System Manual

TRAKKER' Antares
Application Development Tools

’ntermec

Intermec Technologies Corporation
6001 36th Avenue West

P.O. Box 4280

Everett, WA 98203-9280

U.S. service and technical support: 1-800-755-5505
U.S. media supplies ordering information: 1-800-227-9947

Canadian service and technical support: 1-800-688-7043
Canadian media supplies ordering information: 1-800-268-6936

Outside U.S. and Canada: Contact your local Intermec service supplier.

The information contained herein is proprietary and is provided solely for the purpose of allowing
customers to operate and/or service Intermec manufactured equipment and is not to be released,
reproduced, or used for any other purpose without written permission of Intermec.

Information and specifications in this manual are subject to change without notice.

00 1998 by Intermec Technologies Corporation
All Rights Reserved

The word Intermec, the Intermec logo, JANUS, IRL, TRAKKER, Antares, Adara, Duratherm,
EZBuilder, Precision Print, PrintSet, Virtual Wedge, and CrossBar are either trademarks or
registered trademarks of Intermec.

Throughout this manual, trademarked names may be used. Rather than put a trademark (O or 0)
symbol in every occurrence of a trademarked name, we state that we are using the names only in an
editorial fashion, and to the benefit of the trademark owner, with no intention of infringement.

Contents

System Manual Contents

The TRAKKER® Antares™ Application Development Tools System Manual contains
two manuals. These manuals help you design, create, test, and debug Microsoft
C applications for Intermec’s TRAKKER® Antares” terminals with the
programmable option.

The system manual is divided into two parts, and each part contains one
manual. Each manual contains its own table of contents and index.

This version of the manual covers Release 3.0 of the TRAKKER Antares
Application Development Tools software. Your terminal must be running
firmware version 3.0 or later in order to use the new v3.0 PSK functions.

Part |

TRAKKER® Antares” PSK Reference Manual

This manual covers the TRAKKER Antares Programmer’s Software Kit (PSK),
which is a set of functions that you can use when developing Microsoft C
applications for TRAKKER Antares terminals. The manual also describes the
special methods you should follow when developing the applications.

Part 1]

TRAKKER® Antares™ Application Simulator User’s Manual

This manual describes how to use the TRAKKER Antares Application
Simulator, which helps you test and debug applications for TRAKKER Antares
terminals by allowing you to run the applications on a PC.

TRAKKER' Antares” PSK
fantermec

Intermec Technologies Corporation
6001 36th Avenue West

P.O. Box 4280

Everett, WA 98203-9280

U.S. service and technical support: 1-800-755-5505
U.S. media supplies ordering information: 1-800-227-9947

Canadian service and technical support: 1-800-688-7043
Canadian media supplies ordering information: 1-800-268-6936

Outside U.S. and Canada: Contact your local Intermec service supplier.

The information contained herein is proprietary and is provided solely for the purpose of allowing
customers to operate and/or service Intermec manufactured equipment and is not to be released,
reproduced, or used for any other purpose without written permission of Intermec.

Information and specifications in this manual are subject to change without notice.

0 1998 by Intermec Technologies Corporation
All Rights Reserved

The word Intermec, the Intermec logo, JANUS, IRL, TRAKKER, Antares, Adara, Duratherm,
EZBuilder, Precision Print, PrintSet, Virtual Wedge, and CrossBar are either trademarks or
registered trademarks of Intermec.

Throughout this manual, trademarked names may be used. Rather than put a trademark (O or 0)
symbol in every occurrence of a trademarked name, we state that we are using the names only in an
editorial fashion, and to the benefit of the trademark owner, with no intention of infringement.

Manual Change Record
This page records changes to the manual. The manual was released at Rev. 001.

Revision Date Description of Change
001 1/97 Original release.
002 5/97 Updated for Version 2.0 software release:

Added support for RS-232 serial communications.
Updated list of certified functions for file manipulation.
Updated status return code values in Appendix A.
Added information on CodePage 850, Western European
character set support.

Added information on building an application from a command
prompt.

Added information on Windows FileCopy Utility.

Updated information on Microsoft C/C++ version 1.52 and

version 5.0.
003 4/98 Updated for Version 3.0 software release.
004 1/99 Updated for Version 4.0 software release by adding five new

application functions:
im_battery_status
im_overlay_setup
im_overlay_status
im_tm_callback_cancel
im_tm_callback_register

Added two missing functions:
im_set_eom
im_set_scanning

Added two missing status code macros:
im_isgood
im_issuccess

Revised two functions:
im_tcp_reconnect_notify
im_tm_callback_register

Noted that these functions are only valid on a T248X with the
enhanced input/output board option:

im_get_relay

im_set_sensor_all

im_get_sensor_input

im_set_optical_callback

im_set_relay

Added an addendum (Part No. 068343-001) for new application
functions after revisions mentioned above.

Ccontents

Before You Begin xi
Warranty Information Xxi
Cautions and Notes Xxi
About This Manual xi
Other Intermec Manuals xv

Contents

Getting Started

What Is the TRAKKER Antares PSK? 1-3
Introducing the TRAKKER Antares Terminals 1-3

Installing the Programmer’s Software Kit 1-4
Microsoft C/C++ Version Requirements 1-6

What’s New? 1-7

What’s Next? 1-8

Programming Guidelines

What Is the PSK Library? 2-3
Communications Functions 2-3
Display Functions 2-4

Input Functions 2-5

Sound Function 2-6

Status Code Macros 2-7
System Functions 2-8
Viewport Functions 2-9

Certified Microsoft C Functions 2-10
Buffer Manipulation Functions 2-12
Character Functions 2-12
Data Conversion Functions 2-12
File Functions 2-13
Math Functions 2-13

TRAKKER Antares PSK Reference Manual

Memory Functions 2-13
String Functions 2-14

Time Functions 2-14
Miscellaneous Functions 2-14

Unsupported Microsoft C/C++ Functions 2-15

Building Applications

Building a Sample Program 3-3

Building Your Own Program 3-4
Building Your Own Program From a Command Line 3-5

Converting an Application to a Binary File 3-7

Downloading Applications 3-7
Using the Serial Port to Transfer Applications and Files 3-7
Using the Model 200 Controller to Download Applications 3-9

Converting TRAKKER Antares and JANUS Applications

Differences Between TRAKKER Antares PSK Functions and JANUS PSK Functions 4-3

Creating Compatible Applications 4-4
Compatible Functions 4-4
Using Status Code Macros 4-5
Creating Your Own Include File 4-6
Renaming a Function 4-6
Defining Function Values 4-6

Converting Applications: TRAKKER Antares to JANUS 4-7
Changing Viewport Functions 4-8
Changing Display Modes 4-9
Setting Timeout Values 4-9

Converting Applications: JANUS to TRAKKER Antares 4-10
Changing Viewport Functions 4-12
Changing Display Modes 4-13
Using Input Modes 4-13
Wedge Mode 4-13
Programmer Mode 4-13
Desktop Mode 4-14
Setting Timeout Values 4-14

vi

Contents

PSK Function Descriptions

5 Understanding the Function Descriptions 5-3
function_name 5-3
im_battery status 5-4
im_cancel_tx_buffer 5-5
im_clear_screen 5-6
im_closedir 5-6
im_command 5-7
im_cputs 5-8
im_cursor_to_viewport 5-9
im_dbyte _symbology set 5-9
im_erase_display 5-10
im_erase_line 5-10
im_event_wait 5-12
im_file_duplicate 5-14
im_file_size 5-15
im_file_time 5-15
im_fmalloc 5-16
im_free_ mem 5-17
im_free_space 5-17
im_get _config_info 5-18
im_get cursor_style 5-19
im_get cursor xy 5-19
im_get display_mode 5-20
im_get display size physical 5-21
im_get display _size virtual 5-22
im_get display type 5-23
im_get follow _cursor 5-24
im_get input_mode 5-25
im_get label symbology 5-26
im_get label_symbologyid 5-27
im_get length 5-28
im_get relay 5-29
im_get screen_char 5-30
im_get sensor _all 5-31
im_get _sensor_input 5-32
im_get text 5-33
im_get tx_status 5-35
im_get viewport lock 5-36
im_get viewporting 5-38
im_input_status 5-40
im_irl_a 5-41
im_irl_k 5-43

Vil

TRAKKER Antares PSK Reference Manual

viii

im_irl_n 5-45

im_irl_v 5-48

im_irl_y 5-51

IM_ISERROR 5-53
IM_ISGOOD 5-54
IM_ISSUCCESS 5-55
IM_ISWARN 5-56
im_message 5-57
im_offset_dbyte 5-57
im_opendir 5-58

im_overlay setup 5-59
im_overlay _status 5-60
im_put_text 5-61
im_putchar 5-62
im_putchar_dbyte 5-63
im_puts 5-63
im_puts_dbyte 5-64
im_puts_mixed 5-65
im_readdir 5-65
im_receive_buffer 5-66
im_receive_field 5-68
im_receive_file 5-74
im_receive_input 5-75
im_set_cursor_style 5-78
im_set _cursor_xy 5-79
im_set_display_mode 5-80
im_set eom 5-81

im_set follow_cursor 5-82
im_set_input_mode 5-83
im_set_optical_callback 5-84
im_set _relay 5-86
im_set_scanning 5-86
im_set_time_event 5-87
im_set_viewport_lock 5-87
im_set_viewporting 5-88
im_setup_follow_cursor 5-89
im_setup_manual_viewporting 5-90
im_sound 5-92
im_standby wait 5-93
im_status _line 5-94
im_tcp_reconnect_notify 5-95
im_timed_status_line 5-96
im_tm_callback_cancel 5-97
im_tm_callback_register 5-97

Contents

im_transmit_buffer 5-100
im_transmit_file 5-102
im_udp_close_socket 5-104
im_udp_open_socket 5-105
im_udp_receive_data 5-106
im_udp_send_data 5-111
im_viewport_end 5-112
im_viewport_getxy 5-112
im_viewport_home 5-113
im_viewport_move 5-113
im_viewport_page_down 5-114
im_viewport_page_left 5-115
im_viewport_page_right 5-115
im_viewport_page up 5-116
im_viewport_setxy 5-116
im_viewport_to_cursor 5-120

Status Codes and ASCII Character Set
Using the Status Code Return Values A-3
TRAKKER Antares Status Code Return Values A-3

ASCII Character Set A-9

Microsoft Visual C/C++ Settings

Project Options B-3

Compiler Options: Code Generation B-3
Compiler Options: Memory Model B-4
Linker Options B-4

Directory Settings B-5

Index

ix

Before You Begin

Before You Begin

CAUTION

This section introduces you to standard warranty provisions, cautions and
notes, document formatting conventions, and sources of additional product
information.

Warranty Information

To receive a copy of the standard warranty provision for this product, contact
your local Intermec sales organization. In the U.S. call 1-800-755-5505, and in
Canada call 1-800-688-7043. Otherwise, refer to the Worldwide Sales & Service
list shipped with this manual for the address and telephone number of your
Intermec sales organization.

Cautions and Notes
The cautions and notes in this manual use this format.

Caution

A caution alerts you to an operating procedure, practice, condition, or
statement that must be strictly observed to prevent equipment damage or
destruction, or corruption or loss of data.

Conseil

Une précaution vous alerte d’une procédure de fonctionnement, d’une méthode,
d’un état ou d’un rapport qui doit étre strictement respecté pour empécher
I’endommagement ou la destruction de I’équipement, ou I’altération ou la
perte de données.

Notes: Notes are statements that either provide extra information about a topic or
contain special instructions for handling a particular condition or set of circumstances.

About This Manual

This manual describes the special features and methods needed for
programming the TRAKKER Antares terminals with Microsoft C.

Use this manual in conjunction with Part II, TRAKKER Antares Application
Simulator User’s Manual, which describes the software that lets you test and
debug TRAKKER Antares applications on a normal PC.

Xi

TRAKKER Antares PSK Reference Manual

Communications Ports May Not Be Available

Both this manual and the library functions refer to communications ports that
may hot be available on your TRAKKER Antares terminals. The ports are
COM1, COM2, scanner port, and an RF network port, NET. To learn which
ports are available on your terminal, check your user’s manual.

Intended Audience

This manual is intended for experienced PC programmers who already
understand return values, know how to program in C, and know how to use
the Microsoft Visual C/C++ and Microsoft CodeView for DOS debugger.

How This Manual Is Organized
This manual is organized as follows:

Chapter What You'll Find

1 Getting Started
Explains how to install the PSK Language Libraries and describes the
TRAKKER Antares terminals.

2 Programming Guidelines
Describes the types of functions included in the library. It lists the
certified and uncertified Microsoft C/C++ functions.

3 Building Applications
Explains how to build, link, compile, and debug applications.

4 Converting TRAKKER Antares and JANUS Applications
Explains the differences between the TRAKKER Antares PSK functions
and the JANUS PSK functions. It provides guidelines for converting your
applications.

5 PSK Function Descriptions
Explains the purpose and syntax for each function. The functions are in
alphabetical order.

A Status Codes
Lists the status codes returned by the PSK functions and the ASCI|I
character sets recognized by the terminals.

B Microsoft Visual C/C++ Settings
Shows the project and compiler settings dialog boxes from Microsoft
Visual C/C++ version 1.5.

Xii

Before You Begin

Terminology
You should be aware of how these terms are used in this manual.

keypad Custom TRAKKER Antares or JANUS keyboard. Throughout this
manual, specific references to the TRAKKER Antares or JANUS keyboard use
the term keypad.

keyboard buffer Machine-level buffer that stores key strokes and scanned
labels. Throughout this manual, specific references to this buffer and its status
flags use the term keyboard.

library functions Intermec-specific functions provided in the language libraries
for programming the terminal or reader.

PC DOS-based PC 386 or higher, with a hard disk, monitor, standard PC
keyboard, disk drives, and at least two communications ports.

programmer Anyone who writes applications for the reader.

Programmer’s Software Kit Language Libraries The disk shipped with this
manual. It contains sample programs and library functions.

PSK Abbreviation for Programmer’s Software Kit. PSK refers to the language
libraries and the associated manuals.

operator Anyone who runs applications on the reader.

reader ordevice Any JANUS 2010, 2020, or 2050 combination 386 PC and bar
code reader.

terminal Any of the TRAKKER Antares family of terminals.

Conventions for Input From a Keyboard or Keypad
You should be aware of these formatting conventions for representing input
from a keyboard or keypad.

Convention Meaning

Bold Keys that you press on a PC keyboard are shown in bold. For example,
“press Enter” means you press the key labeled “Enter” on the
keyboard. The first letter of a key name is always capitalized.

]

Keys that you press on the TRAKKER Antares keypad are shown by
icons.

Shift key.
Ctrl or Control key.

Function Left (FnL) key.

DOQE

Function Right (FnR) key.

Xiii

TRAKKER Antares PSK Reference Manual

Convention Meaning

][9 When a series of keys are shown with no connectors between them,
you must press and release each key in the order shown. For example,
to use viewport pagedown on a terminal, you press and release the @
key and then press and release the E key.

Ctrl-Alt-Del When a series of keys are shown with a dash between them, you must
press and hold the keys in the order shown and then release them all.
For example, to boot a PC, you press and hold Ctrl, press and hold Alt,
press and hold Del, and then release the keys.

Italic Identifies a syntax parameter in text. Italic type also indicates the title
of a manual.

Conventions for Commands
You should be aware of these formatting conventions for entering commands.

Convention

Courier text

Italics

sample listings

Oxnnnn

00H

Xiv

Meaning

Commands are printed in Courier, exactly as you must type
them. For example:

a: setup.exe

A command may include variable parameters. Variables are
shown in italics. You must enter a real value for the variable. For
example:

copy filname .mak a:
Code examples are printed in 9-point Courier. For example:

if(step !=0) level = step;
if(level >= 31) level = 0;

Hexadecimal numbers in C language code segments begin with
Ox. For example:

AX_REG = 0x5300.

Hexadecimal numbers in text are followed by an uppercase H.
For example, 03 hex is shown as 03H.

Before You Begin

Other Intermec Manuals

You may need additional information for working with the PSK in a data
collection system and for programming the TRAKKER Antares terminals and
JANUS readers. To order manuals, contact your local Intermec representative
or distributor.

Intermec
Manual Part No.
TRAKKER Antares 2420 and 2425 Hand-Held Terminal User's Manual 064024
TRAKKER Antares 248X Stationary Terminal User's Manual 066960
JANUS Programmer’s Software Kit Reference Manual Set 062133
JANUS 2010 Hand-Held Computer User’s Manual 058426
JANUS 2010 Hand-Held Computer 4MB User’s Manual 065714
JANUS 2020 Hand-Held Computer User’s Manual 059951
JANUS 2020 Hand-Held Computer 4MB User’s Manual 065715
JANUS 2050 Vehicle Mount Computer User’s Manual 062874
JANUS 2050 Vehicle Mount Computer 4MB User’s Manual 065716
JANUS Application Simulator User’s Manual 062778
Data Communications Reference Manual 044737
Model 200 Controller System Manual 063439
Model 200 Controller Technical Reference Manual 064398

For additional programming information, see the software development kit
manuals provided with your version of C/C++.

Also, you should see the README file provided on the Programmer’s Software
Kit Language Libraries disk. This README file may contain important
information that was not available when this manual was printed.

Note: The PSK requires Microsoft Visual C/C++, Professional Edition v1.0 or v1.5x,

which can create 16-bit DOS applications. See “Microsoft C/C++ Version
Requirements” in Chapter 1 for more information.

XV

Getting Started

Getting Started 1

This chapter introduces the PSK and the TRAKKER Antares terminals, explains how to
install the PSK, and helps you decide what to read next.

What Is the TRAKKER Antares PSK?

The TRAKKER Antares Programmer’s Software Kit (PSK) is a set of C language
functions for programming Intermec’s TRAKKER Antares programmable
terminals. You use the PSK to design and build applications on a PC, and then
you download the application to a TRAKKER Antares terminal.

Introducing the TRAKKER Antares Terminals

The TRAKKER Antares family of terminals include:

T2420 The T2420 is a hand-held, programmable data collection terminal that
has serial ports for direct linking with a PC or host through a communications
dock or optical link adapter.

T2425 The T2425 is a hand-held, programmable data collection terminal that
supports RF communications through Intermec’s 2.4 GHz RF network. The
T2425 can perform terminal emulation and screen mapping as well as run
client/server applications.

2460/2461 The 2460 and 2461 are wall-mounted or desktop stationary
terminals. The terminals run client/server applications and communicate
with the DCS 300. The terminals use either serial or Ethernet
communications.

T2455 The T2455 is a vehicle-mount, programmable data collection terminal
that runs client/server, terminal emulation, and screen mapping applications.
The T2455 communicates through Intermec’s 2.4 GHz RF network and
provides wireless communications to a host either though access points and
the DCS 300 or directly through access points.

T2480/T2481 The T2480 and T2481 are fixed position, programmable data
collection terminals that run client/server applications or terminal emulation.
Each terminal has a serial port to transmit data to and accept data from a host
or PC via RS-232 serial communications. The T2480 has a 4 line by 40
character screen and the T2481 uses a 12 line by 40 character screen.

1-3

TRAKKER Antares PSK Reference Manual

T2485/72486 The T2485 and T2486 are fixed position, programmable data
collection terminals that run client/server applications or terminal emulation.
These terminals can also communicate in Intermec’s 2.4 GHz RF network and
provide real-time communications to a host through access points and the
DCS 300 or directly through access points. The T2485 has a 4 line by 40
character screen and the T2486 uses a 12 line by 40 character screen.

Each terminal has these standard features:

= 512K RAM is reserved for applications. You have full control over how this
memory is used.

= 750K flash drive to store applications and files. You can store up to 32 files
per drive. The terminals use standard DOS file names (abcdefgh.ext).

To learn more about your terminal, see the TRAKKER Antares 2420 and 2425
Hand-Held Terminal User’s Manual or the TRAKKER Antares 248X Stationary
Terminal User’s Manual.

Installing the Programmer’s Software Kit

1-4

The setup program installs the following files and utilities from the PSK
Language Libraries disk:

= PSK functions library

= Header files

= Example files

< TRAKKER Antares Application Simulator
= Windows FileCopy utility

= EXE2ABS.EXE conversion utility

You need the following items to install the PSK:

= PSK Language Libraries disk

< Windows 3.1 or higher

= Microsoft Visual C/C++ Professional Edition, v1.0, v1.5x, or v4.x

= 1MB of free disk space

Note: Install Microsoft Visual C/C++ v1.5x before you install the PSK library. Read
the next section, “Microsoft C/C++ Version Requirements” and refer to your Microsoft
documentation for instructions.

Getting Started 1

To install the PSK library files, Application Simulator, and FileCopy

1. Start Windows.
2. Insert the PSK Language Libraries disk into the disk drive on your PC.

3. Windows 95 Windows 3.1
From Program Manager, click the ~ From Program Manager, select File
Start button and then choose and then choose Run.
Run.

4. Enter this command and choose OK:

drive :setup.exe

where drive: is the appropriate disk drive, such as a: or b..
5. Follow the setup instructions on your screen.

6. When Setup prompts you to view the README file, choose Yes. This file
may contain information that was not available when this manual was
printed.

7. When the installation is complete, exit Windows and reboot. You are ready
to use the PSK, the Application Simulator, and FileCopy.

Setup creates a TRAKKER Antares Sim Editor group in Windows. For details,
see Part Il, TRAKKER Antares Application Simulator User’s Manual.

Setup also creates and fills these subdirectories:
INTERMECNIMT24\LIB Intermec library files, EXE2ABS.EXE
INTERMECNIMT24\INCLUDE Include files
INTERMECN\IMT24\EXAMPLES Sample programs
INTERMECNIMT24\SIM Application Simulator files
INTERMECN\IMT24\FILECOPY FileCopy utility

To copy the Windows FileCopy utility to another computer

1. Install the PSK on the first PC.
2. Use Explorer or File Manager to copy these files to a diskette:

CAINTERMECNIMT24\FILECOPY\FILECOPY.EXE
CA\INTERMECNIMT24\FILECOPY\FILECOPY.HLP
CA\INTERMECN\IMT24\LIB\EXE2ABS.EXE

1-5

TRAKKER Antares PSK Reference Manual

1-6

3. Create these directories on the second PC:

CA\INTERMEC\IMT24\FILECOPY
CA\INTERMEC\IMT24\LIB

4. Insert the diskette in the second PC and use Explorer or File Manager to
copy the files from the disk to the appropriate directories on the PC.

Note: You may copy the Windows FileCopy utility and EXE2ABS.EXE to more than
one PC. You may not copy the PSK library.

Microsoft C/C++ Version Requirements

The PSK requires Microsoft Visual C/C++ Professional Edition v1.0 or v1.5x,
which can create 16-bit DOS applications. If you are using a different version,
you must also install either v1.0 or v1.5x. The Microsoft Visual C/C++
Professional Edition v4.x package includes a disk for v1.5.

Microsoft Visual C/C++ Professional Edition v5.0 does not contain the 16-bit
version of C. You can order Microsoft Visual C/C++ Enterprise Edition v1.52,
from Microsoft.

Microsoft Version 16-Bit Support

v1.0 v

v1.5x v

V4.X V" Includes a disk for v1.52

v5.X X Order Microsoft Visual C/C++ v1.52, Enterprise Edition

from Microsoft

You can use the TRAKKER Antares PSK version 3.0 to develop programs for
terminals with version 2.x firmware. However, the new features will not work
with the older firmware. Call your Intermec representative for information on
upgrading your terminal firmware.

Getting Started 1

What’s New?

Enhancements and changes in this release of the software include:

e Support for setting timer callback functions:

im_tm_callback _cancel Removes a registered function from the timer
callback database.

im_tm_callback_register Registers a function in the timer callback
database and specifies how the function will be called back.

e Support for overlaying glyph fonts on the screen:

im_overlay_setup Superimposes glyph font characters at the same
character position.

im_overlay_status Returns the values that were specified in the last
call of the im_overlay_setup function.

e Support for the battery:

im_battery_status Checks the status of the main battery and returns a
number from 0 to 100 (in increments of 10) that indicates the amount of
charge in the battery.

» Support for the 2460 and 2461 stationary terminals, which do not support
viewporting or double-byte functions. The 2460 and 2461 terminals also do
not support display contrast and backlight.

* Support for the T2455 vehicle-mount, programmable terminal.

1-7

TRAKKER Antares PSK Reference Manual

What’s Next?

Once you have installed the PSK library functions, you can begin creating your
programs. Use this table to help you decide what to do next.

To learn about this task or concept

See this chapter

= Designing programs that use PSK functions
= Using status code macros to check function results

= Using tested C/C++ functions with the PSK library

Chapter 2, “Programming Guidelines”

e Compiling and building programs
« Customizing Visual C/C++ to work with the PSK

< Downloading applications to the terminal with
FileCopy

Chapter 3, “Building Applications”

= Converting TRAKKER Antares applications to run
on a JANUS reader

= Converting JANUS applications to run on a
TRAKKER Antares terminal

Chapter 4, “Converting TRAKKER
Antares and JANUS Applications”

= Correct syntax for each function

= Examples of functions

Chapter 5, “PSK Function Descriptions”

1-8

Programming Guidelines

Programming Guidelines 2

This chapter explains the types of functions included in the PSK library and lists the
Intermec-certified C runtime library functions. Refer to this chapter for guidance in
selecting Intermec functions and valid Microsoft C functions.

What Is the PSK Library?

The TRAKKER Antares Programmer’s Software Kit (PSK) is a library of C
functions for programming the TRAKKER Antares terminals. You can program
a terminal to display prompts and error messages, to collect and display data,
and to transmit data to an upline Model 200 Controller. You can also design
beep sequences for audio feedback.

The PSK functions work with most standard Microsoft C functions. You can
create complex applications that collect, store, manipulate, and transmit data to
meet your system needs.

Communications Functions

Use the communications functions to send or receive data through a
communications port, to check the buffer status for a port, or to cancel a
transmission. You can transmit and receive the contents of a buffer or a file.
You can also receive data or one or more characters from the keyboard,
scanner, or communications port. You can specify several input sources, and
then test for a specific source before acting on the input.

You can transmit a maximum of 1024 bytes in one record.

The PSK includes these communications functions:

im_cancel_tx_buffer im_transmit_buffer_nowait
im_get_tx_status im_transmit_buffer_nowait_t
im_receive_buffer im_transmit_file
im_receive_field im_udp_close_socket
im_receive_file im_udp_open_socket
im_receive_input im_udp_receive_data
im_tcp_reconnect_notify im_udp_send_data

im_transmit_buffer

2-3

TRAKKER Antares PSK Reference Manual

Example: Receiving Data from the NET Port or from the Keyboard

/I This segment waits for input, and then makes it available by calling

I/ im_receive_input().

1

/I Use this method when you want to receive input from multiple sources and you
/I don't know the input source.

#include "imt24lib.h"

void main()

char input[1024]; // Input buffer (input from network must be 1024 characters)
IM_ORIGIN source; /I Source(s) where input is to come from
IM_STATUS status; // Results of call

/I Wait for input from either the keyboard or from NET
status = im_receive_input
(IM_KEYBOARD_SELECT | IM_NET_SELECT,
IM_INFINITE_TIMEOUT, &source, input);

/I Data is now available in the buffer input
/I if (status == IM_SUCCESS)
/I Add your code segment here

}

Display Functions

Use the display functions to change or retrieve the display attributes. You can
define screen size, font size, inverse and blinking characters, and cursor shape.
You can also send text to the screen, erase all or part of the display, and relocate
the cursor.

The PSK includes these display functions:

im_clear_screen im_overlay_status *
im_cputs im_put_text
im_erase_display im_putchar
im_erase_line im_putchar_dbyte *
im_get_cursor_style im_puts
im_get_cursor_xy im_puts_dbyte *
im_get_display_mode im_puts_mixed *
im_get_display_type im_set_cursor_style
im_get_follow_cursor im_set_cursor_xy
im_get_screen_char im_set_display_mode
im_get_text im_set_follow_cursor
im_overlay_setup * im_setup_follow_cursor

Note: The 2460 and 2461 terminals do not support double-byte functions, which are
indicated in the list with asterisks (*).

Programming Guidelines 2

Example: Clearing the Screen

/I This segment clears the display and returns the cursor to the upper left corner.
/I Next, it sets the cursor to an underline.

ginclude "imt24lib.h"

void main()

IM_STATUS status; // Results of call

im_clear_screen();
status = im_set_cursor_style (IM_UNDERLINE);

/I Add your code segment here

}

Input Functions

Use the input functions to receive data or to retrieve the length or bar code
symbology of previous input. You can receive a file, a field, a buffer, or one or
more characters from the keyboard, scanner, or communications port.

For compatibility with JANUS devices, the PSK supports input mode functions.
For more information on input modes, see Chapter 4, “Converting TRAKKER
Antares and JANUS Applications.”

The PSK includes these input functions:

im_dbyte symbology set * im_get_relay
im_file_size im_get_sensor_all
im_file_time im_get_sensor_input
im_free_mem im_input_status
im_free_space im_readdir
im_get_input_mode im_receive_buffer
im_get_label_symbology im_receive_field
im_get_label_symbologyID im_receive_input
im_get_length im_set_input_mode

Note: The 2460 and 2461 terminals do not support double-byte functions, which are
indicated in the list with asterisks (*).

2-5

TRAKKER Antares PSK Reference Manual

Example: Setting Input Mode and Source

/I This segment sets the terminal in programmer mode to accept a string of characters.
/I The string is NOT sent until you press Enter, and you can use backspace to
/l make a correction before pressing Enter.

1
#include "imstdio.h"
#include "imt24lib.h"

void main()

IM_UCHAR input [1024];
IM_STATUS status; // Results of call
IM_USHORT source; // Input sources

im_clear_screen();
im_set_input_mode(IM_PROGRAMMER);
printf("Scan or Type data.\nPress Enter to \nend line.\n");

/* Request input from label or keypad*/

source = IM_LABEL_SELECT | IM_KEYBOARD_SELECT;
status = im_receive_input(source, IM_INFINITE_TIMEOUT, &source, input);

Sound Function

Use the im_sound function anytime to make the terminal beep. You can use
this function to control the volume, pitch, and duration of the terminal beep.

Example: Sound

/I This segment beeps a high note, pauses 5 seconds, and then beeps a low note.
#include "imt24lib.h"

void main()
im_sound(IM_HIGH_PITCH, IM_BEEP_DURATION, IM_NORMAL_VOLUME);

im_standby_wait(5000);
im_sound(IM_LOW_PITCH, IM_BEEP_DURATION, IM_NORMAL_VOLUME);

Programming Guidelines 2

Status Code Macros

Use the status code macros to determine the success of a function without
testing for an explicit value. Each PSK library function returns a specific status
value. For most functions, you only need to know if the result was success or
failure.

Your program is easier to maintain, update, and port to another terminal type
when you check for success or failure instead of checking for a specific value.

Status Code Macro Return Value Meaning
IM_ISERROR(status) nonzero error

zero (0) success or warning
IM_ISSUCCESS(status) nonzero success or warning

zero (0) error
IM_ISGOOD(status) nonzero success

zero (0) warning or error
IM_ISWARN nonzero warning

zero (0) Success or error

For more information, see Chapter 5, “PSK Function Descriptions.”

Note: For compatibility with other Intermec products, use the status code macros. You
can use the exact status code for debugging programs, but you need to adjust the
routines before you attempt porting the application to a JANUS device. For help, see
Chapter 4, “Converting TRAKKER Antares and JANUS Applications.”

Example: Status Code Macros

/* This segment requests label input and then checks for success. */
/* If successfull, then retrieve the label symbology. */

/* If an error occurrs, then displays the error message */
#include "imt24lib.h"

void main()

char input[1024]; // Input buffer (input from network must be 1024 characters)
IM_ORIGIN source; // Source(s) where input is to come from

IM_STATUS status; // Results of call

IM_DECTYPE symbol; // Symbology

status = im_receive_input(IM_LABEL_SELECT, IM_INFINITE_TIMEOUT,
&source, input);

if (IM_ISSUCCESS(status))
im_get_label_symbology(&symbol);

if (IM_ISERROR(status))
im_message(status);

2-7

TRAKKER Antares PSK Reference Manual

System Functions

Use the system functions to control the terminal configuration or to set an event

timer.

im_closedir im_offset_dbyte *
im_command im_opendir
im_event_wait im_set_optical_callback
im_file_duplicate im_set_relay
im_fmalloc im_set_time_event
im_get_config_info im_timed_status_line

Note: The 2460 and 2461 terminals do not support double-byte functions, which are
indicated in the list with asterisks (*).

Example: Configuring the Terminal

/I This segment turns on the terminal backlight and raises the volume.
#include "imt24lib.h"

void main()
char *setlite_vol="%.1$+BV9"; // Turn on backlight and raise beep volume
IM_USHORT length=8; /I Command is 8 characters long

im_command(setlite_vol, length);

2-8

Programming Guidelines 2

Viewport Functions

Use the viewport functions to turn on the virtual display and move around in

the virtual display. The terminals can use a virtual display that is 25 lines high
by 80 characters wide, the same as a CGA monitor. For a complete explanation
of viewporting, see your terminal user’s manual.

The PSK includes these viewport functions:

im_cursor_to_viewport im_viewport_getxy
im_get_viewport_lock im_viewport_home
im_get_viewporting im_viewport_move
im_set_follow_cursor im_viewport_page_down
im_set_viewport_lock im_viewport_page_left
im_set_viewporting im_viewport_page_right
im_setup_follow_cursor im_viewport_page_up
im_setup_manual_viewporting im_viewport_setxy
im_viewport_end im_viewport_to_cursor

Note: The 2460 and 2461 terminals do not support viewporting functions.

Example: Moving the Viewport

/I This segment turns on the viewport and then moves the viewport one page to the right.
#include "imt24lib.h"

void main()
IM_STATUS status; // Results of call

im_set_viewporting (IM_ENABLE);
status = im_viewport_page_right();

2-9

TRAKKER Antares PSK Reference Manual

Certified Microsoft C Functions

This table lists all Microsoft C functions that work with the PSK library
functions. The PSK does not support C++, classes, application-wide
constructors or destructors, or Windows functions.

Note: The PSK requires Microsoft Visual C/C++, Professional Edition v1.0 or v1.5x,
which can create 16-bit DOS applications. See “Microsoft C/C++ Version
Requirements” in Chapter 1 for more information.

_cabs _fstremp _getch _nstrdup
_Ccputs _fstrcpy _getchar _onexit
_ecvt _fstrcspn _getche _putch
_fabs _fstricmp _hypot _rotl
_fatexit _fstrlen _int86Xx _rotr
_fcloseall _fstriwr _isascii _strdup
_fevt _fstrncat _iscsym _stricmp
_ffree _fstrncmp _iscsymf _striwr
_fmalloc _fstrnicmp _itoa _strnicmp
_fmemccpy _fstrnset _Ifind _strnset
_fmemchr _fstrpbrk _lrotl _strrev
_fmemcmp _fstrrchr _lrotr _strset
_fmemcpy _fstrrev _lsearch _strupr
_fmemicmp _fstrset _Itoa _swab
_fmemmove _fstrspn _matherr _toascii
_fmemset _fstrtok _max _tolower
_FP_OFF _fsts _memccpy _toupper
_FP_SEG _ftime _memicmp _ultoa
_fstrcat _gevt _min _ungetch

2-10

Programming Guidelines

Certified Microsoft C Functions (continued)

abs
acos
asctime
asin
atan
atan2
atof
atoi
atol
bsearch
calloc
ceil
clock
coS
cosh
cputs
ctime
difftime
div
errno
exit
exp
fabs
fclose
fcloseall
feof
ferror
fflush
fgetc
fgets

If you seek beyond the end of file (EOF), fseek returns an error.

2

floor
fmod
fopen
fputs
fprintf
fread
free
frexp
fscanf
fseek *
ftell
fwrite
gets
gmtime
isalnum
isalpha
iscntrl
isdigit
isgraph
islower
isprint
ispunct
isspace
isupper
isxdigit
labs
Idexp
Idiv
localtime

log

log10
malloc
mblen
mbstowcs
mbtowc
memchr
memcmp
memcpy
memicmp
memmove
memset
mktime
modf
pow
printf
putch
puts
gsort
rand
remove
rename
scanf

sin

sinh

sqrt
srand
sscanf
strcat

strchr

strcmp
strcpy
strespn
strdate
strftime
strlen
strncat
strncmp
strncpy
strpbrk
strrchr
strspn
strstr
strtime
strtod
strtok
strtol
strtoul
tan

tanh
time
tolower
toupper
va_arg
va_end
va_start
val
wcstombs

wctomb

The terminals do not support time zones, so gmtime() returns the local time instead of
Greenwich time.

2-11

TRAKKER Antares PSK Reference Manual

Note: The PSK does not support C++, classes, application-wide constructors or
destructors, or Windows functions.

Buffer Manipulation Functions

Use the buffer manipulation functions to work with areas of memory, byte by
byte. A buffer is similar to a character string, but is not terminated with a
NULL character (\0). A buffer can contain ASCII data or other data formats.

_fmemccpy _fmemicmp _swab memicmp
_fmemchr _fmemmove memchr memmove
_fmemcmp _fmemset memcmp memset
_fmemcpy _memccpy memcpy

Character Functions

Use the character classification and conversion routines to test for individual
characters and convert characters from uppercase to lowercase.

_isaccii _toupper isgraph isupper
_iscsym isalpha islower isxdigit
_iscsymf isalum isprint tolower
_toascii iscntrl ispunct toupper
_tolower isdigit isspace

Data Conversion Functions
Use the data conversion functions to convert numbers to ASCII strings and vice

versa.

_atold _strtold atol strftime
_ecvt _ultoa labs strtod
_fet abs localeconv strtol
_gevt atof setlocale strtoul
_itoa atoi strcoll strxfrm
_ltoa

2-12

Programming Guidelines 2

File Functions

Use the file functions to manage file input and output (1/0), such as writing
characters to an open file.

clearerr
fclose
feof

ferror

fgetc
fgets
fopen

fprintf

fputs
fread

fscanf

fseek
ftell
fwrite

Math Functions

Use the math functions to perform various mathematical operations and to
convert numbers to ASCII strings and vice versa.

_cabs _rotl dmsbintoieee modf
_fieeetomshin _rotr exp pow
_fmsbintoieee acos fabs rand
_fpreset asin floor sin
_hypot atan fmod sinh
_lrotl atan2 frexp sqrt
_lrotr ceil Idexp srand
_matherr c0S Idiv tan
_max cosh log tanh
_min div log10

Memory Functions

Use the memory functions to dynamically allocate and deallocate memory for
your application to use.

_ffree
_fmalloc
_fmemccpy
_fmemchr

_fmemcmp

_fmemcpy
_fmemicmp

_fmemmove

_fmemset

_memccpy
_memicmp

_swab

memchr

memcmp
memcpy
memmove

memset

2-13

TRAKKER Antares PSK Reference Manual

2-14

String Functions

Use the string functions to manipulate ANSI character strings.

_fstrcat _fstrpbrk _striwr strerror
_fstremp _fstrrchr _strnicmp strlen
_fstrepy _fstrset _strnset strncat
_fstrcspn _fstrrev _strrev strncmp
_fstricmp _fstrspn _strset strncpy
_fstrlen _fstrstr _strupr strpbrk
_fstriwr _fstrtok strcat strrchr
_fstrncat _fstrupr strchr strspn
_fstrncmp _nstrdup stremp strstr
_fstrnicmp _strdup strcpy strtok
_fstrnset _stricmp strespn

Time Functions

Use the time functions to retrieve or set the system time. You can use a variety
of formats for time.

difftime localtime mktime gmtime

asctime strftime clock time

Note: The terminals do not support time zones. The gmtime() function returns the
local time instead of Greenwich time.

Miscellaneous Functions

Use the miscellaneous functions to write characters to the display, to perform
searches, and to handle functions with a variable number of arguments.

_Ifind cputs puts va_end
_Isearch putchar gsort va_start
bsearch va_arg

Programming Guidelines 2

Unsupported Microsoft C/C++ Functions

The PSK does not support C++, classes, application-wide constructors or
destructors, or Windows. You cannot use these Microsoft C/C++ functions.

_access _dos_allocmem _ellipse _fullpath

_arc _dos_close _ellipse_w _(Qetactivepage
arc w _dos_commit _ellipse_wxy _getarcinfo
_arc_wxy _dos_creat _enable _getbkcolor

_bdos _dos_creatnew _eof _getcolor
_bios_disk _dos_findfirst _execl _getcurrentposition
_bios_equiplist _dos_findnext _execle _getcurrentposition_w
_bios_keybrd _dos_freemem _execlp _getcwd
_bios_memsize _dos_getdate _execlpe _getdrive
_bios_printer _dos_getdiskfree _execv _getfillmask
_bios_serialcom _dos_getdrive _execve _getfontinfo
_bios_timeofday _dos_getfileattr _execvp _getgtextextent
_C_exit _dos_getftime _execvpe _getgtextvector
_cexit _dos_gettime _exit _getimage

_cgets _dos_getvect _fatexit _getimage_w
_chain_intr _dos_keep _fdopen _getimage_wxy
_chdir _dos_open _fgetchar _getlinestyle
_chdrive _dos_read _filelength _getphyscoord
_chmod _dos_setblock _fileno _getpid

_chsize _dos_setdate _floodfill _getpixel
_clearscreen _dos_setdrive _floodfill_w _getpixel_w

_close _dos_setfileattr _flushall _gettextcolor
_commit _dos_setftime _fmsbintoieee _gettextcursor
_cprintf _dos_settime _fonexit _gettextposition
_creat _dos_setvect _fputchar _gettextwindow
_cscanf _dos_write _fsopen _getvideoconfig
_disable _dosexterr _fstat _getviewcoord
_displaycursor _dup _fstrchr _getviewcoord_w
_dmwbintoieee _dup2 _fstrdup _getviewcoord_wxy

2-15

TRAKKER Antares PSK Reference Manual

Unsupported Microsoft C/C++ Functions (continued)

2-16

_getvisualpage
_getw
_getwindowcoord
_getwritemode
_grstatus
_harderr
_hardresume
_hardretn
_imagesize
_imagesize_w
_imagesize_wxy
_inp

_inpw

_int86

_int86x
_intdos
_intdosx
_isatty

_kbhit

_lineto
_lineto_w
_locking
_Iseek
_makepath
_matherr
_MK_FP
_mkdir
_mktemp
_moveto
_moveto_w
_onexit

_open

_outgtext
_outmem
_outp
_outpw

_outtext

_pg_analyzechart

_pg_analyzechartms

_pg_analyzepie

_pg_analyzescatter

_pg_analyzescatterms

_pg_chart
_pg_chartms
_pg_chartpie

_pg_chartscatter

_pg_chartscatterms

_pg_defaultchart
_pg_getchardef
_pg_getpalette
_pg_getstyleset
_pg_hlabelchart
_pg_initchart
_pg_resetpalette
_pg_resetstyleset
_pg_setchardef
_pg_setpalette
_pg_setstyleset
_pg_vlabelchart
_pie

_pie_w
_pie_wxy
_polygon
_polygon_w

_polygon_wxy
_putenv
_putimage
_putimage_w
_putw

_read
_rectangle
rectangle w
_rectangle_wxy
_registerfonts
_remapallpalette
_remappalette
_rmdir

_rmtmp
_scrolltextwindow
_searchenv
_segread
_selectpalette
_setactivepage
_setbkcolor
_settextcursor
_settextposition
_settextrows
_settextwindow
_setvideomode
_setvideomoderows
_setvieworg
_setviewport
_setvisualpage
_setwindow
_setwritemode

_snprintf

_Spawnv
_Spawnve
_Sspawnvp
_Spawnvpe
_splitpath
_stat
_strerror
_tell
_tempnam
_umask
_ungetch
_unlink
_unregisterfonts
_vfree
_vheapinit
_vheapterm
_vload
_vlock
_vlockent
_vmalloc
_vmsize
_vrealloc
_vshprintf
_vunlock
_wrapon
_write
abort
assert
atexit

exit
fflushall
fgetpos

Programming Guidelines 2

Unsupported Microsoft C/C++ Functions (continued)

fputc perror setimp tmpfile
freopen putc setvbuf tmpnam
fsetpos raise signal viprintf
getc realloc strerror vprintf
getenv rewind system vsprintf
longjmp setbuf

Note: The PSK requires Microsoft Visual C/C++, Professional Edition v1.0 or v1.5x,
which can create 16-bit DOS applications. See “Microsoft C/C++ Version
Requirements” in Chapter 1 for more information.

2-17

Building Applications

Building Applications 3

This chapter explains how to use the Microsoft Visual C/C++ interactive developer’s
environment (IDE) to build, link, and debug your TRAKKER Antares PSK applications.

Building a Sample Program

The PSK library includes several sample source files and make files, which
were installed to the C:\INTERMEC\IMT24\EXAMPLES directory. Three samples
are discussed in this section.

Note: The PSK requires Microsoft Visual C/C++, Professional Edition v1.0 or v1.5x,
which can create 16-bit DOS applications. See “Microsoft C/C++ Version
Requirements” in Chapter 1 for more information.

GETFLDS.C Demonstrates a forms-based application with several fields.
Displays several fields for input, manages the navigation between fields, and
checks the length of any input. It shows how to display an error message if the
input validation fails, and how to force the cursor back into the field that was
being processed.

GETFLDS.MAK Make file for GETFLDS.C.

ISMT24.C Tests the connection from an RF terminal to a host through the
Model 200 Controller. Sends a transaction to a Model 200 Controller direct
TCP/IP connection, and then displays the transaction data or an error message
on the terminal.

ISMT24.MAK Make file for ISMT24.C.

DEFAPP.C Accepts user input, transmits the input to the host, and displays
any data received.

DEFAPP.MAK Make file for DEFAPP.C.

To build a sample program

1. Start Microsoft Visual C/C++ from Microsoft Windows on your PC.
2. From the Project menu, choose Open.

3. From the directory INTERMEC\IMT24\EXAMPLES, select the desired make
file (*.MAK).

4. From the Project menu, choose Build.

Debug the program with the TRAKKER Antares Application Simulator. See
Part I, TRAKKER Antares Application Simulator User’s Manual for more
information.

6. Convert the application to a binary file using EXE2ABS.EXE. See the
procedure on page 3-7.

7. Download the application to the terminal. See the procedure on page 3-8.

3-3

TRAKKER Antares PSK Reference Manual

8. Use the System Menu in the TRAKKER Antares 2400 Menu System to run
the application.

Note: If you have trouble compiling the sample project, verify that the project settings
have not changed. Use the Project Settings Checklist from the next section, “Building
Your Own Program.”

Building Your Own Program

34

You need to set several project and compiler options when you build your own
programs. The sample programs include these settings in the *. MAK files.

Make sure that your source code uses only the Intermec-certified C functions. If
you use uncertified functions, the link operation will fail. See Chapter 2,
“Programming Guidelines,” for a list of certified C functions.

Use the Project Settings checklist following this procedure to set the
environment for building PSK applications in Microsoft Visual C/C++.
Appendix B, “Microsoft Visual C/C++ Settings,” shows the related dialog
boxes for these settings.

To build your own program

1. Start Microsoft Visual C/C++ from Microsoft Windows on your PC.

2. Create a new project.

3. Use the project settings checklist to set the compiler and linker options.
4. From the Project menu, choose Build.
5

Debug the program with the TRAKKER Antares Application Simulator. See
Part 1l, TRAKKER Antares Application Simulator User’s Manual for more
information.

6. Convert the application to a binary file using EXE2ABS.EXE. See the
procedure on page 3-7.

7. Download the application to the terminal. See the procedure on page 3-8.

8. Use the System Menu in the TRAKKER Antares 2400 Menu System to run
the application.

Building Applications 3

Project Settings Checklist

Dialog Box or Command
Project Options

Compiler Options

Linker Options

Directories

For This Variable
Project Type

Use Foundation Classes

Code generation:

CPU
Floating Point Calls

Memory Model
Segment
Libraries

Include File Path

Library File Path

Select This Setting
MS-DOS application

uncheck
(turn off foundation classes)

8086/8088
Alternate Math

Large
SS==DS
oldnames, llibca, IMT24

\INTERMEC\IMT24\INCLUDE
must be listed first, followed by
\MSVC\INCLUDE

\INTERMEC\IMT24\LIB
must be listed first, followed by
\MSVC\LIB

Done?

ocoooU

U

Note: The PSK requires Microsoft Visual C/C++, Professional Edition v1.0 or v1.5x,

which can create 16-bit DOS applications. See “Microsoft C/C++ Version

Requirements” in Chapter 1 for more information.

Building Your Own Program From a Command Line

You can build your program from the command line (DOS prompt) instead of
from within the Microsoft Visual C/C++ environment. Your *.MAK file must
set the correct compile options for the application to run on the TRAKKER

Antares terminals.

CFLAGS Settings Required for a Successful Compile

Setting Meaning

/G0

/FPa

/AL

Target CPU is an 8086 processor. If you omit the /G switch, the build
defaults to /G0. Using any other /G setting will cause failure that is

difficult to debug.

Use alternate math for the floating point calls. This switch is required.
Any other /FP setting will cause failure.

Use Large memory model. This switch is required.

3-5

TRAKKER Antares PSK Reference Manual

The following examples show the correct settings to use. Refer to your C/C++
documentation for more information on make files, command files, and batch
files.

TMP.MAK

MAKE FILE FOR TEST1
CCPP =cl>>err

CcC =cl >>err

CFLAGS = /FPa /W3 /Zi /AL /Od /D" _DEBUG"/D"_DOS"

/I "\msvclinclude" /1 "C\INTERMEC\MT24\INCLUDE" /Fa /Fr /[Fd"TEST1.PDB"
OBJ =testl.obj big0.obj
POBJ =testl.obj+big0.0bj

SRC = $(OBJ:.c=.0bj)
H =1IMT24.h
$(OBJ):$(H)

MAPFILE = proj.map
LFLAGS =/NOLOGO /NOI /STACK:5120 /ONERROR:NOEXE /CO

proj_DEP = c:\intermec\imt24\include\imstdio.h \
c:\intermec\imt24\include\IMT24.h

testl.OBJ: testl.C
$(CC) $(CFLAGS) $(CCREATEPCHFLAG) /c TEST1.C

big0.0OBJ: big0.C
$(CC) $(CFLAGS) $(CCREATEPCHFLAG) /c big0.C

TESTl.exe: $(OBJ) $(PLIBS)
link $(LFLAGS) @tmp.cmd >>err

TMP.CMD
TEST1.0BJ +
BIG0.0OBJ

testl.EXE

testl.map
c:\intermec\imt24\lib\+
c:\msvc\lib\+
c:\msvc\mfc\lib\+

oldnames llibca IMT24

TMP.BAT

DEL ERR

NMAKE /F TMP.MAK TEST1.EXE >> ERR
TYPE ERR

Building Applications 3

Converting an Application to a Binary File

For your application to run on a TRAKKER Antares terminal, it must be stored
as an executable binary file (*.BIN) instead of an executable file (*.EXE). Use the
EXE2ABS.EXE program that comes with the PSK to convert the file.

Note: The Windows FileCopy utility will automatically convert an executable file
(*.EXE) to an executable binary file (*.BIN) for you.

To convert an executable file to a binary file

= Type this command on your PC and then press Enter:
c:\intermec\imt24\lib\exe2abs filename .exe

where filename.exe is your application.

For example, if your application is named SHIPPING.EXE and the Intermec
directory is on drive C, type this command on your PC:

c:\intermec\imt24\lib\exe2abs shipping.exe

The conversion application creates the SHIPPING.BIN file which will run on
the terminal.

Downloading Applications

You can download applications and files to a terminal using either the serial
port or network communications. The advantage to downloading files via
network communications (RF or Ethernet) is that you can download multiple
files to one or more terminals.

Using the Serial Port to Transfer Applications and Files

The PSK includes a Windows FileCopy utility for transferring files and
applications from your PC to a terminal connected to your PC serial port.
FileCopy was installed on your PC when you ran the PSK setup program. The
FileCopy online help contains detailed information about using the application.

Note: For your application to run on the TRAKKER Antares terminal, it must be
stored as a binary file (*.BIN) instead of an executable file (*.EXE). If you use the
Windows FileCopy utility, it will convert any *.EXE file to a binary file (*.BIN) before
transferring the file.

TRAKKER Antares PSK Reference Manual

3-8

To download an application or other file

1.

Connect the TRAKKER Antares terminal to your PC. For more information,
refer to your terminal user’s manual.

Start Windows on your PC
Start the FileCopy utility.

Select the COM Port Setup tab and the Serial communications Setup tab to
verify that the settings for your PC match the settings for the terminal. Any
changes you make in these tabs are automatically saved for you.

Note: Use the TRAKKER Antares 2400 Menu System to view or configure the
communications settings on the terminal.

Select the FileCopy tab and type your filename information.

Note: The TRAKKER Antares terminals support drives C, D (T248X only), E,
and G. Do not include a “\”” in the TRAKKER Antares filename.

If you want to run the application on the terminal immediately after it is
downloaded, turn on the Run program checkbox.

Click Download to copy the file from the PC to the terminal.

Or, click Upload to copy the file from the terminal to the PC.

Click Exit to close the FileCopy utility.

To copy the Windows FileCopy utility to another computer

Install the PSK on the first PC.
Copy these files from your PC to a disk:

CA\INTERMECNIMT24\FILECOPY\FILECOPY.EXE
CA\INTERMECNIMT24\FILECOPY\FILECOPY.HLP
CA\INTERMECNIMT24\LIB\EXE2ABS.EXE

Create these directories on the second PC:

CA\INTERMECN\IMT24\FILECOPY
CA\INTERMEC\IMT24\LIB

Insert the disk in the second PC.

Copy the files from the disk to the appropriate directories you created on
the second PC.

Note: You may copy the Windows FileCopy utility and EXE2ABS.EXE to more than
one PC. You may not copy the PSK library to another PC.

Building Applications 3

Using the Model 200 Controller to Download Applications

You use RF or Ethernet communications to download applications and files
from the Model 200 Controller to terminals running UDP Plus or from the host
to terminals running TCP/IP. This section provides a brief overview of how to
use the controller to download applications and files. For detailed instructions,
see your terminal user’s manual.

Before you start, make sure the T2480/1 with Ethernet or the T2425, T2485/6 is
communicating with the controller.

To download applications and files using RF communications

1. Copy the applications and files to the Model 200 Controller.

2. Use the Configure Download Server option to download the applications
and files to the terminal.

3. Use the System Menu in the TRAKKER Antares 2400 Menu System to load
and run an application.

Converting TRAKKER Antares and
JANUS Applications

Converting TRAKKER Antares and JANUS Applications |

This chapter describes the differences between the TRAKKER Antares PSK and JANUS
PSK libraries and explains how to convert your applications from one environment to
the other.

Differences Between TRAKKER Antares PSK Functions and
JANUS PSK Functions

TRAKKER Antares terminals are based on the Intel 80186 chip, but they do not
use DOS commands. JANUS devices are true 80386 DOS-compatible
computers. Thus, some of the features and functions from the JANUS PSK do
not work with TRAKKER Antares terminals.

The TRAKKER Antares PSK only supports Microsoft C/C++. The JANUS PSK
supports Borland C/C++, Microsoft C/C++, Microsoft QuickBasic, Microsoft
Visual Basic, and ADA. This chapter discusses only the C/C++ library
differences.

In general, a C/C++ application written for a TRAKKER Antares terminal
requires minor changes to run on a JANUS device. However, an application
written for a JANUS device can require major changes to work properly on a
TRAKKER Antares terminal.

You can handle the differences between the JANUS PSK and TRAKKER
Antares PSK libraries using one of these methods:

= Use the information in this chapter to rewrite entire sections of code.

= Locate each occurrence of the unsupported command in the file and place
an #ifdef statement before each occurrence.

= Create a compatibility file (compat.h) to redefine the incompatible
functions. Use an #include statement at the beginning of your program to
reference this file.

The first two methods are time consuming and must be performed for each
program to be converted. The third method provides a reusable filter that you
can quickly customize for individual programs.

Note: This chapter refers to the TRAKKER Antares PSK as the “TRAKKER PSK.”

TRAKKER Antares PSK Reference Manual

Creating Compatible Applications

4-4

To create applications that run on both JANUS devices and TRAKKER Antares
terminals, use compatible PSK functions and plan your program flow and logic.
Keep these points in mind:

= Use compatible functions to minimize rewriting program segments.

= Use status code macros to test function return values.

= Some JANUS PSK functions have runtime requirements, such as a protocol
handler. Refer to your JANUS PSK reference manual for more information.

Note: Be sure that when you compile your program you set the appropriate options for
the destination. JANUS PSK make files use the 80386 compiler option. TRAKKER
PSK make files use the 8086/8088 compiler option. See the Project Settings Checklist in
Chapter 3 for more information.

Compatible Functions
These functions work with both PSKs without modifications.

im_command im_set_follow_cursor
im_cursor_to_viewport im_set_input_mode
im_get_config_info im_sound
im_get_display_type im_standby_ wait
im_get_follow_cursor im_transmit_buffer
im_get_label_symbology im_transmit_buffer_no_wait
im_get_length im_viewport_end
im_get_viewport_lock im_viewport_getxy
im_input_status im_viewport_home
im_irl_a im_viewport_move
im_irl_k im_viewport_page_down
im_irl_n im_viewport_page_up
im_irl_v im_viewport_setxy
im_irl_y im_viewport_to_cursor
im_message im_viewport_setxy
im_receive_buffer im_viewport_to_cursor
im_receive_input im_set_viewport_lock

Note: Incompatible functions and suggested alternatives are listed later in this chapter.
See “Converting Applications: TRAKKER Antares to JANUS” on page 4-7, and
“Converting Applications: JANUS to TRAKKER Antares ” on page 4-10.

Converting TRAKKER Antares and JANUS Applications |

Using Status Code Macros

Each PSK library function returns a specific status value. The PSK provides
status code macros that determine the success of the function without testing
for an explicit value. For most functions, you only need to know if the result
was success or failure. Your program is easier to maintain, update, and port to
another terminal type when you check for success or failure instead of a
specific value.

This example tests for success or failure and then provides an action for each
condition.

/* This segment requests label input, then checks for success */
/* If successful, then retrieve the label symbology */
/* If an error occurred, display the error message */
/* Request input */
status = im_receive_input(IM_LABEL_SELECT, IM_INFINITE_TIMEOUT,
&source, input);
if (IM_ISSUCCESS(status))
im_get_label_symbology(&symbol);
if (IM_ISERROR(status))
im_message(status);

You may want to take different actions depending on the type of error. You can
test for success with IM_ISSUCCESS and provide more detailed tests for a
specific returned status code. You can use the exact status code for debugging
programs, but you need to adjust the routines before you attempt to port the
application. For more information, see Chapter 5, “PSK Function Descriptions.”

Status Code Macro Return Value Meaning
IM_ISERROR(status) nonzero error

zero (0) success or warning
IM_ISSUCCESS(status) nonzero success

zero (0) error
IM_ISGOOD(status) nonzero success

zero (0) warning or error
IM_ISWARN nonzero warning

zero (0) success

4-5

TRAKKER Antares PSK Reference Manual

4-6

Creating Your Own Include File

You can handle the JANUS and TRAKKER PSK library differences by creating
a compatibility file (compat.h) to redefine the incompatible functions. Use an
#include statement at the beginning of your program to reference this file.

The include file provides a reusable filter that you can customize for your
needs. The include file needs to rename some functions and assign specific
values to other functions.

Note: Be sure that when you compile your program you set the appropriate options for
the destination. JANUS PSK make files use the 80386 compiler option. TRAKKER
PSK make files use the 8086/8088 compiler option. See the Project Settings Checklist in
Chapter 3 for more information.

Renaming a Function

The TRAKKER PSK replaces some C functions with Intermec functions. For
example, im_clear_screen() in the TRAKKER PSK replaces the Borland C
clrscr() function.

Note: The JANUS PSK supports Borland C/C++ and Microsoft C/C++. The
TRAKKER Antares PSK only supports Microsoft Visual C/C++, Professional Edition
v1.0 or v1.5%, which can create 16-bit DOS applications. See “Microsoft C/C++
Version Requirements” in Chapter 1 for more information.

To rename the clrscr() function to work with the TRAKKER PSK, add this line
to the compatibility file (compat2t.h):

#define clrscr() im_clear_screen()
Use the tables later in this chapter determine the changes you need to make.

Defining Function Values
Some PSK functions do not have a clear replacement function. For these
functions, you can assign a success value or another significant value.

For example, many JANUS PSK functions require that the im_link function has
been called. There is no equivalent function in the TRAKKER PSK. You can
assign the success value to im_link so that your program handles the function
without disrupting your program.

To assign a success value to im_link for TRAKKER PSK programs, add this line
to the compatibility file:

#define im_link(x,x,x) atoi("0")

Converting TRAKKER Antares and JANUS Applications |

Converting Applications: TRAKKER Antares to JANUS

Since most of the TRAKKER PSK functions are a subset of the JANUS PSK
function library, converting applications is usually easy. Some TRAKKER PSK
functions are not part of the JANUS PSK. If you use any of the incompatible
functions, you must change your program or create an include file that traps
the newer functions.

This table lists the TRAKKER PSK functions that you must modify to use with
the JANUS PSK.

TRAKKER PSK Function JANUS PSK Differences and Solutions

im_clear_screen
im_cputs
im_erase_display
im_erase_line
im_event_wait
im_get_cursor_style
im_get_cursor_xy
im_get_screen_char
im_get_text
im_get_tx_status

im_get_viewporting

im_put_text
im_putchar
im_puts

im_receive_buffer

im_receive_field

im_receive_file

im_set_cursor_style
im_set_cursor_xy
im_set_time_event

im_set_viewporting

Not supported on JANUS devices. Use standard C functions.
Not supported on JANUS devices. Use standard C functions.
Not supported on JANUS devices. Use standard C functions.
Not supported on JANUS devices. Use standard C functions.
Similar to im_input_wait on JANUS devices.

Not supported on JANUS devices.

Not supported on JANUS devices.

Not supported on JANUS devices. Use standard C functions.
Not supported on JANUS devices. Use standard C functions.
Not supported on JANUS devices.

Not supported on JANUS devices. See “Changing Viewport Functions”
on page 4-8.

Not supported on JANUS devices. Use standard C functions.
Not supported on JANUS devices. Use standard C functions.
Not supported on JANUS devices. Use standard C functions.

JANUS devices use a smaller buffer and a smaller maximum timeout
value. See “Setting Timeout Values” on page 4-9.

Not supported on JANUS devices. Use im_receive_input.

Not supported on JANUS devices. Use the Communications Manager to
receive ASCII files.

Not supported on JANUS devices.
Not supported on JANUS devices.
Not supported on JANUS devices.

Not supported on JANUS devices. See “Changing Viewport Functions”
on page 4-8.

im_setup_follow_cursor Not supported on JANUS devices.

4-7

TRAKKER Antares PSK Reference Manual

TRAKKER PSK Function

im_setup_manual_viewporting

im_transmit_buffer

im_transmit_buffer_no_wait t

im_transmit_file

im_viewport_page_left

im_viewport_page_right

JANUS PSK Differences and Solutions

Not supported on JANUS devices. Use im_command with the
appropriate viewport configuration commands. See your TRAKKER
Antares terminal user’s manual or JANUS device user’s manual.

JANUS devices use a smaller maximum timeout value. See “Setting
Timeout Values” on page 4-9.

Not supported on JANUS devices. Use im_transmit_buffer_no_wait.

Not supported on JANUS devices. Use the Communications Manager to
transmit ASCII files.

Not supported on JANUS devices. Use im_viewport_move.

Not supported on JANUS devices. Use im_viewport_move.

Note: Be sure that when you compile your program you set the appropriate options for
the destination. JANUS PSK make files use the 80386 compiler option. TRAKKER
PSK make files use the 8086/8088 compiler option. See the Project Settings Checklist in
Chapter 3 for more information.

Changing Viewport Functions

JANUS devices and TRAKKER Antares terminals both support a 25x80 virtual
display. However, you use different functions to turn the viewport on and off.
The TRAKKER PSK also contains two additional functions:
im_viewport_page_left and im_viewport_page_right.

TRAKKER PSK Method

JANUS PSK Method

im_set_viewporting (IM_ENABLE) im_set_display_mode

(IM_SIZE_MODE_80X25, video, scroll, char_ht)

im_set_viewporting (IM_DISABLE) im_set_display_mode (other_size, video, scroll, char_ht)

im_get_viewporting (mode)

im_get_display_mode (size, video, scroll, char_ht)

where: where:

mode is IM_ENABLE or IM_DISABLE video is the video mode parameter.
scroll is the scrolling mode parameter.
char_ht is the character height parameter.
size is the screen size.

im_viewport_move

other_size is the screen size, other than 80x25.

im_viewport_move

(IM_VIEWPORT_LEFT, distance, row, col) (IM_VIEWPORT_LEFT, distance, row, col)

Or
im_viewport_page_left()

4-8

Converting TRAKKER Antares and JANUS Applications

TRAKKER PSK Method JANUS PSK Method

im_viewport_move im_viewport_move
(IM_VIEWPORT_RIGHT, distance, row, col) (IM_VIEWPORT_RIGHT, distance, row, col)

Or

im_viewport_page_right()

where:

distance is the width of one screen, from 1 to 70

row is a returned parameter
col is a returned parameter
Changing Display Modes

The JANUS devices use different display modes than the TRAKKER Antares
terminals. Both use im_get_display_mode and im_set_display_mode, but they
pass a different number of parameters and set different attributes. You need to
rewrite program segments that set or check for display mode values.

TRAKKER PSK Display Mode Syntax JANUS PSK Display Mode Syntax

#include "imt24lib.h" #include "im20lib.h"

IM_STATUS im_get_display_mode IM_USHORT im_get_display_mode
(IM_FONT_TYPE far * font , (IM_STD_SIZE_MODE * size_mode ,
IM_UCHAR far * phys_width IM_STD_VIDEO_MODE * video_mode ,
IM_UCHAR far * phys_height IM_SCROLL_MODE * scroll_mode
IM_BOOL far * scroll IM_CHARACTER_HEIGHT * char_ht);

IM_BOOL far * wrap);

Setting Timeout Values

The TRAKKER PSK uses two different maximum timeout values, but the
JANUS PSK uses only one maximum value. TRAKKER functions that access
the network port use a much larger value and use the data type IM_LTIME.

TRAKKER PSK Values JANUS PSK Values

Numeric range: 0 to 4,294,967,294 msec Numeric range: 1 to 65,534 msec
Wait forever: IM_INFINITE_NET_TIMEOUT Wait forever: IM_INFINITE_TIMEOUT

To convert the TRAKKER PSK values to work with the JANUS PSK

= Add this line to your include file:
#define IM_INFINITE_NET_TIMEOUT IM_INFINITE_TIMEOUT

4-9

TRAKKER Antares PSK Reference Manual

Converting Applications: JANUS to TRAKKER Antares

JANUS PSK Function
im_appl_break_status
im_backlight_off
im_backlight_on
im_backlight_toggle
im_cancel_rx_buffer

im_cancel_tx_buffer

The JANUS PSK library provides many functions that are not part of the
TRAKKER PSK. If you use any of the incompatible functions, you must change
your program or create an include file that traps the unsupported functions.

This table lists the functions from the JANUS PSK that you must modify to use
with the TRAKKER PSK.

TRAKKER PSK Differences and Solutions

TRAKKER Antares terminals use a hot key to break out of an application.
Use im_command("%.0").

Use im_command("%.1").

Use im_command("%.")

Not supported on TRAKKER Antares terminals. Do not use.

The TRAKKER PSK returns different return codes. Change your code to
accept or test against these values:

IM_SUCCESS, IM_NET_ERROR, IM_PORT_INACTIVE,
TRANSMIT_COMPLETE

im_clear_abort_callback Not supported on TRAKKER Antares terminals. Use the hot key to control

im_decrease_contrast
im_get_contrast
im_get_control_key

im_get_display_mode

im_get_input_mode
im_get_keyclick
im_get_postamble
im_get_preamble
im_get_reboot_flag
im_get_warmboot
im_increase_contrast

im_input_status

im_link_comm

im_number_pad_off

4-10

the application instead.

Use im_command("DJ9").

Use im_get_config_info("DJ").
Use im_get_config_info("KB").

TRAKKER PSK passes different arguments. See “Changing Display
Modes” on page 4-13.

See “Using Input Modes” on page 4-13.

Use im_get _config_info("KC").

Use im_get_config_info("AE").

Use im_get_config_info("AD").

Not supported on TRAKKER Antares terminals. Do not use.
Not supported on TRAKKER Antares terminals. Do not use.
Use im_command("DJ8").

TRAKKER PSK does not support COM2. References to COM4 are treated
as NET port by the IMT24LIB.H include file.

TRAKKER Antares terminals do not need to link or unlink to use
communications ports. Do not use.

Not supported on TRAKKER Antares terminals. Do not use.

JANUS PSK Function
im_number_pad_on
im_parse_host_response

im_power_status

im_protocol_extended_status

im_receive_buffer

im_receive_buffer_noprot
im_receive_buffer_no_wait
im_receive_byte

im_rs_installed

im_rx_check_status

im_serial_protocol_control

im_set_abort_callback

im_set_contrast

im_set_control_key

im_set_display_mode

im_set_input_mode
im_set_keyclick

im_set_warmboot

im_setup_trx
im_standard_trx
im_transmit_buffer

im_transmit_buffer_noprot
im_transmit_byte

im_unlink_com

Converting TRAKKER Antares and JANUS Applications |

TRAKKER PSK Differences and Solutions

Not supported on TRAKKER Antares terminals. Do not use.
Not supported on TRAKKER Antares terminals. Do not use.
Not supported on TRAKKER Antares terminals. Do not use.

Use im_get_config_info("PS") to retrieve the protocol settings. Use
im_command("PSdata") to set the protocol. Refer to your TRAKKER
Antares terminal user’s manual for valid data values.

TRAKKER PSK has a larger receive buffer and uses a larger maximum for
timeout. See “Setting Timeout Values” on page 4-14.

Not supported on TRAKKER Antares terminals. Do not use.
Use im_receive_input or im_receive_buffer and set the timeout to 0.
Use im_receive_input.

Reader services are built into TRAKKER Antares terminals. This function is
not used.

Use im_input_status.

Use im_get_config_info(PS) to retrieve the protocol settings. Use
im_command("PSdata") to set the protocol. Refer to your TRAKKER
Antares terminal user’s manual for valid data values.

Not supported on TRAKKER Antares terminals. Use the hot key to control
the application instead.

Use im_command("DJdata"), where data is the contrast level from 0 to 7.
Refer to your TRAKKER Antares terminal user’s manual for valid data
values.

Not supported on TRAKKER Antares terminals. Use the menu to reboot
the terminal.

TRAKKER PSK passes different arguments. See “Changing Display
Modes” on page 4-13.

See “Using Input Modes” on page 4-13.

Use im_command("KCdata"), where data is 0 (disable)or 1 (enable). Refer
to your TRAKKER Antares terminal user’s manual.

Not supported on TRAKKER Antares terminals. Use the hot key to control
application instead.

Not supported on TRAKKER Antares terminals. Do not use.
Not supported on TRAKKER Antares terminals. Do not use.

TRAKKER PSK has a larger maximum for timeout. See “Setting Timeout
Values” on page 4-14.

Not supported on TRAKKER Antares terminals. Do not use.
Use im_transmit_buffer.
TRAKKER Antares terminals do not need to link or unlink to use

4-11

TRAKKER Antares PSK Reference Manual

JANUS PSK Function

4-12

TRAKKER PSK Differences and Solutions

communications ports. Do not use.

Note: Be sure that when you compile your program you set the appropriate options for
the destination. JANUS PSK make files use the 80386 compiler option. TRAKKER
PSK make files use the 8086/8088 compiler option. See the Project Settings Checklist in

Chapter 3 for more information.

Changing Viewport Functions

The JANUS devices and TRAKKER Antares terminals both support a 25x80
virtual display. However, you use different functions to turn the viewport on
and off. If your JANUS program uses viewporting, you need to use the
TRAKKER PSK functions im_get_viewporting and im_set_viewporting.

JANUS PSK Method

im_set_display_mode
(IM_SIZE_MODE_80X25, video, scroll, char_ht)

im_set_display_mode (other_size, video, scroll, char_ht)

im_get_display_mode (size, video, scroll, char_ht)

where:

video is the video mode parameter.
scroll is the scrolling mode parameter.
char_ht is the character height parameter.
size is the screen size.

other_size is the screen size, other than 80x25.

im_viewport_move
(IM_VIEWPORT_LEFT, distance, row, col)

im_viewport_move
(IM_VIEWPORT_RIGHT, distance, row, col)

where:

distance is the width of one screen, from 1 to 70.
row is a returned parameter.

col is a returned parameter.

TRAKKER PSK Method
im_set_viewporting (IM_ENABLE)

im_set_viewporting (IM_DISABLE)
im_get_viewporting (mode)
where:

mode is IM_ENABLE or IM_DISABLE.

im_viewport_move
(IM_VIEWPORT_LEFT, distance, row, col)

Or

im_viewport_page_left()

im_viewport_move
(IM_VIEWPORT_RIGHT, distance, row, col)

Or

im_viewport_page_right()

Converting TRAKKER Antares and JANUS Applications |

Changing Display Modes
The JANUS devices use different display modes than the TRAKKER Antares
terminals. Both use im_get_display_mode and im_set_display_mode, but they

pass a different number of parameters and set different attributes. You need to
rewrite program segments that set or check for display mode values.

JANUS PSK Display Mode Syntax TRAKKER PSK Display Mode Syntax

#include "im20lib.h" #include "imt24lib.h"

IM_USHORT im_get_display_mode IM_STATUS im_get_display_mode
(IM_STD_SIZE_MODE * size_mode , (IM_FONT_TYPE far * font ,
IM_STD_VIDEO_MODE * video_mode , IM_UCHAR far * phys_width
IM_SCROLL_MODE * scroll_mode IM_UCHAR far * phys_height
IM_CHARACTER_HEIGHT * char_ht); IM_BOOL far * scroll

IM_BOOL far * wrap);

Using Input Modes

The TRAKKER PSK and JANUS PSK support three different input modes:
Wedge mode, Programmer mode, and Desktop mode. The differences between
these modes are more important on JANUS devices than on TRAKKER Antares
terminals.

Wedge Mode

In Wedge mode, keypad and label inputs go directly into the keyboard buffer.
Any reader commands are executed and saved. For JANUS devices, Wedge
mode is the default mode at the DOS prompt after you load reader services
(RSERVICE.EXE). Use Wedge mode when your program uses Microsoft C
functions on the JANUS device.

When the reader is in Wedge mode, use standard input functions such as getch
to retrieve keypad or label input. Keypad input terminates when you press the
Enter key.

On the TRAKKER Antares terminals, Wedge mode works with all of the
keypad input functions.

Programmer Mode

In Programmer mode, keypad input is echoed to the screen as the keys are
pressed, and any reader commands are executed and saved. Keypad input
terminates when you press the Enter key.

JANUS devices require Programmer mode to use the PSK functions and to
execute Interactive Reader Language (IRL) commands.

Programmer mode is the default mode for TRAKKER Antares terminals, and it
works with all of the keypad input functions. TRAKKER Antares terminals do
not support IRL commands.

4-13

TRAKKER Antares PSK Reference Manual

Desktop Mode

In Desktop mode, your application is responsible for retrieving and displaying
keypad input. The input terminates with each keystroke, and Desktop mode
returns detailed information about each key pressed.

Use the input function im_receive_input to capture the keys pressed. Each
character returned uses the structure IM_KEYCODE, described in IM20LIB.H
and IMT24LIB.H. This structure consists of four bytes: the ASCII code, the scan
code, and two bytes of keyboard flags (Shift, Control, Alt).

Setting Timeout Values

The TRAKKER PSK uses two different maximum timeout values, but the
JANUS PSK uses only one maximum value. TRAKKER PSK functions that
access the network port use a much larger value and use the data type

IM_LTIME.

JANUS PSK Values TRAKKER PSK Values

Numeric range: 1 to 65,534 msec Numeric range: 0 to 4,294,967,294 msec

Wait forever: IM_INFINITE_TIMEOUT Wait forever: IM_INFINITE_NET_TIMEOUT

To convert the JANUS PSK values to work with the TRAKKER PSK

= Add this line to your include file:
#define IM_INFINITE_TIMEOUT IM_INFINITE_NET_TIMEOUT

4-14

PSK Function Descriptions

function_name 5

This chapter describes the syntax and parameters for each function in the TRAKKER
Antares Programmer’s Software Kit (PSK) library.

Understanding the Function Descriptions

The function descriptions in this chapter use these conventions:

= The descriptions refer to many named constant variables, such as
IM_COML. These variables always appear in uppercase and are described
in IMT24LIB.H.

The descriptions use common C/C++ notation.
< ltalic type indicates a variable that you replace with a real value.

= Straight quotation marks (" ") indicate literal string entries. Include the
guotation marks in the command, such as:

char *high_trast ="$+DJ7";

= You can indent program statements with leading spaces to make your
program easier to read.

= C/C++is case sensitive. Follow the capitalization used in the descriptions.

The following example (function_name) explains the parts of the function
descriptions.

function_name

Purpose Briefly describes the function and its typical use.
Syntax Lists the C-language function prototype and the required include file.

IN Parameters Describes the input parameters (arguments) for the function and lists
acceptable values. Not all functions have input parameters.

OUT Parameters Describes the output parameters (arguments) for the function and lists
acceptable values. Not all functions have output parameters.

IN/OUT Describes the parameters (arguments) for the function that are passed into the
Parameters function and back out of the function and lists acceptable values. The function
usually changes the value before returning. Not all functions have in/out
parameters.

Return Value Describes the value returned by the function and lists acceptable values. Not
all functions have a return value.

Notes Describes any additional requirements for using the function. Not all functions
have notes.

See Also Lists similar PSK functions.

5-3

im_battery_status

Example

/* A short code segment showing how to use the function. */

Note: The PSK requires Microsoft Visual C/C++, Professional Edition v1.0 or v1.5x,
which can create 16-bit DOS applications. See “Microsoft C/C++ Version
Requirements” in Chapter 1 for more information.

Note: Your terminal must be running firmware version 3.0 or later in order to use the
new v3.0 PSK functions.

im_battery status
Purpose This function checks the status of the main battery and returns number from 0
to 100 (in increments of 10) that indicates the amount of charge in the battery.

Syntax #include "imt24lib.n"
IM_STATUS im_battery_status
(IM_SHORT * main_battery level)

IN Parameters None.

OUT Parameters main_battery_level Specifies the status of the main battery and is a number
from 0 to 100, in increments of 10, where a 0 indicates that the battery has no
charge left, and a 100 indicates that the battery is fully charged.

Return Value The function returns one of these codes:
IM_SUCCESS Success.

IM_MAIN_BATTERY_ERROR Error testing the battery, or the battery is
not installed.

IM_MAIN_BATTERY_CHARGING The battery is charging now.

Note This is a new v4.0 PSK function.

Example

/I example of checking battery status and printing the status.
#include <stdio.h>
#include “imt24lib.h”

void main(void)

IM_STATUS iStatus; //status
IM_USHORT bLevel; //battery status

iStatus = im_battery_status(&bLevel);
if(iStatus==IM_OK && bLevel > 50)
printf(“*Good Battery\n);

else
printf(“No or bad battery - Replace\n”);

54

im_cancel _tx_buffer 5

im_cancel _tx_buffer

Purpose

Syntax

IN Parameters

OUT Parameters

Return Value

Note

See Also

Example

This function removes a message from the JANUS transmit buffer that is
waiting to be transmitted.

#include "imt24lib.h"
IM_STATUS im_cancel_tx_buffer
(IM_COM_PORT comport);

comport Specifies the communications port and is one of these constants:
IM_COM1 COM1 selected.
IM_NET Network selected (UDP Plus or TCP/IP).
None.
This function returns one of these codes:
IM_SUCCESS Successfully removed message.
IM_PORT_INACTIVE No transmit pending.

IM_TRANSMIT_COMPLETE Attempted to cancel, but message was
already sent.

IM_NET_ERROR Unknown network error.

This function provides compatibility with the JANUS PSK functions. It is not
intended for newer applications and has no effect on the TRAKKER Antares
terminals.

im_transmit_buffer, im_transmit_buffer_no_wait,
im_transmit_buffer_no_wait_t

No example. This function provides compatibility with the JANUS PSK functions.

5-5

im_clear _screen

im_clear _screen

Purpose

Syntax

IN Parameters
OUT Parameters
Return Value
See Also

Example

This function erases the entire display and moves the cursor to the upper left
corner (home).

#include "imt24lib.h"
void im_clear_screen
(void);

None.
None.
None.

im_erase_display; im_erase_line

See example for im_command.

im_closedir

Purpose

Syntax

IN Parameters
OUT Parameters

Return Value

See Also

Notes

Example

This function closes the directory structure opened with im_opendir.

#include <imstdio.h>
IM_STATUS im_closedir
(IM_READDIR *pzOpenDir)

*pzOpenDir Pointer to the current open read directory structure.
None.

IM_SUCCESS Success.

Any other value Fail.

im_opendir, im_readdir.

This function works with im_opendir and im_readdir.

See example for im_opendir.

5-6

im_command 5

im_command

Purpose

Syntax

IN Parameters

OUT Parameters

Return Value

Example

Notes

/

#include <string.h>
#include "imstdio.h"
#include "imt24lib.h"

void main (void)

This function sends reader commands to the terminal. For example, you can
use this function to toggle the backlight, set the contrast, or change the beep
volume on the terminal. For more information on using terminal commands,
see “Using Reader Commands” and “Using Configuration Commands” in the
TRAKKER Antares user manual.

#include "imt24lib.h"

IM_STATUS im_command
(IM_UCHAR far *command,
IM_USHORT command_length);

command Terminal command string that may include more than one
command. For example, the command string %.1$+BV9 turns on the
backlight and raises the beep volume. Your TRAKKER Antares terminal
user’s manual lists all of the commands available to the terminal.

command_length Length of the terminal command string.

None.

This function returns one of these codes:
IM_SUCCESS Successfully parsed and implemented command.
IM_PARSE_ERROR Unable to parse command.

If you are using ANSI escape sequences in the command string, such as
”$+PF\x02”, and you are not using STRLEN() to get the length, the escape
sequences count as one character. For example:

im_command (“$+PF\02",8); /*wrong*/
im_command (“$+PF\02",5); /*right*/

For more information on using reader commands, see your TRAKKER Antares
terminal user’s manual.

im_command * /

/* Command string to set contrast */
char *high_trast ="$+DJ7"; [* 7 (dark) */
char *normal_trast ="$+DJ3";

char *low_trast

im_clear_screen();

[* Set high contrast */

="$+DJ0"; /* 0 (light)*/

printf("\nSet high contrast\n");
im_command(high_trast, strlen(high_trast));

im_cputs

/* Wait for two seconds */
im_standby_wait(2000);

/* Set low contrast */

printf("Set low contrast\n");
im_command(low_trast, strlen(low_trast));

/* Wait for two seconds */
im_standby_wait(2000);

[* Set normal contrast */
printf("Set normal contrast\n");
im_command(normal_trast, strlen(normal_trast));

}
im_cputs
Purpose This function places a string on the screen at the current cursor location
without appending a carriage return and line feed (CR LF) to the string.
Syntax #include "imt24lib.n"

IN Parameters

OUT Parameters

Retu

Example

rn Value

Notes

See Also

IM_STATUS im_cputs
(IM_UCHAR far * string,
IM_ATTRIBUTES a ttrib);

string Far pointer to the text string to be displayed.
attrib Attribute mask and is any combination of these constants:
IM_NORMAL Plain text.
IM_UNDERLINE Underline text.
IM_INVERSE Inverse color text.
IM_BLINK Blinking text.
IM_BOLD Bold text.
None.
This function returns one of these codes:
IM_SUCCESS Success.
IM_BAD_ADDRESS Invalid string address.
IM_INVALID_PARAM _1 Invalid attribute value.

This function is similar to im_puts, except that it does not append a carriage
return or line feed (CR LF) to the string.

im_get_screen_char, im_get_text, im_putchar, im_puts

See example for im_get_display_mode.

5-8

im_cursor_to_viewport 5

im_cursor_to_viewport

Purpose

Syntax

IN Parameters
OUT Parameters
Return Value
Notes

See Also

Example

This function moves the cursor to the center of the current viewport. Since the
viewport can move around with or without the cursor, you can use this
function to center the cursor.

#include "imt24lib.h"
void im_cursor_to_viewport(void);

None.
None.
None.
The 2460 and 2461 terminals do not support this function.

im_viewport_end, im_viewport_home, im_viewport_page_down,
im_viewport_page_up, im_viewport_to_cursor, im_viewport_move

See example for im_viewport_setxy.

im_dbyte symbology set

Purpose

Syntax

IN Parameters
OUT Parameters

Return Value

Notes

This function determines if you are scanning a double-byte symbology.

#include "imt24lib.h"
IM_BOOL im_dbyte_symbology_set()

None.

None.

This function returns one of these codes:
IM_TRUE Double-byte symbology was scanned.
IM_FALSE Single-byte symbology was scanned.

A double-byte symbology encodes data that may contain a Chinese, Japanese,
or Korean font. These international fonts require two bytes to present a
character in the font. When a double-byte symbology is scanned, you need to
double the length of the buffer to store the double-byte character.

The 2460 and 2461 terminals do not support this function.

im_display _thai_char

im_display thai_char

Purpose This function displays a Thai character on the terminal screen.

Syntax IM_STATUS far im_display_thai_char
(IM_USHORT baseChar ,
IM_SHORT phoneticl
IM_SHORT phonetic2
IM_SHORT phonetic4
IM_ATTRIBUTES fAttributes)

IN Parameters baseChar Base Thai character that appears at level 3.
phoneticl Phonetic character that appears at level 1.
phonetic2 Phonetic character that appears at level 2.
phonetic4 Phonetic character that appears at level 4.
fAttributes Attributes mask and is any combination of these constants:
IM_NORMAL Plain text.
IM_INVERSE Inverse color text.
IM_UNDERLINE Underline text.
IM_BLINK Blinking text.
OUT Parameters None.
Return Value IM_SUCCESS Successful.
IM_INVALID_ROW Invalid row set for baseChar.

IM_INVALID_COLUMN Invalid column set for phoneticl, phonetic2, or
phonetic4.

IM_ACCESS _DENIED Thai character set not found.
Notes Thisis a new PSK function.

You must have the Thai character set installed on the host and enable mixed
mode in order to use this function.

If you set phoneticl, phonetic2, or phonetic4 to -1, the parameter is ignored.

The Thai language is a single-byte character set in which the characters can
occupy four zones or levels. Most Thai characters are consonants that occupy
the middle level 3. Tone and vowel characters occupy the upper levels 1 and 2
and the lower level 4. As a result, Thai words are composed of multiple
characters that can occupy several zones of the same character space.

5-10

im_erase_display 5

im_erase_display

Purpose

Syntax

IN Parameters

OUT Parameters
Return Value

Notes

See Also

Example

This function erases a portion of the display.
#include "imt24lib.h"

void im_erase_display
(IM_ERASE_CONTROL erase);

erase Flag that specifies the area to erase and is one of these constants:

IM_CURS_TO_END Erases from the current cursor position to the end of
the display.

IM_START_TO_CURS Erases from the start of the display to the current
cursor position.

IM_ALL Erases the entire screen.
None.
None.

If viewporting is enabled, this function erases to the beginning or end of the
virtual display. The “erased” portion of the display is filled with spaces
without display attributes.

im_clear_screen, im_erase_line

See example for im_erase_line.

im_erase_line
Purpose

Syntax

IN Parameters

OUT Parameters

Return Value

This function erases a portion of the current line.
#include "imt24lib.h"

void im_erase_display
(IM_ERASE_CONTROL erase);

erase Flag that specifies the area to erase and is one of these constants:

IM_CURS_TO_END Erases from the current cursor position to the end of
the line.

IM_START_TO_CURS Erases from the start of the line to the current
cursor position.

IM_ALL Erases the entire line.
None.

None.

5-11

im_erase_line

Notes If viewporting is enabled, this function erases to the beginning or end of the
virtual line. The “erased” portion of the display is filled with spaces without
display attributes.

See Also im_clear_screen; im_erase_display

Example

/ im_erase_line /
#include "imt24lib.h"
#include "imstdio.h"

IM_ERASE_CONTROL fErase;

void main(void)
int x;
im_clear_screen(); /* Clear the screen */
[* Print sample lines to be erased */
for(x=0;x<16;x++)

printf("ABCDEFGHIJKLMOPQRST\n");

/* Move cursor to desire position Row,Col */
im_set_cursor_xy(5,5);

[* Set fErase flag */

/* IM_CURS_TO_END - delete from cursor to end of line */
/* IM_START_TO_CURS - delete from start to end of line */
/* IM_ALL - delete entire line */

fErase = IM_START_TO_CURS;

[* Erase line as specified by fErase flag */
im_erase_line(fErase);

getch();

im_erase_display(IM_START_TO_CURSOR);
getch();

5-12

im_event_wait 5

im_event_wait

Purpose

Syntax

IN Parameters

IN/OUT
Parameters

OUT Parameters

Return Value

This function waits for one or more events and returns a flag indicating that
the event occurred or a timeout occurred.

#include "imt24lib.h"

IM_STATUS im_event_wait
(IM_UINT timeout
IM_ORIGIN far * source);

timeout Numeric value or a constant:
1t0 65,534 ms Numeric range.
IM_ZERO_TIMEOUT No wait.
IM_INFINITE_TIMEOUT Wait forever.

source Passes in the sources allowed and passes out 0 (zero) or the first source
with a complete event. The source passed in is any combination of these
constants:

IM_COM1 SELECT COML1 input: T242X - Port on bottom end of terminal,
T248X - Physical port labeled COM1.

IM_COM2_SELECT COMZ2 input: T242X - N/A, T248X - Physical port
labeled COM2 on enhanced 1/0 board.

IM_NET_SELECT Network input (UDP Plus or TCP/IP): T242X - RF port,
T248X - RF port or ethernet port on enhanced 1/0 board.

IM_SCAN_PORT_SELECT RS232 port input: T242X - N/A,
T248X - Physical port labeled COM4 on enhanced 1/0 board.

IM_LABEL _SELECT Label input: T242X - integrated scan module or
module for cabled scanners, T248X - Badge scanner or any attached scanner.

IM_OPTICAL_SELECT Optical sensor input (T248X only).
IM_KEYBOARD_SELECT Keypad input.

IM_ALL _SELECT All input sources.

IM_TIMER_SELECT Timer expired.

The source passed out is any one of the above constants.

None.

This function returns one of these codes:

IM_SUCCESS Success.
IM_TIMEDOUT Timeout occurred before receiving data.

5-13

im_event wait

Example

Notes This function is not required for any of the input or output functions.

This function does not clear the source state flags. To clear the flags, call an
input function such as im_receive_buffer or im_receive_input.

Use IM_TIMER_SELECT for the source to act on a timed event instead of
waiting for a keyboard, COM port, optical sensor, or network event.

Because no events are assigned to serial data transmission, im_event_wait is
not valid for transmits using serial ports.

/
#include
#include
#include
#include

void main

*** im_event_wait Fkkddkkkkkk xRk |

"imt24lib.h"
"imstdio.h"
"ctype.h”
"conio.h"

(void)

IM_UCHAR inChar="x', szNetBuffer[1024];
IM_USHORT iLength, iCountMinutes=0;
IM_ORIGIN iSource;

IM_STATUS iStatus;

im_set_

time_event (60000);

while (toupper (inChar '='Q"))

iSource = IM_KEYBOARD_SELECT | IM_TX_NET_SELECT | IM_TIMER_SELECT,;
iStatus = im_event_wait(3000, &iSource);
if IM_ISGOOD (iStatus))

{
if (iISource == IM_KEYBOARD_SELECT)
inChar = getch ();
if (iISource == IM_TX_NET_SELECT)
iStatus = im_receive_buffer(IM_NET, 1024, szNetBuffer, 600, &iLength);
if (iSource == IM_TIMER_SELECT) /* Get this once per minute even If receive

messages in between */

iCountMinutes++;
im_set_time_event (60000);

else

im_puts((IM_UCHAR *)"Timeout on event wait", IM_BOLD);

}
printf (Ran %d minutes\n\r", iCountMinutes);

5-14

im_file_duplicate 5

im_file_duplicate

Purpose This function copies an existing file.

Syntax #include <imstdio.h>

IM_STATUS im_file_duplicate
(IM_UCHAR * source
IM_UCHAR * destination

IN Parameter *source Pointer to the source file name. The file name must contain the drive

letter and the name.

*destination Pointer to the destination file name. The file name must contain

the drive letter and the name.

OUT Parameters None.

Return Value IM_SUCCESS File copy was successful.

IM_INVALID_FILE Invalid file specified or destination file already exists.

Notes This function does not overwrite an existing file and will fail if the destination

file exists.
Example
[* im_file_duplicate ok /
/* im_free_space, im_file_size, im_file_time */

#include <string.h>

#include <time.h>

#include "imstdio.h"
#include "imt24lib.h"
#include <conio.h>

void main(void)

int iStatus;
long IDisk_space = OL;
time_t ltime;

im_clear_screen();

[* Check available free space of file system */
iStatus = im_free_space("c:", &IDisk_space);
printf("Free Space: %Ild\n", IDisk_space);
getch();

/* Duplicate the current executable file */

iStatus = im_file_duplicate("c:filesys.bin", "c:im_xxx.bin");
printf("copy: %x\n", iStatus);

getch();

[* Check new available free space of file system */
iStatus = im_free_space("c:", &IDisk_space);
printf("New free Space: %ld\n", IDisk_space);
getch();

[* Display file's time stamp */

iStatus = im_file_time("c:filesys.bin", <ime);
printf("time: %x\n", iStatus);

printf("%s\n", ctime(<ime));

getch();

5-15

im_file_size

[* display file's date stamp */

iStatus = im_file_size("c:filesys.bin", &IDisk_space);
printf("size: %x\n", iStatus);

printf("%ld\n", IDisk_space);

getch();

im_file_size
Purpose

Syntax

IN Parameters
OUT Parameters

Return Value

Example

This function returns the size of the target file.

#include <imstdio.h>

IM_STATUS im_file_size
(IM_CHAR *fname ,
IM_LONG *size)

*fname A pointer to IM_CHAR. This variable points to a string that must
include the drive letter and filename.

*size A pointer to IM_LONG. im_file_size places the size of the specified file
here.

IM_SUCCESS Successful.

IM_INVALID_FILE Invalid file specified.

See example for im_file_duplicate.

im_file _time
Purpose

Syntax

IN Parameters
OUT Parameters

Return Value
Notes

Example

This function returns the time stamp of the target file.

#include <imstdio.h>

IM_STATUS im_file_time
(IM_CHAR * fname,
time_t far *ltime)

*fname Pointer to IM_CHAR . This variable points to a string that must
contain a drive letter and a file name.

*[time Far pointer to standard C-type time variable. im_file_time places the
time stamp here.

IM_SUCCESS Success.
IM_INVALID_FILE Target file not found or does not exist.

The time_t variable is the same as the one used in the MS-DOS C standard
time definition and is defined as: typedef long time_t;

See example for im_file_duplicate.

5-16

im_flush_rcv_buffer

im_flush_rcv_buffer

Purpose

Syntax

IN Parameters

OUT Parameters

Return Value

This function flushes the receive buffer.

#include "imt24lib.h"
IM_STATUS far im_flush_rcv_buffer
(IM_COM_PORT iPortld
IM_PTR_ERROR_LOG spErrorLog)

iPortld Serial communications port:
IM_COM1 COM1 port.
IM_COM2 COM2 port.
IM_SCAN_PORT Scanner port: T248X and T242X - COM4, T2455 - COM2
spErrorLog Pointer to the log structure.
IM_SUCCESS Successful.
IM_NET_PORT_HANDLE The port handle is unknown.

Notes This is a new PSK function.
im_fmalloc
Purpose This function allocates a memory block larger than 64K.
Syntax #include "imt24lib.h"

IN Parameters
OUT Parameters

Return Value

void far *im_fmalloc
(IM_ULONG Isize)

Isize Size of memory, in bytes, to allocate.
None.
This function returns one of these values:
A far void pointer to the allocated space Allocation was successful.

NULL Not enough available free memory to allocate.

Notes The system uses 16 bytes of overhead, so if you want to allocate the largest
free memory block available, specify Isize as 16 bytes less than the available
memory block size.

Example
/* Example of doing a set/get relay digital I/O */

#include <string.h>
#include "imstdio.h"
#include "imt24lib.h"
#include <conio.h>
#include <stdlib.h>

void main(void)

5-17

im_free_mem

{

IM_ULONG Isize;

IM_ULONG ltotal;

char *pzl;

char c;
[* Enquire about system memory */
im_free_mem(&Isize, <otal);
printf("Largest size: %ld\nTotalsize:%ld\n", Isize, Itotal);

[* Allocate the largest block, it must be 16 bytes less than block size */
pzl = im_fmalloc(lsize - 16L);

if (pz1 == NULL)

printf("Fails to allocate memory\n");
else

free(pzl);

¢ = getch();
}

im_free_mem

Purpose This function returns free memory block information.

Syntax #include "imt24lib.h"

void im_free_mem
(IM_ULONG *largest
IM_ULONG *ltotal)

IN Parameters None.

OUT Parameters *largest Pointer to an unsigned long. This function places the amount of the
largest available free memory block here.

*[total Pointer to an unsigned long. This function places the amount of the
free memory blocks here.

Return Value None.

Example

See example for im_fmalloc.

5-18

im_free_space 5

im_free space
Purpose This function returns the amount of storage space, in bytes, available on the
terminal drive you specify.

Syntax #include "imstdio.h"
IM_STATUS im_free_space
(IM_CHAR *drive,
IM_LONG *ffreespace)

IN Parameters *drive Pointer to IM_CHAR. This variable is a drive letter on the terminal.

OUT Parameters *Ifreespace Pointer to IM_LONG. im_free_space places the amount of drive
space available here.

Return Value IM_SUCCESS Successful.
IM_INVALID_FILE Target drive not found or does not exist.

Example
See example for im_file_duplicate.

im_get _config_info

Purpose This function retrieves the current terminal configuration information string
and its length. The command code is passed in as a string, and the current
configuration is returned in the same string.

Syntax #include "imt24lib.h"
IM_STATUS im_get_config_info
(IM_UCHAR far * config
IM_USHORT far * length);

IN Parameters None.

IN/OUT config As input, this parameter is the desired terminal command (two
Parameters characters). You can pass in several command codes at one time. As output,
this parameter contains the requested configuration information string. The
first two characters specify the configuration command returned. Any
subsequent characters specify the configuration options currently set. For
example, to get the beep duration setting, set config to “BD”. The function
returns BD and the current configuration for beep duration.

OUT Parameters length Length of the configuration information string.
Return Value This function returns one of these codes:
IM_SUCCESS Successfully parsed and returned command string.
IM_PARSE_ERROR Unable to parse command string.

5-19

im_get cursor_style

Notes For a list of the configuration commands, see your TRAKKER Antares
terminal user’s manual.

This function differs from im_command in that you only pass the two-
character command identifier. The im_command function passes an entire
command string.

See Also im_command

Example

/ im_get_config_info /
#include <string.h>

#include "imstdio.h"

#include "imt24lib.h"

void main(void)

IM_USHORT status;
IM_USHORT length;
IM_UCHAR config_string[128];

im_clear_screen();
/* Use im_get_config_info to get the Beeper Volume */
printf("\nim_get_config_info example: \n");

[* Set config request for Beeper Volume */
strcpy(config_string, "BV");
status = im_get_config_info(config_string, &length);

/* Print the results */
printf("\nBeeper Volume: %s", config_string);
printf("\nlength: %d", length);
printf("\nstatus: %d", status);

im_get cursor_style

Purpose This function returns the style used to display the cursor.

Syntax #include "imt24lib.h"
IM_CURS_TYPE im_get_cursor_style
(void);

IN Parameters None.
OUT Parameters None.
Return Value This function returns a flag indicating cursor style:
IM_UNDERLINE Single underline.
IM_NO_CURSOR No cursor displayed.

Example

See example for im_get_display_mode.

5-20

im_get cursor_xy 5

im_get _cursor_xy

Purpose

Syntax

IN Parameters
OUT Parameters

Return Value

Example

This function retrieves the current cursor position. If viewporting is disabled,
the cursor position is relative to the terminal display. If viewporting is
enabled, the cursor position is relative to the virtual display.

#include "imt24lib.h"

IM_STATUS im_get_cursor_xy
(IM_USHORT far * row,
IM_USHORT far * col);

None.

row Pointer to the vertical position. The top of the display is row 0 and the
bottom of the display is row 24.

col Pointer to the horizontal position. The left edge of the display is column 0.

IM_SUCCESS Success

See example for im_get_display_mode.

im_get display _mode

Purpose

Syntax

IN Parameters
OUT Parameters

This function returns the display font, character height and width, and
scrolling and wrapping status.

#include "imt24lib.h"

IM_STATUS im_get_display_mode
(IM_FONT_TYPE far * font ,
IM_UCHAR far * phys_width |
IM_UCHAR far * phys_height
IM_BOOL far * scroll,

IM_BOOL far * wrap);

None.

font Font type code and is one of these constants:
IM_FONT_STANDARD Text is 8 x 8 pixels.
IM_FONT_LARGE Text is 8 x 16 pixels.
IM_FONT_SPECIAL Textis 16 x 16 pixels.

phys_width Width of the physical display given in the number of characters
in the current font that the display can hold.

phys_height Height of the physical display given in the number of characters
in the current font that the display can hold.

scroll ~ Status of the flag for scroll at bottom of window/viewport.
wrap Status of the flag for wrap at right edge of window/viewport.

5-21

im_get display_mode

Return Value This function returns one of these codes:
IM_SUCCESS Success.

IM_INVALID_ADDRESS One of the parameters has an address other than
0 (zero) and is outside of the application address space.

Notes To omit a parameter, set it to 0. No information for that parameter is returned.

See Also im_set_display_mode

Example

/ im_get_display_mode /
/* This function draws a line somewhere on the screen relative to */
/* the bottom line. */

#include "imt24lib.h"

void far status_line(char far * pszStatusLine, IM_BOOL iWait, IM_USHORT iLine)
{

IM_UCHAR iPhyWidth, iPhyHeight;

IM_USHORT iListLine, iRow, iCol, iVpRow, iVpCaol,

IM_CONTROL iFollowCursor;

IM_CURS_TYPE iCursType;

[* Get current conditions */

im_get_cursor_xy (&iRow, &iCol);

im_get_display_mode (0, &PhyWidth, &iPhyHeight, 0, 0);
iCursType =im_get_cursor_style ();
im_get_follow_cursor (&iFollowCursor);

[* Set temporary conditions */

im_set_cursor_style (IM_NO_CURSOR);

/* Don't want to follow cursor while putting up display. */
im_set_follow_cursor (IM_DISABLE);

/* Find out where in viewport to put it. */
if (iLine >= iPhyHeight)

iListLine = iPhyHeight-1; /* Get the 0-based offset & keep inside the window. */
else

iListLine = iLine;

im_viewport_getxy (&VpRow, &iVpCol);
im_set_cursor_xy (iVpRow+iListLine, iVpCol);
im_cputs ((IM_CHAR far *) pszStatusLine, 0);
im_standby_wait (3000); /* Sleep 3 seconds. */

[* Restore original conditions. */
im_set_cursor_xy (iRow, iCol);
im_set_follow_cursor (iFollowCursor);
im_set_cursor_style (iCursType);

5-22

im_get display_size_physical 5

im_get display size physical

Purpose This function returns the current display size.
Syntax #include "imt24lib.h"

IM_STATUS im_get_display_size physical
(IM_USHORT far * rows ,
IM_USHORT far * cols),

IN Parameters None.
OUT Parameters rows Current setting for the number of rows in the physical display.
cols Current setting for the number of columns in the physical display.
Return Value IM_SUCCESS Success.
Notes T242X Default physical display is 20 columns by 16 rows.
T2481/72486 Default physical display is 40 columns by 12 rows.
T2480/T2485 Default physical display is 40 columns by 4 rows.

TRAKKER Antares terminals can also use a virtual display that is 80 columns
by 25 rows with the viewport feature.

See Also im_get_display_mode, im_get display_type, im_set _display_mode,
im_set_display_type

Example

im_get_display_size_physical **rirrikkkiiiiiik/
/* This function draws a line somewhere on the screen relative to */
/* the bottom line.

#include "imt24lib.h"
void far status_line(char far * pszStatusLine, IM_BOOL iWait, IM_USHORT iLine)
{

IM_UCHAR iPhyWidth, iPhyHeight;

IM_USHORT iListLine, iRow, iCol, iVpRow, iVpCol;
IM_CONTROL |FoIIowCursor

IM_CURS_TYPE iCursType;

[* Get current conditions */

im_get_cursor_xy (&Row, &iCol);
im_get_display_size_physical (&iPhyWidth, &iPhyHeight);
iCursType = im_get_cursor_style ();
im_get_follow_cursor (&iFollowCursor);

[* Set temporary conditions */

im_set_cursor_style (IM_NO_CURSOR);

/* Don't want to follow cursor while putting up display. */
im_set_follow_cursor (IM_DISABLE);

[* Find out where in viewport to put it. */
if (iLine >= iPhyHeight)
iListLine = iPhyHeight-1; /* Get the 0-based offset & keep inside the window. */
else
iListLine = iLine;
im_viewport_getxy (&VpRow, &iVpCol);
im_set_cursor_xy (iVpRow+iListLine, iVpCol);
im_cputs ((IM_CHAR far *) pszStatusLine, 0);

5-23

im_get display_size virtual

im_standby_wait (3000); /* Sleep 3 seconds. */

[* Restore original conditions. */
im_set_cursor_xy (iRow, iCol);
im_set_follow_cursor (iFollowCursor);
im_set_cursor_style (iCursType);

im_get display _size virtual

Purpose

Syntax

IN Parameters
OUT Parameters

Return Value

Notes

See Also

Example

This function returns the current size of the virtual display.
#include "imt24lib.h"
void far im_get_display_size_virtual
(IM_USHORT far * rows ,
IM_USHORT far * cols),
None.
rows Current setting for the number of rows in the virtual display.
cols Current setting for the number of columns in the virtual display.
None.

The default virtual display is 80 columns by 25 rows.

im_get_display_mode, im_get_display_type, im_set_display_mode,
im_set_display_type, im_set_viewporting, im_setup_manual_viewporting

See example for im_get_display_size_physical.

im_get display type

Purpose

Syntax

IN Parameters

OUT Parameters

Return Value

5-24

This function gets the display type for the terminal.

#include <imt24lib.h>
IM_USHORT im_get_display_type
(IM_DISPLAY_TYPE *i Type)

*IType Pointer to IM_DISPLAY_TYPE. This variable is the hardware display
type.

None.

IM_LCD_20x16 Hand-held terminal display.

IM_CRT_80x25 T2455 Vehicle-Mount Terminal (VMT) display (80 x 25).
IM_STATIONARY Standard stationary terminal display (40 x 12).
IM_STATIONARY_REDUCE Reduced stationary terminal display (40 x 4).

im_get follow_cursor 5

im_get follow_cursor

Purpose

Syntax

IN Parameters
OUT Parameters

Return Value
See Also

Example

This function retrieves the current setting for the follow-the-cursor feature.
When you enable viewporting, you can set the viewport to follow the cursor
as it moves off the screen.

#include "imt24lib.h"
IM_STATUS im_get follow_cursor
(IM_CONTROL far * follow _cursor);

None.
follow_cursor One of these constants:
IM_ENABLE Follow-the-cursor mode enabled.
IM_DISABLE Follow-the-cursor mode disabled.
IM_SUCCESS Success.

im_set_follow_cursor, im_cursor_to_viewport, im_viewport_to_cursor

/ * im_get_follow_cursor ok /

#include <conio.h>
#include <stdlib.h>
#include <ctype.h>
#include "imstdio.h"
#include "imt24lib.h"

#define ESC_CHAR 0x1B

void main (void)

IM_UCHAR ch, user_option;
IM_CONTROL old_lock_cursor;
IM_CONTROL new_lock_cursor;

im_clear_screen();
im_set_cursor_xy(0, 0);

/* Have to enable viewp

/* Clear screen */
/* Position message */

orting before using any viewport display function */

im_set_viewporting(IM_ENABLE);
[* Get the current status of viewport follow cursor for restore later */
im_get_follow_cursor(&old_lock_cursor);

[* Get user's input option, 'y' for disable viewport follow cursor */
printf("\nEnable viewport\nfollows cursor(y)?");

user_option = getche();

user_option = toupper(user_option);

if (user_option =="Y")
im_set_follow_cursor(
else [* Disable v

im_set_follow_cursor(

IM_ENABLE); /* Enable viewport follow cursor */
iewport follow cursor */

IM_DISABLE);

[* Get new viewport follow cursor status after setting */
im_get_follow_cursor(&new_lock_cursor);

5-25

im_get_input_mode

[* Display user's input message */
printf("\n\n'ESC' to quit\nType keys to check\n");
printf("viewport follow\n");

if (new_lock_cursor == IM_ENABLE)

printf(’

else

‘cursor ON

printf("cursor OFF 1"y;

[* Enter any characters to check viewport follow cursor until 'ESC' key. */
while ((ch = getche()) '= ESC_CHAR)

[* Restore original follow cursor setting */
im_set_follow_cursor(old_lock_cursor);

im_get _input_mode

Purpose

Syntax

IN Parameters

OUT Parameters

Return Value

Example

Notes

See Also

This function provides compatibility with the JANUS PSK functions. This
function retrieves the current input mode setting. Input modes affect how the
reader interprets and stores input.

#include "imt24lib.h"
IM_STATUS im_get_input_mode ();

None.
None.

IM_PROGRAMMER Input is returned as a string (default). Line editing is
permitted.

IM_WEDGE Input is returned as a string. Use Backspace for simple line
editing.

IM_DESKTOP Keyboard characters are returned as 4 bytes. The first byte is
the ASCII code. The second byte is the scan code, and the last 2 bytes are
flags for modifier keys (Shift and Control). For label input, the entire string is
returned.

For more information on input modes, see Chapter 2, “Programming
Guidelines.”

im_set_input_mode, im_receive_input

No example. This function provides compatibility with the JANUS PSK functions.

5-26

im_get label_symbology 5

im_get label symbology

Purpose This function gets the symbology, such as Code 39, from the most recently
scanned label. Call this function after receiving the data using
im_receive_input, im_receive_field, gets, or scanf.

Syntax #include "imt24lib.h"
IM_STATUS im_get_label_symbology
(IM_DECTYPE far *symb);

IN Parameters None.
OUT Parameters symb Label symbology and is one of these constants:

IM_UNKNOWN_DECODE Unknown bar code.
IM_CODABAR Codabar bar code.
IM_CODE_11 Code 11 bar code.
IM_CODE_16K Code 16K bar code.
IM_CODE_39 Code 39 bar code.
IM_CODE_49 Code 49 bar code.
IM_CODE_93 Code 93 bar code.
IM_CODE_128 Code 128 bar code.
IM_1 2 OF 5 Interleaved 2 of 5.
IM_MSI MSI bar code.
IM_PLESSEY Plessey bar code.
IM_UPC Universal Product code.

Return Value This function returns one of these codes:
IM_SUCCESS Successfully retrieved.

IM_NO_SYMBOLOGY No symbology code available, or no scans
received.

See Also im_receive_input, im_receive_field

Example

/ im_get_label_symbology /
#include <conio.h>

#include "imstdio.h"

#include "imt24lib.h"

static char *bar_code[] ={
"unknown",
"Code 39", /* See typedef enum { ...} IM_DECTYPE in IMT24LIB.h*/
"Code 93",
"Code 49",
" 2 of 5",
"Codabar",

5-27

im_get label_symbologyid

"UPC and EAN",
"Code 128",
"Code 16K",
"Plessey/Anker",
"Code 11",
"MSI"

I3

void main (void)
IM_UCHAR input[256];
IM_ORIGIN source;
IM_DECTYPE symbol;

im_clear_screen(); /* Clear the screen */
printf("Demo im_get_label_symbology\n'g' to quit\n");

/* Input loop */
do

source = IM_LABEL_SELECT | IM_KEYBOARD_SELECT;
im_receive_field(source, IM_INFINITE_TIMEOUT, IM_BOLD,
IM_RETURN_ON_FULL, 10, &source, input);

printf("\nReceive Field:\n");
printf("%s\n", input);

im_get_label_symbology(&symbol);

/* Display symbology */
printf("\nSYMBOLOGY: %d\n%s\n", symbol, bar_code[symbol]);

} while (input[0] !="q' && input[0] !="'Q"); /*'g' to quit */

im_get label symbologyid
Purpose This function returns the symbology identifier for the most recently scanned
bar code label.

Syntax #include "imt24lib.n"
IM_STATUS im_get_label_symbologyid
(IM_UCHAR far *Symbologyld)

IN Parameters None.

OUT Parameters *Symbologyld Far pointer to IM_UCHAR. im_get_label_symbologyid places
the identifier at this buffer. The buffer size must be at least 6 bytes long.

Return Value IM_SUCCESS Success.
IM_NONE Symbology identifier does not exist.

5-28

Symbology

Notes

im_get label_symbologyid 5

A symbology identifier is an ASCII character string prefixed by the reading
equipment to the data contained in a bar code symbol. The structure of the
symbology identifier string is:
Jem...
where:
] represents the symbology identifier flag character (ASCII value 93).
c represents the code character.
m... represents the modifier character(s) defined for the symbology.

Note: When the symbology identifier characters are transmitted in a 16-bit (double-
byte) system, an 8-bit byte of all zeros is transmitted before each of the above characters
(bytes). For more detailed information about symbology identifiers, refer to the AIM
Guidelines for Symbology Identifiers.

The symbology identifiers for numerous bar code symbologies are listed in the
following table.

Code
Char. Modifier Characters

Code 39

A 0 No check character validation nor full ASCII processing; all data
transmitted as decoded.

Modulo 43 check character validated and transmitted.
Modulo 43 check character validated but not transmitted.
Full ASCII character conversion performed; no check character
validation.

5 Full ASCII character conversion performed; modulo 43 check character
validated and transmitted.

7 Full ASCII character conversion performed; modulo 43 check character
validated but not transmitted.

Telepen

Full ASCII mode.

Double density numeric only mode.

Double density numeric followed by full ASCII.
Full ASCII followed by double density numeric.

Code 128

oS~ N L O

Standard data packet. No FNC1 in first or second symbol character
position after start character.

1 EAN/UCC-128 data packet - FNC1 in first symbol character position
after start character.

2 FNC1 in second symbol character position after start character.

Concatenation according to International Society for Blood Transfusion
specifications has been performed; concatenated data follows.

5-29

im_get label_symbologyid

Code
Symbology Char. | Modifier Characters

Channel Code c Channel 3 decoded.
Channel 4 decoded.
Channel 5 decoded.
Channel 6 decoded.
Channel 7 decoded.
Channel 8 decoded.

Composite format.

Code One D No special characters in first or second symbol character position.
FNC1 implied in first symbol character position.
FNC1 in second symbol character position.

Pad character in first symbol character position. The first data character
in the symbol defines the escape character. An escape character of \
indicates that the symbol contains ECI escape sequences.

A N P OO 0N O O bW

ECC 000-140.

ECC 200.

ECC 200, FNC1 in first or fifth position.

ECC 200, FNC1 in second or sixth position.

ECC 200, ECI protocol implemented.

ECC 200, FNC1 in first or fifth position, ECI protocol implemented.
ECC 200, FNC1 in second or sixth position, ECI protocol implemented.

Data Matrix d

o)l O A W N - O

EAN/UPC E Standard data packet in full EAN format, i.e., 13 digits for EAN-13, UPC-

A, and UPC-E (does not include add-on data).
Two digit add-on data only.
Five digit add-on data only.
Combined data packet comprising 13 digits from EAN-13, UPC-A, or
UPC-E symbol and 2 or 5 digits from add-on symbol.
4 EAN-8 data packet.
Note: EAN/UPC symbols with supplements should be considered as two separate
symbols. The first symbol is the main data packet and the second symbol is the two or

five digit supplement. These symbols should be transmitted separately, each with its
own symbology identifier.

Codabar F 0 Standard Codabar symbol. No special processing.

1 ABC Codabar (American Blood Commission) concatenate/message
append performed.

2 Reader has validated the check character.
Reader has stripped the check character before transmission.

Code 93 G 0 No options specified at this time—always transmit 0.

5-30

im_get label_symbologyid

Code
Symbology Char. | Modifier Characters
Code 11 H 0 Single modulo 11 check character validated and transmitted.
1 Two modulo 11 check characters validated and transmitted.
3 Check character(s) validated but not transmitted.
Interleaved 2 of 5 | 0 No check character validation.
1 Modulo 10 symbol check character validated and transmitted.
3 Modulo 10 symbol check character validated but not transmitted.
Code 16K K 0 No special characters in first or second symbol character position after
start character.
1 FNC1 implied or explicit in first symbol character position after start
character.
2 FNC1 in second symbol character position after start character.
4 Pad character in first symbol character position after start character.
PDF417 and L 0 Reader set to conform with protocol defined in 1994 PDF417 symbology
MicroPDF417 specifications.
1 Reader set to follow protocol of ENV 12925 for Extended Channel
Interpretation (All data characters 92 doubled).
2 Reader set to follow protocol of ENV 12925 for Basic Channel
Interpretation (Data characters 92 are not doubled).
3 Code 128 emulation: implied FNC1 in first position.*
4 Code 128 emulation: implied FNC1 after initial letter or pair of digits.*
5 Code 128 emulation: no implied FNC1.*
* Applicable only to MicroPDF417 symbols.
MSI M 0 Modulo 10 symbol check character validated and transmitted.
1 Modulo 10 symbol check character validated but not transmitted.
Anker Code N 0 No options specified at this time—always transmit 0.
Codablock (0] 0 Codablock 256: FNC1 not used.
1 Codablock 256: FNCL1 in first data character position; subsequent
occurrences converted to ASCII 29 (GS).
4 Codablock F: FNC1 not used.
5 Codablock F: FNCL1 in first data character position; subsequent
occurrences converted to ASCII 29 (GS).
6 Codablock A.
Plessey Code P 0 No options specified at this time—always transmit 0.

5-31

im_get label_symbologyid

Symbology

Code
Char.

Modifier Characters

QR Code

w N -

Model 1 symbol.
Model 2 symbol, ECI protocol not implemented.
Model 2 symbol, ECI protocol implemented.

Model 2 symbol, ECI protocol not implemented, FNC1 implied in first
position.

Model 2 symbol, ECI protocol implemented, FNC1 implied in first
position.

Model 2 symbol, ECI protocol not implemented, FNC1 implied in second
position.

Model 2 symbol, ECI protocol implemented, FNC1 implied in second
position.

Straight 2 of 5: 2-bar
start/stop codes

No check character validation.

Modulo 7 check character validated and transmitted.
Modulo 7 check character validated but not transmitted.

Straight 2 of 5: 3-bar
start/stop codes

oO|lwWw +—» O

No options specified—always transmit 0.

Code 49

No special characters in the first or second data character positions.
FNCL1 in the first data character position.

FNC1 in the second data character position.

FNC2 in the first data character position.

MaxiCode

Symbol in Mode 4 or 5.

Symbol in Mode 2 or 3.

Symbol in Mode 4 or 5, ECI protocol implemented.

Symbol in Mode 2 or 3, ECI protocol implemented in secondary message.

Other Bar Code

oO|lW N PP OB~ DN P, O

May be assigned by the decoder manufacturer to identify those
symbologies and options implemented in the reader.

Non-Bar Code

5-32

Keyboard.
Magnetic stripe.
Radio Frequency (RF) tag.

May be assigned by the device manufacturer to identify the source of
data that is originating from a device other than a bar code reader.

Symbology

im_get length 5

Code
Char. Modifier Characters

Aztec Code

No options.

FNC1 preceding 1st message character.

FNC1 following an initial letter or pair of digits.

ECI protocol implemented.

FNC1 preceding 1st message character, ECI protocol implemented.

FNCI1 following an initial letter or pair of digits, ECI protocol
implemented.

Structured Append header included.

Structured Append header included, FNC1 preceding 1st message
character.

8 Structured Append header included, FNC1 following an initial letter or
pair of digits.
9 Structured Append header included, ECI protocol implemented.

A Structured Append header included, FNC1 preceding 1st message
character, ECI protocol implemented.

B Structured Append header included, FNC1 following an initial letter or
pair of digits, ECI protocol implemented.

C Aztec Rune decoded.

g b WO DN - O

~N o

im_get length

Purpose

Syntax

IN Parameters

OUT Parameters
Return Value

This function returns the length of the string received from the designated
source by the most recent input function (im_receive_input, im_receive_field,
gets, or scanf).

#include "imt24lib.h"
IM_USHORT im_get_length
(IM_ORIGIN source);

source One of these constants:
IM_LABEL SELECT Label selected.
IM_KEYBOARD_SELECT Keypad selected.
IM_COM1_SELECT COML1 selected.
IM_NET_SELECT Network selected.
None.

This function returns the length of the last input string read from the
designated source.

5-33

im_get rcv_errors

Notes All input from the keypad or labels has a null termination character added to
the end of the string so that it can be used as a normal C string. However,
some data might contain embedded null characters, such as data from COM
or NET sources. If so, this function supplies the true data length.

See Also im_receive_input, im_receive_field

Example

See example for im_receive_input.

im_get rcv_errors

Purpose This function counts the number and type of errors in the terminal serial data.
This function only applies to COM ports.

Syntax #include "imt24lib.n"
IM_STATUS far im_get_rcv_errors
(IM_COM_PORT jPortld
IM_PTR_ERROR_LOG spErrorLog)

IN Parameters iPortld Serial communications port:
IM_COM1 COM1 port.
IM_COM2 COM2 port.
IM_SCAN_PORT Scanner port: T248X and T242X - COM4, T2455 - COM2
OUT Parameters SpErrorLog Pointer to the log structure.
Return Value IM_SUCCESS Successful.
IM_NET_PORT_HANDLE Port handle unknown.

Notes This is a new PSK function.

im_get relay

Purpose This function gets the current status of the specified relay. This function is
valid only on a T248X with the enhanced input/output board option.

Syntax #include "imt24lib.h"
IM_STATUS im_get relay
(IM_RELAY_PORT iRelayld)

IN Parameters iRelayld One of these constants:
IM_RELAY1 Relay 1 selected.
IM_RELAY2 Relay 2 selected.

5-34

im_get _screen_char

IM_RELAY3 Relay 3 selected.
IM_RELAY4 Relay 4 selected.

Return Value IM_CONTACT_ON Relay is closed or energized.
IM_CONTACT_OFF Relay is open or de-energized.
IM_CONFIG_ERROR Relay configuration error.

Notes iRelayld is mutually exclusive and cannot be ORed together.

See Also im_set_relay

Example

/ im_get_relay /
/* Example of doing a set/get relay digital I/O */
#include <string.h>

#include "imstdio.h"

#include "imt24lib.h"

void main(void)

int iStatus;
int ii;

[* Engerizing/Unengerizing digital I/O relay channel from 1 to 4 */
for (ii= IM_RELAY1, ii <= IM_RELAY4; ii++)
{

iStatus = im_set_relay(ii, IM_ENABLE);
iStatus = im_get_relay(ii);

printf("Relay %d status:%d\n", ii, iStatus);
im_standby_wait(5000);

iStatus = im_set_relay(ii, IM_DISABLE);
iStatus = im_get_relay(ii);

printf("Relay %d status:%d\n", ii, iStatus);

im_get screen _char

Purpose This function returns the character at the current cursor position in the 80x25
virtual display.

Syntax #include "imt24lib.h"
IM_STATUS im_get_screen_char
(IM_UCHAR far *char);

IN Parameters None.

OUT Parameters char Pointer to the variable for the retrieved character.
Return Value IM_SUCCESS Success.

5-35

im_get _sensor_all

Notes This function returns only the character. Use im_get_text to retrieve the
character and its attributes.
See Also im_get_text, im_putchar, im_puts

Example

/ *** im_get_screen_char ** /
#include "imt24lib.h"
#include "imstdio.h"

IM_UCHAR value;
void main()

intx=1; /* Row Value */
inty =10; /* Column Value */
im_clear_screen(); /* Clear display screen */

/* Display letters and numbers to chose from */
printf("ABCDEFGHIJKLMNOPQRST\n");
printf("UVWXYZ-0123456789\n");

[* Chose character by setting Row and Col values */
im_set_cursor_xy(x,y);

[* Retrieve character at position specified */
im_get_screen_char(&value);

[* State which character was chosen */
im_set_cursor_xy(3,0);

printf("The character chosen:\n");
printf("is: %1c",value);

[* Wait for user input before exiting */
im_set_cursor_xy(14,0);

puts("Press any key to");
puts(“exit.");

/* Move cursor to character chosen */
im_set_cursor_xy(x,y);
getch();

im_get sensor_all
Purpose This function gets the current state of all optical input sensors. This function is
valid only on a T248X with the enhanced input/output board option.

Syntax #include "imt24lib.h"
IM_STATUS im_get_sensor_all
(IM_SENSOR_STATE * sensorstate)

IN Parameters None.

OUT Parameters *sensorstate Pointer to IM_SENSOR_STATE. This function places the sensor
state information here.

typedef struct

IM_UCHAR SensorState;

5-36

im_get sensor_all 5

IM_UCHAR SensorChanged;
} IM_SENSOR_STATE;

For both elements, SensorState and SensorChanged, bit 0 represents sensor

1, bit 1 represents sensor 2, bit 2 represents sensor 3, and bit 3 represents
sensor 4.

SensorState Actual state when call occurs.
0 Sensor is off.
1 Sensorison.
SensorChanged Accumulated changed bits when call occurs.
0 State has not changed since last read.
1 State has changed since last read.
Return Value IM_SUCCESS Success.

IM_SENSOR_CONFIG_ERROR Configuration error.

Example

[k * im_get_sensor_all * /
/* Example of getting one or all optical sensor inputs ~ */

#include <string.h>
#include "imstdio.h"
#include "imt24lib.h"
#include <conio.h>

void main(void)

IM_SENSOR_STATE iSensorState;
int iStatus;
int ii;

[* Get an individual optical sensor input one at time from 1 to 4 */
for (ii= IM_SENSORL1,; ii <= IM_SENSORY4; ii++)

iStatus = im_get_sensor_input(ii);
printf("Optical %d status:%d\n", ii, iStatus);
im_standby_wait(2000);

[* Get 4 optical sensor at one time */
im_get_sensor_all(&iSensorState);

printf("Opt-State: %X\n", iSensorState.SensorState);
printf("Opt-Change: %X\n", iSensorState.SensorChanged);
getch();

5-37

im_get _sensor_input

im_get _sensor_input

Purpose

Syntax

IN Parameters

OUT Parameters

Return Value

Notes

This function gets the current state of the specified optical sensor.

#include "imt24lib.h"
IM_SENSOR_CONTROL im_get_sensor_input
(IM_SENSOR_PORT iSensorld)

iSensorld One of these constants:
IM_OPTICAL1 Optical sensor 1 input.
IM_OPTICAL2 Optical sensor 2 input.
IM_OPTICAL3 Optical sensor 3 input.
IM_OPTICAL4 Optical sensor 4 input.

None.

IM_SENSOR_ON The optical sensor is on.

IM_SENSOR_OFF The optical sensor is off.

iSensorld is mutually exclusive and cannot be ORed together.

im_get system julian_date

Purpose

Syntax

IN Parameters

OUT Parameters

Return Value

Notes

5-38

This function gets the current system date in Julian format. The Julian date is a
method of representing the date as the number of days elapsed since the
beginning of the year. For example, “98167” would be the 167 day of 1998.

#include "imt24lib.h"
void im_get_system_julian_date
(IM_USHORT digitsinYear :
IM_CHAR *ulianDate)

digitsinYear Number of digits in year (0-4).

*julianDate Pointer to the character string where you want to place the Julian
date.

None.
This is a new PSK function.

The character buffer must be at least eight characters long.

im_get text 5

im_get text

Purpose

Syntax

IN Parameters

OUT Parameters

Return Value

Notes

See Also

Example

/
#include "imt24lib.h"
#include "imstdio.h"

This function returns a rectangular section of text and its attributes from the
80 x 25 virtual display. You specify a starting row and column and ending
row and column.

#include "imt24lib.h"
IM_STATUS im_get_text
(IM_USHORT start _col,
IM_USHORT start_row,
IM_USHORT end_col,
IM_USHORT end_row,
IM_DISPLY_TEXT_Sfar *text array);

start_col Starting column.
start_row Starting row.
end_col Ending column.

end_row Ending row.

text_array Array of type display text large enough to receive the data
represented by the screen section.

text_array[n] Contains the attribute, where n is an odd number.
text_array[m] Contains the character, where m is an even number.

This function returns one of these codes:
IM_SUCCESS Successfully returned text and attributes.

IM_INVALID_PAIR The end row/column combination are before the
start row/column combination. No data returned.

IM_INVALID_START The starting location is outside the virtual display.
No data returned.

IM_INVALID_END The ending location is outside the virtual display.
No data returned.

The retrieved data includes a one-byte attribute and a one-byte character.
The order is character, attribute, character, attribute, and so on. The buffer
size must be larger than (end_col — start_col + 1) x (end_row — start_row+ 1) x 2.

im_get_screen_char, im_put_text, im_putchar, im_puts

im_get_text * /

IM_DISPLAY_TEXT_S tArray[100]; /* Array containing char. and attr. */
IM_UCHAR sArray[100]; /* for each char. pos. in the range.*/

5-39

im_get text

IM_STATUS status; [* Return status of calling function */
void main()

int x;

im_clear_screen(); [* Display a clean screen */

[* Print text to be retrieved and put at different location */
for (x = 0; X < 2; x++)

im_cputs("AaA",2);
im_puts("BbBbBbBbBbBb",4);
im_cputs("CcC",3);
im_puts("DdDdDdDdDdDd",4);

[* Get text at specified location including attributes */
im_get_text(3,0,7,6,tArray);

im_set_cursor_xy(5,0);

puts("Press enter to see");

printf("marked text moved.");

getch();

im_clear_screen();

/* Display the text and attribute at position specified */
im_set_cursor_xy(0,0);

puts("Block of Text chosen");

puts(“to be move was..");

status = im_put_text(0,5,4,11,tArray);

[* Display return status of the calling function */
/I im_message(status);

getch();
}

5-40

im_get tx_status 5

im_get tx_status

Purpose This function returns the status of the last call to im_transmit_buffer.

Syntax #include "imt24lib.h"
IM_USHORT im_get_tx_status
(IM_COM_PORT portid);

IN Parameters portid Desired communications port:
IM_COM1 COM1 port.
IM_NET Network port.

OUT Parameters None.

Return Value This function returns one of these codes:
IM_COMM_INUSE 1 (Communications portin use).
IM_NS_COMPLETE 2 (Transmission completed).
IM_NS CANCELLED 3 (Transmission cancelled).
IM_NS_ERROR 4 (Communications error).

Notes If you need to determine if the buffer is empty, use im_event_wait or
im_input_status instead of this function.

The status is invalid until you call im_transmit_buffer or
im_transmit_buffer_nowait_t

Do not use this function with im_transmit_buffer_nowait.

See Also im_get_rx_status, im_transmit_buffer, im_transmit_buffer_nowait _t,
im_transmit_buffer_nowait

Example

/ * im_get_tx_status * /
#include <string.h>

#include "imstdio.h"

#include "imt24lib.h"

void main(void)
char szBuffer[1024];
IM_STATUS iStatus, xStatus;
IM_USHORT iCommLength;
IM_COM_PORT portid;
im_clear_screen(); [* clear the display screen */
portid = IM_NET; [* set port to network */
[* transmit buffer and get return status */
xStatus = im_transmit_buffer(portid, strlen(szBuffer),szBuffer,IM_ZERO_TIMEOUT);

[* get status of the last call to im_transmit_buffer */
iStatus = im_get_tx_status(portid);

5-41

im_get_viewport_lock

if(iStatus == IM_SUCCESS)

[* if successful, display data in buffer and data length */
printf("Data receive is:%s\n\n",szBuffer);
printf("Length of data is:%u\n\n",iCommLength);

else

[* if not successful, print error values and code */
printf("Transmit buffer error\n™);

printf("The status is %i\n",iStatus);
im_message(xStatus);

}

im_get viewport_lock

Purpose

Syntax

IN Parameters
OUT Parameters

Return Value

Notes

See Also

5-42

This function retrieves the current setting of the viewport lock. The viewport
lock enables or disables moving the viewport with the keyboard. Your
application program may require the viewport to be locked or unlocked.

#include "imt24lib.h"
IM_STATUS im_get_viewport_lock
(IM_CONTROL far * view _lock),

None.
view_lock One of these constants:
IM_ENABLE Viewport is locked.

IM_DISABLE Viewporting is not enabled, but the viewport is locked for
when viewporting is enabled.

This function returns one of these codes:
IM_SUCCESS Success

IM_VP_DISABLED Viewporting is not enabled, but the viewport is
locked for when viewporting is enabled.

When the viewport is “locked,” the viewport movement keys do not move
the viewport. The viewport can still move if follow-the-cursor mode is
enabled. The TRAKKER Antares terminals default to viewport unlocked
when viewporting is enabled. This function is meaningless if viewporting is
disabled.

The 2460 and 2461 terminals do not support this function.
im_set_viewport_lock, im_get_follow_cursor, im_set_follow_cursor

Example

/ im_get_viewport_lock /
#include <conio.h>

#include <ctype.h>

#include <stdlib.h>

#include "imstdio.h"

#include "imt24lib.h"

#define ESC_CHAR 0x1B

void main (void)

IM_UCHAR ch,
user_option;
IM_CONTROL current_viewport_lock;

im_clear_screen(); /* clear screen */

[* Have to enable viewporting before using any viewport display functions */
im_set_viewporting (IM_ENABLE);

[* Get the current status of viewport lock for restore later */
im_get_viewport_lock(¤t_viewport_lock);

[* Get user's input option, 'y' for disable viewport lock */
printf("\nEnable viewport\nlock(y)?");

user_option = getche();

user_option = toupper(user_option);

if (user_option =="Y")

/* Enable viewport lock */
im_set_viewport_lock(IM_ENABLE);
printf("\n\n'ESC' to quit\nType _f and arrow keys\n");
printf("to see viewport lockl\n");

else

/* Disable viewport lock */
im_set_viewport_lock(IM_DISABLE);
printf("\n'ESC' to quit\nType _f and arrow keys\n");
printf("to see viewport unlock\n");

[* Enter characters loop to check viewport movement until 'ESC' key. */
while ((ch = getche()) '= ESC_CHAR)

[* Restore viewport lock */
im_set_viewport_lock(current_viewport_lock);

im_get _viewport_lock

5-43

im_get _viewporting

im_get_viewporting

Purpose This function determines if viewporting is enabled or if the terminal is
treated as a device with a small screen.

Syntax #include "imt24lib.h"
void im_get_viewporting
(IM_CONTROL viewport);

IN Parameters viewport Flag and is one of these constants:
IM_ENABLE Viewporting is enabled.
IM_DISABLE Viewporting is disabled.
OUT Parameters None.
Return Value None.

Notes If viewporting is enabled, the terminal accepts viewport movement
commands, including follow-the-cursor mode. All cursor positioning is
relative to the virtual display. Scrolling and wrapping occur at the virtual
screen (80x25) boundaries.

If viewporting is disabled, the terminal does not accept any viewport
movement commands. All cursor positioning is relative to the viewport
upper left corner. Scrolling and wrapping occur at the viewport edges.

The 2460 and 2461 terminals do not support this function.

See Also im_get_viewport_lock, im_set_follow_cursor, im_set_viewport_lock,
im_set_viewporting

Example

/***************** |m get VIEWpOI’tIng *******************/
#include "imt24lib.n™

#include "imstdio.h"

#include <ctype.h>

#include <conio.h>

#include <stdlib.h>

IM_CONTROL viewport;
IM_UCHAR ch;

char ii;

void main(void)
char cChoice,exit;
do

/* Display a new screen */
im_clear_screen();

[* Print the header */
printf("Get Viewport Test\n\n");
printf("Enable Viewporting? Y/N\n");
cChoice = getch();

5-44

cChoice = toupper(cChoice);

[* Set the viewporting paramter */
if(cChoice =="'Y")
{

im_set_viewporting(IM_ENABLE);
printf("hi howdy");

else if(cChoice == 'N")

im_set_viewporting(IM_DISABLE);
printf("ho ho ho");

else
printf("Choose Y or N");

/* Get viewport mode set */
viewport = im_get_viewporting();
printf("seting viewport");

if (viewport == IM_ENABLE)

{

im_clear_screen();

printf("The viewport is now enabled\n");

printf("Move cursor off screen to\n");
printf("check viewport movement.\n");
printf("Press 'Q' to quit\n\n");
im_set_follow_cursor(viewport);
while ((ch = getche()) !='Q";

else

{

im_clear_screen();

printf("The viewport is now disabled\n");

printf("Move cursor off screen to\n");
printf("check viewport movement.\n");
printf("Press 'Q' to quit\n\n");
im_set_follow_cursor(viewport);
while ((ch = getche()) !='Q";

printf("\n\nExit?");

exit = getch();

exit = toupper(exit);
Jwhile(exit !="Y");

im_get_viewporting 5

5-45

im_input_status

im_input_status

Purpose This function provides compatibility with the JANUS PSK functions. This
function checks to see if any input buffers have data and returns the buffer
identification.

Syntax #include "imt24lib.h"
IM_ORIGIN im_input_status (void);

IN Parameters None.

OUT Parameters None.

Return Value This function returns one or more of these constants:

IM_NO_SELECT No input buffer has data.

IM_COM1 SELECT COML1 input: T242X - Port on bottom end of terminal,
T248X - Physical port labeled COML1.

IM_COM2_SELECT COM?2 input: T242X - N/A, T248X - Physical port
labeled COM2 on enhanced 1/0 board.

IM_NET_SELECT Network input (UDP Plus or TCP/IP): T242X - RF port,
T248X - RF port or ethernet port on enhanced 170 board.

IM_SCAN_PORT_SELECT RS232 port input: T242X - N/A,
T248X - Physical port labeled COM4 on enhanced 1/0 board.

IM_LABEL_SELECT Label input: T242X - integrated scan module or
module for cabled scanners, T248X - Badge scanner or any attached scanner.

IM_OPTICAL_SELECT Optical sensor input (T248X only).
IM_KEYBOARD_SELECT Keypad input.
IM_ALL_SELECT All input sources.

IM_TIMER_SELECT Timer expired on an event set with
im_set_time_event.

Notes To avoid entering a battery-wasting infinite loop waiting for input, use an
input function instead or use im_event_wait.

See Also im_receive_input, im_receive_field, im_event_wait

Example

No example. This function provides compatibility with the JANUS PSK functions.

5-46

im_irl_a 5

im_irl_a

Purpose

Syntax

IN Parameters

This function returns input from bar code labels or the keypad in the same
manner as IRL command A (ASCII input). This function returns the input
data to the buffer and displays the data.

#include "imt24lib.h"

IM_USHORT im_irl_a
(IM_USHORT timeout
IM_LENGTH_SPEC test tablef[] :
IM_UCHAR mask_string[],
IM_UCHAR #instring
IM_USHORT *cmd _count
IM_DECTYPE *symbology),

timeout Receive timeout period and is a numeric value or one of these
constants:

1t0 65,534 ms Numeric range
IM_ZERO _TIMEOUT No wait

IM_INFINITE_TIMEOUT Wait forever—the function does not return
until the end of message character has been received.

test_table Specifies acceptable lengths for input. Data is {a, b, c, d},
returned only if its length matches one of the five lengths {a, b, c, d},
specified in the test_table. The test_table parameter is a {a, b, c, d},
matrix in the form shown to the right: {a, b, c, d},

{a, b, c, d},

a This position in the matrix is one of these values:

IM_NO _LENGTH Accept data of any length. Set any unused table
entries to {IM_NO_LENGTH,0,0,0}.

IM_LENGTH Accept data with a specific length. The actual length of the
data string is placed in the d position (and b and ¢ are not used).

IM_RANGE Accept data within a length range. The data length must be
within the range of b and ¢ (and d is not used).

mask_string Sets up a data mask that received data must match. mask_string
can accept a string of constants or wildcard characters. For example, use
the string ### - #### to accept only phone numbers. If you define a mask,
the terminal beeps when input does not fit the mask.

You can use one or more of these wildcard characters to define the mask:

(Numeric), @ (Alpha), ? (Alphanumeric printable), and NULL or zero
(No mask).

5-47

im_irl_a

OUT Parameters instring Input string. You must allocate at least 1024 bytes for instring if the
input source includes the network port, COM1 or COM2.

cmd_count ReturnsaO.

symbology One of these constants:
IM_UNKNOWN_DECODE Unknown bar code.
IM_CODABAR Codabar bar code.
IM_CODE_11 Code 11 bar code.
IM_CODE_16K Code 16K bar code.
IM_CODE_39 Code 39 bar code.
IM_CODE_49 Code 49 bar code.
IM_CODE_93 Code 93 bar code.
IM_CODE_128 Code 128 bar code.
IM_1 2 OF 5 Interleaved 2 of 5.
IM_MSI MSI bar code.
IM_PLESSEY Plessey bar code.
IM_UPC Universal Product code.

Return Value This function returns one of these status codes:
IM_SUCCESS Successfully received input.
IM_TIMEDOUT A timeout occurred.
IM_EDIT_ERROR Error occurred in a terminal command.

Notes = TRAKKER Antares terminals do not support IRL. This function provides
compatibility with the JANUS PSK functions. For more information on IRL
and command A, refer to the IRL Programming Reference Manual.

See Also im_irl_k, im_irl_n, im_irl_v, im_irl_y

Example

/ im_irl_a /
#include "imstdio.h"

#include <conio.h>

#include "imt24lib.h"

IM_LENGTH_SPEC length_table[IM_LENGTH_SPEC_MAX] = {
{IM_LENGTH, 0, 0, 2},
{IM_RANGE, 7, 10, O},
{IM_LENGTH, 0, 0, 4},
{IM_RANGE, 15, 17, 0},
{IM_LENGTH, 0, 0, 6}
h

IM_UCHAR ssn_maskK[] = "##H—HH#—HH#",
/* Input must be in SSN format. The terminal beeps when input */

5-48

im_irl k 5

[* does not fit the mask. To exit, you must enter 999-99-9999.*/

void main (void)

IM_UCHAR input[1024];

IM_USHORT cc;

IM_DECTYPE symbol;

im_clear_screen();

/* Clear the screen */

printf("Demo IRL A Bar Code\n'9' to quit\n");
/* For this defined mask, enter 999-99-9999 to exit. */

[* Input loop */
do

{

/* Display IRL A mask pattern */
printf("IRL A test mask = %s\n", ssn_mask);

/* Request input from Reader Wedge */
im_irl_a(IM_INFINITE_TIMEOUT, length_table,
ssn_mask, input, &cc, &symbol);

printf("\n%s\n", input);

} while (input[0] !="9"); /*'9'to quit */
/* Input must match the mask in order to exit this function. */

/* For this defined mask, enter 999-99-9999 to exit. */
}
im_irl_k
Purpose This function receives input from the keypad in any format in the same

Syntax

IN Parameters

manner as IRL command K (ASCII input). This function returns the input
data to the buffer and displays the data.

#include "imt24lib.h"

IM_USHORT im_irl_k
(IM_USHORT timeout
IM_LENGTH_SPEC test table[]
IM_UCHAR mask string[]
IM_UCHAR #instring
IM_USHORT *cmd _count);

timeout Receive timeout period. The return status indicates whether the
function was successful or a timeout occurred. The timeout parameter is a
numeric value or one of these constants:

1t0 65,534 ms Numeric range.
IM_ZERO_TIMEOUT No wait.

IM_INFINITE_TIMEOUT Wait forever—the function does not return
until the end of message character has been received.

5-49

im_irl k

OUT Parameters

Return Value

test_table Specifies acceptable lengths for input. Data is {a, b, c, d},
returned only if its length matches one of the five lengths {a, b, c, d},
specified in the test_table. The test_table parameter is a {a, b, c, d},
matrix in the form shown to the right. {a, b, c, d},

{a, b, c, d},

a This position in the matrix is one of these values:

IM_NO_LENGTH Accept data of any length. Set any unused table
entries to {IM_NO_LENGTH,0,0,0}.

IM_LENGTH Accept data of a specific length. The actual length of the
data string is placed in the d position (and b and ¢ are not used).

IM_RANGE Accept data within a length range. The data length must be
within the range of b and ¢ (and d is not used).

mask_string Sets up a data mask that received data must match. mask_string
can accept a string of constants or wildcard characters. For example, use
the string ### - #### to accept only phone numbers. If you define a mask,
the terminal beeps when input does not fit the mask.

You can use one or more of these wildcard characters to define the mask:

(Numeric), @ (Alpha), ? (Alphanumeric printable), and NULL or zero
(No mask).

instring Input string. You must allocate at least 1024 bytes for this
parameter if the input source includes the network port, COM1 or COM2.

cmd _count ReturnsaO.

This function returns one of these status codes:
IM_SUCCESS Successfully received input.
IM_TIMEDOUT A timeout occurred.

IM_EDIT_ERROR Error occurred in a terminal command.

Notes = TRAKKER Antares terminals do not support IRL. This function provides
compatibility with the JANUS PSK functions. For more information on IRL
and command K, refer to the IRL Programming Reference Manual.

See Also im_irl_a, im_irl_n, im_irl_v, im_irl y
Example
/ wk]k e wkkkk

#include "imstdio.h"
#include <conio.h>
#include <stdlib.h>
#include "imt24lib.h"

IM_LENGTH_SPEC length_table[IM_LENGTH_SPEC_MAX] = {

{M_LENGTH, 0, 0, 2}
{IM_RANGE, 7, 10,

{IM_LENGTH, 0, 0,

o},
43,

{IM_RANGE, 15, 17, 0},

5-50

im_irl_n 5

{IM_LENGTH, 0, 0, 6}};
IM_UCHAR mix_mask[] = "?#@#";
void main (void)

IM_UCHAR input[1024];
IM_USHORT cc;

im_clear_screen(); /* Clear the screen */
printf("Demo IRL K Bar Code\n 'Q' to quit\n™);

/* Set terminal to PROGRAMMER mode */
im_set_input_mode(IM_PROGRAMMER);

/* Input loop --Display IRL K mask pattern */
do

{

printf("IRL K test mask = %s\n", mix_mask);

/* Request input from terminal */
im_irl_k(IM_INFINITE_TIMEOUT, length_table,
mix_mask, input, &cc);

printf("\n%s\n", input);
[* Upper case first char of input for testing quit */

input[0] = toupper(input[0]);
} } while (input[0] !="'Q"); /*'Q' to quit */

im_irl_n

Purpose This function receives numeric input from the keypad or a label in the same
manner as IRL command N (numeric input). Nonnumeric data is ignored.
This function returns the input data to the buffer and displays the data. For
more information on IRL and command N, refer to the IRL Programming
Reference Manual.

Syntax #include "imt24lib.h"
IM_USHORT im_irl_n
(IM_USHORT timeout
IM_LENGTH_SPEC test table[]
IM_UCHAR *instring
IM_USHORT *cmd _count
IM_DECTYPE *symbology),

IN Parameters timeout Receive timeout period. The return status indicates whether the
function was successful or a timeout occurred. The timeout parameter is a
numeric value or one of these constants:

1t0 65,534 ms Numeric range.
IM_ZERO_TIMEOUT No wait.

IM_INFINITE_TIMEOUT Wait forever—the function does not return
until the end of message character has been received.

5-51

im_irl_n

OUT Parameters

5-52

test_table Acceptable lengths for input. Data is returned only {a, b, c, d},
if its length matches one of the five lengths specified in the {a, b, c, d},
test_table. The test_table parameter is a matrix in the form {a, b, c, d},
shown to the right. {a, b, c, d},

. o - _ {a, b, c, d},

a This position in the matrix is one of these values:

IM_NO_LENGTH Accept data of any length. Set any unused table
entries to {IM_NO_LENGTH,0,0,0}.

IM_LENGTH Accept data of a specific length. The actual length of the
data string is placed in the d position (and b and ¢ are not used).

IM_RANGE Accept data within a length range. The data length must be
within the range of b and ¢ (and d is not used).

mask_string Sets up a data mask that received data must match. mask_string
can accept a string of constants or wildcard characters. For example, use
the string ### - #### to accept only phone numbers. If you define a mask,
the terminal beeps when input does not fit the mask.

You can use one or more of these wildcard characters to define the mask:

(Numeric), @ (Alpha), ? (Alphanumeric printable), and NULL or zero
(No mask).

instring Input string. You must allocate at least 1024 bytes for instring if the
input source includes the network port, COM1 or COM2.

cmd _count ReturnsaO.

symbology One of these constants:
IM_UNKNOWN_DECODE Unknown bar code.
IM_CODABAR Codabar bar code.
IM_CODE_11 Code 11 bar code.
IM_CODE_16K Code 16K bar code.
IM_CODE_39 Code 39 bar code.
IM_CODE_49 Code 49 bar code.
IM_CODE_93 Code 93 bar code.
IM_CODE_128 Code 128 bar code.
IM_| 2 OF 5 Interleaved 2 of 5.
IM_MSI MSI bar code.
IM_PLESSEY Plessey bar code.
IM_UPC Universal Product code.

im_irl_n

Return Value This function returns one of these status codes:
IM_SUCCESS Successfully received input.
IM_TIMEDOUT A timeout occurred.
IM_EDIT_ERROR Error occurred in a terminal command.

Notes TRAKKER Antares terminals do not support IRL. This function provides
compatibility with the JANUS PSK functions. For more information on IRL
and command N, refer to the IRL Programming Reference Manual.

See Also im_irl_a, im_irl_k, im_irl_v, im_irl_y

Example

/ im_irl_n /
#include "imstdio.h"

#include <conio.h>

#include "imt24lib.h"

IM_LENGTH_SPEC length_table[IM_LENGTH_SPEC_MAX] = {
{IM_LENGTH, 0, 0, 2,
{IM_RANGE, 7, 10, 0},
{IM_LENGTH, 0, 0, 4},
{IM_RANGE, 15, 17, 0},
{IM_LENGTH, 0, 0, 6}

void main (void)
IM_UCHAR input[1024];
IM_USHORT cc;
IM_DECTYPE symbol;

im_clear_string(); /* Clear the screen */
printf("Demo IRL N Bar Code\n'9' to quit\n");

/* Input loop */
do

/* Display IRL N test */
printf("IRL N test\n");

/* Request input from Reader Wedge */
im_irl_n(IM_INFINITE_TIMEOUT, length_table,

input, &cc, &symbol);
printf("\n%s\n",input);

} while (input[0] I="9"); /*'9' to quit */
}

5-53

im_irl v

im_irl v

Purpose

Syntax

IN Parameters

5-54

This function receives input from any specified source in any format, in the
same manner as an IRL command V (universal input). For more information
on IRL and command V, refer to the IRL Programming Reference Manual.
#include "imt24lib.n"
IM_USHORT im_irl_v

(IM_USHORT timeout

IM_CONTROL edit ,

IM_LABEL _BEEP_CONTROL beep,

IM_CONTROL display

IM_ORIGIN *source

IM_UCHAR *instring

IM_USHORT *cmd _count

IM_DECTYPE *symbology),
timeout Receive timeout period. The return status indicates whether the

function was successful or a timeout occurred.

timeout Numeric value or one of these constants:
1t0 65,534 ms Numeric range.
IM_ZERO TIMEOUT No wait.

IM_INFINITE_TIMEOUT Wait forever—the function does not return until
the end of message character has been received.

edit Determines whether the Wedge Reader parses reader commands. Use
one of these constants:

IM_DISABLE Disable reader command parsing—reader commands are
treated as data.

IM_ENABLE Enable reader command parsing.

beep Determines whether the IRL V command beeps or not when data is
entered. The beep parameter is one of these constants:

IM_APPLI_BEEP Application controls the beep—you code the application
to sound a beep when your program design requires one.

IM_WEDGE_BEEP Beeps occur automatically—the reader always beeps
when data is entered.

display Determines if the data is displayed as it is entered. The display
parameter is one of these constants:

IM_DISABLE Disable display of data.
IM_ENABLE Enable display of data.

IN/OUT
Parameters

OUT Parameters

im_irl v 5

source Determines which input sources are allowed. When the IRL V

command returns, source indicates where the data came from. When both
keypad and label inputs are allowed, the source always returns keypad
because it is possible for keyed and scanned data to be intermixed. Although
intermixing is possible, it is not likely to occur.

If you have both the keypad and scanner enabled, and you want to know
where the data came from, first check

e if the symbology is IM_UNKNOWN_DECODE, then the data came
from the keypad.

» if the symbology is one of the other values (such as IM_CODE_39), then
some or all of the data came from the scanner.

« if only the scanner is enabled, then all of the data came from the
scanner.

source can be one of these constants:
IM_NO_SELECT No input source selected.

IM_COM1 SELECT COML1 input: T242X - Port on bottom end of terminal,
T248X - Physical port labeled COML1.

IM_COM2_SELECT COM?2 input: T242X - N/A, T248X - Physical port
labeled COM2 on enhanced 1/0 board.

IM_COM4 _SELECT Means IM_NET_SELECT and is provided for
compatibility with past systems.

IM_NET_SELECT Network input (UDP Plus or TCP/IP): T242X - RF port,
T248X - RF port or ethernet port on enhanced 1/0 board.

IM_SCAN_PORT_SELECT RS232 port input: T242X - N/A,
T248X - Physical port labeled COM4 on enhanced 1/0 board.

IM_LABEL _SELECT Label input: T242X - integrated scan module or
module for cabled scanners, T248X - Badge scanner or any attached scanner.

IM_OPTICAL_SELECT Optical sensor input (T248X only).
IM_KEYBOARD_SELECT Keypad input.
IM_ALL _SELECT All input sources.

instring Input string. You must allocate at least 1024 bytes for instring if the

input source includes the network port, COM1, or COM2.

cmd_count ReturnsaO.

symbology One of these constants:

IM_UNKNOWN_DECODE Unknown bar code.
IM_CODABAR Codabar bar code.

5-55

im_irl v

IM_CODE_11 Code 11 bar code.
IM_CODE_16K Code 16K bar code.
IM_CODE_39 Code 39 bar code.
IM_CODE_49 Code 49 bar code.
IM_CODE_93 Code 93 bar code.
IM_CODE_128 Code 128 bar code.
IM_|1 2 OF 5 Interleaved 2 of 5.
IM_MSI MSI bar code.
IM_PLESSEY Plessey bar code.
IM_UPC Universal Product code.

Return Value This function returns one of these status codes:
IM_SUCCESS Successfully received input.
IM_TIMEDOUT A timeout occurred.

Notes Because the TRAKKER Antares terminals have no left Delete key, this function
returns the left Delete scan code when the left arrow is pressed.

TRAKKER Antares terminals do not support IRL. This function provides
compatibility with the JANUS PSK functions. For more information on IRL
and command V, refer to the IRL Programming Reference Manual.

See Also im_irl_a, im_irl_k, im_irl_n, im_irl_y

Example

/ K _ir|_y Fkeke Rk xRk |
#include "imstdio.h"

#include <conio.h>

#include <stdlib.h>

#include "immsg.h"

#include "imt24lib.h"

#define COM_BUFSIZE 1024 /* allocate 1024 bytes for comm buffer */
void main (void)

IM_UCHAR *com_buffer;

IM_UCHAR COM_BUFSIZE[1024];

IM_ORIGIN source;

IM_USHORT cc;

IM_DECTYPE symbol;

/* FUNCTION BODY */

im_clear_screen(); /* Clear the screen */
printf("Demo IRL V Bar code\n'C' to clear screen\n'Q' to quit\n");
do

{
/* Display IRL V test */
printf("IRL V test\n");

5-56

/* Set up input source with labels, keypad, and NET */
source = IM_LABEL_SELECT | IM_KEYBOARD_SELECT | IM_NET_SELECT,;
/* Request input from Reader Wedge */
im_irl_v(IM_INFINITE_TIMEOUT,
IM_ENABLE, IM_WEDGE_BEEP, IM_ENABLE,
&source, input, &cc, &symbol);
/* Display input data */
printf("\n%s\n", input);
/* Upper case first char of input for simplifying to test input */
input[0] = toupper(input[0]);
/* If the first char in string is 'C', then clear screen.*/
if (input[0] =="'C")
clrscr();
} while (input[0] !='Q"); *'Q' for quit */
im_set_beep_control(IM_WEDGE_BEEP);
}

im_irl _y

Purpose The im_irl_y function receives input from the designated communications
port the same as IRL command Y (ASCII input). This function receives a
single block, not an entire file. This function always clears input from the
host and checks the data for terminal commands from input.

Unlike the other IRL-type instructions, the data is not automatically
displayed. For more information on IRL and command Y, refer to the IRL
Programming Reference Manual.
Syntax #include "imt24lib.h"
IM_STATUS im_irl_y
(IM_USHORT timeout,
IM_COM_PORTport _id,
IM_UCHAR * eom char ,
IM_PROTOCOL_CMD protocol,
IM_UCHAR *instring ,
IM_USHORT *cmd _count);

IN Parameters timeout Receive timeout period. The return status indicates whether the
function was successful or a timeout occurred. The timeout parameter is a
numeric value or one of these constants:

1t0 65,534 ms Numeric range.
IM_ZERO_TIMEOUT No wait.

IM_INFINITE_TIMEOUT Wait forever—the function does not return
until the end of message character has been received.

5-57

im_irl_y

port_id Communications port:

IM_COM1 SELECT COML input: T242X - Port on bottom end of
terminal, T248X - Physical port labeled COML.

IM_COM2_SELECT COM?2 input: T242X - N/A, T248X - Physical port
labeled COM2 on enhanced 1/0 board.

IM_COM4_SELECT Means IM_NET_SELECT and is provided for
compatibility with past systems.

IM_NET_SELECT Network input (UDP Plus or TCP/IP): T242X - RF
port, T248X - RF port or ethernet port on enhanced 1/0 board.

IM_SCAN_PORT_SELECT RS232 port input: T242X - N/A,
T248X - Physical port labeled COM4 on enhanced 1/0 board.

eom_char Provides compatibility with the JANUS PSK. This parameter is
ignored on the TRAKKER Antares terminals.

protocol Provides compatibility with the JANUS PSK. This parameter is
ignored on the TRAKKER Antares terminals. Use the TRAKKER Antares
System Menu or im_command to control protocol on the terminal.

OUT Parameters instring Input string. You must allocate at least 1024 bytes for instring if the
input source includes the network port, COM1, or COM2.

cmd_count ReturnsaO.
Return Value This function returns one of these status codes:
IM_SUCCESS Successfully received input.
IM_TIMEDOUT A timeout occurred.

Notes TRAKKER Antares terminals do not support IRL. This function provides
compatibility with the JANUS PSK functions. For more information on IRL
and command Y, refer to the IRL Programming Reference Manual.

Protocol is ignored for IM_COM4 and IM_NET input.

See Also im_irl_a, im_irl_k, im_irl_n, im_irl_v

Example

/ % im_irl_y *** Fkkdkkokk |
#include "imstdio.h"

#include <conio.h>

#include <stdlib.h>

#include "immsg.h"

#include "imt24lib.h"

void main (void)

IM_UCHAR input[1024];
IM_USHORT cC;
IM_USHORT status;

im_clear_screen(); /* Clear the screen */

5-58

IM_ISERROR 5

printf("Demo IRL Y Bar Code\n'Q' to quit\n\'C' to clear screen\n");

[* Using protocol by passing IM_PROTOCOL_ON */

printf("\nUsing protocol\n");

status = im_irl_y(IM_INFINITE_TIMEOUT, IM_NET, &eom_null,
IM_PROTOCOL_ON, input, &cc);

/* Display input data */

printf("\nstatus: %x\n%s", status, input);

[* im_irl_y input loop */
do

% while (input[0] '="'Q"); /*'Q"to stop */

IM_ISERROR

Purpose This macro determines if the return status code from another PSK function is

an error (either fatal or nonfatal).

Syntax #include "imt24lib.h"
IM_ISERROR(status),

IN Parameters status Any PSK function that returns a status code.
OUT Parameters None.
Return Value This function returns one of these codes:
0 Success or warning.

Nonzero Error (either fatal or nonfatal).

See Also For more information, see “Status Code Macros” in Chapter 2.

IM_ISGOOD, IM_ISSUCCESS, IM_ISWARN

Example

/ IM_ISERROR /
#include "imt24lib.h"

#inclide "imstdio.h"

printf("IM_ISERROR example:")

status = im_sound(IM_LOW_PITCH, IM_BEEP_DURATION, IM_NORMAL_VOLUME)
if IM_ISERROR(status)

printf("Beep error!");
else

printf("Beep success or warning!");

5-59

IM_ISGOOD

IM_ISGOOD

Purpose This macro determines if the return status code from another PSK function is
a success.

Syntax #include "imt24lib.h"
IM_ISGOOD(status);

IN Parameters status Any PSK function that returns a status code.
OUT Parameters None.
Return Value This function returns one of these codes:
0 Warning or error.
Nonzero Success.
See Also For more information, see “Status Code Macros” in Chapter 2.
IM_ISERROR, IM_ISSUCCESS, IM_ISWARN

Example

[RAFFRR AR IM_ISGOOD leiohols /
#include "imt24lib.h"

#inclide "imstdio.h"

printf("IM_ISGOOD example:")

status = im_sound(IM_LOW_PITCH, IM_BEEP_DURATION, IM_NORMAL_VOLUME)
if IM_ISGOOD(status)

printf(“Beep Successful!”);
else

printf(“Beep warning or error!”);

5-60

IM_ISSUCCESS 5

IM_ISSUCCESS

Purpose

Syntax

IN Parameters
OUT Parameters

Return Value

This macro determines if the return status code from another PSK function is
either success or warning.

#include "imt24lib.h"
IM_ISSUCCESS(status);

status Any PSK function that returns a status code.
None.
This function returns one of these codes:

0 Error.

Nonzero Success or warning.

See Also For more information, see “Status Code Macros” in Chapter 2.
IM_ISERROR, IM_ISGOOD, IM_ISWARN
Example
/ * IM_ISSUCCESS * /

#include "imt24lib.h"
#inclide "imstdio.h"

printf("IM_ISSUCCESS example:")

status = im_sound(IM_LOW_PITCH, IM_BEEP_DURATION, IM_NORMAL_VOLUME)
if IM_ISSUCCESS(status)
printf(“Beep success or warning!”);

else

printf(“Beep error!”);

5-61

IM_ISWARN

IM_ISWARN

Purpose

Syntax

IN Parameters
OUT Parameters

Return Value

This macro determines if the return status code from another PSK function is
awarning.

#include "imt24lib.h"
IM_ISWARN(status);

status Any PSK function that returns a status code.
None.
This function returns one of these codes:

0 Success or an error (either fatal or nonfatal).
Nonzero Warning.

See Also For more information, see “Status Code Macros” in Chapter 2.
IM_ISERROR, IM_ISGOOD, IM_ISSUCCESS
Example
IM_ISWARN okk /

/
#include "imt24lib.h"
#inclide "imstdio.h"

printf("IM_ISWARN example:")

status = im_sound(IM_LOW_PITCH, IM_BEEP_DURATION, IM_NORMAL_VOLUME)

if IM_ISWARN(status)
printf("Beep warning!");

else

printf("Beep success or error!");

5-62

im_message 5

im_message

Purpose

Syntax

IN Parameters
OUT Parameters
Return Value

Notes

Example

This function displays the error message associated with a specific status
code returned by a PSK function. Use this function to display additional
information about status codes during application development.

#include "imt24lib.h"
void im_message(IM_USHORT status code);

status_code Standard status code returned from various PSK functions.
None.
None.

The status message is displayed at the current cursor location without any
formatting. This function links all the error messages into your application
and increases the program size about 5K.

See example for im_receive_buffer.

im_offset_dbyte

Purpose

Syntax

Notes

This function sets an internal global value that is used as an offset to adjust a
double-byte font table address.

#include "imt24lib.h"
void im_offset_dbyte
(IM_USHORT iDByteOffset),

The Intermec customized double-byte font table does not exactly match the
BIG5 font table. As a result, this function sets an internal global value to
offset the starting character address between the two font tables. For
example, if the first character in the Intermec double-byte font table starts at
0xA440 in the BIGS5 font table, use this function to set the internal global
value to 0xA440. The PSK double-byte display functions will subtract 0xA440
from each double-byte character in the table so that the proper character
appears on the terminal.

The 2460 and 2461 terminals do not support this function.

5-63

im_opendir

im_opendir

Purpose

Syntax

IN Parameters
OUT Parameters

Return Value

Notes

See also

This function opens a directory in the terminal file system. This function must
be called before im_readdir.

#include "imstdio.h"
IM_READDIR far *im_opendir
(IM_UCHAR *drive)

*drive Pointer to IM_UCHAR. This variable points to a terminal drive letter.
None.

Far pointer to the IM_READDIR directory structure. This pointer is the input
argument to pass to im_readdir. See imstdio.h for a definition of
IM_READDIR.

This function opens a directory on the terminal. Use im_readdir to read the
contents of the directory. You can continually repeat the call to im_readdir to
read each successive entry in the directory.

im_closedir, im_readdir

im_overlay setup

Purpose

Syntax

IN Parameters

OUT Parameters

Return Value

Notes

5-64

This function superimposes glyph font characters at the same character
position.

#include <imt24lib.h>

IM_STATUS im_overlay_setup
(IM_UCHAR start font scan_row :
IM_UCHAR start video scan_row :
IM_UCHAR scan lines);

start_font_scan_row The starting scan row (0 to 15) of the glyph font to be
displayed.

start_video_scan_row The starting scan row (0 to 15) of the 16 by 16 area of the
display panel.

scan_lines The number of scan rows (1 to 16) of the font to be displayed. To
cancel overlay mode, set this parameter to 0.

None.

The function returns one of these codes:

IM_SUCCESS Success.

IM_INVALID_ROW The value for an input parameter is out of range.

This is a new v4.0 PSK function.

See Also

Example

/
/I Example of printing

im_overlay_status 5

The 2460 and 2461 terminals do not support this function.

Overlay mode can be used only when the terminal is in 16 by 16 display
mode. You can setup overlay mode while the terminal is in another display
mode (8 by 8 or 8 by 16), but overlay mode will not become active until the
terminal is in 16 by 16 display mode.

To cancel overlay mode, issue the im_overlay_setup function with the
scan_lines input parameter set to 0.

im_overlay_status

im_overlay_setup /
upper and lower part of a slash

/I by setting up the overlay mode.

#include "imt24lib.h"
void main(void)

/I turn off cursor

im_set_cursor(CURSOR_OFF);

/lclear character location where overlaying will occur
im_putchar(* {, HOLD_CURSOR);

/lprint the upper part of a slash starting at top of the character position
im_overlay_setup(0, 0, 8);
im_putchar('/’, HOLD_CURSOR);

/lprint the lower part of a slash starting at top of the character position
im_overlay_setup(7,0,8);
im_putchar(’/’, HOLD_CURSOR);

/lcancel the overlay mode
im_overlay_setup(0,1,0);

im_overlay status

Purpose

Syntax

IN Parameters
OUT Parameters

This function returns the values that were specified in the last call of the
im_overlay_setup function.
#include <imt24lib.h>
IM_STATUS *im_overlay_status
(IM_UCHAR * start font scan_row ,

IM_UCHAR * start video _scan _row ,
IM_UCHAR* scan lines);

None.

start_font_scan_row Pointer to the starting scan row (0 to 15) of the glyph font
to be displayed.

start_video_scan_row Pointer to the starting scan row (0 to 15) of the 16 by 16
area of the display panel.

5-65

im_put_text

scan_lines Pointer to the number of scan rows (1 to 16) of the glyph font to be
displayed.

Return Value The function returns one of these codes:
IM_SUCCESS Success.
Notes Thisis a new v4.0 PSK function.
The 2460 and 2461 terminals do not support this function.

To cancel overlay mode, issue the im_overlay_setup function with the
scan_lines input parameter set to 0.

See Also im_overlay_setup

Example

/ FkkkkR* im_overlay _status *** /
// Example of printing upper and lower part of a slash using overlay mode.

#include "imt24lib.h"

void main(void)

IM_USHORT iStartFontScanRow;
IM_USHORT iStartVideoScanRow;
IM_USHORT iNumberScanLines;

[/Iturn off cursor
im_set_cursor(CURSOR_OFF) ;

//setup overlay mode and read out
im_overlay_setup(2, 1, 8) ;

im_overlay_status(&iStartFontScanRow,
&iStartVideoScanRow, & NumberScanLines) ;

/lcancel the overlay mode
im_overlay_setup(0,1,0);

im_put_text

Purpose This function places a rectangular section of text on the virtual screen at the
specified starting row and column and ending row and column.

Syntax #include "imt24lib.h"
IM_STATUS im_put_text
(IM_USHORT start _col,
IM_USHORT start_row,
IM_USHORT end_col,
IM_USHORT end_row,
IM_UCHAR far “*text array);

5-66

IN Parameters

OUT Parameters

Return Value

Notes

See Also

Example

im_putchar 5

start_col Starting column.
start_row Starting row.
end_col Ending column.
end_row Ending row.

text_array Character array large enough to hold a character and an attribute
for each character position in the display range.

text_array[n] Contains the attribute, where n is an odd number.
text_array[m] Contains the character, where m is an even number.
None.
This function returns one of these codes:

IM_SUCCESS Successfully placed the text.

IM_INVALID_PAIR The end row/column combination are before the
start row/column combination. No data placed.

IM_INVALID_START The starting location is outside the virtual display.
No data placed.

IM_INVALID_END The ending location is outside the virtual display.
No data placed.

The placed data includes a one-byte character and a one-byte attribute for
each screen position.

im_get_screen_char, im_get_text

See example for im_get_text.

im_putchar

Purpose

Syntax

IN Parameters

This function places a character on the screen with the specified attributes.

#include "imt24lib.h"
M_STATUS im_putchar
(IM_UCHAR char,
IM_ATTRIBUTES a ttrib);

char Character to be displayed

attrib Attribute mask and is any combination of these constants:
IM_NORMAL Plain text.
IM_UNDERLINE Underline text.

5-67

im_putchar

OUT Parameters

Return Value

See Also

Example

IM_INVERSE Inverse color text.
IM_BLINK Blinking text.
IM_BOLD Bold text.
None.
This function returns one of these codes:
IM_SUCCESS Success.
IM_INVALID_PARAM_1 Invalid attribute value.

im_get_screen_char, im_get_text, im_puts

See examples of im_puts in im_get_text or im_event_wait.

5-68

im_putchar_dbyte 5

im_putchar_dbyte

Purpose

Syntax

IN Parameters

OUT Parameters

Return Value

Notes

This function displays a double-byte international character on the screen
with the specified attributes.

#include "imt24lib.h"
IM_STATUS im_putchar_dbyte
(IM_USHORT iChar
IM_ATTRIBUTES attrib)

iChar Unsigned short that represents the double-byte international character
to display.

attrib Any combination of these constants:
IM_NORMAL Plain text.
IM_INVERSE Inverse color text.
IM_BLINK Blinking text.
IM_UNDERLINE Underlined text.
None.
IM_SUCCESS Success.
IM_INVALID_PARAM_1 Invalid attribute value.

Double-byte characters are used in character sets (Chinese, Japanese, Korean)
where the number of characters exceeds 256.

You must have a double-byte character set installed on the host in order to use
this function.

im_puts

Purpose

Syntax

IN Parameters

This function places a string on the screen at the current cursor location and
appends a carriage return and line feed after the string.

#include "imt24lib.h"
IM_STATUS im_puts
(IM_UCHAR far * string,
IM_ATTRIBUTES a ttrib);

string Far pointer to the text string to be displayed.

attrib Attribute mask and is any combination of these constants:
IM_NORMAL Plain text.
IM_UNDERLINE Underline text.
IM_INVERSE Inverse color text.

5-69

im_puts_dbyte

IM_BLINK Blinking text.
IM_BOLD Bold text.
OUT Parameters None.
Return Value This function returns one of these codes:
IM_SUCCESS Success.
IM_BAD_ADDRESS Invalid string address.
IM_INVALID_PARAM_2 Invalid attribute value.

Notes This function is similar to im_cputs, except that it appends a carriage return
and linefeed.

See Also im_cputs, im_get _screen_char, im_get_text, im_putchar

Example

See example for im_event_wait or im_setup_follow_cursor.

im_puts _dbyte

Purpose This function displays a string of double-byte characters on the screen at the
current cursor location and appends a carriage return and a line feed after the
string.

Syntax IM_STATUS im_puts_dbyte
(IM_USHORT far *string ,
IM_ATTRIBUTES attrib)

IN Parameters *string Far pointer to the double-byte text string to be displayed.
attrib Any combination of these constants:
IM_NORMAL Plain text.
IM_INVERSE Inverse color text.
IM_BLINK Blinking text.
IM_UNDERLINE Underline text.
OUT Parameters None.
Return Value IM_SUCCESS Success.
IM_INVALID_PARAM _1 Invalid attribute value.

Notes Double-byte characters are used in character sets (Chinese, Japanese, Korean)
where the number of characters exceeds 256.

You must have a double-byte character set installed on the host in order to use
this function.

5-70

im_puts_mixed 5

im_puts_mixed

Purpose

Syntax

IN Parameters

OUT Parameters

Return Value

This function displays a string of mixed single and double-byte characters on
the screen at the current cursor location and appends a carriage return and a
line feed after the string.

#include "imt24lib.h"
IM_STATUS im_puts_mixed
(IM_USHORT far * string
IM_ATTRIBUTES attrib)

string Far pointer to the mixed single and double-byte text string to be
displayed.

attrib Any combination of these constants:
IM_NORMAL Plain text.
IM_INVERSE Inverse color text.
IM_BLINK Blinking text.
IM_UNDERLINE Underline text.
None.
IM_SUCCESS Success.
IM_INVALID_PARAM_1 Invalid attribute value.

Notes Double-byte characters are used in character sets (Chinese, Japanese, Korean)
where the number of characters exceeds 256.
You must have a double-byte character set installed on the host in order to use
this function.
im_readdir

Purpose This function returns the contents of the current directory in the file system. A

call to im_opendir must be made before using im_readdir.
Syntax #include "imstdio.h"

IN Parameters

OUT Parameters

Return Value

IM_DIR far *im_readdir
(IM_READDIR *pzOpenDir)

*pzOpenDir Pointer to the current directory structure. See imstdio.h for
definitions of IM_READDIR.

None.

Far pointer to the current directory structure. See imstdio.h for definitions of
IM_CLOSEDIR.

5-71

im_receive_buffer

Notes

To read a directory in the file system, call im_opendir to open a directory.
Then call im_readdir to read the contents of the current directory one entry at
a time. An entry consists of a filename, date and time stamp, and file size.

Repeat the call to im_readdir for each successive entry in the directory you
want to read. This is a one-way function that reads from the first entry to the
next entry in the file directory. You cannot jump entries or read backward
through the file system. If the return pointer is NULL, you have reached the
end of the directory

Use im_closedir to stop reading directories or when you have reached the end
of the directory.

im_receive_buffer

Purpose

Syntax

IN Parameters

5-72

This function receives the contents of a data buffer from a designated
communications port.
#include "imt24lib.h"
IM_STATUS im_receive_buffer

(IM_COM_PORT port_id

IM_USHORT length ,

IM_UCHAR far *data_buffer

IM_LTIME timeout

IM_USHORT far *comm_length);

port_id Communications port:

IM_COM1 COML1 input: T242X - Port on bottom end of terminal, T248X -
Physical port labeled COML.

IM_COM2 COM2 input: T242X - N/A, T248X - Physical port labeled
COM2 on enhanced 1/0 board.

IM_NET Network input (UDP Plus or TCP/IP): T242X and T2455 - RF
port, T248X - RF port or ethernet port on enhanced 1/0 board.

IM_SCAN_PORT RS232 port input: T242X - Serial interface module,
T248X - Physical port labeled COM4 on enhanced 1/0 board.

length Maximum number of bytes to receive and must be 1024 bytes.

data_buffer Far pointer to the data array where you want to place the
received data. This buffer must hold at least the number of bytes passed in
as length (1024 or more).

OUT Parameters

Return Value

Notes

im_receive_buffer 5

timeout Receive timeout period and is one of these values:
0 to 65,534 msec Numeric range.
IM_ZERO_TIMEOUT No wait.

IM_INFINITE_NET_TIMEOUT Wait forever—the function does not
return until the end of message character has been received.

comm_length Far pointer to the variable that holds the actual number of
bytes received upon completion of the call. This variable is valid only if a
successful status code is returned. Otherwise, no data is received.

This function returns one of these codes:
IM_SUCCESS Successfully received data.
IM_NET_NOT_READY Network not active or not properly configured.
IM_NET_BAD_CTRL_BLOCK Net control block pointer is null.
IM_NET_BAD_DATA Data pointer is null or invalid data length.
IM_NET_CONFIG_ERROR Incorrect RF configuration.

This function does not return until an end of message, a buffer is full, a
timeout occurs, or an error occurs.

For COM input, if no EOM character is defined, the function returns after a
character is received.

For TCP/IP communications, individual records can get combined into one
packet during transmission. As a result, you can use im_set_eom() to detect
the end of data in each TCP/IP message by: (1) reading the one or two EOM
character(s) at the end of the message or (2) reading a two-byte binary
number at the beginning of the message to identify the message length.

Data in the receive buffer is appended with a null character unless the data is
1024 bytes in length, in which case the null character is not appended to the
data.

5-73

im_receive_field

im_receive_field

Purpose

Syntax

IN Parameters

5-74

This function works on an input field area on the screen. You can specify
display attributes for the field and control the length of the input data.

#include "imt24lib.h"

IM_STATUS im_receive_field
(IM_ORIGIN allowed
IM_UINT timeout
IM_ATTRIBUTES attribute
IM_USHORT flags
IM_SHORT length
IM_ORIGIN far *source
IM_UCHAR *received),

allowed Awvailable input source and is one or more of these constants:

IM_COM1 SELECT COML input: T242X - Port on bottom end of
terminal, T248X - Physical port labeled COML1.

IM_COM2_SELECT COMZ2 input: T242X - N/A, T248X - Physical port
labeled COM2 on enhanced 1/0 board.

IM_COM4_SELECT Means IM_NET_SELECT and is provided for
compatibility with past systems.

IM_NET_SELECT Network input (UDP Plus or TCP/IP): T242X - RF
port, T248X - RF port or ethernet port on enhanced 1/0 board.

IM_SCAN_PORT_SELECT RS232 port input: T242X - Serial interface
module, T248X - Physical port labeled COM4 on enhanced 1/0 board.

IM_LABEL _SELECT Label input: T242X - integrated scan module or
module for cabled scanners, T248X - Badge scanner or any attached
scanner.

IM_OPTICAL_SELECT Optical sensor input (T248X only).
IM_KEYBOARD_SELECT Keypad input.
IM_ALL_SELECT All input sources.

timeout Receive timeout period and is one of these values:

1t0 65,534 ms Numeric range.
IM_ZERO_TIMEOUT No wait.

IM_INFINITE_TIMEOUT Wait forever—the function will not return
until the end of message character has been received, a return is entered,
or one of the conditions set with the flags parameter is met.

When you select COM1 or the Network port, the value
IM_INFINITE_TIMEOUT and the value OXFFFF are treated as
IM_INFINITE_NET_TIMEOUT.

im_receive_field 5

attribute Display attributes and can be any combination of these constants:
IM_INVERSE Reverse video for characters.
IM_UNDERLINE Underline all characters.
IM_BLINK Blinking characters.
IM_BOLD Bold characters.
IM_NORMAL Normal characters.
flags Controls the field action and is one or more of these constants:

IM_ERASE_FIELD Clear field data, but display any attributes in the field
area. If this flag is not set, the old data is displayed and the attributes are
applied to the field.

IM_RETURN_ON_BACK_TAB Directs im_receive_field to return if the
BACK TAB key is pressed.

IM_RETURN_ON_TAB Directs im_receive_field to return if the TAB key
is pressed.

IM_RETURN_ON_FULL Directs im_receive_field to return if the field
becomes full.

IM_RETURN_ON_FUNCTION Directs im_receive_field to return if a
function key (F1 - F10) is pressed.

IM_RETURN_ON_ESC Directs im_receive_field to return if the ESC key
is pressed.

IM_RETURN_ON_UD_ARROWS Directs im_receive_field to return if
the up or down arrow key is pressed.

IM_DISPLAY_ONLY Display the field and its attributes without waiting
for input.

IM_AT _END Move the cursor to the end of the data already in the field.

IM_NO_DISPLAY Receive input but do not echo the input to the
display.

IM_UPCASE Changes input to upper case.
IM_LOCASE Changes input to lower case.

Note: If both IM_UPCASE and IM_LOCASE are set, then IM_UPCASE is
used. If neither flag is set, keys are interpreted as pressed.

IM_STAY_IN_FIELD Cursor stays in the input field upon field exit.
IM_START_IN_OVERSTRIKE Line editing mode is set to overstrike.
IM_START _IN_INSERT Line editing mode is set to insert (default value).

length Display field size. The buffer needs to be at least one byte larger than
the display field size.

5-75

im_receive_field

OUT Parameters *source Far pointer to IM_ORIGIN. This function places the actual source of
received data at this location and is one of these constants:

IM_COM1 SELECT COML input: T242X - Port on bottom end of
terminal, T248X - Physical port labeled COML1.

IM_COM2_SELECT COMZ2 input: T242X - N/A, T248X - Physical port
labeled COM2 on enhanced 1/0 board.

IM_NET_SELECT Network input (UDP Plus or TCP/IP): T242X - RF
port, T248X - RF port or ethernet port on enhanced 1/0 board.

IM_SCAN_PORT_SELECT RS232 port input: T242X - Serial interface
module, T248X - Physical port labeled COM4 on enhanced 1/0 board.

IM_LABEL _SELECT Label input: T242X - integrated scan module or
module for cabled scanners, T248X - Badge scanner or any attached
scanner.

IM_OPTICAL_SELECT Optical sensor input (T248X only).
IM_KEYBOARD_SELECT Keypad input.
IM_NO_SELECT No input source selected.

*received Pointer to IM_UCHAR. This function places the received data at
this location.

Return Value This function returns one of these codes:
IM_SUCCESS Successfully received input.
IM_TIMEDOUT Timeout occurred.

IM_INPUT_FULL Maximum number of characters was received and
input was stopped. All characters entered are returned.

IM_RETURN_F1 F1 was received.
IM_RETURN_F2 F2 was received.
IM_RETURN_F3 F3 was received.
IM_RETURN_F4 F4 was received.
IM_RETURN_F5 F5 was received.
IM_RETURN_F6 F6 was received.
IM_RETURN_F7 F7 was received.
IM_RETURN_F8 F8 was received.
IM_RETURN_F9 F9 was received.
IM_RETURN_F10 F10 was received.
IM_RETURN_TAB Tab was received.
IM_RETURN_BACK_TAB Backtab was received.
IM_RETURN_ESC ESC character was received.

5-76

im_receive_file 5

IM_RETURN_UP_ARROW Up arrow was received.
IM_RETURN_DOWN_ARROW Down arrow was received.

Notes If input from more than one source is received before this function is called,
the first available input is returned in this order: label, keypad, optical sensor
input, COM1, COMZ2, scanner port, and network.

For optical sensor input, the first byte in the input buffer is the current
optical sensor state for each sensor and the second byte is the optical sensor
state change for each sensor since the last read.

For each byte - Bit 0 represents sensor 1, bit 1 represents sensor 2, bit 2
represents sensor 3, and bit 3 represents sensor 4.

First byte (Sensor State)
0 Sensor off
1 Sensoron
Second byte (Sensor Change)
0 The sensor state has not changed since the last call.
1 The sensor state has changed since the last call.

Notes See the example getflds.c in the \intermec\imt24\examples directory.

im_receive_file

Purpose This function receives a file from the Model 200 Controller or from a TFTP
server via TCP/IP direct connect and writes the file to disk on the terminal.

Syntax #include "imt24lib.n"
IM_STATUS im_receive_file
(IM_UCHAR far *con file
IM_UCHAR far *trakker _file);

IN Parameters con_file Path and filename for the file on the Model 200 Controller or the
TFTP server you want to download. This parameter can be a string in
guotes or a far pointer to a variable containing the filename.

Note: If you are using UDP Plus, the file you want to download must reside on a
path relative to D:\USERDATA on the Model 200 Controller.

If you are using TCP/IP, you can use an absolute or true path to download the file
you want from the TFTP server.

trakker_file Is the drive letter and filename for saving the file on the
TRAKKER Antares terminal. This parameter can be a string in quotes or a
far pointer to a variable containing the filename. The TRAKKER Antares
terminals do not use directories. All file names use this format:
drive:abcdefgh.ext

5-77

im_receive_input

OUT Parameters None.
Return Value This function returns one of these codes:
IM_SUCCESS Successfully transferred file to the terminal.
IM_NET_NOT_READY Network not active or not properly configured.
IM_NET_BAD_CTRL_BLOCK Net control block pointer is null.
IM_NET_BAD_DATA Data pointer is null or invalid data length.

IM_GENERR Error occurred. View the error log from the terminal system
menu.

Notes You can use a literal string for either filename. Use a statement in this format:

im_receive_file((IM_UCHAR *) "c:\\apps\\vtxxx.bin",
(IM_UCHAR *) "c:vtxxx.bin")

See Also im_cancel_rx_buffer, im_receive_buffer, im_receive_field, im_receive_input

Example

See example for im_transmit_file.

im_receive_input

Purpose This function gets input from the specified source(s) and places it into the
specified location. You can use the im_get_length function after this function
to get the input length.

Syntax #include "imt24lib.h"
IM_STATUS im_receive_input
(IM_ORIGIN allowed
IM_UINT timeout ,
IM_ORIGIN *source
IM_CHAR *received);

IN Parameters allowed Available input source and is one or more of these constants:

IM_COM1 SELECT COML input: T242X - Port on bottom end of
terminal, T248X - Physical port labeled COML.

IM_COM2_SELECT COM2 input: T242X - N/A, T248X - Physical port
labeled COM2 on enhanced 1/0 board.

IM_NET_SELECT Network input (UDP Plus or TCP/IP): T242X - RF
port, T248X - RF port or ethernet port on enhanced 1/0 board.

IM_SCAN_PORT_SELECT RS232 port input: T242X - Serial interface
module, T248X - Physical port labeled COM4 on enhanced 1/0 board.

IM_LABEL_SELECT Label input: T242X - integrated scan module or
module for cabled scanners, T248X - Badge scanner or any attached
scanner.

5-78

OUT Parameters

im_receive_input 5

IM_OPTICAL_SELECT Optical sensor input (T248X only).
IM_KEYBOARD_SELECT Keypad input.
IM_ALL _SELECT All input sources selected.

Use these variables to modify the input by performing a logical OR with the
previous input sources.

IM_KEYCODE_ENABLE Overrides the current input mode by
temporally placing the terminal in a unique mode for this call only. While
the terminal is in this mode, keyboard and scanned label input is returned
one character per call to im_receive_input.

A character is returned as 4 bytes. The first byte is the ASCII code, the
second byte is the scan code, and the last 2 bytes are flags for modifier
keys (Shift and Control).

timeout Receive timeout period and is one of these values:
1t0 65,534 ms Numeric range.
IM_ZERO_TIMEOUT No wait.

IM_INFINITE_TIMEOUT Wait forever—the function will not return
until the end of message character has been received. If you select COM1
or the Network port, IM_INFINITE_TIMEOUT and OxFFFF are treated as
IM_INFINITE_NET_TIMEOUT.

*source Pointer to IM_ORIGIN. This function places the actual source of
received data at this location and is one of these constants:

IM_COM1 SELECT COML input: T242X - Port on bottom end of
terminal, T248X - Physical port labeled COML1.

IM_COM2_SELECT COM?2 input: T242X - N/A, T248X - Physical port
labeled COM2 on enhanced 1/0 board.

IM_NET_SELECT Network input (UDP Plus or TCP/IP): T242X - RF
port, T248X - RF port or ethernet port on enhanced 1/0 board.

IM_SCAN_PORT_SELECT RS232 port input: T242X - Serial interface
module, T248X - Physical port labeled COM4 on enhanced 1/0 board.

IM_LABEL _SELECT Label input: T242X - integrated scan module or
module for cabled scanners, T248X - Badge scanner or any attached
scanner.

IM_OPTICAL_SELECT Optical sensor input (T248X only).
IM_KEYBOARD_SELECT Keypad input.
IM_NO_SELECT No input sources selected.

*received Pointer to where the data is to be placed.

5-79

im_set_cursor_style

Return Value This function returns one of these codes:
IM_SUCCESS Success.
IM_TIMEDOUT Timeout occurred.

Notes If input from more than one source is received before this function is called, the
first available input is returned in this order: label, keypad, optical sensor
input, COM1, COMZ2, scanner port, and network.

For optical sensor input, the first byte in the input buffer is the current optical
sensor state for each sensor and the second byte is the optical sensor state
change for each sensor since the last read.

For each byte - Bit 0 represents sensor 1, bit 1 represents sensor 2, bit 2
represents sensor 3, and bit 3 represents sensor 4.

First byte (Sensor State)
0 Sensor off
1 Sensoron
Second byte (Sensor Change)
0 The sensor state has not changed since the last call.

1 The sensor state has changed since the last call.

im_set _cursor_style

Purpose Defines the style used to draw the cursor.

Syntax #include "imt24lib.h"
IM_STATUS im_set_cursor_style
(IM_CURS_TYPE cursor);

IN Parameters cursor Flag that is one of these constants:
IM_UNDERLINE Single underline.
IM_NO_CURSOR No cursor displayed.
OUT Parameters None.
Return Value This function returns one of these codes:
IM_SUCCESS Success.
IM_NOT_SUPPORTED Not supported for the current font type.

Notes Use this function to reduce screen flicker and speed up repainting a full
screen a character at a time. Turn off the cursor before painting the screen,
then restore the cursor after all the text is displayed.

5-80

Example

im_set_cursor_xy 5

See example for im_get_display_mode.

im_set _cursor_Xy

Purpose

Syntax

IN Parameters

OUT Parameters

Return Value

Notes

This function sets the current cursor position. If viewporting is disabled, the
cursor position is relative to the terminal display. If viewporting is enabled,
the cursor position is relative to the virtual display.

#include "imt24lib.h"
IM_STATUS far im_set_cursor_xy
(IM_USHORT row,
IM_USHORT col)

row Current vertical position—the top of the display is 0.
col Current horizontal position—the left edge of the display is 0.
None.
This function returns one of these codes:
IM_SUCCESS Success.
IM_X_RANGE col value out of range, cursor moved to right edge.
IM_Y_RANGE row value out of range, cursor moved to bottom.

IM_BOTH_RANGE col and row values out of range, cursor moved to
lower right corner.

If viewporting is enabled:
col Cursor at X-position in virtual display mode.
row Cursor at Y-position in virtual display mode.
If viewporting is disabled:
row Cursor at X-position in physical display mode.
col Cursor at Y-position in physical display mode.

If you call im_set_thai_cursor_mode() and enable ThaiCursorMode, the cursor
moves to display Thai characters.

5-81

im_set_display_mode

im_set _display _mode

Purpose

Syntax

IN Parameters

OUT Parameters

Return Value

Notes

See Also

Example

This function sets the scroll mode, wrap mode, and character height of the
display.

#include "imt24lib.h"

IM_STATUS im_set_display_mode
(IM_FONT_TYPE font |
IM_BOOL scroll
IM_BOOL wrap);

font Font type code and is one of these constants:

IM_FONT_STANDARD Text is 8 x 8 pixels and the scroll boundary is line 25
and the wrap boundary is column 80.

IM_FONT_LARGE Textis 8 x 16 pixels and the scroll boundary is line 12 and
the wrap boundary is column 40.

IM_FONT_SPECIAL Textis 16 x 16 pixels.

scroll Determines if the text scrolls at the bottom of the screen is one of these
values:

0 (zero) No scrolling.
Nonzero Scroll at bottom of screen.
wrap Determines if the text wraps at the right edge of the screen:
0 (zero) No wrapping.
Nonzero Wrap at right edge of screen.
None.
This function returns one of these codes:
IM_SUCCESS Success.
IM_INVALID_PARAM 1 Invalid font parameter.

If scroll and wrap are set to true and viewporting is disabled, then scrolling
or wrapping occur at the viewport boundaries.

If scroll and wrap are set to true and viewporting is enabled, then scrolling or
wrapping occur at the virtual window boundaries.

im_get_display_mode, im_set_follow_cursor

See example for im_viewport_setxy.

5-82

im_set_ eom 5

im_set_eom

Purpose

Syntax

OUT Parameters
Return Value

Notes

This function determines the end of data in each TCP/IP message by: (1)
reading the one or two EOM character(s) at the end of the message or (2)
reading a two byte binary number at the beginning of the message that
identifies the message length.

#include "imt24lib.h"
IM_STATUS im_set_eom
(IM_TCP_DELINEATION iEom,
IM_CHAR iIEom1,
IM_CHAR iIEom2,
IM_COM_PORT iPortld)

iEom Pointer to the message delimiter and is one of these constants:
IM_NO_EOM No EOM character in the message.
IM_ONE_EOM EOM1 character at end of message.
IM_TWO_EOMS EOMI1 and EOM2 characters at end of message.
IM_TCP_LENGTH Two-byte message length value at start of message.
IM_TCP_LEN_NETORDER From top to bottom in network order.

iEoml First EOM character appended to the message.

iEom2 Second EOM character appended to the message.

iPortld Pointer to IM_COM_PORT and is this constant:

IM_NET Network input (TCP/IP): T242X - RF port, T248X - RF port,
T2455 - RF port.

None.
IM_SUCCESS Successful.
IM_INVALID_PARAM_1 Invalid parameter specified.

This is a new PSK function.

im_set _follow _cursor

Purpose

Syntax

IN Parameters

This function enables or disables the follow-the-cursor feature.

#include "imt24lib.h"
IM_STATUS im_set_follow_cursor
(IM_CONTROL follow);

follow One of these constants:
IM_ENABLE Enable follow-the-cursor mode.
IM_DISABLE Disable follow-the-cursor mode.

5-83

im_set_input_mode

OUT Parameters

Return Value

Notes

See Also

Example

None.
This function returns one of these codes:
IM_SUCCESS Successfully locked.

IM_DISABLED Viewporting not enabled, but follow the cursor is set for when
viewporting is enabled.

When follow the cursor is enabled and the application is receiving input
from the keyboard or a label, the viewport moves to ensure that the cursor is
within the viewport.

The 2460 and 2461 terminals do not support this function.

im_get _follow_cursor

See example for im_get_follow_cursor.

im_set_input_mode

Purpose

Syntax

IN Parameters

OUT Parameters
Return Value

Notes

See Also

5-84

This function sets the reader input mode to Wedge, Programmer, or Desktop.
These modes affect how the reader interprets and stores input.

#include "imt24lib.h"
IM_STATUS im_set_input_mode
(IM_MODE mode);

mode One of these constants:

IM_PROGRAMMER Input is returned as a string (default). Line editing is
permitted.

IM_WEDGE Input is returned as a string. Use Backspace for simple line
editing.

IM_DESKTOP Keyboard characters are returned as 4 bytes. The first byte is the

ASCII code. The second byte is the scan code, and the last 2 bytes are flags for
modifier keys (Shift and Control).

Labels are returned as a string of all the characters in the label. Make sure you
pass in a buffer large enough to receive the scanned data.

None.
IM_SUCCESS Success.

For more information on input modes, see Chapter 2, “Programming
Guidelines.”

im_get_input_mode, im_receive_input

Example

See example for im_irl_a.

im_set_mixed_mode 5

im_set_mixed _mode

Purpose

Syntax

IN Parameters

OUT Parameters

Return Value

Notes

This function sets the display to use single- and double-byte characters.

#include "imt24lib.h"
IM_STATUS im_set_mixed_mode
(IM_UCHAR iEnableDisable)

iEnableDisable IM_UCHAR and is one of these constants:
IM_ENABLE Enable mixed mode.
IM_DISABLE Disable mixed mode.

None.

IM_SUCCESS Successful.

IM_ACCESS_DENIED Mixed mode not allowed.

This is a new PSK function.

You need to enable mixed mode to display Thai characters on the terminal.

im_set _optical callback

Purpose

Syntax

This function sets a pointer to a function that will be called if an optical sensor
input changes during a call to im_receive_field. This is very similar to an
interrupt handler. This allows im_receive_field to continue looking for input
from the allowed sources even if a change in an optical sensor occurs. When
this happens, the specified function is called which then returns IM_TRUE or
IM_FALSE to im_receive_field which will either continue or return back to its
calling routine.

This function is valid only on a T248X with the enhanced input/output board
option.

#include "imt24lib.h"
void im_set_optical_callback
(OPTCALLBACK pcCallBack);

5-85

im_set_optical_callback

IN Parameters pCallBack Pointer to a callback function. OPTCALLBACK is defined as:
typedef IM_STATUS (* OPTCALLBACK)(void);

If set, pCallBack points to a function that is called if the status of the optical
sensor changes during a call to im_receive_field. If im_receive_field detects a
change in the sensor status, im_receive_field calls the specified function. This
callback function can do whatever you want it to, but should return either
IM_TRUE or IM_FALSE to im_receive_field.

e If the callback function returns IM_TRUE, im_receive_field returns the
status of the optical sensors in the buffer to the caller. See im_receive_field
for more details on the format of the returned data.

« If the callback function returns IM_FALSE, im_receive_field continues to
wait for input from the specified sources. To cancel the callback function,
pass a NULL pointer as a parameter to this function. For example,

im_set_optical_callback(NULL);
OUT Parameters None.

Return Value None.

Example

/*'k****'k************* I m_set_o ptl Cal_cal | baC k **************/

/* Use this function with im_receive_field */
#include <string.h>
#include "imstdio.h"
#include "imt24lib.h"

IM_UCHAR szRxBuffer[256];

/* prototype call back function */
IM_STATUS optical_callback(void);

main(void)

char c;
int iStatus;
IM_SENSOR_STATE iSensorState;
IM_ORIGIN iOrigin,
iSource;

/* Use im_receive_field() */
do

{
im_set_optical_callback((OPTCALLBACK) optical_callback);

[* Trigger optical sensor input */
/* Shall see call back message */

iOrigin = IM_OPTICAL_SELECT | IM_KEYBOARD_SELECT;
iStatus = im_receive_field(iOrigin, IM_INFINITE_TIMEOUT,0, IM_RETURN_ON_FULL,
20, &iSource, szRxBuffer);

printf("iSource: %X\n", iSource);
printf("Opt-State: %X\n", *szRxBuffer);
printf("Opt-Change: %X\n", *(szRxBuffer+1));
getch();

5-86

im_set_relay 5

/* Clear call back function's pointer */
im_set_optical_callback(NULL);

[* Trigger optical sensor input */
/* Shall not see call back message */

iOrigin = IM_OPTICAL_SELECT | IM_KEYBOARD_SELECT;
iStatus = im_receive_field(iOrigin, IM_INFINITE_TIMEOUT,0, IM_RETURN_ON_FULL,
20, &iSource, szRxBuffer);

printf("iSource: %X\n", iSource);
printf("Opt-State: %X\n", *szRxBuffer);
printf("Opt-Change: %X\n", *(szRxBuffer+1));
getch();

printf("Continue(Y/N)?");
¢ = getch();
}while (c=='Y"||c=="Y");

im_set _relay

Purpose

Syntax

IN Parameters

OUT Parameters

Return Value

Example

Notes

This function opens or closes the specified terminal relay. This function is
valid only on a T248X with the enhanced input/output board option.

#include "imt24lib.h"

IM_STATUS im_set_relay
(IM_RELAY_PORT iRelaylD
IM_RELAY_CONTROL fEnergizeRelay)

iRelaylD One of these constants:
IM_RELAY1 Relay 1 selected.
IM_RELAY2 Relay 2 selected.
IM_RELAY3 Relay 3 selected.
IM_RELAY4 Relay 4 selected.
fEnergizeRelay One of these constants:
IM_CONTACT_ON Close or energize the relay.
IM_CONTACT_OFF Open or de-energize the relay.
None.
IM_SUCCESS Success.
IM_INVALID_PORT Invalid relay port selected.
IM_DIO_CONFIG_ERROR Relay configuration error.

iRelayldis mutually exclusive and cannot be ORed together.

See example for im_get_relay.

5-87

im_set_repeat_key

im_set _repeat_key

Purpose

Syntax

IN Parameters

OUT Parameters

Return Value

Notes

This function sets the repeat key delay so you can press and hold a key and

get the same character to repeat on the terminal display.

#include "imt24lib.h"
IM_STATUS im_set_repeat_key
(IM_USHORT initDelay
IM_USHORT repeatDelay)

initDelay Delay, in milliseconds, after first key is pressed. Zero disables this

parameter.

repeatDelay Delay, in milliseconds, after the key is held down. Zero disables

this parameter.
None.
IM_SUCCESS Successful.

IM_SUB_FUNC _INVALID
firmware is loaded.

Invalid function request. Older version of

This is a new PSK function.

This function is only valid on T242X terminals.

im_set_scanning

Purpose

Syntax

IN Parameters

OUT Parameters

Return Value

5-88

This function enables or disables the device’s scanning capability.

#include "imt24lib.h"
void im_set_scanning

(IM_CONTROL enable_disable);

iEnableDisable Choose one of these constants:
IM_ENABLE Enable the scanner by turning on the scanning beam.
IM_DISABLE Disable the scanner by turning off the scanning beam.
None.

None.

im_set thai_cursor_mode 5

im_set _thal_cursor_mode

Purpose

Syntax

IN Parameters

OUT Parameters
Return Value

Notes

This function sets the cursor mode for Thai characters.

#include "imt24lib.h"
void im_set_thai_cursor_mode
(IM_USHORT iThaiCursorMode);

iThaiCursorMode Pointer to IM_USHORT and is one of these constants:
IM_TRUE Turn on cursor mode for Thai characters.
IM_FALSE Turn off cursor mode for Thai characters.

None.

None.

This is a new PSK function.

You must have the Thai character set installed on the host in order to use this
function.

im_set _time_event

Purpose

Syntax

IN Parameters

OUT Parameters

Return Value

Notes

See Also

This function starts a timer that runs from 0 to 65,534 ms. After reaching the
upper limit, a timeout event occurs that can be recognized by the
im_event_wait function or any of the input functions.

#include "imt24lib.h"
IM_STATUS im_set_time_event
(IM_UINT timeout)

timeout Number of milliseconds, from 0 to 65,534, to wait before a timeout event
occurs.

None.
This function returns one of these codes:
IM_SUCCESS Successfully started timer.
E_TABLE_FULL No more timer services available, timeout not established.

The timer is accurate within 5 milliseconds. If you call this function again
before the timer reaches the value passed in, the timer is reset to 0 and starts
counting towards the passed in value again.

When the timeout occurs and IM_TIMER_SELECT is an allowed source for
the im_event_wait or im_event_status function, IM_TIMER_SELECT is
returned as the source for that function.

im_event_wait, im_event_status, im_receive_input, im_receive_field

5-89

im_set validation_callback

Example

See example for im_event_wait.

im_set validation_callback

Purpose

Syntax

IN Parameters

OUT Parameters
Return Value

Notes

Example

This function sets a pointer to a function that will be called when
im_receive_field is receiving data (characters) from the terminal keypad in
order to validate the data or to control the editing of the data.

#include "imt24lib.h"
void im_set_validation
(VALCALLBACK pcCallBack)

pCallBack Pointer to a callback function. VALCALLBACK is defined as:
typedef IM_STATUS (* VALCALLBACK)(void);

If set, pCallBack points to a callback function that is called when data from the
terminal keypad is received during a call to im_receive_field. For each key that
is pressed, im_receive_field passes the ASCII value of the key, a pointer to a
variable containing the character offset in the string/field, and a pointer to the
string as it currently exists to the callback function. The function can validate
the data and return IM_TRUE for success, IM_FALSE for fail, or
IM_USER_MODIFIED if the function modified the string.

e If the callback function returns IM_TRUE, im_receive_field handles the
keypad data as normal input and inserts/appends data to string. See
im_receive_field for more details on the format of the returned data.

» If the callback function returns IM_FALSE, im_receive_field ignores the
keystrokes and continues to wait for input from the keypad. To cancel the
callback function, pass a NULL pointer as a parameter to this function. For
example,

im_set_validation(NULL);

» If the callback function returns IM_USER_MODIFIED, im_receive_field
ignores the keystrokes assuming that the callback function already inserted
the data and redisplays the field.

None.
None.

This is a new PSK function.

[*arbitrary example routine that verifies that the first two characters
entered are alpha < M, and the second two are numeric > 5*/

IM_USHORT PNCallBack(char iChar, IM_USHORT * iPosition, char * pszField)

{
IM_USHORT ilPosition, iStatus=IM_TRUE ;

5-90

ilPosition = *iPosition;

if (ilPosition <2)

im_set_viewport_lock 5

{ if (lisalpha(iChar) || (toupper(|Char) >'M")

iStatus = IM_FALS

else
if (ilPosition < 4)

if ((lisdigit(iChar)) || (|Char <'5")

iStatus = IM_FALS

if (liStatus)

im_sound(IM_HIGH_PITCH, 100, IM_CURRENT_VOLUME);

return iStatus;

im_set _viewport_lock

Purpose

Syntax

IN Parameters

OUT Parameters

Return Value

Notes

See Also

Example

This function enables or disables the keys that move the viewport.

#include "imt24lib.h"
IM_STATUS im_set_viewport_lock
(IM_CONTROL ~ view _lock);

view_lock One of these constants:
IM_ENABLE Lock the viewport (keys cannot move viewport).
IM_DISABLE Unlock the viewport.

None.

This function returns one of these codes:
IM_SUCCESS Successfully locked.

IM_VP_DISABLED Viewporting disabled, but viewport lock is set for when
viewporting is enabled.

This function controls whether the viewport moves (unlocked) or does not
move (locked) when the cursor movement keys are pressed.

The 2460 and 2461 terminals do not support this function.

im_get_viewport_lock, im_set_follow_cursor

See example for im_get_viewport_lock.

5-91

im_set_viewporting

im_set _viewporting

Purpose This function enables and disables viewporting without changing the
viewport lock. When viewporting is enabled, the terminal accepts viewport
movement commands.

Syntax #include "imt24lib.h"
void im_set_viewporting
(IM_CONTROL viewport);

IN Parameters viewport Flag that is one of these constants:
IM_ENABLE Enable viewporting.
IM_DISABLE Disable viewporting.
OUT Parameters None.
Return Value None.

Notes If viewporting is enabled, the terminal accepts viewport movement
commands, including follow-the-cursor mode. All cursor positioning is
relative to the virtual display. When viewporting is enabled and the
viewport lock is disabled, you can move the viewport with the cursor
movement keys, such as Viewport Page Up (_Lf][9)).

If viewporting is disabled, the terminal does not accept any viewport
movement commands. All cursor positioning is relative to the viewport
upper left corner.

The 2460 and 2461 terminals do not support this function.

See Also im_get_viewport_lock, im_set_follow_cursor, im_set_viewport_lock

Example

See example for im_receive_field.

im_setup_follow_cursor

Purpose This function specifies how close the cursor can get to the edge of the
viewport, and how far it should move when follow-the-cursor is enabled.
Viewport movement is bounded by the virtual screen.

Syntax #include "imt24lib.h"

IM_STATUS im_setup_follow_cursor
(IM_UCHAR side _boundary
IM_UCHAR vert_boundary,
IM_UCHAR side_move ,
IM_UCHAR vert_move) ;

5-92

im_setup_follow_cursor 5

IN Parameters side_boundary Defines the right edge limit. The viewport moves when the cursor
is within the specified number of characters from the edge. The default value is 1.

vert_boundary Defines top and bottom edge limit. The viewport moves when the
cursor is within the specified number of characters from the top or bottom. The
default value is 1.

side_move Defines the number of characters to move the viewport left or right. The
default value is 10.

vert_move Defines the number of characters to move the viewport up or down. The
default value is 8.

OUT Parameters None.

Return Value This function returns one of these codes:
IM_SUCCESS Success.
IM_TO_FAR Moving this distance would move the viewport past the cursor.

Notes Viewport movement is bounded by the virtual screen. If moving the
viewport by the set increment would move the viewport off the virtual
screen, a smaller movement value is used.

If the boundaries are larger than half of the viewport size, the viewport
moves so that the cursor is offset from the right or bottom edge by the size of
the boundary.

The 2460 and 2461 terminals do not support this function.

Example

/ *** im_setup_follow_cursor /
#include <string.h>

#include <conio.h>

#include "imstdio.h"

#include "imt24lib.h"

void main (void)
im_clear_screen();

[* Have to enable viewporting before using any viewport display function */
im_set_viewporting(IM_ENABLE);

im_set_follow_cursor(IM_ENABLE);

im_puts((IM_UCHAR *)"setting follow cursor to center",0);
im_setup_follow_cursor(10,8,1,1);

getch();

im_puts((IM_UCHAR *)"setting follow cursor to overlap but move 1",0);
im_setup_follow_cursor(18,14,1,1);

getch();

im_puts((IM_UCHAR *)"Setting follow cursor back to the default value",0);
im_setup_follow_cursor(1,1,10,8);

getch();

5-93

im_setup_manual_viewporting

im_setup_manual _viewporting

Purpose This function overrides the default settings for the viewport movement keys
and the move distance when the viewport is in manual browse mode. By
default, you use the numeric keypad and the left function key ([f)) to move
the viewport. You use the numeric keypad and the right function key ((f)) to
move the cursor.

Syntax #include "imt24lib.h"
IM_STATUS im_setup_manual_viewporting
(IM_MANUAL_S far manual) ;

IN Parameters manual Is a structure containing override values for each control characteristic. If
the override value is 0, that element in the structure is ignored. For all other
values, the element is copied to the viewport management structure.

Structure element Key equivalent Default value
Viewport Page up] 9 7EO00H

Viewport Page down 1] 5100H

Viewport Page left] 9BOOH

Viewport Page right)] sl 9D00H

Viewport Home key (] 4700H

Viewport End key (1) AFO0H

Vertical page move distance Viewport width - 1
Horizontal page move distance Viewport height — 1

OUT Parameters None.
Return Value This function returns one of these codes:
IM_SUCCESS Success.

IM_VP_DISABLED Viewporting is not enabled, but viewport lock is set for
when viewporting is enabled.

IM_INVALID_KEYCODE Invalid keycode in structure.
IM_INVALID_ADDRESS Address not in valid range for data.
Notes For a list of valid override values, see your terminal user’s manual.

Viewport movement is bounded by the virtual screen. If moving the
viewport by the set increment would move the viewport off the virtual
screen, it moves a smaller amount.

The 2460 and 2461 terminals do not support this function.

5-94

im_sound 5

Example

/ im_setup_manual_viewporting *** itk |
#include <conio.h>

#include <stdlib.h>

#include <ctype.h>

#include "imstdio.h"

#include "imt24lib.h"

#define ESC_CHAR 0x1B

void main (void)
IM_UCHAR ch;
IM_MANUAL_S gsSetup={0,0,0,0,0,0,0,0,0,0};
im_clear_screen();

[* Have to enable viewporting before using any viewport display function */
im_set_viewporting(IM_ENABLE);

printf("Setting the viewport page vertical and horizontal move distance to 8 and 10\n");
gsSetup.iPageVertDist = 8;

gsSetup.iPageHorDist = 10;

im_setup_manual_viewporting(&gsSetup);

[* Enter any characters, PgUp, PgDn, PgRt, PgLft to check */
[* viewport follow cursor until 'ESC' key. */
while ((ch = getche()) '= ESC_CHAR)

im_puts((IM_UCHAR *)"Setting the viewport page vertical and horizontal", 0);
im_puts((IM_UCHAR *)"move distance back to normal\n", 0);
gsSetup.iPageVertDist = 1;

gsSetup.iPageHorDist = 1;

im_setup_manual_viewporting(&gsSetup);

[* Enter any characters to check viewport follow cursor until 'ESC' key. */
while ((ch = getche()) '= ESC_CHAR)

im_sound

Purpose This function generates a beep of specified pitch and duration. For example,
use a soft beep for library use, a loud beep for manufacturing use, or a
unique beep to distinguish among other terminals.

Syntax #include "imt24lib.h"
IM_STATUS im_sound
(IM_USHORT pitch
IM_USHORT duration,
IM_USHORTvolume) ;

5-95

im_sound

IN Parameters pitch Specifies the frequency of the beep and is one of these values:
20to0 8189 Hz Numeric range.
IM_HIGH_PITCH 2400 Hz.
IM_LOW_PITCH 1200 Hz.
IM_VERY_LOW_PITCH 600 Hz.
duration Is the length of the beep and is one of these values:
2107999 ms Numeric range.
IM_BEEP_DURATION 50 ms.
IM_CLICK_DURATION 5 ms.
volume Is one of these constants:
IM_OFF_VOLUME Off.
IM_QUIET_VOLUME Quiet.
IM_NORMAL_VOLUME Normal.
IM_LOUD_VOLUME Loud.
IM_EXTRA_LOUD_VOLUME Extra loud.
IM_CURRENT_VOLUME Use volume from configuration menu.
OUT Parameters None.
Return Value This function returns one of these codes:
IM_SUCCESS Successful beep.
IM_INVALID_PITCH Pitch is outside allowed range.
IM_INVALID_VOLUME Volume is outside allowed range.

5-96

im_standby _wait

Example

/ im_sound /
#include <time.h>
#include "imt24lib.h"

enum NOTES /* Enumeration of notes and frequencies */

C0 =262, DO =296, EO = 330, FO = 349, GO = 392, A0 =440, BO = 494,

C1=523,D1 =587, E1 =659, F1 =698, G1 =784, A1 = 880, B1 = 988,

EIGHTH = 125, QUARTER = 250, HALF = 500, WHOLE = 1000, END =0
}song[] = /* Array initialized to notes of song */

C1, HALF, GO, HALF, AO, HALF, EO, HALF, FO, HALF, EO, QUARTER,
DO, QUARTER, CO, WHOLE, END

b

[* Predefined the play volume */
IM_USHORT volume[] = {

IM_NORMAL_VOLUME, /* Play normal volume */
IM_EXTRA_LOUD_VOLUME, /* Play extra loud volume */
IM_QUIET_VOLUME, [* Play quiet volume */
IM_NORMAL_VOLUME /* Play normal volume */

h

void main (void)

int note;

int index;

im_clear_screen();

[* Play 4 times with 5 seconds delay between each play */
for (index = 0; index < 4; index++)

for (note = 0; song[note] != 0; note +=2)
im_sound(song[note], song[note + 1], volume[index]);

/* Delay 5 seconds for next throughput*/
im_standby_wait(5000);
}
}

im_standby wait
Purpose This function places the application and terminal in standby mode for a
specific period of time to save the battery power.

Syntax #include "imt24lib.h"
IM_STATUS im_standby_wait
(IM_USHORT timeout) ;

IN Parameters timeout Amount of time to wait in standby mode or one of these constants:
110 65,535 ms Numeric range (resolution of 10 ms).
IM_ZERO_TIMEOUT No wait.
IM_INFINITE_TIMEOUT Wait forever.
OUT Parameters None.

5-97

im_status_line

Return Value

Example

IM_SUCCESS Success.

See example for im_sound.

im_status_line

Purpose

Syntax

IN Parameters

OUT Parameters
Return Value

Notes

Example

This function briefly displays an error message in the status line without
wrapping or scrolling the display. The status line is displayed until a key is
pressed or a time out occurs. The original contents of the line reappear after
the message is erased.

#include "imt24lib.h"

IM_STATUS im_status_line
(char far * stmessage
IM_BOOL wait
IM_USHORT row);

stmessage Pointer to the error message string to display.

wait Flag indicating if the application should wait for a key to be pressed.
0 (zero) Do not wait for a key.
Nonzero Pause until any key is pressed or until a timeout occurs.

row Row number to display the message in. If this number is larger than the
viewport, the last row is used. The first row is 0.

None.
Returns 0 (zero) or the key pressed to terminate waiting.

If the wait parameter is set, the message is erased after 20 seconds or when a
key is pressed. Then, the screen is refreshed to look as it did before
displaying the message.

See example for im_receive_field.

5-98

im_tcp_reconnect_notify 5

im_tcp_reconnect_notify

Purpose

Syntax

IN Parameters

OUT Parameters
Return Value

Notes

See Also

Example

This function determines if im_transmit_buffer returns the code
IM_TCP_RECONNECT when the terminal TCP/IP stack reconnects to the
host from a broken connection. This function must be called before
im_transmit_buffer.

void im_tcp_reconnect_notify(IM_BOOL flag)
flag Configures the TCP/IP stack as follows:

IM_TRUE Directs im_transmit_buffer to return the code

IM_TCP_RECONNECT when the terminal reconnects to the host. The data from
the last im_transmit_buffer command was not sent from the terminal to the host
and needs to be transmitted again. Also directs the PSK to not resend the message
that was being sent when the network was identified as down.

IM_FALSE Directs im_transmit_buffer to withhold the return code
IM_TCP_RECONNECT. The terminal sends data from the last
im_transmit_buffer command to the host when the connection has been
reestablished. This is the default behavior of im_transmit_buffer.

None.
None.
This is a v2.20 PSK function.

Use this function only if you want the TCP/IP stack to notify you that the
host connection has been reestablished. The default behavior of
im_transmit_buffer does not notify the caller.

This function does not affect im_transmit_buffer if you are using UDP Plus.

im_transmit_buffer

/
#include <string.h>
#include <conio.h>

#include "imstdio.h"
#include "imt24lib.h"

void main(void)

IM_STATUS iStatus;

im_tcp_reconnect_notify ok |

IM_UCHAR pszComBuf[160];

im_clear_screen();

im_tcp_reconnect_notify(IM_TRUE); /* Indicates TCP/IP notify im_transmit-buffer

when connection is reestablished */

strcpy(pszComBuf, "Test TCP/IP notify text"); /* stuff test string */

iStatus = im_transmit_buffer(IM_NET, strlen(pszComBuf), pszComBuf, 5000L);

5-99

im_timed_status_line

if (iStatus == IM_NET_TCP_RECONNECT) /* Reconnection occurs */

im_timed_status_line("Reconnecting”, 500, 16); /* Display reconnecting
message */

/* Resend the data */
iStatus = im_transmit_buffer(IM_NET, strlen(pszComBuf), pszComBuf, 5000L);

getch();

im_timed _status_line

Purpose This function displays an error message on the status line without wrapping
or scrolling the display. The status line remains on the screen until you press
a key or the timeout occurs. The original contents of the screen appear after
the message disappeatrs.
Syntax #include <imt24lib.h>
extern
#ifdef __ cplusplus
IICII
#endif
int far im_timed_status_line
(char far *pszStatusLine,
IM_USHORT iWait,
IM_USHORT iLine);

IN Parameters pszStatusLine Far pointer to the string to be displayed.
iWait Time out value in milliseconds to wait before the status message disappears.

iLine Positive number for the line, relative to the top of the viewport, where the
message appears. If the line number is larger than the viewport, the last line of the
viewport is used.

OUT Parameters None.

Return Value None.

Example

See example for im_tcp_reconnect_notify.

5-100

im_tm_callback cancel 5

im_tm_callback cancel

Purpose This function removes a registered function from the timer callback database.

Syntax #include <imt24lib.h>
IM_STATUS im_tm_callback_cancel
(IM_USHORT index);

IN Parameters index The number that identifies the registered function in the timer callback
database. (This number was returned by im_tm_callback_register when the
function was added to the timer callback database.)

OUT Parameters None.
Return Value The function returns one of these codes:
IM_SUCCESS Success.
IM_INVALID_TMCALLBK_INDEX The value forindexis invalid.
Notes Thisis a new v4.0 PSK function.

See Also im_tm_callback_register

Example

See example for im_tm_callback_register.

im_tm_callback register

Purpose This function adds a function to the timer callback database and specifies
how the function will be called back.

Syntax #include <imt24lib.h>

IM_STATUS im_tm_callback_register
(PTIMERCALLBACK function,
time_t start_time
IM_USHORT repeat_count
IM_ULONG period ,
IM_BOOL fDisable
IM_USHORT * index);

IN Parameters function Pointer to the function to be called.

start_time Specifies when to perform the first callback. Either enter the time as the
number of seconds elapsed since midnight on January 1, 1970, or choose this
constant:

IM_CALLBK_NOW Start the first callback immediately.

repeat_count Specifies the number of callbacks. Either enter any number from 2 to
65534 (two-byte range of IM_USHORT), or choose one of these constants:

IM_CALLBK_ONCE Callback once.
IM_CALLBK_CONTINUOUS Callback continuously.

5-101

im_tm_callback_register

OUT Parameters

Return Value

5-102

Notes

See Also

period Specifies the interval between callbacks. Either enter any number to
indicate the length of the interval in 10-millisecond units, or choose one of these
constants:

IM_CALLBK_10MS Callback every 10 milliseconds.
IM_CALLBK_SECOND Callback every second.
IM_CALLBK_MINUTE Callback every minute.
IM_CALLBACK_HOUR Callback every hour.
IM_CALLBK_ DAY Callback every day.
IM_CALLBK_WEEK Callback every week.
IM_CALLBK_MONTH Callback every month.
IM_CALLBK_QUARTER Callback every quarter.
IM_CALLBK_YEAR Callback every year.

fDisable Specifies whether callback is enabled or disabled if the application does
not control the screen. The application does not control the screen when another
application or the terminal software controls the screen. For example, if the user
has displayed the TRAKKER 2400 Menu System, you might not want a callback
function to overwrite the screen.

Choose one of these constants:

IM_TRUE Disable callback if the application does not control the screen at the
call time. The current callback is skipped.

IM_FALSE Enable callback whether or not the application controls the screen.
index Index number for the application in the timer callback database.

The function returns one of these codes:
IM_SUCCESS Success.
IM_TMCALLBK_TABLE_FULL Timer callback database table is full.
IM_INVALID_TMCALLBK_ PERIOD The periodvalue is out of range.

IM_INVALID_TMCALLBK_REPETITION Therepeat_countvalue is out of
range.

This is a new v4.0 PSK function.
When you create functions that will be called back, keep these points in mind:

* The functions (and any functions they call) must not be built with stack checking
because the operating system stack is used during the callback.

* The functions should minimize the amount of dynamic variable space used.

You must specify theandexvalue when you use im_tm_callback_cancel to remove
the function from the timer callback database.

im_tm_callback_cancel

im_tm_callback_register

Example

#include <time.h>
#include <stdio.h>
#include "imt24lib.h"

void printHello(void)

im_sound(1000,50,IM_NORMAL_VOLUME);
im_puts("... ",IM_NORMAL);

void main(void)

IM_UCHAR input[300];
IM_ORIGIN source;
IM_STATUS iStatus = 11;

PTIMERCALLBACK pFunction;

IM_USHORT ilndex = 0;
time_t timeToStart;
IM_BOOL fDisplay;
IM_USHORT iRepeatCount;
IM_ULONG iPeriod;

/linitialize
/I callback forever
iRepeatCount = IM_CALLBK_CONTINUOUS;

// 10-second period
iPeriod = IM_CALLBK_SECOND*10;

/lprint hello
pFunction = printHello;

/lenable callback
fDisplay = IM_FALSE;

/ltime to first callback
time(&timeToStart); //get current time

timeToStart += 16; //future after 16seconds or
/ltimeToStart -= 20; // or pass current 20 seconds
/ltimeToStart = IM_CALLBK_NOW;

/Iregister the application
iStatus = im_tm_callback_register(pFunction, timeToStart,
iRepeatCount, iPeriod, fDisplay, &ilndex);

for(;})
{

im_receive_input(IM_LABEL_SELECT|IM_KEYBOARD_SELECT,
IM_INFINITE_TIMEOUT, &source, input);

Iltype 'Q' to cancel the application
if(input[0]=="Q")
im_tm_callback_cancel(ilndex);

5-103

im_transmit_buffer

im_transmit_buffer

Purpose

Syntax

IN Parameters

OUT Parameters

Return Value

5-104

This function transmits the contents of a data buffer through a designated
communications port. This function continues operating until the buffer
transmission is complete or until an error status is detected.

#include "imt24lib.h"

IM_STATUS im_transmit_buffer
(IM_COM_PORT port id
IM_USHORT length
IM_UCHAR far *data_buffer,

IM_LTIME timeout);

port_id Communications port:

IM_COM1 COML1 output: T242X - Port on bottom end of terminal,
T248X - Physical port labeled COML1.

IM_COM2 COM2 output: T242X - N/A, T248X - Physical port labeled
COM2 on enhanced 1/0 board.

IM_NET Network output (UDP Plus or TCP/IP): T242X - RF port, T248X
- RF port or ethernet port on enhanced 1/0 board.

IM_SCAN_PORT RS232 port output: T242X - Serial interface module,
T248X - Physical port labeled COM4 on enhanced 1/0 board.

length Length of the data string that you want to transmit.
data_buffer Far pointer to the data array that you want to transmit.
timeout Transmit timeout period and is one of these values:

0 to 65,534 msec Numeric range. For IM_COML1, a numeric timeout
larger than 65534 is converted to 65534. The hardware cannot support long
timeout values.

IM_ZERO_TIMEOUT No wait.
IM_INFINITE_NET_TIMEOUT Wait forever.

None.

This function returns one of these codes:
IM_SUCCESS Transmit completed.
IM_NET_NOT_READY Network not active or not properly configured.
IM_NET_BAD_CTRL BLOCK Net control block pointer is null.
IM_NET_BAD_DATA Data pointer is null or invalid data length.
IM_NET_DATA LENGTH Data length exceeds 1024 characters.
IM_NET_FULL Send buffer contains a previous application message.

Notes

im_transmit_file 5

The data is not lost, but it has not left the host.
IM_NET_CONFIG_ERROR Incorrect RF configuration.

IM_TCP_RECONNECT Terminal reestablished the TCP/IP connection
with the host, but no data was sent from the terminal to the host.

If the transmit buffer is in use, the program waits until the buffer is available.
Once the transmission begins, program control remains inside this function
until the transmission is completed. There is no way to check the
transmission status while transmitting.

To detect end of data for TCP/IP transfers, call im_set_eom.

IM_TCP_RECONNECT is only returned when im_tcp_reconnect_notify is
called with the IM_TRUE parameter using TCP/IP.

im_tcp_reconnect_notify does not affect this function if you are using UDP
Plus.

im_transmit _file

Purpose

Syntax

IN Parameters

OUT Parameters

Return Value

This function transmits a file to the Model 200 Controller or to a TFTP server
via a TCP/IP direct connection.

#include "imt24lib.h"

IM_STATUS im_transmit_file
(IM_UCHAR far *trakker_file
IM_UCHAR far *con_file),

trakker_file Drive letter and name for the source file on the TRAKKER Antares
terminal. This parameter can be a string in quotes or a far pointer to a variable

containing the filename. The TRAKKER Antares terminals do not use directories.

All file names use the formadrive:abcdefgh.ext

con_file Destination name and path of the file on the Model 200 Controller or the

TFTP server. This parameter can be a string in quotes or a far pointer to a variable

containing the filename.

Note: If you are using UDP Plus, you must specify a path relative to
D:\USERDATA on the Model 200 Controller to save the transmitted file.

If you are using TCP/IP, you can use any valid path on the TFTP server to save
the transmitted file.

None.

This function returns one of these codes:
IM_SUCCESS Successfully transferred file to the terminal.
IM_NET_NOT_READY Network not active or not properly configured.
IM_NET_BAD_CTRL_BLOCK Net control block pointer is null.

5-105

im_transmit _file

IM_NET_BAD_DATA Data pointer is null or invalid data length.
IM_NET_FULL Send buffer contains a previous application message.

IM_GENERR Error occurred. View the error log from the terminal system
menu.

See Also im_cancel_rx_buffer, im_receive_buffer, im_receive_field, im_receive_input,
im_rx_check_status

Notes If the terminal has UDP Plus loaded, this function transmits a file to the
Model 200 Controller. If the terminal has TCP/IP loaded, this function
transmits a file to a TFTP server through a TCP/IP direct connection.

Example

/ im_transmit_file /
#include <string.h>

#include <conio.h>

#include "imstdio.h"

#include "imt24lib.h"

void main (void)
char szControllerFileName1[] = "controlr.txt";
char szControllerFileName2[] = "check.txt";
char szAntaresFileName[] = "c:antares.txt";
IM_STATUS iStatus;
im_clear_screen();
/* Receive file from the controller and place it on the Antares file system */
iStatus = im_receive_file (szControllerFileNamel, szAntaresFileName);
if(iStatus == IM_SUCCESS)
printf("Receive file \nsuccess\n");
else
printf("Receive File Error: \n");
im_message(iStatus);

/* Transmit file from Antares file system back to the controller */
iStatus = im_transmit_file (szAntaresFileName, szControllerFileName2);
if(iStatus == IM_SUCCESS)
printf("\nTransmit file \nsuccess\n");
else
printf("\nTransmit File Error: \n");
im_message(iStatus);

getch();

5-106

im_udp_close_socket 5

im_udp_close socket

Purpose

Syntax

IN Parameters

OUT Parameters
Return Value

Notes

See Also

Example

This function requests the Model 200 Controller to close a direct socket
connection on behalf of the client application. This function should only be
used on terminals with UDP Plus.

Do not use this function on terminals running TCP/IP.

#include "imt24lib.h"

IM_STATUS im_udp_close_socket
(IM_UCHAR session_id,
IM_USHORT error_code,
IM_UCHAR far *error_text,
IM_LTIME timeout);

session_id Session number of the direct socket connection to close.

error_code Optional error code to be placed in the Model 200 Controller error log
file. This code must be greater than 0 and is entirely the discretion of the client
application. If no code is specified, this argument should be 0.

error_text Far pointer to optional null-terminated error text to be placed in the
Model 200 Controller error log file. This text is entirely the discretion of the client
application. If there is no text, this argument should be 0.

timeout Number in the range of 1 to 65,534 ms or one of these constants:
IM_ZERO_TIMEOUT No wait.
IM_INFINITE_TIMEOUT Wait forever.

None.

This function returns a status code that is defined in Appendix A.

Do not use IM_INFINITE_TIMEOUT because this function will never return if
the unit cannot send the CLOSE request.

im_udp_send_data(), im_udp_receive_data(), im_udp_open_socket()

See example for im_udp_receive_data().

5-107

im_udp_open_socket

im_udp_open_socket

Purpose

Syntax

IN Parameters

OUT Parameters
Return Value
Notes

See Also

Example

This function requests the Model 200 Controller to open a direct socket
connection to a specified host on behalf of the client application. The host
must be a server application that passively waits on a well known port for
client connections. This function should only be used on terminals with UDP
Plus.

Do not use this function on terminals running TCP/IP.

#include "imt24lib.h"

IM_STATUS im_udp_open_socket
(IM_UCHAR session_id,
IM_USHORT port_num,
IM_UCHAR far *host_name,
IM_LTIME timeout);

session_id Session number the Model 200 Controller uses to identify the connection.
Any data sent or received regarding this connection uses this session number. A
maximum of 255 sessions may be opened (0 - 254).

port_num Port number you are connecting to on the host.

host_name Name or IP address of the host. This name must be defined in the Model
200 ControllefTelnet Terminal Emulation Configuration screen. An IP address
may be used instead.

timeout Number in the range of 1 to 65,534 ms or one of these constants:
IM_ZERO_TIMEOUT No wait.
IM_INFINITE_TIMEOUT Wait forever.

None.

This function returns a status code that is defined in Appendix A.

Do not use IM_INFINITE_TIMEOUT because this function will not return if
the unit cannot send the OPEN request.

im_udp_send_data(), im_udp_receive_data(), im_udp_close_socket()

See example for im_udp_receive_data.

5-108

im_udp_receive_data 5

im_udp_receive data

Purpose This function receives a UDP Plus packet from the Model 200 Controller and
dissects the packet, placing the information into a structure for the calling
routine. This function should only be used on terminals with UDP Plus.

Do not use this function on terminals running TCP/IP.

Syntax #include "imt24lib.h"
IM_STATUS im_udp_receive_data
(struct im_udp_packet far *in_packet
IM_LTIME timeout);

IN Parameters timeout Number in the range of 1 to 65,534 ms or one of these constants:
IM_ZERO_TIMEOUT No wait.
IM_INFINITE_TIMEOUT Wait forever.

OUT Parameters in_packet Far pointer to a structure of type im_udp_packet. This structure is defined
in imt24lib.h.
struct im_udp_packet {
IM_USHORT data_length; /* length of received data */
IM_UCHAR message_type; /* direct sockets message type */
IM_UCHAR session_id; /* direct sockets Session ID */
union {
struct {
IM_USHORT error_code; /* direct sockets error code */
IM_UCHAR error_text[IM_UDP_REC_ERROR_SIZE]; /* text */
} error;
IM_UCHAR data_text[IM_UDP_REC_DATA SIZE]; /* data */
} remaining_packet;

data_length Length of the received data.
message_typeOne of the following constants:

IM_UDP_OPEN_ACK This value is returned in response to an OPEN request
sent from the client application. It indicates that the connection was opened
successfully.

IM_UDP_OPEN_NAK This value is returned in response to an OPEN request
sent from the client application. It indicates that the connection could not be
opened. Error code and error text accompanies this message.

IM_UDP_DATA_CMD This value is returned upon a successful receipt of data
from the Model 200 Controller. Data accompanies this message.

IM_UDP_CLOSE_CMD This value is returned if a connection has been closed
by the host or the Model 200 Controller or for any other reason. Error code and
error text will accompany this message.

Any other value indicates an invalid message received from the Model 200
Controller.

session_id Session for which data was received.

5-109

im_udp_receive_data

error_code If message_type is IM_UDP_OPEN_NAK or IM_UDP_CLOSE_CMD,

this element is one of the error codes listed in the following table. The client

software should be aware of these conditions, handle the errors, and be able to
recover.

error_text

If messge_typds IM_UDP_OPEN_NAK or IM_UDP_CLOSE_CMD,
this element is the null-terminated text string associated with the error code listed in

the following table.

Code

~N~No ok~ wWNELO

10001
10003
10004
10006
10009
10013
10014
10022
10024
10032
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055

Description

Host session closed

Host Lookup failed

Session not active

ISM Terminated

ISM resource error

Map protocol name to number failed
Socket call failed

Connect call failed

Not owner

No such process

Interrupted system call

No such device or address

Bad file number

Permission denied

Bad address

Invalid argument

Too many files open

Broken pipe

Operation would block

Operation now in progress
Operation already in progress
Socket operation on non-socket
Destination address required
Message too long

Protocol wrong for type of socket
Protocol not available

Protocol not supported

Socket type not supported
Operation not supported on socket
Protocol family not supported
Address family not supported by protocol family
Address already in use

Can't assign requested address
Network is down

Network is unreachable

Network dropped connection on reset
Software caused connection abort
Connection reset by peer

No buffer space available

data_text If the message type IM_UDP_DATA CMD, this element is the data
from a successful receive request.

5-110

im_udp_receive_data

Return Value This function returns a status code that is defined in Appendix A.

Notes Itis not recommended that you use IM_INFINITE_TIMEOUT because this
function will not return if the unit cannot send the data.

See Also im_udp_close_socket(), im_udp_send_data(), im_udp_open_socket()
Example

#include <conio.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>
#include "imstdio.h"
#include "imt24lib.h"

#define ESC_KEY 27

/ /

/* The main program prompts the user for screen parameters and */
/* them sets them based on the user's selections. It then */

[* prompts for host name, port number and session ID and attempts */
/* to open a Direct Socket connection via the 0200 controller. */

/* 1t then goes into a loop checking keyboard & net port for data.*/

/* 1f data from the net port is received it is put on the dlsplay */

I* If a key is pressed, it is sent out the net port.

[* This program is simply a dumb terminal. */

[* Keys pressed should be sent to a host echo server */

/* which sends the data right back. */

/ * FhkkRR Rk kkkkokokok

void main (void)

IM_STATUS iStatus; /* return status for PSK functions */
char ch; /* character represented by keypress */
IM_ORIGIN source; [* source of input */
IM_BOOL scroll; [* scrolling on or off */
IM_BOOL wrap; /* line wrap on or off */
IM_CONTROL viewporting; /* viewporting on or off */
IM_CONTROL follow; [* viewport follow the cursor on/off */
char vp, fc, sc, wp; /¥ dummy variables */
IM_UCHAR session_id; /* session ID of connection */
IM_UCHAR session_id str[3] /* session_id in string format */
IM_USHORT port_num; /* server port number */

IM_UCHAR port_ number ~_str[4]; /* port_num in string format */
IM_UCHAR host_name[20]; /* host name or IP address */
struct im_udp_packet packet; /* packet struct containing input */
IM_UCHAR close_str[20]; /* string to appear in 0200 error log */
IM_UCHAR key_buf[5]; [* keyboard buffer */

im_clear_screen();
printf("Direct Socket Demo\n\n");

/* get user's screen prefernces %
printf("\n viewporting? Y/N:");
vp = getche();

printf("\nfollow cursor? Y/N:");
fc = getche();

printf("\n scrolling? Y/N:");
sc = getche();

printf(\n line wrap? Y/N:");
wp = getche();

5-111

im_udp_receive_data

if (toupper(vp) =="Y")
viewporting = IM_ENABLE;
else
viewporting = IM_DISABLE;

if (toupper(fc) =="Y")
follow = IM_ENABLE;
else
follow = IM_DISABLE;

if (toupper(sc) =="'Y")
scroll = IM_TRUE;
else
scroll = IM_FALSE;

if (toupper(wp) =="Y")
wrap = IM_TRUE;
else
wrap = IM_FALSE;

im_clear_screen();

printf("* UDP Socket Demo\n\n");
printf("When prompted for \n");
printf("for a host, choose \n");
printf("one with an echo \n");
printf("server port. \n\n");
printf("Each key you press \n");
printf("will be sent to the\n");
printf(*host and echoed \n");
printf("back to the screen.\n\n");
printf(* ESC to quit \n\n");
printf(" Press any\n key to Begin");
getch();

/* set screen parms according to user's selections */
im_set_viewporting(viewporting);
im_set_follow_cursor(follow);
im_set_display_mode(IM_FONT_STANDARD, scroll, wrap);

im_clear_screen();
im_set_input_mode(IM_PROGRAMMER);

[* prompt for host name */

printf("Enter Host Name:\n");

source = IM_KEYBOARD_SELECT;

im_receive_input(IM_KEYBOARD_SELECT, IM_INFINITE_TIMEOUT,
&source, (IM_UCHAR far *) host_name);

[* prompt for port number */

printf(\nEnter Port Number:\n");

im_receive_input(IM_KEYBOARD_SELECT, IM_INFINITE_TIMEOUT,
&source, (IM_UCHAR far *) port_number_str);

port_num = (IM_USHORT) atoi(&port_number_str[0]);

[* prompt for session ID */

printf("\nEnter Session ID:\n");

im_receive_input(IM_KEYBOARD_SELECT, IM_INFINITE_TIMEOUT,
&source, (IM_UCHAR far *) session_id_str);

session_id = (IM_UCHAR) atoi(&session_id_str[0]);

/* call the Direct Sockets OPEN function */
iStatus = im_udp_open_socket(session_id, port_num,
host_name, 500);

/* put reader in DESKTOP mode (single keypress) and simulate */

/* a dumb terminal
im_set_input_mode(IM_DESKTOP);

5-112

im_udp_receive_data

while (1)

[* check to see if anything waiting at the net port */
iStatus = im_udp_receive_data((struct im_udp_packet *)
&packet, 200);

[* if there was data from the net port */
if (iStatus == IM_SUCCESS)

{

/* if the OPEN was successful */

if (packet.message_type == IM_UDP_OPEN_ACK)
printf("Session %d Opended\n”, session_id);

* else if NOT Successful */
else if (packet.message_type == IM_UDP_OPEN_NAK)

printf("Error Code: %d\n",
packet.remaining_packet.error.error_code);
printf("%s\n",
packet.remaining_packet.error.error_text);
}

/* else if data was received */
else if (packet.message_type == IM_UDP_DATA_CMD)

printf("%s", packet.remaining_packet.data_text);

/* else if the CLOSE command received */
else if (packet.message_type == IM_UDP_CLOSE_CMD)

printf("Socket Closed: %d\n",
packet.remaining_packet.error.error_code);

printf("%s\n",
packet.remaining_packet.error.error_text);

else
[* else an invalid packet was received */
printf("\nReceived Invalid Packet\n");

}

[* check for other than timeout status */
else if (iStatus != IM_TIMEDOUT)
printf("\nError: %x\n", iStatus);

[* check to see if a key has been pressed */
iStatus = im_receive_input(IM_KEYBOARD_SELECT,
200, &source, key_buf);

[* if there was a keypres */
if (iStatus == IM_SUCCESS)

{
ch=key_buf[0]; /* get the key */

[* if the ESC key, get out */
if(ch == ESC_KEY)
break;

[* send the key out the Network port */
iStatus = im_udp_send_data(session_id,
(IM_UCHAR far *) &ch, 1, 200);

/* check for other than success or timeout status */
if ((iStatus !'= IM_SUCCESS) && (iStatus != IM_TIMEDOUT))
printf("\nError:%x\n", iStatus);

5-113

im_udp_send_data

}

/* send the socket close command, error code and text will */

/* appear in 0200 error log */

strepy(close_str, "Client Closed Session™);

iStatus = im_udp_close_socket(session_id, 9876,
(IM_UCHAR far *) &close_str[0], 500);

/* if anything other than success */
if (iStatus != IM_SUCCESS)

{

printf("\nError: %x\n%s\n",
packet.remaining_packet.error.error_code,
packet.remaining_packet.error.error_text);

getch();
}

im_udp_send_data

Purpose

Syntax

IN Parameters

OUT Parameters
Return Value
Notes

See Also

Example

This function requests the Model 200 Controller to send data to the host
specified by the session ID on behalf of the client application. This function
should only be used on terminals with UDP Plus.

Do not use this function on terminals running TCP/IP.

#include "imt24lib.h"

IM_STATUS im_udp_send_data
(IM_UCHAR session _id,
IM_UCHAR far *data,
IM_USHORT data_length,
IM_LTIME timeout);

session_id Session number of the connection where the Model 200 Controller sends
the data.

*data Far pointer to the data to be sent.

data_length Length of the data. Since the data can be binary, the length must be
specified.

timeout Number in the range of 1 to 65,534 ms or one of these constants:
IM_ZERO_TIMEOUT No wait.
IM_INFINITE_TIMEOUT Wait forever.

None.

This function returns a status code that is defined in Appendix A.

It is not recommended that you use IM_INFINITE_TIMEOUT because this
function will never return if the unit cannot send the data.

im_udp_close_socket(), im_udp_receive_data(), im_udp_open_socket()

See example for im_udp_receive_data().

5-114

im_viewport_end 5

im_viewport_end

Purpose

Syntax

IN Parameters
OUT Parameters
Return Value

Notes

See Also

Example

This function sets the viewport to the lower right corner (end) of the virtual
display.

#include "imt24lib.h"
void im_viewport_end(void);

None.

None.

None.

This function is valid only when viewporting is enabled.
The 2460 and 2461 terminals do not support this function.

im_cursor_to_viewport, im_viewport_home, im_viewport_move,
im_viewport_page_down, im_viewport_page_up, im_viewport_to_cursor

See example for im_viewport_setxy.

im_viewport_getxy

Purpose

Syntax

IN Parameters
OUT Parameters

Return Value

Notes

See Also

This function retrieves the column and row of the upper left corner of the
viewport.

#include "imt24lib.h"

IM_STATUS im_viewport_getxy
(IM_USHORT far * row,
IM_USHORT far * col);

None.
row Returns the row value (Y-coordinate) of the viewport.
col Returns the column value (X-coordinate) of the viewport.
This function returns one of these codes:

IM_SUCCESS Success.

IM_VP_DISABLED Viewporting currently disabled.
This function is valid only when viewporting is enabled.
The 2460 and 2461 terminals do not support this function.

im_viewport_end, im_viewport_home, im_viewport_move,
im_viewport_page_up, im_viewport_page_down, im_viewport_setxy,
im_viewport_to_cursor

5-115

im_viewport_home

Example

See example for im_viewport_setxy.

im_viewport_home

Purpose

Syntax

IN Parameters
OUT Parameters
Return Value

Notes

See Also

Example

This function sets the viewport to the upper left corner (home) of the virtual
display.

#include "imt24lib.h"
void im_viewport_home(void);

None.

None.

None.

This function is valid only when viewporting is enabled.
The 2460 and 2461 terminals do not support this function.

im_cursor_to_viewport, im_viewport_end, im_viewport_move,
im_viewport_page_down, im_viewport_page_up, im_viewport_to_cursor

See example for im_viewport_setxy.

im_viewport_move

Purpose

Syntax

IN Parameters

5-116

This function moves the viewport the specified distance and direction.

#include "imt24lib.h"

IM_STATUS im_viewport_move
(IM_VIEWPORT_DIRECTION direction
IM_USHORT distance ,

IM_USHORT far *row ,
IM_USHORT far *col),

direction One of these constants:
IM_VIEWPORT_LEFT Move left.
IM_VIEWPORT_RIGHT Move right.
IM_VIEWPORT_UP Move up.
IM_VIEWPORT_DOWN Move down.

distance Number of units to move the viewport. This distance is either a numeric
value between 1 and 70 or IM_DEFAULT_DISTANCE. If the distance parameter
is IM_DEFAULT_DISTANCE, the default step size is used.

OUT Parameters

Return Value

Notes

See Also

Example

im_viewport_page _down

row Pointer to the row number to which the viewport has moved.
col Pointer to the column number to which the viewport has moved.
This function returns one of these codes:

IM_SUCCESS Success.

IM_VP_DISABLED Viewporting currently disabled.

IM_INVALID_DIRECTION Invalid direction was passed in.

IM_TO_LARGE Distance was too large for that direction, moved as far as
possible.

The (row, col) pair represents the upper left corner of the viewport being
displayed.

The 2460 and 2461 terminals do not support this function.
This function is valid only when viewporting is enabled.

im_viewport_end, im_viewport_home, im_viewport_page_down,
im_viewport_page_up, im_viewport_to_cursor, im_cursor_to_viewport

See example for im_viewport_setxy.

im_viewport_page _down

Purpose

Syntax
IN Parameters

OUT Parameters

Return Value

Notes

See Also

This function moves the viewport down one page size on the virtual screen.
The viewport cannot move beyond the bottom edge of the virtual screen.

#include "imt24lib.h"
IM_STATUS im_viewport_page_down
(void);

None.

None.

This function returns one of these codes:
IM_SUCCESS Success.

IM_AT_EDGE Moved to edge of virtual display.
IM_VP_DISABLED Viewporting currently disabled.
This function is valid only when viewporting is enabled.
The 2460 and 2461 terminals do not support this function.

im_cursor_to_viewport, im_viewport_end, im_viewport_home,
im_viewport_move, im_viewport_page_up, im_viewport_to_cursor

5-117

im_viewport_page_left

Example

See example for im_viewport_setxy.

im_viewport_page_left

Purpose

Syntax

IN Parameters
OUT Parameters

Return Value

Notes

See Also

Example

This function moves the viewport left one page size on the virtual screen.
The viewport cannot move beyond the left edge of the virtual screen.

#include "imt24lib.h"

IM_STATUS im_viewport_page_left
(void);

None.

None.

This function returns one of these codes:
IM_SUCCESS Success.

IM_AT_EDGE Moved to edge of virtual display.
IM_VP_DISABLED Viewporting currently disabled.
This function is valid only when viewporting is enabled.
The 2460 and 2461 terminals do not support this function.

im_cursor_to_viewport, im_viewport_end, im_viewport_home,
im_viewport_move, im_viewport_page_up, im_viewport_to_cursor

See example for im_viewport_setxy.

im_viewport_page_right

Purpose

Syntax
IN Parameters

OUT Parameters

Return Value

5-118

This function moves the viewport right one page size on the virtual screen.
The viewport cannot move beyond the right edge of the virtual screen.

#include "imt24lib.h"

IM_STATUS im_viewport_page_right
(void);

None.

None.

This function returns one of these codes:
IM_SUCCESS Success.
IM_AT_EDGE Moved to edge of virtual display.

IM_VP_DISABLED Viewporting currently disabled.

Notes

See Also

Example

im_viewport_page_up 5

This function is valid only when viewporting is enabled.
The 2460 and 2461 terminals do not support this function.

im_cursor_to_viewport, im_viewport_end, im_viewport_home,
im_viewport_move, im_viewport_page_up, im_viewport_to_cursor

See example for im_viewport_setxy.

im_viewport_page _up

Purpose

Syntax

IN Parameters
OUT Parameters
Return Value

Notes

See Also

Example

This function moves the viewport up one page size on the virtual screen. The
viewport cannot move beyond the top edge of the virtual screen.

#include "imt24lib.h"

IM_STATUS im_viewport_page_up
(void);

None.

None.

This function returns one of these codes:
IM_SUCCESS Success.

IM_AT_EDGE Moved to edge of virtual display.
IM_VP_DISABLED Viewporting currently disabled.
This function is valid only when viewporting is enabled.
The 2460 and 2461 terminals do not support this function.

im_cursor_to_viewport, im_viewport_end, im_viewport_home,
im_viewport_move, im_viewport_page_down, im_viewport_to_cursor

See example for im_viewport_setxy.

im_viewport_setxy

Purpose

Syntax

IN/OUT

This function sets the viewport row and column to a specific value when
moving between two screens.

#include "imt24lib.h"

IM_STATUS im_viewport_setxy
(IM_USHORT row,
IM_USHORT col);

row Sets the row value (Y-coordinate) of the viewport. The top of the virtual

5-119

im_viewport_setxy

Parameters screen equals 0.

col Sets the column value (X-coordinate) of the viewport. The left edge of virtual
screen equals 0.

As input parametersow andcol set the desired location for the viewport.
As output parameterspw andcol return the actual location.
Return Value This function returns one of these codes:
IM_SUCCESS Success.
IM_VP_DISABLED Viewporting currently disabled.
IM_INVALID_ROW Row number out of range, moved as far as possible.

IM_INVALID_COLUMN Column number out of range, moved as far as
possible.

IM_INVALID_BOTH Row and column out of range, moved to lower right
corner.

Notes The (row, col) pair represents the upper left corner of the viewport being
displayed. The minimum values for both the row and col are (0,0), which is
the upper left corner of the virtual window.

For the 20 x 16 display character size, the maximum value of row is 9
(25 minus 16) and the maximum value of col is 60 (80 minus 20).

The 2460 and 2461 terminals do not support this function.

This function is similar to the JANUS PSK function, except that this function
passes a value rather than a variable containing a value.

This function is valid only when viewporting is enabled.

See Also im_viewport_move

Example

/ *** im_viewport_setxy * /
#include <dos.h>

#include <conio.h>

#include <stdlib.h>

#include "imstdio.h"

#include "imt24lib.h"

#define SOUND_TIME 200 /* 200 milliseconds */
void main (void)

IM_USHORT row, col;

IM_FONT_TYPE std_font_size, cfont_size;

IM_UCHAR cphy_width, cphy_height;

IM_BOOL cpf_scroll, cpf_wrap, std_scroll, std_wrap;

[* Have to enable viewporting before using any viewport display function */
im_set_viewporting(IM_ENABLE);

[* Have to disable viewport follow cursor before doing any viewport movement */

5-120

im_set_follow_cursor(IM_DISABLE);

std_font_size = IM_FONT_STANDARD;
std_scroll = IM_TRUE;
std_wrap = IM_TRUE;

im_set_display_mode(std_font_size, std_scroll, std_wrap);

[* Set up mark for viewport operation functions */
im_set_cursor_xy(0, 0);

cputs("1-viewport_home"); /* viewport_home mark*/
im_set_cursor_xy(0, 1);

cputs(" row:0, col:0");

im_set_cursor_xy(9, 20);
cputs("2-viewport_page_right");/* viewport_right */
im_set_cursor_xy(10, 20);

cputs(" row:9, col:20");

im_set_cursor_xy(9,0);
cputs("3-Viewport_page_left"); /* viewport_left */
im_set_cursor_xy(10, 0);

cputs(" row:9, col:0");

im_set_cursor_xy(23, 60);
cputs(“4-viewport_end"); [* viewport_end mark*/
im_set_cursor_xy(24, 60);

cputs(" row:23, col:60");

im_set_cursor_xy(0, 60);
cputs("b-viewport_page_up"); /* viewport_page_up */
im_set_cursor_xy(1, 60);

cputs(" row:0, col:60");

im_set_cursor_xy(0, 20);
cputs(“6-viewport_setxy"); /* viewport_setxy */
im_set_cursor_xy(1, 20);

cputs(" row:0, col:20");

im_set_cursor_xy(0, 40);
cputs("7-viewport_move"); /* viewport_move */
im_set_cursor_xy(1, 40);

cputs(" row:0, col:40");

im_set_cursor_xy(18, 40);
cputs("8-viewport_page_down"); /* vewport_page_down */
im_set_cursor_xy(19, 40);

cputs(" row:18, col:40");

im_set_cursor_xy(18, 20);
cputs("9-viewport_to_cursor"); /* viewport_to_cursor*/
im_set_cursor_xy(19, 20);

cputs(" row:18, col:20");

[* Bring cursor back so that viewport will stay with it */
im_set_cursor_xy(0, 0);

[* Action 1: Set viewport back to Home */

im_viewport_home();
im_sound(IM_LOW_PITCH,SOUND_TIME,IM_LOUD_VOLUME);
getch();

[* Action 2: Set viewport page right */

im_viewport_page_right();
im_sound(IM_LOW_PITCH,SOUND_TIME,IM_LOUD_VOLUME);
getch();

[* Action 3: Set viewport page left */

im_viewport_setxy

5-121

im_viewport_setxy

im_viewport_page_left();
im_sound(IM_LOW_PITCH,SOUND_TIME,IM_LOUD_VOLUME);
getch();

[* Action 4: Viewport End */

im_viewport_end();
im_sound(IM_LOW_PITCH,SOUND_TIME,IM_LOUD_VOLUME);
getch();

[* Action 5: Viewport Page Up */

im_viewport_page_up();
im_sound(IM_LOW_PITCH,SOUND_TIME,IM_LOUD_VOLUME);
getch();

[* Action 6: Viewport Setxy */

row = 0; col = 20;

im_viewport_setxy(&row, &col);
im_sound(IM_LOW_PITCH,SOUND_TIME,IM_LOUD_VOLUME);
getch();

[* Action 7: Viewport Move */
im_viewport_move(IM_VIEWPORT_RIGHT, 20, &row, &col);
im_sound(IM_LOW_PITCH,SOUND_TIME,IM_LOUD_VOLUME);
getch();

[* Action 8: Viewport Page Down */

im_viewport_page_down();
im_sound(IM_LOW_PITCH,SOUND_TIME,IM_LOUD_VOLUME);
getch();

[* Action 9: set cursor at row:18, column:10 and viewport_to_cursor */

[* Note: Cursor at the center of viewport */
im_set_cursor_xy(18, 10); /* Need offset 10 to let cursor at center*/
im_viewport_to_cursor();
im_sound(IM_LOW_PITCH,SOUND_TIME,IM_LOUD_VOLUME);
getch();

[* Action 10: Viewport Getxy */

im_viewport_end(); [* Force viewport to end */

/* In 80X25 mode, viewport_end causes the viewport move at (9,60) */

* You should see value is row:9, col:60 */

im_viewport_getxy(&row, &col);

im_viewport_home(); [* Force viewport to home */
im_set_cursor_xy(0, 0); cputs ("10-viewport_getxy"); /* Start at home again */
im_set_cursor_xy(1, 0); printf(" Row:%d, Col:%d", row, col);
im_sound(IM_LOW_PITCH,SOUND_TIME,IM_LOUD_VOLUME);

getch();

[* Action 11: Mark ref. c->v */

im_clear_screen();

im_set_cursor_xy(9, 50); cputs("Ref. C->V"); /* viewport_to_cursor*/
im_set_cursor_xy(0, 0); cputs("11-C->V");

im_set_cursor_xy(1, 0); cputs("Cursor at Ref.");

getch();

[* Action 12: Move viewport to end, then Do cursor_to_viewport */
row = 1; col = 39;

im_viewport_setxy(&row, &col);

im_viewport_end(); [* Force viewport to end */
im_cursor_to_viewport(); [* Cursor go to center */
im_sound(IM_LOW_PITCH,SOUND_TIME,IM_LOUD_VOLUME);
getch();

[* Action 13: Get Display Mode */

im_get_display_mode(&cfont_size, &cphy_width, &cphy_height,
&cpf_scroll, &cpf_wrap);

if ((std_font_size == cfont_size) && (std_scroll == cpf_scroll) &&

5-122

im_viewport_to_cursor

(std_wrap == cpf_wrap))
printf("\nDisplay mode setup ok\n");
else
printf("\nError in display_mode\nsetup\n");

im_sound(IM_LOW_PITCH,SOUND_TIME,IM_LOUD_VOLUME);
getch();

im_viewport _to _cursor

Purpose This function attempts to center the viewport around the cursor.

Syntax #include "imt24lib.h"
IM_STATUS im_viewport_to_cursor
(void);

IN Parameters None.
OUT Parameters None.
Return Value This function returns one of these codes:
IM_SUCCESS Success.
IM_VP_DISABLED Viewporting currently disabled.
Notes This function is valid only when viewporting is enabled.
The 2460 and 2461 terminals do not support this function.

When the cursor is not displayed, use this function to move the viewport to
the cursor.

Movement of the viewport is limited by the virtual display boundaries. If the
cursor is near any edge, the viewport will contain the cursor, but it may not
be centered in the viewport.

See Also im_cursor_to_viewport, im_viewport_end, im_viewport_home,
im_viewport_move, im_viewport_page_down

Example

See example for im_viewport_setxy.

im_xm_receive_file

Purpose This function sets the terminal to receive a file from the host using Xmodem
protocol.

Syntax #include "imt24lib.h"
IM_STATUS im_xm_receive_file
(IM_CHAR far *filename |
IM_COM_PORT iPortld)

5-123

im_xm_receive_file

IN Parameters

OUT Parameters

Return Value

Notes

*filename Far pointer to IM_CHAR and is the filename in the terminal. The
terminal filename has the format drive:filename.

iPortld Serial communications port:
IM_COM1 COM1 port.
IM_COM2 COM2 port.
IM_SCAN_PORT COM4 port.
None.
This function returns one of these values:
IM_SUCCESS Successful.
IM_NET_PORT_HANDLE The port handle is unknown.

This is a new PSK function.

im_xm_transmit _file

Purpose

Syntax

IN Parameters

OUT Parameters

Return Value

Notes

5-124

This function sets the terminal to transmit a file to the host using Xmodem
protocol.

#include "imt24lib.h"
IM_STATUS im_xm_transmit_file
(IM_CHAR far *filename
IM_COM_PORT iPortld)

*filename Far pointer to IM_CHAR and is the filename in the terminal. The
terminal filename has the format drive:filename.

iPortld Serial communications port:
IM_COM1 COM1 port.
IM_COM2 COM2 port.
IM_SCAN_PORT COMA4 port.
None.
IM_SUCCESS Successful.
IM_NET_PORT_HANDLE The port handle is unknown.

This is a new PSK function.

im_xm_receive_file 5

Im_xmlk_receive_file

Purpose

Syntax

IN Parameters

OUT Parameters

Return Value

Notes

This function sets the terminal to receive a file from the host using Xmodem
1K protocaol.

#include "imt24lib.h"
IM_STATUS im_xm1km_receive_file
(IM_CHAR far *filename
IM_COM_PORT jPortld)

*filename Far pointer to IM_CHAR and is the filename in the terminal. The
terminal filename has the format drive:filename.

iPortld Serial communications port:
IM_COM1 COML1 port.
IM_COM2 COM2 port.
IM_SCAN_PORT COM4 port.
None.
This function returns one of these values:
IM_SUCCESS Successful.
IM_NET_PORT_HANDLE The port handle is unknown.

This is a new PSK function.

Im_xmlk_transmit file

Purpose

Syntax

IN Parameters

OUT Parameters

This function sets the terminal to transmit a file to the host using Xmodem 1K
protocol.

#include "imt24lib.h"
IM_STATUS im_xm1k_transmit_file
(IM_CHAR far *filename
IM_COM_PORT jPortld)

*filename Far pointer to IM_CHAR and is the filename in the terminal. The
terminal filename has the format drive:filename.

iPortld Serial communications port:
IM_COM1 COM1 port.
IM_COM2 COM2 port.
IM_SCAN_PORT COM4 port.

None.

5-125

im_xm_receive_file

Return Value IM_SUCCESS Successful.
IM_NET_PORT_HANDLE The port handle is unknown.

Notes This is a new PSK function.

im_ym receive file

Purpose This function sets the terminal to receive a file from the host using Ymodem
protocol.

Syntax #include "imt24lib.h"
IM_STATUS im_ym_receive_file
(IM_CHAR far *filename
IM_COM_PORT iPortld)

IN Parameters *filename Far pointer to IM_CHAR and is the filename in the terminal. The
terminal filename has the format drive:filename.

iPortld Serial communications port:
IM_COM1 COM1 port.
IM_COM2 COM2 port.
IM_SCAN_PORT COMA4 port.
OUT Parameters None.
Return Value IM_SUCCESS Successful.
IM_NET_PORT_HANDLE The port handle is unknown.

Notes This is a new PSK function.

Im_ym_transmit_file

Purpose This function sets the terminal to transmit a file to the host using Ymodem
protocol.

Syntax #include "imt24lib.h"
IM_STATUS im_ym_transmit_file
(IM_CHAR far *filename
IM_COM_PORT iPortld)

5-126

IN Parameters

OUT Parameters
Return Value

Notes

im_xm_receive_file 5

*filename Far pointer to IM_CHAR and is the filename in the terminal. The
terminal filename has the format drive:filename.

iPortld Serial communications port:
IM_COM1 COM1 port.
IM_COM2 COM2 port.
IM_SCAN_PORT COM4 port.
None.
IM_SUCCESS Successful.
IM_NET_PORT_HANDLE The port handle is unknown.

This is a new PSK function.

5-127

Status Codes and ASCII Character Set

Status Codes and ASCII Character Set / \

This appendix lists the status code hex values and their meaning and contains a table
of the ASCII character set and ASCII control characters.

Using the Status Code Return Values

Most of the PSK functions return status codes. You can use the codes to test for
error conditions that your application will act upon. How you test for the status
codes depends on the complexity of the function returning the status and your
application needs.

In most cases, you can use the status code macros discussed in Chapter 2,
“Programming Guidelines,” to determine success or failure. In other cases, you
can check for the exact status code value.

The next table lists the status code return values and the error message text
provided by im_message. The status codes are in hex.

Note: The status codes are IM_USHORT (unsigned short) values.

TRAKKER Antares Status Code Return Values

Status Code
0x000
0x051
0x052
0x053
0x054

0x055
0x056
0x057
0x058
0x059
Ox05A

0x060
0x061
0x062
0x063

Message Text

Successful operation IM_SUCCESS or IM_OK
Response larger than buffer

Invalid command

Set attribute with bad value

Write to read-only attribute
Attempted to write a value to a read-only attribute

General error not covered

Incorrect parameter or string length

Queue or pool empty

Action not permitted from this origin

Indicates that a DLE character has been found must be removed from the input string

During config. parsing, a digit was expected
While parsing a configuration command, expected a digit but encountered another value.

Queue is full

UDP+: Buffer too large to send

UDP+: NULL buffer was passed
UDP+: Msg received bigger than buffer

A-3

TRAKKER Antares PSK Reference Manual

Status Code Message Text

0x064 UDP+: Msg already transmitted

0x065 UDP+: Invalid param block

0x066 Network is inactive or improperly configured

0x067 Network control block pointer is null

0x068 Data pointer is null or data length is invalid

0x069 Data length exceeds 1024

Ox06A Send buffer contains a previous application message

0x06B Incorrect RF configuration

0x070 The Ninit usnet call failed

0x071 The Nportinit usnet call failed

0x072 The Nterm usnet call failed

0x073 The Portterm usnet call failed

0x074 The Nopen usnet call failed

0x075 The Nclose usnet call failed

0x076 The Nread usnet call failed

0x077 The Nwrite usnet call failed

0x078 Invalid group event

0x079 Network PM failed

Ox07A Invalid send buffer

0x07B The send buff is not empty

0x07C A failure occurred in udp timer

0x07D Maximum number of bad sequence numbers has occurred. Possible duplicate IP address in
network.

Ox07E Could not connect to controller

0x080 File open failed

0x081 Read or Write request failed

0x082 The getbuf usnet call failed

0x083 Data or ACK receive failed

0x084 File write failed

0x085 File close failed

0x0A1 Invalid sub-function request

0x0A2 Table is full

A-4

Status Codes and ASCII Character Set / \

Status Code Message Text

0x0A3 Index out of range

O0x0A4 Time value at that index is zero
0x0A5 Pointers do not match

0x0A6 Requested row value not supported
Ox0A7 Requested column value not supported
0x0A8 Invalid Command

0x0A9 Invalid Configuration Combination
Ox0AA Invalid viewport request

O0x0AD Invalid Logical Key requested
Ox0AE Invalid Modifier requested

0x0BO0 Invalid device

0x110 No TCB slot available

0x111 No RAM available for stack

0x112 Invalid time

0x113 Invalid slot

0x114 Invalid delay type

0x115 Invalid event

0x116 Invalid group event

0x117 Invalid resource

0x118 Invalid mailbox

0x119 Invalid memory release

Ox11A Function timeout expired

0x11B Periodic event table full

0x11C Invalid profile_type code

0x11D Invalid MMU180 page number
Ox11E Device not open

Ox11F Device not open or not device owner
0x120 Invalid pool id

0x121 Invalid block size for pool

0x122 Invalid pool type

0x123 No table space available for message
0x134 Invalid file descriptor pointer

A-5

TRAKKER Antares PSK Reference Manual

Status Code Message Text

0x135 Task not suspended

0x136 Not owner of stream

0x137 Stream access error

0x138 Color requested > NUMCOLORS

0x139 Missed system time required

0x13A mtenv table full

0x13B Acquire/release table full

0x13C Too small of memory release to MTmeminit
0x13D chkmem detects memory chain corrupt
O0x13E MBXLIMIT messages in mailbox

Ox13F Too small of memory passed to MTmeminit
O0x1FO0 Add Decode - The Decode symbology is already present in the auto-discrimination table.
Ox1F1 Drop Decode - The Decode symbology was not found in the auto-discrimination table.
Ox1F2 Intermediate row which was already read
Ox1F3 Intermediate row successfully decoded
Ox1F4 Command symbology (code39)

Ox1F5 Code39 half-ASClI

Ox1F6 Good decode

Ox1F7 Label has already been read this trigger pull
Ox1F8 Votes aren't all in for the label

0x200 Decodes auto-discrimination tbl full

0x201 Decode Data command error: Not enough resources to attempt to decode the counts.
0x202 Invalid Decodes command

0x203 Invalid Decode symbology specified

0x204 Unable to decode input scan

0x205 Missing start or stop character

0x206 Number of counts less than min

0x207 Invalid character found

0x208 Invalid acceleration between characters
0x20A Label length less than min

0x20B Incorrect check digit

0x20C Output string too short

A-6

Status Code
0x20D
0x20E
0x20F
0x210
0x211
0x212
0x213
0x214
0x215
0x216
0x217
0x218
0x219
0x21A
0x21B
0x21C
0x21D
O0x21E
0x21F
0x221
0x222
0x223
0x224
0x225
0x226
0x227
0x228
0x229
0x22A
0x22B
0x22C
0x22D

Message Text

Leading margin not found

Invalid start or stop pattern

Not enough counts for whole label
Missing trailing margin

Invalid supplement to UPC label
Parity error while decoding character
Guard character not found

Invalid row number (Code 49 Code 16K)
Unable to scale counts buffer
Error in 2 of 5 label
Wrong length 2 of 5 label

Longer than max 2 of 5 label length
Valid label region not found

Ink spread exceeded threshold

The denominator of an expression is 0
ASClIfication of Full ASCII failed

Raw scan buffer. No decode attempted yet

Status Codes and ASCII Character Set / \

Field is full no more input allowed until this is returned

Address not in the application data space range.

Movement direction parameter invalid, not one of 4 viewport directions

End of display block outside virtual display

A printable keycode was passed in a command to set manual movement

Both start and end outside of virtual display

First parameter to function invalid

Invalid com source number

Input requested with no valid source to receive it from

Start of display block outside virtual display

Informational browse mode active
PSK coding error
Network error

Network error

Informational Follow cursor mode not enabled

A-7

TRAKKER Antares PSK Reference Manual

Status Code Message Text

0x22E The cursor detection value in a set follow cursor command is larger than the viewport size
0x230 The viewport movement value is larger than the viewport size
0x231 Data transmitted before cancel request accepted

0x4233 Function key F1 pressed

0x4234 Function key F2 pressed

0x4235 Function key F3 pressed

0x4236 Function key F4 pressed

0x4237 Function key F5 pressed

0x4238 Function key F6 pressed

0x4239 Function key F7 pressed

0x423A Function key F8 pressed

0x423B Function key F9 pressed

0x423C Function key F10 pressed

0x423D Tab key pressed

0x423E BackTab key pressed

0x4240 Esc key pressed

0x5220 Both row and column in viewport set xy invalid but adjusted to end
0x5229 Informational browse mode active

0x522F Attempted to cancel transmit buffer that was never called before
0x5232 Viewporting is turned off-physical and virtual screens same size
0x523F Viewport moved as far as possible and is hitting edge

A-8

Status Codes and ASCII Character Set

ASCII Character Set

Binary® Hext Dec? C39% Char* | Binary Hex Dec C39 Char Control® Character Definitions

00000000 00 00 %U NUL 01000000 40 64
00000001 01 01 $A SOH 01000001 41 65
00000010 02 02 $B STX 01000010 42 66
00000011 03 03 $C ETX 01000011 43 67

NUL Null, or all zeroes
SOH Start of Heading
STX Start of Text

ETX End of Text

00000100 04 04 $D EOT 01000100 44 68
00000101 05 05 $E ENQ 01000101 45 69
00000110 06 06 $F ACK 01000110 46 70

EOT End of Transmission
ENQ Enquiry
ACK Acknowledgement

00000111 07 07 $G BEL 01000111 47 71 BEL Bell

00001000 08 08 $H BS 01001000 48 72 BS Backspace
00001001 09 09 $I HT 01001001 49 73 HT Horizontal Tab
00001010 0A 10 $J LF 01001010 4A 74 LF Line Feed
00001011 0B 1 $K VT 01001011 4B 75 VT Vertical Tab
00001100 ocC 12 $L FF 01001100 4C 76 FF Form Feed
00001101 0D 13 $M CR 01001101 4D 77 CR Carriage Return
00001110 OE 14 $N SO 01001110 4E 78 SO Shift Out
00001111 OF 15 $O Sl 01001111 4F 79 Shift In
00010000 10 16 $P DLE 01010000 50 80 DLE Data Link Escape
00010001 11 17 $Q DC1 01010001 51 81 DC1 Device Control 1 (XON)

00010010 12 18 $R DC2 01010010 52 82
00010011 13 19 $S DC3 01010011 53 83

DC2 Device Control 2
DC3 Device Control 3 (XOFF)

00010100 14 20 $T DC4 01010100 54 84
00010101 15 21 $U NAK 01010101 55 85
00010110 16 22 $V SYN 01010110 56 86
00010111 17 23 $W ETB 01010111 57 87
00011000 18 24 $X CAN 01011000 58 88
00011001 19 25 $Y EM 01011001 59 89
00011010 1A 26 $Z SUB 01011010 5A 90
00011011 1B 27 %A ESC 01011011 5B 91

DC4 Device Control

NAK Negative Acknowledge
SYN Syncronous ldle

ETB End Transmission Block
CAN Cancel

EM End of Medium

SUB Substitute

ESC Escape

SN<XXs<CH | WDOTOZZIr | AR“~IOTMMO | OW>X
= <

T ITINKXE<CH | WTVOTVOZZIM [ACTIOTMO [OWPER
@

00011100 1C 28 %B FS 01011100 5C 92 %L FS File Separator
00011101 1D 29 %C GS 01011101 5D 93 %M GS Group Separator
00011110 1E 30 %D RS 01011110 5E 94 %N RS Record Separator
00011111 1F 31 %E US 01011111 5F 95 %0 _ US Unit Separator
00100000 20 32 SP SP® | 01100000 60 96 %W SP Space
00100001 21 33 IA ! 01100001 61 97 +A a DEL Delete
00100010 22 34 /B " 01100010 62 98 +B b
00100011 23 35 IC # 01100011 63 99 +C c
00100100 24 36 D $ 01100100 64 100 +D d
00100101 25 37 IE % 01100101 65 101 +E e
00100110 26 38 IF & 01100110 66 102 +F f Notes
00100111 27 39 IG ’ 01100111 67 103 +G g N
00101000 28 20 H (01101000 68 104 +H h 0 Bit positions are 76543210
00101001 29 a1 i) 01101001 69 105+l i 1 Hexadecimal value
00101010 2A 42 13 * 01101010 6A 106+ i)
00101011 2B 43 K + 01101011 6B 107 +K k 2 Decimal value

3 Code 39 character(s)
00101100 2C a4 L , 01101100 6C 108 4L [
00101101 2D 45 M . 01101101 6D 109 +M m 4 ASCII character
00101110 2E 46 IN) 01101110 6E 110 +N n)
00101111 2F 47 /O i 01101111 6F 111 +0 o 5 Hold Ctrl and press key in
00110000 30 48 P 0 01110000 70 112 +P p Char column
00110001 31 49 Q 1 01110001 71 13 +Q q 6 SPACE character
00110010 32 50 IR 2 01110010 72 114 +R r
00110011 33 51 IS 3 01110011 73 115 +S s 7 Code 39 characters /P

through /Y may be

00110100 34 52 IT 4 01110100 74 116 +T t interchanged with the
00110101 35 53 U 5 01110101 75 117 +U u
00110110 36 54 N 6 01110110 76 118 +V v numbers 0 through 9
00110111 37 55 W 7 01110111 77 119 +W w 8 May be interchanged with
00111000 38 56 IX 8 01111000 78 120 +X X %X or %Y or %Z
00111001 39 57 % 9 01111001 79 121 +Y y
00111010 3A 58 1z : 01111010 7A 122 +Z z 9 DELETE character
00111011 3B 59 %FE 01111011 7B 123 %P |
00111100 3C 60 %G < 01111100 7C 124 %Q |
00111101 3D 61 %H = 01111101 7D 125 %R}
00111110 3E 62 %I > 01111110 7E 126 %S -~
00111111 3F 63 %J 2 01111111 7F 127 %T® m°

ASCI7x10

Microsoft Visual C/C++ Settings

Microsoft Visual C/C++ Settings

This appendix shows the settings for Microsoft Visual C/C++ v1.5.

Project Options

Project Gplions

o Type | S N +|

[@ Microsoh Foundation Classas

Cwstnmmirs Fwid Ophoas Huild Mode
® ostun
Linkar... L Bedonso

i
i

Note: These examples use Microsoft Visual C/C++, Professional Edition v1.5. Your
screen may look different.

The PSK requires Microsoft Visual C/C++, Professional Edition v1.0 or v1.5x, which
can create 16-bit DOS applications. See “Microsoft C/C++ Version Requirements™ in
Chapter 1 for more information.

Compiler Options: Code Generation

phues Ghmg

FFASPURETYLE FOE*

Janlages (FPm W3 [GAL (O T3 *_IESUGT 117 _DI0sT i

Huid dpines: 8 Oebug Specic [Anlenon Speci Crevavaan i Mivih

pr Comeul |
:| Bk |
R |

gl ry

Cueiom Dglians

s o Ugleers [Lire=|
Disteiig Dplain
Lesrg Files

LESTETTEAN T A T
LpFamunis e
P o i i Bl 0
Froczrepind Headers
Prespioiikio
Zeqme Hemse

| Caisgory Lhednge Code Goesmaom

cpu
AlER B ﬂ

o |) vty B

p
=
3

Flzabrg "'omi Calix

A BAATE ﬁ
Tt WemniEa 1 ([fpie Sda e i
o]

: Lheck Porturs

s aid o Stock, Tl kg

Cads Gepsrmier

B-3

TRAKKER Antares PSK Reference Manual

Compiler Options: Memory Model

B oo |
Eradd Dipm s i [iebury Spmerbe Helumsr Speciic Lorerene 1 Hoth

Cipin 8 Hiaig

T Cantid
Japlogs FPa W1 T AL O JD*_DEBUD® {0 *_D0S* FR * ;
FACRETYLE POEF Halp |
'1| g Pg a0t Dhfiow s |

Caingorg: G vy Eerbrnges beberinrg beliedid

Code Genmmbon

o b g b i [T] Binginasl Salep

Curiem Dpio e (=] L el s % = T
Debig Dphans e .il - - il
I-'Hl-Irlin

Ciphyrpabuoes Hew Lingmand Unia Sus Thmakald

F-Caid e Gienieraien

Prarnepd e Hanrde e

Praproceaam _ Aamwren ‘ueine’ and Urerebaluad Disin ‘o
SasijnenT hamies

Linker Options

— I 1 S
Huwbed Upkea res ¥ [Jutug Spechic Palwana Spachc Cammon o Beib | 0 |

[T ETTERE TET]

o] Comeet |
FHULLHED U “pldamrves™ FLEH “Nibco® (LE Sopdd 8B LU0 7T ALESS 105 +
MM E FRCH RO ERE p00 j Heip |
ﬂ Linr Prajisct Dhaf el |

v gy Catogary SoMegs. lrpel

Marrury brage LB pideamies lhon, sePAih
L R L T TP

hipei

lgrearu Lhrlauh Libioesa s
Sl Lrhoesas b= lgreem

: | Prwewsai Uem ol Exdsa ded I cisorary

L] Db gt 1 pmirs s

Microsoft Visual C/C++ Settings

Directory Settings

— N
Exmcubwhin Films Pafyc | cimsvrijpes | E | Ok I
Inchede Files Fat | ymtermecymizqunciede: cimsecincde | &) | Cancal I
Library Films. Pt [yt mu 7 i, Amineclib | &

Help Files Fath [crmavrineip | |LI
MFIC Files Frh |cyamvTyare |
digpr g

B-5

Index

Symbols and Numbers

* MAK file settings, 3-5
/AL in MAK file, 3-5
/FPain MAK file, 3-5
/G0 in MAK file, 3-5
242X terminal, defined, 1-3
246072461 terminals
defined, 1-3
features not supported, 1-7
functions not supported, 5-9, 5-36, 5-38, 5-57, 5-59,
5-60, 5-63, 5-64, 5-65, 5-82, 5-88, 5-89, 5-91,
5-112, 5-113, 5-114, 5-115, 5-116, 5-117, 5-120
248X terminal, defined, 1-3
8086/8088, project settings, 3-5
8086/8088, project settings checklist, 3-5

A

about function descriptions, 5-3
alternate math, 3-5
alternate math, project settings checklist, 3-5
applications
compatible JANUS PSK and TRAKKER Antares PSK
functions, 4-4
converting JANUS PSK to TRAKKER Antares PSK,
4-10
converting TRAKKER Antares PSK to JANUS PSK,
4-7
converting using status code macros, 4-5
creating compatibility, 4-4
creating include file, 4-6
defining function values, 4-6
display modes, 4-9, 4-13
downloading through serial port, 3-8
downloading via RF communications, 3-9
input modes, 4-13
project settings checklist, 3-5
renaming functions, 4-6
timeout values, 4-9, 4-14
TRAKKER Antares PSK and JANUS PSK differences,
4-3
viewport functions, 4-12
ASCII character set, A-9

B

bar code
im_get_label_symbology, 5-26
im_get_label_symbologyid, 5-27

battery status, 5-4

binary file, converting, 3-7

buffer manipulation functions, certified, 2-12

Index

build procedure
converting *.EXE to *.BIN, 3-7
DOS command line, 3-5
sample program, 3-3
your program, 3-4
build settings checklist, 3-5
building
sample program, 3-3
your program, 3-4

C

C macros, 2-7
C/C++ version requirements, 1-6
certified Microsoft C functions, 2-10
CFLAGS switches, MAK file, 3-5
character functions, certified, 2-12
character set, ASCII, A-9
checklist, project settings, 3-5
clearing display, 5-6
close directory function, 5-6
Code Generation, Compiler Options dialog box, B-3
code generation, project settings checklist, 3-5
command line build procedure, 3-5
communications functions
about, 2-3
im_cancel_tx_buffer, 5-5
im_get_tx_status, 5-35
im_receive_buffer, 5-66
im_receive_field, 5-68
im_receive_file, 5-74
im_receive_input, 5-75
im_transmit_buffer, 5-100
im_transmit_file, 5-102
im_udp_close_socket, 5-104
im_udp_open_socket, 5-105
im_udp_receive_data, 5-106
im_udp_send_data, 5-111
compatible functions, 4-4
compile procedure
DOS command line, 3-5
your program, 3-4
compile settings checklist, 3-5
Compiler Options dialog box
Code Generation, B-3
Memory Model, B-4
compiler options, project settings checklist, 3-5
configuration, use im_get_config_info, 5-18
converting application
to binary file, 3-7
converting applications
creating compatibility, 4-4
creating include file, 4-6
defining function values, 4-6
display modes, 4-9, 4-13

TRAKKER Antares PSK Reference Manual

im_get_display_size_physical, 5-21
im_get_display_size_virtual, 5-22

converting applications (continued)
JANUS PSK to TRAKKER Antares PSK, 4-10

renaming functions, 4-6 im_get_display_type, 5-23
timeout values, 4-9, 4-14 im_get_follow_cursor, 5-24
TRAKKER Antares PSK to JANUS PSK, 4-7 im_get_screen_char, 5-30
using status code macros, 4-5 im_get_text, 5-33
viewport functions, 4-8, 4-12 im_overlay_setup, 5-59
copying im_overlay_status, 5-60
application to terminal, 3-8 im_put_text, 5-61
FileCopy to another PC, 1-5 im_putchar, 5-62
CPU im_putchar_dbyte, 5-63
8086/8088, project settings, 3-5 im_puts, 5-63
project settings checklist, 3-5 im_puts_dbyte, 5-64
creating compatible applications, 4-4 im_puts_mixed, 5-65
cursor functions im_set_cursor_xy, 5-79
im_cursor_to_viewport, 5-9 im_set_display_mode, 5-80
im_get_cursor_style, 5-19 im_status_line, 5-94
im_get_cursor_xy, 5-19 im_timed_status_line, 5-96

im_get_follow_cursor, 5-24 display modes, converting applications, 4-9, 4-13
im_get_viewport_lock, 5-36 DOS

im_get_viewporting, 5-38
im_set_cursor_style, 5-78
im_set_cursor_xy, 5-79
im_set_follow_cursor, 5-82
im_set_viewport_lock, 5-87
im_set_viewporting, 5-88
im_setup_manual_viewporting, 5-90
im_viewport_to_cursor, 5-120

command line build procedure, 3-5
project settings checklist, 3-5
double-byte character functions
im_dbyte_symbology_set, 5-9
im_offset_dbyte, 5-57
im_putchar_dbyte, 5-63
im_puts_dbyte, 5-64
im_puts_mixed, 5-65

not supported by 2460/2461 terminals, 1-7
D downloading

data conversion functions, certified, 2-12 applications through RF communications, 3-9

debugging project settings, 3-5
Desktop mode, 4-14
dialog box

Compiler Options, Code Generation, B-3
Compiler Options, Memory Model, B-4

Directory Settings, B-5
Linker Options, B-4
Directories dialog box, B-5
directory
close function, 5-6
for PSK, 1-5
open function, 5-58
project settings checklist, 3-5
read function, 5-65
display functions
about, 2-4
im_clear_screen, 5-6
im_cputs, 5-8
im_erase_display, 5-10
im_erase_line, 5-10
im_get_cursor_style, 5-19
im_get_cursor_xy, 5-19
im_get_display_mode, 5-20

applications through serial port, 3-8

E

EOM detection, specifying, 5-81
erasing display, 5-6
error messages
im_message, 5-57
im_status_line, 5-94
im_timed_status_line, 5-96
event
im_event_wait, 5-12
im_set_time_event, 5-87
examples
clearing the screen, 2-5
configuring the terminal, 2-8
im_command, 5-7
im_erase_line, 5-11
im_event_wait, 5-13
im_file_duplicate, 5-14
im_fmalloc, 5-16
im_get_config_info, 5-18
im_get_display_mode, 5-20
im_get_display_size_physical, 5-22

examples (continued)
im_get_display_type, 5-23
im_get_follow_cursor, 5-24
im_get_label_symbology, 5-26
im_get_relay, 5-29
im_get_screen_char, 5-30
im_get_sensor_all, 5-31
im_get_text, 5-34
im_get_tx_status, 5-35
im_get_viewport_lock, 5-37
im_get_viewporting, 5-38
im_irl_a, 5-42
im_irl_k, 5-44
im_irl_n, 5-47
im_irl_v, 5-50
im_irl_y, 5-52
IM_ISERROR, 5-53
IM_ISGOOD, 5-54
IM_ISSUCCESS, 5-55
IM_ISWARN, 5-56
im_opendir, 5-58
im_overlay_setup, 5-59
im_overlay_status, 5-61
im_receive_buffer, 5-67
im_receive_field, 5-71
im_receive_input, 5-77
im_set_optical_callback, 5-84
im_setup_follow_cursor, 5-89
im_setup_manual_viewporting, 5-91
im_sound, 5-93
im_tcp_reconnect_notify, 5-95
im_transmit_buffer, 5-101
im_transmit_file, 5-103
im_udp_receive_data, 5-108
im_viewport_setxy, 5-117
input mode and source, 2-6
moving the viewport, 2-9
multiple inputs, 2-4
sound, 2-6
status code macros, 2-7
TMP.BAT, 3-6
TMP.CMD, 3-6
TMP.MAK, 3-6
EXE2ABS.EXE, 3-7

F

file copy function, 5-14

file functions, certified, 2-13

file size, 5-15

file upload and download, 3-7

FileCopy utility
copying to another PC, 1-5, 3-8
using, 3-7

floating point calls, 3-5

Index

floating point calls, project settings checklist, 3-5
foundation classes, not supported, 3-5
function descriptions, about, 5-3
function_name, description, 5-3
functions
about, 2-3
certified Microsoft C functions, 2-10
communications, 2-3
description of syntax definition, 5-3
display, 2-4
im_battery_status, 5-4
im_cancel_tx_buffer, 5-5
im_clear_screen, 5-6
im_closedir, 5-6
im_command, 5-7
im_cputs, 5-8
im_cursor_to_viewport, 5-9
im_dbyte_symbology_set, 5-9
im_erase_display, 5-10
im_erase_line, 5-10
im_event_wait, 5-12
im_file_duplicate, 5-14
im_file_size, 5-15
im_file_time, 5-15
im_fmalloc, 5-16
im_free_space, 5-17
im_freemem, 5-17
im_get_config_info, 5-18
im_get_cursor_style, 5-19
im_get_cursor_xy, 5-19
im_get_display_mode, 5-20
im_get_display_size_physical, 5-21
im_get_display_size_virtual, 5-22
im_get_display_type, 5-23
im_get_follow_cursor, 5-24
im_get_input_mode, 5-25
im_get_label_symbology, 5-26
im_get_label_symbologyid, 5-27
im_get_length, 5-28
im_get_relay, 5-29
im_get_screen_char, 5-30
im_get_sensor_all, 5-31
im_get_sensor_input, 5-32
im_get_text, 5-33
im_get_tx_status, 5-35
im_get_viewport_lock, 5-36
im_get_viewporting, 5-38
im_input_status, 5-40
im_irl_a, 5-41
im_irl_k, 5-43
im_irl_n, 5-45
im_irl_v, 5-48
im_irl_y, 5-51
IM_ISERROR, 5-53
IM_ISGOOD, 5-54

TRAKKER Antares PSK Reference Manual

functions (continued)
IM_ISSUCCESS, 5-55
IM_ISWARN, 5-56
im_message, 5-57
im_offset_dbyte, 5-57
im_opendir, 5-58
im_overlay_setup, 5-59
im_overlay_status, 5-60
im_put_text, 5-61
im_putchar, 5-62
im_putchar_dbyte, 5-63
im_puts, 5-63
im_puts_dbyte, 5-64
im_puts_mixed, 5-65
im_readdir, 5-65
im_receive_buffer, 5-66
im_receive_field, 5-68
im_receive_file, 5-74
im_receive_input, 5-75
im_set_cursor_style, 5-78
im_set_cursor_xy, 5-79
im_set_display_mode, 5-80
im_set_eom, 5-81
im_set_follow_cursor, 5-82
im_set_kbmode, 5-83
im_set_optical_callback, 5-84
im_set_relay, 5-86
im_set_time_event, 5-87
im_set_viewport_lock, 5-87
im_set_viewporting, 5-88
im_setup_follow_cursor, 5-89
im_setup_manual_viewporting, 5-90
im_sound, 5-92
im_standby_wait, 5-93
im_status_line, 5-94
im_tcp_reconnect_notify, 5-95
im_timed_status_line, 5-96
im_tm_callback_cancel, 5-97
im_tm_callback_register, 5-97
im_transmit_buffer, 5-100
im_transmit_file, 5-102
im_udp_close_socket, 5-104
im_udp_open_socket, 5-105
im_udp_receive_data, 5-106
im_udp_send_data, 5-111
im_viewport_end, 5-112
im_viewport_getxy, 5-112
im_viewport_home, 5-113
im_viewport_move, 5-113
im_viewport_page_down, 5-114
im_viewport_page_left, 5-115
im_viewport_page_right, 5-115
im_viewport_page_up, 5-116
im_viewport_setxy, 5-116
im_viewport_to_cursor, 5-120

1-6

input, 2-5

sound, 2-6

status code macros, 2-7

system, 2-8

TRAKKER Antares PSK and JANUS PSK differences,
4-3

unsupported Microsoft C functions, 2-15

viewport, 2-9

/

im_battery_status, 5-4
im_cancel_tx_buffer, 5-5
im_clear_screen, 5-6
im_closedir, 5-6

im_cputs, 5-8
im_cursor_to_viewport, 5-9
im_dbyte_symbology_set, 5-9
im_erase_display, 5-10
im_erase_line, 5-10
im_event_wait, 5-12
im_file_duplicate, 5-14
im_file_size, 5-15
im_file_time, 5-15
im_fmalloc, 5-16
im_free_space, 5-17
im_freemem, 5-17
im_get_config_info, 5-18
im_get_cursor_style, 5-19
im_get_cursor_xy, 5-19
im_get_display_mode, 5-20
im_get_display_size_physical, 5-21
im_get_display_size virtual, 5-22
im_get_display_type, 5-23
im_get_follow_cursor, 5-24
im_get_input_mode, 5-25
im_get_length, 5-28
im_get_relay, 5-29
im_get_screen_char, 5-30
im_get_sensor_all, 5-31
im_get_sensor_input, 5-32
im_get_text, 5-33
im_get_tx_status, 5-35
im_get_viewport_lock, 5-36
im_get_viewporting, 5-38
im_input_status, 5-40
im_irl_a, 5-41

im_irl_k, 5-43

im_irl_n, 5-45

im_irl_v, 5-48

im_irl_y, 5-51
IM_ISERROR, 5-53
IM_ISGOOD, 5-54
IM_ISSUCCESS, 5-55
IM_ISWARN, 5-56

im_message, 5-57
im_offset_dbyte, 5-57
im_opendir, 5-58
im_overlay_setup, 5-59
im_overlay_status, 5-60
im_put_text, 5-61
im_putchar, 5-62
im_putchar_dbyte, 5-63
im_puts, 5-63
im_puts_dbyte, 5-64
im_puts_mixed, 5-65
im_readdir, 5-65
im_receive_buffer, 5-66
im_receive_field, 5-68
im_receive_file, 5-74
im_receive_input, 5-75
im_set_cursor_style, 5-78
im_set_cursor_xy, 5-79
im_set_display_mode, 5-80
im_set_eom, 5-81
im_set_follow_cursor, 5-82
im_set_kbmode, 5-83
im_set_optical_callback, 5-84
im_set_relay, 5-86
im_set_time_event, 5-87
im_set_viewport_lock, 5-87
im_set_viewporting, 5-88
im_setup_follow_cursor, 5-89
im_setup_manual_viewporting, 5-90
im_sound, 5-92
im_standby_wait, 5-93
im_status_line, 5-94
im_tcp_reconnect_notify, 5-95
im_timed_status_line, 5-96
im_tm_callback_cancel, 5-97
im_tm_callback_register, 5-97
im_transmit_buffer, 5-100
im_transmit_file, 5-102
im_udp_close_socket, 5-104
im_udp_open_socket, 5-105
im_udp_receive_data, 5-106
im_udp_send_data, 5-111
im_viewport_end, 5-112
im_viewport_getxy, 5-112
im_viewport_home, 5-113
im_viewport_move, 5-113
im_viewport_page_down, 5-114
im_viewport_page_left, 5-115
im_viewport_page_right, 5-115
im_viewport_page_up, 5-116
im_viewport_setxy, 5-116
im_viewport_to_cursor, 5-120
imt24lib, project settings checklist, 3-5

Index

include file
converting applications, 4-6
project settings checklist, 3-5
incompatible functions
converting JANUS PSK to TRAKKER Antares PSK,
4-10
converting TRAKKER Antares PSK to JANUS PSK,
4-7
input functions
about, 2-5
im_dbyte_symbology_set, 5-9
im_file_size, 5-15
im_file_time, 5-15
im_free_space, 5-17
im_freemem, 5-17
im_get_input_mode, 5-25
im_get_label_symbology, 5-26
im_get_label_symbologyid, 5-27
im_get_length, 5-28
im_get_relay, 5-29
im_get_sensor_all, 5-31
im_get_sensor_input, 5-32
im_input_status, 5-40
im_irl_a, 5-41
im_irl_k, 5-43
im_irl_n, 5-45
im_irl_v, 5-48
im_irl_y, 5-51
im_readdir, 5-65
input modes
converting applications, 4-13
Desktop, 4-14
Programmer, 4-13
Wedge, 4-13
installing, Programmer’s Software Kit, 1-4
IRL command
A, 5-41
K, 5-43
N, 5-45
V, 5-48
Y, 5-51
ISMT24.C, 3-3

J

JANUS PSK
compatible functions, 4-4
converting from TRAKKER Antares PSK, 4-7
converting to TRAKKER Antares PSK, 4-10
differences between TRAKKER Antares PSK, 4-3
display modes, 4-9, 4-13
im_appl_break_status, unsupported, 4-10
im_backlight_off, 4-10
im_backlight_on, 4-10

TRAKKER Antares PSK Reference Manual

JANUS PSK (continued) library
im_backlight_toggle, 4-10 project settings checklist, 3-5
im_cancel_rx_buffer, unsupported, 4-10 PSK Language Libraries disk, 1-5
im_cancel_tx_buffer, unsupported, 4-10 Linker Options dialog box, B-4
im_clear_abort_callback, unsupported, 4-10 linker options, project settings checklist, 3-5
im_decrease_contrast, 4-10 llibca, project settings checklist, 3-5
im_get_contrast, 4-10
im_get_control_key, 4-10 M

im_get_display_mode, 4-8, 4-9, 4-12, 4-13
im_get_input_mode, 4-10
im_get_keyclick, 4-10

im_get_postamble, 4-10
im_get_preamble, 4-10
im_get_reboot_flag, unsupported, 4-10
im_get_warmboot, unsupported, 4-10
im_increase_contrast, 4-10
im_input_status, 4-10

im_link_comm, unsupported, 4-10
im_number_pad_off, unsupported, 4-10
im_number_pad_on, unsupported, 4-11
im_parse_host_response, unsupported, 4-11
im_power_status, unsupported, 4-11
im_protocol_extended_status, 4-11
im_receive_buffer, 4-11
im_receive_buffer_no_wait, 4-11
im_receive_buffer_noprot, unsupported, 4-11
im_receive_byte, 4-11

im_rs_installed, unsupported, 4-11
im_rx_check_status, 4-11
im_serial_protocol_control, 4-11
im_set_abort_callback, unsupported, 4-11
im_set_contrast, 4-11
im_set_control_key, unsupported, 4-11
im_set_display_mode, 4-8, 4-11, 4-12
im_set_input_mode, 4-11
im_set_keyclick, 4-11

im_set_warmboot, unsupported, 4-11
im_setup_trx, unsupported, 4-11
im_standard_trx, unsupported, 4-11
im_transmit_buffer, 4-11
im_transmit_buffer_noprot, unsupported, 4-11
im_transmit_byte, unsupported, 4-11
im_unlink_com, unsupported, 4-11
im_viewport_move, 4-8, 4-12

macros
IM_ISERROR, 5-53
IM_ISGOOD, 5-54
IM_ISSUCCESS, 5-55
IM_ISWARN, 5-56
using status code macros, 2-7
MAK (make) file settings, 3-5
math functions, certified, 2-13
math, project settings, 3-5
math, project settings checklist, 3-5
memory
allocating, 5-16
block information, 5-17
storage space available, 5-17
memory functions, certified, 2-13
memory model, 3-5
Memory Model, Compiler Options dialog box, B-4
memory model, project settings checklist, 3-5
Microsoft C functions
buffer manipulation, 2-12
certified, 2-10
character, 2-12
data conversion, 2-12
file, 2-13
math, 2-13
memory, 2-13
miscellaneous, 2-14
string, 2-14
time, 2-14
unsupported, 2-15
Microsoft C/C++ project options, B-3
Microsoft Visual C/C++ version requirements, 1-6
miscellaneous certified functions, 2-14
mode, use im_set_kbmode, 5-83

input modes, 4-13 0
timeout differences, 4-14 oldnames, project settings checklist, 3-5
timeout values, 4-9, 4-14 open directory function, 5-58
viewport functions, 4-8, 4-12 optical input sensor state, 5-31, 5-32
optical sensor input, monitoring changes, 5-84
L options, project settings checklist, 3-5
label

im_get_label_symbology, 5-26
im_get_label_symbologyid, 5-27
large memory model, project settings checklist, 3-5

P

pausing

application, 5-93

event, use im_event_wait, 5-12
program

building from sample, 3-3

building your own, 3-4
Programmer’s Software Kit, installing, 1-4
Programmer mode, 4-13
project directories, 3-5
Project Options dialog box, B-3
project settings checklist, 3-5
PSK

directories, 1-5

diskette contents, 1-4

library, 2-3

requirements, 1-4

R

read directory function, 5-65

reader services, 4-13

receiving data
im_receive_buffer, 5-66
im_receive_field, 5-68
im_receive_file, 5-74
im_receive_input, 5-75
im_udp_receive_data, 5-106

relay status, 5-29

relays, setting, 5-86

requirements, PSK, 1-4

RF communications, downloading applications, 3-9

S

sample program, building, 3-3
scroll mode, use im_set_display_mode, 5-80
sending data
im_transmit_buffer, 5-100
im_transmit_file, 5-102
im_udp_send_data, 5-111
serial port, downloading applications, 3-8
settings, project options, 3-5
socket
closing, 5-104
opening, 5-105
sound function
example, 2-6
im_sound, 2-6, 5-92
stack checking, 3-5
standby function, 5-93
status code macros
converting applications, 4-5
IM_ISERROR, 5-53
IM_ISGOOD, 5-54

Index

IM_ISSUCCESS, 5-55
IM_ISWARN, 5-56
status code return values, A-3
status line, 5-94, 5-96
string functions
certified, 2-14
im_cputs, 5-8
im_get_text, 5-33
im_put_text, 5-61
im_putchar, 5-62
im_putchar_dbyte, 5-63
im_puts, 5-63
im_puts_dbyte, 5-64
im_puts_mixed, 5-65
string length, 5-28
symbology
im_get_label_symbology, 5-26
im_get_label_symbologyid, 5-27
system functions
about, 2-8
im_closedir, 5-6
im_command, 5-7
im_event_wait, 5-12
im_file_duplicate, 5-14
im_fmalloc, 5-16
im_get_config_info, 5-18
im_message, 5-57
im_offset_dbyte, 5-57
im_opendir, 5-58
im_set_input_mode, 5-84
im_set_relay, 5-86
im_standby_wait, 5-93
im_tcp_reconnect_notify, 5-95

T

TCP/IP transfer, setting EOM for, 5-81
terminal
about, 1-3
TRAKKER Antares 242X family, 1-3
TRAKKER Antares 248X family, 1-3
terminal commands, use im_command, 5-7
tested Microsoft C functions, 2-10
time functions, certified, 2-14
time stamp, 5-15
time, use im_set_time_event, 5-87
timeout values
converting applications, 4-14
TRAKKER and JANUS differences, 4-9
timer callback, 5-97
TMP.BAT, example, 3-6
TMP.CMD, example, 3-6
TMP.MAK, example, 3-6
TRAKKER Antares 242X terminal, 1-3
TRAKKER Antares 248X terminal, 1-3

TRAKKER Antares PSK Reference Manual

TRAKKER Antares PSK
compatible functions, 4-4
converting from JANUS PSK, 4-10
converting to JANUS PSK, 4-7
differences between JANUS PSK, 4-3
status code return values, A-3
transmit buffer
im_cancel_tx_buffer, 5-5
im_transmit_buffer, 5-100

U

UDP Plus functions
im_udp_close_socket, 5-104
im_udp_open_socket, 5-105
im_udp_receive data, 5-106
im_udp_send_data, 5-111

understanding function descriptions, 5-3

unsupported Microsoft C functions, 2-15

4

version requirements, Microsoft Visual C/C++, 1-6
video mode, use im_set_display_mode, 5-80
viewport functions
about, 2-9
converting applications, 4-8, 4-12
im_cursor_to_viewport, 5-9
im_get_viewport_lock, 5-36
im_get_viewporting, 5-38
im_set_cursor_style, 5-78
im_set_follow_cursor, 5-82
im_set_viewport_lock, 5-87
im_set_viewporting, 5-88
im_setup_follow_cursor, 5-89
im_setup_manual_viewporting, 5-90
im_viewport_end, 5-112
im_viewport_getxy, 5-112
im_viewport_home, 5-113
im_viewport_move, 5-113
im_viewport_page_down, 5-114
im_viewport_page_left, 5-115
im_viewport_page_right, 5-115
im_viewport_page_up, 5-116
im_viewport_setxy, 5-116
im_viewport_to_cursor, 5-120
Visual C/C++ version requirements, 1-6

w
waiting
im_event_wait, 5-12
im_standby_wait, 5-93
Wedge mode, 4-13
what’s new, 1-7
what’s next, 1-8

1-10

TRAKKER® Antares
Application Smulator

’ntermec

Intermec Technologies Corporation
6001 36th Avenue West

P.O. Box 4280

Everett, WA 98203-9280

U.S. service and technical support: 1-800-755-5505
U.S. media supplies ordering information: 1-800-227-9947

Canadian service and technical support: 1-800-688-7043
Canadian media supplies ordering information: 1-800-268-6936

Outside U.S. and Canada: Contact your local Intermec service supplier.

The information contained herein is proprietary and is provided solely for the purpose of allowing
customers to operate and/or service Intermec manufactured equipment and is not to be released,
reproduced, or used for any other purpose without written permission of Intermec.

Information and specifications in this manual are subject to change without notice.

00 1998 by Intermec Technologies Corporation
All Rights Reserved

The word Intermec, the Intermec logo, JANUS, IRL, TRAKKER, Antares, Adara, Duratherm,
EZBuilder, Precision Print, PrintSet, Virtual Wedge, and CrossBar are either trademarks or
registered trademarks of Intermec.

Throughout this manual, trademarked names may be used. Rather than put a trademark

(O or O) symbol in every occurrence of a trademarked name, we state that we are using the names
only in an editorial fashion, and to the benefit of the trademark owner, with no intention of
infringement.

Manual Change Record
This page records the changes to this manual. The manual was originally released as version 001.

Version Date Description of Change

002 5/97 Added information on the keypad_type and serial_receive_mode INI parameters. Also
explained how to configure the Simulator to support international characters.

003 4/98 Added information on the Optical Input and Screen Type INI parameters.

Contents

Ccontents

Before You Begin ix
Warranty Information ix
Cautions and Notes ix
About This Manual ix
Other Intermec Manuals xii

Getting Started

1 Introduction to the Application Simulator 1-3
Installing the Application Simulator 1-4
Using the Simulator With Other Products 1-4
Using the Simulator in the Development Process 1-5
Starting the Simulator TSR 1-5

Exiting the Simulator TSR 1-7

Working With the Application Simulator

2 How the Simulator Works 2-3
Understanding the Limitations of the Simulator TSR 2-5

Simulated Features and Functions 2-5

Features That Are Automatically Simulated 2-5
Viewport 2-5
Text Display 2-6
Function Left and Function Right Keys 2-7

Features That Are Configured With an INI File 2-7
Terminal Emulation Keypad or Programmable Keypad 2-7
International Characters 2-8
Bar Code Input 2-8
Communications Input and Output 2-9
File Transfer 2-10

Features That Are Not Simulated 2-10
Speed and Performance 2-11
Special Key Sequences 2-11
Contrast Level 2-11

How PSK Functions Are Simulated 2-11

TRAKKER Antares Application Simulator User’s Manual

INI File Parameter Descriptions

3 Why and How You Customize INI Files 3-3

Parameter Descriptions 3-3
sample 3-3
keypad_type 3-4
label_preamble 3-4
label_preamble_string 3-5
label_postamble 3-5
label_postamble_string 3-5
label _time_stamp 3-6
label_symbology 3-6
label_symbologyid 3-7
network_emulation 3-7
network_read file 3-7
network_write_file 3-8
optical_input_n 3-8
portn_read_file 3-9
portn_write_file 3-10
receive_file_return 3-10
screen_type 3-11
serial_port_emulation 3-11
serial_receive_mode 3-12
sim_optical_key 3-12
sim_wand_key 3-13
transmit_file_return 3-13

Customizing INI Files With the Editor
4 Starting the Editor 4-3

Creating a New INI File 4-3

Opening an Existing INI File 4-4

Setting INI Parameters 4-4
Naming the Communications Simulation Files Carefully 4-5

Saving Changes 4-6
Discarding Changes 4-8

Restoring the Default Values 4-8

vi

Contents

Updating the Simulator TSR With the Current INI File 4-8
Printing INI Files 4-9

Exiting the Editor 4-10

Troubleshooting

Problems Operating the Simulator 5-3
Linking to the Wrong LLIBCA.LIB Library 5-3
Problems Simulating Bar Code Input With a Wedge 5-3
Problems Displaying International Characters 5-3

Error and Status Messages 5-4

Adding the Simulator to the
Microsoft Visual C/C++ Tools Menu

Adding the Simulator to the Tools Menu A-3

Index

Vil

Before You Begin

Before You Begin

CAUTION

This section introduces you to standard warranty provisions, cautions and
notes, document formatting conventions, and sources of additional product
information.

Warranty Information

To receive a copy of the standard warranty provision for this product, contact
your local Intermec sales organization. In the U.S. call 1-800-755-5505, and in
Canada call 1-800-688-7043. Otherwise, refer to the Worldwide Sales & Service
list shipped with this manual for the address and telephone number of your
Intermec sales organization.

Cautions and Notes
The cautions and notes in this manual use the following format.

Caution

A caution alerts you to an operating procedure, practice, condition, or
statement that must be strictly observed to prevent equipment damage or
destruction, or corruption or loss of data.

Conseil

Une précaution vous alerte d’une procedure de fonctionnement, d’une méthode,
d’un état ou d’un rapport qui doit étre strictement respecté pour empécher
I’endommagement ou la destruction de I’équipement, ou I’altération ou la
perte de données.

Notes: Notes are statements that either provide extra information about a topic or
contain special instructions for handling a particular condition or set of circumstances.

About This Manual

This manual describes how to use the TRAKKER Antares Application
Simulator, which helps you create, test, and debug applications for TRAKKER
Antares terminals with the Programmable Option.

Use this manual in conjunction with Part I, TRAKKER Antares PSK Reference
Manual, which describes the PSK library functions that the Application
Simulator captures and simulates.

X

TRAKKER Antares Application Simulator User’s Manual

Communications Ports May Not Be Available

Both this manual and the Simulator software refer to communications ports
that may not be available on your TRAKKER Antares terminals. The ports are
COM1, COM2, and an RF network port, NET. To learn which ports are
available on your terminal, check your user’s manual.

Intended Audience

This manual is intended for experienced PC programmers who already
understand return values, know how to program in C, and know how to use
the Microsoft Visual C/C++ and Microsoft CodeView for DOS debugger. They
have already read Part I, TRAKKER Antares PSK Reference Manual, so they
understand how to create programs for TRAKKER Antares terminals.

How This Manual Is Organized
This manual is organized as follows:

Chapter What You’ll Find

1 Getting Started
Introduces the Application Simulator and explains how to install the
software. Also explains how to start and exit the Simulator TSR.

2 Working With the Application Simulator
Describes how the Simulator works, explains which features the
Simulator can make your PC mimic, and gives hints for debugging
an application.

3 INI File Parameter Descriptions

Lists and describes the parameters in the initialization (INI) file.
4 Customizing INI Files With the Editor

Explains how to use the Editor to customize the INI file.
5 Troubleshooting

Lists and describes the status and error messages you may see.
A Adding the Simulator to the Microsoft Visual C/C++ Tools Menu

Describes how to manually add Simulator commands to the
Microsoft Visual C/C++ Tools Menu, in case the commands were not
added automatically during the PSK and Simulator installation.

Before You Begin

Terminology

You should be aware of how these terms are used in this manual:

Term Meaning

TRAKKER Antares terminals These terms refer to Intermec’s TRAKKER Antares
Terminals family of terminals, such as the T242X hand-held

PSK function
Library function
Function

terminals and the T248X stationary terminals.

These terms refer to the library functions described
in Part I, TRAKKER Antares PSK Reference Manual.

Conventions for Input From a Keyboard or Keypad
You should be aware of these formatting conventions for representing input
from a keyboard or keypad.

Convention

Bold

(0Ll

Ctrl-Alt-Del

Meaning

Keys that you press on a PC keyboard are shown in bold. For example,
“press Enter” means you press the key labeled “Enter” on the
keyboard. The first letter of a key name is always capitalized.

Keys that you press on the TRAKKER keypad are shown by icons. For
a complete list of the keypad keys, see your terminal user’s manual.

When a series of keys are shown with no connectors between them,
you must press and release each key in the order shown. For example,
to use viewport pagedown on a terminal, you press and release the (1]
key and then press and release the [g] key.

When a series of keys are shown with a dash between them, you must
press and hold the keys in the order shown and then release them all.
For example, to boot a PC, you press and hold Ctrl, press and hold Alt,
press and hold Del, and then release the keys.

Conventions for Commands
You should be aware of these formatting conventions for entering commands.

Convention

Courier

Italics

Meaning

Commands are shown in Courier exactly as you must type them. For
example: dir

Variables are shown in italics. You must enter a real value for the
variable. For example, replace filename with the name of the INI file in
this command: IMT24SIM filename .ini

Xi

TRAKKER Antares Application Simulator User’s Manual

Xii

Other Intermec Manuals

You may need to refer to the manuals listed below while using the Application
Simulator. To order manuals, contact your local Intermec representative or
distributor.

Intermec
Manual Title Part No.
TRAKKER Antares 2420 and 2425 Hand-Held Terminal User's Manual 064024
TRAKKER Antares 248X Stationary Terminal User’s Manual 066960
Model 200 Controller System Manual 063439
Model 200 Controller Technical Reference Manual 064398

Also, you should see the online README file provided with the software. This
README file contains important information that was not available when this
manual was printed, such as operating guidelines.

Getting Started

Getting Started 1

This chapter introduces the TRAKKER Antares Application Simulator, describes its
installation, explains how to use the Simulator with other products as part of your
development process, and ends with instructions for starting and exiting the TSR.

Introduction to the Application Simulator

The TRAKKER® Antares™ Application Simulator helps you create, debug, test,
and run on your PC any applications you create for TRAKKER Antares
terminals. The Simulator lets you use Microsoft Visual C/C++ and Microsoft
Codeview for DOS to develop TRAKKER Antares applications.

Without the Simulator, you cannot run TRAKKER Antares applications on a PC
because the applications contain PSK functions that are not PC-compatible.
With the Simulator, however, you can run these applications on a PC. The
Simulator captures the PSK functions and terminal-specific interrupts before
they disrupt the PC.

This illustration shows how the Simulator operates.

While a TRAKKER Antares
application is processing on a PC,
it issues a terminal-specific system
interrupt.

The Simulator terminate and stay
resident (TSR) program captures
the interrupt, uses values from the
initialization (INI) file to assemble
a response, and sends the response
to the application.

The application accepts the
response and continues processing.

For a detailed technical
description, see “How the
Simulator Works” in Chapter 2.

Note: The Simulator TSR runs in the
background, transparent to other
software on your PC. 5700.002

1-3

TRAKKER Antares Application Simulator User’s Manual

Installing the Application Simulator

The Application Simulator is installed automatically when you install the
TRAKKER Antares Programmer’s Software Kit (PSK). For instructions, see
Chapter 1 in Part I, TRAKKER Antares PSK Reference Manual.

The installation creates and fills these directories on your PC:
e CA\INTERMEC\IMT24\SIM

= CA\INTERMEC\IMT24\LIB

e CAN\INTERMEC\IMT24\INCLUDE

e CA\INTERMEC\IMT24\SAMPLES

The installation creates a batch file in the WINDOWS or WIN95 directory called
IMT24SIM.BAT that lets you use the IMT24SIM.EXE command from any
directory. The installation also adds the IMT24SIM environment variable to
AUTOEXEC.BAT. The environment variable points to the locations of the
Simulator software.

The installation creates a TRAKKER Antares Development Tools group on the
Windows desktop. The group contains icons for the File Copy utility, the
Editor, the Editor’s online help system, and the README file.

Read the README file before you use the Simulator. This file may contain
information that was not available when the manual was printed. For help
using the Editor, see Chapter 4, “Customizing INI Files With the Editor.”

Note: If Microsoft Visual C/C++ is already installed when you install the Application
Simulator, the installation adds two commands to the Tools menu: Codeview for
TRAKKER and Simulation for TRAKKER. You can choose Codeview for TRAKKER
to load the Simulator TSR into memory and start Microsoft Codeview for DOS, or you
can choose Simulation for TRAKKER to load the Simulator TSR into memory and run
the application you are currently editing.

Using the Simulator With Other Products

1-4

The Application Simulator was designed to be used with the Microsoft Visual
C/C++ Professional Edition (version 1.0 or 1.5x) application development
software. You can use Microsoft Visual C/C++ and Microsoft Codeview for
DOS to create and debug applications for your TRAKKER Antares terminals.

You can install an Intermec Wedge on your PC to simulate bar code input. For
help configuring a wedge, see “Bar Code Input” in Chapter 2.

The Simulator TSR should not interfere with the normal operation of other
software on your PC. Therefore, you can load the Simulator TSR into memory
and leave it running if you have sufficient RAM available.

Getting Started 1

Using the Simulator in the Development Process

The Application Simulator can be an integral part of your application
development process. For example, if you installed Microsoft Visual C++ before
you installed the Simulator, you can follow these steps:

1. Start Windows.
Start Microsoft Visual C/C++.

2
3. Open your TRAKKER Antares project or create a new project.
4

Select Simulation for TRAKKER from the Tools menu to load the Simulator

into memory.

o

Run and debug the application.

6. Exit the debugger. The Simulator is unloaded from memory and you are

returned to Microsoft Visual C/C++.

Note: If you are using Windows 95, you may receive a DOS informational message
when you exit the debugger and terminate the Simulator. The message requests you to

press Ctrl-C to exit the DOS session.

Starting the Simulator TSR

Operating System

The Simulator TSR is a terminate and stay resident program, which is a
program that is loaded into DOS memory and runs in the background. This
table lists the methods for starting the TSR.

Method of Starting the TSR

How Long the TSR Is Valid

Windows 3.1

Start the TSR from DOS before you start
Windows.

Start the TSR from your AUTOEXEC.BAT
file.

Start the TSR from a DOS window while
Windows is running.

Choose Simulation for TRAKKER from the
Tools menu of Microsoft Visual C/C++.

Choose Codeview for TRAKKER from the
Tools menu of Microsoft Visual C/C++.

Start the TSR from a DOS session spawned
from Codeview.

The TSR is valid until you shut down your
PC, or you exit Windows and unload the
TSR.

The TSR is valid until you shut down your
PC, or you exit Windows and unload the
TSR.

The TSR is valid only in that DOS window.
The TSR is valid until you exit the DOS
session that is created.

The TSR is valid until you exit Codeview.

The TSR is valid until you exit Codeview.

1-5

TRAKKER Antares Application Simulator User’s Manual

Operating System

Method of Starting the TSR How Long the TSR Is Valid

Windows 95

1-6

Start the TSR from a DOS window while The TSR is valid only in that DOS window.
Windows is running.

Choose Simulation for TRAKKER from the The TSR is valid until you exit the DOS
Tools menu of Microsoft Visual C/C++. session that is created.

Choose Codeview for TRAKKER from the The TSR is valid until you exit Codeview.
Tools menu of Microsoft Visual C/C++.

If you are using Windows 95, follow these guidelines:

Do not start Codeview, spawn a DOS session, and start the TSR because the
TSR will remain valid only until you exit the spawned DOS session. It will
not be valid when you return to Codeview.

Do not start the TSR from the AUTOEXEC.BAT file because it may crash
your PC.

Here are the commands for starting the Simulator TSR. You can use these
commands from the DOS prompt.

Note: If you are running Windows 3.1 on your PC, you can also include these
commands in your AUTOEXEC.BAT file so the TSR is loaded automatically when you
boot the PC.

To start the Simulator using default INI file

At the DOS prompt, type this command:

imt24sim

When the software finishes loading, this message appears:
Simulator has been loaded with: IMT24SIM.INI

You can now use your application development software to run and debug
TRAKKER Antares applications. IMT24SIM.INI is the default INI file.

To start the Simulator using a custom INI file

At the DOS prompt, type this command:

imt24sim filename.ini

Where filename.ini is the name of your customized INI file.
When the software finishes loading, this message appears:

Simulator has been loaded with: filename.ini

Getting Started 1

You can now use your application development software to run and debug
TRAKKER Antares applications.

Exiting the Simulator TSR

To unload the Simulator TSR from memory, type this command at the DOS
prompt:

imt24sim /d
This message appears:

Simulator has been unloaded.

1-7

Working With the Application Simulator

Working With the Application Simulator 2

This chapter describes how the Simulator TSR works and how it simulates various
terminal features and PSK functions.

How the Simulator Works

The Application Simulator consists of three parts:

Simulator TSR The Simulator terminate and stay resident (TSR) program runs
in the background on your PC. The Simulator TSR captures terminal-specific
system interrupts and makes your PC mimic a TRAKKER Antares terminal.

INI file The initialization (INI) file specifies how the Simulator TSR simulates
terminal features such as communications. IMT24SIM.INI is the default INI file.
To learn about the parameters in the INI file, see Chapter 3.

Editor The Editor is a Windows-based tool for setting the parameters stored in
the IMT24SIM.INI file. For help using the Editor, see Chapter 4.

The Simulator TSR uses the parameters in the INI file to simulate some terminal
features and PSK functions, as described in “Simulated Features and

Functions* later in this chapter. For example, you can use INI parameters to test
how the TRAKKER Antares application handles incoming serial
communications.

Example: How to Simulate Incoming Serial Communications

1. Inthe INI file, set the serial_port_emulation parameter to 1 to indicate that
you are simulating serial communications through an ASCII file.

2. Inthe INI file, set the portl_read_file parameter to ORDERS.RCV to identify
the ASCII file that contains the data to be input as if received on the
terminal’s COML1 port.

3. Create the ORDERS.RCV file and fill it with data. The data will be input to
the application as if received on the terminal’s COML.

For help formatting the data, see Step 1 in the “To simulate data input to the
application through NET” procedure in “Communications Input and
Output” later in this chapter.

4. Start the Simulator TSR and run your TRAKKER Antares application. When
the application issues the im_receive_buffer PSK function, the Simulator
reads from ORDERS.RCV to simulate incoming serial communications.

5. Test how the application responds to the incoming communication.

2-3

TRAKKER Antares Application Simulator User’s Manual

24

This illustration shows how the Simulator TSR simulates incoming data:

INI File

TRAKKER 2400 Application

Simulator TSR

Parameter Value
serial_port_emulation 1
port_read_file ORDERS. RCV

3

ORDERS.RCV
File

//Read DATA from COM1 file.

status = im_receive_buffer
(IM_COM1, 1024, Buffer,
BufferLength);

printf ("DATA=%s", Buffer);

5700U-003

0 When you start the Simulator TSR, it reads the parameters from the INI file,
parses the parameter names, and saves the values into variables in memory.

0 The TRAKKER Antares application executes on the PC. To read incoming
data, the application executes the im_receive_buffer function, which issues
a terminal-specific interrupt.

[0 The Simulator TSR captures the interrupt. Because serial_port_emulation is
enabled, the Simulator TSR reads data from the portl_read_file until it
reaches a CR/LF. The Simulator TSR uses this data to assemble the
response to the im_receive_buffer function.

0 The Simulator TSR passes the response to the application, which accepts the
information as the status and return values of the im_receive_buffer
function. The application continues executing.

Working With the Application Simulator 2

Understanding the Limitations of the Simulator TSR

Read these notes to understand the limitations of the Simulator TSR:

= Start the Simulator TSR before you run any TRAKKER Antares applications
on your PC. Otherwise, you receive an error message and the application
does not run.

= The Application Simulator does not help you test the application’s user
interface or performance. You can test those characteristics far better with a
TRAKKER Antares terminal. Always test your application by running it on
a terminal after you have finished debugging the logic.

= Intermec provides you with the LLIBCA.LIB library. If you link to the
Microsoft LLIBCA.LIB library instead, you may find that an application
containing an erroneous input combination will fail on the TRAKKER
Antares terminal, but will not be detected by the Simulator TSR.

Simulated Features and Functions

The Simulator TSR automatically simulates many features of the TRAKKER
Antares terminal’s performance as well as many PSK functions. Other features
and functions are simulated according to values you set for parameters in an
initialization (INI) file.

To learn how each feature and function is simulated, read these sections:
= Features That Are Automatically Simulated

= Features That Are Configured With an INI File

= Features That Are Not Simulated

e How PSK Functions Are Simulated

Features That Are Automatically Simulated
The Simulator TSR can reproduce these terminal features:

= Viewport
= Text Display
= Function Left and Function Right Keys

Viewport
The Simulator TSR simulates the viewport for the terminal.

TRAKKER Antares Application Simulator User’s Manual

Text Display

If the application calls the im_set_input_mode function to select the
programmer input mode, the Simulator TSR limits character echoing to the
lines and columns based on the display size you specified by calling the
im_set_display_mode function.

Some display characteristics are represented on the PC in color, as shown in the

next table.
Display Characteristics Background Color Foreground Color Blinking*
Normal Black Light gray
Reverse video Light gray Black
Underline Black Magenta
Underline and reverse video Magenta Black
Normal and blinking Black Light gray Yes
Reverse video and blinking Light gray Black Yes
Underline and blinking Black Magenta Yes
Underline, reverse video, and blinking Magenta Black Yes
Bold Black White
Bold and reverse video Light gray Dark gray
Bold and underline Black Magenta
Bold, underline, and reverse video Magenta White
Bold and blinking Black White Yes
Bold, reverse video, and blinking Light gray Dark gray Yes
Bold, underline, and blinking Black Magenta Yes
Bold, underline, reverse video, and Magenta White Yes

blinking

* Text will blink only in the DOS environment.

2-6

Working With the Application Simulator 2

Function Left and Function Right Keys
The Simulator TSR simulates the terminal’s Function Left _fjand Function
Right -f] keys as follows:

To Simulate This Key Press These Keys
(1) (Function Left) Alt

(] (Function Right) Alt Shift

For example, to use viewport page down on a terminal, you press (f][3] To use
viewport page down on a PC using the Simulator, you sequentially press Alt 3
(you must press the 3 on the number pad).

Features That Are Configured With an INI File

If you set the corresponding parameters in the INI file, the Simulator TSR can
reproduce these features:

< Terminal Emulation Keypad or Programmable Keypad
= International Characters

« Bar Code Input

e Communications Input and Output

< File Transfer

Terminal Emulation Keypad or Programmable Keypad

You can simulate either the terminal emulation keypad or the programmable
keypad by setting the keypad_type parameter in the INI file. You should
choose the keypad that will be used on the terminals that will run the
application being tested with the Simulator.

Setting the keypad_type parameter is equivalent to selecting Configuration
Menu, Terminal Menu, and Keypad from the TRAKKER Antares 2400 Menu
System and then setting the keypad type for the terminal.

The programmable keypad supports international characters. For details, see
the next section.

TRAKKER Antares Application Simulator User’s Manual

2-8

International Characters
You can configure the Simulator to support Western European characters (such
as é, U, and 0).

To configure the Simulator to support international characters

1.
2.

Set the keypad_type INI parameter to 1 for the programmable keypad.

Set your PC’s display to Code Page 850 by adding these commands to your
AUTOEXEC.BAT and CONFIG.SYS files:

e AUTOEXEC.BAT
nisfunc
mode con cp prep=((850)c:\windows\command\ega.cpi)
chcp 850

* CONFIG.SYS
country=001, ,c:\windows\command\country.sys
device=c:\windows\command\display.sys con=(ega,850,1)

Make sure you run the Simulator in a true DOS window, nhot a DOS screen.
The international characters will not be displayed in a DOS screen.

If you start the Simulator by selecting Simulator for TRAKKER from the

Tools menu of Microsoft Visual C/C++, you are running the Simulator in a
DOS screen and international characters will not be displayed. Windows 95
users can press Alt—-Enter to change the DOS screen to a true DOS window.

Bar Code Input
You can simulate bar code input using either of these two methods:

By pressing a special key sequence and typing “bar code” data.

By configuring an Intermec Wedge and scanning actual bar code labels.

To simulate bar code input with a keyboard

1.

2.

3.

Press the key sequence specified by the sim_wand_key in the INI file. (The
default key sequence is Ctrl-G.)

Note: You specify the symbology of the simulated bar code label with the
label_symbology parameter in the INI file.

Type the data you want entered into the application as if it were bar code
input from a scanner or wand.

Press Enter to terminate the simulated bar code input.

Working With the Application Simulator 2

To simulate bar code input with an Intermec wedge

Attach an Intermec Wedge to your PC.

Set the first preamble characters to match the sim_wand_key value. For
help, see the next procedure, “To determine how to set the preamble for the
Intermec wedge.”

Use the wedge to scan bar code labels. The bar code data is entered into the
TRAKKER Antares application.

Scan Enter or have a Return in the postamble to terminate the bar code
input.

To determine how to set the preamble for the Intermec wedge

See your wedge or scanner documentation for help setting the preamble.
Also, consider this example:

Your sim_wand_key is Ctrl-G, so you must set the preamble to Ctrl-G.
Because the wedge is in Set Preamble mode, you cannot scan the BEL
character, even though it represents Ctrl-G in the full ASCII chart. Instead,
you must consult the PC/Workstation Keyboard Mapping table (in your
wedge or scanner documentation) to learn which characters to scan for Ctrl
and G. According to the table, you must scan the SO character for Ctrl and
the lowercase g character for G. (If you were to scan SO and uppercase G,
the preamble would be set to Ctrl-Shift-G.)

Communications Input and Output

The Simulator TSR can simulate input and output data through the terminal’s
COM1, COM2, and network port (NET). The next two procedures illustrate
how to simulate 1/0 through NET.

To simulate data input to the application through NET

1.

Type sample data in an ASCII file. You need to know which PSK function
you will use in the TRAKKER Antares application to read data from the file.

For example, both im_receive_buffer and im_receive_input read a line of
data from the file each time they are called. A line of data is either:

= A data string that ends in a <CR><LF>
= A data string that is 1024 bytes long (without a <CR><LF>)

With each subsequent call, both functions continue reading data where they
left off in the file until they reach an EOF. If the functions are called again
after reaching the EOF, they respond differently:

2-9

TRAKKER Antares Application Simulator User’s Manual

2-10

im_receive_buffer This function starts reading data at the top of the file.

im_receive_input This function does not start reading data at the beginning

of the file. This practice allows keyboard, scanner, or wand input.

2. Specify the path and filename of the ASCII file in the network_read_file INI

parameter.

3. Set the network_emulation INI parameter to 1 to enable the Simulator to
conduct its network communications through ASCII data files.

4. Load the TSR and run the application.
Verify that the application read the data correctly from the ASCII file.

To simulate data output from the application through NET

1. Specify the path and filename of the output file in the network_write_file
INI parameter.

2. Set the network_emulation INI parameter to 1 to enable the Simulator to
conduct its network communications through ASCII data files.

3. Load the TSR and run the application.

4. The application creates the ASCII file and writes data to it when the
im_transmit_buffer or im_transmit_file functions execute.

5. Verify that the application wrote the data correctly to the ASCII file.

6. Test the application on a TRAKKER Antares terminal to make sure that the
application is handling the input and output communications protocols
correctly.

File Transfer

The Simulator TSR can simulate the return values for im_receive_file and
im_transmit_file functions, which let you transfer files between the terminal
and a Model 200 Controller. However, the Simulator does not transfer or
simulate transferring the file specified in the im_receive_file and
im_transmit_file functions.

Features That Are Not Simulated
The Simulator TSR cannot reproduce these features:

« Speed and Performance
= Special Key Sequences

e Contrast Level

Working With the Application Simulator 2

Speed and Performance

The Simulator TSR does not simulate the speed or performance of a TRAKKER
Antares terminal. Your TRAKKER Antares applications run as fast as your PC
can execute them.

Special Key Sequences

The terminal’s keypad contains fewer keys than a standard PC-AT keyboard,
but you can produce all 102 PC-AT keys with the terminal by pressing a variety
of key combinations. The special key sequences are listed in your TRAKKER
Antares terminal user’s manual.

When using the Simulator TSR to run TRAKKER Antares applications on a PC,
you do not use special key sequences because your PC keyboard contains all
102 PC-AT keys. For example, to type a comma (,) on a terminal, you press the
(][v] keys. During a simulation, you simply press the comma key on the PC
keyboard—or you can press the Alt V keys sequentially.

Note: As described in “Function Left and Function Right Keys” earlier in this chapter,

you can press Alt on your PC keyboard to simulate the [_f] key.

Contrast Level
The Simulator TSR does not simulate the contrast set for the terminal.

How PSK Functions Are Simulated

Most PSK functions are automatically simulated by the Simulator TSR.
However, the Simulator TSR can simulate some PSK functions only with the
preset values in the INI file.

This table lists the functions that require the INI file configuration:

PSK Function INI File Parameter
im_get_label_symbology label_symbology
im_receive_buffer network_read_file

portn_read_file
serial_receive_mode

im_receive_field keypad_type
label_postamble
label_postamble_string
label_preamble
label_preamble_string
label_time_stamp
network_read_file
portn_read_file

2-11

TRAKKER Antares Application Simulator User’s Manual

PSK Function INI File Parameter
im_receive_file receive_file_return
im_receive_input keypad_type

label_postamble
label_postamble_string
label_preamble
label_preamble_string
label_symbology
label_time_stamp
network_read_file
portn_read_file

im_transmit_buffer network_write_file
portn_write_file

im_transmit_file transmit_file_return

For a complete list of PSK functions, see Part I, TRAKKER Antares PSK Reference
Manual.

2-12

INI File Parameter Descriptions

INI File Parameter Descriptions 3

This chapter explains why you should customize your INI file, describes the
parameters in the INI file, and explains which PSK library functions will receive the
INI parameters as return values and out parameters.

Why and How You Customize INI Files

The INI parameters control how the Simulator TSR simulates a TRAKKER
Antares terminal executing an application. You can customize the parameters
so the Simulator TSR mimics the conditions against which you want to test
your TRAKKER Antares applications.

Note: Customizing the INI file is optional. You do not have to customize the INI file if
you are satisfied with the default values in IMT24SIM.INI.

You can customize INI parameters using the Application Simulator Editor or
any ASCII text editor:

= The Editor provides a graphic environment for changing your INI files.
Instead of typing the settings, you select them from menus, and dialog
boxes. For help using the Editor, see Chapter 4.

= If you create and edit INI files with an ASCII text editor, use a copy of the
default INI file to make sure you conform to the formatting conventions.

Parameter Descriptions

This section contains descriptions of the parameters in the INI file, in
alphabetical order. The first description, sample, illustrates the type of
information presented for each parameter and is not a valid parameter.

Note: Before setting a parameter that refers to the communications ports COML,
COM2, or NET, check your terminal user’s manual to make sure those ports are
available on your terminal.

sample

Purpose
Default
Values

Function

Notes

The purpose of the parameter.
The default value for the parameter.
The values you can set for the parameter.

The PSK library function that receives the parameter as a return value or out
parameter. An out parameter specifies a value that is returned by the function.
Some parameters do not have a PSK function associated with them.

Optional information about the parameter.

3-3

TRAKKER Antares Application Simulator User’s Manual

keypad_type

Purpose
Default

Values
Function

Notes

Specifies the TRAKKER Antares terminal keypad that the Simulator will mimic.
0 - terminal_emulation

0 - terminal_emulation
1 - programmable

im_receive_field
im_receive_input

Setting the keypad_type parameter is the equivalent of selecting the
Configuration Menu, Terminal Menu, and Keypad from the TRAKKER Antares
2400 Menu System and then selecting the keypad type for the terminal.

The Simulator can support Western European characters (such as &, U, and 8)
when you choose the programmable keypad. For help configuring the
Simulator to support these characters, see “International Characters” in Chapter
2.

label preamble

Purpose

Default

Values

Function

34

Lets you add a user-defined string to the front of the label data. The user-
defined string is specified in the label_preamble_string parameter.

0 - disabled

0 - disabled
1 - enabled

im_receive_field
im_receive_input

INI File Parameter Descriptions 3

label preamble string

Purpose

Default
Values

Function

Specifies the user-defined string to be added to the front of the label data if the
label_preamble parameter is enabled.

blank
Any ASCII text

im_receive_field
im_receive_input

label _postamble

Purpose

Default

Values

Function

Lets you append a user-defined string to the end of the label data. The user-
defined string is specified in the label_postamble_string parameter.

0 - disabled

0 - disabled
1 - enabled

im_receive_field
im_receive_input

label _postamble_string

Purpose

Default
Values

Function

Specifies the user-defined string that can be appended to the end of the label
data if the label_postamble parameter is enabled.

blank
Any ASCII text

im_receive_field
im_receive_input

TRAKKER Antares Application Simulator User’s Manual

label time stamp

Purpose Specifies whether the current date and time will be appended to the label data.
Default 0 -disabled

Values 0 - disabled
1 - enabled

Function im_receive_field
im_receive_input

label symbology

Purpose Specifies the symbology of the last simulated scanned label.
Default 1-Code 39

Values 0- Unknown
1 - Code 39
2 - Code 93
3 - Code 49
4 - Interleaved 2 of 5 (I 2 of 5)
5 - Codabar
6 - UPC/EAN
7 - Code 128
8 - Code 16K
9 - Plessey
10 - Code 11
11 - MSI

Function im_get_label_symbology
im_receive_input

Notes The value of this INI parameter is returned to the application in the *symbology
parameter of the function calls that use this INI parameter.

When testing an application, you can simulate the act of scanning a label by
pressing the key sequence specified in the sim_wand_key parameter. The
label_symbology parameter specifies the symbology for the simulated label.

INI File Parameter Descriptions 3

label symbologyid

Purpose
Default
Values
Function

Notes

Specifies the symbologylD of the data entered while simulating bar code input.
None

Enter

im_get label _symbologyid

The value of this INI parameter is returned to the application in the
*Symbologyld parameter of the function calls that use this INI parameter.

network _emulation

Purpose

Default

Values

Function

Specifies whether the network operations are emulated through ASCII data
files, which are named in the network_read_file and network write_file
parameters.

1 - enabled

0 - disabled
1 - enabled

Not applicable

network _read file

Purpose

Default
Values

Function

Notes

Names the ASCII text file that contains data to be read by the application as if it
were received on the network port.

netread.rcv
Any filename

im_receive_buffer
im_receive_input

Test the application on a terminal to ensure that the application is handling the
input communications protocols correctly.

The PSK function you use to read data from the RCV file affects how you
format the data in the file.

TRAKKER Antares Application Simulator User’s Manual

For example:

im_receive_buffer Reads a buffer of data each time it is called. The RCV file
should contain one or more data strings. Each data string is terminated by a
CR/LF character, which indicates the end of the buffer. If there is no CR/LF,
the function reads up to 1024 bytes of data. With each subsequent call,
im_receive_buffer continues reading data where it left off in the file until it
reaches an EOF. If the function is called again after reaching EOF, it starts
reading data from the beginning of the file.

im_receive_input Reads a line at a time, similar to im_receive_buffer.
However, because im_receive_input accepts input from multiple sources, when
the function reaches the EOF, it does not start reading data at the beginning of
the file again. This practice allows keyboard, scanner, and wand input.

network _write_file

Purpose

Default
Values

Function

Notes

Names the ASCII text file that will receive the data that the application writes
to the network port.

netwrite.trx
Any filename

im_transmit_buffer
im_transmit_file

Test the application on a terminal to make sure that the application is handling
the output communications protocols correctly.

optical _input n

3-8

Purpose

Default

Values

Function

Specifies the optical sensor input status while simulating optical sensor input. n
in this parameter designates the optical sensor channel: 1, 2, 3, or 4
(optical_input_1, optical_input_2, optical_input_3, or optical_input_4).

0- OFF

0- OFF
1-ON

im_get_sensor_all
im_get_sensor_input
im_receive_field
im_receive_input

Notes

INI File Parameter Descriptions 3

The value of this INI parameter is returned to the application in the optical
sensor status parameter of the function calls that use this INI parameter.

When testing an application, you can simulate the act of optical sensor input by
pressing the key sequence specified in the sim_optical_key parameter. The
optical sensor channel and optical state value parameter specifies the value of
the simulated optical sensor input.

portn_read file

Purpose

Default
Values

Function

Notes

Names the ASCII text file that contains data to be read by the application as if it
were received on a COM port. The n in portn_read_file is the COM port
number (1 or 2).

comportn.rcv, where n is the COM port number (1 or 2)
Any filename

im_receive_buffer
im_receive_input

Do not set this parameter to comn.rcv. Your PC will expect data from its own
COMnN port.

Test the application on a terminal to make sure that the application is handling
the input communications protocols correctly.

The PSK function you use to read data from the RCV file affects how you
format the data in the file. For example:

im_receive_buffer Reads a buffer of data each time it is called. The RCV file
should contain one or more data strings. Each data string is terminated by a
CR/LF character, which indicates the end of the buffer. If there is no CR/LF,
the function reads up to 1024 bytes of data. With each subsequent call,
im_receive_buffer continues reading data where it left off in the file until it
reaches an EOF. If the function is called again after reaching EOF, it starts
reading data from the beginning of the file.

im_receive_input Reads a line at a time, similar to im_receive_buffer.
However, because im_receive_input accepts input from multiple sources, when
the function reaches the EOF, it does not start reading data at the beginning of
the file again. This practice allows keyboard, scanner, and wand input.

3-9

TRAKKER Antares Application Simulator User’s Manual

portn_write_file

Purpose Names the ASCII text file that will receive data the application writes to a COM
port. The n in portn_write_file is the COM port number (1 or 2).

Default comportn.trx, where n is the COM port number (1 or 2)
Values Any filename

Function im_transmit_buffer
im_transmit_file

Notes Do not set this parameter to comn.trx. Your PC will try to send data to its own
COMn port.

You must test the application on a terminal to make sure that the application is
handling the output communications protocols correctly.

receive_file_return

Purpose Specifies the value to be returned to your application when you use an
im_receive_file function to request that a file be sent to the terminal from the
Model 200 Controller.

Default 00H - success

Values 00H - success
56H - invalid_param
74H - net_open_error
75H - net_close_error
81H - request_failure
80H - file_open_error
85H - file_close_error
83H - receive_failure
84H - file_write_error
55H - general_error
11AH - timed_out_error
6BH - net_config_error
77H - net_write_error
86H - controller_deny

Function im_receive_file

3-10

Notes

INI File Parameter Descriptions 3

The Simulator does not receive or simulate receiving the file specified in the
im_receive_file function. If your application opens the file after receiving it, you
must make sure that a copy of the file is in your current directory when you run
the application through the Simulator. Otherwise, your open command will
fail.

You must test the application on a terminal to make sure that the application
handles the communications protocols correctly and that the file is received on
the terminal without error.

screen_type

Purpose

Default

Values

Function

Notes

Specifies the TRAKKER Antares terminal display type that the Simulator will
mimic.

0 - 20 x 16 hand-held terminal display

0 - 20 x 16 hand-held terminal display

1-80x 25 VMT (Vehicle Mount Terminal) display

2 - 40 x 25 stationary terminal display
3 - 40 x 8 reduced stationary terminal display

im_get _display_type
Setting this parameter is equivalent to selecting Configuration Menu, Terminal

Menu, and Display from the TRAKKER Antares 2400 Menu System and then
setting the display type for the terminal.

serial _port_emulation

Purpose

Default

Values

Function

Specifies whether the serial port operations are emulated through ASCII data
files, which are named in the portn_read_file and portn_write_file parameters.

1 - enabled

0 - disabled
1 - enabled

Not applicable

3-11

TRAKKER Antares Application Simulator User’s Manual

serial _receive _mode

Purpose

Default

Values

Function

Notes

Specifies whether the Simulator receives serial data one line at a time (Line
mode) or one character at a time (Character mode).

0 - line_mode

0 - line_mode
1 - character_mode

im_receive_buffer
In Line mode, the Simulator reads a line of characters till it reaches <CR><LF>

and returns from im_receive_buffer with that string. In Character mode, the
Simulator reads and returns only one character at a time.

sim_optical_key

Purpose

Default

Values

Function

Notes

3-12

Specifies the key sequence that causes the application to accept keyboard input
as if it were optical sensor input.

Ctrl-O

A key combination that includes one or more control keys (Ctrl, Shift, or Alt)
and a character key (A to Z)

im_get_sensor_all

im_get_sensor_input

im_receive_input

im_receive_field

To simulate optical sensor input:

1. Press a key sequence, for example, Ctrl-O.

2. Press 1,2, 3, or4to designate the optical sensor channel.

3. Press one of the status keys, 0 (OFF) or 1 (ON), to end the input.

If the input sequence is not entered in the right order, it will be reset to the
beginning.

Sample key combinations include: Ctrl-B, Shift-C, and Alt-L.

To avoid conflict with Microsoft Windows key code capture, you may decide to
press these keys sequentially.

INI File Parameter Descriptions 3

sim_wand_key

Purpose

Default

Values

Function

Notes

Specifies the key sequence that causes the application to accept subsequent
keyboard input as if it were wand input.

Ctrl-G

A key combination that includes one or more control keys (Ctrl, Shift, Alt) and
a character key (A to Z).

Not applicable

The user presses the key sequence either simultaneously or sequentially, types
data that the application accepts as input from a wand, and presses Enter to
indicate the end of the input.

You can set the sim_wand_key parameter to one or more control keys (Ctrl,
Shift, Alt) and a character key (A to Z). For example:

- Alt-A

= Shift-Alt-B

e Ctrl-Shift-C

e Ctrl-Shift-Alt-D

transmit_file return

Purpose

Default

Values

Specifies the value to be returned to your application when you use an
im_transmit_file function to send a file from the terminal to the Model 200
Controller.

00H - success

00H - success

56H - invalid_param
80H - file_open_error
85H - file_close_error
74H - net_open_error
75H - net_close_error
81H - request_failure
82H - net_get_buffer_error
83H - receive_failure
55H - general_error
11AH - timed_out_error
6BH - net_config_error

3-13

TRAKKER Antares Application Simulator User’s Manual

3-14

Function

Notes

77H - net_write_error
86H - controller_deny

im_transmit_file

The Simulator does not transmit or simulate transmitting the file specified in
the im_transmit_file function. If your application opens the file before
transmitting it, you must make sure that a copy of the file is in your current
directory when you run the application through the Simulator. Otherwise, your
open command will fail.

You must test the application on a terminal to make sure that the application
handles the communications protocols correctly and that the file is transmitted
to the Model 200 Controller without error.

Customizing INI Files With the Editor

Customizing INI Files With the Editor |

This chapter describes how to customize the initialization (INI) file with the
Application Simulator Editor. The Editor is a Windows-based tool for viewing and
setting the parameters stored in the INI file.

Starting the Editor

Start the Editor from the TRAKKER Antares Development Tools group on the
Windows desktop or on the Start menu. The Editor window appears:

= H H P 1 dito /] - || -

[File Edit Help

The title bar contains the IMT24SIM.INI filename because the default INI file is
automatically opened when you start the Editor.

You can begin editing the parameters in the IMT24SIM.INI file, create a new
INI file, or open an existing INI file.

The Editor online help explains how to use the Editor and describes the INI
parameters.

Creating a New INI File

You can create and customize new INI files with the Editor. Each new file is a
duplicate of the IMT24SIM.INI file with all the parameters set to their default
values.

To create a new INI file with the New command

« From the File menu, choose New. The Editor creates a file called NEW.INI
and the parameters are set to their defaults. After you customize the file,
save the file under a new name.

To create a new INI file with the Open command

1. From the File menu, choose Open. The Open File dialog box appears.

2. Inthe File Name field, type the name of the new file you are creating. If
necessary, select the correct directory from the Directories list box.

4-3

TRAKKER Antares Application Simulator User’s Manual

3. Choose OK. The new INI file is created, and the parameters are set to their
defaults. You return to the main menu, and the new filename is displayed
in the title bar. You can begin customizing the file.

Opening an Existing INI File

You can open an existing INI file to view, edit, or print the file.

To open an existing INI file

1. From the File menu, choose Open. The Open File dialog box appears.
2. From the File Name list box, select the name of the file you want to open.

If the filename does not appear in the list box, make sure the current
directory, as shown in the Directories list box, is the one where the file is
stored. If not, select a different directory.

3. Choose OK. The file opens, you return to the main menu, and the filename
is displayed in the title bar. You can begin customizing the file.

Setting INI Parameters

The Editor groups the parameters as follows:

Category INI Parameters

Communications serial_receive_mode
serial_port_emulation
portn_read_file
portn_write_file
network_emulation
network_read_file
network_write_file

Label sim_wand_key
label_symbology
label_time_stamp
label_preamble
label_preamble_string
label_postamble
label_postamble_string
label_symbologyid

File Transfer receive_file_return
transmit_file_return

Keypad keypad_type

4-4

Customizing INI Files With the Editor |

Category INI Parameters

Optical Input sim_optical_key

optical_input_n

Screen Type screen_type

For descriptions of the parameters, see Chapter 3. For help customizing the
parameters, see the next sections.

To set a parameter

1.

From the Edit menu, choose the type of parameter you want to edit:

Communications Controls how the Simulator mimics the terminal
communications features.

Label Controls how data is received from bar code labels.
Keypad Type Specifies which keypad the Simulator mimics.

File Transfer Controls the return value for the im_receive_file and
im_transmit_file functions.

Optical Input Controls how the Simulator responds when a device activates
an optical sensor port.

Screen Type Specifies which screen the Simulator mimics

From the Select Parameter dialog box, select a parameter to view the current
value that parameter.

To customize a parameter, either double-click on it or select it and choose
Edit.

Another dialog box displays the values you can choose for the parameter.
Select a value and choose OK. You return to the Select parameter dialog
box.

Choose Close to return to the main menu.

Naming the Communications Simulation Files Carefully
Four parameters identify files used for simulating communications 1/0:

portn_read_file Simulates reading from the terminal’s COM1 or COM2.

portn_write_file Simulates writing to the terminal’s COM1 or COM2.

network_read_file Simulates reading from the terminal’s NET port.

network_write_file Simulates writing to the terminal’s NET port.

4-5

TRAKKER Antares Application Simulator User’s Manual

To create and specify the files

1.

4.

Use any ASCII text editor to create the file:

= |fyou are creating a read (or input) file, fill the file with data, following
the guidelines in the parameter descriptions in Chapter 3.

= [fyou are creating a write (or output) file, leave the file empty.

Do not name the files comn.rcv or comn.trx. Those filenames cause your PC
to associate input and output with its communication ports.

Follow Steps 1 to 3 in the previous section. The Select Communications
Simulation File dialog box appears.

Select the filename from the list and choose OK. This associates the file with
the parameter. If the filename does not appear in the list box, make sure the
current directory, as shown in the Directories list box, is the one where the
file is stored. If not, select a different directory.

For help using this screen, see the online help. Search for the keyword
“simulation file” to jump to the topic that describes this screen.

Perform Step 4 in the previous procedure.

Saving Changes

4-6

When you edit an INI file, you can save the changes:

into the current INI file and continue working.
into the current INI file when you exit the Editor.
into a new INI file.

into an existing INI file.

Note: The current file is the file that is currently open. The current file name is
displayed in the title bar of the Editor window.

To save the changes into the current INI file and continue working

1.

From the File menu, choose Save. The Editor saves the file and displays a
message similar to this one:

File: TEST.INI Saved
Choose OK.

Customizing INI Files With the Editor |

To save the changes into the current INI file when you exit the Editor

1.

From the File menu, choose Exit. If you made changes to the INI file that
you have not saved yet, the Editor displays the message:

Do you want to save changes to file name?

To save the changes into the current INI file, choose the Save button. The
changes are saved, the Editor shuts down, and you return to the Windows
desktop.

To save the changes into a new INI file

From the File menu, choose Save As. The Save As dialog box appears.

In the File Name field, type the new filename. If necessary, select the correct
directory from the Directories list box.

Choose OK to save the changes in the new file. The Editor creates the new
file, saves the changes, and displays a message similar to this one:

File: COM1.INI Saved
Choose OK.

To save the changes into an existing INI file

1. From the File menu, choose Save As. The Save As dialog box appears.

2. From the File Name list box, select the name of the file where you want to

save the changes. If the filename does not appear in the list box, make sure
the current directory, as shown in the Directories list box, is the one where
the file is stored. If not, select a different directory.

3. Choose OK to save the changes into the file. The Editor displays this
message:
File already exists. Replace existing file?
Choose Yes to overwrite the contents of the file with the changes you have
made. The Editor saves the changes into the file and displays a message
similar to this one:
File: TEST.INI Saved

4. Choose OK.

4-7

TRAKKER Antares Application Simulator User’s Manual

Discarding Changes

You can discard changes when you exit the Editor.

To discard the changes

1. From the File menu, choose Exit. If you made changes to the INI file that
you have not saved yet, the Editor displays a message similar to this one:

Do you want to save changes to file TEST.INI?

2. Todiscard the changes, choose the No Save button. The changes are not
saved, the Editor shuts down, and you return to your Windows desktop.

Restoring the Default Values

You can reset all the parameters in the current INI file to their default settings
at any time while the Editor is running. For a description of the parameters and
their defaults, see Chapter 3.

To restore the defaults
1. From the File menu, choose Restore Defaults. The Editor displays this
message:

All parameters will be reset to their default values. Do you
want to proceed?

2. Choose Restore to restore the defaults. The Editor resets the parameters to
their defaults and displays the message:

All defaults have been restored.
3. Choose OK.

Updating the Simulator TSR With the Current INI File

If the TSR is loaded in memory, you can load a new or changed INI file into the
Simulator TSR without exiting the Editor or stopping the Simulator TSR.

For example, if you start the Simulator TSR with the default INI file,
IMT24SIM.INI, you can use the Editor to:

e Create a new INI file called TEST.INI and load the new file into the
Simulator TSR as it runs in the background.

= Edit the default INI file, IMT24SIM.INI, and load the changed file into the
Simulator TSR as it runs in the background.

Customizing INI Files With the Editor |

To update the Simulator TSR with a new or changed INI file

1.
2.
2.
3.

Make sure the Simulator TSR is running.

Start the Editor. Either create or edit any INI file.

From the File menu, choose Update Simulator.

If the Simulator TSR is running, a status message appears:
Simulator has been updated.

Choose OK. You return to the main menu. The Simulator TSR has been
updated with the current INI file.

If the Simulator TSR is not running, an error message appears:

The Simulator TSR is not running. Please exit the
Editor, shut down Windows, and start the TSR.

Follow the instructions in the message. To start the TSR with a specific INI
file, enter this command at the MS-DOS prompt:

imt24sim filename .ini

Where filename.ini is the name of the INI file.

Printing INI Files

You can print INI files from the Editor or with any ASCII text editor. Printing
INI files is a good way to keep track of contents of the INI files, especially if you
are using multiple files.

Note: If you have not set up the printer for the Editor, choose Print Setup from the File
menu and select the printer options as you would for any Windows application.

1.
2.

To print an INI file

From the File menu, choose Print.
The Editor displays the message: Printing document

To cancel the print job, you can choose Cancel from the message box.

4-9

TRAKKER Antares Application Simulator User’s Manual

Exiting the Editor

4-10

When you exit the Editor, you shut down the Editor and close the current INI
file. If you changed the current file and have not saved those changes yet, the
Editor prompts you to save or discard the changes.

To exit the Editor

From the File menu, choose Exit.

If you saved all changes to the current INI file, the Editor simply shuts
down and you return to your Windows desktop.

If you made changes to the INI file that you have not saved yet, the Editor
displays the message:

Do you want to save changes to file name?
Choose one of the following:

Save The Editor saves the changes and shuts down.

No Save The Editor discards the changes and shuts down.

Cancel The Editor returns to the main menu instead of shutting down.

Troubleshooting

Troubleshooting 5

This chapter describes problems you may encounter while using the Simulator and
error messages you may see while using the Editor.

Problems Operating the Simulator

This section describes problems you may encounter when using the TRAKKER
Antares Application Simulator.

Linking to the Wrong LLIBCA.LIB Library

Both Intermec and Microsoft provide you with the LLIBCA.LIB library. You
must link to the Intermec LLIBCA.LIB library.

If you link to the Microsoft LLIBCA.LIB library instead, an application
containing an erroneous input combination will fail on the TRAKKER Antares
terminal, but will not be detected by the Simulator TSR.

Problems Simulating Bar Code Input With a Wedge

If you are having difficulty using an Intermec Wedge to provide bar code input
while you run a TRAKKER Antares application, you may have set the wedge
preamble incorrectly.

For help setting the preamble to match the value of the sim_wand_key
parameter, see “Bar Code Input” in Chapter 2.

Problems Displaying International Characters

If Western European characters (such as é, U, and 8) are not displayed when
you run a TRAKKER Antares application, make sure you are complying with
these guidelines:

= You set the keypad_type INI parameter to 1 for the programmable keypad.
= You set your PC’s display to Code Page 850.
= You are running the Simulator in a true DOS window, not a DOS screen.

For help, see the commands listed in “International Characters” in Chapter 2.

TRAKKER Antares Application Simulator User’s Manual

Error and Status Messages

This table describes the error and status messages you may see when using or
installing the Simulator TSR or Editor. Follow the instructions in the Suggested
Action column to recover from the error.

Message

Windows is Active!
Shut down Windows before
unloading the Simulator.

All defaults have been
restored.

All parameters will return to
default, do you wish to
proceed?

Cannot change to directory.

Cannot open file name.

Cannot open output file.

54

Description

You loaded the Simulator TSR from DOS
before you started Windows. Later you
attempted to unload the Simulator TSR from
Windows.

You chose Restore Defaults from the File
menu, and the Editor reset the parameters to
their default values.

You chose the Restore Defaults command
from the File menu.

You specified a directory name that is invalid
or does not exist.

The Simulator TSR could not find either the
INI file supplied on the command line or the
default IMT24SIM.INI file.

The TSR was loaded with the default INI
values.

You attempted to save the current
configuration to an INI file, but the
application could not open the INI file.

The current configuration has not been
saved. Your PC may not have enough disk
space available to create this new file.

Suggested Action

Exit Windows and unload the
TSR from DOS.

No action required.

Choose OK to restore the
defaults, or choose Cancel to
keep the current settings.

Make sure you specified the
directory name correctly.
Make sure the directory
exists. Then try again.

Make sure you specified the
filename correctly, and make
sure the file exists.

Make sure the IMT24SIM.INI
file is in the directory
specified by the IMT24SIM
environment variable.

Check how much disk space
is free and perhaps delete
unnecessary files.

Message

Cannot open TSR
communication file.

Default file not found.
Creating IMT24SIM.DEF.

Do you want to replace the
existing filename?

Do you want to save changes
to filename?

Environment variable
IMT24SIM not found.

Description

You selected the Update Simulator command
from the File menu, but the Editor could not
create the EDITTSR.TMP file required for
loading new parameter values.

The Simulator will not be updated with the
new parameter values.

Your PC may not have enough disk space
available to create the EDITTSR.TMP file.

The Editor could not find IMT24SIM.DEF,
which contains the default values for the INI
parameters.

The Editor is recreating the file. The new file
will be read only.

You tried to save the current changes into an
existing file.

You chose to exit the Editor without saving
changes you made to the current INI file.

The “current INI file” is the file that is
currently open. The file’s name appears in
the title bar of the Editor window.

You started the Editor, which could not
locate the IMT24SIM environment variable in
your AUTOEXEC.BAT file.

Troubleshooting 5

Suggested Action

Check how much disk space
is free and delete unnecessary
files.

Choose OK.

Check the validity of the
current directory and make
sure the IMT24SIM
environment variable points
to the location of the DEF file.

Choose Replace to overwrite
the contents of the file with
the new information. Choose
Cancel to cancel the
operation.

Choose Save to save the
changes in the current INI file
and continue exiting.

Choose No Save to discard
the changes and continue
exiting.

Choose Cancel to cancel the
exit operation.

Add this command to your
AUTOEXEC.BAT file:
setimt24sim= pathl|

Where path is the drive and
directory where the
Application Simulator
software is installed.

The path must end with a
backslash. For example:

set imt24sim=c:\sim\

5-5

TRAKKER Antares Application Simulator User’s Manual

Message

ERROR on input. Item name,
not int, = value.

File already exists. Replace
existing file?

File: name Saved.

Filename is of improper
type! File not opened.

Filename not found. Loading
default file IMT24SIM.INI.

Improper file format. File not
opened.

Incorrect DOS version (need
3.0 or greater).

5-6

Description

When the Editor loaded the specified INI file,
it found that a parameter was set to an
invalid value.

The Editor is using the default value for the
parameter.

This problem usually occurs when you use a
text editor to create or modify the INI file.

You specified an existing file during the Save
As operation.

The Editor has saved the file.

You tried to open an INI file that is not the
correct type, or you specified the wrong
filename.

You specified an INI file in the command to
start the Editor, but the Editor could not
locate file.

The Editor is loading the default INI file
instead of the one you specified.

You specified an INI file that did not
conform to the format requirements.

You attempted to load the Simulator TSR,
but your version of DOS is not correct.

Suggested Action

Use the Editor to set a valid
value for the parameter and
save the file.

Choose Yes to overwrite the
file with the changes you
have made with the Editor.
Choose No to cancel the
operation.

No action required.

Choose OK. Make sure you
typed the name correctly.

If the problem persists, make
sure the file has the correct
file type. You may have to
recreate the file with the
Editor to ensure that it has the
correct file type.

Make sure you specified the
filename correctly. Make sure
the file exists. Make sure the
file is mentioned in your
AUTOEXEC.BAT file as
follows: the PATH statement
should include the directory,
or the IMT24SIM
environment variable should
point to the directory.

Check the INI file and correct
any format errors. For help,
print the default INI file.

Upgrade DOS to 3.0 or
greater, or run the Simulator
TSR on another PC with the
correct version of DOS.

Message

Initialization file does not
exist.

Initialization file invalid.

Insufficient memory.

Invalid parameter for name.
Default value supplied.

Parameter name and value are
invalid.

Parameter name is invalid.

Parameter name not found.

Parameter value is invalid.

Printing Document

Description

You tried to load the TSR, and DOS could
not locate the INI file.

You tried to load the TSR with an invalid INI
file.

You tried to load the TSR without sufficient
conventional memory. The TSR requires 50K
of conventional memory.

When the Editor loaded the specified INI file,
it found that a parameter was set to an
invalid value. The Editor used the default
value for the parameter.

This problem usually occurs when you use a
text editor to create or modify the INI file.

When the Editor loaded the specified INI file,
it found that a parameter had an invalid
name and value.

When the Editor loaded the specified INI file,
it found that a parameter had an invalid
name.

When the Editor loaded the specified INI file,
it found that a parameter was missing from
the file.

This problem usually occurs when you use a
text editor to create or modify the INI file.

When the Editor loaded the specified INI file,
it found that a parameter was set to an
invalid value.

This problem usually occurs when you use a
text editor to create or modify the INI file.

You chose the Print command from the File
menu.

Troubleshooting 5

Suggested Action

Make sure the INI file exists
and is mentioned in your
AUTOEXEC.BAT file as
follows: the PATH statement
should include the directory,
or the IMT24SIM
environment variable should
point to the directory.

Verify the file’s type and
contents. Recreate the file
with the Editor.

Free some memory and
reissue the command to load
the TSR.

Use the Editor to set a valid
value for the parameter and
save the file.

Use a text editor to correct the
parameter name and value in
the INI file. For help, print the
default INI file.

Use a text editor to correct the
parameter name in the INI
file. For help, print the default
INI file.

Use the Editor to set a valid
value for the parameter and
save the file.

Use the Editor to set a valid
value for the parameter and
save the file.

No action required.

TRAKKER Antares Application Simulator User’s Manual

Message

Printing failed!

Simulator has been loaded
with filename.

Simulator is already loaded
with filename.INI.

The Simulator is not loaded.

Exit the editor, shut down

Windows, and start the TSR.

This file already exists.
Replace existing file?

TSR memory corruption -
reboot is required!

Unable to copy or
decompress file: filename

5-8

Description

The printer did not respond or an error
caused the printer to terminate the print
request.

You chose the Load Simulator command
from the File menu, and the Editor loaded
the changes in the specified INI file.

You attempted to load the Simulator TSR
when it was already resident in memory.

Only one copy of the Simulator TSR can be
resident in memory at a time.

You chose the Load Simulator command
from the File menu, but the Simulator TSR is
not currently running.

You specified an existing file during the Save
As operation.

You attempted to remove the Simulator TSR
from memory and DOS memory became
corrupted.

During the installation, SETUP.EXE was
unable to copy or decompress a file.

Even if the installation appears to complete
successfully, the software may not be fully
installed. You must take corrective action
and run SETUP.EXE again.

This problem usually occurs if you reinstall
the Simulator and the IMT24SIM.DEF file is
read only. Because SETUP.EXE cannot
overwrite the IMT24SIM.DEF file, the
installation fails.

Suggested Action

Check the status of the
printer, correct the problem,
and try printing again.

No action required.

No action required.

Save the changes to the INI
file, exit the Editor, exit
Windows, and start the TSR
with a command that also
loads the INI file.

Choose Yes to overwrite the
file with the changes you
have made with the Editor.
Choose No to cancel the
operation.

Reboot your PC.

Choose OK. SETUP.EXE may
terminate immediately or
continue.

When SETUP.EXE completes,
delete IMT24SIM.DEF from
the INTERMEC\IMT24\SIM
directory. Run SETUP.EXE
again.

If you still encounter
problems, contact your
Intermec representative.

Adding the Simulator to the
Microsoft Visual C/C++ Tools Menu

Adding the Simulator to the Microsoft Visual C/C++ Tools Menu l \

This appendix shows how to add two Application Simulator commands to the Tools
menu in Microsoft Visual C/C++.

Adding the Simulator to the Tools Menu

If Microsoft Visual C/C++ was installed before you installed the PSK and
Application Simulator on your PC, two commands were automatically added
to the Tools menu of Microsoft Visual C/C++:

Simulation for TRAKKER Loads the Simulator TSR into memory.

Codeview for TRAKKER Loads the Simulator TSR into memory and starts
Microsoft Codeview for DOS.

If these commands were not added to the Tools menu, you can add them
manually at any time by following the instructions in this appendix.

To add the Simulator to the Tools menu
1. Start Microsoft Visual C/C++, and select Tools from the Options menu. The
Tools dialog box appears.

Tools

Menu Contents: Add.__.

CudEView for &wWindows : Delete | Cancel |
CodeVYiew for AM3-DOS

Move Up

Move Down |

Command Line: |E:\MSVC\BIN\APSTUDIO.EXE

Menu Text: |&App Studio

Arguments: |SRC

Initial Directory: |

[" Ask for Arguments

2. Choose Add to access the Add Tool dialog box.

3. Select the IMCV.BAT file and choose OK to return to the Tools dialog box.
The default location for this file is C:\INTERMEC\IMT24\SIM.

A-3

TRAKKER Antares Application Simulator User’s Manual

4. Replace the contents of the Menu Text field with:
CodeView for &S TRAKKER
Also, enter this information to the Arguments field:
$Target

5. Choose Add to add a new item to the Tools menu. The Add Tool dialog box
appears.

6. Select the IMSIM.BAT file and choose OK to return to the Tools dialog box.
The default location for this file is C:\INTERMEC\IMT24\SIM.

Menu Contents: Add... | 0K |
&App Studio
CodeView for AWindows Delete | Cancel

CodeVYiew for AM53-DOS

CodeView for R TRAKKER Move Up | Help |

Move Down |

Command Line: |C:\INTERMEC\IMT24\SIM\IM5IM_BAT

|
Menu Text: m |
|
|

Arguments: |

Initial Directory: |

[Ask for Arguments

7. Replace the contents of the Menu Text field with:
&Simulation for TRAKKER

Also, enter this information to the Arguments field:

$Target

8. Choose OK.

9. From the main menu, choose Tools. The two new options appear on the
menu.

A-4

Index

A

Application Simulator
compatibility, 1-4
illustrated, 1-3, 2-4
installation, 1-4
introduction, 1-3
technical description, 2-3
ASCII text editor, 3-3
AUTOEXEC.BAT file
commands for international characters, 2-8
IMT24SIM environment variable, 5-5
loading TSR at startup, 1-6

B

background, running the TSR in the, 1-3
bar code input
choosing the symbology, 2-8, 3-6
with a keyboard, 2-8
with a Wedge, 1-4, 2-9
batch file for IMT24SIM.EXE, 1-4
booting PC to load TSR, 1-6

C

Character mode, 3-12

characters, international, 2-8, 3-4, 5-3

Code Page 850, 2-8, 5-3

colors, simulating display characteristics, 2-6

COM ports, 2-9, 3-9, 3-10, 4-6

communications
protocols, 3-9
serial communications example, 2-3

Communications parameters
network_emulation, 3-7
network_read_file, 3-7
network_write_file, 3-8
portn_read_file, 2-11, 3-9,
portn_write_file, 3-10
serial_port_emulation, 3-11
serial_receive_mode, 3-12

compatibility, 1-4

CONFIG.SYS file, commands for international

characters, 2-8
controller. See Model 200 Controller
copying files between terminal and controller, 2-10,
3-10, 3-13
Ctrl-G, 2-8, 3-13
current file, 4-6, 5-5

D

data input/output
communications protocols, 3-9
serial communications example, 2-3
debugging

Index

communications protocols, 3-9
undetected reader error condition, 2-5, 5-3
user interface and performance, 2-5
defaults
printing a list of, 4-9
restoring, 4-8
development process, 1-5
display characteristics, shown in color, 2-6
display size, setting, 2-6
DOS version, required, 5-6
DOS window, 2-8, 5-3

E

Editor
creating new INI file, 4-3
discarding changes, 4-8
exiting, 4-10
opening an INI file, 4-4
printing an INI file, 4-9
saving changes, 4-6
setting parameters, 4-5
starting, 4-3
error messages
application will not run, 2-5
listed and described, 5-4
examples
moving the viewport with function keys, 2-7
serial communications, 2-3
typing a comma, 2-11
exiting
Editor, 4-10
TSR, 1-7

F

features
bar code input, 1-4, 2-8
blinking, 2-6
bold, 2-6
contrast level, 2-11
data input/output, 4-6
file transfer, 2-10
Function Left/Right keys, 2-7
international characters, 2-8
keypad, 2-7
reverse video, 2-6
simulated file transfer, 3-13
special key sequences, 2-11
speed and performance, 2-11
underline, 2-6
viewport, 2-5
file transfer, 2-10, 3-10, 3-13
File Transfer parameters
receive_file_return, 3-10
transmit_file_return, 3-13

TRAKKER Antares Application Simulator User’s Manual

formatting sample input data, 2-9, 3-8, 3-9 M

Function Left and Function Right keys, 2-7 memory corruption, 5-8

memory required for TSR, 5-7

H Microsoft Codeview for DOS, 1-3,1-4
help. See online help Microsoft LLIBCA.LIB library, 2-5, 5-3

Microsoft Visual C/C++, 1-3, 1-4, A-3
/ Microsoft Windows 95, 1-5, 1-6

Model 200 Controller, file transfer, 2-10, 3-10, 3-13

IMT24SIM.BAT file, 1-4 moving files between terminal and controller, 2-10, 3-10,

IMT24SIM.EXE file, 1-6 3-13
IMT24SIM.INI file, 2-3, 3-3,4-3, 4-8
INI file
creating, 4-3 N
discarding changes, 4-8 network_emulation, 3-7
editing, 4-4 network_read_file, 3-7
editing the parameters. See parameters network_write_file, 3-8
IMT24SIM.INI file, 2-3, 3-3, 4-3, 4-8
loading values into the TSR, 1-6, 4-8 0
printing, 4-9 online help

restoring the default values, 4-8
saving changes, 4-6
INI parameters. See parameters
initialization file. See INI file
input data
formatting, 2-9, 3-8, 3-9
naming the file, 3-9, 4-6

accessing Editor help screens, 4-3
Optical input parameters
optical_input_n, 3-8
sim_optical_key, 3-12
output data, naming the file, 4-6

installation, 1-4 P
Intermec LLIBCA.LIB library, 2-5, 5-3 parameters
Intermec Wedge. See Wedge editing, 4-5
international characters, 2-8, 3-4, 5-3 grouped according to category, 4-4
keypad_type, 3-4
K label_postamble, 3-5
key sequence for bar code input, 2-8, 3-6, 3-13 :age:_postan;tl)le_;t;mg, 35
keyboard, simulated bar code input, 2-8 Ia el_preamoe, -2
abel_preamble_string, 3-5
keyboard, standard PC-AT, 2-11 label_symbology, 2-8, 3-6
keypad, 2-7, 5-3 label_symbologyid, 3-7
_symbologyid,
Keypad parameters, keypad_type, 3-4 label_time_stamp, 3-6
keypad_type, 3-4 loading default values into the TSR, 4-8
network_emulation, 3-7
L network_read_file, 3-7
Label parameters network_write_file, 3-8
label_postamble, 3-5 optical_input_n, 3-8
label_postamble_string, 3-5 portn_read_file, 2-11, 3-9
label_preamble, 3-4 portn_write_file, 2-12, 3-10
label_preamble_string, 3-5 reasons for customizing, 3-3
label_symbology, 2-8, 3-6 receive_file_return, 3-10
label_symbologyid, 3-7 restoring the default values, 4-8
label_time_stamp, 3-6 screen_type, 3-11
sim_wand_key, 2-8, 3-13, 5-3 serial_port_emulation, 3-11
Line mode, 3-12 serial_receive_mode, 3-12
linking to libraries, 2-5, 5-3 setting, 4-5
LLIBCA.LIB library, 2-5, 5-3 sim_optical_key, 3-12

sim_wand_key, 2-8, 3-13, 5-3
transmit_file_return, 3-13

portn_read_file, 3-9

portn_write_file, 3-10

preamble for Wedge, 2-9, 5-3

printing, 4-9

programmable keypad, 2-7, 2-8, 3-4, 5-3

programmer input mode, 2-6

PSK functions
im_get_display_type, 3-11
im_get_label_symbology, 2-11, 3-6
im_get_label_symbologyid, 3-7
im_get_sensor_all, 3-8, 3-12
im_get_sensor_input, 3-8, 3-12
im_receive_buffer, 2-3, 2-10, 2-11, 3-8, 3-9, 3-12
im_receive_field, 2-11, 3-4, 3-5, 3-6, 3-8, 3-12
im_receive_file, 2-12, 3-10
im_receive_input, 2-10, 2-12, 3-4 to 3-6, 3-8, 3-9,

3-12

im_set_input_mode, 2-6
im_transmit_buffer, 2-12, 3-8, 3-10
im_transmit_file, 2-12, 3-8, 3-10, 3-14
simulated by INI parameters, 2-11

R

RAM for TSR, 1-4

README file, 1-4

receive_file_return, 3-10

requesting file from Model 200 Controller, 2-10, 3-10

restoring defaults, 4-8

running TRAKKER Antares applications on a PC, 1-3,
2-5

S

sample input data, formatting, 2-9, 3-8, 3-9
saving INI file, 4-6

scanner input. See bar code input

Screen Type parameters, screen_type, 3-11
sending file to Model 200 Controller, 3-13
serial_port_emulation, 3-11
serial_receive_mode, 3-12
sim_optical_key, 3-12

sim_wand_key, 3-13

Simulator TSR. See TSR

Index

starting the Editor, 4-3
symbology available, 3-6

T

terminal emulation keypad, 2-7, 3-4
testing
communications protocols, 3-9
undetected reader error condition, 2-5, 5-3
user interface and performance, 2-5
Tools menu, adding Simulator commands, A-3
TRAKKER Antares terminal, 1-3
transferring files between terminal and controller, 2-10,
3-10, 3-13
transmit_file_return, 3-13
troubleshooting
application will not run, 2-5
displaying international characters, 5-3
linking to libraries, 2-5, 5-3
using a Wedge for bar code input, 5-3
TSR
commands for starting, 1-6
exiting, 1-7
leaving it loaded, 1-4
memory required, 5-7
unloading, 1-7

U
unloading the TSR, 1-7

4
viewport, simulated by TSR, 2-5

w

wand input. See bar code input

Wedge
setting the preamble, 2-9, 5-3
simulating bar code input, 1-4, 2-9
troubleshooting, 5-3

Western European characters, 2-8, 3-4, 5-3

Windows 95, 1-5, 1-6

