for stdin and stdout.

240	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

SETSTDIO, cont.	
	 For programming, it is recommended to use "uart1:" both as stdin and

stdout channel. If another channel is selected, use the same serial channel
for both input and output. The "centronics:" channel can only be used for
input to the printer and is thus not suited for programming.

Example	 This example selects the "uart2:" communication channel as the standard
input and output channel:

	 10	 SETSTDIO 2
	
	

	 This example enables autohunting for input and "uart1:" for output:
	 10	 SETSTDIO 100,1
	
	

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	24 1

Chapter 2—Program Instructions

SETUP

Purpose	 Statement for entering the printer’s Setup Mode or changing the setup.

Syntax	 SETUP
	
If no parameter is specified, the printer enters the Setup Mode (no effect on EasyCoder PD41).

	 SETUP <sexp>

<sexp>	 is the name of an existing setup file that will be used to change
the printer’s entire current setup, or a string used to change a
single parameter in the printer’s current setup.

	 SETUP <sexp
1
>,<sexp

2
>

<sexp
1
>	 is the name of a setup section (EasyLAN User’s Guide).

<sexp
2
>	 is the name of a file that will be used to change the specified

setup section.
	

	 SETUP <sexp
1
>,<sexp

2
>,<sexp

3
>

<sexp
1
>	 is the name of a setup section (see EasyLAN User’s Guide). Not

implemented for "prt".
<sexp

2
 >	 is the name of the setup object (see EasyLAN User’s Guide).

<sexp
3
>	 specifies the new value (see EasyLAN User’s Guide).	

	 	
Remarks	 The SETUP statement can be used for several purposes as illustrated above.

Related instructions are SETUP GET and SETUP WRITE.

	 By default, the setup parameters are saved as a file in the printer’s perma-
nent memory. However, using SYSVAR (35) t is possible to decide that
any new change will not be saved (volatile). See SYSVAR.

	 The methods of manual setup via the printer’s built-in keyboard are descri-
bed in the User’s Guides manuals for the various printer models. You can
also use setup files and setup strings to change the setup as a part of the
program execution, or to change the setup remotely from the host.

	 A setup file may contain new values for one or several setup parameters,
whereas a setup string only can change a single parameter. Another dif-
ference is that, while the creation of setup files requires several operations,
setup strings can be created in a single operation which makes them suita-
ble for use with the Intermec Direct protocol.

	 When a SETUP<sexp> statement is encountered, the setup will be chan-
ged accordingly, then the program execution will be resumed. Note that
some printing instructions (ALIGN, DIR, FONT, and PRPOS) may be
changed when test labels are printed.

	

242	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

SETUP, cont.
	 Setup files or setup strings have a special syntax for each parameter that

must be followed exactly. Variable numeric input data are indicated by “n”
– “nnnnn”, string data by "sssss", alternative data are indicated by bold
characters separated by vertical bars (|). Compulsory space characters are
indicated by double-headed arrows (↔). Do not type these. Note that some
parameters listed below may only apply to a certain printer model or an
optional device.

"SER-COM,UART1|UART2|UART3|UART4|UART5,BAUDRATE,300|600|1200|2400|4800|9600|19200|38400|57600|115200"
"SER-COM,UART1|UART2|UART3|UART4|UART5,CHAR↔LENGTH,7|8"
"SER-COM,UART1|UART2|UART3|UART4|UART5,PARITY,NONE|EVEN|ODD|MARK|SPACE"
"SER-COM,UART1|UART2|UART3|UART4|UART5,STOPBITS,1|2"
"SER-COM,UART1|UART2|UART3|UART4|UART5,FLOWCONTROL,RTS/CTS,ENABLE|DISABLE"	
"SER-COM,UART1|UART2|UART3|UART4|UART5,FLOWCONTROL,ENQ/ACK,ENABLE|DISABLE"
"SER-COM,UART1|UART2|UART3|UART4|UART5,FLOWCONTROL,XON/XOFF,DATA↔FROM↔HOST,ENABLE|DISABLE"
"SER-COM,UART1|UART2|UART3|UART4|UART5,FLOWCONTROL,XON/XOFF,DATA↔TO↔HOST,ENABLE|DISABLE"
"SER-COM,UART2,PROT↔ADDR,ENABLE|DISABLE" 	 	
"SER-COM,UART1|UART2|UART3|UART4|UART5,NEW↔LINE,CR/LF|LF|CR"
"SER-COM,UART1|UART2|UART3|UART4|UART5,REC↔BUF,nnnnn"
"SER-COM,UART1|UART2|UART3|UART4|UART5,TRANS↔BUF,nnnnn"
"SER-COM,UART2,PROTOCOL↔ADDR.,nn"	
"NET-COM,NET1,NEW↔LINE,CR/LF|LF|CR"
"NETWORK,IP↔SELECTION,DHCP+BOOTP|MANUAL|DHCP|BOOTP"	
"NETWORK,IP↔ADDRESS,nnn.nnn.nnn.nnn"	
"NETWORK,NETMASK,nnn.nnn.n.n"	
"NETWORK,DEFAULT↔ROUTER,nnn.nnn.nnn.nnn"
"NETWORK,NAME↔SERVER,nnn.nnn.n.n"	 	
"RFID, MODE,ENABLE|DIABLE"
"RFID,TAGADJUST,nnnn"	 (negative value allowed)
"RFID,RETRIES,nn"	 	
"RFID,VOIDTEXT,sssss"
"FEEDADJ,STARTADJ,nnnn"	 (negative value allowed)
"FEEDADJ,STOPADJ,nnnn"	 	 (negative value allowed)
"MEDIA,MEDIA↔SIZE,XSTART,nnnn"
"MEDIA,MEDIA↔SIZE,WIDTH,nnnn"
"MEDIA,MEDIA↔SIZE,LENGTH,nnnnn"
"MEDIA,MEDIA↔TYPE,LABEL↔(w↔GAPS)|TICKET↔(w↔MARK)|TICKET↔(w↔GAPS)|FIX↔LENGTH↔STRIP|VAR↔LENGTH STRIP"
"MEDIA,PAPER↔TYPE,TRANSFER|DIRECT↔THERMAL"
"MEDIA,PAPER↔TYPE,DIRECT↔THERMAL,LABEL↔CONSTANT,nnn"
"MEDIA,PAPER↔TYPE,DIRECT↔THERMAL,LABEL↔FACTOR,nnn"
"MEDIA,PAPER↔TYPE,TRANSFER,RIBBON↔CONSTANT,nnn"
"MEDIA,PAPER↔TYPE,TRANSFER,RIBBON↔FACTOR,nnn"
"MEDIA,PAPER↔TYPE,TRANSFER,LABEL↔OFFSET,nnn"
"MEDIA,PAPER↔TYPE,TRANSFER,LOW↔DIAMETER,nnn"
"MEDIA,CONTRAST,-10%|-8%|-6%|-4%|-2%|+0%|+2%|+4%|+6%|+8%|+10%"
"MEDIA,TESTFEED↔MODE,FAST|SLOW"
"MEDIA,LEN(SLOW MODE),nn"
"MEDIA,PAPER,LOW↔DIAMETER,nnn"	
"PRINT↔DEFS,PRINT↔SPEED,nnn"
"PRINT↔DEFS,LTS↔VALUE,nn"

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	243

Chapter 2—Program Instructions

SETUP, cont.

Examples 	 This example enables a key for branching to the Setup Mode:
	 10	 ON KEY(18) GOSUB 1000
	 20	 KEY(18)ON
	
	 1000	SETUP
	 1010	RETURN
	
	 This example shows how a new file is OPENed for output and each

parameter in the setup is changed by means of PRINT# statements. Then
the file is CLOSEd. Any lines, except the first and the last line in the
example, may be omitted. Finally, the printer’s setup is changed using this
file.

10	 OPEN "/tmp/SETUP.SYS" FOR OUTPUT AS #1
20	 PRINT#1,"SER-COM,UART1,BAUDRATE,19200" 		
30	 PRINT#1,"SER-COM,UART1,CHAR LENGTH,7"
40	 PRINT#1,"SER-COM,UART1,PARITY,EVEN"
50	 PRINT#1,"SER-COM,UART1,STOPBITS,2"
60	 PRINT#1,"SER-COM,UART1,FLOWCONTROL,RTS/CTS,ENABLE"		
70	 PRINT#1,"SER-COM,UART1,FLOWCONTROL,ENQ/ACK,ENABLE"
80	 PRINT#1,"SER-COM,UART1,FLOWCONTROL,XON/XOFF,DATA FROM 			
	 HOST,ENABLE"
90	 PRINT#1,"SER-COM,UART1,FLOWCONTROL,XON/XOFF,DATA TO 			
	 HOST,ENABLE"
100	 PRINT#1,"SER-COM,UART1,NEW LINE,CR"
110	 PRINT#1,"SER-COM,UART1,REC BUF,800"
120	 PRINT#1,"SER-COM,UART1,TRANS BUF,800"
130	 PRINT#1,"FEEDADJ,STARTADJ,-135"	
140	 PRINT#1,"FEEDADJ,STOPADJ,-36"	
150	 PRINT#1,"MEDIA,MEDIA SIZE,XSTART,50"
160	 PRINT#1,"MEDIA,MEDIA SIZE,WIDTH,1000"
170	 PRINT#1,"MEDIA,MEDIA SIZE,LENGTH,2000"
180	 PRINT#1,"MEDIA,MEDIA TYPE,LABEL (w GAPS)"
190	 PRINT#1,"MEDIA,PAPER TYPE,TRANSFER"
200	 PRINT#1,"MEDIA,PAPER TYPE,TRANSFER,RIBBON CONSTANT,110"
210	 PRINT#1,"MEDIA,PAPER TYPE,TRANSFER,RIBBON FACTOR,25"
220	 PRINT#1,"MEDIA,PAPER TYPE,TRANSFER,LABEL OFFSET,00"
230	 PRINT#1,"MEDIA,PAPER TYPE,TRANSFER,LOW DIAMETER,30"
230	 PRINT#1,"MEDIA,CONTRAST,-4%"	
240	 PRINT#1,"PRINT DEFS,PRINT SPEED,200"	
250	 CLOSE
260	 SETUP "/tmp/SETUP.SYS"

	 This example shows how a setup parameter is changed in the Immediate
Mode or the Intermec Direct Protocol, using a setup string.

	 SETUP"MEDIA,MEDIA TYPE,VAR LENGTH STRIP" ↵
	
	 This method can also be used in the Programming Mode, for example:
	 10 SETUP"MEDIA,MEDIA TYPE,VAR LENGTH STRIP"

244	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

SETUP GET

Purpose	 Statement for getting the current setting for a single setup object.

Syntax	 SETUP GET<sexp
1
>,<sexp

2
>,<sexp

3
>

<sexp
1
>	 specifies the setup section.

<sexp
2
>	 specifies the setup object.

<sexp
3
>	 stores the result.

Remarks	 Refer to Intermec EasyLAN User’s Guide for a list of setup sections and
objects.

Examples	 SETUP GET "lan1","RTEL_PR1",A$
	 SETUP GET "prt","MEDIA,MEDIA TYPE", B$
	 SETUP GET "alerts","lts",C$

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	245

Chapter 2—Program Instructions

SETUP KEY

Purpose	 Statement for enabling or disabling the access to the SETUP mode from
the printer's console.

Syntax	 SETUP KEY ON|OFF

ON	 enables entering Setup mode trough console.
OFF	 disables entering Setup mode through console.

Remarks	 It may be desired to prevent operators or non-authorized personnel to
change printer settings from the printer's console. SETUP KEY OFF
allows the administrator to disable the SETUP key on the printer's
console, effectively disallowing changing of settings from the console.
SETUP KEY ON reenables the SETUP key and access to the setup mode.
The setup mode can always be entered via a SETUP command.

246	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

SETUP WRITE

Purpose	 Statement for creating a file containing the printer’s current setup or for
returning it on a specified communication channel.

Syntax	 SETUP WRITE[<sexp
1
>] ,<sexp

2
>

<sexp
1
>	 is an optional parameter specifying the setup section.

<sexp
2
>	 is the name of a file or device to which the printer's current setup

is to be written.

Remarks	 The SETUP WRITE statement is useful when you want to return to the
printer’s current setup at a later moment. You can make a copy of the
current setup using SETUP WRITE<filename>, change the setup using
a SETUP <filename> statement, and, when so is required, return to the
original setup by issuing a new SETUP<filename> statement containing
the name of the file created by the SETUP WRITE<filename> statement.

	 It is strongly recommended to create the file in the printer’s temporary
memory ("tmp:"), for example SETUP WRITE "tmp:OLDSETUP".
Once it has been created in "tmp:", it can be copied to the printer’s perma-
nent memory "/c" so it will not be lost at power off.

	 Another application of SETUP WRITE is transmitting the printer’s
current setup on a serial communication channel, for example SETUP
WRITE "uart1:".

	 Setup sections are used in connection with EasyLAN. Refer to the
EasyLAN User’s Guide for a list of setup sections.

	 SETUP WRITE returns the printer’s setup in the following order (the
example shows a standard EasyCoder PF4i printer):

	 SETUP WRITE "uart1:"	
	 yields:
	 SER-COM,UART1,BAUDRATE,9600 		
	 SER-COM,UART1,CHAR LENGTH,8
	 SER-COM,UART1,PARITY,NONE
	 SER-COM,UART1,STOPBITS,1
	 SER-COM,UART1,FLOWCONTROL,RTS/CTS,DISABLE		
	 SER-COM,UART1,FLOWCONTROL,ENQ/ACK,DISABLE
	 SER-COM,UART1,FLOWCONTROL,XON/XOFF,DATA FROM HOST,DISABLE
	 SER-COM,UART1,FLOWCONTROL,XON/XOFF,DATA TO HOST,DISABLE
	 SER-COM,UART1,NEW LINE,CR/LF
	 SER-COM,UART1,REC BUF,1024
	 SER-COM,UART1,TRANS BUF,1024
	 FEEDADJ,STARTADJ,0	
	 FEEDADJ,STOPADJ,0	
	 MEDIA,MEDIA SIZE,XSTART,24
	 MEDIA,MEDIA SIZE,WIDTH,832
	 MEDIA,MEDIA SIZE,LENGTH,1200
	 MEDIA,MEDIA TYPE,LABEL (w GAPS)

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	24 7

Chapter 2—Program Instructions

SETUP WRITE, cont.	
	 MEDIA,PAPER TYPE,TRANSFER
	 MEDIA,PAPER TYPE,DIRECT THERMAL,LABEL CONSTANT,85
	 MEDIA,PAPER TYPE,DIRECT THERMAL,LABEL FACTOR,40
	 MEDIA,PAPER TYPE,TRANSFER,RIBBON CONSTANT,95
	 MEDIA,PAPER TYPE,TRANSFER,RIBBON FACTOR,25
	 MEDIA,PAPER TYPE,TRANSFER,LABEL OFFSET,0
	 MEDIA,PAPER TYPE,TRANSFER,RIBBON SENSOR,14
	 MEDIA,PAPER TYPE,TRANSFER,LOW DIAMETER,36
	 MEDIA,CONTRAST,+0%
	 #MEDIA,TESTFEED,26 28 0 10					
	 MEDIA,TESFEED MODE,FAST	
	 MEDIA,LEN (SLOW MODE),0
	 PRINT DEFS,HEAD RESIST, 702			
	 PRINT DEFS,PRINT SPEED,100

	 Note that when a SETUP WRITE file is used to change the setup, the
printer’s present TESTFEED adjustment is not affected.

Examples	 In this example, the current setup is saved in the printer’s temporary
memory under the name "SETUP1.SYS". Then the start adjustment is
changed to “200” by the creation of a new setup file named "SETUP2.
SYS.” The setup file is finally used to change the printer’s setup.

	 10	 SETUP WRITE "tmp:SETUP1.SYS"
	 20	 OPEN "tmp:SETUP2.SYS" FOR OUTPUT AS #1
	 30	 PRINT#1,"FEEDADJ,STARTADJ,200"
	 40	 CLOSE
	 50	 SETUP "tmp:SETUP2.SYS"

	 In this example, the setup section "prt" is returned on the serial channel
"uart1:":

	 SETUP WRITE "prt","uart1:"

248	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

SGN

Purpose	 Function returning the sign (positive, zero, or negative) of a specified
numeric expression.

Syntax	 SGN(<nexp>)

<nexp>	 is the numeric expression from which the sign will be returned.

Remarks	 The sign will be returned in this form:
	 SGN(<nexp>) = -1	 	 (negative)
	 SGN(<nexp>) = 0	 	 (zero)
	 SGN(<nexp>) = 1	 	 (positive)

Examples	 Positive numeric expression:
	 10	 A%=(5+5)
	 20	 PRINT SGN(A%)
	 RUN
									 yields:
	 1

	 Negative numeric expression:
	 10	 A%=(5-10)
	 20	 PRINT SGN(A%)
	 RUN
									 yields:
	 -1

	 Zero numeric expression:
	 10	 A%=(5-5)
	 20	 PRINT SGN(A%)
	 RUN
									 yields:
	 0

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	249

Chapter 2—Program Instructions

SORT

Purpose	 Statement for sorting a one-dimensional array.

Syntax	 SORT<<nvar>|<svar>>,<nexp
1
>,<nexp

2
>,<nexp

3
>

<<nvar>|<svar>>	 is the array to be sorted.
<nexp

1
>	 is the number of the first element.

<nexp
2
>	 is the number of the last element.

<nexp
3
>	 > 0: Ascending sorting

	 < 0: Descending sorting
	 = 0: Illegal value
	 In a string array, the value specifies the position according to

which the array will be sorted.

Remarks	 A numeric or string array can be sorted, in its entity or within a specified
range of elements in ASCII value order.

	 The 4:th parameter (<nexp3>) is used differently for numeric and string
arrays. The sign always specifies ascending or descending order. For nume-
ric arrays, the value is of no consequence, but for string arrays, the value
specifies for which character position the elements will be sorted. <nexp3>
= 0 results in Error 41, “Parameter out of range.”

Example	 One numeric and one string array are sorted in descending order. The
string array is sorted in ascending according to the third character position
in each string:

	 10	 ARRAY% (0) = 1001
	 20	 ARRAY% (1) = 1002
	 30	 ARRAY% (2) = 1003
	 40	 ARRAY% (3) = 1004
	 50	 ARRAY$ (0) = "ALPHA"
	 60	 ARRAY$ (1) = "BETA"
	 70	 ARRAY$ (2) = "GAMMA"
	 80	 ARRAY$ (3) = "DELTA"
	 90	 SORT ARRAY%,0,3,-1
	 100	 SORT ARRAY$,0,3,3
	 110	 FOR I% = 0 TO 3
	 120	 PRINT ARRAY% (I%), ARRAY$ (I%)
	 130 	NEXT
	 RUN
									 yields:
	 1004	DELTA
	 1003	GAMMA
	 1002	ALPHA
	 1001	BETA

250	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

SOUND

Purpose	 Statement for making the printer’s beeper produce a sound specified in
regard of frequency and duration.

Syntax	 SOUND<nexp
1
>,<nexp

2
>

<nexp
1
>	 is the frequency of the sound in Hz.

<nexp
2
>	 is the duration of the sound in periods of 0.020 sec. each (max.

15,0000 = 5 minutes).

Remarks	 This statement allows you include significant sound signals in your pro-
grams, for example to notify the operator that various errors have occurred.
A sound with approximately the specified frequency will be produced for
the specified duration. If the program encounters a new SOUND state-
ment, it will not be executed until the previous sound has been on for the
specified duration. No sound will come from the EasyCoder PD41, yet a
time delay equal to the duration specified will occur.

	 The SOUND statement even allows you to make melodies, although the
musical quality may be somewhat limited. The following table illustrates
the frequencies corresponding to the notes in the musical scale. To create a
period of silence, set the frequency to value higher than 9,999 Hz.

Key	 Hz	 Key	 Hz	 Key 	 Hz	 Key	 Hz

C	 131	 C	 262	 C	 523	 C	 1047
C#	 138	 C#	 277	 C#	 554	 C#	 1109
D	 147	 D	 294	 D	 587	 D	 1175
D#	 155	 D#	 311	 D#	 622	 D#	 1245
E	 165	 E	 330	 E	 659	 E	 1319
F	 175	 F	 349	 F	 699	 F	 1397
F#	 185	 F#	 370	 F#	 740	 F#	 1480
G	 196	 G	 392	 G	 784	 G	 1568
G#	 208	 G#	 415	 G#	 831	 G#	 1662
A	 220	 A	 440	 A	 880	 A	 1760
A#	 233	 A#	 466	 A#	 933	 A#	 1865
B	 247	 B	 494	 B	 988	 B	 1976

(small octave)	 (one-line octave)	 (two-line octave)	 (three-line octave)

Example	 The tune “Colonel Boogie" starts like this:
	 10	 SOUND 392,10
	 20	 SOUND 330,15
	 30	 SOUND 330,10
	 40	 SOUND 349,10
	 50	 SOUND 392,10
	 60	 SOUND 659,18
	 70	 SOUND 659,18
	 80	 SOUND 523,25

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	25 1

Chapter 2—Program Instructions

SPACE$

Purpose	 Function returning a specified number of space characters.

Syntax	 SPACE$(<nexp>)

<nexp>	 is the number of space characters to be returned.

Remarks	 This function is useful for more complicated spacing, for example in tables.

Examples	 Printing of two left-justified columns on the screen:
	 10	 FOR Q%=1 TO 6
	 20	 VERBOFF:INPUT "",A$
	 30	 VERBON:PRINT A$;
	 40	 VERBOFF:INPUT "",B$
	 50	 VERBON
	 60	 C$=SPACE$(25-LEN(A$))
	 70	 PRINT C$+B$
	 80	 NEXT Q%
	 90	 END
	 RUN

	 Enter:
	 January ↵
	 February ↵
	 March ↵
	 April ↵
	 May ↵
	 June ↵
	 July ↵
	 August ↵
	 September ↵
	 October ↵
	 November ↵
	 December ↵
		 yields:
	 January February
	 March April
	 May June
	 July August
	 September October
	 November December

252	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

SPLIT

Purpose	 Function splitting a string into an array according to the position of a
specified separator character and returning the number of elements in the
array.

Syntax	 SPLIT(<sexp
1
>,<sexp

2
>,<nexp>)

<sexp
1
>	 is the string to be split.

<sexp
2
>	 is the string array in which the parts of the split string should be

put.
<nexp>	 specifies the ASCII value for the separator.

Remarks	 The string is divided by a specified separating character which may found
an infinite number of times in the string. Each part of the string will
become an element in the string array, but the separator character itself will
not be included in the array.

	 Should the string be split into more than four elements, Error 57, “Sub-
script out of range” will occur. To avoid this error, issue a DIM statement
to create a larger array before the string is split.

Example	 In this example a string is divided into five parts by the separator character
(ASCII 35 decimal). The result will be an array of five elements num-
bered 0-4 as specified by a DIM statement. Finally, the number of ele-
ments is also printed on the screen.

	 10	 A$="ONE#TWO#THREE#FOUR#FIVE"
	 20	 B$="ARRAY$"
	 30	 DIM ARRAY$(5)
	 40	 C%=SPLIT(A$,B$,35)
	 50	 PRINT ARRAY$(0)
	 60	 PRINT ARRAY$(1)
	 70	 PRINT ARRAY$(2)
	 80	 PRINT ARRAY$(3)
	 90	 PRINT ARRAY$(4)
	 100	 PRINT C%
	 RUN	
									 yields:
	 ONE
	 TWO
	 THREE
	 FOUR
	 FIVE
	 5

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	253

Chapter 2—Program Instructions

STOP

Purpose	 Statement for terminating execution of a program and to return to imme-
diate mode.

Syntax	 STOP

Remarks	 When a STOP statement is encountered, the following message is returned
to the Debug STDOUT channel (default is "uart1:"):

	 Break in line <line number>

	 You can resume execution where it was stopped by means of a CONT
statement or at a specified program line using a GOTO statement in the
immediate mode.

	 STOP is usually used in conjunction with CONT for debugging. When
execution is stopped, you can examine or change the values of variables
using direct mode statements. You may then use CONT to resume execu-
tion. CONT is invalid if the program has been editied during the break.

	 Related instructions are CONT and DBSTDIO.
	
Example	 10	 A%=100
	 20	 B%=50
	 30	 IF A%=B% THEN GOTO QQQ ELSE STOP
	 40	 GOTO 30
	 50	 QQQ:PRINT "Equal"
	
	 Ok
	 RUN
	 Break in line 30

	 Ok	
	 PRINT A%
	 100

	 Ok
	 PRINT B%
	 50

	 Ok
	 B%=100

	 OK
	 CONT
	 Equal

	 Ok

254	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

STORE IMAGE

Purpose	 Statement for setting up parameters for storing an image in the printer’s
memory.

Syntax	 STORE↔IMAGE [RLL] [KILL]<sexp
1
>,<nexp

1
>,<nexp

2
>,[<nexp

3
>],<sexp

2
>

[RLL]	 optionally indicates RLL compression.
[KILL]	 optionally specifies that the image will be erased from the tem-

porary memory at startup (recommended).
<sexp

1
>	 is the name of the image (max 30 char. incl. extension).

<nexp
1
>	 is the width of the image in bits (=dots).

<nexp
2
>	 is the height of the image in bits (=dots).

[<nexp
3
>]	 is the size of the images in bytes (RLL only).

<sexp
2
>	 is the name of the protocol: 	 "INTELHEX"

	 	 	 	 	 "UBI00"
	 	 	 	 	 "UBI01"
	 	 	 	 	 "UBI02"
	 	 	 	 	 "UBI03"	
	 	 	 	 	 "UBI10"

	
Remarks	 The name of the protocol must be entered in one sequence (for example

"INTELHEX"). Upper- or lowercase letter can be used at will. Refer to the
Chapter 3, “Image Transfer” for information on protocols.

	 STORE IMAGE RLL is used when the image to be received is compressed
into RLL format. In this case the size of the image must be included in the
list of parameters (<nexp3>).

	 STORE IMAGE KILL implies that the image will be stored in the
printer’s temporary memory, which is erased at power off or REBOOT. It
is strongly recommended to use this option to improve the performance.
If you need to store the image permanently, copy it from the temporary
memory ("tmp:") to the permanent memory ("/c") after the download is
completed.

	 A STORE IMAGE statement must precede any STORE INPUT state-
ment.

Example	 This example shows how an Intelhex file is received via the standard input
channel and stored in the printer’s temporary memory:

	 10	 STORE OFF
	 20	 INPUT "Name:", N$
	 30	 INPUT "Width:", W%
	 40	 INPUT "Height:", H%
	 50	 INPUT "Protocol:", P$
	 60	 STORE IMAGE N$, W%, H%, P$
	 70	 INPUT "", F$
	 80	 STORE F$
	 90	 IF MID$(F$,8,2)<>"01" THEN GOTO 70
	 100	 STORE OFF

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	255

Chapter 2—Program Instructions

STORE INPUT

Purpose	 Statement for receiving and storing protocol frames of image data in the
printer’s memory.

Syntax	 STORE↔INPUT<nexp
1
>[,<nexp

2
>]

<nexp
1
>	 is the timeout in ticks (0.01 sec.) before next character is received.

<nexp
2
>	 is, optionally, the number assigned to a device when it was

OPENed for INPUT. Default: Standard IN channel.

Remarks	 The STORE INPUT statement receives and stores a protocol frame of
image data as specified by preceding INPUT and STORE IMAGE state-
ments. It also performs an end frame check. (STORE INPUT substitutes
the old STORE statement (not documented in this manual.)

	 STORE INPUT works differently for various types of protocol:
	 INTELHEX	 Receives and stores frames until timeout or end frame

is received.
	 UBI00-03	 Receives and stores frames until timeout or required

number of bytes are received.
	 UBI10 	 Receives and stores frames until timeout or end frame

is received.

Examples	 This example shows how an Intelhex file is stored using the STORE
IMAGE statement. The number of input parameters may vary depending
on type of protocol, see STORE INPUT statement.

	 10	 STORE OFF
	 20	 INPUT "Name:", N$
	 30	 INPUT "Width:", W%
	 40	 INPUT "Height:", H%
	 50	 INPUT "Protocol:", P$
	 60	 STORE IMAGE N$, W%, H%, P$
	 70	 STORE INPUT 100
	 80	 STORE OFF

	 To receive the input from another channel than std IN channel, the device
must be OPENed for INPUT and a reference be included in the STORE
INPUT statement.

	 10	 STORE OFF
	 20	 OPEN "uart2:" FOR INPUT AS #9
	 30	 INPUT "Name:", N$
	 40	 INPUT "Width:", W%
	 50	 INPUT "Height:", H%
	 60	 INPUT "Protocol:", P$
	 70	 STORE IMAGE N$, W%, H%, P$
	 80	 STORE INPUT 100,9
	 90	 CLOSE #9
	 100	 STORE OFF

256	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

STORE OFF

Purpose	 Statement for terminating the storing of an image and resetting the storing
parameters.

Syntax	 STORE↔OFF

Remarks	 After having stored all protocol frames of an image, the storing must be
terminated by a STORE OFF statement. Even if you want to store another
image, you must still issue a STORE OFF statement before the parameters
for the new image can be set up using a new STORE IMAGE statement.

	 It is recommended always to start an image storing procedure by issuing
a STORE OFF statement to clear the parameters of any existing STORE
IMAGE statement.

Example	 This example shows how an Intelhex file is received via the standard IN
channel and stored in the printer’s memory:

	 10	 STORE OFF
	 20	 INPUT "Name:", N$
	 30	 INPUT "Width:", W%
	 40	 INPUT "Height:", H%
	 50	 INPUT "Protocol:", P$
	 60	 STORE IMAGE N$, W%, H%, P$
	 70	 STORE INPUT 100
	 80	 STORE OFF	

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	25 7

Chapter 2—Program Instructions

STR$

Purpose	 Function returning the string representation of a numeric expression.

Syntax	 STR$(<nexp>)

<nexp>	 is the numeric expression from which the string representation
will be returned.

Remarks	 This is the complementary function for the VAL function.

Example	 In this example, the value of the numeric variable A% is converted to
string representation and assigned to the string variable A$:

	 10	 A%=123
	 20	 A$=STR$(A%)
	 30	 PRINT A%+A%
	 40	 PRINT A$+A$
	 RUN
									 yields:
	 246
	 123123

258	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

STRING$

Purpose	 Function repeatedly returning the character of a specified ASCII value, or
the first character in a specified string.

Syntax	 STRING$(<nexp
1
>,<<nexp

2
>|<sexp>>)

<nexp
1
>	 is the number of times the specified character should be repea-

ted.
<nexp

2
>	 is the ASCII decimal code of the character to be repeated.

<sexp>	 is a string expression, from which the first character will be
repeated.

Remarks	 The character to be repeated is specified either by its ASCII decimal code
according to the selected character set (see NASC), or as the first character
in a specified string expression.

Example	 In this example, both ways of using STRING$ are illustrated. The charac-
ter “*” is ASCII 42 decimal:

	 10		 A$="*INTERMEC*"
	 20		 LEADING$ = STRING$(10,42)
	 30		 TRAILING$ = STRING$(10,A$)
	 40		 PRINT LEADING$; A$; TRAILING$
	 RUN
								 yields:
	 ***********INTERMEC***********

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	259

Chapter 2—Program Instructions

SYSHEALTH

Purpose	 Variable for setting or getting the Fingerprint application’s view of the
system health and control the Intermec Ready-to-Work Indicator on the
printer’s front panel.

Syntax	 Setting the system health:	SYSHEALTH=<nexp>

<nexp>	 sets the Fingerprint application’s view of the system health and
controls the Intermec Ready-to-Work Indicator:

	 1	 Indicator off
	 2	 Indicator blink
	 3	 Indicator on (default)

	 Getting the system health:	<nvar>=SYSHEALTH

<nvar>	 returns the current system health status as shown by the
Ready‑to‑Work Indicator:�

	 1	 translates to Indicator off
	 2	 translates to Indicator blink
	 3	 translates to Indicator on

Remarks	 The readiness of the printer, individually or as a part of a solution, is indi-
cated by the blue Intermec Ready-to-Work Indicator.

If the indicator blinks or is switched off, the printer is not ready. Further
information can be obtained in the display window by pressing the <F5/i>
key (not available on the EasyCoder PD41). In case of several errors or
similar conditions occuring simultaneously, only the most significant error
is displayed. Once this error has been cleared, next remaining error is
displayed.

Provided the printer is connected to a network, all conditions that prevents
printing are reported to the Easy ADC Console. The Easy ADC Console
is a PC-based software which allows a supervisor to monitor all connected
devices that have an Intermec Ready-to-Work Indicator, including
handheld computers, access points, and printers.

The SYSHEALTH variable offers the programmer the opportunity to
add more functions to the Ready-to-Work Indicator in an application
than offered by the printer’s system (see the User’s Guide of the printer in
question). However, it does not override the standard indicator handling;
that is, the worst case is always reported regardless if it is a system error or
an application error.

260	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

SYSHEALTH, cont.

Example	 This example shows how the Ready-to-Work Indicator can be made to
show a “Connection refused” condition:	

	 10	 ON ERROR GOTO 1000
	 50	 TRANSFER NET 								

	 "ftp://wrong.server.com/file","c/myfile"
	 60	 PRINT "XXX"
	 100	 END
	 1000	IF ERR=1833 THEN SYSHEALTH=2 ELSE 			

	 SYSHEALTH=3
	 1010	RETURN

	 You can find out the health of the system this way:
	 A%=SYSHEALTH
	 PRINT A%

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	26 1

Chapter 2—Program Instructions

SYSHEALTH$

Purpose	 Function for returning the error causing the current system health status.

Syntax	 <svar>=SYSHEALTH$

<svar>	 returns the error causing the current status, for example “Head
lifted.”

Remarks	 If SYSHEALTH = 3, SYSHEALTH$ returns “Operational.”

Example	 A$=SYSHEALTH$
	 PRINT A$
	 yields for example
	 Out of paper
	

262	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

SYSVAR

Purpose	 System array for reading or setting various system variables.

Syntax	 SYSVAR(<nexp>)

<nexp>	 is the reference number of the system variable:
	 	 0-13	 Reserved, obsolete or not implemented.
	 	 14	 Read errors since power on
	 	 15	 Read errors since last SYSVAR(15)
	 	 16	 Read number of bytes received at execution of STORE INPUT
	 	 17	 Read number of frames received at execution of STORE INPUT
	 	 18	 Read or Set verbosity level
	 	 19	 Read or Set type of error message
	 	 20	 Read direct or transfer mode
	 	 21	 Read printhead density (dots/mm)
	 	 22	 Read number of printhead dots
	 	 23	 Read status of transfer ribbon sensor
	 	 24	 Read if startup has occurred since last SYSVAR(24)
	 	 25	 Obsolete
	 	 26	 Read ribbon low condition	 	
	 	 27	 Set condition for label reprinting at out-of-ribbon error
	 	 28	 Set or read media feed data erase at headlift
	 	 29	 Read DSR condition on "uart2:"
	 	 30	 Read DSR condition on "uart3:"
	 	 31	 Read last sent ACK, NAK, or CAN character in the MUSE protocol.
	 	 32	 Read odometer value
	 	 33	 Read DSR condition on "uart1:"
	 	 34	 Read or Set positioning mode for TrueType characters
	 	 35	 Setup saving (non-volatile/volatile)
	 	 36	 Print changes of program modes
	 	 37	 Set minimum gap length
	 	 38	 Obsolete
	 	 39	 Enable/disable slack compensation-Force startadjust
	 	 40	 Not implemented
	 	 41	 “Next label not found” at predefined feed length
	 	 42	 Stop media feed in the middle of label gaps
	 	 43	 Enable/disable file name conversion
	 	 44	 Enable/disable filtering of NUL characters in background 	 	

		 communication.
	 	 45	 Read printhead resolution
	 	 46	 Read status of paper low sensor
	 	 47	 Enable/disable use of startadjust-stopadjust together with 	 	

		 positive and/or negative formfeeds.
	 	 48	 Enable/disable direct commands
	 	 49	 Set temporary lower speed after negative startadjust.
	 	 50	 Set lower speed for given length after lowering printhead.
	 	 51	 Set enabled limit for function of SYSVAR(49) and (50).

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	263

Chapter 2—Program Instructions

SYSVAR, cont.

Remarks	 0-13.
	 Reserved, obsolete, or not implemented.

	 14. Errors since power up	 (Read only)
	 Reads number of errors detected since last power up.

	 15. Errors since last SYSVAR(15)	 (Read only)
	 Reads number of errors detected since last executed SYSVAR(15).

	 16. Number of bytes received	 (Read only)
	 Reads the number of bytes received after the execution of a STORE

INPUT statement. Reset by the execution of a STORE IMAGE statement.

	 17. Number of frames received	 (Read only)
	 Reads the number of frames received after the execution of a STORE

INPUT statement. Reset by the execution of a STORE IMAGE statement.

	 18. Verbosity level	 (Set or Read)
	 The verbosity level can be set or read.

	 In the Immediate and Programming Modes, all levels are enabled by
default.

	 In the Intermec Direct Protocol, all levels are disabled by default.

	 Different verbosity levels can be selected:
	 SYSVAR (18) = -1	 All levels enabled 		 (= VERBON)
	 SYSVAR (18) = 0	 No verbosity 			 (= VERBOFF)
	 SYSVAR (18) = 1	 Echo received characters
	 SYSVAR (18) = 2	 “Ok” after correct command lines
	 SYSVAR (18) = 4	 Echo input characters from comm. port
	 SYSVAR (18) = 8	 Error after failed lines

	 The levels can be combined, so for example SYSVAR(18)=3 means both
“Echo received characters” and “Ok after correct command line.”

	 The presently selected verbosity level can also be read and is returned as a
numeric value, for example by PRINT SYSVAR(18).

	 19. Type of error message	 (Set or Read)
	 Four types of error messages can be selected:
	 SYSVAR(19) = 1	 <string> in line <line>	 (default)
				 for example “Invalid font in line 10”	
	 SYSVAR(19) = 2	 Error <number> in line <line>: <string>
				 for example “Error 19 in line 10: Invalid font”
	 SYSVAR(19) = 3	 E<number>
				 for example “E19”
	 SYSVAR(19) = 4	 Error <number> in line <line>
				 for example “Error 19 in line 10”

	 The presently selected type of error message can also be read and is retur-
ned as a numeric value (1-4), for example by PRINT SYSVAR(19).

264	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

SYSVAR, cont.	
	 20. Direct or transfer mode	 (Read only)
	 SYSVAR(20) allows you to read if the printer is set up for direct thermal

printing or thermal transfer printing, which is decided by your choice of
paper type in the printer’s setup.

	 The printer returns:
	 0 = Direct thermal printing
	 1 = Thermal transfer printing

	 21. Printhead density	 (Read only)
	 SYSVAR(21) allows you to read the density of the printer’s printhead,

expressed as number of dots per millimeter.

	 22. Number of dots	 (Read only)
	 SYSVAR(22) allows you to read the number of dots in the printer’s print-

head.

	 23. Transfer ribbon sensor	 (Read only)
	 SYSVAR(23) allows you to read the status of the transfer ribbon sensor in

thermal transfer printers.

	 The printer returns:
	 0 = No ribbon detected
	 1 = Ribbon detected

	 24. Power up since last SYSVAR(24)	 (Read only)
	 This system variable is important when using the Intermec Direct Proto-

col. At power up, all data not saved as programs, files, fonts or images will
be deleted, and most instructions will be reset to their respective default
values. SYSVAR(24) allows the host to poll the printer to see if a power up
has occurred, for example because of a power failure and, if so, download
new data and new instructions.

	 The printer returns:
	 0 = No power up since last SYSVAR(24)
	 1 = Power up has occurred since last SYSVAR(24)

	 25. Obsolete	

	 26: Ribbon low condition 	 (Read only)
	 This parameter allows you to read the status of the ribbon low sensor, assu-

ming that the printer is fitted with a thermal transfer mechanism. In the
Setup Mode (Media/Paper Type/Transfer/Low Diameter), you can specify
a diameter in mm of the ribbon supply roll, when SYSVAR(26) will switch
from 0 to 1.

	 The printer returns:
	 0 = Ribbon not low
	 1 = Ribbon low

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	265

Chapter 2—Program Instructions

SYSVAR, cont.	
	 By default, the Low Diameter is set to 0, which disables the ribbon low

function. However, if the Low Diameter is set to a higher value than 0 and
SYSVAR(26) returns 1, the error condition 1083 “Ribbon Low” occurs at
every tenth PRINTFEED operation. Further actions must be taken care of
by the running Fingerprint program.

	 27: Condition for label reprinting at out-of-ribbon 	 (Set or Read)
	 When printing a batch of labels using thermal transfer printing (OPTI-

MIZE "BATCH" ON or PRINTFEED<n>), a label is deemed erroneous
and thus eligible for reprinting if the ribbon has been empty for a distance
longer than specified in dots by SYSVAR(27). Default is 0. Non-negative
integers only.

	 28. Erase media feed data at headlift	 (Set or Read)
	 The firmware keeps track of all labels (or similar) between the label stop

sensor and the dot line of the printhead. If the printhead is lifted, there
is a large risk that the media is moved, so the media feed will not work
correctly before those labels have been fed out. This parameter allows you
to decide or read whether these data should be cleared or not when the
printhead is lifted.

	 SYSVAR(28) = 0	 Media feed data are not cleared at headlift
	 SYSVAR(28) = 1	 Media feed data are cleared at headlift (default)
	 SYSVAR(28) = 2	 Media feed data are cleared at headlift and the			

			 firmware looks for the first gap or mark and adjusts 		
			 the media feed using the same 	data as before the

				 head was lifted. 	

	 29: DSR condition on "uart2:"	 (Read only)
	 This parameter allows you to read the DSR (Data Send Ready) condition

on the serial channel "uart2:".	 The printer returns:

	 0 = No
	 1 = Yes

	 30: DSR condition on "uart3:"	 (Read only)
	 This parameter allows you to read the DSR (Data Send Ready) condition

on the serial channel "uart3:".

	 The printer returns:
	 0 = No
	 1 = Yes

266	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

SYSVAR, cont.	
	 31: Last control character sent	 (Read only)
	 This parameter allows you to read the last control character sent from the

MUSE protocol (special applications).

	 The printer returns one of the following alternatives:
	 NUL
	 ACK
	 NAK
	 CAN

	 32: Odometer value	 (Read only)
	 Returns the length of media feed past the printhead (the PD41 odometer

cannot distinguish printheads, so it counts length for the platform).
Resolution: 10 meters.

	 33: DSR condition on "uart1:"	 (Read only)
	 This parameter allows you to read the DSR (Data Send Ready) condition

on the serial channel "uart1:". Not available on the EasyCoder PD41.

	 The printer returns:
	 0 = No
	 1 = Yes

	 34: TrueType character positioning mode	 (Set or Read)
	 This parameter allows you to select one of three modes for the positioning

of TrueType characters and also to read for which mode the printer is set.

	 The modes are:
	 0	 =	 Standard mode (default)
			 This mode was introduced with Intermec Fingerprint 7.2.
	 1	 =	 Compatible mode
			 This mode is compatible with Intermec Fingerprint 7.xx earlier than 		

		 version 7.2.
	 2	 =	 Adjusted mode
		 This mode was introduced with Intermec Fingerprint 7.2.

	 35: Setup Saving	 (Set or Read)
	 This parameter allows you to decide whether a change in the printer’s setup

is to be saved as a file (that is be effective after a reboot or power down) or
not be saved (volatile). You can also read for which alternative the printer is
set. Note that the SYSVAR (35) setting at the moment when the new setup
is entered decides whether it will be saved or not.

	 The alternatives are:
	 0 = Setup saved to file (non-volatile)	Default
	 1 = Setup not saved to file (volatile)

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	26 7

Chapter 2—Program Instructions

SYSVAR, cont.	
	 36: Print changes of program modes	 (Set or Read)
	 This parameter is used with the Fingerprint debugger and controls whether

changes of program modes should be printed to the Debug Standard Out
port (see DBSTDIO).

	 The options are:
	 0 = Disable printout (default)
	 1 = Enable printout	

	 37: Set Minimum Gap Length	 (Set or Read)
	 The media may have perforations or marks that not are intended to be

interpreted as gaps or black marks by the LSS. Using this SYSVAR para-
meters, it is possible to make the LSS ignore gaps or marks that are shor-
ter that a specified value. (In this context, long and short are related to
the media feed direction.) The minimum gap length is specified in dots
within a range of 1-32. Default value is 1 mm (0.039 inches). Note that
SYSVAR(37) affects PRINTFEED and FORMFEED. For TESTFEED,
see SYSVAR(38).

	 38: Set Equal Safe for TESTFEED	
	 This parameter is obsolete and has no effect, even if it does not cause an

error if used.

	 39: Enable/Disable Slack Compensation-Force Startadjust (Set or Read)
	 Slack compensation:
	 Label slack compensation is a method of eliminating slack in the belts

after having fed the media back. At a negative FORMFEED, the printer
will pull back the media slightly more than specified by the FORMFEED
statement and then feed the media forward the same distance. If slack
compensation is enabled, and FORMFEED -100 is specified, the printer
will pull back the media for example -112 dots and then feed the media
forward +12 dots to take out the slack.

	 Force Startadjust:
	 Performing a positive FORMFEED will normally only feed out paper

even if startadjust is set to a negative value. Using narrow labels and liner
rewinding may cause the printout position to differ on the next printed
label after a FORMFEED. Forcing a startadjust when doing FORMFEED
improves printout precision in such cases.

	 The options are:
	 0 = Disable slack compensation and disable force startadjust.
	 1 = Enable slack compensation (default).
	 2 = Force startadjust at FORMFEED.
	 3 = Force startadjust at FORMFEED and enable slack compensation.

	 40: Not Implemented	

	 41: “Next label not found” at Predefined Feed Length	 (Set or Read)
	 The automatic detection of the error condition “Next label not found”

(error 1031) by the label stop sensor can be overridden by specifying a

268	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

SYSVAR, cont.	
	 fixed length in dots. The length should preferably correspond to at least the

distance between the tops of two consecutive labels. During printing, error
1031 occurs if the media does not come loose from the core (media glued
to core) or if a label is missing on the liner. Especially useful for short labels
(10–40 mm/0.4–1.5 inches long). Default value is 0.

	 42: Stop Media Feed in the Middle of Label Gaps	 (Set or Read)
0 = The media feed stops so the middle of a 3 mm (0.12 in) gap becomes

aligned with the tear bar when using labels (w gaps). This is the default
setting.

1 = 	The media feed stops so the middle of the gap becomes aligned with 		
	the tear bar, regardless of gap size.

	 43: Enable/Disable File Name Conversion	 (Set or Read)
	 File name conversion means that lowercase characters will be converted to

uppercase and the extension .PRG will be added if an extension is missing.
	 0	 = File name conversion is enabled (default)	
	 1	 = File name conversion is disabled.

	 44: Enable/Disable filtering of NUL characters	 (Set or Read)
	 SYSVAR(44) controls the filtering of NUL characters in background com-

munication (see COMBUF$).
	 0 = 	Enables filtering (default)
	 1	 = Disables filtering

	 45: Read Printhead Resolution	 (Read only)
	 SYSVAR(45) returns the resolution of the printhead expressed in dots per

inch (dpi).

	 46: Read status of Paper Low Sensor	 (Read only)
0 = Indicates that the diameter of the media supply is larger than 			

	specified in the Setup Mode.
1 = Indicates that the detected diameter of the media supply roll is equal 		

	or less than the diameter specified in the Setup Mode (Media/Paper/		
	Low Diameter). The error condition 1084 “Paper low” will occur. 		
	This error does not stop the printing, but interrupts any program that 		
does not handle it.

	 47: Enable/disable use of startadjust-stopadjust together with 	 	 	
	positive and/or negative formfeeds.	 (Set or Read)

0 = Use of startadjust/stopadjust OR negative/positive Formfeed values.
Default.

1 = Enable the use of startadjust/stopadjust values together with negative/
positive Formfeed values.

	 48: Enable/Disable direct commands 	 (Set or Read)

0 = Disables use of direct commands (default)
1 = Scans stdIN channel for direct commands. Can only be set in the 		

	Direct Protocol.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	269

Chapter 2—Program Instructions

	 49: Set temporary lower speed after negative startadjust. (Set or Read)

	 This is used to avoid hard stretches/jerks at the beginning of a label with
a full roll. Specify the pecentage of the negative startadjust value that
should be fed slower (70 mm/s). For example sysvar(49)=150 will cause
the printer to run slower for 150% of the negative startadjust value, before
speeding up.	

	 50: Set lower speed after lowering printhead.		 (Set or Read)

	 To avoid hard stretches/jerks after loading new media roll, ths can
lower the speed (to 70 mm/s) for the specified length after lowering the
printhead. The value is given in dots. Default is 0.	

	 51: Set enabled limit for of SYSVAR(49) and (50). 	 (Set or Read)

	 Set the value in meters that values for SYSVAR(49) and SYSVAR(50) will
be in effect after lowering the printhead.	

Examples	 Reading the value of a system variable, in this case the transfer ribbon
sensor:

	 PRINT SYSVAR(23)

	 Setting the value of a system variable. In this case verbosity is disabled:
	 SYSVAR(18)= 0

270	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

TAGFIELD

Purpose	 Statement defining a field in the RFID tag's memory area available for
RFID operations.

Syntax	 TAGFIELD[<sexp
1
>,]<sexp

2
>[,<nexp

3
>[,<nexp

4
>]]

<sexp
1
>	 is the optional name of the field to make available.

<sexp
2
>	 is the name of the segment to make available. Allowed values:

	 Class 1 tags (EPC Class 1 Version 1):
	 "@ID"		 Tag identification segment for EPC data. Default.
	 ISO18000-6B / EPC UCode 1.19 tags:
	 "@ID"		 Tag idenitifcation segment. Default.
	 "@DATA"	 Optional data segment.
	 "@ALL"	 Tag's complete memory structure.
	 Gen 2 tags (EPC Class 1 Generation 2):
	 "@RESERVED"	 Access and kill password segment.
	 "@EPC"	 EPC specific data. Default.
	 "@TID"	 Tag identifier.
	 "@USER"	 User defined data.
<nexp

3
>	 is the field's starting byte in the chosen segment. Default varies

according to RFID tag standard and segment in use.
<nexp

4
>	 is the length of the field in bytes. Default varies according to the

RFID tag standard and EPCGlobal tag format in use.
Remarks	 The TAGFIELD command is used to specify the field available for

subsequent RFID commands, such as TAGWRITE or TAGREAD. The
memory structure of RFID depends on the tag type. Class 1 tags only
allow the "@ID" segment, where EPC data is stored. The ISO18000-6B,
or EPC UCode 1.19 tags contains two segments, "@ID" and "@DATA".
Gen 2 RFID tags have four segments, "@RESERVED", "@EPC",
"@TID", and "@USER". Chapter 6 contains tables with the memory
structure of supported tag types.

	 In order to support legacy programs written for Class 1 or ISO18000-6B
tags when migrating to Generation 2 tags, Fingerprint will map the "@ID"
and "@DATA" fields to "@EPC" and "@USER" fields respectively.

	 The <nexp3> and <nexp4> parameters specify a subset of a segment as the
currently available field. It is possible to name the field to use with <sexp1>.
This name may not start with an @-character. A possible representation
of tag segments of a ISO18000-6B tag can be seen in the figure ni the
example. The default values for <nexp1> and <nexp2> may be modified
by a subsequent TAGFORMAT command, see Chapter 6. Values for
<nexp3> and <nexp4> do not normally need to be set when writing EPC
information, as these are automatically adjusted for the EPC tag format
specified. The only exception is ISO 18000-6B tags, see Chapter 6, Tag
Memory Allocation.

	 The TAGFIELD command resets the TAGFORMAT to its default.
Related commands are TAGFORMAT, TAGREAD and TAGWRITE.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	2 71

Chapter 2—Program Instructions

TAGFIELD, cont.
 Examples	 The fields A, B, and C in the figure are defined by the commands below.

The tag is a possible representation of an ISO18000-6B:

	 A: 	 TAGFIELD "@ID" 			
	 B:	 TAGFIELD "@DATA",0,8
	 C:	 TAGFIELD "C","@DATA",8,14
	
	 The field name "C" can then be reused:
	 C:	 TAGFIELD "C"

272	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

TAGFORMAT

Purpose	 Statement specifying the format of the data to be read from or written to
an RFID tag.

Syntax	 TAGFORMAT<sexp>

<sexp>	 is the format of the data. Available formats are:
"ASCII"	 	 8-bit ASCII string.
"HEX"	 	 Hexadecimal string. Values 0-9 and a-f allowed. Hex

characters must be entered in pairs. Default.
"NUM"	 	 Integer. 0 to 2147483647 allowed. Always uses 4 bytes

to represent data, unless a field smaller has been defined,
and the number fits in that field. Not allowed in Class1 tag.

	 EPCGlobal tag formats:
"SGTIN-64"	 	 "Filter","Company Prefix",Item Reference",Serial Number"
"SGTIN-96"	 	 "Filter","Company Prefix",Item Reference",Serial Number"
"SSCC-64"	 	 "Filter","Company Prefix","Serial Reference"
"SSCC-96"	 	 "Filter","Company Prefix","Serial Reference"
"SGLN-64"	 	 "Filter","Company Prefix","Location Reference","Serial

Number"
"SGLN-96"	 	 "Filter","Company Prefix","Location Reference","Serial

Number"
"GRAI-64"	 	 "Filter","Company Prefix","Asset Type","Serial Number"
"GRAI-96"	 	 "Filter","Company Prefix","Asset Type","Serial Number"
"GIAI-64"	 	 "Filter","Company Prefix","Individual Asset Reference"
"GIAI-96"	 	 "Filter","Company Prefix","Individual Asset Reference"
"GID-96"	 	 "General Manager Number","Object Class","Serial Number"
"USDOD-64"		 "Filter","Government Managed Identifier","Serial Number"
"USDOD-96"		 "Filter","Government Managed Identifier","Serial Number"
"EPC-HEX64"	 Hex values for all bits on a 64-bit tag's memory area.
"EPC-HEX96"	 Hex values for all bits on a 96-bit tag's memory area.
"EPC-URN"	 	 Uniform Resource Name string. Standardized format for

entry of EPC identity.

Remarks	 The TAGFORMAT command is used to specify the format of the data
to be read from or written to a tag with a subsequent TAGREAD or
TAGWRITE command. The format applies to the field defined by the
most recent TAGFIELD command.

	 More information on tag formats can be found in Chapter 6.

	 TAGFORMAT is reset to its default by a TAGFIELD command. Related
commands are TAGFIELD, TAGREAD and TAGWRITE.

Examples	 10	 FILTER$ = "3"
	 20	 PREFIX$ = "0614141"
	 30	 ITEM$ = "100734"
	 40	 SERIAL$ = "2"
	 50	 TAGFIELD "@EPC"
	 60	 TAGFORMAT "SGTIN-96"
	 70	 TAGWRITE FILTER$, PREFIX$, ITEM$, SERIAL$

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	2 73

Chapter 2—Program Instructions

TAGFORMAT, cont.
	 10	 TAGFIELD "@ID"
	 20	 TAGFORMAT "EPC-URN"
	 30	 TAGREAD MyURI$
	 40	 PRINT MyURI$
	 RUN

yields for example
	 urn:epc:sgtin-96:3.0614141.100734.2

	 10	 TAGFIELD "@USER",10,4
	 20	 TAGFORMAT "ASCII"
	 30	 TAGWRITE "RFID"
	 40	 TAGREAD A$
	 50	 PRINT A$
	 RUN

yields
	 RFID

274	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

TAGPROTECT

Purpose	 Statement used to protect tag data from being overwritten.

Syntax	 TAGPROTECT <sexp
1
>

<sexp
1
>	 specifies the tag protection level. Available options are:

Class 1/ISO18000-6B/EPC 1.19 tags
"ON"	 	 Tag is protected.
"OFF"	 	 Tag remains unprotected.

Remarks	 The TAGPROTECT command is used to protect the tag from being
overwritten by an RFID operation. The protection is permanent. The
command applies to the latest defined field. The command is executed at
the next TAGWRITE operation, since it does not alone align the tag over
the antenna.

		 Related commands are TAGFIELD, TAGFORMAT and TAGWRITE.

Examples	 10 	 TAGFIELD "@ID"
20 	 TAGFORMAT "SSCC-64"
30	 TAGPROTECT "ON"
40	 TAGWRITE "1","12345","123456"

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	2 75

Chapter 2—Program Instructions

TAGREAD

Purpose	 Statement used to read an RFID tag field.

Syntax	 TAGREAD<nvar>|<svar
1
>[,<svar

2
>,<svar

3
>,<svar

4
>]

<nvar>	 is the numeric variable to store the data. Only used with the
"NUM" field in TAGFORMAT.

<svar
N
>	 is the string variable to store the data. The number of arguments

depends on TAGFORMAT.

Remarks	 The TAGREAD command reads the data from the field specified by the
latest TAGFIELD command in to the variable <nvar> or variables <svarN>.
The format of the data will be the one defined by the latest TAGFORMAT
command. If you state a numeric variable <nvar>, an error is returned
unless the data is in the "NUM" format.

	 Related commands are TAGFIELD, TAGFORMAT and TAGWRITE.

Examples	 Using numeric variables:
	 10 	 TAGFIELD "@DATA",2,2

20 	 TAGFORMAT "NUM"
30 	 TAGWRITE 19562
40 	 TAGFIELD "@DATA",2,2
50 	 TAGFORMAT "NUM"
60 	 TAGREAD A%
RUN

yields
	 19562

	 Reading a an SGTIN-96 tag from a Gen 2 tag:
	 10	 TAGFIELD "@EPC"
	 20	 TAGFORMAT "SGTIN-96"
	 30	 TAGREAD FILTER$, PREFIX$, ITEM$, SERIAL$
	 40	 PRINT FILTER$, PREFIX$, ITEM$, SERIAL$
	 RUN

yields for example
	 3 0614141 100734 2

276	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

TAGWRITE

Purpose	 Statement used to write to an RFID tag field.

Syntax	 TAGWRITE<nvar>|<svar
1
>[,<svar

2
>,<svar

3
>,<svar

4
>]

<nvar>	 is the numeric variable to be written. Only used with the "NUM"
field in TAGFORMAT.

<svar
N
>	 is the string variable to be written. The number of arguments

depends on TAGFORMAT.

Remarks	 The TAGWRITE command writes the data from <nvar> or <svar1> to the
field specified by the latest TAGFIELD command. The format of the data
will be the one specified by the latest TAGFORMAT command. If the data
written is shorter than the field, the field is padded with zeroes. The excep-
tion to this rule occurs in some EPC tag formats where the exact number
of digits must be entered, even if it means adding non-significant digits
(for example writing 00234 instead of 234), see Chapter 6. If the data is
too long to fit in the specified field, an error is returned.

	 Related commands are FORMAT$, TAGFIELD, TAGFORMAT and
TAGREAD.

Examples	 Writing an SGTIN-96 to a Gen 2 tag:
	 10	 TAGFIELD "@EPC"
	 20	 TAGFORMAT "SGTIN-96"
	 30	 TAGWRITE "3","0614141","100734","2"
	 	
	 Two examples of writing the same SSCC-64 info to an ISO18000-6B tag:
	 10 	 TAGFIELD "@DATA",10,8

20 	 TAGFORMAT "SSCC-64"
30	 TAGWRITE "1","12345","123456"

	 10 	 TAGFIELD "@DATA",10,8
20 	 TAGFORMAT "EPC-URN"
30	 TAGWRITE 								
	 "urn:epc:tag:sscc-64:1.12345.123456"

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	2 77

Chapter 2—Program Instructions

TESTFEED

Purpose	 Statement for adjusting the label stop, ribbon end/low, paper low sensors,
and RFID module while running the media and ribbon feed mechanisms.

Syntax	 TESTFEED[<nexp>]

<nexp>	 is an optional feed length in dots.	

Remarks	 A TESTFEED statement feeds <nexp> dots while calibrating the label
stop/black mark sensor (LSS) for the characteristics of the media presently
loaded in the printer. The statement is needed to detect media, gaps, black
marks, and out-of-paper conditions. It should be done for all media types.

	 If an RFID module is installed, and RFID is enabled, TESTFEED will
attempt to communicate and identify the RFID tag. This TESTFEED is
always performed in SLOW MODE, see below.

	 If <nexp> is omitted, it is automatically set to 1.5 times the media length
specified in the setup. For the TESTFEED to be successful, at least one gap
or black mark must pass the LSS. Best result for “Ticket w Mark” is obtai-
ned if entering a <nexp> value of 1200 or any other reasonable number.

	 When a TESTFEED is executed, the ribbon end/low and paper low sen-
sors are also calibrated (if installed). However, this does not apply when the
testfeed is ordered using the testfeed option in the Setup Mode.

	 In the Immediate Mode, a TESTFEED is performed when the <Shift> and
<Feed> keys are pressed simultaneously.

	 In the setup, TESTFEED MODE can be set to SLOW. This might be
necessary when using media with pre-printed lines. This is done with a
SETUP command or through the printers Setup Mode. When in SLOW
mode, TESTFEED will sample the media length plus 10 mm. Alterna-
tively, the length sampled can be set using the MEDIA,LEN (SLOW
MODE) option, the minimum being the number of dots corresponding to
10 mm. This value is ignored when TESTFEED MODE is set to FAST.

	 Since the TESTFEED is essential for a proper media load, some facility for
issuing a TESTFEED statement should be included in all custom-made
label-printing programs (see the example below).

Example	 This program performs a TESTFEED statement when the <Shift> and
<Feed> key are pressed simultaneously on the printer’s built-in keyboard:

	 10	 ON KEY (119) GOSUB QTESTFEED
	 20	 KEY (119) ON
	 30	 QLOOP:
	 40	 GOTO QLOOP
	
	 1000	QTESTFEED:
	 1010 	TESTFEED
	 1020	RETURN

278	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

TICKS

Purpose	 Function returning the time, that has passed since the last power up in the
printer, expressed in number of “TICKS" (1 TICK = 0.01 seconds.)

Syntax	 TICKS

Remarks	 TICKS allows you to measure time more exactly than the TIME$ variable,
which cannot handle time units smaller than 1 second.

	 The TICKS counter is reset to zero at power up.

Example	 10	 A%=TICKS
	 20	 PRINT A%
	 RUN
								 yields for example:
	 1081287
	 The time which has passed since the printer was started is 10812.87 sec-

onds, that is 3 hours 12.87 seconds.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	2 79

Chapter 2—Program Instructions

TIME$

Purpose	 Variable for setting or returning the current time.

Syntax	 Setting the time:	 TIME$=<sexp> 	

<sexp>	 sets the current time by a 6-digit number specifying Hour, Minute
and Second.	

	 Reading the time:	 <svar>=TIME$[(<sexp>)]

<svar>	 returns the current time according to the printer’s clock.
<sexp>	 is an optional flag "F", indicating that the time will be returned

according to the format specified by FORMAT TIME$.

Remarks	 This variable works best if a real-time clock circuit (RTC) is fitted on the
printer’s CPU board. The RTC is battery backed-up and will keep record
of the time even if the power is turned off or lost.

	 If no RTC is installed, the internal clock will be used. After startup, an
error will occur when trying to read the date or time before the internal
clock has been manually set using either a DATE$ or a TIME$ variable.
If only the date is set, the internal clock starts at 00:00:00 and if only the
time is set, the internal clock starts at Jan 01 1980. After setting the inter-
nal clock, you can use the DATE$ and TIME$ variables the same way as
when an RTC is fitted, until a power off or REBOOT causes the date and
time values to be lost.

	 Time is always entered and, by default, returned as HHMMSS, where:
	 HH	 =	 Hour 	 Two digits (00-23)
	 MM	 =	 Minute	 Two digits (00-59)
	 SS	 =	 Second	 Two digit (00-59)
	 Time is entered as a 24-hour cycle, for example 8 o’clock pm is entered as

"200000".

	 The clock will be reset at the exact moment, when the appending carriage
return character is received, for example when you press the Return key
(Immediate Mode and Intermec Direct Protocol), or when the instruction
is executed (Programming Mode).

	 The format for how the printer will return time from a TIME$("F") vari-
able can be changed using a FORMAT TIME$ statement.

Example	 Setting and reading the time, then printing it on the screen of the host:
	 10	 TIME$ = "154300"			
	 20	 FORMAT TIME$ "HH.MM"
	 30	 PRINT "Time is "+TIME$("F")
	 RUN
									 yields:
	 Time is 15.43

280	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

TIMEADD$

Purpose	 Function returning a new time after a number of seconds have been added
to, or subtracted from, the current time or optionally a specified time.

Syntax	 TIMEADD$([<sexp
1
>,]<nexp>[,<sexp

2
>])

<sexp
1
>	 is any time given according to the TIME$ format, which a certain

number of seconds should be added to or subtracted from.
<nexp>	 is the number of seconds to be added to (or subtracted from) the

current time, or optionally the time specified by <sexp
1
>.

<sexp
2
>	 is an optional flag "F", indicating that the time will be returned

according to the format specified by FORMAT TIME$.

Remarks	 The original time (<sexp1>) should always be entered according to the
TIME$ format (HHMMSS), where:

	 HH	 =	 Hour	 Two digits (00-23)
	 MM	 =	 Minute	 Two digits (00-59)
	 SS	 =	 Second	 Two digits (00-59)

	 Time is entered as a 24-hour cycle, for example 8 o’clock pm is entered as
"200000".

	 The number of seconds to be added or subtracted from the original time
should be specified as a positive or negative numeric expression respecti-
vely.

	 If no "F" flag is included in the TIMEADD$ function, the result will be
returned according to the TIME$ format, see above.

	 If the TIMEADD$ function includes an "F" flag, the result will be retur-
ned in the format specified by FORMAT TIME$.

Examples	 10	 A%=30
	 20	 B$=TIMEADD$ ("133050",A%)
	 30	 PRINT B$
	 RUN
									 yields:
	 133120

	 10	 TIME$="133050"
	 20	 FORMAT TIME$ "hh.mm.ss pp"
	 30	 A% = -40
	 40	 PRINT TIMEADD$(A%,"F")
	 RUN
									 yields:
	 01.30.10 pm

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	2 81

Chapter 2—Program Instructions

TIMEDIFF

Purpose	 Function returning the difference between two specified moments of time
in number of seconds.

Syntax	 TIMEDIFF(<sexp
1
>,<sexp

2
>)

<sexp
1
>	 is one of two moments of time (time 1).

<sexp
2
>	 is the other of the two moments (time 2).

Remarks	 To get the result as a positive value, the two moments of time, for which
the difference is to be calculated, should be entered with the earlier
moment (time 1) first and the later moment (time 2) last, see the first
example below.

	 If the later moment (time 2) is entered first, the resulting value will be
negative, see the second example below.

	 The time should be entered according to the format for the TIME$ vari-
able, that is in the order HHMMSS, where:

	 HH	 =	 Hour	 Two digits (00-23)
	 MM	 =	 Minute	 Two digits (00-59)
	 SS	 =	 Second	 Two digits (00-59)

	 Time is entered as a 24-hour cycle, for example 8 o’clock pm is entered as
"200000".

	 The resulting difference in seconds will be returned.

Examples	 PRINT TIMEDIFF ("133050","133120")
									 yields:
	 30

	 PRINT TIMEDIFF ("133120","133050")
		 yields:
	 -30

282	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

TRANSFER KERMIT

Purpose	 Statement for transferring data files using KERMIT communication proto-
col.

Syntax	 TRANSFER↔K[ERMIT]<sexp
1
>[,<sexp

2
>[,<sexp

3
>[,sexp

4
>]]]

<sexp
1
>	 specifies the direction of the transmission by the expression "S "

(= send) or "R" (= receive).
<sexp

2
>	 is, optionally, the name of the file transmitted from the printer

(default "KERMIT.FILE").
<sexp

3
>	 specifies, optionally, the input device as "uart1:", "uart2:",

"uart3:", "uart4:", or "uart5:" (default: std IN channel).
<sexp

4
>	 specifies, optionally, the output device as "uart1:", "uart2:",

"uart3:", "uart4:", or "uart5:" (default: std OUT channel).

Remarks	 Kermit is a protocol for serial binary transfer of a complete file between for
example a PC and a printer. Kermit is included in Windows HyperTermi-
nal and in many other communication programs.

	 Warning, tests have shown that Microsoft Windows Terminal, versions
3.0 and 3.1, is unable to receive a file from the printer, even if capable of
sending a file to the printer.

	 Consult the application program manual or the reference volume “Kermit
-A File Transfer Protocol" by Frank da Cruz (Digital Press 1987, ISBN 0-
932376-88-6).

	 TRANSFER KERMIT can only handle one single file at a time.

	 When transmitting files from the printer to the host, carefully observe pos-
sible restrictions concerning the number of characters, etc. in the file name,
that is imposed by the operating system of the host.

	 When receiving a file, you must start the transmission within 30 seconds
from completing the TRANSFER KERMIT "R" statement. The printer
will store the file in the current directory "/c", "tmp:", or "card1:", see
CHDIR statement. (Obviously, files cannot be received into "/rom".) If
there already exists a file in the current directory with the same name as
the one to be transferred, the existing file will be replaced by the new file.
Thus, it is up to you to keep record of the files already stored in the current
directory (see FILES statement). Before transfer, give the new file a name
that is not already occupied by an existing file, unless you want to replace
the existing file. Downloaded fonts and image are auto-installed.

Examples	 Setting up the printer for file reception on the standard IN channel:	
TRANSFER KERMIT "R"

	 Transmission from printer to host of the file "FILE1.TXT" on a channel
other than the standard OUT channel:

	 TRANSFER K "S","FILE1.TXT","uart2:","uart2:"

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	2 83

Chapter 2—Program Instructions

TRANSFER NET

Purpose	 Statement for transferring files to and from the printer using FTP.

Syntax	 TRANSFER N[ET] <sexp
1
>,<sexp

2
>[,<sexp

3
>]

<sexp
1
>	 is the source.

	 If the source is a local file, this file will be sent from the printer to
the destination specified by <sexp

2
>.

	 If the source is a URI, this file will be fetched from the server
and sent to the printer and stored at the location specified by
<sexp

2
>.

<sexp
2
>	 is the destination of the file transfer.

<sexp
3
>	 is an optional account secret.

Remarks	 Limitations:
	 TRANSFER NET is not a complete ftp client. It only supports file transfer

to and from the printer in binary format. Only one file can be transferred
per command. File transfer between two local or two remote files is not
supported.

	 Local files:
	 A local file is a path to an existing file (when sending from the printer) or

to the file that will be created (when fetching to the printer). If a local file
already exists when fetching a file to the printer, the existing file will be
replaced, if it is not write-protected. A read-protected file will not be sent.
If the destination is a local directory, the fetched file will get the same name
as the source file.

	 URIs:
	 An URI shall be entered in the format
	 ftp://[<user>:<password>@]<server>[:port]/<path>

	 Entries inside square brackets [...] are optional. The following default
values are used:

	 - user:	 anonymous
	 - password: 	 nopass@<ip address>
	 - port:	 21

	 If the destination is a URI specifying a directory, the sent file will get the
same name as the source file.

	 Account Secret:
	 If the user does not want to reveal his/her username and password in plain

text in a Fingerprint program, the account secret option can be used. The
account secret holds the secret information and cannot be read by any
user. To create an account secret, use the external command RUN "secret".
Listing and deleting accounts secrets are reserved for admin.

	 Fonts and Images:

	 Downloaded fonts and images will be auto-installed.

284	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

TRANSFER NET, cont.

Example	 This example shows how the file README.uploads is fetched from sunet’s
ftp server and stored as UPLOAD.TXT in the current directory. Default
user, password and port number are used.

	 TRANSFER NET "ftp://ftp.sunet.se/README.uploads",
	 "UPLOAD.TXT"

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	2 85

Chapter 2—Program Instructions

TRANSFER STATUS

Purpose	 Statement for checking last TRANSFER KERMIT or TRANSFER
ZMODEM operation.

Syntax	 TRANSFER↔S[TATUS]<nvar>,<svar>

<nvar>	 is a five-element one-dimensional numeric array where the
elements will return:

	 0: Number of packets.	 (Kermit only)
	 1: Number of NAK’s.	 (Kermit only)
	 2: ASCII value of last status character. 	 (Kermit only)
	 3: Last error. 	 (Kermit and ZMODEM)
	 4: Block check type used.	 (Kermit only)
<svar>	 is a two-element one-dimensional string array where the ele-

ments will return:
	 0: Type of protocol.	 ("KERMIT" or “ZMODEM")
	 1: Last file name received.

Remarks	 After a file transfer using the Kermit or ZMODEM protocol has been
performed (see TRANSFER KERMIT and TRANSFER ZMODEM
statements), you can check how the transfer was performed. Note that the
numeric array requires the use of a DIM statement, since the array will
contain more than four elements.

Example	 10	 TRANSFER KERMIT "R"
	 20	 DIM A%(4)
	 30	 TRANSFER STATUS A%, B$
	 40	 PRINT A%(0), A%(1), A%(2), A%(3), A%(4)
	 50	 PRINT B$(0), B$(1)
	
	
	

286	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

TRANSFER ZMODEM

Purpose	 Statement for transferring data files using ZMODEM communication
protocol.

Syntax	 TRANSFER↔Z[MODEM]<sexp
1
>[,<sexp

2
>[,<sexp

3
>[,sexp

4
>]]]

<sexp
1
>	 specifies the direction of the transmission by the expression "S "

(= send) or "R" (= receive).
<sexp

2
>	 is, optionally, the name of the file transmitted from the printer

(default "ZMODEM.FILE").
<sexp

3
>	 specifies, optionally, the input device as "uart1:", "uart2:",

"uart3:", "uart4:", or "uart5:" (default: std IN channel).
<sexp

4
>	 specifies, optionally, the output device as "uart1:", "uart2:",

"uart3:", "uart4:", or "uart5:" (default: std OUT channel).

Remarks	 ZMODEM is a protocol for serial transfer of a complete file between for
example a PC and a printer. For more information on the ZMODEM pro-
tocol, please refer to http://www.omen.com. Related instructions are the
external commands RZ (receive data using the ZMODEM protocol) and
SZ (send data using the ZMODEM protocol).

	 TRANSFER ZMODEM can only handle one single file at a time.

	 When transmitting files from the printer to the host, carefully observe pos-
sible restrictions concerning the number of characters etc. in the file name,
that is imposed by the operating system of the host.

	 When receiving a file, you must start the transmission within 30 seconds
from completing the TRANSFER ZMODEM "R" statement. The prin-
ter will store the file in the current directory "/c", "tmp:", or "card1:", see
CHDIR statement. (Obviously, files cannot be received into "/rom".) If
there already exists a file in the current directory with the same name as
the one to be transferred, the existing file will be replaced by the new file.
Thus, it is up to you to keep record of the files already stored in the current
directory (see FILES statement). Before transfer, give the new file a name
that is not already occupied by an existing file, unless you want to replace
the existing file. If you use TRANSFER ZMODEM to download a font or
image file, the font or image will automatically be installed after the down-
loading is completed without any need for a reboot.

Examples	 Setting up the printer for file reception on the standard IN channel:
	 TRANSFER ZMODEM "R"

	 Transmission from printer to host of the file "FILE1.TXT" on a channel
other than the standard OUT channel:

	 TRANSFER Z "S","FILE1.TXT","uart2:","uart2:"

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	2 87

Chapter 2—Program Instructions

TRANSFER$

Purpose	 Function executing a transfer from source to destination as specified by a
TRANSFERSET statement.

Syntax	 TRANSFER$(<nexp>)

<nexp>	 is the character time-out in ticks (10 milliseconds).
	 	

Remarks	 The TRANSFER$ function executes the transfer from source to desti-
nation as specified by the TRANSFERSET statement. It also checks the
transfer and breaks it if no character has been transmitted before the speci-
fied time-out has expired or if any break character, as specified by the break
character string in the TRANSFERSET statement, is encountered.

	 If the transmission was interrupted because a character in the break set was
encountered, that character will be returned.

	 If the transmission was interrupted because of a time-out error, an empty
string will be returned.

	 If the transmission was interrupted because of the reception of a charac-
ter on any other communication channel than the source (as specified by
TRANSFERSET statement), an empty string will be returned.

Example	 The transfer will be executed by the TRANSFER$ function in line 60
and possible interruptions will be indicated by a break character or empty
string ("") in the string variable C$.

	 10	 OPEN "LABEL1.PRG" FOR INPUT AS #1
	 20	 OPEN "UART1:" FOR OUTPUT AS #2
	 30	 A$=CHR$(13)
	 40	 B$=CHR$(10)
	 50	 TRANSFERSET #1, #2, A$+B$
	 60	 C$=TRANSFER$(100)
	
	
	

288	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

TRANSFERSET

Purpose	 Statement for entering setup for the TRANSFER$ function.

Syntax	 TRANSFERSET[#]<nexp
1
>,[#]<nexp

2
>,<sexp>[,<nexp

3
>]

#	 optional number sign.
<nexp

1
>	 is the number of the source (the file or device OPENed for input).

<nexp
2
>	 is the number of the destination file (the file or device OPENed for

output or append).
<sexp>	 is a set of break characters.
<nexp

3
>	 optionally enables or disables break on any other channel than

the source:
	 <nexp> = 0	 Break disabled
	 <nexp> ≠ 0	 Break enabled
Default:	 Standard I/O with no break characters.
	 Break on any other channel enabled.
	 	

Remarks	 This statement sets up the transfer of data from a file or device OPENed
for input to another file or device OPENed for output or append. The
transfer will be interrupted if any character in a string of break characters,
specified in this statement, is encountered (optionally on another speci-
fied channel). The actual transfer is executed by means of a TRANSFER$
function, that also returns the break character that has caused any possible
interruption.

Example	 In this example, the data transfer from a file in the current directory to
an external device connected to the communication port "uart1:" will be
interrupted as soon as a carriage return or a line feed character is encoun-
tered in the file.

	 10	 OPEN "LABEL1.PRG" FOR INPUT AS #1
	 20	 OPEN "uart1:" FOR OUTPUT AS #2
	 30	 A$=CHR$(13)
	 40	 B$=CHR$(10)
	 50	 TRANSFERSET #1, #2, A$+B$
	 60	 C$=TRANSFER$(100)
	
	
	

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	2 89

Chapter 2—Program Instructions

TRON/TROFF

Purpose	 Statements enabling/disabling tracing of the program execution.

Syntax	 TRON|TROFF

TRON	 enables tracing.
TROFF	 disables tracing (default) 	

Remarks	 Useful for debugging purposes. When tracing is enabled, each line number
of the program is displayed on the screen within parentheses as the execu-
tion goes on.

	 Tracing will be disabled when a TROFF statement is executed.

Example	 10	 PRINT "HELLO"
	 20	 INPUT"Enter Text"; A$
	 30	 PRINT A$
	 TRON
	 RUN
										 yields:
	 (10)	WORLD
	 (20) 	Enter test? 			 (Operator enters "WORLD")
	 (30)	WORLD

290	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

VAL

Purpose	 Function returning the numeric representation of a string expression.

Syntax	 VAL(<sexp>)

<sexp>	 is the string expression from which the numeric representation
will be returned.

Remarks	 VAL is the complementary function for STR$.

	 VAL ignores space characters from the argument string to determine the
result.

	 If the first character in the string expression is anything else but a digit, a
plus sign, or a minus sign, the VAL function returns the value 0.

Example	 In this example, the values of the string variables A$ and B$ are read and
assigned to the numeric variables A% and B%:

	 10	 A$="123, MAIN STREET"
	 20	 A%=VAL(A$)
	 30	 B$="PHONE 123456"
	 40	 B%=VAL(B$)
	 50	 PRINT A$
	 60	 PRINT A%
	 70	 PRINT B$
	 80	 PRINT B%
	 RUN
									 yields:
	 123, MAIN STREET
	 123
	 PHONE 123456
	 0

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	29 1

Chapter 2—Program Instructions

VERBON/VERBOFF

Purpose	 Statements for specifying the verbosity level of the communication from
the printer on the standard OUT channel (serial communication only).

Syntax	 VERBON|VERBOFF

VERBON	 enables all verbosity levels (default).
VERBOFF	 disables all verbosity levels.

Remarks	 VERBON
	 By default, when a character is received on the standard IN channel (see

SETSTDIO statement), the corresponding character will be echoed back
on the standard OUT channel. As the serial channel "uart1:" is by default
selected both standard IN and OUT channel, this implies that when you
enter a character on the keyboard of the host, the same character will
appear on the screen after having been transmitted to the printer and back.

	 When an instruction has been successfully executed, “Ok” will be dis-
played on the screen, else an error message will be returned. Obviously, this
requires two-way communication, so verbosity has no meaning in case of
the parallel "centronics:" communication protocol.

	 VERBON corresponds to SYSVAR(18) = -1.

	 VERBOFF corresponds to SYSVAR(18) = 0.

	 Other verbosity levels can be selected using SYSVAR(18), and the type of
error message can be selected using SYSVAR (19).

	 VERBOFF
	 All responses will be suppressed, which means that no characters or error

messages will be echoed back. VERBOFF statements do not affect ques-
tion marks and prompts displayed as a result of an INPUT statement.
Instructions like DEVICES, FILES, FONTS, IMAGES, LIST, and
PRINT will also work normally.

Example	 This example shows how VERBOFF is used to suppress the printing of
INPUT data in lines 20 and 40 during the actual typing on the host, and
VERBON to allow the printing of the resulting string variables on the
screen:

	 10	 FOR Q%=1 TO 6
	 20	 VERBOFF:INPUT "", A$
	 30	 VERBON:PRINT A$;
	 40	 VERBOFF:INPUT "", B$
	 50	 VERBON
	 60	 C$=SPACE$(25-LEN(A$))
	 70	 PRINT C$+B$
	 80	 NEXT Q%
	 90	 END

292	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

VERSION$

Purpose	 Function returning the version of the firmware, printer family, or type of
CPU board.

Syntax	 VERSION$[(<nexp>)]

<nexp>	 is, optionally, the type of information to be returned:
	 0 = Version of firmware (default)
	 1 = Printer family
	 2 = Type of CPU board

Remarks	 The name of the firmware depends on if the printer is running in the
Immediate or Programming Modes, or in the Intermec Direct Protocol.

	 The printer family is returned as one of the following alternatives:
	 PD41
	 PF2i
	 PF4i
	 PM4i
	 PX4i
	 PX6i

	 The type of CPU-board is returned as a string of text, for example:
	 hardware version 4.0
		
Examples	 PRINT VERSION$(0)
								 yields for example:
	 Fingerprint 8.70.0

	 PRINT VERSION$(1)	 					
yields for example:

	 PF4i

	 PRINT VERSION$(2)	 					
yields for example:

	 hardware version 4.0

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	293

Chapter 2—Program Instructions

WEEKDAY

Purpose	 Function returning the weekday of a specified date.

Syntax	 WEEKDAY(<sexp>)

<sexp>	 is the date in DATE$ format from which the weekday will be
returned.

Remarks	 This function returns the weekday as a numeric constant:
	 1 = Monday
	 2 = Tuesday
	 3 = Wednesday
	 4 = Thursday
	 5 = Friday
	 6 = Saturday
	 7 = Sunday

	 The date should be entered according to the syntax for the DATE$ vari-
able, that is in the following order:

	 YY	 =	 Year	 Last two digits	 (for example 2003 = 03)
	 MM	 =	 Month	 Two digits	 (01-12)
	 DD	 =	 Day	 Two digits	 (01-28|29|30|31)
	 Example: December 1, 2003 is entered as "031201".

	 The built-in calendar corrects illegal values for the years 1980-2048, for
example the illegal date 031232 will be corrected to 040101.

Example	 In this example the weekday for the current date is printed on the screen
of the host (another way is to use NAME WEEKDAY$ statement and
WEEKDAY$ function):

	 10	 B$=DATE$
	 20	 A% = WEEKDAY (B$)
	 30	 IF A% = 1 THEN PRINT "MONDAY"
	 40	 IF A% = 2 THEN PRINT "TUESDAY"
	 50	 IF A% = 3 THEN PRINT "WEDNESDAY"
	 60	 IF A% = 4 THEN PRINT "THURSDAY"
	 70	 IF A% = 5 THEN PRINT "FRIDAY"
	 80	 IF A% = 6 THEN PRINT "SATURDAY"
	 90	 IF A% = 7 THEN PRINT "SUNDAY"
	 RUN
								 yields for example:
	 THURSDAY

294	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

WEEKDAY$

Purpose	 Returning the name of the weekday from a specified date.

Syntax	 WEEKDAY$(<sexp>)

<sexp>	 is the date for which the name of the weekday, according to a
list of weekday names created by means of NAME WEEKDAY$
statement , will be returned.

Remarks	 This function returns the name of the weekday according to a list of week-
day names specified by means of NAME WEEKDAY$ statement or—if
the name is missing—the full English name in lowercase characters, for
example “friday".

	 The date should be entered according to the syntax for the DATE$ vari-
able, that is in the following order:

	 YY	 =	 Year	 Last two digits	 (for example 2003 = 03)
	 MM	 =	 Month	 Two digits	 (01-12)
	 DD	 =	 Day	 Two digits	 (01-28|29|30|31)
	 Example: December 1, 2003 is entered as "031201".

	 The built-in calendar corrects illegal values for the years 1980-2048, for
example the illegal date 031232 will be corrected to 040101.

 Example	 This example shows how to make the printer return the name of the week-
day as a three-letter English abbreviation in connection with a formatted
date:

	 10	 FORMAT DATE$ ", MM/DD/YY"
	 20	 DATE$="031201"
	 30	 NAME WEEKDAY$ 1, "Mon"
	 40	 NAME WEEKDAY$ 2, "Tue"
	 50	 NAME WEEKDAY$ 3, "Wed"
	 60	 NAME WEEKDAY$ 4, "Thu"
	 70	 NAME WEEKDAY$ 5, "Fri"
	 80	 NAME WEEKDAY$ 6, "Sat"
	 90	 NAME WEEKDAY$ 7, "Sun"
	 100	 PRINT WEEKDAY$ (DATE$) + DATE$("F")
	 RUN	
	 yields:
	 MON, 12/01/03

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	295

Chapter 2—Program Instructions

WEEKNUMBER

Purpose	 Function returning the number of the week for a specified date.

Syntax	 WEEKNUMBER(<sexp>[,<nexp])

<sexp>	 is the date for which the week number will be returned (1-53).
<nexp>	 specifies the calculating function (0-14) as listed below. Default is

0.

Remarks	 WEEKNUMBER calculating function:

<nexp>	 Week #1 starts...		

0	 according to ISO 8601 (European standard):
	 •	 week #1 will start on the last Monday at or before the New Year, if 		
	 January 1 occurs on a Monday, Tuesday, Wednesday, or Thursday.
	 •	 week #1 will start on the first Monday after the New Year, if January
		 1 occurs on a Friday, Saturday, or Sunday.	
1	 at Sunday in the first week with 7 days in the actual year 	
2	 at January 1:st, with each following week starting on a Sunday
3	 at Monday in the first week with 7 days in the actual year
4	 at January 1:st, with each following week starting on a Monday
5	 at Tuesday in the first week with 7 days in the actual year
6	 at January 1:st, with each following week starting on a Tuesday
7	 at Wednesday in the first week with 7 days in the actual year
8	 at January 1:st, with each following week starting on a Wednesday
9	 at Thurday in the first week with 7 days in the actual year
10	 at January 1:st, with each following week starting on a Thursday
11	 at Friday in the first week with 7 days in the actual year
12	 at January 1:st, with each following week starting on a Friday
13	 at Saturday in the first week with 7 days in the actual year
14	 at January 1:st, with each following week starting on a Saturday

	 The date should be entered according to the syntax for the DATE$ vari-
able, that is in the following order:

	 YY	 =	 Year	 Last two digits	 (for example 2003 = 03)
	 MM	 =	 Month	 Two digits	 (01-12)
	 DD	 =	 Day	 Two digits	 (01-28|29|30|31)
	 Example: December 1, 2003 is entered as "031201".

	 The built-in calendar corrects illegal values for the years 1980-2048, for
example the illegal date 031232 will be corrected to 040101.

Examples	 This example returns the week number of December 29, 2002 using calcu-
lating function 2:

	 PRINT WEEKNUMBER ("031229",2)
								 yields for example:
	 53

296	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

WHILE...WEND

Purpose	 Statement for executing a series of statements in a loop providing a given
condition is true.

Syntax	 WHILE <nexp>
	 <stmt>
	 [...<stmt>]
	 WEND

<nexp>	 is a numeric expression that is either TRUE (-1) of FALSE (0).
<stmt>	 is a statement, or a list of statements on separate lines, that will

be executed provided <nexp> is TRUE.

Remarks	 If <nexp> is TRUE, all following statements will be executed successively
until a WEND statement is encountered. The program execution then
goes back to the WHILE statement and repeats the process, provided
<nexp> still is TRUE.

	 If <nexp> is FALSE, the execution resumes at the statement following the
WEND statement.

	 WHILE...WEND statements can be nested. Each WEND matches the
most recent WHILE statement.

Example	 In this example, the WHILE...WEND loop will only be executed if the
character “Y” (ASCII 89 dec.) is entered on the keyboard of the host.

	 10	 B%=0
 	 20	 WHILE B%<>89
 	 30	 INPUT "Want to exit? Press Y=Yes or N=No ",A$
 	 40	 B%=ASC(A$)
 	 50	 WEND
 	 60	 PRINT "The answer is Yes"
 	 70	 PRINT "You will exit the program"
 	 80	 END
 	 RUN
	 yields:
	 Want to exit? Press Y=Yes or N=No N
	 Want to exit? Press Y=Yes or N=No Y
	 The answer is Yes
	 You will exit the program

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	29 7

Chapter 2—Program Instructions

XORMODE ON/OFF

Purpose	 Statement for enabling or disabling the xor/flip mode of Intermec Finger-
print in connection with graphical operations.

Syntax	 XORMODE ON|OFF

Remarks	 When XORMODE is set ON, dots are reversed, as opposed to set, by all
graphical operations except bar codes. This means that if, for example two
black lines cross, the intersection will be white. If XORMODE is set to
OFF, the intersection will be black.

	 Default is XORMODE OFF. XORMODE is automatically set to default
when a PRINTFEED statement is executed or a Fingerprint program has
been successfully run.

Example	 The following program illustrates the difference between XORMODE
ON and XORMODE OFF. The two lines to the left are drawn with XOR-
MODE disabled and the lines to the right with XORMODE enabled.

	 10	 XORMODE OFF
	 20	 PRPOS 0,50
	 30	 PRLINE 300,30
	 40	 DIR 4
	 50	 PRPOS 100,0
	 60	 PRLINE 200,30
	 70	 XORMODE ON
	 80	 DIR 1
	 90	 PRPOS 400,50
	 100	 PRLINE 300,30
	 110	 DIR 4
	 120	 PRPOS 500,0
	 130	 PRLINE 200,30
	 140	 PRINTFEED
	 RUN

298	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

External Command; Account Secret

Purpose	 Creating an Account Secret for use with the TRANSFER NET statement.

Syntax	 secret [-t]<application> <name> <string>	 (create a secret)

	 For user /admin/ two more functions are available:

	 secret –rm <application> <name>	 (delete a secret)
	 secret –l	 (list all secrets)

-t 	 Temporary (will be removed at next reboot). Optional.
-rm	 Remove
-l	 List
<application> 	 ftp
<name>	 is the name of secret.
<string>	 is the secret string.
	

Remarks	 The user may not want to have his/her username and password in plain
text in a Fingerprint program. Instead of writing the account info in the
URI, the <account secret> parameter of TRANSFER NET can be used.
The account secret holds the secret information and cannot be read by any
user.

	 For the application ftp, <string> should have the following structure:
	 <user>[:passwd]@<server> where <server> is:
 	 <server name>|<server name>:<port number>|*
	 If <server> is set to “*”, the server name supplied in the URI will be

used. This means that this account secret can be used with any server.

	 Account info, that is, user, password, server name and port number, can
be stated in both the account secret and the URI. Any parameter supplied
in the account secret will have precedence over parameters supplied in the
URI. This means that if, for example, the URI states that port 25 should
be used and the account secret says port 21, then port 21 will be used.

Examples	 Create a temporary account secret, my_account, and use it to send the file
beta1.bin in directory /tmp to the server TheServer. The sent file will get
the name beta1.bin and will be put in the home directory of myusername
on TheServer.

	 First of all, set SYSVAR(43) to 1 to avoid file name conversion:
SYSVAR(43)=1

	 RUN "secret –t ftp my_account myusername:mypass-
word@*"

	 TRANSFER NET "/tmp/beta1.bin","ftp://TheServer/",
"my_account"

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	299

Chapter 2—Program Instructions

External Command; Account Secret, cont.	
	 Create a permanent account secret, frodo, and use it to send the file

MY.TXT in the current directory to the server Frodo. The file YOUR.
TXT will be put in the directory /absolute/path/.

	 RUN "secret ftp frodo frodo_username:frodo_pass-
word@Frodo"

	 TRANSFER NET "MY.TXT","ftp://Frodo//absolute/
path/YOUR.TXT","frodo"

	 The server name in the URI will not be used since there is a server name in
the account secret. Hence the two following command lines will have the
same effect:

	 TRANSFER NET "MY.TXT",ftp://What_ever//absolute/
path/YOUR.TXT,"frodo"

	 and
	 TRANSFER NET "MY.TXT","ftp:////absolute/path/

YOUR.TXT","frodo"

300	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 2—Program Instructions

External Command; ZMODEM

Purpose	 External commands for receiving and sending data using the ZMODEM
protocol.

Syntax	 RUN "rz [<switches>] [<filename>]"	 (receive data)

<switches>:	
-c	 Forces no crash recovery, even if sender requests ZCRESUM

(resume interrupted file transfer).
-e	 Print last error to std OUT channel.
-l[<logfile>]	 Send verbose output to logfile. Default logfile name is "tmp:.

zmodemlog".
-r	 If ZMCLOB is not set and the file already exists, replace file if the

transfer is successful.
-v[<level>]	 Set verbosity level. Level is a decimal number. Default level is 1.
-u	 Translate file name to uppercase. If a filename is given as para-

meter, no translation is done.
<filename>	 is optionally the name under which the file will be saved.

	 RUN "sz [<switches>] [<filename>]"	 (send data)

<switches>:	
-l[<logfile>]	 Send verbose output to logfile. Default logfile name is "tmp:.

zmodemlog".
-v[<level>]	 Set verbosity level. Level is a decimal number. Default level is 1.
<filename>	 is the name of the file.

Remarks	 Note that rz and sz must be entered in lowercase characters.

	 If a file name is given in the rz statement, this name overrides the name
given by the transmitting unit.

	 For more information on the ZMODEM protocol, please refer to
http://www.omen.com. Related instruction is TRANSFER ZMODEM.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	3 01

3 Image Transfer

This chapter describes the various image transfer file protocols used in
Intermec Fingerprint v8.70.0 and v10.0.0.

302	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 3—Image Transfer

Protocols
The following five image transfer file protocols are used in connection with
the STORE IMAGE statement and use a common format for the image
data, as descibed on next page.

Intelhex	 Intel hex [Intel Hexadecimal Intellec 8/MDS (I_hex) file format] is a well-
known standard format for transfer of bitmap images. Please refer to the
standard literature on the subject.

Note that:
• Hex digits in Intelhex frames must be uppercase.
• Null frames may be omitted.
• Frames can be received in any order.
• Maximum file size is 64 kbytes.

UBI00	 Each frame contains:

<data bytes>

<data bytes>	 Binary images. Modulo 2 bytes.

UBI01	 Each frame of data contains:

 <data bytes> <checksum>

<data bytes>	 Binary images. Modulo 2 bytes.
<checksum>	 Modulo 65536 byte-wise sum of what is defined in protocol of

“data bytes.”
	 2 byte binary. MSB, LSB.

UBI02	 Each frame of data contains:

<number of data bytes> <data bytes> <checksum>

<number of data bytes>	 2 bytes binary. MSB, LSB.
<data bytes>	 Binary images. Modulo 2 bytes.
<checksum>	 Modulo 65536 byte-wise sum of what is defined in protocol of

“number of data bytes” and “data bytes.”
	 2 byte binary. MSB, LSB.

UBI03	 Each frame of data contains:

 <start of frame id.> <number of data bytes> <data bytes> <checksum>

<start of frame id.>	 1 byte (ASCII 42 dec = "*").
<number of data bytes>	 2 bytes binary. MSB, LSB.
<data bytes>	 Binary images. Modulo 2 bytes.
<checksum>	 Modulo 65536 byte-wise sum of what is defined in protocol of

“start of frame id” and “number of data bytes” and ”data bytes.”
	 2 byte binary. MSB, LSB. 	

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	3 03

Chapter 3—Image Transfer

Image Format

The following image format is valid for Intelhex, UBI00, UBI01, UBI02,
and UBI03 image transfer protocols, but not for the UBI10 protocol,
which is a combined image transfer protocol and format.

A bitmap picture can be encoded in one of two ways, as a plain bit repre-
sentation or encoded with a Run Lenght Limited (RLL) algoritm.

Pictures can be magnified, by the printer, up to four times independently
in both x and y directions.

The pictures can be rotated 180 degres by the printer (that is printed
upside-down.) To print a bitmap in all four directions you have to define
two bitmaps, one straight and one rotated 90 degrees. To comply with
the Intermec Fingerprint convention, use the extension .1 for the straight
bitmap and extension .2 for the rotated one.

Bitmap pictures, in both encoding schemes, are printed with the lowest
address first, that is the first row of defined data is the first thing out. (This
may be somewhat confusing. The only result, if you misinterpret this, is
that your picture will come out upside-down.)

Bitmap pattern, bit representation
The bitmap picture is encoded word oriented (16 bits), low byte first. The
bits in each byte is read from lsb first (bit 0.)

Bitmap pattern, Run Lenght Limited (RLL)
RLL encoding is a very efficient way of compressing big bitmaps with rela-
tively big black and/or white areas.

The RLL encoded picture is encoded byte oriented (8 bits.) Each byte
represents the number of consecutive black or white dots. The sum of bytes
for each row must equal the width of the pattern. The first byte represent
white dots, the second black and so on. The last byte must alter the color
back to white. If the first dot is black just enter a zero first. Valid values for
dot fields is 0 to 127 (0 to 7f hex.) To get a row longer then 127, con-
catenate two rows with zero, for example to get a row of 240 dots, enter
128,0,112.

The next step in our RLL encoding algoritm is to compress identicals rows,
two identical rows are compressed by adding a byte in both ends of the dot
row, the valid range for these bytes are -1 to -128 (ff to 80 hex.)

304	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 3—Image Transfer

Example 1: Bitmap encoding
To clarify this, lets try a simple example. X’s represent black dots in the
final printout. The pattern shown is 22 bits wide and 28 rows high.

Note:

•	 The bit order in each byte. Note also word fill to nearest word (16 bit).

•	 To the right is a hex representation of the pattern, as it would appear in
a memory dump.

•	 To get the pattern to appear as printed on this page with direction one,
the last row (row 27) should have the lowest address.

 |byte 3 |byte 2 |byte 1 |byte 0 |
 76543210765432107654321076543210

row 0XXXXXXXXXXXXXXXXXXXXXX		 ff,ff,3f,00
	 1X....................X		 01,00,20,00
 2X..............XX....X		 61,00,20,00
 3X.............X.X....X		 a1,00,20,00
 4X............X..X....X		 21,01,20,00
 5X...........X...X....X		 21,02,20,00
 6X..........X....X....X		 21,04,20,00
 7X.........X.....X....X		 21,08,20,00
 8X........X......X....X		 21,10,20,00
 9X...... X.......X....X		 21,20,20,00
 10X......X........X....X		 21,40,20,00
 11X.....X.........X....X		 21,80,20,00
 12X....X..........X....X		 21,00,21,00
 13X...X...........X....X		 21,00,22,00
 14X..X............X....X		 21,00,24,00
 15X.X.............X....X		 21,00,28,00
 16X.XXXXXXXXXXXXXXXXXX.X		 fd,ff,2f,00
 17X...............X....X		 21,00,20,00
 18X...............X....X		 21,00,20,00
 19X...............X....X		 21,00,20,00
 20X...............X....X		 21,00,20,00
 21X...............X....X		 21,00,20,00
 22X...............X....X		 21,00,20,00
 23X...............X....X		 21,00,20,00
 24X...............X....X		 21,00,20,00
 25X.............XXXXX..X		 f9,03,20,00
 26X....................X		 01,00,20,00
 27...........XXXXXXXXXXXXXXXXXXXXXX		 ff,ff,3f,00

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	3 05

Chapter 3—Image Transfer

Example 2: RLL Encoding
To clarify this, lets try a simple example. X’s represent black dots in the
final print out. The pattern shown is 22 bits wide and 32 rows high.

Note:

•	 Notice the reverse byte order. Count dots from right.

•	 To the right is a decimal representation of the pattern.

•	 To get the pattern to appear as printed on this page with direction one,
the last row (row 27) should have the lowest address. Row 18 until 24 is
repeted by the data in row 17.

row 0 XXXXXXXXXXXXXXXXXXXXXX		 0,22,0
	 1 X....................X		 0,1,20,1,0
	 2 X..............XX....X		 0,1,4,2,14,1,0
	 3 X.............X.X....X		 0,1,4,1,1,1,13,1,0
	 4 X............X..X....X		 0,1,4,1,2,1,12,1,0
	 5 X...........X...X....X		 0,1,4,1,3,1,11,1,0
	 6 X..........X....X....X		 0,1,4,1,4,1,10,1,0
	 7 X.........X.....X....X		 0,1,4,1,5,1,9,1,0
	 8 X........X......X....X		 0,1,4,1,6,1,8,1,0
	 9 X...... X.......X....X		 0,1,4,1,7,1,7,1,0
 10 X......X........X....X		 0,1,4,1,8,1,6,1,0
 11 X.....X.........X....X		 0,1,4,1,9,1,5,1,0
 12 X....X..........X....X		 0,1,4,1,10,1,4,1,0
 13 X...X...........X....X		 0,1,4,1,11,1,3,1,0
 14 X..X............X....X		 0,1,4,1,12,1,2,1,0
 15 X.X.............X....X		 0,1,4,1,13,1,1,1,0
 16 X.XXXXXXXXXXXXXXXXXX.X		 0,1,1,18,1,1,0
 17 X...............X....X		 -8,0,1,4,1,15,1,0,-8
 18 X...............X....X		
 19 X...............X....X		
 20 X...............X....X		
 21 X...............X....X		
 22 X...............X....X		
 23 X...............X....X		
 24 X...............X....X		
 25 X.............XXXXX..X		 0,1,2,5,13,1,0
 26 X....................X		 0,1,20,1,0
 27 XXXXXXXXXXXXXXXXXXXXXX		 0,22,0
 28X...........		 -4,11,1,10,-4
 29X...........
 30X...........
 31X...........
 32XXXXXXXXX.......		 7,9,6

306	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 3—Image Transfer

UBI10
UBI10 is a combined protocol/file format for image transfer, as opposed to
Intelhex and UBI00-UBI03 protocols described earlier in this chapter.

Protocol Description
	 !BG ↵	 	 	 	 	 	
	 !X<pos>A ↵	 	 	 	 	
	 !Y<pos>A ↵	 	 	 	 	
	 !X<pos>A | !Y<pos>A !SB<bytes>W<data>	 	 	
	 !X<pos>A | !Y<pos>A !SB<bytes>W<data>	 	 	
	 !X<pos>A | !Y<pos>A !SB<bytes>W<data>	 	 	
	
	 !X<pos>A | !Y<pos>A !SB<bytes>W<data>!EG ↵	 	
	 !PRINT ↵	 	 	 	 	

Frame Definitions
The width of the image in the STORE IMAGE statement should be given
as a multiple of 16 bits.

!BG	 Begin graphics.
	 Always appended by a carriage return character.
!X<pos>A	 Set absolute x position <pos>.
	 The value must be divisible by 8.
	 Default value is 0.
	 Once set, it will affect all consecutive y-positions

in the image, until a new x-position is set.
	 Appended by a carriage return character, unless

followed by a !SB<bytes>W<data> string on the
same line.

!Y<pos>A	 Set absolute y position <pos>.
	 Default value is 0.
	 Appended by a carriage return character, unless

followed by a !SB<bytes>W<data> string on the
same line.

!SB<bytes>W<data>	 Send one line of bitmap with <bytes> number of
bytes. <data> is bitmap bytes.

	 Can be preceded by a new x- and/or y-position.
	 If appended by a carriage return character, next

!SB set of data will be positioned at the current
y-position incremented by 1.

	 If no appending carriage return character is used,
a new y-position must be specified for next !SB
set of data.

!EG	 End graphics.
	 Always appended by a carriage return character.

!PRINT	 End page (end frame).
	 Always appended by a carriage return character.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	3 07

Chapter 3—Image Transfer

	
	

The image illustrated above contains 2 bytes (= 16 bits) in each horizontal
line. By setting the absolute start position to x = 8, you can start counting
from the start of the second byte, that is x = 8 in the matrix above. The
first 3 bits (x-positions) are white, then comes one black bit followed by
three white bits, and finally one black bit. Expressed in 0:s and 1:s, where 0
represents a white bit and 1 a black bit, the pattern will be 00010001. This
binary number can be expressed as 11 hex. The same pattern is repeated
for each y-position from y = 1 thru y = 7 with the exception of position y
= 4, where all bits are black except for the leading three, i.e. the pattern is
00011111, which can be expressed as 1F hex. Use this hexadecimal values
as input data as shown in the example below.

Example	 The simplified image above is transmitted to the printer. Do not use XON/
XOFF (11 hex/13 hex) protocol, since these characters may coincide with
input data. Use RTS/CTS instead. Do not strip LF.

	 10	 STORE OFF
	 20	 OPEN ”uart1:” FOR INPUT AS #1
	 30	 QNAME$=”H.1”
	 40	 QWIDTH%=16
	 50	 QHEIGHT%=10
	 60	 QPRO$=”UBI10”
	 70	 STORE IMAGE QNAME$,QWIDTH%,QHEIGHT%,QPROT$
	 80	 STORE INPUT 900,4: ’Timeout 9 sec.
	 90	 CLOSE#1
	 100	 STORE OFF
	 RUN

	 The input string in line 80 should contain the following data. Carriage
returns (↵) after each !SB set of data increments the y-position by 1 in
consecutive order. It may also be sent as a continuous string.

	 !BG ↵						 (Begin graphic)
	 !X8A ↵	 (Set x-position)
	 !Y1A!SB1W<11 hex> ↵	 (Set y-position + data for y = 1)
	 !SB1W<11 hex> ↵	 (Data for y = 2)
	 !SB1W<11 hex> ↵	 (Data for y = 3)
	 !SB1W<1F hex> ↵	 (Data for y = 4)
	 !SB1W<11 hex> ↵	 (Data for y = 5)
	 !SB1W<11 hex> ↵	 (Data for y = 6)
	 !SB1W<11 hex>!EG ↵	 (Data for y = 7 + end graphics)
	 !PRINT ↵	 (End frame)

308	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 3—Image Transfer

PRBUF Protocol
The PRBUF Protocol is designed for downloading bitmap print image data
directly from an application program, such as a Windows printer driver,
directly to the printer’s image buffer in connection with the PRBUF state-
ment.

The protocol consist of a two-byte header and a number of data bytes:

Header
Byte No 1. is always the @-sign (Commercial at; Unicode 0x0040) and
indicates start of the protocol header.

Byte No 2 is:
0	 Reserved (bitmap format)
1	 Reserved (RLL image format)
2	 RLL buffer format
3-255	 Reserved

RLL Buffer format
The RLL buffer format is optimized for use by Windows drivers. In most
cases the performance of the host outruns the performance of the printer,
so it is preferred to to do most of the processing in the host before sending
the job down to the printer.

-	 Data byte 1 & 2 specifies the pixelwidth (unsigned) of data in BIG
Endian format for one line.

-	 Data byte 3 & 4 specifies the pixelheight (unsigned) of the buffer when
it is expanded BIG Endian.

-	 Data byte 5-nn specifies the bitmap in RLL format.
	

Example of RLL buffer protocol header, 515x212 pixels hexdump:

40 02 02 03 00 d4

RLL format
The RLL format is good for black and white pixel runs. It compresses data
in both dimensions. It works well with one-dimensional bar codes, but
grayscales grow in size instead of shrinking. The format is symmetric so
that all pixel runs start and end with a white pixel and with line repetitions
whenever applicable. This makes the format possible to turn upside down.

The RLL format is specified on the next page.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	3 09

Chapter 3—Image Transfer

Specification of the RLL format
<begin><toggling pixelruns><end>

<- total width of RLL pattern ->

<begin>	 :=	 <linereps>|<small white pixelrun>

<end>	 :=	 <begin>|<empty>

<toggling pixelruns>	 :=	 <whiteAndBlack pixelruns>|
 		 <blackAndWhite pixelruns>|
 		 <white pixelrun>|<empty>
<whiteAndBlack pixelruns>	 :=	 <white pixelrun><black pixelrun>|
 		 <small white pixelrun><black pixelrun>

<blackAndWhite pixelruns>	 :=	 <black pixelrun><white pixelrun>

<linereps> 	 :=	 ((-1)-(-128))*-1 number of equal lines

<small white pixelrun> 	 :=	 0-127, number of white pixels

<black pixelrun> 	 :=	 0-255, number of black pixels

<white pixelrun> 	 :=	 0-255, number of white pixels

<empty>	 :=	 empty, extreme if the entire line fits in
one pixelrun.

If there is no line repetion, there does not have to be any line repeat. If the
pixelrun is out of range, it must be split into several runs.

Example of RLL format for an eight bit pattern:

-*-*-*-* 1,1,1,1,1,1,1,1,0 	 Note the last 0 to end with a white pixelrun
--*-*- 0,1,1,1,1,1,1,1,1 	 begins with a white pixelrun of 0 pixels
--**--** 2,2,2,2,0		 repetion, stopped with a white pixelrun of 0
 				 pixels
---- -2,0,2,2,2,2,-2 	 line and pixel repetions

Example of coding a black square of 800 dots to valid RLL format:
-128,0,255,0,255,0,255,0,35,0,-128
-128,0,255,0,255,0,255,0,35,0,-128
-128,0,255,0,255,0,255,0,35,0,-128
-128,0,255,0,255,0,255,0,35,0,-128
-128,0,255,0,255,0,255,0,35,0,-128
-128,0,255,0,255,0,255,0,35,0,-128
-32,0,255,0,255,0,255,0,35,0,-32

310	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 3—Image Transfer

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	3 11

4 Character Sets and Fonts

This chapter contains the various single-byte character sets, that can be
selected using the NASC statement. Printouts samples are shown in the
font “Swiss 721 BT”. Other fonts may not include all characters listed
in the character sets. A short description of the multi-byte character set
UTF‑8 is included. Other double-byte character sets are not included, but
are available separately on special request.
Printout samples are shown for the fifteen scaleable single-byte fonts
included in the Intermec Fingerprint v8.70.0/v10.0.0 firmware. It also
describes the method of creating font aliases and contains character sets for
the OCR-A, OCR-B, and DingDings fonts.
For more information on character sets and fonts, refer to the Intermec
Fingerprint v.8.xx, Font Reference Manual.

312	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 4—Character Sets and Fonts

Character Sets
The following information applies to all single-byte character sets:
•	 Characters between ASCII 00 decimal and ASCII 31 decimal are

unprintable control characters as listed below.
• 	Characters between ASCII 32 decimal and ASCII 127 decimal can

always be printed, regardless of 7-bit or 8-bit communication protocol,
provided that the selected font contains the characters in question.

•	 Characters between ASCII 128 decimal and ASCII 255 decimal can
only be printed if the selected font contains the characters in question
and an 8-bit communication protocol is used. If you use 7-bit commu-
nication, select another national character set (see NASC statement) or
use a MAP statement to remap a character set.

•	 If a character, which does not exist in the selected font, is used, an error
condition will occur.

Non-printable control characters (ASCII 00-31 dec)
ASCII	 Character	 Meaning			
00	 NUL	 Null			
01	 SOH	 Start of heading			
02	 STX	 Start of text			
03	 ETX	 End of text			
04	 EOT	 End of transmission			
05	 ENQ	 Enquiry			
06	 ACK	 Acknowledge			
07	 BEL	 Bell			
08	 BS	 Backspace			
09	 HT	 Horizontal tabulation			
10	 LF	 Line feed			
11	 VT	 Vertical tabulation			
12	 FF	 Form feed			
13	 CR	 Carriage Return			
14	 SO	 Shift out			
15	 SI	 Shift in			
16	 DLE	 Data link escape			
17	 DC1	 Device control one			
18	 DC2	 Device control two			
19	 DC3	 Device control three			
20	 DC4	 Device control four			
21	 NAK	 Negative acknowledge			
22	 SYN	 Syncronous idle			
23	 ETB	 End of transmission block			
24	 CAN	 Cancel			
25	 EM	 End of medium			
26	 SUB	 Substitute			
27	 ESC	 Escape			
28	 FS	 File separator			
29	 GS	 Group separator			
30	 RS	 Record separator
31	 US	 Unit separator

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	3 13

Chapter 4—Character Sets and Fonts

Roman 8 Character Set	 NASC 1

0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

314	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 4—Character Sets and Fonts

French Character Set	 NASC 33

0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	3 15

Chapter 4—Character Sets and Fonts

Spanish Character Set	 NASC 34

0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

316	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 4—Character Sets and Fonts

Italian Character Set	 NASC 39

0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	3 17

Chapter 4—Character Sets and Fonts

English (UK) Character Set	 NASC 44

0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

318	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 4—Character Sets and Fonts

Swedish Character Set	 NASC 46

0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	3 19

Chapter 4—Character Sets and Fonts

Norwegian Character Set	 NASC 47

0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

320	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 4—Character Sets and Fonts

German Character Set	 NASC 49

0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	32 1

Chapter 4—Character Sets and Fonts

Japanese Latin Character Set	 NASC 81

0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

322	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 4—Character Sets and Fonts

Portuguese Character Set	 NASC 351

0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	323

Chapter 4—Character Sets and Fonts

PCMAP Character Set	 NASC -1

0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

324	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 4—Character Sets and Fonts

ANSI Character Set	 NASC -2

0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	325

Chapter 4—Character Sets and Fonts

MS-DOS Latin 1 Character Set	 NASC 850

0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

326	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 4—Character Sets and Fonts

MS-DOS Greek 1 Character Set	 NASC 851

0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	32 7

Chapter 4—Character Sets and Fonts

MS-DOS Latin 2 Character Set	 NASC 852

0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

328	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 4—Character Sets and Fonts

MS-DOS Cyrillic Character Set	 NASC 855

0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	329

Chapter 4—Character Sets and Fonts

MS-DOS Turkish Character Set	 NASC 857

0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

330	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 4—Character Sets and Fonts

Windows Latin 2 Character Set	 NASC 1250

0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	33 1

Chapter 4—Character Sets and Fonts

Windows Cyrillic Character Set	 NASC 1251

0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

332	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 4—Character Sets and Fonts

Windows Latin 1 Character Set	 NASC 1252

0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	333

Chapter 4—Character Sets and Fonts

Windows Greek Character Set	 NASC 1253

0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

334	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 4—Character Sets and Fonts

Windows Latin 5 Character Set	 NASC 1254

0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	335

Chapter 4—Character Sets and Fonts

Windows Baltic Rim Character Set	 NASC 1257

0

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

336	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 4—Character Sets and Fonts

UTF-8 Character Set
The UTF-8 (Universal character set Transformation Format-8) was devised
to be a character set which encodes all Unicode characters while maintain-
ing compatibility with the US-ASCII (0 to 127 dec.) range of characters.
The UTF-8 character set is available from Fingerprint v8.50. UTF-8 data
is encoded with 1, 2, 3 or 4 bytes, depending on the character number
range. The table below shows the UTF-8 binary sequences corresponding
to the Unicode character number. Characters requiring a UTF-8 sequence
of four bytes are currently not supported.

Unicode character number range UTF-8 Byte sequence

Hex range Binary Binary
0000-007F x7x6x5x4x3x2x1 0x7x6x5x4x3x2x1

0080-07FF y5y4y3y2y1x6x5x4x3x2x1 110y5y4y3y2y1 10x6x5x4x3x2x1

0800-FFFF z4z3z2z1y6y5y4y3y2y1x6x5x4x3x2x1 1110z4z3z2z1 10y6y5y4y3y2y1 10x6x5x4x3x2x1

010000-
10FFFF

Not currently supported.

The following table outlines the procedure to convert a Unicode character
code in hexadecimal format to the UTF-8 byte decimal value necessary to
print the characters.

Procedure explanation Example
Identify your desired character and its
Unicode Hex value. Identify the range it
belongs to in order to find the number of
bytes necessary for UTF-8 encoding, see
table above.

Cyrillic capital letter ZHE: Ж
Hex value: 0416

0416 is in the range 0080-07FF and
requires thus two bytes to be encoded.

Convert to binary 10000010110
Identify xi and yj bits (and zk if applicable)
as shown in the table above. Start from the
least significant digits to the right and pad
with zeroes to the left if necessary.

1 1 0 y 5y 4y 3y 2y 1 1 0 x 6x 5x 4x 3x 2x 1

Convert the bytes to decimal format and
use these in your print command.

208 150
prtxt chr$(208)+chr$(150)

Note: The conversions between hex-binary-decimal can be done with most
scientific calculators (for example the Windows calculator).

The UTF-8 character set is invoked using NASC 8, NASC "UTF-8" or
NASCD "UTF-8". When selecting UTF-8 with the NASC command, the
font must be selected with the FONT command. Disable UTF-8 encoding
by choosing a different character set with the NASC command.

Use FONTD to select the desired font if you invoke UTF-8 with the
NASCD command. Having selected UTF-8 with the NASCD command,
you must actively disable it with NASCD "" before returning to a single-
byte character set.

Note: In order to avoid confusion between active character sets and fonts,
it is recommended that you use only the NASC and FONT commands

1 1 0 1 00 0 0 0 0 0 01 1 1 1

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	33 7

Chapter 4—Character Sets and Fonts

when working with UTF-8 unless you have experience with the NASCD
and FONTD commands.

When using UTF-8, it is important that the font contains the desired
characters. Complete lists of characters included in pre-installed fonts can
be found in the Intermec Fingerprint, Font Reference Manual. The default
font, Swiss 721 BT, contains the largest number of glyphs of the pre-instal-
led fonts. More information on addding fonts to the printer can be found
under the FONT command in Chapter 2. Unicode character numbers can
be found at the web site of the Unicode organization (www.unicode.org).

It is not recommended to have UTF-8 enabled when printing bar codes
since bar code data will use the UTF-8 byte sequence as input, while the
human readable uses the UTF-8 mapped character number.

Note: Recall that FONT and FONTD commands are reset to their
defaults after a PRINTFEED (or CLL) command. That is not the case for
NASC and NASCD commands.

Example	 The following example will print the Hiragana Letter Small A character
(Unicode hex 3041), corresponding to the UTF-8 sequence 227 dec.
+ 129 dec. + 129 dec., in the Song font . This is followed by the Cyrillic
Capital Letter ZHE (Unicode hex 0416) in the Swiss 721 BT font.

	 10	 NASC "UTF-8"
	 20	 FONT "Song"
	 30	 PRTXT CHR$(227)+CHR$(129)+CHR$(129)
	 40	 PRTXT " = Hiragana Letter Small A"
	 50	 PRPOS 0,35
	 60	 FONT "Swiss 721 BT"
	 70	 PRTXT CHR$(208)+CHR$(150)
	 80 	 PRTXT " = Cyrillic Capital Letter ZHE"
	 90	 PRINTFEED

338	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 4—Character Sets and Fonts

Scaleable Fonts
The printer comes with 15 pre-installed scaleable fonts. The printout
samples below are in 10 point size, no slant, and 100% width. The quality
of these samples does not exactly correspond to the printout quality from
your printer, which is affected by printhead density, printing method, type
of media and ribbon, and a number of other factors.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	339

Chapter 4—Character Sets and Fonts

Bitmap Fonts
It is possible to use fonts in the “old” Intermec .ATF bitmap font format.
This feature improves compatibility with custom-made programs originally
created in Fingerprint v6.xx or earlier versions.

Downloading an .ATF font (for example XX030RSN.ATF) to the
printer produces three fonts in the memory; one without any exten-
sion (for example XX030RSN), one with the extension .1 (for
example XX030RSN.1), and one with the extension .2 (for example
XX030RSN.2). When using bitmap fonts in Fingerprint v8.xx, the rela-
tion between print direction and extension is of no consequence.

It is recommended to exclude the font height parameter in the FONT and
BARFONT statements and use MAG to enlarge the font. Slant does not
work at all with bitmap fonts.

Font Aliases
The standard font names in Intermec Fingerprint are much longer than in
earlier versions of Fingerprint and may be cumbersome to use. They are
also incompatible with the LAYOUT statement, which restricts the font
name to 10 characters.

However, it is possible to create a file containing a list of font aliases. The
file should be named exactly as shown here (note the leading period cha-
racter that specifies it as a system file):
"c:.FONTALIAS"

The format of the file should be:
"<Alias name #1>","<Name of font>"[,size[,<slant>[,<width>]]]

"<Alias name #2>","<Name of font>"[,size[,<slant>[,<width>]]]

"<Alias name #3>","<Name of font>"[,size[,<slant>[,<width>]]]

etc., etc.

The file can contain as many fontname aliases as required. The default size
is 12 points, the default slant is 0°, and the default width is 100 (%).

A font alias can be used as any other font, but its size, slant, and width
cannot be changed.

Note: The printer must be rebooted before the font alias can be used.

Examples:
"BODYTEXT","Century Schoolbook BT",10,0,80

"HEADLINE","Swiss 721 Bold BT",18,0,110

"WARNING","Swiss 721 BT",12

For more information on fonts and character sets, refer to the Intermec
Fingerprint v.8.xx, Font Reference Manual.

340	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 4—Character Sets and Fonts

OCR-A BT Character Set

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	34 1

Chapter 4—Character Sets and Fonts

OCR-B 10 Pitch BT Character Set

342	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 4—Character Sets and Fonts

DingDings SWA Character Set

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	343

5 Bar Codes

This chapter list the bar codes included in the Intermec Fingerprint
v8.70.0/v10.0.0 firmware and gives examples of some commonly used bar
codes.

344	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 5—Bar Codes

Introduction
The printer contains a number of bar code generators, which can produce
highly readable bar codes in four different directions.

However, a general rule which applies to all thermal printers is that it
is more difficult to print a bar code with the bars across the media path
(ladder style) than along the media path (picket fence style.) Therefore,
to ensure a highly readable printout, we recommend that you do not use
narrow bars less than 3 dots, when printing bar codes with the bars across
the media path (ladder style).

No such restrictions apply for bar codes with the bars along the media path
(picket fence style).

Another factor, that affects the printout quality of the bar codes, is the
print speed. Generally, a lower print speed gives a better quality, especially
for ladder style bar codes and at low ambient temperatures. Do not use
a higher print speed than necessary and consider the overall print cycle
time. In some instances, a lower print speed may actually give better overall
performance. We recommend you do your own tests with your unique
applications to find the best compromise between printout quality, perfor-
mance, and media.

Specifications for bar code symbologies can be obtained from organizations
like:

EAN International
http://www.ean-int.org

UCC - The Uniform Code Council, Inc. (UCC)
http://www.uc-council.org

AIM International, Inc.
http://www.aimi.org

American National Standard Institute (ANSI)
http://www.ansi.org

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	345

Chapter 5—Bar Codes

Supported Bar Codes
Bar Code									 Designation
Codabar	 "CODABAR"
Code 11	 "CODE11"
Code 16K	 "CODE16K"
Code 39	 "CODE39"
Code 39 full ASCII	 "CODE39A"
Code 39 w. checksum	 "CODE39C"
Code 49	 "CODE49"
Code 93	 "CODE93"
Code 128	 "CODE128"
Code 128 subset A	 "CODE128A"
Code 128 subset B	 "CODE128B"
Code 128 subset C	 "CODE128C"
Data Matrix	 "DATAMATRIX"
DUN-14/16	 "DUN"
EAN-8	 "EAN8"
EAN-8 Composite with CC-A or CC-B	 "EAN8_CC"
EAN-13	 "EAN13"
EAN-13 Composite with CC-A or CC-B	 "EAN13_CC"
EAN 128	 "EAN128"
EAN 128 subset A	 "EAN128A"
EAN 128 subset B	 "EAN128B"
EAN 128 subset C	 "EAN128C"
EAN.UCC 128 Composite with CC-A or CC-B	 "EAN128_CCAB"
EAN.UCC 128 Composite with CC-C	 "EAN128_CCC
Five-Character Supplemental Code	 "ADDON5"
Industrial 2 of 5	 "C2OF5IND"
Industrial 2 of 5 w. checksum	 "C2OF5INDC"
Interleaved 2 of 5	 "INT2OF5"
Interleaved 2 of 5 w. checksum	 "INT2OF5C"
Interleaved 2 of 5 A	 "I2OF5A"
Matrix 2 of 5	 "C2OF5MAT"
MaxiCode	 "MAXICODE"
MicroPDF417	 "MICROPDF417"
MSI (modified Plessey)	 "MSI"
Planet	 "PLANET"
PDF 417	 "PDF417"
Plessey	 "PLESSEY"
Postnet	 "POSTNET"
QR Code	 "QRCODE"
RSS-14	 "RSS14"
RSS-14 Truncated	 "RSS14T"
RSS-14 Stacked	 "RSS14S"
RSS-14 Stacked Omnidirectional	 "RSS14SO"
RSS-14 Limited	 "RSS14L"

346	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 5—Bar Codes

RSS-14 Expanded	 "RSS14E"
RSS-14 Expanded Stacked	 "RSS14ES"
Straight 2 of 5	 "C2OF5"
Two-Character Supplemental Code	 "ADDON2"
UCC-128 Serial Shipping Container Code	 "UCC128"
UPC-5 digits Add-On Code	 "SCCADDON"
UPC-A	 "UPCA"
UPC-A Composite with CC-A or CC-B	 "UPCA_CC"
UPC-D1	 "UPCD1"
UPC-D2	 "UPCD2"
UPC-D3 	 "UPCD3"
UPC-D4	 "UPCD4"
UPC-D5	 "UPCD5"
UPC-E	 "UPCE"
UPC-E Composite with CC-A or CC-B	 "UPCE_CC"
UPC Shipping Container Code	 "UPCSCC"

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	34 7

Chapter 5—Bar Codes

One-and Two-Dimensional Bar Codes
On the following pages, a quick survey of the characteristics of some of
the most common one- and two dimensional bar codes will be given.
This information is only intended to help you avoid entering unaccepta-
ble parameters or input data. For further information, please refer to the
standard literature on the subject of bar codes.
For simple bar codes, like EAN and UPC codes, it is recommended to
use separate instructions, whereas for for more complex bar codes like
MicroPDF417 or QR Code, the BARSET statement is required.

The following bar codes are described:

•	 Code 39

•	 Code 128

•	 Data Matrix

•	 EAN-8

•	 EAN-13

•	 EAN 128

•	 Interleaved 2 of 5

•	 MaxiCode

•	 MicroPDF417

•	 PDF417

•	 QR Code

•	 RSS-14	

•	 RSS-14 Truncated	

•	 RSS-14 Stacked	

•	 RSS-14 Stacked Omnidirectional	

•	 RSS-14 Limited	

•	 RSS-14 Expanded	

•	 RSS-14 Expanded Stacked	

•	 UPC-A

•	 UPC-E
Add-on codes and composite bar codes are described in separate sections
later in this chapter.

348	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 5—Bar Codes

Code 39

Separate Instructions

BARTYPE: "CODE39"
"CODE39A"
"CODE39C"

BARRATIO: 2:1-3:1. Default: 3:1
BARMAG: No restriction, but if the narrow element is less than 4 dots wide, then the

ratio must be larger than 2.25:1 (9:4). Default 2.
BARHEIGHT: No restriction. Default: 100.
BARFONT: No restriction

Input Data

No. of characters: Unlimited.
Check digit: No
Digits: 0-9
Uppercase letters: A-Z No national characters
Lowercase letters: No
Punctuation marks: - . space $ / + %
Start character: * Added automatically
Stop character: * Added automatically

Remarks	 Code 39 is an alphanumeric self-checking discrete code.

	 Code39A allows for the entire ASCII set to be encoded (128 characters).

	 Code39C allows characters that are not in the input set to be sent into the
symbol without error. The character will not be printed.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	349

Chapter 5—Bar Codes

Code 128

Separate Instructions

BARTYPE: "CODE128"
"CODE128A"
"CODE128B"
"CODE128C"

BARRATIO: Fixed. BARRATIO statement ignored.
BARMAG: ≥ 2. Default: 2.
BARHEIGHT: No restriction. Default: 100.
BARFONT: No restriction

BARSET Instruction

BARSET Instruction
[#<ncon>] Optionally specifies the start parameter in

the syntax
<sexp> Bar code type "CODE128"

"CODE128A"
"CODE128B"
"CODE128C"

<nexp1> Not applicable
<nexp2> Not applicable
<nexp3> Barmag/Enlargement < 128. Default: 2.
<nexp4> Barheight No restriction. Default: 100.
<nexp5> Not applicable
<nexp6> Character exclusion in bar code (does not

affect human readable)
0 = Disables parenthesis and spaces in
the bar code data.
Non-zero = the bar code and human
readable field will include exactly the
same data.

<nexp7> Not applicable
<nexp8> Not applicable
<nexp9> Not applicable
<nexp10> Not applicable

350	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 5—Bar Codes

Input Data
No. of characters: Unlimited
Check digit: One Added automatically.
Input characters: ASCII 0-127 According to Roman 8 character set.
Function characters FNC1 ASCII 128 dec.)

FNC2 ASCII 129 dec.)
FNC3 ASCII 130 dec.)
FNC4 ASCII 131 dec.)

See note 1.

Start characters: See note 2.
Code characters: See note 1 & 2
Shift characters: See note 1 & 2
Stop characters: Always Added automatically.

Remarks	 Note 1:
	 Function characters FNC1-4, code characters, and shift characters require

either an 8-bit communication protocol, remapping to an ASCII value bet-
ween 0-127 dec., or the use of an CHR$ function.

	 FNC2-4 are not allowed in Subset C.

	 Note 2:
	 Code 128 has automatic selection of start character and character subset

(that is, selects optimal start character and handles shift and changes of
subset depending on the content of the input data), whereas Code 128A,
Code 128B, and Code 128C selects subset A, B, and C respectively. The
last character in the bar code name signifies both the start character and
the chosen subset.

	 The selected subset can be changed anywhere in the input string, either
for a single character using a Shift character (not for Subset C), or for the
remainder of the input string using a Code character (all subsets).

	 The Shift and Code characters consist of a combination of two characters:

•	 Two left-pointing double angle quotation marks («) specify a Shift cha-
racter.

	 Shift character: 	 «« 		 (« = ASCII 171 dec.)

•	 One left-pointing double angle quotation mark («) specifies a Code
character. It should be followed by an uppercase letter that specifies the
subset:

	 Code character:	 « + A|B|C	 (« = ASCII 171 dec.)

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	35 1

Chapter 5—Bar Codes

Data Matrix

Separate Instructions

BARTYPE: "DATAMATRIX"
BARRATIO: Fixed. Values will be interpreted as BARMAG.
BARMAG: <128. Default 2.
BARHEIGHT: Not applicable
BARFONT: Not applicable

BARSET Instruction

BARSET Instruction
[#<ncon>] Optionally specifies the start parameter in

the syntax
<sexp> Bar code type "DATAMATRIX"
<nexp1> Not applicable
<nexp2> Not applicable
<nexp3> Barmag/Enlargement < 128. Default: 2.
<nexp4> Not applicable
<nexp5> Not applicable
<nexp6> Not applicable
<nexp7> Not applicable
<nexp8> Not applicable
<nexp9> Not applicable
<nexp10> Not applicable

Input Data

No. of characters: 2,335 ASCII characters Only A-Z & . , - / represented
Check digit: Yes Added automatically.
Input characters ASCII 0-255 decimal

Remarks	 Note 1:
ECC 200 type is used for this Datamatrix symbol. ECC 200 data may
be encoded using any of the encodation schemes ASCII, C40, Text, X12,
EDIFACT or Base 256. ASCII encodation is the basic scheme. All other
encodation schemes are invoked from ASCII encodation and return to this
scheme.

Note 2:
The number of characters will decide the size of symbol. For example data
“123456” will generate a 10 × 10 (rows, columns) Datamatrix symbol, and
72 digits will generate a 24 × 24 Datamatrix symbol. Less characters can be
used for all symbols (10 × 10, 12 × 12, .. , 144 × 144) if the data includes
non-numeric characters.

352	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 5—Bar Codes

EAN-8

Separate Instructions

BARTYPE: "EAN8"
BARRATIO: Fixed ratio. BARRATIO statement ignored.
BARMAG: Maximum 8. Default 2.
BARHEIGHT: No restriction. Default: 100.
BARFONT: Barfont generated automatically. BARFONT statement ignored.

BARFONT ON/OFF work.

Input Data

No. of characters: 7
Check digit: One Added automatically
Digits: 0-9
Uppercase letters: No
Lowercase letters: No
Punctuation marks: No
Start character: No
Stop character: No

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	353

Chapter 5—Bar Codes

EAN-13

Separate Instructions

BARTYPE: "EAN13"
BARRATIO: Fixed ratio. BARRATIO statement ignored.
BARMAG: Maximum 8. Default 2.
BARHEIGHT: No restriction. Default: 100.
BARFONT: Barfont generated automatically. BARFONT statement ignored.

BARFONT ON/OFF work.

Input Data

No. of characters: 12
Check digit: One Added automatically
Digits: 0-9
Uppercase letters: No
Lowercase letters: No
Punctuation marks: No
Start character: No
Stop character: No

354	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 5—Bar Codes

EAN 128

Separate Instructions

BARTYPE: "EAN128"
"EAN128A"
"EAN128B"
"EAN128C"

BARRATIO: Fixed. BARRATIO statement ignored.
BARMAG: ≥ 2. Default: 2.
BARHEIGHT: No restriction. Default: 100.
BARFONT: No restriction

BARSET Instruction

BARSET Instruction
[#<ncon>] Optionally specifies the start parameter in

the syntax
<sexp> Bar code type "EAN128"

"EAN128A"
"EAN128B"
"EAN128C"

<nexp1> Not applicable
<nexp2> Not applicable
<nexp3> Barmag/Enlargement < 128. Default: 2.
<nexp4> Barheight No restriction. Default: 100.
<nexp5> Not applicable
<nexp6> Character exclusion in bar code (does not

affect human readable)
0 = Disables parenthesis and spaces in
the bar code data.
Non-zero = the bar code and human
readable field will include exactly the
same data.

<nexp7> Not applicable
<nexp8> Not applicable
<nexp9> Not applicable
<nexp10> Not applicable

Input Data

No. of characters: Unlimited
Check digit: Trailing symbol check character Added automatically.
Input characters: ASCII 0-127 According to Roman 8 character set.
Start characters: See note 2.
Code characters: See note 1 & 2
Shift characters: See note 1 & 2
Stop characters: Always Added automatically.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	355

Chapter 5—Bar Codes

Remarks	 This bar code is identical to Code 128 with the exception that the initial
FNC1 function character is generated automatically.

Note 1:
Code characters and shift characters require either an 8-bit communication
protocol, remapping to an ASCII value between 0-127 dec., or the use of
an CHR$ function.

Note 2:
EAN 128 has automatic selection of start character and character subset
(that is, selects optimal start character and handles shift and changes of
subset depending on the content of the input data), whereas EAN 128A,
EAN 128B, and EAN 128C selects subset A, B, and C respectively. The
last character in the bar code name signifies both the start character and
the chosen subset.

The selected subset can be changed anywhere in the input string, either
for a single character using a Shift character (not for Subset C), or for the
remainder of the input string using a Code character (all subsets).

The Shift and Code characters consist of a combination of two characters:

•	 Two left-pointing double angle quotation marks («) specify a Shift charac-
ter.

	 Shift character: 	 «« 		 (« = ASCII 171 dec.)

•	 One left-pointing double angle quotation mark («) specifies a Code charac-
ter. It should be followed by an uppercase letter that specifies the subset:

	 Code character:	 « + A|B|C	 (« = ASCII 171 dec.)

356	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 5—Bar Codes

Interleaved 2 of 5

Separate Instructions

BARTYPE: "INT2OF5"
BARRATIO: 2:1-3:1. Default: 3:1
BARMAG: No restriction. Default 2.
BARHEIGHT: No restriction. Default: 100.
BARFONT: No restriction

Input Data

No. of characters: Unlimited.
Check digit: No
Digits: 0-9
Uppercase letters: No
Lowercase letters: No
Punctuation marks: No
Start character: Yes Added automatically
Stop character: Yes Added automatically

Remarks	 Interleaved 2 of 5 is a numeric code where input digits are encoded in
pairs. If an odd number of digits is entered, a leading zero will be added
automatically.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	35 7

Chapter 5—Bar Codes

MaxiCode

Separate Instructions

BARTYPE: "MAXICODE"
BARRATIO: Not applicable. Input ignored.
BARMAG: Not applicable. Input ignored.
BARHEIGHT: Not applicable. Input ignored.
BARFONT: Not applicable. Input ignored.
BARSET: Not applicable. Input ignored.

Remarks	 MaxiCode requires 8 fields of data separated by a LF character, which is
entered as CHR$(10). Regardless of which mode is chosen, all eight fields
must contain valid data and must be present in final in data string, see
table below

F
n
 = Field No, (mode n) = decoded by reader

F1 (mode 2&3): 	 5 Characters, numeric (mode 2) or
	 6 alphanumeric characters (mode3).
F2 (mode 2): 	 4 digits [0-9999]
F3 (mode 2&3): 	 Country code 3 digits [0-999]
F4 (mode 2&3): 	 Service class, 3 digits [0-999]
F5 (LPM mode 2,3,4,): 	 User defined message.
F6: 	 Mode selector, one digit [2|3|4].
F7: 	 Position in structured append, one digit [1-8]
F8: 	 Total number of symbols in structure, one digit
[1-8]
F8 in structured append is the trigger for structured append mode.

If F8 >1, the two first code word in secondary message will be a pad follo-
wed by position code word. F8 has higher precedence than F7.

If F7 >1when F8 = 1, the two first codeword will not signal structured
append.

If F8 >1, F7 may be >F8 without error and structured append codeword will
signal given values.

No of characters:	 Up to 84 on mode 2 & 3 or up to 138 in mode
4.

Check character:	 Automatically, Reed-Solomon algorithm.

Data type:	 ASCII 0-255

358	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 5—Bar Codes

Summary	 	 	 	 Mode 2	 Mode 3	 Mode 4
	 	 	 	 Structured data message	 Structured data message	 Standard
	 	 	 	 for US Destinations	 for International Destinations	 Symbol
Data element	 Length	 Type	 Sample
Primary Message
Zip code + 4 digit extension	 Mode 2: 9	 Numeric (mode2)	 Mode 2: 152392802	
	 Mode3: 6	 Alphanumeric (mode 3)	 Mode 3: B1050↔	 Mandatory	 Mandatory	 N/A
Country Code	 3	 Numeric	 840	 Mandatory	 Mandatory	 N/A
Service Class	 3	 Numeric	 001	 Mandatory	 Mandatory	 N/A
Secondary Message	 84/138	 Alphanumeric	 This is the secondary	
	 	 	 message
Header (optional)1	 9	 Numeric	 [)R

S
01G

S
97	 Optional	 Optional	 N/A

Sample data streams as	 	 	 	 [)R
S
01G

S
979820	 [)R

S
01G

S
97B105

decoded by scanner	 	 	 	 39280G
S
840G

S
001	 0_G

S
056G

S
999G

S
	 	 	 	 G

S
SECONDARY MESSAGE	 SECONDARY MESSAGE

1/. Header is encoded into secondary message.

Example	 This example shows how the following information is used to create a
MaxiCode symbology:

	 Zip Code:	 84170
	 Zip Code Extension:	 1280
	 Country Code:	 840
	 Class of Service:	 001
	 Message Header:	 [)><RS>01
	 Year:	 96
	 Tracking Number:	 1Z12345675
	 SCAC:	 UPSN
	 UPS Shipper Number:	 12345E
	 Julian Day of Pickup:	 089
	 Shipment ID:	 1324567
	 Package:	 1/1
	 Weight:	 10.1
	 Address Validation:	 Y
	 Ship to Street:	 1 Main ST
	 Ship to City:	 PITTSBURGH
	 Ship to State:	 PA

10	PRPOS 100,100
20	DIR 1
30	ALIGN 1
40	a$="84170"+CHR$(10)+"1280"+CHR$(10)+"840"+		

CHR$(10)+"001"+CHR$(10)+"[)>"+CHR$(30)+
	 "01"+CHR$(29)+"96"+"1Z12345675"+CHR$(29)+
	 "UPSN"+CHR$(29)+"12345E"+CHR$(29)+"089"
	 +CHR$(29)+"1234567"+CHR$(29)+"1/1"+CHR$(29)
	 +"10.1"+CHR$(29)+"Y"+CHR$(29)+"1 MAIN ST"
50	b$= CHR$(29)+"PITTSBURGH"+CHR$(29)+"PA"
	 +CHR$(29)+CHR$(30)+CHR$(4)+CHR$(10)+"2"
	 +CHR$(10)+"1"+CHR$(10)+"1"
60	BARTYPE "MAXICODE"
70	PRBAR a$;b$
80	PRINTFEED
RUN

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	359

Chapter 5—Bar Codes

MicroPDF417
MicroPDF417 is a multi-row symbology based on PDF417. A limited set
of symbol sizes is available where each size has a fixed level of error correc-
tion. Most symbol characteristics such as data character encodation, error
correction, and symbol character sets are identical to those of PDF417.
Up to 250 alphanumeric characters or 366 numeric digits can be encoded
in a symbol.

BARSET Instruction

BARSET Instruction
[#<ncon>] Optionally specifies the start parameter in

the syntax
<sexp> Bar code type "MICROPDF417"
<nexp1> Not applicable
<nexp2> Not applicable
<nexp3> Element width in dots 1-21. Default: 2.
<nexp4> Element height in dots 1-127. Default: 100.
<nexp5> Not applicable
<nexp6> Not applicable
<nexp7> Not applicable
<nexp8> Number of rows 0, 4-44. Default: 0 (=automatic)
<nexp9> Number of columns 0-4. Default: 0 (=automatic)
<nexp10> Not applicable

Remarks	 Setting The Number of Rows And Columns
	 The symbol size is defined by specifying the number of rows and columns.

Not all combinations of rows and columns are allowed. The table below
illustrates the valid combinations.

No. of
columns

Valid number of rows for each no. of columns

	
1 11 14 17 20 24 28 - - - - -
2 8 11 14 17 20 23 26 - - - -
3 6 8 10 12 15 20 26 32 38 44 -
4 4 6 8 10 12 15 20 26 32 38 44

If the number of rows is set to a value that does not match the valid values
for the given number of columns, the printer will automatically choose a
larger number from the list of valid values.

Automatic Selection
The number of columns and rows can be set automatically by the printer.
If the number of columns is set to 0, the printer will set the number of
columns as well as the number of rows automatically, regardless of the
number of rows specified. The printer will try to fit the given data into
a symbol with as few columns as possible. If the number of columns is
non-zero and the number of rows is set to 0, the printer will automatically

360	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 5—Bar Codes

set the number of rows to the lowest number required to encode the given
data.

Limitations
Enhanced applications such as Extended Channel Interpretation (ECI),
structured append, reader initialisation, Code 128 emulation, and macro
characters are not supported.

Examples	 This example shows how a MicroPDF417 bar code is specified using the
BARTYPE and BARSET statements.

	 Bar width: 2 dots
	 Bar height: 8 dots
	 Number of rows: 26
	 Number of columns: 3

	 BARTYPE "MICROPDF417"
	 BARSET #4,2,8,1,1,1,26,3

Note: The bar width and bar height can also be set using BARMAG and
BARHEIGHT respectively.

	 The number of columns and rows are set using the Fingerprint state-
ment BARSET. Parameters number 9 and 10 are the number of rows and
columns respectively. Examples A and B below set the number of rows
to 12 and the number of columns to 3. The type of bar code is set to
MicroPDF417. Not all parameters of the BARSET command are applica-
ble to the MicroPDF417 implementation. The parameters ignored by the
implementation are set to ‘1’ in example B (large bar ratio, small bar ratio,
security level, aspect height, aspect width).

	 Example A (Direct Protocol)
	 BARTYPE "MICROPDF417"
	 BARSET #9, 12
	 BARSET #10, 3

	 Example B (Direct Protocol)
	 BARSET "MICROPDF417",1,1,2,8,1,1,1,12,3

	 The example code below prints a small MicroPDF417 bar code containing
the string “MicroPDF417.” The number of rows and columns is set by the
printer based on the input string since the number of columns is set to 0.

	 10 BARSET "MICROPDF417",1,1,4,8,1,1,1,0,0
	 20 PRPOS 50, 50
	 30 PRBAR "MICROPDF417"
	 40 PRINTFEED

	

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	36 1

Chapter 5—Bar Codes

PDF417

Separate Instructions

BARTYPE: "PDF417"
BARRATIO: Fixed. Values will be interpreted as BARMAG.
BARMAG: 2-128. Default 2.
BARHEIGHT: No restriction. Default: 100.
BARFONT: Not applicable

BARSET Instruction

BARSET Instruction
[#<ncon>] Optionally specifies the start parameter in

the syntax
<sexp> Bar code type "PDF417"
<nexp1> Large bar ratio No restriction. Default: 3.
<nexp2> Narrow bar ratio No restriction. Default: 1.
<nexp3> Barmag/Enlargement < 128. Default: 2.
<nexp4> Barheight < 500. Default: 100.
<nexp5> Security level 1-5. Default: 2.
<nexp6> Aspect height ratio No restriction. Default: 3.
<nexp7> Aspect width ratio No restriction. Default: 1.
<nexp8> Number of rows No restriction. Default: 0.
<nexp9> Number of columns No restriction. Default: 0.
<nexp10> Trucate flag 0 or ≠ 0. The default 0 will print a

normal symbol.

Input Data

No. of characters: 1,800 ASCII characters or 2,700
digits.

Depending of level of compactness

Check digit: Yes Added automatically.
Input characters ASCII 0-255 decimal

362	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 5—Bar Codes

Example	 This example shows PDF417 in GM label as per ANSI B-14, with follow-
ing data:

Data Identifier/Separator	 Data	 Field name

[)>{RS}		 Message Header
06{GS}		 Format Header
P	 12345678	 Part Number
{GS}		 Group Separator
Q	 160	 Quantity
{GS}
1J	 UN123456789A2B4C6D8E	 License Plate
{GS}
20L	 LA6-987 	 Material Handling Code
{GS}
21L	 54321 ZES	 Plant/Dock Code
{GS}
K	 GM1234	 PO Number
{GS}
15K	 G1155	 Kanban Number
{GS}
B	 KLT3214	 Container Type
{GS}
7Q	 10GT	 Gross Weight
{RS}		 Record Separator
{EOT}		 Message Trailer

	 10	 PRPOS 16,1180
	 20	 DIR 4
	 30	 ALIGN 9
	 40	 BARSET "PDF417",1,1,2,6,5,1,2,0,5,0
	 50	 PRBAR "[)>"+CHR$(30)+"06"+CHR$(29)+
		 "P12345678"+CHR$(29)+"Q160"+CHR$(29)+
		 "1JUN123456789A2B4C6D8E"+CHR$(29)+
		 "20LA6-987" +CHR$(29)+"21L54321 ZES" 			

	 +CHR$(29)+"KGM1234"+CHR$(29)+"15KG1155"
		 +CHR$(29)+"BKLT3214"+CHR$(29)+"7Q10GT"
		 +CHR$(30)+CHR$(4)
	 60	 PRINTFEED
	 RUN

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	363

Chapter 5—Bar Codes

QR Code

BARSET Instruction

BARSET Instruction
[#<ncon>] Optionally specifies the start parameter in

the syntax
<sexp> Bar code type "QRCODE"
<nexp1> Not applicable
<nexp2> Not applicable
<nexp3> Element size in dots 1-127 (default 2)
<nexp4> QR Code model 1 (default) or 2 (recommended)
<nexp5> Security level 1-4

1=L
2=M (default)	
3=Q
4=H

<nexp6> (Mask pattern selection) Reserved for future use
<nexp7> Not applicable
<nexp8> Not applicable
<nexp9> Not applicable
<nexp10> Not applicable

	

Remarks	 Input data Capacity (Model 1)

Security
level

Numeric Alphanumeric 8-bit byte data Kanji

L 1176 707 486 299
M 877 531 365 225
Q 738 447 307 189
H 498 302 207 127

Input data Capacity (Model 2)

Security
level

Numeric Alphanumeric 8-bit byte data Kanji

L 7089 4296 2953 1817
M 5596 3391 2331 1435
Q 3993 2420 1663 1024
H 3057 1852 1273 784

The unit is number of characters. Mixed mode is supported for all combinations except
for combinations containing bot 8-bit byte and Kanji data. The type of data is set auto-
matically by the implementation based on the input characters.

Error Correction Levels

L	 7%
M	 15%
Q	 25%
H	 30%

364	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 5—Bar Codes

Example	 This example shows how BARSET is used in two different ways to create a
QR Code Model 2 with element size 4 and security code M:

	 BARSET "QRCODE",1,1,4,2,2
	 or
	 BARSET #4,"QRCODE",4,201,2

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	365

Chapter 5—Bar Codes

RSS-14

Separate Instructions

BARTYPE: "RSS14"
BARRATIO: Not applicable.
BARMAG: Specifies the x-dimension width in dots of the most narrow element for

both the linear bar code and the 2D code. Default: 2.
BARHEIGHT: Specifies the height of the linear bar code1. Default: 100.
BARFONT ON/
OFF:

No restriction.

BARSET Instruction

BARSET Instruction
[#<ncon>] Optionally specifies the start parameter in

the syntax
<sexp> Bar code type "RSS14"
<nexp1> Placeholder Value insignificant.
<nexp2> Placeholder Value insignificant.
<nexp3> Barmag/Enlargement See BARMAG.
<nexp4> Barheight See BARHEIGHT.
<nexp5> Placeholder Value insignificant.
<nexp6> Placeholder Value insignificant.
<nexp7> Placeholder Value insignificant.
<nexp8> Not applicable
<nexp9> Not applicable
<nexp10> Not applicable

Input Data

No. of characters: 13 digits If less than 13 digits are entered,
leading zeros will automatically be
added so the string will be 13 digits
long.

1/. There are restrictions in the standard for the minimum size for each RSS bar code, even if it is possible to print an RSS
bar code in any height. The height should relate to the magnification. RSS Stacked differs, because the bar code rows do
not have the same height. BARHEIGHT or BARSET<nexp4> specifies the height of the lower row and height of the
upper row is automatically calculated from the height of the lower row.
For RSS-14, the width is 96X and the minimum height is 33X, where X is the width of the most narrow element as
specified by BARMAG or BARSET<nexp3>.

366	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 5—Bar Codes

RSS-14 Truncated

Separate Instructions

BARTYPE: "RSS14T"
BARRATIO: Not applicable.
BARMAG: Specifies the x-dimension width in dots of the most narrow element for

both the linear bar code and the 2D code. Default: 2.
BARHEIGHT: Specifies the height of the linear bar code1. Default: 100.
BARFONT ON/
OFF:

No restriction.

BARSET Instruction

BARSET Instruction
[#<ncon>] Optionally specifies the start parameter in

the syntax
<sexp> Bar code type "RSS14T"
<nexp1> Placeholder Value insignificant.
<nexp2> Placeholder Value insignificant.
<nexp3> Barmag/Enlargement See BARMAG.
<nexp4> Barheight See BARHEIGHT.
<nexp5> Placeholder Value insignificant.
<nexp6> Placeholder Value insignificant.
<nexp7> Placeholder Value insignificant.
<nexp8> Not applicable
<nexp9> Not applicable
<nexp10> Not applicable

Input Data

No. of characters: 13 digits If less than 13 digits are entered,
leading zeros will automatically be
added so the string will be 13 digits
long.

1/. There are restrictions in the standard for the minimum size for each RSS bar code, even if it is possible to print an RSS
bar code in any height. The height should relate to the magnification. RSS Stacked differs, because the bar code rows do
not have the same height. BARHEIGHT or BARSET<nexp4> specifies the height of the lower row and height of the
upper row is automatically calculated from the height of the lower row.
For RSS-14 Truncated, the width is 96X and the minimum height is 13X, where X is the width of the most narrow ele-
ment as specified by BARMAG or BARSET<nexp3>.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	36 7

Chapter 5—Bar Codes

RSS-14 Stacked

Separate Instructions

BARTYPE: "RSS14S"
BARRATIO: Not applicable.
BARMAG: Specifies the x-dimension width in dots of the most narrow element for

both the linear bar code and the 2D code. Default: 2.
BARHEIGHT: Specifies the height of the linear bar code1. Default: 100.
BARFONT ON/
OFF:

No restriction.

BARSET Instruction

BARSET Instruction
[#<ncon>] Optionally specifies the start parameter in

the syntax
<sexp> Bar code type "RSS14S"
<nexp1> Placeholder Value insignificant.
<nexp2> Placeholder Value insignificant.
<nexp3> Barmag/Enlargement See BARMAG.
<nexp4> Barheight See BARHEIGHT.
<nexp5> Placeholder Value insignificant.
<nexp6> Placeholder Value insignificant.
<nexp7> Height of separator row The height is the same for the pattern

row between the 2D bar code and the
linear bar code as for the pattern rows
between the linear rows. If too low a
height is entered, the height will be chan-
ged to the smallest legal height for the
selected magnification. Minimum 1X,
maximum 2X.

<nexp8> Not applicable
<nexp9> Not applicable
<nexp10> Not applicable

Input Data

No. of characters: 13 digits If less than 13 digits are entered,
leading zeros will automatically be
added so the string will be 13 digits
long.

1/. There are restrictions in the standard for the minimum size for each RSS bar code, even if it is possible to print an RSS
bar code in any height. The height should relate to the magnification. RSS Stacked differs, because the bar code rows do
not have the same height. BARHEIGHT or BARSET<nexp4> specifies the height of the lower row and height of the
upper row is automatically calculated from the height of the lower row.
For RSS-14S, the width is 50X and the minimum height is 13X (upper 5X + lower 7X + separator 1X min.), where X is
the width of the most narrow element as specified by BARMAG or BARSET<nexp3>.

368	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 5—Bar Codes

Example	 Example of an RSS14S bar code with the following characteristics and
with recommended minimum height selected:
Place holder (nexp1):			 1
Place holder (nexp2): 			 1
Most narrow element width in dots:		 3
Height in dots:				 21
Place holder (nexp5):			 1
Place holder (nexp6): 			 1
Separator pattern row height:		 4
Data:					 1234567890123

	 BARSET "RSS14S",1,1,3,21,1,1,4
	 PRBAR "1234567890123"

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	369

Chapter 5—Bar Codes

RSS-14 Stacked Omnidirectional

Separate Instructions

BARTYPE: "RSS14SO"
BARRATIO: Not applicable.
BARMAG: Specifies the x-dimension width in dots of the most narrow element for

both the linear bar code and the 2D code. Default: 2.
BARHEIGHT: Specifies the height of the linear bar code1. Default: 100.
BARFONT ON/
OFF:

No restriction.

BARSET Instruction

BARSET Instruction
[#<ncon>] Optionally specifies the start parameter in

the syntax
<sexp> Bar code type "RSS14SO"
<nexp1> Placeholder Value insignificant.
<nexp2> Placeholder Value insignificant.
<nexp3> Barmag/Enlargement See BARMAG.
<nexp4> Barheight See BARHEIGHT.
<nexp5> Placeholder Value insignificant.
<nexp6> Placeholder Value insignificant.
<nexp7> Height of separator row The height is the same for the pattern

row between the 2D bar code and the
linear bar code as for the pattern rows
between the linear rows. If too low a
height is entered, the height will be chan-
ged to the smallest legal height for the
selected magnification. Minimum 1X,
maximum 2X.

<nexp8> Not applicable
<nexp9> Not applicable
<nexp10> Not applicable

Input Data

No. of characters: 13 digits If less than 13 digits are entered,
leading zeros will automatically be
added so the string will be 13 digits
long.

1/. There are restrictions in the standard for the minimum size for each RSS bar code, even if it is possible to print an RSS
bar code in any height. The height should relate to the magnification. RSS Stacked differs, because the bar code rows do
not have the same height. BARHEIGHT or BARSET<nexp4> specifies the height of the lower row and height of the
upper row is automatically calculated from the height of the lower row.
For RSS-14SO, the width is 50X and the minimum height is 69X (upper 33X + lower 33X + separator 3*1X min.),

370	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 5—Bar Codes

RSS-14 Limited

Separate Instructions

BARTYPE: "RSS14L"
BARRATIO: Not applicable.
BARMAG: Specifies the x-dimension width in dots of the most narrow element for

both the linear bar code and the 2D code. Default: 2.
BARHEIGHT: Specifies the height of the linear bar code1. Default: 100.
BARFONT ON/
OFF:

No restriction.

BARSET Instruction

BARSET Instruction
[#<ncon>] Optionally specifies the start parameter in

the syntax
<sexp> Bar code type "RSS14L"
<nexp1> Placeholder Value insignificant.
<nexp2> Placeholder Value insignificant.
<nexp3> Barmag/Enlargement See BARMAG.
<nexp4> Barheight See BARHEIGHT.
<nexp5> Placeholder Value insignificant.
<nexp6> Placeholder Value insignificant.
<nexp7> Placeholder Value insignificant.
<nexp8> Not applicable
<nexp9> Not applicable
<nexp10> Not applicable

Input Data

No. of characters: 13 digits If less than 13 digits are entered,
leading zeros will automatically be
added so the string will be 13 digits
long.

1/. There are restrictions in the standard for the minimum size for each RSS bar code, even if it is possible to print an RSS
bar code in any height. The height should relate to the magnification. RSS Stacked differs, because the bar code rows do
not have the same height. BARHEIGHT or BARSET<nexp4> specifies the height of the lower row and height of the
upper row is automatically calculated from the height of the lower row.
For RSS-14L, the width is 71X and the minimum height is 10X, where X is the width of the most narrow element as
specified by BARMAG or BARSET<nexp3>.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	3 71

Chapter 5—Bar Codes

RSS-14 Expanded

Separate Instructions

BARTYPE: "RSS14E"
BARRATIO: Not applicable.
BARMAG: Specifies the x-dimension width in dots of the most narrow element for

both the linear bar code and the 2D code. Default: 2.
BARHEIGHT: Specifies the height of the linear bar code1. Default: 100.
BARFONT ON/
OFF:

No restriction.

BARSET Instruction

BARSET Instruction
[#<ncon>] Optionally specifies the start parameter in

the syntax
<sexp> Bar code type "RSS14E"
<nexp1> Placeholder Value insignificant.
<nexp2> Placeholder Value insignificant.
<nexp3> Barmag/Enlargement See BARMAG.
<nexp4> Barheight See BARHEIGHT.
<nexp5> Placeholder Value insignificant.
<nexp6> Placeholder Value insignificant.
<nexp7> Placeholder Value insignificant.
<nexp8> Not applicable
<nexp9> Not applicable
<nexp10> Not applicable

Input Data

No. of characters: Max. 71 numeric or 41 alphanume-
ric characters

Allowed characters: 0-9 A-Z a-z ! "
% & ' () * + , - . / : ; < = > ? _ space
FNC1 [CHR$(128)]

1/. There are restrictions in the standard for the minimum size for each RSS bar code, even if it is possible to print an RSS
bar code in any height. The height should relate to the magnification. RSS Stacked differs, because the bar code rows do
not have the same height. BARHEIGHT or BARSET<nexp4> specifies the height of the lower row and height of the
upper row is automatically calculated from the height of the lower row.
For RSS-14E, the width is depending on input and the minimum height is 33X, where X is the width of the most
narrow element as specified by BARMAG or BARSET<nexp3>.

Remarks	 The RSS-14 Expanded can be used for intelligent encoding of the input
data. They can be created with different encoding methods and compressed
data fields. To understand how to create intelligent bar codes with RSS-
14E, see Chapter 7 “Symbol Requirements for RSS Expanded” in the AIM
specification: International Symbology Specification Reduced Space Symbology
(RSS), AIM Inc. ITS/99-0012, Version 1.0 1999-10-29.

372	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 5—Bar Codes

RSS-14 Expanded Stacked

Separate Instructions

BARTYPE: "RSS14ES"
BARRATIO: Not applicable.
BARMAG: Specifies the x-dimension width in dots of the most narrow element for

both the linear bar code and the 2D code. Default: 2.
BARHEIGHT: Specifies the height of the linear bar code1. Default: 100.
BARFONT ON/
OFF:

No restriction.

BARSET Instruction

BARSET Instruction
[#<ncon>] Optionally specifies the start parameter in

the syntax
<sexp> Bar code type "RSS14ES"
<nexp1> Placeholder Value insignificant.
<nexp2> Placeholder Value insignificant.
<nexp3> Barmag/Enlargement See BARMAG.
<nexp4> Barheight See BARHEIGHT.
<nexp5> Segments per row 2-22 (default 2). Multiples of 2 only.
<nexp6> Placeholder Value insignificant.
<nexp7> Height of separator row The height for the pattern rows between

the linear rows. If too low a height is
entered, the height will be changed to
the smallest legal height for the selected
magnification. Minimum 1X, maximum
2X.

<nexp8> Not applicable
<nexp9> Not applicable
<nexp10> Not applicable

Input Data

No. of characters: Max. 71 numeric or 41 alphanume-
ric characters

Allowed characters: 0-9 A-Z a-z ! "
% & ' () * + , - . / : ; < = > ? _ space
FNC1 [CHR$(128)]

1/. There are restrictions in the standard for the minimum size for each RSS bar code, even if it is possible to print an RSS
bar code in any height. The height should relate to the magnification. RSS Stacked differs, because the bar code rows do
not have the same height. BARHEIGHT or BARSET<nexp4> specifies the height of the lower row and height of the
upper row is automatically calculated from the height of the lower row.
For RSS-14ES, the width is depending on input and the minimum height is 34X per row + 3*1X per separator, where X
is the width of the most narrow element as specified by BARMAG or BARSET<nexp3>.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	3 73

Chapter 5—Bar Codes

Remarks	 The RSS-14 Expanded Stacked can be used for intelligent encoding of
the input data. They can be created with different encoding methods and
compressed data fields. To understand how to create intelligent bar codes
with RSS-14 ES, see Chapter 7 “Symbol Requirements for RSS Expanded” in
the AIM specification: International Symbology Specification Reduced Space
Symbology (RSS), AIM Inc. ITS/99-0012, Version 1.0 1999-10-29.

Example	 Example of RSS14 Expanded Stacked for a variable weight item (0,001
kilogram increments) and with recommended minimum height selected:

	 Start parameter:				 #4
	 Most narrow element width in dots:		 2
	 Height in dots:				 68
	 Segments per row:				 4

Place holder (nexp6): 			 1
	 Separator pattern row height:		 2
	 Data: 					 01900123456789003103001750

	 Explanation of data:	 01  9001234567890  0  3103  001750
	 Application Identifier (AI): 	 01
	 AI 01 item ID: 		 9001234567890
					 (In this method, the first digit must be 9.)
	 Digit: 				 0
					 (The value is insignificant but a digit must be 		

				 entered as a place holder.)
	 Application Identifier (AI):	 3103
	 AI 3103 variable weight
	 element string: 		 001750

	 BARTYPE "RSS14ES"
	 BARSET #4,2,68,4,1,2
	 PRBAR "01900123456789003103001750"

374	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 5—Bar Codes

UPC-A

Separate Instructions

BARTYPE: "UPCA"
BARRATIO: Fixed ratio. BARRATIO statement ignored.
BARMAG: Maximum 8. Default 2.
BARHEIGHT: No restriction. Default: 100.
BARFONT: Barfont generated automatically. BARFONT statement ignored.

BARFONT ON/OFF work.

Input Data

No. of characters: 11
Check digit: One Added automatically
Digits: 0-9
Uppercase letters: No
Lowercase letters: No
Punctuation marks: No
Start character: No
Stop character: No

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	3 75

Chapter 5—Bar Codes

UPC-E

Separate Instructions

BARTYPE: "UPCE"
BARRATIO: Fixed ratio. BARRATIO statement ignored.
BARMAG: Maximum 8. Default 2.
BARHEIGHT: No restriction. Default: 100.
BARFONT: Barfont generated automatically. BARFONT statement ignored.

BARFONT ON/OFF work.

Input Data

No. of characters: 6
Check digit: One Added automatically
Digits: 0-9
Uppercase letters: No
Lowercase letters: No
Punctuation marks: No
Start character: No
Stop character: No

376	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 5—Bar Codes

AddOn Codes
Summary

The EAN and UPC bar code standards allow for the use of two- and five-
character supplemental bar codes to be printed together with the normal
code.

From Fingerprint v8.40 it is possible to print these bar codes simply by
adding the desired characters to the PRBAR statement, separated by a
period(.). The placement of the addon bar code is done automatically.

Examples	 The AddOn characters are added to the PRBAR statement by use of a
period (.) character as separator.

	 10	 PRPOS 100,100
	 20	 BARSET "EAN8"
	 30	 ALIGN 1
	 40 	 DIR 1
	 50	 BARFONT ON
	 60	 PRBAR "1234567.12345"
	 70	 PRINTFEED
	 RUN
	 yields:

	 The AddOn code can be used in combination with any EAN and UPC bar
code set. The following example prints a composite bar code, with a two-
character AddOn code. More information on composite bar codes can be
found later in this chapter.

	 10	 PRPOS 100,100
	 20	 BARSET "EAN8_CC"
	 30	 ALIGN 1
	 40 	 DIR 1
	 50	 BARFONT ON
	 60	 PRBAR "1234567.12|987654321"
	 70	 PRINTFEED
	 RUN
	 yields:

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	3 77

Chapter 5—Bar Codes

Composite Bar Codes
Introduction

The EAN.UCC Composite Symbology standard has been published by
AIM in the public domain.

An EAN.UCC Composite symbol consists of a linear component associa-
ted with an adjacent 2D Composite Component.

The Composite symbol always includes a linear component so that the pri-
mary identification is readable by all scanning technologies, and so that 2D
imagers can use the linear component as a finder pattern for the adjacent
2D Composite Component.

Refer to the programming example later in this chapter.

Function
EAN.UCC Composite Symbology is depending on several other sym-
bologies. Some minor adjustment of implementation of PDF417 and
MicroPDF417, nine new symbologies and a logical way of combining nine
linear and three 2D symbologies in different composite combinations have
been implemented.

Basic Characteristics	
An EAN-UCC Composite symbol consists of a linear component and
associated with an adjacent 2D Composite Component.

The Linear Components
The linear bar code component encodes the item’s primary identification.
The design is one of the following barcode types:

	 •	 UCC/EAN-128,

	 •	 EAN/UPC: 8 or 13,

	 •	 UPC-A or E,

	 •	 EAN/UPC 8, 13, UPC-A or E

	 •	 Any RSS-family symbology that includes a separator character between
the data for the linear component and the 2D component in the input
string.

 (01) 93812345678901
 (10) ABCD123456 (410) 3898765432108

} 2D composite component
←separator pattern

} linear component

} human readable

378	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 5—Bar Codes

The Composite Components
The 2D composite barcode component encodes supplementary data, such
as a batch number or expiration date. There are three types:

	 •	 CC-A, a variant of MicroPDF417, designed for efficient encoding of
supplemental application identifier data.

	 •	 CC-B, a MicroPDF417 symbol with codeword 920 in the first data
codeword position as a linkage flag denoting EAN.UCC Composite Sym-
bology data compaction.

	 •	 CC-C, a PDF417 symbol with a codeword 920 in the first data code-
word position as a linkage flag denoting EAN.UCC Composite Symbology
data compaction.

The 2D Composite Component, abbreviated as CC, is chosen based on
the selected linear component and on the amount of complementary data
to be encoded. The choice of linear symbol determines the name of the
Composite symbol, such as EAN-13 Composite symbol or UCC/EAN-
128 Composite symbol.

Human Readable
All combinations of the EAN.UCC Composite Symbology will handle
the human readable in the same way. The human readable part will be an
optional presentation of the information in the bar code of either data or
both data. The linear human readable part will be presented below the
linear component, within the same rules as for the single bar code. The
human readable for the 2D composite component part will be presented
under the human readable for the linear bar code

EAN/UPC bar codes have fixed fonts for the human readable bar code
interpretation.

Supported Component Combinations
Based upon the width of the linear component, a choice of “best fit” 2D
Composite Component is specified. The table below lists all of the permis-
sible combinations.

Linear Component CC-A/CC-B CC-C No of columns

UPC-A & EAN-13 Yes/Yes No 4
EAN-8 Yes/Yes No 3
UPC-E Yes/Yes No 2
UCC/EAN-128 Yes/Yes Yes 4|variable width (1-30)
RSS-14 Yes/Yes No 4
RSS-14 Stacked Yes/Yes No 2
RSS-14 Stacked omnidirectional Yes/Yes No 2
RSS Limited Yes/Yes No 3
RSS Expanded Yes/Yes No 4
RSS Expanded Stacked Yes/Yes No 4

UPC-A Composite Symbol
There is no linkage flag in the UPC-A symbol to indicate the presence of
an associated 2D Composite Component. UPC-A linear component may
only be linked to four-column CC-A or CC-B components.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	3 79

Chapter 5—Bar Codes

EAN-13 Composite Symbol
There is no linkage flag in the EAN-13 symbol to indicate the presence of
an associated 2D Composite Component. EAN-13 linear component may
only be linked to four-column CC-A or CC-B components.

EAN-8 Composite Symbol
There is no linkage flag in the EAN-8 symbol to indicate the presence of
an associated 2D Composite Component. EAN-8 linear component may
only be linked to three-column CC-A or CC-B components.

UPC-E Composite Symbol
There is no linkage flag in the UPC-E symbol to indicate the presence of
an associated 2D Composite Component. UPC-E linear component may
only be linked to two-column CC-A or CC-B components.

UCC/EAN-128 Composite Symbol
UCC/EAN-128 is a Code 128 with a FNC1 character in the first position
after the start character. When UCC/EAN-128 is the linear component
of an EAN.UCC Composite Symbol, the bar code shall have a Code Set
character (see the table below) as a linkage flag in the last symbol character
position before the check character. The printer will add the linkage flag
automatically.

Code Set characters to be used for linkage flag

Active Code
Set

Link flag character for CC-A
or CC-B

Link flag character for CC-C

A CODE B CODE C
B CODE C CODE A
C CODE A CODE B

UCC/EAN-128 Composite Symbol may be combined with any of the 2D
bar code components created for the EAN.UCC Composite Symbology.
The choice between using CC-A/B or CC-C is made by the user.

This table describes how an UCC/EAN-128 Composite symbol is built.

Start char. FNC1 Data Link flag
char.

Check digit Stop char.

Added by
the printer.

Added by
the printer.

The data is
added by
the user. If it
is necessary
to change
Code Set the
printer add
Code- or
Shift-char-
acters to
change
subset.

Added by
the printer.

Calculated
and added
by the
printer.

Added by
the printer.

It is possible to choose to filter out spaces, parentheses, and Carriage
Returns for the bar code data and display them in the human readable
field. Carriage return makes it possible to display the human readable field
in multiple rows.

380	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 5—Bar Codes

UCC/EAN-128 with a 2D Composite component CC-A or CC-B:
The length of the data decides if a CC-A or a CC-B will be used. Only a 4
columns wide CC-A or a CC-B is used.

UCC/EAN-128 with a 2D Composite component CC-C:
	 -	 The number of columns of the CC-C is selectable by the user.

-	 The separator pattern is a complement of the linear symbol. The pat-
terns above the UCC/EAN-128 component’s quiet zones are light.

-	 The 2D bar code is placed above the separator pattern on the following
position: The first interior space module of the CC-C component is
aligned with the second module of the linear components star character.

RSS Composite symbol
When RSS symbols are used as a Composite Component, the encoded
value includes a linkage flag indicating the presence of an adjacent 2D
Composite Component.

RSS-14 Composite Symbol
RSS-14 linear component may only be linked to four-column CC-A or
CC-B components.

RSS-14 Truncated Composite Symbol
RSS-14 Truncated linear component may only be linked to four-column
CC-A or CC-B components.

RSS-14 Stacked Composite Symbol
RSS-14 Stacked linear component may only be linked to two-column CC-
A or CC-B components.

RSS-14 Stacked Omnidirectional Composite Symbol
RSS-14 Stacked Omnidirectional linear component may only be linked to
two-column CC-A or CC-B components.

RSS Limited Composite Symbol
RSS-14 Limited linear component may only be linked to three-column
CC-A or CC-B components.

RSS Expanded Composite Symbol
RSS-14 Expanded linear component may only be linked to four-column
CC-A or CC-B components.

RSS Expanded Stacked Composite Symbol
RSS-14 Expanded Stacked linear component may only be linked to four-
column CC-A or CC-B components. If linked to a 2D Composite Com-
ponent the top row of the linear component must contain at least four
symbol characters.

CC-ABC
CC-A, CC-B and CC-C are the 2D Composite Components in
EAN.UCC Composite Symbology and is almost the same bar code as the
PDF417 bar code (CC-C) and MicroPDF417 (CC-A and CC-B).

PDF417 is a multi-row, variable-length symbol offering high data capacity
and error-collection capability see [3].

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	3 81

Chapter 5—Bar Codes

MicroPDF is a multi-row symbology based on PDF417. A limited set of
symbol sizes is available where each size has a fixed level of error correction.

CC-A
CC-A is a variant of MicroPDF417, and the smallest of the 2D Composite
Components. CC-A can encode up to 56 digits and has 3 to12 rows and 2
to 4 columns. CC-A is a variant of MicroPDF417 with a unique combina-
tion of row address patterns.

CC-B
CC-B is a variant of MicroPDF417 symbol uniquely identified by the
codeword 920 as the first codeword in the symbol. Encoding systems
select CC-B when the data to be encoded exceeds the capacity for CC-A.
CC-B can encode up to 338 digits and has from 10 to 44 rows and 2 to 4
columns.

CC-C
CC-C bar code is the same as a PDF417 except for:

•	 Reserved code word: CC-C has codeword 920 in the second symbol
character position (immediately following the Symbol Length Descrip-
tor.)

•	 High-level data encodation: After the first data codeword 920 the
second data codeword is a latch to Byte Compaction mode.

•	 Structure Append: Is not used in CC-C

•	 Reader initialization: Codeword 921 do not appear in CC-C.

•	 Quiet zones: No quiet zones are required above and under the bar code.

•	 Reference decode algorithm: An incorrect composite 2D bar code.

•	 Error correction: CC-C meets or exceeds the minimum error correction
level recommended for PDF417.

•	 Symbology identifiers: Special for CC-C

•	 Composite Component escape mechanism: After the first Byte mode
codeword 901 or 924 in the 2D Composite Component, if another
codeword greater than 899 occurs, the composite “symbol” is logical
terminated at that point. The remaining codewords are encoded and
decoded according to specials rules.

A CC-C is only a part of an EAN.UCC Composite symbol with an UCC/
EAN-128. The number of columns in the bar codes are possible to set (up
to 30 columns). The number of rows are as many as necessary to represent
the 2D data with the chosen number of columns.

Example
	 This example corresponds to the illustration at the start of this chapter.

BARFONT ON

BARSET "EAN128_CCC",1,1,5,100,0,0,0,0,0,1

PRBAR "(01)93812345678901|(10)ABCD123456(410)389
8765432108"

PRINTFEED

382	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 5—Bar Codes

EAN8 Composite with CC-A or CC-B

Separate Instructions

BARTYPE: "EAN8_CC"
BARRATIO: Not applicable.
BARMAG: Specifies the x-dimension width in dots of the most narrow element for

both the linear bar code and the 2D code. Default: 2. Maximum: 8.
BARHEIGHT: Specifies the height of the linear bar code. Default: 100.
BARFONT ON/
OFF:

ON: The human readable for the linear bar will be printed under the linear
bar code.
 If BARSET<nexp10> is set to 1, the human readable for the 2D bar code is
printed too.
OFF: No human readable is printed.

BARSET Instruction

BARSET Instruction
[#<ncon>] Optionally specifies the start parameter
<sexp> Bar code type "EAN8_CC"
<nexp1> Placeholder Value insignificant. 0 is not allowed.
<nexp2> Placeholder Value insignificant. 0 is not allowed.
<nexp3> Barmag/Enlargement See BARMAG.
<nexp4> Barheight See BARHEIGHT.
<nexp5> Placeholder Value insignificant.
<nexp6> Character exclusion in bar code (does not

affect human readables)
Always 1 (default). The bar code and the
human readable field will include exactly
the same data.

<nexp7> Height of separator pattern row in dots Value must be 1-2 × BARMAG. For
example, if BARMAG = 5, 5-10 is OK

<nexp8> Height of each row in 2D bar code in dots Default: 0 (= 3 × BARMAG)
<nexp9> Separator character between data to linear

bar code and 2D bar code
ASCII 2-255 dec. Default: ASCII 124
dec. ASCII 48-57 dec. not allowed.

<nexp10> 2D human readables On/Off 0 = No human readable 2D field.
1 = Print human readable 2D field.

Input Data

No. of characters: 7
Check digit: 1 Added automatically.
Digits: 0-9
Uppercase letters: No
Lowercase letters: No
Punctuation marks: No
Start characters: No
Stop characters: No

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	3 83

Chapter 5—Bar Codes

EAN13 Composite with CC-A or CC-B

Separate Instructions

BARTYPE: "EAN13_CC"
BARRATIO: Not applicable.
BARMAG: Specifies the x-dimension width in dots of the most narrow element for

both the linear bar code and the 2D code. Default: 2. Maximum: 8.
BARHEIGHT: Specifies the height of the linear bar code. Default: 100.
BARFONT ON/
OFF:

ON: The human readable for the linear bar will be printed under the linear
bar code.
If BARSET<nexp10> is set to 1, the human readable for the 2D bar code is
printed too.
OFF: No human readable is printed.

BARSET Instruction

BARSET Instruction
[#<ncon>] Optionally specifies the start parameter
<sexp> Bar code type "EAN13_CC"
<nexp1> Placeholder Value insignificant. 0 is not allowed.
<nexp2> Placeholder Value insignificant. 0 is not allowed.
<nexp3> Barmag/Enlargement See BARMAG.
<nexp4> Barheight See BARHEIGHT.
<nexp5> Placeholder Value insignificant.
<nexp6> Character exclusion in bar code (does not

affect human readables)
Always 1 (default). The bar code and the
human readable field will include exactly
the same data.

<nexp7> Height of separator pattern row in dots Value must be 1-2 × BARMAG. For
example, if BARMAG = 5, 5-10 is OK

<nexp8> Height of each row in 2D bar code in dots Default: 0 (= 3 × BARMAG)
<nexp9> Separator character between data to linear

bar code and 2D bar code
ASCII 2-255 dec. Default: ASCII 124
dec. ASCII 48-57 dec. not allowed.

<nexp10> 2D human readables On/Off 0 = No human readable 2D field.
1 = Print human readable 2D field.

Input Data

No. of characters: 12
Check digit: 1 Added automatically.
Digits: 0-9
Uppercase letters: No
Lowercase letters: No
Punctuation marks: No
Start characters: No
Stop characters: No

384	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 5—Bar Codes

UPC-E Composite with CC-A or CC-B

Separate Instructions

BARTYPE: "UPCE_CC"
BARRATIO: Not applicable.
BARMAG: Specifies the x-dimension width in dots of the most narrow element for

both the linear bar code and the 2D code. Default: 2. Maximum: 8.
BARHEIGHT: Specifies the height of the linear bar code. Default: 100.
BARFONT ON/
OFF:

ON: The human readable for the linear bar will be printed under the linear
bar code.
 If BARSET<nexp10> is set to 1, the human readable for the 2D bar code is
printed too.
OFF: No human readable is printed.

BARSET Instruction

BARSET Instruction
[#<ncon>] Optionally specifies the start parameter
<sexp> Bar code type "UPCE_CC"
<nexp1> Placeholder Value insignificant. 0 is not allowed.
<nexp2> Placeholder Value insignificant. 0 is not allowed.
<nexp3> Barmag/Enlargement See BARMAG.
<nexp4> Barheight See BARHEIGHT.
<nexp5> Placeholder Value insignificant.
<nexp6> Character exclusion in bar code (does not

affect human readables)
Always 1 (default). The bar code and the
human readable field will include exactly
the same data.

<nexp7> Height of separator pattern row in dots Value must be 1-2 × BARMAG. For
example, if BARMAG = 5, 5-10 is OK

<nexp8> Height of each row in 2D bar code in dots Default: 0 (= 3 × BARMAG)
<nexp9> Separator character between data to linear

bar code and 2D bar code
ASCII 2-255 dec. Default: ASCII 124
dec. ASCII 48-57 dec. not allowed.

<nexp10> 2D human readables On/Off 0 = No human readable 2D field.
1 = Print human readable 2D field.

Input Data

No. of characters: 6
Check digit: 1 Added automatically.
Digits: 0-9
Uppercase letters: No
Lowercase letters: No
Punctuation marks: No
Start characters: No
Stop characters: No

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	3 85

Chapter 5—Bar Codes

UPC-A Composite with CC-A or CC-B

Separate Instructions

BARTYPE: "UPCA_CC"
BARRATIO: Not applicable.
BARMAG: Specifies the x-dimension width in dots of the most narrow element for

both the linear bar code and the 2D code. Default: 2. Maximum: 8.
BARHEIGHT: Specifies the height of the linear bar code. Default: 100.
BARFONT ON/
OFF:

ON: The human readable for the linear bar will be printed under the linear
bar code.
If BARSET<nexp10> is set to 1, the human readable for the 2D bar code is
printed too.
OFF: No human readable is printed.

BARSET Instruction

BARSET Instruction
[#<ncon>] Optionally specifies the start parameter
<sexp> Bar code type "UPCA_CC"
<nexp1> Placeholder Value insignificant. 0 is not allowed.
<nexp2> Placeholder Value insignificant. 0 is not allowed.
<nexp3> Barmag/Enlargement See BARMAG.
<nexp4> Barheight See BARHEIGHT.
<nexp5> Placeholder Value insignificant.
<nexp6> Character exclusion in bar code (does not

affect human readables)
Always 1 (default). The bar code and the
human readable field will include exactly
the same data.

<nexp7> Height of separator pattern row in dots Value must be 1-2 × BARMAG. For
example, if BARMAG = 5, 5-10 is OK

<nexp8> Height of each row in 2D bar code in dots Default: 0 (= 3 × BARMAG)
<nexp9> Separator character between data to linear

bar code and 2D bar code
ASCII 2-255 dec. Default: ASCII 124
dec. ASCII 48-57 dec. not allowed.

<nexp10> 2D human readables On/Off 0 = No human readable 2D field.
1 = Print human readable 2D field.

Input Data

No. of characters: 11
Check digit: 1 Added automatically.
Digits: 0-9
Uppercase letters: No
Lowercase letters: No
Punctuation marks: No
Start characters: No
Stop characters: No

386	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 5—Bar Codes

EAN.UCC 128 Composite with CC-C

Separate Instructions

BARTYPE: "EAN128_CCC"
BARRATIO: Not applicable.
BARMAG: Specifies the x-dimension width in dots of the most narrow element for

both the linear bar code and the 2D code. Default: 2.
BARHEIGHT: Specifies the height of the linear bar code. Default: 100.
BARFONT ON/
OFF:

ON: The human readable for the linear bar will be printed under the linear
bar code.
 If BARSET<nexp10> is set to 1, the human readable for the 2D bar code is
printed too.
OFF: No human readable is printed.

BARSET Instruction

BARSET Instruction
[#<ncon>] Optionally specifies the start parameter
<sexp> Bar code type "EAN128_CCC"
<nexp1> Placeholder Value insignificant. 0 is not allowed.
<nexp2> Placeholder Value insignificant. 0 is not allowed.
<nexp3> Barmag/Enlargement See BARMAG.
<nexp4> Barheight See BARHEIGHT.
<nexp5> Number of columns/row in 2D bar code 0 (default) = select the largest number

of columns for the 2D code to fit within
the linear bar code including its quiet
zones.

<nexp6> Character exclusion in bar code (does not
affect human readables)

0: The bar code will not include any
of the characters space, (,), and car-
riage return [CHR$(13)] but they will
be printed in the human readable field.
Carriage returns make it possible to print
human readable in multiple rows.
1 (default): The bar code and the human
readable field will include exactly the
same data.

<nexp7> Height of separator pattern row in dots Value must be 1-2 × BARMAG. For
example, if BARMAG = 5, 5-10 is OK

<nexp8> Height of each row in 2D bar code in dots Default: 0 (= 3 × BARMAG)
<nexp9> Separator character between data to linear

bar code and 2D bar code
ASCII 2-255 dec. Default: ASCII 124
dec. ASCII 48-57 dec. not allowed.

<nexp10> 2D human readables On/Off 0 = No human readable 2D field.
1 = Print human readable 2D field.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	3 87

Chapter 5—Bar Codes

Input Data

No. of characters: Unlimited
Check digit: Trailing symbol check character Added automatically.
Input characters: ASCII 0-127 According to Roman 8 character set.
Start characters: See note 2.
Code characters: See note 1 & 2
Shift characters: See note 1 & 2
Stop characters: Always Added automatically.

Remarks	 EAN 128 is identical to Code 128 with the exception that the initial
FNC1 function character is generated automatically.

Note 1:
Code characters and shift characters require either an 8-bit communication
protocol, remapping to an ASCII value between 0-127 dec., or the use of
an CHR$ function.

Note 2:
EAN 128 has automatic selection of start character and character subset
(that is, selects optimal start character and handles shift and changes of
subset depending on the content of the input data), whereas EAN 128A,
EAN 128B, and EAN 128C selects subset A, B, and C respectively. The
last character in the bar code name signifies both the start character and
the chosen subset.

The selected subset can be changed anywhere in the input string, either
for a single character using a Shift character (not for Subset C), or for the
remainder of the input string using a Code character (all subsets).

The Shift and Code characters consist of a combination of two characters:

•	 Two left-pointing double angle quotation marks («) specify a Shift cha-
racter.

	 Shift character: 	 «« 		 (« = ASCII 171 dec.)

•	 One left-pointing double angle quotation mark («) specifies a Code
character. It should be followed by an uppercase letter that specifies the
subset:

	 Code character:	 « + A|B|C	 (« = ASCII 171 dec.)

388	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 5—Bar Codes

EAN.UCC 128 Composite with CC-A or CC-B

Separate Instructions

BARTYPE: "EAN128_CCAB"
BARRATIO: Not applicable.
BARMAG: Specifies the x-dimension width in dots of the most narrow element for

both the linear bar code and the 2D code. Default: 2.
BARHEIGHT: Specifies the height of the linear bar code. Default: 100.
BARFONT ON/
OFF:

ON: The human readable for the linear bar will be printed under the linear
bar code.
If BARSET<nexp10> is set to 1, the human readable for the 2D bar code is
printed too.
OFF: No human readable is printed.

BARSET Instruction

BARSET Instruction
[#<ncon>] Optionally specifies the start parameter in

the syntax
<sexp> Bar code type "EAN128_CCAB"
<nexp1> Placeholder Value insignificant. 0 is not allowed.
<nexp2> Placeholder Value insignificant. 0 is not allowed.
<nexp3> Barmag/Enlargement See BARMAG.
<nexp4> Barheight See BARHEIGHT.
<nexp5> Placeholder Value insignificant.
<nexp6> Character exclusion in bar code (does not

affect human readables)
0: The bar code will not include any
of the characters space, (,), and car-
riage return [CHR$(13)] but they will
be printed in the human readable field.
Carriage returns make it possible to print
human readable in multiple rows.
1 (default): The bar code and the human
readable field will include exactly the
same data.

<nexp7> Height of separator pattern row in dots Value must be 1-2 × BARMAG. For
example, if BARMAG = 5, 5-10 is OK

<nexp8> Height of each row in 2D bar code in dots Default: 0 (= 3 × BARMAG)
<nexp9> Separator character between data to linear

bar code and 2D bar code
ASCII 2-255 dec. Default: ASCII 124
dec. ASCII 48-57 dec. not allowed.

<nexp10> 2D human readables On/Off 0 = No human readable 2D field.
1 = Print human readable 2D field.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	3 89

Chapter 5—Bar Codes

Input Data

No. of characters: Unlimited
Check digit: Trailing symbol check character Added automatically.
Input characters: ASCII 0-127 According to Roman 8 character set.
Start characters: See note 2.
Code characters: See note 1 & 2
Shift characters: See note 1 & 2
Stop characters: Always Added automatically.

Remarks	 EAN 128 is identical to Code 128 with the exception that the initial
FNC1 function character is generated automatically.

Note 1:
Code characters and shift characters require either an 8-bit communication
protocol, remapping to an ASCII value between 0-127 dec., or the use of
an CHR$ function.

Note 2:
EAN 128 has automatic selection of start character and character subset
(that is, selects optimal start character and handles shift and changes of
subset depending on the content of the input data), whereas EAN 128A,
EAN 128B, and EAN 128C selects subset A, B, and C respectively. The
last character in the bar code name signifies both the start character and
the chosen subset.

The selected subset can be changed anywhere in the input string, either
for a single character using a Shift character (not for Subset C), or for the
remainder of the input string using a Code character (all subsets).

The Shift and Code characters consist of a combination of two characters:

•	 Two left-pointing double angle quotation marks («) specify a Shift cha-
racter.

	 Shift character: 	 «« 		 (« = ASCII 171 dec.)

•	 One left-pointing double angle quotation mark («) specifies a Code
character. It should be followed by an uppercase letter that specifies the
subset:

	 Code character:	 « + A|B|C	 (« = ASCII 171 dec.)

390	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 5—Bar Codes

RSS-14 (Composite)

Separate Instructions

BARTYPE: "RSS14"
BARRATIO: Not applicable.
BARMAG: Specifies the x-dimension width in dots of the most narrow element for

both the linear bar code and the 2D code. Default: 2.
BARHEIGHT: Specifies the height of the linear bar code1. Default: 100.
BARFONT ON/
OFF:

No restriction.

BARSET Instruction

BARSET Instruction
[#<ncon>] Optionally specifies the start parameter in

the syntax
<sexp> Bar code type "RSS14"
<nexp1> Placeholder Value insignificant. 0 is not allowed.
<nexp2> Placeholder Value insignificant. 0 is not allowed.
<nexp3> Barmag/Enlargement See BARMAG.
<nexp4> Barheight See BARHEIGHT.
<nexp5> Placeholder Value insignificant.
<nexp6> Character exclusion in bar code (does not

affect human readables)
0: The bar code will not include any
of the characters space, (,), and car-
riage return [CHR$(13)] but they will
be printed in the human readable field.
Carriage returns make it possible to print
human readable in multiple rows.
1 (default): The bar code and the human
readable field will include exactly the
same data.

<nexp7> Height of separator pattern row in dots Value must be 1-2 × BARMAG. For
example, if BARMAG = 5, 5-10 is OK

<nexp8> Height of each row in 2D bar code in dots Default: 0 (= 3 × BARMAG)
<nexp9> Separator character between data to linear

bar code and 2D bar code
ASCII 2-255 dec. Default: ASCII 124
dec. ASCII 48-57 dec. not allowed.

<nexp10> 2D human readables On/Off 0 = No human readable 2D field.
1 = Print human readable 2D field.

Input Data

No. of characters: 13 digits If less than 13 digits are entered,
leading zeros will automatically be
added so the string will be 13 digits
long.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	39 1

Chapter 5—Bar Codes

1/. There are restrictions in the standard for the minimum size for each RSS bar code, even if it is possible to print an RSS
bar code in any height. The height should relate to the magnification. RSS Stacked differs, because the bar code rows do
not have the same height. BARHEIGHT or BARSET<nexp4> specifies the height of the lower row and height of the
upper row is automatically calculated from the height of the lower row.
For RSS-14, the width is 96X and the minimum height is 33X, where X is the width of the most narrow element as
specified by BARMAG or BARSET<nexp3>.

392	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 5—Bar Codes

RSS-14 Truncated (Composite)

Separate Instructions

BARTYPE: "RSS14T"
BARRATIO: Not applicable.
BARMAG: Specifies the x-dimension width in dots of the most narrow element for

both the linear bar code and the 2D code. Default: 2.
BARHEIGHT: Specifies the height of the linear bar code1. Default: 100.
BARFONT ON/
OFF:

No restriction.

BARSET Instruction

BARSET Instruction
[#<ncon>] Optionally specifies the start parameter in

the syntax
<sexp> Bar code type "RSS14T"
<nexp1> Placeholder Value insignificant. 0 is not allowed.
<nexp2> Placeholder Value insignificant. 0 is not allowed.
<nexp3> Barmag/Enlargement See BARMAG.
<nexp4> Barheight See BARHEIGHT.
<nexp5> Placeholder Value insignificant.
<nexp6> Character exclusion in bar code (does not

affect human readables)
0: The bar code will not include any
of the characters space, (,), and car-
riage return [CHR$(13)] but they will
be printed in the human readable field.
Carriage returns make it possible to print
human readable in multiple rows.
1 (default): The bar code and the human
readable field will include exactly the
same data.

<nexp7> Height of separator pattern row in dots Value must be 1-2 × BARMAG. For
example, if BARMAG = 5, 5-10 is OK

<nexp8> Height of each row in 2D bar code in dots Default: 0 (= 3 × BARMAG)
<nexp9> Separator character between data to linear

bar code and 2D bar code
ASCII 2-255 dec. Default: ASCII 124
dec. ASCII 48-57 dec. not allowed.

<nexp10> 2D human readables On/Off 0 = No human readable 2D field.
1 = Print human readable 2D field.

Input Data

No. of characters: 13 digits If less than 13 digits are entered,
leading zeros will automatically be
added so the string will be 13 digits
long.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	393

Chapter 5—Bar Codes

1/. There are restrictions in the standard for the minimum size for each RSS bar code, even if it is possible to print an RSS
bar code in any height. The height should relate to the magnification. RSS Stacked differs, because the bar code rows do
not have the same height. BARHEIGHT or BARSET<nexp4> specifies the height of the lower row and height of the
upper row is automatically calculated from the height of the lower row.
For RSS-14 Truncated, the width is 96X and the minimum height is 13X, where X is the width of the most narrow ele-
ment as specified by BARMAG or BARSET<nexp3>.

394	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 5—Bar Codes

RSS-14 Stacked (Composite)

Separate Instructions

BARTYPE: "RSS14S"
BARRATIO: Not applicable.
BARMAG: Specifies the x-dimension width in dots of the most narrow element for

both the linear bar code and the 2D code. Default: 2.
BARHEIGHT: Specifies the height of the linear bar code1. Default: 100.
BARFONT ON/
OFF:

No restriction.

BARSET Instruction

BARSET Instruction
[#<ncon>] Optionally specifies the start parameter in

the syntax
<sexp> Bar code type "RSS14S"
<nexp1> Placeholder Value insignificant. 0 is not allowed.
<nexp2> Placeholder Value insignificant. 0 is not allowed.
<nexp3> Barmag/Enlargement See BARMAG.
<nexp4> Barheight See BARHEIGHT.
<nexp5> Placeholder Value insignificant.
<nexp6> Character exclusion in bar code (does not

affect human readables)
0: The bar code will not include any
of the characters space, (,), and car-
riage return [CHR$(13)] but they will
be printed in the human readable field.
Carriage returns make it possible to print
human readable in multiple rows.
1 (default): The bar code and the human
readable field will include exactly the
same data.

<nexp7> Height of separator pattern row in dots Value must be 1-2 × BARMAG. For
example, if BARMAG = 5, 5-10 is OK

<nexp8> Height of each row in 2D bar code in dots Default: 0 (= 3 × BARMAG)
<nexp9> Separator character between data to linear

bar code and 2D bar code
ASCII 2-255 dec. Default: ASCII 124
dec. ASCII 48-57 dec. not allowed.

<nexp10> 2D human readables On/Off 0 = No human readable 2D field.
1 = Print human readable 2D field.

Input Data

No. of characters: 13 digits If less than 13 digits are entered,
leading zeros will automatically be
added so the string will be 13 digits
long.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	395

Chapter 5—Bar Codes

1/. There are restrictions in the standard for the minimum size for each RSS bar code, even if it is possible to print an RSS
bar code in any height. The height should relate to the magnification. RSS Stacked differs, because the bar code rows do
not have the same height. BARHEIGHT or BARSET<nexp4> specifies the height of the lower row and height of the
upper row is automatically calculated from the height of the lower row.
For RSS-14S, the width is 50X and the minimum height is 13X (upper 5X + lower 7X + separator 1X min.), where X is
the width of the most narrow element as specified by BARMAG or BARSET<nexp3>.

Example	 Example of an RSS14S bar code with the following characteristics and
with recommended minimum height selected:
Place holder (nexp1):			 1
Place holder (nexp2): 			 1
Most narrow element width in dots:		 3
Height in dots:				 21
Place holder (nexp5):			 1
Character exclusion (nexp6): 		 1
Separator pattern row height (nexp7):	 4
Height of rows in 2D bar code (nexp8):	 4
Separator character (nexp9):			 124
2D human readables (nexp10):		 1
Data:					 1234567890123|987654321

	 BARSET "RSS14S",1,1,3,21,1,1,4,4,124,1
	 PRBAR "1234567890123|987654321"

396	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 5—Bar Codes

RSS-14 Stacked Omnidirectional (Composite)

Separate Instructions

BARTYPE: "RSS14SO"
BARRATIO: Not applicable.
BARMAG: Specifies the x-dimension width in dots of the most narrow element for

both the linear bar code and the 2D code. Default: 2.
BARHEIGHT: Specifies the height of the linear bar code1. Default: 100.
BARFONT ON/
OFF:

No restriction.

BARSET Instruction

BARSET Instruction
[#<ncon>] Optionally specifies the start parameter in

the syntax
<sexp> Bar code type "RSS14SO"
<nexp1> Placeholder Value insignificant. 0 is not allowed.
<nexp2> Placeholder Value insignificant. 0 is not allowed.
<nexp3> Barmag/Enlargement See BARMAG.
<nexp4> Barheight See BARHEIGHT.
<nexp5> Placeholder Value insignificant.
<nexp6> Character exclusion in bar code (does not

affect human readables)
0: The bar code will not include any
of the characters space, (,), and car-
riage return [CHR$(13)] but they will
be printed in the human readable field.
Carriage returns make it possible to print
human readable in multiple rows.
1 (default): The bar code and the human
readable field will include exactly the
same data.

<nexp7> Height of separator pattern row in dots Value must be 1-2 × BARMAG. For
example, if BARMAG = 5, 5-10 is OK

<nexp8> Height of each row in 2D bar code in dots Default: 0 (= 3 × BARMAG)
<nexp9> Separator character between data to linear

bar code and 2D bar code
ASCII 2-255 dec. Default: ASCII 124
dec. ASCII 48-57 dec. not allowed.

<nexp10> 2D human readables On/Off 0 = No human readable 2D field.
1 = Print human readable 2D field.

Input Data

No. of characters: 13 digits If less than 13 digits are entered,
leading zeros will automatically be
added so the string will be 13 digits
long.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	39 7

Chapter 5—Bar Codes

1/. There are restrictions in the standard for the minimum size for each RSS bar code, even if it is possible to print an RSS
bar code in any height. The height should relate to the magnification. RSS Stacked differs, because the bar code rows do
not have the same height. BARHEIGHT or BARSET<nexp4> specifies the height of the lower row and height of the
upper row is automatically calculated from the height of the lower row.
For RSS-14SO, the width is 50X and the minimum height is 69X (upper 33X + lower 33X + separator 3*1X min.),
where X is the width of the most narrow element as specified by BARMAG or BARSET<nexp3>.

398	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 5—Bar Codes

RSS-14 Limited (Composite)

Separate Instructions

BARTYPE: "RSS14L"
BARRATIO: Not applicable.
BARMAG: Specifies the x-dimension width in dots of the most narrow element for

both the linear bar code and the 2D code. Default: 2.
BARHEIGHT: Specifies the height of the linear bar code1. Default: 100.
BARFONT ON/
OFF:

No restriction.

BARSET Instruction

BARSET Instruction
[#<ncon>] Optionally specifies the start parameter in

the syntax
<sexp> Bar code type "RSS14L"
<nexp1> Placeholder Value insignificant. 0 is not allowed.
<nexp2> Placeholder Value insignificant. 0 is not allowed.
<nexp3> Barmag/Enlargement See BARMAG.
<nexp4> Barheight See BARHEIGHT.
<nexp5> Placeholder Value insignificant.
<nexp6> Character exclusion in bar code (does not

affect human readables)
0: The bar code will not include any
of the characters space, (,), and car-
riage return [CHR$(13)] but they will
be printed in the human readable field.
Carriage returns make it possible to print
human readable in multiple rows.
1 (default): The bar code and the human
readable field will include exactly the
same data.

<nexp7> Height of separator pattern row in dots Value must be 1-2 × BARMAG. For
example, if BARMAG = 5, 5-10 is OK

<nexp8> Height of each row in 2D bar code in dots Default: 0 (= 3 × BARMAG)
<nexp9> Separator character between data to linear

bar code and 2D bar code
ASCII 2-255 dec. Default: ASCII 124
dec. ASCII 48-57 dec. not allowed.

<nexp10> 2D human readables On/Off 0 = No human readable 2D field.
1 = Print human readable 2D field.

Input Data

No. of characters: 13 digits If less than 13 digits are entered,
leading zeros will automatically be
added so the string will be 13 digits
long.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	399

Chapter 5—Bar Codes

1/. There are restrictions in the standard for the minimum size for each RSS bar code, even if it is possible to print an RSS
bar code in any height. The height should relate to the magnification. RSS Stacked differs, because the bar code rows do
not have the same height. BARHEIGHT or BARSET<nexp4> specifies the height of the lower row and height of the
upper row is automatically calculated from the height of the lower row.
For RSS-14L, the width is 71X and the minimum height is 10X, where X is the width of the most narrow element as
specified by BARMAG or BARSET<nexp3>.

400	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 5—Bar Codes

RSS-14 Expanded (Composite)

Separate Instructions

BARTYPE: "RSS14E"
BARRATIO: Not applicable.
BARMAG: Specifies the x-dimension width in dots of the most narrow element for

both the linear bar code and the 2D code. Default: 2.
BARHEIGHT: Specifies the height of the linear bar code1. Default: 100.
BARFONT ON/
OFF:

No restriction.

BARSET Instruction

BARSET Instruction
[#<ncon>] Optionally specifies the start parameter in

the syntax
<sexp> Bar code type "RSS14E"
<nexp1> Placeholder Value insignificant. 0 is not allowed.
<nexp2> Placeholder Value insignificant. 0 is not allowed.
<nexp3> Barmag/Enlargement See BARMAG.
<nexp4> Barheight See BARHEIGHT.
<nexp5> Placeholder Value insignificant.
<nexp6> Character exclusion in bar code (does not

affect human readables)
0: The bar code will not include any
of the characters space, (,), and car-
riage return [CHR$(13)] but they will
be printed in the human readable field.
Carriage returns make it possible to print
human readable in multiple rows.
1 (default): The bar code and the human
readable field will include exactly the
same data.

<nexp7> Height of separator pattern row in dots Value must be 1-2 × BARMAG. For
example, if BARMAG = 5, 5-10 is OK

<nexp8> Height of each row in 2D bar code in dots Default: 0 (= 3 × BARMAG)
<nexp9> Separator character between data to linear

bar code and 2D bar code
ASCII 2-255 dec. Default: ASCII 124
dec. ASCII 48-57 dec. not allowed.

<nexp10> 2D human readables On/Off 0 = No human readable 2D field.
1 = Print human readable 2D field.

1/. There are restrictions in the standard for the minimum size for each RSS bar code, even if it is possible to print an RSS
bar code in any height. The height should relate to the magnification. RSS Stacked differs, because the bar code rows do
not have the same height. BARHEIGHT or BARSET<nexp4> specifies the height of the lower row and height of the
upper row is automatically calculated from the height of the lower row.
For RSS-14E, the width is depending on input and the minimum height is 33X, where X is the width of the most
narrow element as specified by BARMAG or BARSET<nexp3>.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	4 01

Chapter 5—Bar Codes

Remarks	 The RSS-14 Expanded can be used for intelligent encoding of the input
data. They can be created with different encoding methods and compressed
data fields. To understand how to create intelligent bar codes with RSS-
14E, see Chapter 7 “Symbol Requirements for RSS Expanded” in the AIM
specification: International Symbology Specification Reduced Space Symbology
(RSS), AIM Inc. ITS/99-0012, Version 1.0 1999-10-29.

402	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 5—Bar Codes

RSS-14 Expanded Stacked (Composite)

Separate Instructions

BARTYPE: "RSS14ES"
BARRATIO: Not applicable.
BARMAG: Specifies the x-dimension width in dots of the most narrow element for

both the linear bar code and the 2D code. Default: 2.
BARHEIGHT: Specifies the height of the linear bar code1. Default: 100.
BARFONT ON/
OFF:

No restriction.

BARSET Instruction

BARSET Instruction
[#<ncon>] Optionally specifies the start parameter in

the syntax
<sexp> Bar code type "RSS14ES"
<nexp1> Placeholder Value insignificant.
<nexp2> Placeholder Value insignificant.
<nexp3> Barmag/Enlargement See BARMAG.
<nexp4> Barheight See BARHEIGHT.
<nexp5> Segments per row 2-22 (default 2). Multiples of 2 only.
<nexp6> Placeholder Value insignificant.
<nexp7> Height of separator row The height is the same for the pattern

row between the 2D bar code and the
linear bar code as for the pattern rows
between the linear rows. If too low a
height is entered, the height will be chan-
ged to the smallest legal height for the
selected magnification. Minimum 1X,
maximum 2X.

<nexp8> Height of each row in 2D bar code in dots Default: 0 (= 3 × BARMAG)
<nexp9> Separator character between data to linear

bar code and 2D bar code
ASCII 2-255 dec. Default: ASCII 124
dec. ASCII 48-57 dec. not allowed.

<nexp10> 2D human readables On/Off 0 = No human readable 2D field.
1 = Print human readable 2D field.

Input Data

No. of characters: Max. 71 numeric or 41 alphanume-
ric characters

Allowed characters: 0-9 A-Z a-z ! "
% & ' () * + , - . / : ; < = > ? _ space
FNC1 [CHR$(128)]

1/. There are restrictions in the standard for the minimum size for each RSS bar code, even if it is possible to print an RSS
bar code in any height. The height should relate to the magnification. RSS Stacked differs, because the bar code rows do
not have the same height. BARHEIGHT or BARSET<nexp4> specifies the height of the lower row and height of the
upper row is automatically calculated from the height of the lower row.
For RSS-14ES, the width is depending on input and the minimum height is 34X per row + 3*1X per separator, where X
is the width of the most narrow element as specified by BARMAG or BARSET<nexp3>.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	4 03

Chapter 5—Bar Codes

Remarks	 The RSS-14 Expanded Stacked can be used for intelligent encoding of
the input data. They can be created with different encoding methods and
compressed data fields. To understand how to create intelligent bar codes
with RSS-14 ES, see Chapter 7 “Symbol Requirements for RSS Expanded” in
the AIM specification: International Symbology Specification Reduced Space
Symbology (RSS), AIM Inc. ITS/99-0012, Version 1.0 1999-10-29.

Example	 Example of RSS14 Expanded Stacked for a variable weight item (0,001
kilogram increments) and with recommended minimum height selected:

	 Start parameter:				 #4
Most narrow element width in dots:		 2
Height in dots:				 68
Segments per row (nexp5):			 2
Character exclusion (nexp6): 		 1
Separator pattern row height (nexp7):	 4
Height of rows in 2D bar code (nexp8):	 4
Separator character (nexp9):			 124
2D human readables (nexp10):		 1

	 Data: 01900123456789003103001750|9876543210

	 Explanation of data:	 01  9001234567890  0  3103  001750
	 Application Identifier (AI): 	 01
	 AI 01 item ID: 		 9001234567890
					 (In this method, the first digit must be 9.)
	 Digit: 				 0
					 (The value is insignificant but a digit must be 		

				 entered as a place holder.)
	 Application Identifier (AI):	 3103
	 AI 3103 variable weight
	 element string: 		 001750
	 2D data string:		 9876543210

	 BARTYPE "RSS14ES"
	 BARSET #4,2,68,2,1,4,4,124,1
	 PRBAR "01900123456789003103001750|9876543210"

404	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 5—Bar Codes

Setup Bar Codes
Intermec Fingerprint v8.xx-compatible EasyCoder printers can optio-
nally be fitted with an EasySet bar code wand or a scanner (see the
printer’s User’s Guide). By reading a special bar code containing encoded
data for one or several setup parameters, the printer’s setup can easily be
changed, even by a person without any knowledge of Intermec Finger-
print, the Direct Protocol, or their supporting software.

You could print such bar codes with your printer and paste them on a
board in the vicintity of the printer. When, for example, the operator
needs to switch to another type of media, he or she will only have to pick
up the EasySet wand or scanner and read the appropriate bar code.

The only bar code that can be used for this purpose is a Code 128 con-
taining the function character FNC3 (ASCII 130 dec). If the FNC
character is missing, the printer will regard the bar code as containing
ordinary ASCII input to the "wand:" device.

Please refer to the EasySet Bar Code Wand Setup manual for syntax and
parameter descriptions.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	4 05

This chapter lists the supported formats for RFID tags. These include
tables for the input parameters needed to write tags according to the
EPCGlobal tag standards. Other non-EPC formats available are listed as
well.

6 RFID Tag Formats

406	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 6—RFID Tag Formats

RFID Tags
There are many RFID media and tag manufacturers, not all necessarily
making intercompatible equipment. The information in this chapter
applies to supported tags and media. Other media may not function as
described below, or not at all. Contact your local support organization for
information on supported media.

EPCGlobal Tag Format Specifications
EPC (Electronic Product Code) tag formats have been derived from
EAN.UCC standards. The purpose has been to be able to program RFID
tags with the same information from EAN.UCC encoding schemes nor-
mally printed on bar codes. See later in this chapter an example where a
GTIN (Global Trade Item Number) normally printed as an EAN128 bar
code can be programmed to an RFID tag as an SGTIN-96.

The tables on tag formats listed below contain only the information on
the input necessary to program the tags with Fingerprint firmware. More
information is in fact contained by the tags, such as "header" and "parti-
tion". The header is uniquely defined by the tag format, and is therefore
not included in the input. The "partition" does not need to be entered
either, as it is defined by the length of other fields, for example "company
prefix" and "item reference", and is automatically calculated by Fingerprint
firmware. It is therefore very important to enter the correct number of
digits in each field, even if they may contain leading zeroes.

All values entered for EPCGlobal formats must be integers entered as
strings. The exception being USDOD formats, which do not strictly con-
form to EPCGlobal norms.

More information on EPCGlobal and USDOD tag formats can be
obtained from EPCGlobal at www.epcglobalinc.org and from the US
Department of Defense at www.dodrfid.org. The following list conforms
to revision 1.27 of the EPC Tag Data Standards Version 1.1. The Gen 2
standard does not mention the use of 64-bit tags, although they are sup-
ported by Fingerprint.

SGTIN-64

FIELD NUMBER OF DIGITS RANGE
Filter: Not applicable 0-7
Company Prefix Index: Not applicable 0-16 383
Item Reference: Not applicable 0-1 048 575
Serial Number: Not applicable 0-33 554 431

URI Representation "urn:epc:tag:sgtin-64:Filter.CompPreIndex.ItemReference.SerialNumber"

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	4 07

Chapter 6—RFID Tag Formats

SGTIN-96

FIELD NUMBER OF DIGITS RANGE
Filter: Not applicable 0-7
Company Prefix: 6-121 Not applicable
Item Reference: 7-11 Not applicable
Serial Number Not applicable 0-274 877 906 943

URI Representation "urn:epc:tag:sgtin-96:Filter.CompanyPrefix.ItemReference.SerialNumber"
Special Note 1Number of digits in Company Prefix and Item Reference must total 13.

SSCC-64

FIELD NUMBER OF DIGITS RANGE
Filter: Not applicable 0-7
Company Prefix Index: Not applicable 0-16 383
Serial Reference: Not applicable 0-99 999 999 999

URI Representation "urn:epc:tag:sscc-64:Filter.CompPreIndex.SerialReference"

SSCC-96

FIELD NUMBER OF DIGITS RANGE
Filter: Not applicable 0-7
Company Prefix: 6-122 Not applicable
Serial Reference: 11-52 Not applicable

URI Representation "urn:epc:tag:sscc-96:Filter.CompanyPrefix.SerialReference"
Special Note 2Number of digits in Company Prefix and Serial Reference must total 17.

SGLN-64

FIELD NUMBER OF DIGITS RANGE
Filter: Not applicable 0-7
Company Prefix Index: Not applicable 0-16 383
Location Reference: Not applicable 0-999 999
Serial Number3: Not applicable 0-524 287

URI Representation "urn:epc:tag:sgln-64:Filter.CompPreIndex.LocationReference.SerialNumber"
Special Note 3Serial Number can be left out when writing to a tag. (EAN.UCC specifica-

tions do not yet allow the use of Serial Number in SGLN tags)

408	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 6—RFID Tag Formats

SGLN-96

FIELD NUMBER OF DIGITS RANGE
Filter: Not applicable 0-7
Company Prefix: 6-124 Not applicable
Location Reference: 6-04,5 Not applicable
Serial Number6 Not applicable 0-2 199 023 255 551

URI Representation "urn:epc:tag:sgln-96:Filter.CompanyPrefix.LocationReference.SerialNumber"
Special Notes 4Number of digits in Company Prefix and Location Reference must total 12.

5 An empty Location Reference must be entered as an empty string: "".
6Serial Number can be left out when writing to a tag. (EAN.UCC specifica-
tions do not yet allow the use of serial number in SGLN tags)

GRAI-64

FIELD NUMBER OF DIGITS RANGE
Filter: Not applicable 0-7
Company Prefix Index: Not applicable 0-16 383
Asset Type: Not applicable 0-999 999
Serial Number: Not applicable 0-524 287

URI Representation "urn:epc:tag:grai-64:Filter.CompPreIndex.AssetType.SerialNumber"

GRAI-96

FIELD NUMBER OF DIGITS RANGE
Filter: Not applicable 0-7
Company Prefix: 6-127 Not applicable
Asset Type: 6-07,8 Not applicable
Serial Number Not applicable 0-274 877 906 943

URI Representation "urn:epc:tag:sgln-96:Filter.CompanyPrefix.AssetType.SerialNumber"
Special Note 7 Number of digits in Company Prefix and Asset Type must total 12.

8 An empty Asset Type must be entered as an empty string: "".

GIAI-64

FIELD NUMBER OF DIGITS RANGE
Filter: Not applicable 0-7
Company Prefix Index: Not applicable 0-16 383
Individual Asset Reference: Not applicable 0-549 755 813 887

URI Representation "urn:epc:tag:giai-64:Filter.CompPreIndex.IndividualAssetReference"

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	4 09

Chapter 6—RFID Tag Formats

GIAI-96

FIELD NUMBER OF DIGITS RANGE
Filter: Not applicable 0-7
Company Prefix: 6-129 Not applicable
Individual Asset Reference: 18-129 Not applicable

URI Representation "urn:epc:tag:giai-96:Filter.CompanyPrefix.AssetType.SerialNumber"
Special Note: 9 Number of digits in Company Prefix and asset reference must total 24.

GID-96

FIELD NUMBER OF DIGITS RANGE
General Manager Number: Not applicable 0-268 435 455
Object Class: Not applicable 0-16 777 215
Serial Number: Not applicable 0-68 719 476 735

URI Representation "urn:epc:tag:gid-96:GeneralManagerNumber.ObjectClass.SerialNumber"

USDOD-64

FIELD NUMBER OF DIGITS RANGE/ALLOWED VALUES
Filter: Not applicable 0-3
Government Managed Identifier: Exactly 5 characters 0-9, SPACE, and A-Z (not I or O)
Serial Number: Not applicable 0-16 777 215

URI Representation "urn:epc:tag:usdod-64:Filter.GovernmentManagedIdentifier.SerialNumber"

USDOD-96

FIELD NUMBER OF DIGITS RANGE/ALLOWED VALUES
Filter: Not applicable 0-15
Government Managed Identifier: Exactly 5 characters 0-9, SPACE, and A-Z (not I or O)
Serial Number: Not applicable 0-68 719 476 735

URI Representation "urn:epc:tag:usdod-64:Filter.GovernmentManagedIdentifier.SerialNumber"

410	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 6—RFID Tag Formats

Uniform Resource Identifier (URI)
A standardized method to write to a tag is provided by the EPC standard
to simplify encoding of tags. The URI (Uniform Resource Identifier)
representations for EPC tag formats contain just the fields necessary to
distinguish objects from each other, and are included in the tables above.
In order to use the URIs, the tag format "EPC‑URN" must be previously
specified by the TAGFORMAT command. EPC is a namespace in the
Uniform Resource Name (URN) encoding scheme.

Example	 10	 TAGFIELD "@EPC"
	 20	 TAGFORMAT "EPC-URN"
	 30	 TAGWRITE
		 "urn:epc:tag:sscc‑96:0.12345678.987654321"

Other EPC Tag Input Methods
While it is recommended to use the syntax described in the previous sec-
tions to write an EPC tag, it is possible to manually write the full length of
the 64-bit or 96-bit chip in hexadecimal format. For this purpose, the tag
formats "EPC-HEX64" and "EPC-HEX96" are available.

TAGFORMAT NUMBER OF BYTES ALLOWED VALUES
"EPC-HEX64" 8 0-9 and A-F
"EPC-HEX96" 12 0-9 and A-F

Examples	 10	 TAGFIELD "@ID"
	 20	 TAGFORMAT "EPC-HEX64"
	 30	 TAGWRITE "1122334455667788"
	

	 10	 TAGFIELD "@ID"
	 20	 TAGFORMAT "EPC-HEX96"
	 30	 TAGWRITE "11223344556677889900AABB"

EPC Tag Writing Example
The following example, also available from the EPCGlobal standard docu-
ment, is provided to facilitate users who currently print bar codes with
EAN.UCC encoding schemes and wish to include that information in
RFID tags as well. We use a Serialized Global Trade Item (SGTIN) formed
by the GTIN 10614141007346 and serial number 2. The GTIN is in fact
formed by an indicator, company prefix and item reference.

GTIN Indicator: 1
Company Prefix : 0614141
Item reference: 00734
Check digit: 6
Serial Number: 2

This would normally be encoded as an EAN128 bar code:

(01)10614141007346(21)2

AI Check
Digit

AICompany
Prefix

GTIN
Indicator

Serial
Number

Item
Reference

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	4 11

Chapter 6—RFID Tag Formats

The Application Identifiers (AI) are dropped, as this information is inclu-
ded in the header. The check digit is dropped. The GTIN indicator is
repositioned at the leftmost position of the item reference, to form a new
item reference. A filter value of 3 is chosen for this example (signifying
Standard Trade Item Group, though filter definitions are non-normative at
this time). This gives us the necessary values to program an SGTIN-96 tag.

Filter: 3
Company Prefix : 0614141
Item reference: 100734
Serial Number: 2

We could use the following Fingerprint programs to program an
SGTIN-96 tag with the above information, The first example assumes a
Gen 2 tag, and the second an ISO 18000-6B chip (see Tag Memory Allo-
cation section later):

Examples	 10	 FILTER$ = "3"
	 20	 PREFIX$ = "0614141"
	 30	 ITEM$ = "100734"
	 40	 SERIAL$ = "2"
	 50	 TAGFIELD "@EPC"
	 60	 TAGFORMAT "SGTIN-96"
	 70	 TAGWRITE FILTER$, PREFIX$, ITEM$, SERIAL$

	 10	 TAGFIELD "@DATA",10,12
	 20	 TAGFORMAT "EPC-URN"
	 30	 TAGWRITE "urn:epc:tag:sgtin-96:3.
		 0614141.100734.2"

Tag Memory Allocation
Different tag standards exist currently, several of which can be programmed
with EPC tag data. Tag standards currently supported by Fingerprint fir-
mware, are EPC UCode 1.19, ISO 18000-6B, EPC Class 1 version 1, and
EPC Class 1 Generation 2. These tags have different memory structures,
and thus may need different input parameters for the TAGFIELD and
TAGFORMAT statement. The tag memory structure for these supported
tags are shown in the following tables.

412	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 6—RFID Tag Formats

UCODE EPC 1.19 Tag Memory Allocation

Byte @ID @DATA @ALL Read/Write Comment

0

ID

0 0
Read only EPCGlobal ID

(Hex EF04)1 1 1

2 2 2

Read/Write EPC Data

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8

DATA

0 8

Read/Write User Data

9 1 9

10 2 10

11 3 11

12 4 12

13 5 13

14 6 14

15 7 15

16

ID

8 16

Read/Write EPC Data

17 9 17

18 10 18

19 11 19

20 12 20

21 13 21

22 14 22

23 15 23

24

DATA

8 24

Read/Write User Data

25 9 25

26 10 26

...

...

...

...

47 31 47

Remarks	 When writing EPC data to the @ID segment of a Ucode EPC 1.19
tag, Fingerpint ignores input parameters (and other defaults) for the
TAGFIELD command, and automatically starts writing at byte 2 of the
@ID segment. When writing to the @DATA segment, valid start byte and
field length parameters must be entered in the TAGFIELD instruction.

	 Note: No manual mapping of the EPC data to the UCode EPC 1.19
memory structure is necessary, as this is done automatically by Fingerprint
firmware.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	4 13

Chapter 6—RFID Tag Formats

UCODE HSL (ISO 18000-6B) Tag Memory Allocation

Byte @ID @DATA @ALL Read/Write Comment

0

ID

0 0

Read only Unique ID

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8

DATA

0 8
Read only Tag Manufacturer

9 1 9

10 2 10
Read only Tag Hardware Type

11 3 11

12 4 12

Read/Write Tag Memory Layout

13 5 13

14 6 14

15 7 15

16 8 16

17 9 17

18 10 18

Read/Write

User Data

Definition and format of
User Data determined by

Tag Memory Layout

19 11 19

20 12 20

...

...

...

...

...

...

2231 2151 2231

1 The actual byte length of the tag may vary.

Remarks	 When writing to an ISO 18000-6B tag, EPC data must be written to the
@DATA field, and valid start byte and field length parameters must be
entered in the TAGFIELD instruction.

Example	 10	 FILTER$ = "3"
	 20	 PREFIX$ = "0614141"
	 30	 ITEM$ = "100734"
	 40	 SERIAL$ = "2"
	 50	 TAGFIELD "@DATA",10,12
	 60	 TAGFORMAT "SGTIN-96"
	 70	 TAGWRITE FILTER$, PREFIX$, ITEM$, SERIAL$

414	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 6—RFID Tag Formats

Class 1 (EPC Class 1 Version 1) Tag Memory Allocation

Byte Row Pointer
value (bit)

@ID EPC 64 EPC 96

0
0 0 Tag CRC - no Read nor Write Tag CRC - no Read nor Write

1

2
1 16

0 Tag ID most significant bytes
(EPC data) - R/W

Tag ID most significant
bytes (EPC data) - R/W3 1

4
2 32

2
Tag Id (EPC data) - R/W Tag Id (EPC data) - R/W

5 3

6
3 48

4
Tag Id (EPC data) - R/W Tag Id (EPC data) - R/W

7 5

8
4 64

6 Tag ID least significant bytes
(EPC data) - R/W Tag Id (EPC data) - R/W

9 7

10
5 80

8 Kill Passcode - R/W
Tag Id (EPC data) - R/W

11 9 Lock bits - -/-

12
6 96

10 Tag ID least significant
bytes (EPC data) - R/W13 11

14
7 112

12 Kill Passcode -R/W

15 Lock bits - -/-

Remarks	 Class 1 tags are used to store EPC data. EPC data is stored in the @ID
segment, bytes 0-7 for 64 bit and bytes 1-11 for 96-bit tags. The values for
the parameters <nexp2> and <nexp3> for the TAGFIELD command do not
need to be entered when writing EPC data, as these are assigned automati-
cally.

	 The Kill passcode can be adressed as byte 12 in EPC-96 (byte 8
in EPC-64). It must however be adressed independently with a
TAGFIELD,"@ID",12,1 command.

	 The Class 1 standard defines a a tag CRC (cyclyc redundancy check) for
tag ID bits, and if incorrect, the tag will not be detected by a TAGREAD
operation.

	 Erasing all tag information is done by the following comand:

	 TAGFIELD "@ID",0,0
	 TAGFORMAT "HEX"
	 TAGWRITE ""

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	4 15

Chapter 6—RFID Tag Formats

Gen 2 (EPC Class 1 Generation 2) Tag Memory Allocation

FIELD @RESERVED @EPC @TID @USER Content Read/Write

RESERVED

0

Kill Password R/W
1

2

3

4

Access Password R/W
5

6

7

8

Optional R/W...

n

EPC

0
CRC-16 R/-

1

2
Protocol Control Bits R/W

3

4

EPC data R/W

5

6

7

8

9

10

11

12

13

14

15

16

Optional data R/W...

n
2

TID

0 0xE2 R/-

1 Tag mask designer identifier +
vendor-defined tag model number R/-

2

Optional R/-
3

...

n
3

USER

0

Optional User Data R/W...

n
4

Remarks	 The @RESERVED field contains kill and access passwords. These are not
always implemented, and the tag acts as if they were zero-valued passwords.

416	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 6—RFID Tag Formats

The @EPC segment is specifically designed to hold EPC values, and is at
least 96 bits long. When writing EPC information to the @EPC segment,
values for the <nexp2> and <nexp3> values in the TAGFIELD command
need not be defined.

		 The @USER bank allow for user-specific data storage. The organization of
user memory for EPCGlobal applications is vendor-defined.

Non-standard Tag Formats
Fingerprint allows users to program RFID tags with other data than EPC
tag data. The available tag formats are "NUM, "HEX", and "ASCII",
representing numeric, hexadecimal, and ASCII data respectively. When
reading tags, the data is assumed to be in the format last specified by the
TAGFORMAT command. The last example below, exemplifies how the
the ASCII characters written as "RFID", will be read as "52464944" if the
last format is "HEX".

Examples	 10	 TAGFIELD "@ID",2,4
	 20	 TAGFORMAT "NUM"
	 30	 TAGWRITE 1234
	

	 10	 TAGFIELD "@DATA",10,12
	 20	 TAGFORMAT "HEX"
	 30	 TAGWRITE "11223344556677889900AABB"
	

	 10	 TAGFIELD "@DATA",10,4
	 20	 TAGFORMAT "ASCII"
	 30	 TAGWRITE "RFID"
	 40	 TAGFORMAT "HEX"
	 50	 TAGREAD A$
	 60	 PRINT A$
	 RUN
	 yields
	 52464944

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	4 17

7 Error Messages

This chapter list the possible error messages that can be returned to the
host when an error occurrs.

418	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 7—Error Messages

Error table

Code Message/Explanation

0 No error
1 Syntax error.
2 Unbalanced parenthesis.
3 Feature not implemented.
4 Evaluation syntax error.
5 Unrecognized token.
6 Tokenized line too long.
7 Evaluation stack overflow.
8 Error in exectab.
9 Undefined token.
10 Non-executing token.
11 Evaluation stack underflow.
12 Type mismatch.
13 Line not found.
14 Division with zero.
15 Font not found.
16 Bar code device not found.
17 Bar code type not implemented.
18 Disk full.
19 Error in file name.
20 Input line too long.
21 Error stack overflow.
22 RESUME without error.
23 Image not found.
24 Overflow in temporary string buffer.
25 Wrong number of parameters.
26 Parameter too large.
27 Parameter too small.
28 RETURN without GOSUB
29 Error in startup file.
30 Assign to a read-only variable.
31 Illegal file number.
32 File is already open.
33 Too many files open.
34 File is not open.
37 Cutter device not found.
38 User break.
39 Illegal line number.
40 Run statement in program.
41 Parameter out of range.
42 Illegal bar code ratio.
43 Memory overflow.

Code Message/Explanation

44 File is write protected.
45 Unknown store option.
46 Store already in progress.
47 Unknown store protocol.
48 No store defined.
49 NEXT without FOR.
50 Bad store record header.
51 Bad store address.
52 Bad store record.
53 Bad store checksum.
54 Bad store record end.
55 Remove in ROM.
56 Illegal communication channel.
57 Subscript out of range.
58 Field overflow.
59 Bad record number.
60 Too many strings.
61 Error in setup file.
62 File is list protected.
63 ENTER function.
64 FOR without NEXT
65 Evaluation overflow.
66 Bad optimizing type.
67 Error from communication channel.
68 Unknown execution entity.
69 Not allowed in immediate mode.
70 Line label not found.
71 Line label already defined.
72 IF without ENDIF.
73 ENDIF without IF.
74 ELSE without ENDIF.
75 ELSE without IF.
76 WHILE without WEND.
77 WEND without WHILE
78 Not allowed in execution mode.
79 Not allowed in a layout.
80 Download timeout
81 Exit to system
82 Invalid cont environment
83 ETX Timeout
1001 Not implemented.
1002 Memory too small.
1003 Field out of label.
1004 Wrong font to chosen direction.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	4 19

Chapter 7—Error Messages

Code Message/Explanation

1005 Out of paper.
1006 No field to print.
1007 Lss too high.
1008 Lss too low.
1009 Invalid parameter.
1010 Hardware error.
1011 I/O error.
1012 Too many files opened.
1013 Device not found.
1014 File not found.
1015 File is read-only.
1016 Illegal argument.
1017 Result too large.
1018 Bad file descriptor.
1019 Invalid font.
1020 Invalid image.
1021 Too large argument for MAG.
1022 Head lifted.
1023 Incomplete label.
1024 File too large.
1025 File does not exist.
1026 Label pending.
1027 Out of transfer ribbon.
1028 Paper type is not selected.
1029 Printhead voltage too high.
1030 Character is missing in chosen font.
1031 Next label not found.
1032 File name too long.
1033 Too many files are open.
1034 Not a directory.
1035 File pointer is not inside the file.
1036 Subscript out of range.
1037 No acknowledge received within

specified time-
1038 Communication checksum error.
1039 Not mounted.
1040 Unknown file operating system.
1041 Error in fos structure.
1042 Internal error in mcs.
1043 Timer table full.
1044 Low battery in memory card.
1045 Media was removed.
1046 Memory checksum error.
1047 Interrupted system call.
1051 Dot resistance measure out of limits.

Code Message/Explanation

1052 Error in printhead.
1053 Unable to complete a dot measurement.
1054 Error when trying to write to device.
1055 Error when trying to read from device.
1056 O_BIT open error.
1057 File exists.
1058 Transfer ribbon is installed.
1059 Cutter does not respond.
1061 Wrong type of media.
1062 Not Allowed.
1067 Is a directory
1073 Directory not empty
1076 Permission denied
1077 Broken pipe
1081 Timer expired
1082 Unsupported protocol
1083 Ribbon low
1084 Paper low
1085 Connection timed out
1086 Secret not found
1087 Paper Jam
1088 Printhead too hot
1101 Illegal character in bar code.
1102 Illegal bar code font.
1103 Too many characters in bar code.
1104 Bar code too large.
1105 Bar code parameter error.
1106 Wrong number of characters.
1107 Illegal bar code size.
1108 Number or rows out of range.
1109 Number of columns out of range.
1201 Insufficient font data loaded.
1202 Transformation matrix out of range.
1203 Font format error.
1204 Specifications not compatible with

output
1205 Intelligent transform not supported.
1206 Unsupported output mode requested.
1207 Extended font not supported.
1208 Font specifications not set.
1209 Track kerning data not available.
1210 Pair kerning data not available.
1211 Other Speedo error.
1212 No bitmap or outline device.

420	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Chapter 7—Error Messages

Code Message/Explanation

1213 Speedo error six.
1214 Squeeze or clip not supported.
1215 Character data not available.
1216 Unknown font.
1217 Font format is not supported.
1218 Correct mapping table is not found.
1219 Font is in the wrong direction.
1220 Error in external map table.
1221 Map table was not found.
1222 Double byte map table is missing.
1223 Single byte map table is missing.
1224 Character map function is missing.
1225 Double byte font is not selected.
1301 Index outside collection bounds.
1302 Collection could not be expanded.
1303 Parameter is not a collection.
1304 Item not a member of the collection.
1305 No compare function, or compare

returns faulty
1306 Tried to insert a duplicate item.
1320 No RFID support installed.
1321 No tag found.
1322 Access outside tag memory.
1323 Tag format error.
1324 RFID inactive.
1325 Not supported tag type.
1601 Reference Font Not Found.
1602 Error in Wand-Device.
1603 Error in Slave Processor.
1604 Print Shift Error.
1605 No Hardware Lock.
1606 Testfeed not done.
1607 General Print Error.
1608 Access Denied.
1609 Specified Feed Length Exceeded.
1610 Illegal Character Map File.
1701 Cutter not back in position after cut.
1702 Cutter has not reached upper position:

unsuccessful cut.
1703 Cutter not back in position after unsuc-

cessful cut.
1704 Cutter open.
1710 Power supply Generic Error
1711 Power supply Pending
1712 Power supply Status OK

Code Message/Explanation

1713 Power supply Power Fail
1714 Power supply Over Volt V24
1715 Power supply Under Volt V24
1716 Power supply Over Volt VSTM
1717 Power supply Under Volt VSTM
1718 Power supply Over Temperature
1719 Power supply Error
1820 No route to host
1821 Disc quota exceeded
1833 Connection refused

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	42 1

A Keyboards

This appendix illustrates the various keyboards of the EasyCoder printer
models that can use Intermec Fingerprint v8.70 and shows the id.
numbers, position numbers, and ASCII values for the individual keys
and key combinations. Id numbers are used with the ON KEY GOSUB
command. The keyboard may be remapped using the KEYBMAP$
command. An example program to map the alphanumeric keyboard of a
PX-series printer is given.

422	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Appendix A—Keyboards

EasyCoder PF2i/4i/4ci
Actual Keyboard Appearance

ID Numbers

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	423

Appendix A—Keyboards

EasyCoder PF2i/4i/4ci, cont.
Position Numbers

ASCII Values

424	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Appendix A—Keyboards

EasyCoder PM4i
Actual Keyboard Appearance

ID Numbers

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	425

Appendix A—Keyboards

EasyCoder PM4i, cont.
Position Numbers

ASCII Values

426	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Appendix A—Keyboards

EasyCoder PX4i/6i
Actual Keyboard Appearance

ID Numbers

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	42 7

Appendix A—Keyboards

EasyCoder PX4i/6i, cont.
Position Numbers

ASCII Values

428	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Appendix A—Keyboards

EasyCoder PX4i/6i Alphanumeric keyboard
Actual Keyboard Appearance

Position Numbers

ID Numbers and ASCII Values
The EasyCoder PX4i/6i printers do not automatically map the keys of the
alphanumeric keyboard to ASCII and ID values. The alphanumeric key-
board is simply a skin, placed on top of an existing keypad. It is necessary
to map the keys to desired ASCII values. The appearance of the alphanu-
meric keyboard shall thus only be seen as an example. ID numbers cannot
be explicitly mapped, but follow the corresponding ASCII values. ID
values exist only for the 22 keys (and their respective shifted keys) which
are commonly available on all the keyboards shown above. The alpha-
numeric keyboard must be mapped after every reboot, according to the
user's requirements. The KEYBMAP$ command (see Chapter 2) is used to
assign ASCII values to each corresponding position number. The example
program on the next page maps the keyboard to the values shown on the
actual keyboard, according to the ANSI character set (which is used by
most Terminal programs, such as Windows Hyperterminal).

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	429

Appendix A—Keyboards

Mapping the Keyboard
In order to map (or remap) the keyboard of the printer, you must identify
the ASCII values for each character you want available. The KEYBMAP$
command used to map the keyboard (see Chapter 2) requires a string con-
taining all 64 keyboard characters. You must map the complete keyboard
for two (three in PX printers with alphanumeric keyboard) cases: no Shift
key pressed, and Shift key pressed (plus Alt key pressed for PX printers).
The example below maps the PX-printers keyboard to the actual alphanu-
meric keyboard appearance.

Example	 10	 REM PX Alphanumeric keyboard mapping.
20	 REM Character Set = ANSI (NASC -2)
30 	REM One keyboard column per program row
40 	NASC -2

90 	REM Unshifted keys
100	A$ = CHR$(128)+”aq” + STRING$(2,0)
110	A$ = A$ + “zsw” + STRING$(2,0)
120	A$ = A$ + “xde” + STRING$(2,0)
130	A$ = A$ + “cfr” + STRING$(2,0)
140	A$ = A$ + “vgt” + STRING$(2,0)
150	A$ = A$ + “bhy” + CHR$(6)+CHR$(7)
160	A$ = A$ + “nju” + CHR$(29) + CHR$(1)
170	A$ = A$ + “mki” + CHR$(4) + CHR$(2)
180	A$ = A$ + “,lo” + CHR$(5) + CHR$(3)
190	A$ = A$ + “.+p” + CHR$(28)+CHR$(30)
200	A$ = A$ + “ “ + CHR$(8) + “147”
210	A$ = A$ + CHR$(31)+”0258”
220	A$ = A$ + CHR$(13) + “369”

290	REM Shifted keys
300	B$ = CHR$(0)+”AQ” + STRING$(2,0)
310	B$ = B$ + “ZSW” + STRING$(2,0)
320	B$ = B$ + “XDE” + STRING$(2,0)
330	B$ = B$ + “CFR” + STRING$(2,0)
340	B$ = B$ + “VGT” + STRING$(2,0)
350	B$ = B$ + “BHY” + CHR$(0)+CHR$(0)
360	B$ = B$ + “NJU” + CHR$(157) + CHR$(129)
370	B$ = B$ + “MKI” + CHR$(132) + CHR$(130)
380	B$ = B$ + “,LO” + CHR$(133) + CHR$(131)
390	B$ = B$ + “.+P” + CHR$(156)+CHR$(158)
400	B$ = B$ + “ “ + CHR$(136) + “147”
410	B$ = B$ + CHR$(159)+”0258”
420	B$ = B$ + CHR$(141) + “369”

430	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Appendix A—Keyboards

490	REM Alt keys
500	C$ = CHR$(128)+CHR$(167)+ “!” + STRING$(2,0)
510	C$ = C$ + “<” + CHR$(64) + CHR$(34)+

STRING$(2,0)
520	C$ = C$ + “>” + CHR$(126)+CHR$(128) +

STRING$(2,0)
530	C$ = C$ + “[" + CHR$(163) + "$” +

STRING$(2,0)
540	C$ = C$ + “]’%” + STRING$(2,0)
550	C$ = C$ + CHR$(94) + “_&” + CHR$(6)+CHR$(7)
560	C$ = C$ + “;*/” + CHR$(29) + CHR$(1)
570	C$ = C$ + “:?(“ + CHR$(4) + CHR$(2)
580	C$ = C$ + CHR$(246)+”-)” + CHR$(5) + CHR$(3)
590	C$ = C$ + CHR$(228)+CHR$(229)+”=” +

CHR$(28)+CHR$(30)
600	C$ = C$ + CHR$(248) + CHR$(8) + CHR$(252)+

CHR$(233)+CHR$(231)
610	C$ = C$ + CHR$(31)+CHR$(230) + CHR$(223) +

CHR$(232) + CHR$(241)
620	C$ = C$ + CHR$(13) + CHR$(250) + CHR$(224) +

CHR$(181)

1000	 KEYBMAP$(0)=A$
1010	 KEYBMAP$(1)=B$
1020	 KEYBMAP$(5)=C$
1100	 END

EasyCoder PD41
The EasyCoder PD41 keyboard has only one button with Id. number 17
when pressed and 117 when released. This gives the corresponding ASCII
values of 16 and 144. The keyboard map string is only six characters long
(compared to 64 for PF/PM/PX printers), with the Print button having
position 1.

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	43 1

I Index

This appendix lists relevant topics, instructions and keywords and specifies
on which page they are located in the manual.

432	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Appendix I—Index

Index

A
abbreviation

constant 8
expression 8
variable 8

ABS instruction 9
absolute value 9
access mode

random 189
sequential 189

Account Secret 298
ACTLEN instruction 10
AddOn Codes 376
AIM International 344
align

text in box 196–200
ALIGN instruction 11
AN. See ALIGN instruction
anchor point 11
ANSI 344
ANSI character set 173
array 70

sorting 249
ASCII

conversion 14, 34, 101
tag format 416

ASC instruction 14
assign

line from file to variable 154
line to string variable 153
value to variable 152

B
BARADJUST instruction 15
bar code

AddOn 376
Code 128 349
Code 39 348
Data Matrix 351
EAN-13 353
EAN-8 352
EAN 128 354
enlargement. See bar code: magnification
field 12
height 21, 25
Interleaved 2 of 5 356
interpretation 378

enabling 19, 20
font 17
insertion point 18
magnification 18
vertical offset 18
width 18

list 343, 344

magnification 24
MaxiCode 357
one-dimensional 347
PDF417 361
QR Code 363
ratio 24
RSS-14 365
two-dimensional 347
type 24
UPC-A 374
UPC-E 375

BARCODENAME$ instruction 16
BARFONT instruction 17
BARHEIGHT instruction 21
BARMAG instruction 22
BARRATIO instruction 23
BARSET instruction 24
BARTYPE instruction 26
batch printing 192
BEEP instruction 27
BF. See BARFONT instruction
BH. See BARHEIGHT instruction
bitmap image

printing 201
bluelight. See Intermec Readiness Indicator
BM. See BARMAG instruction
box

aligning text in 196–200
creating 196

BR. See BARRATIO instruction
break

branching to subroutine on 178
BREAK instruction 28
BREAK ON/OFF instruction 30
BT. See BARTYPE instruction
buffer

dividing into fields 83
BUSY instruction 31

C
CGI

request 184
channel. See communication channel
character

retireving from string 150
search for in string 133

character set 173
CHDIR instruction 32
checksum

calculate 53
CHECKSUM instruction 33
CHR$ instruction 14, 34
Class 1 411
CLEANFEED instruction 35

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	433

Appendix I—Index

CLEAR instruction 36
CLIP instruction 37
CLL instruction 38
CLOSE instruction 40
Code 128 349
Code 39 348
COMBUF$ instruction 42
COM ERROR ON/OFF instruction 41
comments

in program 223
communication channel

centronics 31, 41, 42, 43, 45
debugging 63
error handling 41
interrupt 28, 47
listing 67
net1 42, 43, 45
selecting 239
uart 28, 30, 31, 41, 42, 43, 45
usb 41, 42, 43, 45

CompactFlash
formatting 96

composite
bar code 377

COMSET instruction 43
COMSET OFF instruction 45
COMSET ON instruction 46
COMSTAT instruction 47
CONT instruction 48
COPY instruction 49
COUNT& instruction 50
counter

creating 50
CSUM instruction 53
CURDIR$ instruction 52
CUT instruction 54
CUT ON/OFF instruction 55
cutter 54

D
data

reading from device 131
reading from file 131

Data Matrix 351
date

formatting 56–59, 98, 171–172, 293–295
returning 56
setting 56

DATE$ instruction 56
DATEADD$ instruction 57
DATEDIFF instruction 59
day. See date
DBBREAK instruction 60
DBBREAK OFF instruction 61
DBEND instruction 62
DBSTDIO instruction 63
DBSTEP instruction 64
debugger 60

DELETE instruction 65
DELETEPFSVAR instruction 66
deleting

files, directories 139
device

closing 40, 75
communication. See communication channel
listing 67
open 189
reading string from 132

DEVICES instruction 67
DIM instruction 70
directory. See file system
Direct Protocol

disabling 130
enabling 130

DIR instruction 71
DIRNAME$ instruction 74
DP. See Direct Protocol

E
EAN 376, 406
EAN-13 353
EAN-13 Composite 383
EAN-8 352
EAN-8 Composite 382
EAN.UCC 128 Composite 386
EAN 128 354
EAN International 344
EasySet 404
Electronic Product Code. See EPC
ELSE. See IF...THEN...(ELSE) instruction
END instruction 75
English character set 173
EOF instruction 76
EPC

tag format 406
EPC-HEX64 410
EPC-HEX96 410
EPCGlobal 405
EPC UCODE 1.19 411
ERL instruction 77
ERR$ instruction 79
ERR instruction 78
error

explanation, retrieving 79
finding in program 77
handling, subroutine 181
messages, defining 80
number, returning 78

ERROR instructions 80
EXECUTE instructions 82
extracting

part of string 168

F
faulty dot. See SET FAULTY DOT instruction

434	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Appendix I—Index

FF. See FORMFEED instruction
field

bar code 12
dividing 83
partial 37
retrieving current 84

FIELD instruction 83
FIELDNO instruction 84
file

closing 40, 75
copying 49
deleting 139
end-of-file, check for 76
listing 87
loading 85
names, retrieving 86
open 189
reading record from 108
reading string from 131, 132
saving 235
storing. See file: loading
transfer 282, 283, 286
transferring 282
transfer status 285

FILE& LOAD instruction
instruction 85

file length 160
FILENAME$ instruction 86
FILES instruction 87
file system

current directory, change 32
current directory, return 52
description 4
directory, creating 170
directory, deleting 139
directory names, retrieving 74

FLOATCALC$ instruction 89
float numbers

calculating with 89
font

downloading 91
files 91
files, installing 121
in bar code interpretation 17
in human readable. See font: in bar code interpretation
name 17
name, retrieving 93, 94
selecting 90
single-byte 90
size 17
skew. See font: slant
slant 17, 91
tilt. See font: slant
TrueDoc 90, 92
TrueType 90, 92

FONTD instruction 92
FONT instruction 90
FONTNAME$ instruction 93

FONTS instruction 94
FOR. See FOR...TO...NEXT instruction
FOR...TO...NEXT instruction 95
FORMAT$ instruction 101
FORMAT DATE$ instruction 98
FORMAT INPUT instruction 99
FORMAT instruction 96
FORMAT TIME$ instruction 100
FORMFEED instruction 104
free memory. See memory: free, number of bytes
FRE instruction 105
French character set 173
FT. See FONT instruction
FTP 283
FUNCTEST$ instruction 107
FUNCTEST instruction 106

G
Gap Truncate Mode 148
Gen 2 270, 411, 415
German character set 173
GETASSOC$ instruction 109
GETASSOCNAME$ instruction 110
GET instruction 108
GETPFSVAR instruction 111
GIAI-64 408
GIAI-96 409
GID-96 409
GOSUB instruction 112
GOTO instruction 114
GRAI-64 408
GRAI-96 408
guard bar

in EAN/UPC bar codes 20

H
hardware

testing 106–107
HEAD instruction 115
human readable. See bar code: interpretation

I
IF. See IF...THEN...(ELSE) instruction
IF...THEN...(ELSE) instruction 117
II. See INVIMAGE instruction
image

bitmap, printing 201
printing 202
removing from memory 224
storing in memory 254

image buffer
clearing 38
saving 120

IMAGE BUFFER MIRROR instruction 119
IMAGE BUFFER SAVE instruction 120
IMAGE LOAD instruction 121
IMAGENAME$ instruction 122

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	435

Appendix I—Index

images
names, listing 123
names, retrieving 122

IMAGES instruction 123
IMMEDIATE instructions 124
immediate mode 124–126
indicator

controlling status 149
INKEY$ instruction 127
input

receiving 128
INPUT# instruction 131
INPUT$ instruction 132
INPUT instruction 128
INPUT ON/OFF instruction 130
insertion point

checking 213
INSTR instruction 133
Instruction

ABS 9
ACTLEN 10
ASC 14
BARADJUST 15
BARCODENAME$ 16
BARFONT 17
BARHEIGHT 21
BARMAG 22
BARRATIO 23
BARSET 24
BARTYPE 26
BEEP 27
BREAK 28
BREAK ON/OFF 30
BUSY 31
CHDIR 32
CHECKSUM 33
CHR$ 34
CLEANFEED 35
CLEAR 36
CLIP 37
CLL 38
CLOSE 40
COMBUF$ 42
COM ERROR ON/OFF 41
COMSET 43
COMSET OFF 45
COMSET ON 46
COMSTAT 47
CONT 48
COPY 49
COUNT& 50
CSUM 53
CURDIR$ 52
CUT 54
CUT ON/OFF 55
DATE$ 56
DATEADD$ 57
DATEDIFF 59

DBBREAK 60
DBBREAK OFF 61
DBEND 62
DBSTDIO 63
DBSTEP 64
DELETE 65
DELETEPFSVAR 66
DEVICES 67
DIM 70
DIR 71
DIRNAME$ 74
END 75
EOF 76
ERL 77
ERR 78
ERR$ 79
ERROR 80
EXECUTE 82
FIELD 83
FIELDNO 84
FILE& LOAD 85
FILENAME$ 86
FILES 87
FLOATCALC$ 89
FONT 90
FONTD 92
FONTNAME$ 93
FONTS 94
FOR...TO...NEXT 95
FORMAT 96
FORMAT$ 101
FORMAT DATE$ 98
FORMAT INPUT 99
FORMAT TIME$ 100
FORMFEED 104
FRE 105
FUNCTEST 106
FUNCTEST$ 107
GET 108
GETASSOC$ 109
GETASSOCNAME$ 110
GETPFSVAR 111
GOSUB 112
GOTO 114
HEAD 115
IF...THEN...(ELSE) 117
IMAGE BUFFER MIRROR 119
IMAGE BUFFER SAVE 120
IMAGE LOAD 121
IMAGENAME$ 122
IMAGES 123
IMMEDIATE 124
INKEY$ 127
INPUT 128
INPUT# 131
INPUT$ 132
INPUT ON/OFF 130
INSTR 133

436	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Appendix I—Index

INVIMAGE 134
KEY BEEP 135
KEYBMAP$ 137
KEY ON/OFF 136
KILL 139
LAYOUT 141
LAYOUT END 144
LAYOUT INPUT 145
LAYOUT RUN 146
LBLCOND 147
LED ON/OFF 149
LEFT$ 150
LEN 151
LET 152
LINE INPUT 153
LINE INPUT# 154
LIST 155
LISTPFSVAR 157
LOAD 158
LOC 159
LOF 160
LSET 161
LTS& ON/OFF 162
MAG 163
MAKEASSOC 164
MAP 165
MERGE 167
MIBVAR& 168
MID$ 168
MKDIR 170
NAME DATE$ 171
NAME WEEKDAY$ 172
NASC 173
NASCD 175
NEW 176
NORIMAGE 177
ON/OFF LINE 187
ON BREAK GOSUB 178
ON COMSET GOSUB 179
ON ERROR GOTO 181
ON GOSUB 182
ON GOTO 183
ON HTTP GOTO 184
ON KEY GOSUB 185
ON MIBVAR& GOSUB 188
OPEN 189
OPTIMIZE BATCH ON/OFF 192
PORTIN 193
PORTOUT ON/OFF 194
PRBAR 195
PRBOX 196
PRBUF 201
PRIMAGE 202
PRINT 203
PRINT# 205
PRINTFEED 206
PRINT KEY ON/OFF 204
PRINTONE 208

PRINTONE# 209
PRLINE 210
PRPOS 211
PRSTAT 213
PRTXT 215
PUT 217
RANDOM 218
RANDOMIZE 219
READY 220
REBOOT 221
REDIRECT OUT 222
REM 223
REMOVE IMAGE 224
RENDER ON/OFF 225
REPRINT ON/OFF 227
RESUME 228
RETURN 229
REWINDCONTROL 230
REWINDVOID 231
RIGHT$ 230
RSET 233
RUN 234
SAVE 235
SETASSOC 237
SET FAULTY DOT 15, 236
SETPFSVAR 238
SETSTDIO 239
SETUP 241
SETUP GET 244
SETUP KEY 245
SETUP WRITE 246
SGN 248
SORT 249
SOUND 250
SPACE$ 251
SPLIT 252
STOP 253
STORE IMAGE 254
STORE INPUT 255
STORE OFF 256
STR$ 257
STRING$ 258
SYSHEALTH 259
SYSHEALTH$ 261
SYSVAR 262
TAGFIELD 270
TAGPROTECT 274
TAGREAD 275
TAGWRITE 276
TESTFEED 277
TICKS 278
TIME$ 279
TIMEADD$ 280
TIMEDIFF 281
TRANSFER$ 287
TRANSFER NET 298
TRANSFERSET 288
TRANSFER STATUS 285

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	43 7

Appendix I—Index

TRANSFER ZMODEM 286
TRON/TROFF 289
VAL 290
VERBON/VERBOFF 291
VERSION$ 292
WEEKDAY 293
WEEKDAY$ 294
WEEKNUMBER 295
WHILE...WEND 296
XORMODE ON/OFF 297

Interleaved 2 of 5 356
Intermec Direct Protocol. See Direct Protocol
Intermec Ready-to-Work Indicator 81, 259
interrupt

program. See program: execution, interrupt
interruption

communication. See communication channel: interrupt
inverse

print image 134
INVIMAGE instruction 134
IP. See INPUT instruction
IRI. See Intermec Ready-to-Work Indicator
ISO 18000-6B 411, 413
Italian character set 173

J
Japanese character set 173

K
key

printer, enabling 136
KEY BEEP instruction 135
KEYBMAP$ instruction 137
KEY ON/OFF instruction 136
KILL instruction 139

L
label. See media
Label Taken Sensor

enabling/disabling 162
layout

creating 141–143
description, starting recording 145
description, stopping 144
variable input 146

LAYOUT END instruction 144
LAYOUT INPUT instruction 145
LAYOUT instruction 141
LAYOUT RUN instruction 146
LBLCOND instruction 147
LED ON/OFF instruction 149
LEFT$ instruction 150
length, string 151
LEN instruction 151
LET instruction 152
LINE INPUT# instruction 154
LINE INPUT instruction 153

LIST instruction 155
LISTPFSVAR instruction 157
LOAD instruction 158
LOC instruction 159
LOF instruction 160
loop

in program 95, 296
LSET instruction 161
LTS& ON/OFF instruction 162

M
MAG instruction 163
magnifying

bar code 22
fonts and images 163

MAKEASSOC instruction 164
MAP instruction 165
mapping

printer keys 137
MaxiCode 357
media

feeding 104
feed setup, overriding 147
pulling 104

memory
clearing 176
formatting printer's 96
free, number of bytes 105

MERGE instruction 167
MIBVAR& instruction 168
MicroPDF417 359

bar code 359
MID$ instruction 168
mirror

image buffer 119
MKDIR instruction 170
month. See date

N
NAME DATE$ instruction 171
NAME WEEKDAY$ instruction 172
NASCD instruction 175
NASC instruction 173
network

opening connection 189
NEW instruction 176
NEXT. See FOR...TO...NEXT instruction
NI. See NORIMAGE instruction
NORIMAGE instruction 177
Norwegian character set 173
number

formatting as string 101
random, generating 218

numeric expression
from string 290

O

438	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Appendix I—Index

offset
vertical 18

ON/OFF LINE instruction 187
ON BREAK GOSUB instruction 178
ON COMSET GOSUB instruction 179
ON ERROR GOTO instruction 181
ON GOSUB instruction 182
ON GOTO instruction 183
ON HTTP GOTO

instruction 184
ON KEY GOSUB instruction 185
ON MIBVAR& GOSUB instruction 188
OPEN instruction 189
open network connection 189
OPTIMIZE BATCH ON/OFF instruction 192

P
PB. See PRBAR instruction
PCMAP 173
PDF417 361
PF. See PRINTFEED instruction
PL. See PRLINE instruction
PM. See PRIMAGE instruction
PORTIN instruction 193
PORTOUT ON/OFF instruction 194
Portuguese character set 173
power failure 157

deleting variables at 66
PP. See PRPOS instruction
PRBAR instruction 195
PRBOX instruction 196
PRBUF instruction 201
PRIMAGE instruction 202
PRINT# instruction 205
print direction

specifying 71–73
printer

keys, enabling 136
keys, mapping 137

PRINTFEED instruction 206
printhead. See thermal printhead
printing

label 206
text 215
to channel 203

PRINT instruction 203
PRINT KEY ON/OFF instruction 204
PRINTONE# instruction 209
PRINTONE instruction 208
PRLINE instruction 210
program

executing 234
executing from within 82
execution, ending 75
execution, interrupt 28
execution, resume 48
execution, tracing 289
listing 155

stopping 253
PRPOS instruction 211
PRSTAT instruction 213
PRTXT instruction 215
PT. See PRTXT instruction
PUT instruction 217
PX. See PRBOX instruction

Q
QR Code 363

R
Random Access Mode 189
RANDOM instruction 218
RANDOMIZE instruction 219
random number

generating 218
generator, resetting 219

reading
first character 127

READY instruction 220
REBOOT instruction 221
record, reading a 108
REDIRECT OUT instruction 222
REM instruction 223
REMOVE IMAGE instruction

instruction 224
RENDER ON/OFF instruction 225
renumbering

program lines 226
RENUM instruction 226
REPRINT ON/OFF instruction 227
restart. See PRTXT instruction
RESUME instruction 228
RETURN instruction 229
REWINDCONTROL instruction 230
REWINDVOID instruction 231
RFID tag 271, 406

format 405
memory allocation 411
protecting 274
reading 275
writing 276, 410

RIGHT$ instruction 230
RSET instruction 233
RSS-14 365, 380

composite 390–403
Expanded 371
Expanded Stacked 372
Limited 370
Stacked 367
Stacked Omnidirectional 369

RUN instruction 234

S
SAVE instruction 235
scanner 404

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	439

Appendix I—Index

search
string 133

secret instruction 298
separator

specifying for LAYOUT RUN 99
Sequential Access Mode 189
SETASSOC

Instruction 237
SETASSOC instruction 237
SET FAULTY DOT instruction 15, 236
SETPFSVAR instruction 238
SETSTDIO instruction 239
setup

changing 241, 404
retirieving 244

SETUP GET instruction 244
SETUP instruction 241
SETUP KEY instruction 245
setup mode

entering 241
SETUP WRITE instruction 246
SGLN-64 407
SGLN-96 408
SGN instruction 248
SGTIN-64 406
SGTIN-96 407
Simple Network Management Protocol. See SNMP
SNMP 168, 188
SORT instruction 249
sound 135
SOUND instruction 27, 250
SPACE$ instruction 251
Spanish character set 173
SPLIT instruction 252
SSCC-64 407
SSCC-96 407
status

checking printer 213
STOP instruction 253
STORE IMAGE instruction 254
STORE INPUT instruction 255
STORE OFF instruction 256
STR$ instruction 257
string

format 101
from numeric expression 257
getting association value 109
length, retirieving 151
search in 133
splitting into array 252

STRING$ instruction 258
string association

traversing 110
subroutine

branching to 112, 185
returning from 229

Swedish character set 173
Syntax 8

SYSHEALTH$ instruction 261
SYSHEALTH instruction 259
system variables

reading 262
setting 262

SYSVAR instruction 262

T
tag

EPC 406
TAGFIELD instruction 270
tag format

ASCII 416
EPC-HEX64 410
EPC-HEX96 410
GIAI-64 408
GIAI-96 409
GID-96 409
GRAI-64 408
GRAI-96 408
HEX 416
NUM 416
SGLN-64 407
SGLN-96 408
SGTIN-64 406
SGTIN-96 407
SSCC-64 407
SSCC-96 407
USDOD-64 409
USDOD-96 409

tag memory 411
TAGPROTECT instruction 274
TAGREAD instruction 275
tag structure 411
TAGWRITE instruction 276
TESTFEED instruction 277
THEN. See IF...THEN...(ELSE) instruction
thermal printhead

check 115
TICKS instruction 278
time

calculating difference 281
formatting 100
setting 279
since power up 278

TIME$ instruction 279
TIMEADD$ instruction 280
TIMEDIFF instruction 281
TO. See FOR...TO...NEXT instruction
TPH. See thermal printhead
tracing

program execution 289
TRANSFER$ instruction 287
TRANSFER KERMIT

Instruction 282
TRANSFER KERMIT instruction 282
TRANSFER NET instruction 298
TRANSFERSET instruction 288

440	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Appendix I—Index

TRANSFER STATUS instruction 285
TRANSFER ZMODEM instruction 286
TRON/TROFF instruction 289
TrueDoc. See font: TrueDoc
TrueType. See font: TrueType

U
uart

communication channel 28, 30, 31
UCC 344, 406
Ucode EPC 1.19 411
UCODE HSL 413
Uniform Resource Identifier 410
UPC 376
UPC-A 374
UPC-A Composite 385
UPC-E 375
UPC-E Composite 384
URI. See Uniform Resource Identifier
USB. See communication channel: usb
USDOD-64 409
USDOD-96 409
UTF-8 173–175

V
VAL instruction 290
variable

recovering 111
system. See system variables

VERBON/VERBOFF instruction 291
verbosity

setting 291
VERSION$ instruction 292
VOID label

rewinding 231

W
wand 404
WEEKDAY$ instruction 294
WEEKDAY instruction 293
WEEKNUMBER instruction 295
WEND. See WHILE...WEND instruction
WHILE. See WHILE...WEND instruction
WHILE...WEND instruction 296

X
XORMODE ON/OFF instruction 297

Y
year. See date

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual	44 1

Appendix I—Index

442	 Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

Appendix I—Index

Intermec Technologies Corporation
Corporate Headquarters
6001 36th Avenue West
Everett, WA 98203
U.S.A.

tel	 +425.348.2600

fax	 +425.355.9551

www.intermec.com

1-960582-07

Intermec Fingerprint v8.70.0/v10.0.0 Programmer´s Reference Manual

1-960582-07

	1 Introduction
	Fingerprint Programming Language
	Fingerprint Documentation
	Differences between Fingerprint 8.70.0 and 10.0.0
	News in Intermec Fingerprint v8.70.0
	General Improvements
	New Instructions
	Modified Instructions

	File System with Directories
	Files in Intermec Fingerprint v8.70.x and v10.0.X

	2 Program Instructions
	Syntax
	ABS
	ACTLEN
	ALIGN (AN)
	ASC
	BARADJUST
	BARCODENAME$
	BARFONT (BF)
	BARFONT ON/OFF (BF ON/OFF)
	BARHEIGHT (BH)
	BARMAG (BM)
	BARRATIO (BR)
	BARSET
	BARTYPE (BT)
	BEEP
	BREAK
	BREAK ON/OFF
	BUSY
	CHDIR
	CHECKSUM
	CHR$
	CLEANFEED
	CLEAR
	CLIP
	CLL
	CLOSE
	COM ERROR ON/OFF
	COMSET
	COMSET OFF
	COMSET ON
	COMSTAT
	CONT
	COPY
	COUNT&
	CURDIR$
	CSUM
	CUT
	CUT ON/OFF
	DATE$
	DATEADD$
	DATEDIFF
	DBBREAK
	DBBREAK OFF
	DBEND
	DBSTDIO
	DBSTEP
	DELETE
	DELETEPFSVAR
	DEVICES
	DIM
	DIR
	DIRNAME$
	END
	EOF
	ERL
	ERR
	ERR$
	ERROR
	EXECUTE
	FIELD
	FIELDNO
	FILE& LOAD
	FILENAME$
	FILES
	FLOATCALC$
	FONT (FT)
	FONTD
	FONTNAME$
	FONTS
	FOR...TO...NEXT
	FORMAT
	FORMAT DATE$
	FORMAT INPUT
	FORMAT TIME$
	FORMAT$
	FORMFEED (FF)
	FRE
	FUNCTEST
	FUNCTEST$
	GET
	GETASSOC$
	GETASSOCNAME$
	GETPFSVAR
	GOSUB
	GOTO
	HEAD
	HEAD, cont.
	IF...THEN...(ELSE)
	IMAGE BUFFER MIRROR
	IMAGE BUFFER SAVE
	IMAGE LOAD
	IMAGENAME$
	IMAGES
	IMMEDIATE
	INKEY$
	INPUT (IP)
	INPUT ON/OFF
	INPUT#
	INPUT$
	INSTR
	INVIMAGE (II)
	KEY BEEP
	KEY ON/OFF
	KEYBMAP$
	KILL
	LAYOUT
	LAYOUT END
	LAYOUT INPUT
	LAYOUT RUN
	LBLCOND
	LED ON/OFF
	LEFT$
	LEN
	LET
	LINE INPUT
	LINE INPUT#
	LIST
	LISTPFSVAR
	LOAD
	LOC
	LOF
	LSET
	LTS& ON/OFF
	MAG
	MAKEASSOC
	MAP
	MERGE
	MIBVAR&
	MID$
	MKDIR
	NAME DATE$
	NAME WEEKDAY$
	NASC
	NASCD
	NEW
	NORIMAGE (NI)
	ON BREAK GOSUB
	ON COMSET GOSUB
	ON ERROR GOTO
	ON GOSUB
	ON GOTO
	ON HTTP GOTO
	ON KEY GOSUB
	ON/OFF LINE
	ON MIBVAR& GOSUB
	OPEN
	OPTIMIZE BATCH ON/OFF
	PORTIN
	PORTOUT ON/OFF
	PRBAR (PB)
	PRBOX (PX)
	PRBUF
	PRIMAGE (PM)
	PRINT (?)
	PRINT KEY ON/OFF
	PRINT#
	PRINTFEED (PF)
	PRINTONE
	PRINTONE#
	PRLINE (PL)
	PRPOS (PP)
	PRSTAT
	PRTXT (PT)
	PUT
	RANDOM
	RANDOMIZE
	READY
	REBOOT
	REDIRECT OUT
	REM (')
	REMOVE IMAGE
	RENDER ON/OFF
	RENUM
	REPRINT ON/OFF
	RESUME
	RETURN
	REWINDCONTROL
	REWINDVOID
	RIGHT$
	RSET
	RUN
	SAVE
	SET FAULTY DOT
	SETASSOC
	SETPFSVAR
	SETSTDIO
	SETUP
	SETUP GET
	SETUP KEY
	SETUP WRITE
	SGN
	SORT
	SOUND
	SPACE$
	SPLIT
	STOP
	STORE IMAGE
	STORE INPUT
	STORE OFF
	STR$
	STRING$
	SYSHEALTH
	SYSHEALTH$
	SYSVAR
	TAGFIELD
	TAGFORMAT
	TAGPROTECT
	TAGREAD
	TAGWRITE
	TESTFEED
	TICKS
	TIME$
	TIMEADD$
	TIMEDIFF
	TRANSFER KERMIT
	TRANSFER NET
	TRANSFER STATUS
	TRANSFER ZMODEM
	TRANSFER$
	TRANSFERSET
	TRON/TROFF
	VAL
	VERBON/VERBOFF
	VERSION$
	WEEKDAY
	WEEKDAY$
	WEEKNUMBER
	WHILE...WEND
	XORMODE ON/OFF
	External Command; Account Secret
	External Command; ZMODEM

	3 Image Transfer
	Protocols
	Image Format
	UBI10
	PRBUF Protocol

	4 Character Sets and Fonts
	Character Sets
	UTF-8 Character Set
	Scaleable Fonts
	Bitmap Fonts
	Font Aliases
	OCR-A BT Character Set
	OCR-B 10 Pitch BT Character Set
	DingDings SWA Character Set

	5 Bar Codes
	Introduction
	Supported Bar Codes
	One-and Two-Dimensional Bar Codes
	Code 39
	Code 128
	Data Matrix
	EAN-8
	EAN-13
	EAN 128
	Interleaved 2 of 5
	MaxiCode
	MicroPDF417
	PDF417
	QR Code
	RSS-14
	RSS-14 Truncated
	RSS-14 Stacked
	RSS-14 Stacked Omnidirectional
	RSS-14 Limited
	RSS-14 Expanded
	RSS-14 Expanded Stacked
	UPC-A
	UPC-E

	AddOn Codes
	Summary

	Composite Bar Codes
	Introduction
	Function
	Example
	EAN8 Composite with CC-A or CC-B
	EAN13 Composite with CC-A or CC-B
	UPC-E Composite with CC-A or CC-B
	UPC-A Composite with CC-A or CC-B
	EAN.UCC 128 Composite with CC-C
	EAN.UCC 128 Composite with CC-A or CC-B
	RSS-14 (Composite)
	RSS-14 Truncated (Composite)
	RSS-14 Stacked (Composite)
	RSS-14 Stacked Omnidirectional (Composite)
	RSS-14 Limited (Composite)
	RSS-14 Expanded (Composite)
	RSS-14 Expanded Stacked (Composite)

	Setup Bar Codes

	6 RFID Tag Formats
	RFID Tags
	EPCGlobal Tag Format Specifications
	Uniform Resource Identifier (URI)
	Other EPC Tag Input Methods
	EPC Tag Writing Example
	Tag Memory Allocation
	Non-standard Tag Formats

	7 Error Messages
	Error table

	A Keyboards
	EasyCoder PF2i/4i/4ci
	Actual Keyboard Appearance
	ID Numbers
	Position Numbers
	ASCII Values

	EasyCoder PM4i
	Actual Keyboard Appearance
	ID Numbers
	Position Numbers
	ASCII Values

	EasyCoder PX4i/6i
	Actual Keyboard Appearance
	ID Numbers
	Position Numbers
	ASCII Values

	EasyCoder PX4i/6i Alphanumeric keyboard
	Actual Keyboard Appearance
	Position Numbers
	ID Numbers and ASCII Values

	Mapping the Keyboard
	EasyCoder PD41

	I Index
	Index

